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ABSTRACT 

 

ANALYTICAL SOLUTION FOR SINGLE PHASE MICROTUBE 

HEAT TRANSFER INCLUDING AXIAL CONDUCTION AND 

VISCOUS DISSIPATION 

 

Bar� �k, Murat 

M.S., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Alm�la Güvenç Yaz�c�o lu 

Co-Supervisor: Prof. Dr. Sad�k Kakaç 

 

July 2008, 84 Pages 

 

Heat transfer of two-dimensional, hydrodynamically developed, thermally 

developing, single phase, laminar flow inside a microtube is studied analytically 

with constant wall temperature thermal boundary condition. The flow is assumed 

to be incompressible and thermo-physical properties of the fluid are assumed to be 

constant. Viscous dissipation and the axial conduction are included in the 

analysis. Rarefaction effect is imposed to the problem via velocity slip and 

temperature jump boundary conditions for the slip flow regime. The temperature 

distribution is determined by solving the energy equation together with the fully 

developed velocity profile. Analytical solutions are obtained for the temperature 

distribution and local and fully developed Nusselt number in terms of 

dimensionless parameters; Peclet number, Knudsen number, Brinkman number, 

and the parameter . The results are verified with the well-known ones from 

literature. 

 

 

Keywords: Micropipe Heat Transfer, Slip Flow, Rarefaction Effect, Axial 
Conduction, Viscous Dissipation 
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ÖZ 

 

M KROTÜPLERDE TEK FAZLI AKI KANLARDA ISI 

TRANSFER N N EKSEN BOYUNCA ISI LET M N N VE 

SÜRTÜNME ISISININ DAH L ED LD  ANAL T K ÇÖZÜMÜ 

 

Bar� �k, Murat 

Yüksek Lisans, Makine Mühendisli i Bölümü 

Tez Yöneticisi: Assist. Prof. Dr. Alm�la Güvenç Yaz�c�o lu 

Ortak Tez Yöneticisi: Prof. Dr. Sad�k Kakaç 

 

Temmuz 2008, 84 Sayfa 

 

Mikrotüplerdeki iki boyutlu, hidrodinamik olarak geli mi , �s�l olarak geli mekte 

olan tek fazl� laminar ak� �n �s� transfer analizi sabit duvar s�cakl� � �s�l s�n�r 

ko ulu için analitik olarak incelendi. Ak� kan s�k� t�r�lamaz, sabit termofiziksel 

özellikli kabul edildi. Sürtünme �s�nmas� ve eksen boyunca �s� iletimi çal� maya 

dahil edildi. Seyrelme etkisi, kayma h�z� ve s�cakl�k atlamas� s�n�r ko ullar� ile 

kaygan ak�  rejimi için çal� maya eklendi. S�cakl�k da �l�m�, enerji denleminin 

tam geli mi  h�z profili ile birlikte çözümü ile belirlendi. S�cakl�k da �l�m�, 

bölgesel ve tam geli mi  Nusselt say�s� için, Peclet, Knudsen, Brinkman 

say�lar� ve boyutsuz  parametresi cinsinden analitik sonuçlar elde edildi. Elde 

edilen sonuçlar literatürdeki bilinen sonuçlarla kar �la t�r�ld�. 

 

 

 

 

 

Anahtar Kelimeler: Mikrokanallarda Is� Transferi, Kaygan Ak� , Seyrelme Etkisi, 
Eksen Boyunca Is� letimi, Sürtünme Is�s� 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Interest in micro- and nanoscale heat transfer has been explosively increasing in 

accordance with the developments in MEMS and nanotechnology during the last two 

decades. The aim of cooling micro- and nanoscale devices is an important subject for 

most engineering applications. Cooling of devices having the dimensions of microns 

is a completely different problem than what is analyzed in the macro world. 

Investigation of the flow characteristics of micro- and nanoscale flows is still a key 

research area. The fluid flow inside a micro- or nanochannel is not fully understood. 

One can understand some of the advantages of using micro- and nanoscale devices in 

heat transfer, starting from the single phase internal flow correlation for convective 

heat transfer; 

 

 (1.1)

 

where  is the convection heat transfer coefficient,  is the Nusselt number,  is 

the thermal conductivity of the fluid and  is the hydraulic diameter of the channel 

or duct. In internal fully developed laminar flows, Nusselt number becomes a 

constant. For example, for the case of a constant wall temperature, Nu = 3.657 and 

for the case of a constant heat flux Nu = 4.364 [1]. As Reynolds number, Re, is 

proportional to hydraulic diameter, fluid flow in channels of small hydraulic 

diameter will predominantly be laminar. The above correlation therefore indicates 

that the heat transfer coefficient increases as channel diameter decreases. As a result 

of the hydraulic diameter being of the order of tens or hundreds of micrometers in 
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forced convection, heat transfer coefficient should be extremely high. However, the 

question is whether Nu is still the same for micro flows. 

 

In macroscale fluid flow and heat transfer, continuum approach is the basis for most 

of the cases. However, continuum hypothesis is not applicable for most of the 

microscale fluid flow and heat transfer problems. While the ratio of the average 

distance traveled by the molecules without colliding with each other, the mean free 

path ( ), to the characteristic length of the flow (L) increases, the continuum 

approach fails to be valid, and the fluid modeling shifts from continuum model to 

molecular model. This ratio is known as Knudsen number, 

 

 (1.2)

 

Knudsen number determines the flow characteristics. Be kök and Karniadakis [2] 

defined four different flow regimes based on the value of the Knudsen number. The 

flow is considered as continuum flow for small values of Kn (< 0.001), and the well 

known Navier-Stokes equations together with the no-slip and no-temperature jump 

boundary conditions are applicable for the flow field. For 0.001 < Kn < 0.1, flow is 

in slip-flow regime (slightly rarefied). For 0.1< Kn < 10 flow is in transition regime 

(moderately rarefied). Finally, the flow is considered as free-molecular flow for large 

values of Kn (>10) (highly rarefied); the tool for dealing with this type flow is kinetic 

theory of gases. 

 

As can be understood from the above information, rarefaction is very important for 

micro and nanoscale fluid flows since it directly affects the condition of flow. No-

slip velocity and no-temperature jump boundary conditions are not valid for a 

rarefied fluid flow at micro and nanoscale. The collision frequency of the fluid 

particles and the solid surface is not high enough to ensure the thermodynamic 

equilibrium between fluid particles and the solid surface. Therefore, the fluid 

particles adjacent to the solid surface no longer attain the velocity and the 
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temperature of the solid surface; they have a tangential velocity at the surface (slip-

velocity) and a finite temperature difference at the solid surface (temperature-jump), 

which eliminate the classical macroscale conservation equations. Gad-el-Hak [3] 

discusses these concepts in detail. 

 

For the slip flow regime (0.001 < Kn < 0.1), which is the main interest of this study, 

slip velocity and temperature jump boundary conditions are added into the governing 

equations to include non-continuum effects, such that macro flow conservation 

equations are still applicable. As explained through kinetic theory of gases, Gad-el-

Hak [3] introduces slip velocity and temperature jump as follows, 

 

 (1.3)

 

 (1.4)

 

Equation (1.3) is the slip velocity for the cylindrical coordinate system, where 
 
is 

the momentum accommodation factor, which represents the fraction of the molecules 

undergoing diffuse reflection. For idealized smooth surfaces, 
 
is equal to zero, 

which means specular reflection. For diffuse reflection, 
 
is equal to one, which 

means that the tangential momentum is lost at the wall. The value of  depends on 

the gas, solid, surface finish, and surface contamination, and has been determined 

experimentally to vary between 0.5 and 1.0. For most of the gas-solid couples used 

in engineering applications, this parameter is close to unity [4]. Therefore for this 

study,  in Eq. (1.3) is also taken as unity. 

 

Equation (1.4) is the temperature jump for the cylindrical coordinate system, where  

is the specific heat ratio, Pr is the Prandtl number of the fluid and 
 
is the thermal 

accommodation factor, which represents the fraction of the molecules reflected 

diffusively by the wall and accommodated their energy to the wall temperature. Its 
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value also depends on the gas and solid, as well as surface roughness, gas 

temperature, gas pressure, and the temperature difference between solid surface and 

the gas. 
 
has also been determined experimentally, and varies between 0 and 1.0. It 

can take any arbitrary value, unlike momentum accommodation factor [4]. 

 

Furthermore, for micro scale, two important effects, axial conduction and viscous 

dissipation, should also be considered carefully. Their influence will be more as a 

result of higher gradients in micro flow. Axial conduction, proportional to Re and the 

streamwise temperature gradient, will not be dominated by the convective term in the 

presence of micro flows when Re becomes of the order of one. It has high influence 

on heat transfer and Nu values especially for low Peclet numbers. Analogously, 

viscous dissipation, proportional to Brinkman number, defined as Br = µ·um
2
/k· T, 

and the velocity gradient, will have a higher effect because of high velocity gradients 

and small wall to fluid temperature difference. Viscous dissipation effect will change 

by the condition of flow. If heating process is applied, viscous dissipation, which is 

higher near the wall surface as a result of the high velocity gradient, will increase the 

temperature of fluid. Then, the temperature difference between the fluid and the wall 

will decrease, which leads to a decrease in heat transfer. However for cooling 

processes it will increase the temperature difference, in turn increasing the heat 

transfer. 

 

The objective of this study is to analytically solve the Graetz problem, which is 

hydrodynamically developed, thermally developing, constant wall temperature 

circular pipe flow, including axial conduction, viscous dissipation, and rarefaction 

effects for air flow. To include the rarefaction effect, the problem will be assumed to 

be in the slip flow regime; slip velocity and temperature jump boundary conditions 

will be used with conventional Navier Stokes equations. Axial conduction and 

viscous dissipation effects will be taken into account to see the increased influence 

on Nu because of the cases in micro flow besides ones in macro flow. Through this 

analysis, closed form solution for Nu as a function of Pe, Br and Kn will be obtained. 

 



5

For this purpose, a wide range of literature will be investigated in Chapter 2 for 

studies considering Graetz problem extended with streamwise conduction, viscous 

heating or micro flow effects analytically or numerically. Chapter 3 presents 

formulation of problem. In Chapter 4, the analysis will be given for fully developed 

velocity and developing temperature profiles. The difficulty of solving non 

homogeneous second order partial differential equation of energy will be eliminated 

by using Kummers confluent hypergeometric function after superposition the 

temperature profile. Furthermore, non-orthogonal characteristic of eigenfunctions 

resulting from axial conduction effect will be transformed into orthogonal form by 

the help of Gram Schmidt orthogonalization procedure, details of which are 

presented in the appendix. In Chapter 5, the results will be presented and discussed 

for both fully developed and thermally developing macro and micro flow cases. A 

comparison of outcomes with well known studies from literature will be made to 

show the validity of the analytical procedure. Finally, in Chapter 6, the study will be 

summarized and concluded with recommendations for future studies. 

. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

Thermal entrance region problem for circular tubes, which is known as the Graetz 

problem,  was first investigated by Graetz [5], and later independently by Nusselt [6], 

analytically. The authors both worked on incompressible fluid flowing through a 

circular tube with constant physical properties, having hydrodynamically developed 

and thermally developing flow for constant wall temperature boundary condition 

different than the uniform temperature of the fluid at the entrance. The procedure 

includes separation of variables technique and solution of Sturm Liouville problem, 

which results in an infinite series expansion in terms of eigenvalues and 

eigenfunctions. Equation (2.1) gives the result of Graetz�s solution from Kakac[7] as, 

 

 (2.1)

 

In this equation,  are eigenvalues and  where  are 

eigenfunctions,  are summation constants, and  are the derivatives of 

eigenfunctions evaluated at r
*
=1, where r

*
 is dimensionless radius as r

*
=r/R. 

 

The authors both analyzed the problem by using just three terms of the infinite series 

solution and evaluated the fully developed flow Nusselt number as 3.6567935, while 

neglecting viscous dissipation and axial conduction. As a result of this exclusion, the 

effects of Pe and Br on Nu could not be visualized. 
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For a circular duct, Kakac [7] gives a list of the first 11 eigenvalues and constants of 

the Graetz problem, as shown in Table 1. Higher order eigenvalues and 

eigenfunctions can be found from [8] and eigenfunctions of the Graetz problem 

solution for flat conduits can be found from [9]. 

 

 

 

Table 1 Eigenvalues and constants of the Graetz Problem 

n n Cn Gn 

0 2.70436 1.47643 0.74877 

1 6.67903 -0.80612 0.54382 

2 10.67337 0.58876 0.46286 

3 14.67107 -0.47585 0.41541 

4 18.66987 0.40502 0.38291 

5 22.66914 -0.35575 0.35868 

6 26.66866 0.31916 0.33962 

7 30.66832 -0.29073 0.32406 

8 34.66807 0.26789 0.31101 

9 38.66788 -0.24906 0.29984 

10 42.66773 0.23322 0.29012 

 

 

 

Solution of the developing temperature distribution, Eq. (2.1) is a series solution 

converging uniformly for all nonzero values of x
*
. However, the convergence is 

extremely slow as x
*
 approaches zero. Number of terms included in the summation 

affects convergence so critically that even using the first 121 terms of the series is 

not sufficient to find the local Nusselt number values for x
*
 less than 10

-4
 as 

explained by Shah [10]. Thus, the advantage of the thinness of the nonisothermal 

region of the very early part of entrance region can be used to develop a similarity 
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solution for this portion. Therefore, for x
*
 less than 10

-4
, Leveque asymptotic solution 

[11] can be employed, which becomes increasingly accurate as x
*
 approaches to zero. 

The temperature distribution and the Nusselt number due to Leveque are given by 

 

 (2.2)

Where 

 (2.3)

 

As a result, 

 (2.4)

 

In this approximation, temperature changes are confined to a region near the tube 

wall so that a new radial coordinate , based on the wall, was used. As mentioned 

before, heat transfer is very close to the pipe wall so that the dimensionless 

penetration depth showing the effect of change in fluid temperature gets very low 

values. When considering axial position such that x
*
 is much less than 1, the fluid 

remains at the inlet temperature except near the wall. Therefore, dimensionless 

temperature  varies from one (the wall temperature) to zero (the inlet temperature) 

as varies from zero to dimensionless penetration depth, in this part of flow. 

Therefore, an order of magnitude analysis is used to determine the dominant terms in 

the energy equation and to understand how the thermal penetration depth grows 

along the tube. As a result, Leveque solution is valid only in a very restricted thermal 

entrance region where the depth of temperature penetration is of the same order of 

magnitude as the hydrodynamic boundary layer over which the velocity distribution 

may be considered linear. 
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Shah and London [10] reviewed the works done to improve the Graetz solution. 

Many researchers studied the effects of axial conduction, viscous dissipation, and 

rarefaction. 

 

Including the axial conduction effect is an interesting problem due to the non-

orthogonal characteristic of eigenfunctions. For macro flow, axial conduction is 

important for high Pe and for the early part of entrance region. Axial conduction is 

added into the Graetz problem, which means finding Nu as a function of Pe for 

hydrodynamically developed and thermally developing laminar pipe flow with 

constant wall temperature boundary condition. Many researchers [12-32] studied this 

problem for macro flow case. Some important works show the variation of Nu with 

Pe. For example, Ash and Heinbockel [25] enhanced the work of Pahor and Strand 

[26] by using confluent hypergeometric function to investigate fully developed flow. 

Shah and London [10] tabulated the fully developed Nu values of Ash and 

Heinbockel for different Pe values, as presented in table 2. Also, Michelsen [20] used 

the method of orthogonal collocation and obtained the same result as Ash (table 2). 

For thermally developing regime, Millsaps [31] solved the problem by using an 

infinite series of Bessel functions of zeroth order. The author gave the first four 

eigenvalues and eigenfunctions for Pe equal to 200 and 2000. Singh [30] also worked 

on the same problem as Millsaps. In addition to the first four eigenvalues and 

eigenfunctions, the author found the first six eigenvalues by an approximate method 

for Pe equals to 2, 10, 20, 100, 200, 2000 and . Furthermore, Taitel [22] also 

presented the solution in a closed form by the integral method. The author used the 

second, third and fourth order polynomial approximations for the temperature profile 

and defined the Nu based on enthalpy change of the fluid from the entrance. For a 

numerical solution of Graetz problem, Schmidt [32] found the local Nu by using 

finite difference method. Hennecke [27] also used finite difference method to 

analyze the problem numerically and presented the results graphically for Pe equals 

to 1, 2, 5, 10, 20 and 50. Table 3 shows Nu values of Hennecke throughout the 

thermally developing region for different Pe values. For the early part of the 

developing region, Kader [28] used the Leveque method including axial conduction 
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into Graetz problem. The solution is applicable for dimensionless axial distance less 

than 0.06. 

 

 

. 

Table 2 Nu values for fully developed laminar flow in a pipe with constant wall temperature 

boundary condition for different Pe values 

. 

Pe Nu Pe Nu Pe Nu Pe Nu Pe Nu Pe Nu 

 3.6568 20 3.670 6 3.744 1 4.030 0.5 4.098 0.04 4.170

60 3.660 10 3.697 5 3.769 0.9 4.043 0.4 4.118 0.03 4.175

50 3.660 9 3.705 4 3.805 0.8 4.059 0.3 4.134 0.02 4.175

40 3.661 8 3.714 3 3.852 0.7 4.071 0.2 4.150 0.01 4.175

30 3.663 7 3.728 2 3.925 0.6 4.086 0.1 4.167 0.001 4.182
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Table 3 Nu values for thermally developing laminar flow in a pipe with constant wall 

temperature boundary condition for different Pe values 

x
*
 

(x/(R Pe)) 

Nux,T 

Pe=1 Pe=2 Pe=5 Pe=10 Pe=20 Pe=50 Pe=  

0.005 - - - - 34.0 18.7 12.82 

0.001 - - - 46.2 21.6 13.6 10.13 

0.002 - - 50.7 24.5 13.4 9.6 8.04 

0.003 - - 35.1 17.3 10.8 8.0 7.04 

0.004 - 68.9 27.4 13.8 9.0 7.1 6.43 

0.005 - 55.0 21.9 11.3 7.8 6.5 6.00 

0.01 65.0 30.0 12.2 7.1 5.6 5.1 4.92 

0.02 32.9 15.8 7.1 5.0 4.4 4.2 4.17 

0.03 22.9 11.4 5.5 4.3 4.0 3.9 3.89 

0.04 17.4 9.2 4.9 4.0 3.8 3.8 3.77 

0.05 14.4 7.8 4.5 3.9 3.72 3.71 3.71 

0.1 8.5 5.3 3.9 3.70 3.67 3.66 3.66 

0.2 5.5 4.3 3.77 3.70 3.67 3.66 3.66 

0.3 4.7 4.0 3.77 3.70 3.67 3.66 3.66 

0.4 4.5 3.92 3.77 3.70 3.67 3.66 3.66 

0.5 4.3 3.92 3.77 3.70 3.67 3.66 3.66 

1.0 4.03 3.92 3.77 3.70 3.67 3.66 3.66 

2.0 4.03 3.92 3.77 3.70 3.67 3.66 3.66 

 

 

 

 

The main conclusion of the abovementioned studies on the effect of axial conduction 

on Nu is that axial conduction is negligible for Pe>50. For Pe<50, axial conduction 

increases local and fully developed Nu and also the thermal entrance length. 
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Adding viscous dissipation effect into Graetz problem for the macro case is 

important for high velocity gas flows and moderate velocity viscous liquid flows. 

References [30, 33-35]  worked on including viscous heating effect for the macro 

flow case. Brinkman [33] first investigated viscous dissipation effect and after him 

the viscous dissipation parameter Br was named. The author mainly worked on fluid 

temperature distribution for capillary flow in the presence of finite viscous 

dissipation by considering the duct wall temperature to be same as the fluid inlet 

temperature. By assuming small fluid temperature variations and constant viscosity, 

Brinkman found that the fluid temperature is highest near the tube wall as a result of 

highest rate of shear in this portion. To extend the Graetz solution with finite viscous 

dissipation, Ou and Cheng [34, 35] studied the problem with the boundary condition 

of constant duct wall temperature different from entering fluid temperature. The 

author used the eigenvalues method and found Nu showing the unique behavior of Br 

effect explained above. Furthermore, Singh [30] included both the axial conduction 

and viscous dissipation terms and tabulated the first four eigenvalues and 

eigenfunctions. As a result, the conclusion of researchers is that the viscous 

dissipation effect dominates the flow after some portion of entry region, which 

directly depends on the Brinkman number value. 

 

The third important parameter to be included in Graetz solution is the rarefaction 

effect for micro flow. In light of the information given in the introduction section, the 

importance and advantages of the micro world can be understood. Sobhan and 

Garimella [36] summarized the studies on microchannel flows in the past decade and 

tabulated them. Some experimental results for microtubes and microchannels can be 

seen in Choi et al. [37] and Phafler et al. [38]. The difference between conventional 

models and microscale experiments shows the effect of Knudsen number. To 

understand the effect of microscale flow, Kavehpour et al. [39] used the slip flow 

model and their results showed an agreement with experimental results of Arkilic 

[40]. For high Kn values, the authors observed an increase in the entrance length and 

a decrease in Nusselt number. 
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Barron et al. [41] used the technique developed by Graetz to solve the problem of 

hydrodynamically developed, thermally developing circular tube flow extended to 

slip flow with constant wall temperature. Their solution procedure gives the first four 

eigenvalues with a good accuracy, but after the fifth root the method becomes 

unstable with unreliable eigenvalues. Furthermore, Barron et al. [42] found that over 

the slip flow regime, Nu was reduced about 40%. As a result of rarefaction, the 

maximum temperature decreases and the temperature profile becomes flat. 

Furthermore, increasing rarefaction causes an increase in the entrance length. For a 

micro flow, the fully developed condition is not obtained as quickly as in macro flow 

case. Change of entrance length with Kn can be shown with Eq. (2.5). 

 

 (2.5)

 

Larrode et al. [43] solved the heat convection problem for gaseous flow in a circular 

tube in the slip flow regime with uniform temperature boundary condition. The effect 

of the rarefaction and surface accommodation coefficients were considered. The 

authors defined a new variable, the slip radius, , where  is a function 

of the momentum accommodation factor. As a result, they obtained the velocity 

profile like no slip velocity by scaling it with this new variable. Therefore, the 

velocity profile is converted to the one used for the continuum flow, . The 

authors also defined a coefficient representing the relative importance of velocity slip 

and temperature jump as , where , with  being the gas 

constant and  the thermal accommodation coefficient. It was concluded that heat 

transfer decreases with increasing rarefaction in the presence of temperature jump 

due to the smaller temperature gradient at the wall. However it was noted that this 

was not true for all, since the eigenvalues are also dependent on the fluid-surface 

interaction. Depending on the values of the accommodation coefficients, Nu may 

also increase or stay constant with increasing Kn. For , Nu increases with 

increasing Kn since  suggests increasing convection at the surface. However, 
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for , Nu decreases with increasing Kn due to the more effective temperature 

jump and thus reduced temperature gradient on the surface. 

 

Mikhailov and Cotta have several works on eigenvalue problems [44, 45]. The 

authors [46] extended the Graetz solution by adding slip flow regime conditions and 

using Kummers hypergeometric function which is the most common type of 

confluent hypergeometric functions. The term confluent refers to the merging of two 

of the three regular singular points of the differential equation into an irregular 

singular point whereas the usual hypergeometric equation has three separate regular 

singular points. The Kummer's function can be obtained from the series expansion as 

Eq. (2.7) for the first kind confluent hypergeometric function solution of Eq. (2.6). 

 

 (2.6)

 

 (2.7)

 

where  and  are Pochhammer symbols. If  and  are integers,  and either 

 or , then the series yields a polynomial with a finite number of terms. If 

 is an integer less than or equal to zero, then  is undefined. In addition 

to all, Bessel functions, error function, incomplete gamma function, and Hermite and 

Laguerre polynomials can be obtained from the Kummers function. 

 

Additional to macro case reasons, viscous heat generation becomes more important 

in micro flows as mentioned in the introduction chapter. Researchers [47-51] added 

the effect of viscous dissipation for micro flow. Again including axial conduction 

effect is an interesting problem because of the non-orthogonal characteristic of 

eigenfunctions, but also it is more important for micro case. More recently, Barbaros 

et al [58] solved the Graetz problem with including axial conduction, viscous 

dissipation and rarefaction effects. Finite difference scheme was used to solve energy 
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equation and a good agreement with literature was obtained.  Hadjiconstantinou and 

Simek [52] studied the effect of axial conduction for thermally fully developed flows 

in micro- and nanochannels. Jeong [53] worked on the extended Graetz problem 

considering streamwise conduction and viscous dissipation in microchannels with 

uniform heat flux boundary condition. He analyzed the energy equation by using 

eigenvalue expansion. He used numerical shooting method to obtain eigenvalues and 

eigenfunctions, which are non-orthogonal. Cotta et.al [54] added the axial conduction 

and viscous dissipation terms for slip flow regime of transient flow with isothermal 

boundary condition. The authors first applied the integral transform technique and 

then solved the remaining by using the abovementioned Kummers hypergeometric 

function. They included the integral transform of each component numerically using 

Method of Lines. Horiuchi et al. [55] studied the thermal characteristics of the mixed 

electroosmotic and pressure-driven flow with axial conduction analytically. 

Furthermore, Dutta [56] solved the energy equation of steady electroosmotic flow 

with an arbitrary pressure gradient for a two dimensional microchannel considering 

advective, diffusive, and Joule heating terms. He used an analytical solution for the 

second order differential problem and used Kummers hypergeometric functions to 

evaluate the non-orthogonal eigenfunctions. He used Gram Schmidt 

orthogonalization procedure to generate orthogonal eigenfunctions. 

 

In this study, heat transfer for steady state thermally developing flow inside a 

microtube in the slip-flow regime is studied with constant wall temperature thermal 

boundary condition analytically. The effect of rarefaction, viscous dissipation, and 

axial conduction is included in the analysis. The energy equation is solved 

analytically by using confluent hypergeometric functions in order to provide a 

fundamental understanding of the effects of the non-dimensional parameters on the 

heat transfer characteristics. The orthogonal eigenfunctions are generated by Gram-

Schmidt orthogonalization procedure. The closed form solution for temperature 

distribution and the Nusselt number are determined as a function of non-dimensional 

parameters. 
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CHAPTER 3 

 

 

FORMULATION OF PROBLEM 

 

 

Convective heat transfer is the study of heat transport processes between the layers of 

a fluid when the fluid is in motion and in contact with a boundary surface at a 

temperature different from the fluid. Governing equations for a cylindrical coordinate 

system for convective heat transfer of an incompressible Newtonian fluid having 

constant thermo-physical properties in the continuum regime are given below. 

 

Continuity equation: 

 

 (3.1) 

 

x-momentum equation: 

 

 

(3.2)
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r-momentum equation: 

 

 

(3.3)

 

-momentum equation: 

 

 

(3.4)

 

Energy equation: 

 

µ  

(3.5)

 

where, 

 

(3.6)
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and u, v, and w are the velocity components in x, r, and  directions, respectively. 

 

In our study, forced convective heat transfer analysis of two-dimensional, single 

phase, pressure driven, steady state, hydrodynamically developed, thermally 

developing laminar flow inside a microtube is studied with constant wall temperature 

thermal boundary condition. The flow is assumed to be incompressible and thermo-

physical properties of the fluid are assumed to be constant. For the microscale case, 

the flow is considered to be in the slip flow regime such that continuum governing 

equations are still applicable with slip velocity (Eq. (1.3)) and temperature jump (Eq. 

(1.4)) boundary conditions. To obtain the fully developed velocity profile, it is 

assumed that there is an unheated portion of the micro tube. After this entrance 

region, the temperature distribution starts to develop. Geometry of problem is shown 

in Fig. 1. 

 

 

 

 

 

Figure 1 Geometry of problem 

 

 

Velocity entrance length 

Unheated section

Fully developed

velocity profile

Heated section

x

r

2R

Slip 

velocity 



19

 

CHAPTER 4 

 

 

SOLUTION METHOD 

 

 

4.1. Fully developed velocity distribution: 

 

For the flow conditions, steady state and two dimensional flow, the governing Eqs. 

(3.1), (3.2), and (3.3) can be written as Eqs. (4.1), (4.2), and (4.3) respectively. 

 

Continuity equation: 

 (4.1) 

 

r-momentum: 

 (4.2)

 

x-momentum: 

 (4.3)

 

For steady and fully developed flow u is a function of r only and the velocity 

component v is zero everywhere. Therefore; continuity equation, Eq. (3.1) is satisfied 

identically and the Navier-Stokes Equations, Eqs. (4.2) and (4.3) reduce to Eqs. (4.4) 

and (4.5) respectively. 

 (4.4)
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 (4.5)

 

From Eq. (4.4), it is concluded that the pressure, P must be constant across any 

section perpendicular to flow. Hence, Eq. (4.4) and (4.5) can be written as; 

 

 (4.6)

 

µ  (4.7)

 

Since the left hand side of the Eq. (4.7) is a function of x only and the right hand side 

is a function of r only, the only possible solution is that both should be equal to a 

constant. 

 

 (4.8)

 

where P is pressure drop over a length L of the tube. Hence, Eq. (4.7) becomes, 

 

µ
 (4.9)

 

Integrating Eq. (4.9) twice yields, 

 

µ
 (4.10)

µ
 (4.11)
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µ
 (4.12)

 

With boundary conditions, 

 (4.13)

 (4.14)

 

where us 
 
is the slip velocity, which is defined as in Eq. (1.3), by taking Fm=1. 

By applying the boundary conditions,
 
and  can be determined. 

 

 (4.15)

µ µ µ
 (4.16)

 

Substituting 
 
and  into the Eq. (4.12) yields, 

 

µ
 (4.17)

 

Calculating mean velocity, 

 

µ

µ
 (4.18)

 

Slip radius [43] is defined as below with choosing =1. 

 

 (4.19)
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Combining Eqs. (4.17), (4.18), and (4.19), the non dimensional velocity profile  

becomes, 

 

 

(4.20)

 (4.21)

where, 

 (4.22)

 

For a micro flow the velocity profile also depends on the Knudsen number. Note 

that, by setting Kn=0 velocity equation becomes identical to the fully developed 

velocity profile of a flow in a macrotube, which is 

 

 (4.23)

 

4.2. Developing temperature distribution: 

 

Energy Equation: 

 

Again, for the flow conditions, steady state, and two dimensional flow, the governing 

Eqs. (3.5) and (3.6) can be written as Eqs (4.24) and (4.25) respectively. 

 

µ  (4.24)
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 (4.25)

 

As introduced before, for steady and fully developed flow u is a function of r only 

and the velocity component v is zero everywhere. As a result, Eq. (4.24) and Eq. 

(4.25) reduce to Eq. (4.26). 

 

µ  (4.26)

 

On the right hand side of the Eq. (4.26), the second expression is axial conduction 

term and the third one is viscous dissipation term, which are not neglected in our 

study. 

 

For constant wall temperature case, boundary conditions are, 

 

 (4.27)

 (4.28)

 (4.29)

 

Energy equation and the boundary conditions can be non-dimensionalized by the 

following dimensionless quantities. 

 

µ
 

 

(4.30)
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In these equations,  is dimensionless temperature distribution, where  is initial 

temperature and  is wall temperature. , Brinkman number is a dimensionless 

group related to heat conduction from the wall to the flowing viscous fluid where µ is 

fluid dynamic viscosity,  is mean velocity and  is thermal conductivity.  is a 

dimensionless number relating the rate of advection of a flow to its rate of thermal 

diffusion where , Reynold number, is a measure of the ratio of inertial forces to 

viscous forces, , Prandtl number, is a dimensionless number approximating the 

ratio of momentum diffusivity (kinematic viscosity) and thermal diffusivity, and  

is slip radius.  is a dimensionless group for the axial coordinate where  is the axial 

coordinate in cylindrical coordinate system and  is the radius of tube.  is a 

dimensionless group for the radial coordinate where  is the radial coordinate in 

cylindrical coordinate system.  is a constant where  is the thermal accommodation 

factor and  is the specific heat ratio. 

 

Introducing these dimensionless quantities into Eq. (2.26), the energy equation 

becomes, 

 

 

µ
 

(4.31)

 

µ

µ
 

µ
 

(4.32)

 

 (4.33)
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By using the dimensionless quantities given in Eqs. (4.30), and the temperature jump 

boundary condition, Eqs. (4.27,28,29), the boundary conditions for constant wall 

temperature become, 

 

 (4.34)

 (4.35)

 (4.36)

 

In this section, the effects of slip velocity and temperature jump are investigated 

separately. For this reason, parameter  is defined for the temperature jump 

boundary condition as, 

 

 (4.37)

 

By using superposition,  can be decomposed as, 

 

 (4.38)

 (4.39)

 (4.40)

 

Where  is the fully developed temperature profile and  is the solution 

of the homogeneous equation. Once Eq. (4.38) is substituted back to the energy 

equation, Eq. (4.33), the resulting equation for  becomes, as , 

, 

 

 (4.41)
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As the gradient of velocity is equal to, 

 

 (4.42)

Equation (4.41) becomes, 

 

 (4.43)

 

 can be derived by integrating Eq. (4.43) together with the symmetry at the 

centerline and the temperature-jump at the wall boundary conditions as, 

 

 (4.44)

 (4.45)

 (4.46)

 

where the boundary conditions are, 

 (4.47)

 (4.48)

 

By applying the boundary conditions, 
 
and  can be determined as below. 

 

 (4.49)

 (4.50)
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As a result, , the fully developed temperature profile is, 

 

 (4.51)

 

where  and  are defined through Eqs. (4.22) and (4.37), respectively. 

 

For the homogeneous part of the temperature distribution, , Eq. (4.52) should 

be solved together with the boundary conditions given below. 

 

 (4.52)

 

 (4.53)

 (4.54)

 (4.55)

 

It is assumed that the solution to the above boundary value problem is of the form 

given by Eq. (4.56) [56] 

 

 (4.56)

 

where  is a function of  only and  is the eigenvalue. 

 

Then, Eq. (4.52) becomes, 

 

 (4.57)
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with the modified boundary conditions, 

 

 (4.58)

 

 (4.59)

 

Note that, when , and , the problem is equivalent to the macrochannel 

problem. Under symmetric boundary condition (4.58), the solution of equation (4.57) 

can be represented as, 

 

 (4.60)

 

By putting Eq. (4.60) into Eq. (4.57), Eq. (4.61) can be obtained. 

 

 (4.61)

 

Defining 

 

 (4.62)

 

Eq. (4.61) becomes, 

 

 (4.63)
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This is a Kummers confluent hypergeometric function in the form given in Ref. [57] 

as, 

 

 (4.64)

 

With, 

 

 

(4.65)

 

 (4.66)

 

As a result, Eq. (4.60) becomes, 

 

 (4.67)

 

By using second the boundary condition, Eq. (4.59), as, 

 

 

 
(4.68)

 

Eigenvalues of Eq. (4.67) can be found by the help of computer software 

Mathematica. 

 

Note that eigenfunctions  are not mutually orthogonal (by referring to the 

standard Sturm-Liouville problem) since the eigenvalues occur non-linearly. To 

determine coefficients , one of the four different uses of Gram-Schmidt orthogonal 
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procedure can be applied. The main difference of all four orthogonalization 

processes is the computational time of finding the solution. However, method 4, 

given in the Appendix in detail, along with the other methods, is going to give 

different results then other three methods while the Pe number increases. This is the 

result of neglecting some terms in the calculation of . 

 

After finding all eigenvalues, eigenfunctions and summation constants, temperature 

distribution Eq. (4.56) can be found as, 

 

 (4.69)

 

 (4.70)

 

Finally the temperature distribution is, 

 

 (4.71)

 

 

(4.72)

 

Using an energy balance, the local heat transfer coefficient is written as, 

 

 (4.73)

 

 (4.74)
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 (4.75)

 

By introducing dimensionless quantities, Eq. (4.30), into Eq. (4.75), the Nusselt 

number is determined for constant wall temperature as, 

 

 (4.76)

 

where 
 
is the dimensionless mean temperature, and it is defined as, 

 

 (4.77)

 

In some of the results part, classical dimensionless quantities Eq. (4.78) are used to 

make comparison with literature. 

 

 (4.78)

 

The solution procedure is prepared by the help of Mathematica software. 

Eigenvalues are found by built in function root finder combined with a bracketing 

method. The method works up to a very high number of eigenvalues with high 

accuracy and short CPU times. However, for the orthogonalization part, the 

procedure is going to be complicated because of the oscillating characteristic of high 

order eigenfunctions. Integration of eigenfunctions results in excessive CPU time 

which is not practical. This problem is eliminated by using Gaussian quadrature 

method for integrations. Gaussian integration with 100 points and 12 weights gives 

nearly the same result with direct integration in a relatively short time. 
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CHAPTER 5 

 

 

RESULTS 

 

 

The problem is solved for different cases to obtain a variety of results for different 

conditions. First, both hydrodynamically and thermally fully developed flow, then 

hydrodynamically developed, thermally developing flow are solved for macro and 

micro cases separately. Axial conduction and viscous dissipation effects are also 

investigated individually in different sub-sections. The outcomes are shown using 

tables and graphs. Comparisons with similar solutions are indicated clearly. Some 

useful results are also tabulated and given in the Appendix. 

 

5.1. Results for both hydrodynamically and thermally fully developed flow: 

 

Fully developed flow in a macropipe and a micropipe are investigated separately to 

see the validity of the solution by comparing it with well-known solutions from 

literature and to find the effect of axial conduction and viscous dissipation on fully 

developed Nusselt number, Nufd. Nusselt number values are presented as a function 

of Peclet, Brinkman, and Knudsen numbers. Since the number of eigenfunctions 

used in the summation solution does not affect the fully developed Nu, only the first 

eigenvalues are used to find Nufd. 

 

5.1.1. Solution for macro flow (Kn=0): 

 

In this section, boundary conditions for macro flow; no slip velocity and no 

temperature jump, are used to solve the problem for the continuum case. The main 
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objective is to show the validity of solution procedure through a comparison with 

literature. 

 

Axial conduction effect 

 

Axial conduction effect appears in the Kummers hypergeometric function part of the 

infinite series solution of the eigenvalue problem. It directly influences eigenvalues 

and eigenfunctions by the change in Pe values. As mentioned before, just the first 

eigenvalues and eigenfunctions are enough to calculate Nufd. To investigate the 

effect of axial conduction on fully developed macro flow, Nufd for different Pe 

values are shown in table 4 using the first eigenvalues for each Pe value. It is seen 

from table 4 that for Pe=10
9
, which corresponds to a high magnitude of the thermal 

energy convected to the fluid relative to the thermal energy conducted axially within 

the fluid, Nu is equal to 3.66 with three significant figures, which is exactly the same 

with all other analytical solutions that excluded axial conduction in literature for 

laminar fully developed flow in a pipe. The results are so accurate that even the 

smallest effect of axial conduction depicts itself in the Nu values. Furthermore, it is 

important that the effect of each different Pe value is included in the calculation of 

eigenvalues and eigenfunctions. In brief, one can conclude that Nufd decreases from 

4.18 at Pe=0 to 3.66 at Pe= . Also, solution shows the axial conduction effect up to 

Pe equal to 10
6
. However the effect is so insignificant that axial conduction can be 

neglected for Pe values higher than 100. 
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Table 4 Fully developed Nu for different Pe values with Kn=0, Br=0 and =1.667 

 

Pe Nufd 1 Pe Nufd 1 Pe Nufd 1 

 3.65679 2.70436 70 3.65771 2.70185 0.8 4.05359 1.29972 

 3.65679 2.70436 60 3.65803 2.70094 0.7 4.06747 1.22567 

1000 3.6568 2.70435 50 3.65858 2.69945 0.6 4.08189 1.144 

900 3.6568 2.70435 40 3.65957 2.69671 0.5 4.09685 1.05284 

800 3.6568 2.70435 30 3.66168 2.69085 0.4 4.11239 0.94938 

700 3.6568 2.70434 20 3.66754 2.6746 0.3 4.12852 0.828904

600 3.65681 2.70433 10 3.69518 2.59693 0.2 4.14526 0.682326

500 3.65681 2.70431 8 3.71247 2.54742 0.1 4.16263 0.486419

400 3.65682 2.70429 6 3.74302 2.45812 0.04 4.17337 0.309143

300 3.65684 2.70423 5 3.76729 2.3853 0.03 4.17518 0.267943

200 3.65691 2.70406 4 3.80153 2.27947 0.02 4.177 0.218953

100 3.65724 2.70313 2 3.92236 1.86754 0.01 4.17882 0.154949

90 3.65735 2.70284 1 4.02735 1.42981 0.001 4.18047 0.049035

80 3.65749 2.70244 0.9 4.04022 1.36744 10-6 4.18065 0.001551

 

 

 

 

 

Table 5 Comparison of fully developed Nu for different Pe with those from literature with 

Kn=0, Br=0 and =1.667 

 

 

 

 

Pe = 1.0 Pe = 2.0 Pe = 5.0 Pe = 10 

Nufd Nufd
* Nufd

** Nufd Nufd
* Nufd

** Nufd Nufd
* Nufd

*** Nufd Nufd
* Nufd

** 

4.027 4.028 4.030 3.922 3.922 3.925 3.767 3.767 3.767 3.695 3.695 3.697 

Error 0% 0.2% 0.7% 0% 0% 0.8% 0% 0% 0% 0% 0% 0.5% 

Nufd : Results for the present study 

Nufd
*
 : Results from Cetin et al [58] 

Nufd
**

 : Results from Shah and London [10] 

Nufd
***: Results from Lahjomri and Qubarra [59] 
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Table 5 presents a comparison of current results for Nu with those available from 

literature. As seen therein, the results are reliable for the fully developed case and the 

error is less than 1%. All the results can be compared with table 2. 

 

Axial conduction and viscous dissipation effects 

 

For fully developed macro flow, since viscous dissipation term dominates heat 

transfer, Nufd converges to the well-known Nu of 9.60 regardless of the values of Pe 

and Br numbers. As a result, axial conduction term has no influence on Nufd for the 

cases with viscous dissipation included. Also, the effect of negative Br or positive Br 

or even the value of Br cannot be visualized for the fully developed case; as 

mentioned before, Br signifies the importance of the viscous heating relative to the 

conductive heat transfer. 

 

5.1.2. Solution for micro flow with slip flow boundary conditions: 

 

Slip flow regime is defined as the range of Kn between 0.001 and 0.1. Temperature 

jump (Eq. (1.4)) and slip velocity (Eq. (1.3)) boundary conditions are added into the 

solution to eliminate non-continuum effects of micro flow. 

 

Axial conduction effect 

 

Similar to the previous case, only the first eigenvalues are used since the number of 

eigenfunctions added to the summation does not affect the Nufd. 

 

Axial conduction effect for fully developed micro flow is presented in table 6 for slip 

flow case for =1.667. It can be seen that axial conduction still has a high influence 

on Nufd for different Kn values. However, its effect decreases as Kn increases. It can 

also be concluded that the effect of Kn is higher for low Pe values because of high 

axial conduction resulting in an increase of dimensionless temperature at any cross 

section such as in the boundaries. In slip flow regime, temperature gradients at the 
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boundaries are the main influential part for temperature jump boundary condition. As 

a result, for low Pe values, temperature gradients and the resulting temperature jump 

at the pipe wall make Kn have a high effect on flow. 

 

Again table 6 shows the effect of axial conduction for high Pe in slip flow. Axial 

conduction effect for different Kn is negligible for Pe higher than 100. 

 

 

 

Table 6 Fully developed Nu values and first eigenvalues for different Pe and Kn with Br=0 

and =1.667 

=1.667 
Pe=1 Pe=2 Pe=5 Pe=10 

Nufd 1 Nufd 1 Nufd 1 Nufd 1 

Kn=0 4.02735 1.42981 3.92236 1.86754 3.76729 2.3853 3.69518 2.59693 

Kn=0.001 4.02081 1.4276 3.91568 1.86484 3.76029 2.38236 3.68795 2.59409 

Kn=0.02 3.84645 1.38931 3.74634 1.81726 3.59679 2.32816 3.52614 2.53989 

Kn=0.04 3.60307 1.35573 3.51677 1.7741 3.38693 2.27492 3.32512 2.48331 

Kn=0.06 3.34365 1.3279 3.27265 1.73711 3.16562 2.22589 3.11463 2.4286 

Kn=0.08 3.09265 1.30487 3.03537 1.70544 2.94922 2.18118 2.90842 2.37681 

Kn=0.10 2.8608 1.28579 2.8148 1.67833 2.74607 2.1407 2.71385 2.3285 

=1.667 
Pe=50 Pe=60 Pe=100 Pe=1000 

Nufd 1 Nufd 1 Nufd 1 Nufd 1 

Kn=0 3.65858 2.69945 3.65803 2.70094 3.65724 2.70313 3.6568 2.70435 

Kn=0.001 3.65121 2.69673 3.65067 2.69823 3.64987 2.70042 3.64942 2.70165 

Kn=0.02 3.48987 2.64353 3.48933 2.64505 3.48854 2.64727 3.48809 2.64851 

Kn=0.04 3.29322 2.58562 3.29274 2.58712 3.29205 2.58932 3.29166 2.59054 

Kn=0.06 3.08834 2.52788 3.08795 2.52933 3.08737 2.53146 3.08705 2.53265 

Kn=0.08 2.88748 2.47199 2.88717 2.47338 2.88672 2.47542 2.88646 2.47655 

Kn=0.10 2.69747 2.41904 2.69723 2.42036 2.69687 2.42229 2.69667 2.42337 
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With the light of table 6, one can conclude that Nufd decreases with an increase in Kn 

because of temperature jump at the pipe walls. Temperature jump at  =1 (pipe wall) 

for Pe=1 and =1 can be seen in Fig. 2 for air, which presents the temperature 

profiles for different Kn values at =1 with Pe=1, Br=0 and =1.667. 

 

 

 

Figure 2 Temperature profiles for different Kn values at = s with Pe=1, Br=0 and =1.667 

 

 

 

In this section, the effects of slip velocity and temperature jump are investigated 

separately.  In slip-flow regime two main parameters; Kn and the parameter , affect 

the temperature profile. Kn includes the effect of rarefaction and the parameter  

includes the effect of gas and surface properties.  =0 and  =10 are two limiting 

cases for this section as stated by Larrode et al [43].  =0 is a fictitious, but a useful 

case to observe the effect of slip velocity without temperature jump on heat transfer. 

 =10 is the other limit, which accounts for a very large temperature jump at the wall. 

 =1.667 is the typical value for air, which is the working fluid for various 

engineering application and is taken so in this study, except this section. 
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Table 7 shows the effect of temperature jump more clearly for the slip flow regime. 

Including velocity slip and no temperature jump ( =0) boundary conditions results in 

higher Nu with increasing Kn. However, as mentioned before, including the 

temperature jump decreases Nu for Kn higher than 0. By increasing the parameter , 

temperature jump also increases, such that for the limiting case ( =10), Nu decreases 

to 0.84 from 3.66. 

 

 

 

Table 7 Fully developed Nu with Br=0 for different Kn and  values. 

 

Pe=1000 
Nufd 

 =0  =1.667  =10 

Kn=0 3.6568 3.6568 3.6568 

Kn=0.001 3.66769 3.64942 3.56013 

Kn=0.02 3.85559 3.48809 2.2911 

Kn=0.04 4.02067 3.29166 1.62371 

Kn=0.06 4.15989 3.08705 1.2465 

Kn=0.08 4.27886 2.88646 1.00768 

Kn=0.10 4.38166 2.69667 0.843998 

 

 

 

As a result, the solution shows perfectly the effect of Kn on Nufd for different Pe and 

temperature jump amounts. Results are sensible for small changes in effect of axial 

conduction as tabulated for different Pe values. Table 8 summarizes and compares 

the slip flow regime results for different Pe, Kn, and  values. Comparison with 

literature shows the validity of outcomes. 
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Axial conduction and viscous dissipation effects 

 

Similar to macro flow, for the fully developed case, viscous dissipation term 

dominates heat transfer, such that Nufd converges to the same value for all Pe and Br 

values in the slip flow regime. Again, axial conduction term has no influence on Nufd 

when viscous dissipation is included. However, for micro flow, Nufd decreases with 

an increase in Kn, which is mainly the result of slip velocity at boundaries in the slip 

flow regime. As a result of slip velocity different than 0 at the pipe boundaries, 

velocity gradients near the pipe wall reduce. As mentioned before, velocity gradients 

especially near the pipe wall are the main effective factor for viscous dissipation, 

such that a decrease of velocity gradients results in the decrease of viscous heating. 

Table 9 shows the variation of Nufd with different Kn for =1000 and =1.667. 

 

 

 

Table 9 Fully developed Nu values for different Br and Kn with Pe=1000 and =1.667 

 

 
=1.667 

Pe=1000 

Br 

-0.1 -0.05 -0.01 0 0.01 0.05 0.1 

Kn=0 9.6 9.6 9.6 3.6568 9.6 9.6 9.6 

Kn=0.001 9.46357 9.46357 9.46357 3.64942 9.46357 9.46357 9.46357 

Kn=0.02 7.42759 7.42759 7.42759 3.48809 7.42759 7.42759 7.42759 

Kn=0.04 6.0315 6.0315 6.0315 3.29166 6.0315 6.0315 6.0315 

Kn=0.06 5.06509 5.06509 5.06509 3.08705 5.06509 5.06509 5.06509 

Kn=0.08 4.35926 4.35926 4.35926 2.88646 4.35926 4.35926 4.35926 

Kn=0.10 3.82252 3.82252 3.82252 2.69667 3.82252 3.82252 3.82252 

 

 

 

Table 9 furthermore shows that the effect of negative Br or positive Br or even the 

value of Br cannot be observed for the fully developed case in slip flow regime 

similar to the continuum case. Again, as can be seen in table 10, the comparison 
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shows perfect agreement with available results from literature for all Br different 

than 0. 

 

 

 

Table 10 Comparison of fully developed Nu with Br 0 for different Kn with literature. 

 

 Br 0 

Kn Nufd Nufd
* 

0.00 9.6 9.6 

0.04 6.03 6.03 

0.08 4.36 4.36 

Nufd : Approximate results for the present study 

Nufd
*
 : Results from Cetin et al [60] 

 

 

 

5.2. Results for hydrodynamically developed, thermally developing flow: 

 

Accuracy of the method for the thermally developing region mainly depends on the 

number of eigenvalues and eigenfunctions used in the summation solution. 

Especially as the solution gets closer to the entrance region, more and more 

eigenfunctions are needed for an accurate calculation. However, a high number of 

eigenfunctions for a summation solution is still a problem and not practical for 

today�s computers. Therefore, the first objective is to determine the exact number of 

eigenfunctions for a suitable range of  through which the results can be examined. 

However, in this section, non-dimensional term x
*
 is used to make comparison with 

literature. For this purpose, local Nu as a function of x
*
 and number of 

eigenfunctions used in summation solution, N, is plotted in Fig. 3 for Pe=1 with 

Kn=0, Br=0 and =1.667. 
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Figure 3 Deviation of local Nu with N, the number of eigenfunctions used in the solution, 

for Pe=1 with Kn=0, Br=0 and =1.667 

 

 

 

After a thorough investigation, it is seen that solutions with 50, 40 and 30 

eigenfunctions give the same results after x
*
= 0.02. Since practical microchannels 

have high length to diameter ratio, the resolution at the inlet does not play an 

important role for the overall picture. As a result 30 eigenfunctions are enough to see 

the deviation of local Nu along dimensionless axial direction x
*
 greater than 0.02. 

 

5.2.1. Solution for macro flow (Kn=0): 

 

Similar to the case in section 4.1.1 for macro flow, no slip velocity and no 

temperature jump boundary conditions are used to solve the problem for the 

continuum case. By excluding the effects of axial conduction and viscous dissipation, 

the problem transforms into the basic thermal development problem, which is the 

classical Graetz problem. 
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Table 11 shows the comparison of the present results for the classical Graetz problem 

excluding axial conduction, viscous dissipation, and rarefaction effects. Results are 

exactly same with those from Ref. [61] for x
*
>0.01, which is an acceptable range for 

the present study. Therefore, selecting the number of eigenfunctions as 30 is a 

suitable choice. If fewer eigenfunctions are used, the discrepancy from literature is 

going to increase, since the early entrance region needs more eigenfunctions for more 

accurate results. The temperature profile approach is improper to model this part of 

the entrance region. A simpler profile such as the Leveque Solution can solve this 

portion easily as mentioned in chapter 2. 

 

 

 

Table 11 Comparison of local Nu for the present study with those from Ref. [61] for 

Pe=1000, Kn=0, Br=0 and =1.667 

 

x
* 

Nux
 

Nux
*

x
*
 Nux Nux

*
x

*
 Nux Nux

*

0.0001 23.5207 22.275 0.002 8.0685 8.0362 0.03 3.89466 3.8942

0.0002 18.4569 17.558 0.003 7.06137 7.0432 0.04 3.76912 3.7689

0.0003 15.8100 15.277 0.004 6.44161 6.4296 0.05 3.7101 3.7100

0.0004 14.1864 13.842 0.005 6.01025 6.0015 0.06 3.6821 3.6820

0.0005 13.0678 12.824 0.006 5.68788 5.6812 0.07 3.66881 3.6688

0.0006 12.2343 12.050 0.007 5.4355 5.4301 0.08 3.66249 3.6624

0.0007 11.5795 11.433 0.008 5.23133 5.2269 0.09 3.6595 3.6595

0.0008 11.0459 10.926 0.009 5.0621 5.0584 0.1 3.65808 3.6580

0.0009 10.5990 10.498 0.01 4.9192 4.9161 0.15 3.65683 3.6568

0.001 10.2171 10.130 0.02 4.17344 4.1724 0.2 3.65680 3.6568

Nufd : Results for present study 

Nufd
*
 : Results from Shah [61] 
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It can also be seen from table 11 that the flow reaches the fully developed condition 

after x
*
 = 0.15, which is also exactly the same with the thermal entrance length of a 

classical laminar pipe flow. 

 

Axial conduction effect 

 

For the investigation of the axial conduction effect in the thermally developing 

region for macro flow, 30 eigenvalues and their eigenfunctions are found for each Pe 

value, since each one has different eigenvalues and eigenfunctions as a result of axial 

conduction effect. Table 20 in the appendix shows the first 30 eigenvalues for 

different Pe values. For all cases, more detailed tables are presented in the appendix. 

 

Temperature profiles, through 
*
 for different Pe, can be seen in Fig. 4. Increase of 

the thermal entrance length, Lt, with a decrease in Pe can be visualized clearly. 

Decrease of Pe increases the axial conduction, which results in the rise of 

dimensionless temperature at any cross section and length required to achieve fully 

developed conditions. 

 

 

Figure 4 Temperature profiles for different Pe with Kn=0, Br=0 and =1.667 
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Furthermore, Lt values for different Pe are tabulated in table 12. Since the Nu results 

are displayed with 5 significant figures in this study, during the calculation of Lt, 

Nufd results with 6 significant figures are used to reach fully developed condition. 

 

 

 

Table 12 Thermal entrance length, Lt, for different Pe with Kn=0, Br=0 and =1.667 

Kn=0, Br=0 Pe=1 Pe=2 Pe=5 Pe=10 Pe=50 

Lt (
*
 = s

2
(2- s

2
) x / R) 2.272 0.585 0.098 0.03 0.004 

 

 

 

Figure 5-a and b show the local Nu along the dimensionless axis x
*
 and 

*
 for 

different Pe, respectively. By the help of dimensionless x
*
, comparison with 

Hennecke [27] (table 3) shows the validation of the solution such that  the small 

differences with data points taken from [27] can be visualized in Fig. 5-a. Moreover, 

local Nu through 
*
 for different Pe are tabulated in table 13. Similar to fully 

developed results, Nu increases with decreasing Pe. Furthermore, axial conduction 

effect is more influential at the beginning of the development part and its effect 

decreases with an increase in Pe. Again, streamwise conduction effect reduces while 

Nu converges to the fully developed value. As a result, it can be concluded that axial 

conduction is more important for the early part of thermal development region. 
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Figure 5 Variation of Local Nu along (a) x
*
 (with data points from Hennecke) and (b) 

*
 for 

different Pe with Kn=0, Br=0 and  = 1.667 
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Table 13 Local Nu along the entrance region for different Pe with Kn=0, Br=0 and =1.667 

 

*
 = 

s
2
(2- s

2
) x / R

 

Nux,T 

Pe=1 Pe=2 Pe=5 Pe=10 Pe=50 

0.01 55.6042 17.7366 4.81184 3.72045 3.65858 

0.02 33.0403 9.93414 3.96441 3.69538 3.65858 

0.03 23.1657 7.39902 3.81108 3.69518 3.65858 

0.04 17.9617 6.17572 3.77732 3.69518 3.65858 

0.05 14.814 5.47368 3.7696 3.69518 3.65858 

0.06 12.7188 5.03003 3.76782 3.69518 3.65858 

0.07 11.2282 4.73232 3.76741 3.69518 3.65858 

0.08 10.1158 4.52438 3.76732 3.69518 3.65858 

0.09 9.25542 4.37504 3.7673 3.69518 3.65858 

0.1 8.57144 4.26563 3.76729 3.69518 3.65858 

0.2 5.60473 3.94821 3.76729 3.69518 3.65858 

0.3 4.73626 3.92446 3.76729 3.69518 3.65858 

0.4 4.37611 3.92253 3.76729 3.69518 3.65858 

0.5 4.20596 3.92238 3.76729 3.69518 3.65858 

0.6 4.12062 3.92236 3.76729 3.69518 3.65858 

0.7 4.07655 3.92236 3.76729 3.69518 3.65858 

0.8 4.05343 3.92236 3.76729 3.69518 3.65858 

0.9 4.04122 3.92236 3.76729 3.69518 3.65858 

1.0 4.03473 3.92236 3.76729 3.69518 3.65858 

2.0 4.02736 3.92236 3.76729 3.69518 3.65858 

3.0 4.02735 3.92236 3.76729 3.69518 3.65858 

4.0 4.02735 3.92236 3.76729 3.69518 3.65858 

Axial conduction and viscous dissipation effects 

 

Influence of both axial conduction and viscous dissipation is investigated in this 

section. Viscous heating has no effect on eigenvalues and eigenfunctions, thus the 

values obtained in the last section are used (table 20 in the appendix). 
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Lt values for different Br presented in table 14. Nufd is chosen as 9.6 for all Br values 

different than 0 during the calculation of Lt. Increase in Br for positive values and 

decrease for negative values result in shortening of the length of obtaining Nu as 9.6. 

 

 

 

Table 14 Thermal entrance length, Lt, for different Br with Pe=1, Kn=0 and =1.667 

Pe=1, Kn=0 Br=0.01 Br=0.001 Br=0 Br= - 0.001 Br= - 0.01 

Lt (
*
 = s

2
(2- s

2
) x / R) 4.783 5.348 2.272 5.348 4.787 

 

 

 

Figure 6 and table 15 show the effect of different Br values on Nu for Pe=1 case. 

First of all, Nu values are the same with no viscous dissipation case up to some 

portion of 
*
 depending on Br value. The main effect of viscous heating starts after 

that point and dominates the flow. Nu converges the same value, 9.6, for all Br 

values different than 0. This can be visualized in figure 6 more clearly. 

 

As mentioned before, for positive Br, which means fluid cooling, viscous dissipation 

enhances the heat transfer. This can be seen from the sudden increase of Nu (jump 

point) around 
*
 =1 and 

*
 =3 in Fig. 6 and table 15. Furthermore, the increase of Br 

results in movement of the jump-point in the downstream direction like the increase 

of Lt which is the main effect of value of Br. For negative Br, which means fluid 

heating, Nu goes to infinity at singular points where the bulk mean temperature of 

the fluid is equal to wall temperature. Again the value of Br alters the location of 

singular points as a result of change of viscous dissipation. After the singular points, 

heat transfer changes direction as mentioned before. Singular points of negative Br 

case can be visualized from Fig. 6 and table 15 more clearly. 
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Figure 6 Variation of Local Nu along 
*
 for different Br with Pe=1, Kn=0 and  = 1.667 
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Table 15 Local Nu along the entrance region for different Br with Pe=1, Kn=0 and =1.667 

 

*
 = 

s
2
(2- s

2
) x / R 

Nux,T 

Br=0.01 Br=0.001 Br=0 Br= - 0.001 Br= - 0.01 

0.01 55.5977 55.6036 55.6042 55.6049 55.6107 

0.02 33.0384 33.0401 33.0403 33.0404 33.0421 

0.03 23.1698 23.1661 23.1657 23.1653 23.1616 

0.04 17.9714 17.9627 17.9617 17.9607 17.9519 

0.05 14.829 14.8155 14.814 14.8125 14.7989 

0.06 12.7387 12.7208 12.7188 12.7168 12.6988 

0.07 11.2529 11.2307 11.2282 11.2257 11.2034 

0.08 10.1451 10.1187 10.1158 10.1128 10.0863 

0.09 9.28925 9.25881 9.25542 9.25202 9.22132 

0.1 8.60975 8.57529 8.57144 8.56759 8.53278 

0.2 5.69019 5.61336 5.60473 5.59608 5.51732 

0.3 4.88214 4.75113 4.73626 4.72133 4.58398 

0.4 4.606 4.39986 4.37611 4.35219 4.12868 

0.5 4.55476 4.2427 4.20596 4.16877 3.81278 

0.6 4.63693 4.1766 4.12062 4.06358 3.4966 

0.7 4.82439 4.16106 4.07655 3.98952 3.07176 

0.8 5.1115 4.1802 4.05343 3.92083 2.38073 

0.9 5.49708 4.23028 4.04122 3.83872 1.06409 

1.0 5.97231 4.31483 4.03473 3.72385 -2.1161 

2.0 9.43046 8.26116 4.02736 12.1837 9.78376 

3.0 9.59707 9.57062 4.02735 9.62974 9.60298 

4.0 9.59995 9.59951 4.02735 9.6005 9.60005 

5.0 9.6 9.59999 4.02735 9.60001 9.6 

6.0 9.6 9.6 4.02735 9.6 9.6 
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Axial conduction in the presence of viscous heating still has a high effect through the 

thermally developing region up to some value of 
*
 depending on Pe value. For Pe=1 

axial conduction determines the local Nu up to 
*
 =0.5 after which viscous 

dissipation starts to influence the flow and dominates the Nufd as mentioned before. 

Before that point, Nu values are similar to no viscous dissipation case. Furthermore, 

the main impact of Pe is on the jump point location (sudden increase of Nu) in the 

thermally developing region, which can be seen in figure 7. Increase in Pe results in 

movement of jump point towards downstream, similar to the influence of Br values. 

However, its effect is more influential than effect of Br values. Table 16 presents the 

local Nu values for different Pe with Br=0.01. 

 

 

 

Figure 7 Variation of Local Nu along 
*
 for different Pe with Br=0.01, Kn=0 and =1.667 
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Table 16 Local Nu along the entrance region for different Pe with Br=0.01, Kn=0 and 

=1.667 

 
*
 = 

s
2
(2- s

2
) x / R 

Nux,T 

Pe=1 Pe=2 Pe=5 Pe=10 Pe=50 

0.01 55.5977 17.7491 4.89316 3.93464 9.2313 

0.02 33.0384 9.96509 4.12586 4.44646 9.59973 

0.03 23.1698 7.4462 4.09772 5.81853 9.6 

0.04 17.9714 6.23886 4.26816 7.73341 9.6 

0.05 14.829 5.55339 4.58521 8.96748 9.6 

0.06 12.7387 5.12753 5.06947 9.42169 9.6 

0.07 11.2529 4.84926 5.73099 9.55266 9.6 

0.08 10.1451 4.66284 6.5245 9.58764 9.6 

0.09 9.28925 4.5375 7.34242 9.59679 9.6 

0.1 8.60975 4.45497 8.06401 9.59917 9.6 

0.2 5.69019 4.67765 9.59296 9.6 9.6 

0.3 4.88214 6.04871 9.59998 9.6 9.6 

0.4 4.606 7.93694 9.6 9.6 9.6 

0.5 4.55476 9.07139 9.6 9.6 9.6 

0.6 4.63693 9.45914 9.6 9.6 9.6 

0.7 4.82439 9.56443 9.6 9.6 9.6 

0.8 5.1115 9.59114 9.6 9.6 9.6 

0.9 5.49708 9.5978 9.6 9.6 9.6 

1.0 5.97231 9.59946 9.6 9.6 9.6 

2.0 9.43046 9.6 9.6 9.6 9.6 

3.0 9.59707 9.6 9.6 9.6 9.6 

4.0 9.59995 9.6 9.6 9.6 9.6 

5.0 9.6 9.6 9.6 9.6 9.6 

6.0 9.6 9.6 9.6 9.6 9.6 
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5.2.2. Solution for micro flow with slip flow boundary conditions: 

 

Again, for slip flow regime defined as the range of Kn between 0.001 and 0.1, 

temperature jump and slip velocity boundary conditions are added into the solution 

to eliminate the non-continuum effects of micro flow. 

Axial conduction effect 

Similar to the previous sections, 30 eigenvalues and their eigenfunctions are found 

for each Pe to investigate the axial conduction effect through the thermally 

developing region of the slip flow regime. Table 21 and 22 in the appendix shows the 

first 30 eigenvalues for different Pe values. 

 

Temperature profiles, along 
*
 for different Kn values, can be seen in Fig. 8. As 

mentioned before, the main influence of Kn on temperature profile for slip flow 

regime is the temperature jump at the pipe wall that can be seen in Fig. 8 more 

clearly. Temperature jump at the boundaries increases with increase in Kn. 

 
Figure 8 Temperature profiles for different Kn with Pe=1, Br=0 and =1.667 

Kn=0.08

Kn=0.04

Kn=0

* = s
2(2- s

2) x / R

= s r / R



54

Lt values for different Kn are presented in table 17, but they can also be visualized 

more clearly in tables 23 and 24 in the appendix where local Nu values are tabulated 

for thermally developing region of slip flow. Kn value has little influence on Lt and 

its effect further decreases with increase in Pe. 

 

Table 17 Thermal entrance length, Lt, for different Pe and Kn with Br=0 and =1.667

 Br=0 Pe=1 Pe=2 Pe=5 Pe=10 Pe=50 

Lt 

(
*
 = s

2
(2- s

2
) x / R) 

Kn=0 2.272 0.585 0.098 0.03 0.004 

Kn=0.04 2.426 0.622 0.105 0.03 0.004 

Kn=0.08 2.383 0.601 0.105 0.03 0.004 

 

 

Figure 9 and 10 show the variation of Nu for several Pe values for Kn=0.04 and 

Kn=0.08, respectively. The effect of axial conduction for the slip flow case still has a 

high influence on Nu for different Kn values. However, its effect decreases as Kn 

increases. Also we can conclude that effect of Kn is emphasized for low Pe values. 

 

Figure 9 Variation of local Nu along 
*
 for different Pe with Kn=0.04, Br=0 and  = 1.667 
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Figure 10 Variation of local Nu along 
*
 for different Pe with Kn=0.08, Br=0 and  = 1.667 

As a conclusion for this section, it can be said that Nu decreases with an increase in 

Kn because of temperature jump at the pipe walls in the slip flow regime. Result can 

also be visualized in tables 23 and 24 in the appendix. 
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heating has no effect on eigenvalues and eigenfunctions. 

Table 19 shows Lt values for Br=0.01. Contradictory to the last section, Kn effect on 

Lt cannot be neglected. Increase in Kn results in increase of Lt. 
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Table 18 Thermal entrance length, Lt, for different Kn with Pe=1, Br=0.01 and =1.667 

Pe=1, Br=0.01 Kn=0 Kn=0.04 Kn=0.08 

Lt (
*
 = s

2
(2- s

2
) x / R) 4.783 5.046 5.285 

 

 

 

Furthermore, similar to the no viscous heating section, Nu decreases with an increase 

in Kn. Again similar to the macro case including viscous dissipation, Nu values 

converge to a value independent of Pe or Br values. However, different from macro 

flow, the dominant effect of viscous heating is reduced as a result of velocity slip 

boundary condition in micro flow, and fully developed Nu values decrease with an 

increase in Kn as mentioned before. Also, the increase in Kn results in the transition 

of jump point towards upstream, similar to Lt. Figure 11 and table 20 present the 

local Nu values for different Kn. Moreover, axial conduction effect for slip flow 

regime is the same as continuum case in the presence of viscous dissipation. 

 

 

.  

Figure 11 Variation of local Nu along 
*
 for different Kn with Pe=1, Br=0.01 and  = 1.667 
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Table 19 Local Nu along the entrance region for different Kn with Pe=1, Br=0.01 and 

=1.667 

*
 = 

s
2
(2- s

2
) x / R 

Nux,T 

Kn=0 Kn=0.04 Kn=0.08 

0.01 55.5977 11.814 6.53171 

0.02 33.0384 10.341 6.0312 

0.03 23.1698 9.31616 5.66383 

0.04 17.9714 8.5467 5.37534 

0.05 14.829 7.94123 5.13954 

0.06 12.7387 7.44962 4.9417 

0.07 11.2529 7.04138 4.77261 

0.08 10.1451 6.69655 4.62607 

0.09 9.28925 6.40135 4.4977 

0.1 8.60975 6.14589 4.38426 

0.2 5.69019 4.74507 3.71503 

0.3 4.88214 4.20965 3.43057 

0.4 4.606 3.97271 3.295 

0.5 4.55476 3.87283 3.23139 

0.6 4.63693 3.84883 3.20759 

0.7 4.82439 3.87513 3.20887 

0.8 5.1115 3.94155 3.22861 

0.9 5.49708 4.04485 3.26426 

1.0 5.97231 4.18405 3.31526 

2.0 9.43046 5.84792 4.18502 

3.0 9.59707 6.02648 4.35259 

4.0 9.59995 6.03138 4.35904 

5.0 9.6 6.0315 4.35926 

6.0 9.6 6.0315 4.35926 
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CHAPTER 6 

 

 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

 

Steady state heat transfer problem for hydrodynamically developed, thermally 

developing micro tube flow is studied by including axial conduction and viscous 

dissipation. Analytical solution is obtained to increase the fundamental 

understanding of the physics of the problem.  Kummers hypergeometric functions 

are used in the solution of the problem, and it was seen that the use of these functions 

are very effective by the help of Mathematica software. Very good agreement is 

obtained with the available results in the literature. 

 

Closed-form solutions are important for the investigation of the effect of each 

parameter by a physical aspect, but they have some disadvantages over numerical 

solutions. First of all, it is hard to obtain an analytical solution for a complex problem 

of a complex geometry where numerical methods can be very useful. Secondly, 

analytical solutions are suitable only for the condition of problem for which the 

solution was prepared, but numerical ones can be used for conditions different than 

the initial one. Even though numerical methods are applicable for wide range of 

conditions, it should be noted that they are estimations for exact solutions, which can 

be obtained only by analytical ones. 

 

A wide variety of results are found for different conditions. Eigenvalues, used in 

summation solutions, temperature distributions, fully developed and local Nu values 

and the thermal entrance lengths are shown by tables or graphs for all these cases as 

function of Pe, Kn,  and Br. 
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The effects of four parameters; Pe, Kn,  and Br, on the flow are discussed. Pe, 

varying between 1 and , represent the dependency of the flow upon downstream 

locations. Kn ranges from Kn =0, which is the continuum case (i.e. flow in macro 

tubes), to Kn =0.1, which is the upper limit of the slip flow regime.  parameter 

ranges from  =0, which is a fictious case introducing the effect of rarefaction only 

on the velocity, to  =10, which is also a fictious case standing for a large 

temperature jump at the wall. For most of the parts  =1.667 is discussed frequently, 

since it is the typical value for air, the working fluid for most of the engineering 

applications. Br is ranging from 0, which stands for the case without viscous 

dissipation, to Br =0.01. 

Results show that axial conduction has an important effect for low Pe and increases 

with a decrease in Pe value. However, it is negligible for Pe higher than 100. 

Increase in axial conduction, increases both Nufd and local Nu values for all 

continuum (macro) and slip flow (micro), fully developed or thermally developing 

cases without viscous dissipation. Moreover, Lt also increases as a result of increase 

in axial conduction. However, different from macro flow, the high effect of axial 

conduction for Pe<100 decreases as a result of enhancement of rarefaction effect in 

micro flow because of high streamwise conduction. 

 

In the presence of viscous dissipation, axial conduction has no effect on Nufd but still 

effects the local Nu values up to some 
*
 depending on the Pe value. Before that 

point viscous dissipation starts to influence the flow, local Nu values are similar with 

no viscous dissipation case. Again, similar to its effect on Lt, the increase of axial 

conduction results in movement of jump point (sudden increase of Nu) towards 

upstream for the Br values different than 0 in both macro and micro cases. 

 

For viscous dissipation, results show that Nufd converges to 9.6 regardless of Pe or 

Br values for all conditions in continuum case. Only through the thermally 

developing region, effect of Br values can be visualized. For positive Br, viscous 

heating enhances the heat transfer. However, negative values result in singular 
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points, after which heat transfer changes direction. Moreover, the value of Br has an 

effect on the jump point, the increase of Br value results in movement of jump point 

towards downstream similar to its effect on Lt, independent of its sign. All of the 

outcomes are also valid for the slip flow regime. However, different from macro 

flow, the dominant effect of viscous heating is reduced as a result of velocity slip 

boundary condition in micro flow and fully developed Nu values decrease with an 

increase in Kn. Moreover, Lt also increases as a result of an increase in Kn, which 

also means movement of jump point towards upstream. 

 

For all cases, the rarefaction effect decreases the Nu values in slip flow regime in the 

case of parameter  and Kn different than 0. Rarefaction is investigated by parameter 

 and Kn. Parameter  only has an effect on temperature jump boundary condition 

such that the increase of  results in a decrease in Nu for a fixed Kn value different 

than 0. For =0, no temperature jump case, main effect of temperature jump can be 

understood more clearly. For this case Nu values increase with an increase in Kn as a 

result of slip velocity in the slip flow regime. However, practically,  values would 

be different than 0 that  =1.667 is discussed frequently, since it is the typical value 

for air, for most of the parts in this study. 

 

It should be remarked again that the solution is in a closed form and can reveal any 

change in variables. However, the closed form equation is not presented because of 

its impractical length. From this study, the following general conclusions can be 

obtained. 

 

(1) Axial conduction should not be neglected for Pe values less than 100 for all 

continuum (macro) and slip flow (micro), fully developed or thermally 

developing cases without viscous dissipation. 

 

(2) In the presence of viscous dissipation, axial conduction should not be 

neglected for short pipes with Pe values less than 100. 

 



61

(3) For viscous heating case; even for small Br, fully developed Nu value 

experiences a jump in magnitude. The value of the Br only affects the axial 

location of the jump. Therefore, the effect of viscous heating should be 

considered even for small Br with a large length over diameter (L/D) ratios, 

which is the case for flows in micropipes. 

 

(4) For a fixed  parameter, the deviation from continuum increases with 

increasing rarefaction. 

 

(5) For a fixed Kn, the deviation from continuum increases with increasing  

parameter. 

 

(6) For all  values different than 0, both local and fully developed Nu values 

decrease with an increase in Kn. 

 

This study considers axial conduction, viscous dissipation and rarefaction effects in 

microtubes for constant wall temperature boundary condition. For future works, 

constant heat flux boundary condition can be applied to the problem. Also, the same 

problem can be solved for microchannels with different cross-sections. Furthermore, 

to understand the flow better, some further effects in addition to axial conduction, 

viscous dissipation, and rarefaction such as; axial conduction at the pipe wall, 

variation of thermophysical properties, compressibility effect, different geometrical 

configurations, different thermal boundary conditions, can be included in the 

analysis. 
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APPENDIX 

 

 

GRAM SCHMIDT ORTHOGONAL PROCEDURE 

 

 

In this part of the study, non-orthogonal eigenfunctions, , are turned into 

orthogonalized functions, . Four different methods are utilized for this purpose 

which are described by some relations as 

 

 

 

 

(6.1)

 

 (6.2)

 

 
(6.3)
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Method 1 

 

Let us assume a series of orthogonal functions  and orthonormal function  

related to our functions as, 

 (6.4)

 (6.5)

 (6.6)

 

 (6.7)

 

where  are constants. The next step is to obtain these constants in order to find the 

orthogonal function . From the property of orthogonal functions (Eq. (6.1)) and 

orthonormal functions (Eq. (6.2)), we can write the following relationship as 

 

 (6.8)

 (6.9)

 (6.10)

 (6.11)

 



69

As a result 

 (6.12)

 

Then, the calculation of summation constants  for orthogonal functions , 

 

 (6.13)

 (6.14)

 

The boundary condition at x=0 is 

 (6.15)

 

 (6.16)

 

 
(6.17)

 

Then summation coefficients  can be found by the help of software Mathematica 

with the relation as 

 (6.18)
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Method 2: 

 

Let us assume a series of orthogonal functions  related to our functions as, 

 

 (6.19)

 (6.20)

 (6.21)

 

 (6.22)

 

where  are constants. The next step is to obtain these constants in order to find the 

orthogonal function . From the property of orthogonal functions (Eq. (6.1)), we can 

write the following relationship as 

 

 (6.23)

 (6.24)

 (6.25)

 (6.26)
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As a result 

 (6.27)

 

Then, the calculation of summation constants  for orthogonal functions , 

 

 (6.28)

 (6.29)

 

The boundary condition at x=0 is 

 (6.30)

 

 (6.31)

 

 
(6.32)

 

Then summation coefficients  can be found. 

 

 (6.33)
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(6.34)

 

(6.35)

 

(6.36)

 

 
(6.37)

 

Then by the help of software Mathematica, all summation coefficients can be 

obtained. 

 

Method 2 and 3 are very similar; the only difference is, method 3 does not use an 

orthonormalized function. 
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Method 3: 

 

Let us assume a series of orthogonal functions  related to our functions as, 

 

 (6.38)

 (6.39)

 (6.40)

 

 (6.41)

 

where  are constants. The next step is to obtain these constants in order to find the 

orthogonal function . From the property of orthogonal functions (Eq. (6.1)), we can 

write the following relationships as 

 

 (6.42)

 (6.43)

 (6.44)

 (6.45)
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 (6.46)

 (6.47)

 (6.48)

 

Similarly 

 (6.49)

 

So,  and  can be found as 

 (6.50)

 

And finally 

 

 (6.51)
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Then, the calculation of summation constants  for orthogonal functions , 

 

 (6.52)

 (6.53)

 

The boundary condition at x=0 is 

 (6.54)

 

 (6.55)

 

 
(6.56)

 

Then summation coefficients  can be found. 

 

 (6.57)

 

 

(6.58)
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(6.59)

 

And finally, 

 (6.60)

 

Method 4: 

 

Again similar to method 3, assume a series of orthogonal functions  related to our 

functions as, 

 

 (6.61)

 (6.62)

 (6.63)

 

 (6.64)
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where  are constants. The next step is to obtain these constants in order to find the 

orthogonal function . From the property of orthogonal functions (Eq. (6.1)), we can 

write the following relationships as 

 

 (6.65)

 (6.66)

 (6.67)

 (6.68)

 

Similarly 

 (6.69)

 (6.70)

 (6.71)

 (6.72)

 (6.73)
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Neglect the last term since  and  

 

 (6.74)

 

As a result, referring to [56], becomes, 

 

 (6.75)

 

Then, the calculation of summation constants  for orthogonal functions , 

 

 (6.76)

 (6.77)

 

The boundary condition at x=0 is 

 (6.78)

 

 (6.79)
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(6.80)

 

Then summation coefficients  can be found. 

 

 (6.81)

 

 

(6.82)

 

 

(6.83)

 

And finally, 

 (6.84)
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DETAILED TABLES 

 

 

Table 20 First 30 eigenvalues for different Pe with Kn=0, Br=0 and =1.667 

Kn=0 

Pe 
1 2 5 10 50 100 1000  

1 1.42981 1.86754 2.3853 2.59693 2.69945 2.70313 2.70435 2.70436 

2 2.27757 3.12312 4.51094 5.54688 6.59595 6.65758 6.67881 6.67903 

3 2.88504 4.00196 5.97653 7.71385 10.3389 10.5827 10.6724 10.6734 

4 3.38546 4.72062 7.15791 9.45921 13.8529 14.4347 14.6686 14.6711 

5 3.82106 5.34393 8.17439 10.9532 17.1202 18.1898 18.6646 18.6699 

6 4.21193 5.90202 9.07984 12.278 20.1525 21.8322 22.6596 22.6691 

7 4.56954 6.41185 9.904 13.4796 22.9735 25.3531 26.6529 26.6687 

8 4.90115 6.88412 10.6653 14.5862 25.6099 28.7493 30.6442 30.6683 

9 5.21173 7.32606 11.3763 15.6171 28.0861 32.0216 34.633 34.6681 

10 5.50482 7.74285 12.0457 16.5856 30.4231 35.1738 38.619 38.6679 

11 5.78309 8.13836 12.68 17.5017 32.6386 38.2115 42.6017 42.6677 

12 6.04858 8.51553 13.2842 18.3731 34.7474 41.1411 46.5809 46.6676 

13 6.3029 8.87671 13.8621 19.2055 36.7618 43.9692 50.5561 50.6675 

14 6.54735 9.22376 14.4171 20.0039 38.692 46.7026 54.5272 54.6674 

15 6.783 9.55824 14.9515 20.7719 40.5467 49.3476 58.4937 58.6674 

16 7.01074 9.8814 15.4675 21.5128 42.3333 51.9102 62.4552 62.6673 

17 7.23131 10.1943 15.9669 22.2292 44.0582 54.3959 66.4116 66.6673 

18 7.44535 10.4979 16.4511 22.9235 45.7269 56.8098 70.3624 70.6672 

19 7.65341 10.793 16.9216 23.5975 47.3441 59.1568 74.3074 74.6672 

20 7.85596 11.0802 17.3793 24.2528 48.9139 61.4409 78.2462 78.6671 

21 8.05342 11.3602 17.8253 24.8911 50.4401 63.6663 82.1786 82.6671 

22 8.24615 11.6334 18.2604 25.5134 51.9258 65.8364 86.1043 86.6671 

23 8.43448 11.9004 18.6854 26.1211 53.374 67.9546 90.0229 90.6671 

24 8.6187 12.1615 19.101 26.7149 54.7871 70.024 93.9343 94.667 

25 8.79906 12.4171 19.5077 27.2959 56.1675 72.0472 97.8381 98.667 

26 8.9758 12.6676 19.9062 27.8649 57.5172 75.9654 101.734 102.667 

27 9.14913 12.9132 20.2968 28.4225 58.8381 79.7273 105.622 106.667 

28 9.31923 13.1542 20.68 28.9694 60.1319 83.3483 109.501 110.667 

29 9.48628 13.3909 21.0563 29.5062 61.4001 86.8418 113.372 114.667 

30 9.65044 13.6235 21.426 30.0334 62.6441 90.2192 117.235 118.667 
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Table 21 First 30 eigenvalues for different Pe and Kn with Br=0 and =1.667 

Pe 
1 2 5 

Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 

1 1.35573 1.30487 1.7741 1.70544 2.27492 2.18118 

2 2.17069 2.13667 2.97967 2.93118 4.31765 4.24138 

3 2.76906 2.76761 3.84276 3.83962 5.74721 5.73721 

4 3.27142 3.29696 4.56262 4.59813 6.9234 6.97604 

5 3.71344 3.75933 5.19423 5.25899 7.94921 8.05019 

6 4.11225 4.17392 5.76314 5.85049 8.86975 9.00793 

7 4.47809 4.55252 6.28438 6.38995 9.71081 9.87872 

8 4.81772 4.90288 6.76783 6.88868 10.4892 10.6818 

9 5.13589 5.23039 7.22042 7.35453 11.2165 11.4305 

10 5.43613 5.53893 7.64724 7.79313 11.9014 12.1342 

11 5.72108 5.83141 8.05214 8.2087 12.5504 12.8001 

12 5.99283 6.11008 8.43812 8.60448 13.1683 13.4336 

13 6.25301 6.37671 8.80756 8.98304 13.7592 14.039 

14 6.50298 6.63273 9.16239 9.34641 14.3263 14.6196 

15 6.74383 6.8793 9.50418 9.69629 14.8721 15.1783 

16 6.97648 7.11738 9.83427 10.0341 15.399 15.7172 

17 7.20171 7.3478 10.1538 10.3609 15.9086 16.2385 

18 7.42017 7.57125 10.4636 10.6778 16.4027 16.7436 

19 7.63244 7.78832 10.7646 10.9856 16.8824 17.234 

20 7.83901 7.99952 11.0575 11.285 17.349 17.711 

21 8.04032 8.20531 11.3429 11.5767 17.8035 18.1754 

22 8.23674 8.40608 11.6213 11.8613 18.2468 18.6284 

23 8.42861 8.60218 11.8933 12.1392 18.6796 19.0706 

24 8.61624 8.79392 12.1592 12.4109 19.1027 19.5029 

25 8.79988 8.98157 12.4194 12.6769 19.5167 19.9258 

26 8.97979 9.1654 12.6744 12.9373 19.9221 20.3399 

27 9.15618 9.34562 12.9243 13.1926 20.3195 20.7458 

28 9.32925 9.52243 13.1695 13.4431 20.7093 21.144 

29 9.49918 9.69603 13.4103 13.6891 21.0919 21.5347 

30 9.66614 9.86657 13.6468 13.9306 21.4678 21.9186 
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Table 22 First 30 eigenvalues for different Pe and Kn with Br=0 and =1.667 

Pe 
10 50 

Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 

1 2.48331 2.37681 2.58562 2.47199 

2 5.33409 5.23308 6.40113 6.27203 

3 7.43809 7.4146 10.0815 10.0167 

4 9.16213 9.22673 13.5448 13.5919 

5 10.6604 10.7974 16.7779 16.958 

6 12.0017 12.1948 19.7966 20.1102 

7 13.2243 13.462 22.6237 23.0597 

8 14.3534 14.6277 25.2812 25.8248 

9 15.4065 15.712 27.7885 28.4251 

10 16.3964 16.7293 30.1623 30.8795 

11 17.3328 17.6902 32.4171 33.205 

12 18.2233 18.603 34.5658 35.4163 

13 19.0738 19.4741 36.6194 37.5263 

14 19.889 20.3086 38.5876 39.5458 

15 20.6731 21.1108 40.4788 41.4842 

16 21.4291 21.884 42.3003 43.3495 

17 22.1599 22.6312 44.0583 45.1486 

18 22.8678 23.3548 45.7585 46.8875 

19 23.5548 24.0569 47.4057 48.5714 

20 24.2226 24.7393 49.0041 50.2048 

21 24.8727 25.4035 50.5575 51.7917 

22 25.5064 26.0508 52.0693 53.3356 

23 26.125 26.6826 53.5422 54.8396 

24 26.7293 27.2999 54.9792 56.3065 

25 27.3205 27.9036 56.3824 57.7387 

26 27.8992 28.4946 57.754 59.1386 

27 28.4662 29.0737 59.0961 60.5081 

28 29.0223 29.6415 60.4102 61.8489 

29 29.5679 30.1986 61.6981 63.1629 

30 30.1038 30.7457 62.9611 64.4514 
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Table 23 Local Nu along the entrance region for different Pe and Kn with Br=0 and =1.667 

 = 

s
2
(2- s

2
) x / R  

Nux,T 

Pe=1 Pe=2 Pe=5 

Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 

0.01 11.814 6.53153 8.47628 5.34613 4.20596 3.43716 

0.02 10.3404 6.03072 6.60905 4.58696 3.57106 3.06713 

0.03 9.31473 5.66296 5.62921 4.14668 3.43333 2.97999 

0.04 8.54427 5.37404 5.03009 3.85853 3.39891 2.95738 

0.05 7.9377 5.13778 4.63305 3.65783 3.39004 2.95139 

0.06 7.44492 4.93945 4.35641 3.51259 3.38774 2.9498 

0.07 7.03546 4.76985 4.15705 3.40479 3.38714 2.94938 

0.08 6.68935 4.62278 4.00989 3.32334 3.38699 2.94926 

0.09 6.39285 4.49387 3.89936 3.261 3.38695 2.94923 

0.1 6.13604 4.37987 3.81526 3.21285 3.38693 2.94922 

0.2 4.71987 3.70429 3.5451 3.05292 3.38693 2.94922 

0.3 4.16477 3.41181 3.51961 3.03717 3.38693 2.94922 

0.4 3.9016 3.2658 3.51705 3.03555 3.38693 2.94922 

0.5 3.76605 3.18837 3.5168 3.03539 3.38693 2.94922 

0.6 3.6933 3.14607 3.51677 3.03537 3.38693 2.94922 

0.7 3.6534 3.12261 3.51677 3.03537 3.38693 2.94922 

0.8 3.63126 3.1095 3.51677 3.03537 3.38693 2.94922 

0.9 3.61889 3.10214 3.51677 3.03537 3.38693 2.94922 

1.0 3.61196 3.098 3.51677 3.03537 3.38693 2.94922 

2.0 3.6031 3.09267 3.51677 3.03537 3.38693 2.94922 

3.0 3.60307 3.09265 3.51677 3.03537 3.38693 2.94922 

4.0 3.60307 3.09265 3.51677 3.03537 3.38693 2.94922 
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Table 24 Local Nu along the entrance region for different Pe and Kn with Br=0 and =1.667 

 

 = 

s
2
(2- s

2
) x / R

 

Nux,T 

Pe=10 Pe=50 

Kn=0.04 Kn=0.08 Kn=0.04 Kn=0.08 

0.01 3.35259 2.92826 3.29322 2.88748 

0.02 3.32543 2.90867 3.29322 2.88748 

0.03 3.32512 2.90842 3.29322 2.88748 

0.04 3.32512 2.90842 3.29322 2.88748 

0.05 3.32512 2.90842 3.29322 2.88748 

0.06 3.32512 2.90842 3.29322 2.88748 

0.07 3.32512 2.90842 3.29322 2.88748 

0.08 3.32512 2.90842 3.29322 2.88748 

0.09 3.32512 2.90842 3.29322 2.88748 

0.1 3.32512 2.90842 3.29322 2.88748 

0.2 3.32512 2.90842 3.29322 2.88748 

0.3 3.32512 2.90842 3.29322 2.88748 

0.4 3.32512 2.90842 3.29322 2.88748 

0.5 3.32512 2.90842 3.29322 2.88748 

0.6 3.32512 2.90842 3.29322 2.88748 

0.7 3.32512 2.90842 3.29322 2.88748 

0.8 3.32512 2.90842 3.29322 2.88748 

0.9 3.32512 2.90842 3.29322 2.88748 

1.0 3.32512 2.90842 3.29322 2.88748 

2.0 3.32512 2.90842 3.29322 2.88748 

3.0 3.32512 2.90842 3.29322 2.88748 

4.0 3.32512 2.90842 3.29322 2.88748 

 

 


