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ABSTRACT 

THE BUDGET CONSTRAINED DISCRETE TIME/COST     
TRADE-OFF PROBLEM IN PROJECT NETWORKS 

Değirmenci, Güvenç 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Meral Azizoğlu 

 

August 2008, 115 pages 

 

 

 

The time/cost trade-off models in project management aim to compress the 

project completion time by accelerating the activity durations at an expense of 

additional resources.   

The budget problem in discrete time/cost trade-off scheduling selects the 

time/cost mode -among the discrete set of specified modes- for each activity so as 

to minimize the project completion time without exceeding the available budget.  

There may be alternative modes that solve the budget problem optimally, however 

each solution may have a different total cost value.   

In this study we aim to find the minimum cost solution among the optimal 

solutions of the budget problem.  We analyze the structure of the problem together 

with its linear programming relaxation and derive some mechanisms for reducing 

the problem size.  We solve the reduced problem by linear programming relaxation 

and branch and bound based approximation and optimization algorithms.  We find 

that our branch and bound algorithm finds optimal solutions for medium-sized 

problem instances in reasonable times and the approximation algorithms produce 
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high quality solutions.  We also discuss the way our algorithms could be used to 

construct the time/cost trade-off curve.  

 

Keywords: Project Management, Time/Cost Trade-off, Budget Problem, 

Minimum Deadline Problem, Branch and Bound Method 
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ÖZ 

PROJE AĞLARINDA BÜTÇE KISITLI KESĐKLĐ 
ZAMAN/MALĐYET ÖDÜNLEŞĐM PROBLEMĐ 

Değirmenci, Güvenç 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Meral Azizoğlu 

 

Ağustos 2008, 115 sayfa 

 

 

 

Proje yönetiminde zaman/maliyet ödünleşim problemi bazı aktivitelerin 

tamamlanma sürelerini azaltarak proje tamamlanma süresini azaltmayı amaçlar. 

Proje tamamlanma süresinin azalması aktivitelere ek kaynak aktarılarak mümkün 

olur. 

Kesikli zaman maliyet ödünleşimi kapsamında bütçe problemi, projeye 

ayrılan toplam bütçe sınırını aşmadan, her bir aktivite için proje tamamlanma 

süresini en aza indirebilecek zaman/maliyet alternatifi seçer. Bütçe probleminin 

birden fazla optimal çözümü olabilir, ancak her optimal çözümde projenin toplam 

maliyeti farklıdır. 

Bu çalışmada proje toplam maliyeti en az olan optimal bütçe problemi 

çözümleri üzerine çalıştık. Problemin yapısını analiz ederek, problemin boyutlarını 

küçültebilecek algoritmalar geliştirdik. Doğrusallık kısıtı kaldırılarak ve dal sınır 

yöntemi kullanılarak küçülen problemleri çözdük. Geliştirdiğimiz dal sınır 

yönteminin orta büyüklükteki problemleri kabul edilebilir zamanlarda 

çözebildiğini, yaklaşım algoritmalarının ise optimale yakın sonuçları bulabildiğini 
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gözlemledik. Ayrıca algoritmalarımızın zaman/maliyet ödünleşim eğrilerinin 

oluşturulmasında kullanılabileceğini tartıştık. 

 

Anahtar Kelimeler: Proje Yönetimi, Zaman/Maliyet Ödünleşimi, Bütçe 

Problemi, En az Zaman Sınırı Problemi, Dal Sınır Yöntemi 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Project management involves the planning and organizing activities and 

resources so as to create a desired product or service.  During the planning phase of 

a project, project management must consider many concerns as well as those 

involving time, cost (money resource) and physical resource aspects.  Classical 

network planning techniques like Critical Path Method and Program Evaluation 

and Review Technique, essentially study the time aspect.  These methods aim to 

minimize the project duration, assuming that all resources required by the project 

are available.   However, in practice, the successful project completion requires the 

use of various resources like money, manpower, materials and equipment.   

The limited availability of the project resources adversely affects many 

factors, including the planning objectives, time estimations and project scheduling.   

Project scheduling is concerned with the allocation of the resources and timing of 

the activities subject to the precedence and resource constraints. 

The various resource problems that may appear during the project 

scheduling phase can be divided into two classes: time/cost trade-off problem and 

the resource planning problem.  The resource leveling and resource allocation are 

two well recognized problem areas in resource planning.   Resource levelling 

occurs, when sufficient resources are available and one tries to keep the resource 

usage as much as possible at a constant rate.  The resource allocation problem 

occurs when total resource usage is restricted to a given limit and the objective is to 
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allocate various resources to the activities in such a way that the project completion 

time is minimized.   

The resource planning problems assume that the resource usages cause 

conflicts in a sense that the activities cannot be started on time due to the 

unavailability of the resources or the activities requiring the same resource which is 

only available one unit at a time must be delayed.  The time/cost trade-off problems 

appear when there are  no constraints imposed on the unit time availability of the 

resources and the activities can be performed at different durations  according to 

their resource usages.   

In time/cost trade-off models, there are options of accelerating activity 

durations by putting additional resource funds.  These additional funds may be 

spent through physical resources like machine purchases and labor recruitment or  

alternate processing options like overtime and subcontracting.  The aim is to reduce 

the project completion time by putting additional resources, hence accelerating 

some of the activities.  The models that tackle with this time/resource trade-off are 

refered to as time/cost trade-off models in the project management literature.   

The discrete version of the time/cost trade-off problem considers limited 

number of time/cost alternatives, so called modes, for each activity.     Such a 

consideration is important as the discrete alternatives are very common in practice 

and discretization provides a convenient means of studying a general time/cost 

structure (see, for example Hindelang and Muth, 1979; Robinson, 1975).  The aim 

is to select a mode for each activity so that the desired project goals are reached, 

this forms the so called discrete time/cost trade-off problem.  

The discrete time/cost trade-off problems have been studied under two main 

versions:  the deadline problem and the budget problem.  The deadline problem 

minimizes the total cost over all mode assignments subject to the constraint that a 

given deadline on the project completion time is met.  The budget problem 

minimizes the project time without exceeding the budget allocated over mode 

assignments.  There may be several alternative modes that solve the budget 

(deadline) problem optimally, however each solution may have a different total 

cost (project completion time) value.  A reasonable aim is to find the minimum cost 
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(project completion time) solution among the ones that optimally solve the budget 

(deadline) problem. 

The deadline problem or the budget problem can be used to generate all 

nondominated solutions with respect to the project completion time and total cost 

criteria.  The problem of generating all nondominated solutions is refered to as the 

time/ cost curve problem in the project management literature.  The time/cost curve 

can be derived by solving the deadline (budget) problem for all possible 

realizations of the project completion time (total cost) values.  

The deadline problem has been the subject of several research, since the 

early sixties.  Many approximation and optimization algorithms have been 

proposed and their use in solving the time/cost trade-off problem has been 

discussed.  However, despite its obvious practical importance, we are aware of only 

three studies on the budget problem.  One of the studies shows that the budget 

problem –as well as the deadline problem—is strongly NP-Hard. The other studies 

propose dynamic programming algorithms that run into computational troubles 

with an increase in the problem size.  In this thesis,  recognizing this important gap 

in the literature,  we study the budget problem.  We  aim to find the minimum cost 

solution among the ones that solve the budget problem optimally.  We analyze the 

structure of the problem together with its linear programming relaxation, and derive 

some mechanisms en route to reducing the problem size.  We solve the reduced 

problem by linear programming and branch and bound based approximation and 

optimization techniques.  We find that our branch and bound algorithm finds 

optimal solutions for large sized (medium sized) problem instances in reasonable 

times and the approximation algorithms produce near optimal solutions very 

quickly for the minimum deadline (budget) problem.  We also discuss the way our 

algorithms could be used to generate the time/cost trade-off curve. 

The rest of thesis is organized as follows.  In Chapter 2, we define the 

problem, its environment and present the mathematical programming model.  The 

related literature is also given in this chapter.  In Chapter 3,  we present the main 

body of our work on the budget problem: the reduction mechanisms, the linear 

programming relaxation of the model, the branch and bound algorithm and 
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approximation algorithms together with the bounding approaches for the budget 

problem. We also present a procedure to generate the time/cost trade-off curve by 

using the budget problem.  Chapter 4 reports the results of our computational 

experiment.   We conclude in Chapter 5 by stating the main results of our work and 

pointing out some directions for future research.  
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CHAPTER 2 

 

PROBLEM DEFINITION AND LITERATURE REVIEW 

 

 

In this chapter, we first give general information on projects and discuss the 

single-mode and multi-mode project scheduling problems.  The multi-mode 

problems form the so called discrete time/cost trade-off problems.  We then give 

the mathematical formulations of the discrete time/cost trade-off problems.  

Finally, we review the related literature. 

 

2.1 Project in General 

Project Management Institute defines project as a ‘temporary endeavor 

undertaken to create a unique product or service’.  A project can be viewed as an 

interrelated set of tasks or activities that share resources.  The resources are usually 

scarce and they may be either physical, like labor, machine, equipment or simply 

money.  

In project management terminology, terms activity and task are used 

interchangeably to mean the smallest indivisible work element. The interrelation of 

the activities defines the precedence relations that originate from sharing the same 

resources or having technological input-output sequences. For instance, activity B 

may need the output of activity A, hence it can start only after A is completed.    

To define precedence relations between the activities, predecessor and 

successor activities are used. If the start of activity B requires the completion of 

activity A, then it is stated that activity A is the predecessor of activity B, and B is 

the successor of A.  If activity B can start immediately after activity A is 
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completed, then activity A is the immediate predecessor of A and B is immediate 

successor of A. The immediate predecessor sets are sufficient to explain all 

precedence structure. This is due to the transitivity of precedence relations, i.e., if 

activity A precedes activity B, and activity B precedes activity C, then activity A 

precedes activity C.  

Pictorial representation tools like graphs, charts are used to represent the 

relations between the activities. Some events like the activity start and completion 

time and the completion time of the entire project are usually depicted on these 

representations. The most commonly used pictorial representation tools are Gantt 

Charts and Project Networks. 

Gantt Charts 

Gantt chart is one of the oldest tools used in project scheduling.   The 

activities are represented by horizontal blocks in the timeline that are located 

according to their start and finish times. The arrows connecting horizontal blocks 

indicate the precedence relations between the activities.  A Gantt chart for a 6-

activity project is provided in Figure 2-1 below. In this project activities 1 and 2 

immediately precede activity 5, activity 3 is the immediate predecessor of activity 4 

and the project duration is 162 days.  

 

 

  

Figure 2-1- A Gantt Chart for the Sample Project 

 

 

The information that can be depicted from Gantt charts is limited to the start 

times, finish times and durations of the activities, precedence relations and project 
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completion time.  However the critical times for the project, the criticality of the 

activities cannot be found using these charts.  

Project Networks 

Project Networks also provide a visual aid for the sequence of the activities. 

Moreover, they convey information on the critical times of the project and the 

critical activities. There are two types of project network representations.  

° Activity on Arc (AoA) representation 

° Activity on Node (AoN) representation 

AoA Representation 

In AoA representation the activities are represented by arcs, and the events 

are represented by nodes. The events may be the start and/or completion times of 

an activity or a set of activities or some particular milestone occurrences, like the 

half completion of the project or its entire completion. To represent some 

precedence relations dummy nodes and/or arcs may be needed. The dummy arcs do 

not consume cost and time. To illustrate the AoA representation, an example taken 

from Hoare (1973) is used. Table 2-1 shows the immediate precedence relations.  

 

 

Table 2-1- The Precedence Relations of a Sample Project 

Activity Immediate Predecessors 

A - 
B A 
C A 
D A 
E B 
F C, D 
G D 

 

 

 

Figure 2.2 shows the AoA network of the project.  
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Figure 2-2  The AoA Representation for the Sample Project 

 

 

In the above network, each node represents an event or a set of events. Node 

1 is the source node, indicating the beginning of the project and node 6 is the sink 

node, indicating the end of the entire project. Node 2 represents not only the end of 

activity A but also beginning of activities B, C and D. The arc connecting node 1 

and node 2 represents activity A. The arc between node 4 and node 5 is a dummy 

arc for maintaining the precedence relation between activity D and activity F.  

AoN Representation 

In AoN representations, each activity is represented by a node and each 

immediate precedence relation is represented by an arc.  An arc directed from node 

A to node B implies that activity A is the immediate predecessor of activity B.  The 

start and end of the project are represented by source and sink nodes, respectively. 

Figure 2-3 gives the AoN representation for the sample project. 

 

In Figure 2-3, node 0, namely source node, represents the start of the 

project. Activity A is the predecessor of activities B, C and D. Activity F is the 

successor of activity C and activity D. Node S is the sink node and it represents the 

end of the entire project.  
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Figure 2-3- The AoN Representation of the Sample Project 

 

 

2.2 Project Scheduling Problems 

Project scheduling involves all decisions regarding the determination of the 

start and finish times of the activities and the allocation of the scarce resources.  

Each activity in a project has a predetermined processing time and a given 

amount of resource usage. The resource may be labor, machine, tool or available 

money.  Cost is commonly used as an indicator of the resource usage.  

According to the number of processing alternatives, two types of projects 

are defined: single-mode and multi-mode projects.  In single-mode projects, there 

is only one processing alternative for each activity with fixed processing time and 

cost. On the other hand in multi-mode projects there are more than one alternative 

for processing time and resource usage. Each alternative, so called mode, has its 

own processing time (duration) and resource usage (cost).   

We now discuss the single-mode and multi-mode project scheduling 

problems together with their solution algorithms. 

2.2.1 Single-Mode Project Scheduling Problems 

Single-mode project scheduling problems assign a start time to each activity 

such that the precedence relations are respected and project is completed in its 

earliest possible time. The well known Critical Path Method (CPM) is used to find 

such a schedule.  For the sake of completeness, we state the CPM method. 
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The Critical Path Method (CPM) 

 CPM finds the earliest and latest start times of the activities, the earliest 

possible project completion time and defines the critical activities.  To state the 

method we need the following definitions.  

Critical Path: The longest path(s) in a project is called critical path. 

Critical Activities: Activities that are on the critical path are called critical 

activities. The earliest and latest start times of the critical activities are equal. Any 

delay in the start times of the critical activities delays the entire project completion. 

Noncritical Activities: Activities that are not on any critical path are 

noncritical activities. 

Total Slack: The difference between the earliest start time and latest 

completion time of an activity is its total slack. The total slack of an activity is the 

maximum duration that the activity can use without affecting the earliest project 

completion time. Accordingly, total slack of a critical activity is equal to its 

processing time.   

 

In the initialization step, the earliest start times of the activities with no 

predecessors are set to zero. The earliest start times of the other activities are equal 

to the maximum of the earliest completion times of their immediate predecessors. 

After all computations are performed, the earliest project completion time is found. 

It is equal to the maximum of the earliest completion times of all activities. In order 

to compute the latest completion times, first, the latest completion times of all 

activities with no successors are set to the earliest project completion time. Then 

the latest start times of these activities are found. The latest completion times of 

other activities are equal to the minimum of the latest start times of their immediate 

successors.  Having known the earliest start and latest times, the total slack values 

are computed and the critical activities are defined.  

 

Throughout the thesis, we use the following notation: 

ti: Processing time of activity i. 

Pi: Set of immediate predecessors of activity i. 
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Si: Set of immediate successors of activity i. 

 

The followings are returned by the CPM method. 

ESi: Earliest start time of activity i. 

LSi: Latest start time of activity i. 

ECi: Earliest completion time of activity i. 

LCi: Latest completion time of activity i. 

Crit: Set of critical activities 

Slacki: Total slack of activity i. 

 

Using the notation, we define the algorithm as follows: 

 

 

 

Initialization: 

0iES =  : ii P = ∅  

Main Body: 

Repeat 

 { }
i

i j j
j P

ES Max ES t
∈

= +   :   is calculatedi ji j P ES∀ ∈  

Until 
iES  for 1,2,....,i N=  are calculated 

{ }i i
i

T Max ES t= +  

iLC T=  : ii S =∅  

Repeat 

 { }
i

i j j
j S

LC Min LC t
∈

= −   :   is calculatedi ji j S LC∀ ∈  

Until iLC  for 1, 2,....,i N=  are calculated 

Finalization: 

i i iSlack LC ES= −   1, 2,....,i N=  

{ }1,2,..., | i iCrit i N Slack t= = =  
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We illustrate the implementation of the algorithm via a 7-activity project 

whose data are given in Table 2-2. 

 

 

Table 2-2 – The Precedence Relations and the Durations of a Sample Project 

Activity Immediate 
Predecessors 

Duration 
(Week) 

A - 2 
B A 1 
C A 1 
D A 2 
E B 3 
F C, D 4 
G D 2 

 

 

We now give the stepwise implementation of the CPM method on the 

sample project. 

Initialization:  

PA = Ø;  ESA = 0 

Main Body:  

PB = PC = PD = {A} 

ESB = ESC = ESD = ESA + tA = 2 

Activity B precedes activity E, hence ESE = ESB + tB = 3 

Activity C and activity D are predecessors of activity F,  

ESF = max{ ESC + tC; ESD + tD } = max{3, 4} = 4 

Activity D precedes activity G, ESG = ESD + tD = 4 

 Earliest project completion time is T = max{ ESi + ti }= ESF + tF = 8 

 

Having found the earliest project completion time, the latest completion 

times are computed as follows. 

SE = SF = SG = Ø, hence LCE = LCF = LCG = T = 8   

SD = {F, G} thus LCD = min{LCF – tF; LCG - tG} = 4 
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Activity F succeeds of activity C and activity E succeeds activity B, 

LCC = LCF – tF = 4 and LCB = LCE – tE = 5 

Activities B, C and D are successors of activity A, 

LCA = min{LCB – tB; LCC – tC; LCD – tD } = LCD – tD = 2 

 

The total slack values are computed by using the earliest start and latest 

completion times. The earliest start times, latest completion times and total slacks 

are tabulated below.  

 

 

Table 2-3 - The CPM Calculations for the Sample Project 

Activity Immediate  
Predecessors 

Processing 
Time 

(Week) 

Earliest 
Start 

Times 

Latest 
Completion 

Times 

Total 
Slack 

A - 2 0 2 2 
B A 1 2 5 3 
C A 1 2 4 2 
D A 2 2 4 2 
E B 3 3 8 5 
F C; D 4 4 8 4 
G D 2 4 8 4 
 

 

 

The critical activities are those that have total slack values equal to their 

processing times. Accordingly, activities A, D and F are critical and they are on the 

same critical path.  The total completion time of the project is equal to the sum of 

the completion times of these activities.  Those activities that have total slack 

values greater than their processing times are noncritical.  These activities can be 

delayed by the difference between their total slack values and processing times. For 

instance, activity B has a total slack of 3 weeks and its processing time is 1 week. It 

can be delayed for 2 weeks without increasing the project completion time.    

All earliest start times and latest completion times are shown on the AoA 

representation of the network. The numbers in parentheses show the processing 
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times. The earliest start time and latest completion time of each activity are shown 

in boxes. Critical path is shown with dark arrows. 

 

 

 

Figure 2-4 - The CPM Computations of the Sample Project 

 

 

2.2.2 Multi-Mode Project Scheduling Problems  

In multi-mode project scheduling problems, there exist several execution 

modes for at least one activity. Each mode is characterized by its processing time 

and resource usage and there is usually a trade-off between time and resource 

usages. An activity can be completed more rapidly if more resources are allocated 

on. Assuming that the resource usage is reduced to money terms; as the processing 

time of an activity is shortened, its cost increases. A 5-activity project taken from 

Battersby (1970) illustrates the time/cost trade-off. The associated information is 

provided in Table 2-4. 

The first activity is the transportation of materials to the construction area. 

This activity can be completed either in 5 hours or in 4 hours. 3 people can carry 

the materials in 5 hours; on the other hand a carrying tool is required to complete 

the activity more quickly. Hence it costs ₤ 40, if the activity is performed in 4 

hours, while it costs ₤ 30 if the activity is completed in 5 hours. 
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Table 2-4 - A Sample Project Illustrating Time/cost Trade-off 

Activity Normal 
Duration 

(hr) 

Cost 
₤ 

Rapid 
Duration 

(hr) 

Cost 
₤ 

A: Material to site 5 30 4 40 
B: Erect hut 6 12 2 20 
C: Install electricity 4 10 3 18 
D: Install plumbing 5 12 3 20 
E: Connect services  3 16 - - 

 

 

In the sample project above, there are two modes for each activity except 

activity E, which has to be completed by a single mode in 3 hours at a cost of ₤ 16.  

The decision in multi-mode problems is to assign a mode for each activity 

considering total cost and the project completion time criteria.  This problem is 

referred to as the Discrete Time Cost Trade-off (DTCT) problem in the project 

scheduling literature. The deadline problem, the budget problem and the time/cost 

curve problems are three different versions of the DTCT problem. The 

formulations of the deadline and budget problems are provided in the next section. 

2.3 Formulations for the Discrete Time/Cost Trade-off Problems 

The DTCT problem consists of a set of activities. The activities are 

represented by index { }i V 0,1,2,...,n 1∈ = + , where V is the set of activities. 

Activity 0  and activity n 1+  are source and sink nodes in the project network, 

where AoN representation is used. 

The precedence relations are defined in set E V V⊆ × . ( i,i') E∀ ∈  implies 

that i  immediately precedes i' .  

For each activity, modes are represented with index { }i ij M 1,...,m∈ =  and 

characterized by the following cost and processing time parameters. 

ijc :   cost of activity i at mode j 

ijt :  processing time(duration) of activity i at mode j 
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According to our convention, if j j'< where
ij , j ' M∈ , then 

ij ij'c c<  

and
ij ij't t> . In other words 1  denotes the longest and least-cost mode, while 

im  

denotes shortest and highest-cost mode of activity i. For the sample project, for 

activity A, A,1c 30= ,  A,2c 40=   and Am 2= . 

Our decision variable that indicates a mode selection for each activity is as 

defined below. 

ij

1 if activity i is assigned to mode j
x =

0 otherwise





 

 

The activity start times are defined as: 

iS :Start timeof activity i  

Accordingly, N 1S +  denotes the start time of the sink node, therefore the 

completion time of the entire project. N 1S +  is called the project length, project 

duration or project completion time in project scheduling terminology. We use 

these all these terms interchangeably throughout the thesis. 

  

The constraints of the DTCT problem are defined below. 

Each activity should be assigned to exactly one mode.  That is,  

j

ij

j M

x 1 i V
∈

= ∀ ∈∑  

Activity i' cannot start before all its immediate predecessors are completed.  That 

is, 

i '

i' i ij ij

j M

S S t x ( i,i') E
∈

≥ + ∀ ∈∑   

The project starts at time 0, hence all start times are nonnegative. That is, 

0S 0=   

The partial mode assignments are not allowed 

ij ix :binary i V and j M∀ ∈ ∀ ∈   
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The problem contains 
1

N

i

i

m
=
∑ binary variables, 1N +  continuous 

iS  

variables. The number of constraints is equal to N number of elements in set E+ . 

  

The objective of each problem type together with the constraints that are 

specific to them are presented below. 

2.3.1 The Deadline Problem 

The objective of the deadline problem is minimizing the total cost of the 

project which is defined as below. 

i

ij ij

i V j M

Min c X
∈ ∈
∑∑     

The project should be completed in a predetermined time, say T.  

1NS T+ ≤   

 

2.3.2 The Budget Problem 

In the budget problem, the total project cost cannot exceed the available 

project budget, say b. Hence the following constraint is required. 

i

ij ij

i V j M

c X b
∈ ∈

≤∑∑  

The objective is minimizing the total completion time of the project and is 

defined as below. 

N 1Min S +   

2.3.3 The Time/Cost Trade-off Curve Problem 

The time/cost curve problem involves both project completion time and 

total cost as criteria. The problem generates all nondominated, i.e., efficient, 

solutions with respect to two criteria. A solution L is said to be efficient if there 

does not exist any other solution 'L  such that ( ') ( )B L B L≤ and 1 1( ') ( )N NS L S L+ +≤  
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with strict equality holding at least once, where ( )B L and 1( )NS L+ are the total cost 

and total project completion time of solution L. 

In order to solve the time/cost curve problem, the previous studies solve the 

deadline problem for all possible realizations of the project completion time. 

Alternatively, the budget problem for all possible project budget limitations can be 

used.  In this thesis we focus on the budget problem, and in Chapter 3 we discuss 

how the budget problem can be used to generate time/cost curve. 

2.4 Literature Review on the Time/Cost Trade-off Problems 

We survey the literature studies on the Time/Cost Trade-off Problem in two 

parts. The first part is related with the deadline problem and the second one is 

devoted to the budget problem.  The studies in both parts are discussed in 

chronological order. 

2.4.1 The Deadline Problem 

Fulkerson (1961) proposes a network flow based solution procedure for the 

deadline problem with linear time/cost function. The paper is a pioneer work that 

emphasizes the importance of the linear time/cost trade-off relations. Fulkerson 

(1961) computes the time/cost curves for all feasible project durations and shows 

that the associated time/cost curves are convex.  

Kelley (1961) also approaches the deadline problem via network flow 

theory. His network flow algorithm is based on the primal-dual relations. The 

linear time/cost functions are considered for the activities and the objective is 

finding the schedule with the maximum project utility.  He investigates the 

structure of the projects and discusses some practical applications of the project 

utility functions.  

Meyer and Schafer (1965) propose one of the earliest approaches for the 

deadline problem, with discrete time/cost functions. In the study, convex, concave 

and hybrid time/cost functions are analyzed. They present a mixed-integer 

programming formulation that does not behave consistent over all problem 

instances.   
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Crowston and Thompson (1967) use Decision Critical Path Method 

(DCPM) that considers the interaction between the scheduling and planning phases 

of a project. If there exists more than one way to complete a project like performing 

activity i in place of activity j, then these activities are shown on the project 

decision graph. They present a general mixed integer program to select the best 

project graph and find the associated critical path for the deadline problem. They 

also propose a heuristic approach. For small projects, the integer program is shown 

to be manageable. For large projects, the heuristic methods produce promising 

results.  

Crowston (1970) refers to Crowson and Thompson’s (1967) study for the 

Decision Critical Path Method (DCPM) problem. Crowston (1970) proposes 

repetitive application of the longest path calculations and finds the nondominated 

set of paths in the decision network. In this way, the DCPM networks are converted 

to the networks having only the decision nodes with maximum distances in 

between. Some feasibility and lower bound tests are derived to reduce the network 

size and the reduced network is solved by a branch and bound algorithm. Crowston 

(1970) provides some numerical examples to illustrate his procedure, however he 

does not present a structured computational experiment. 

Philips and Dessouky (1977) study the deadline problem with linear 

time/cost functions. The problem is solved by repetitively applying minimum cuts 

to the network and reducing the project duration at minimal cost. An application of 

the procedure is given but no computational experiment is presented.  

Hindelang and Muth (1979) propose a Dynamic Programming (DP) 

algorithm for the deadline problem. The problem formulation is represented by the 

Decision Critical Path Method (DCPM) model, as in Crowston and Thompson 

(1967). It is claimed that the shortcomings of the DCPM model is overcome by the 

proposed procedure. Hindelang and Muth (1979) show that their algorithm can 

solve the large sized problem instances in reasonable time. However as later shown 

by De et al (1997), their dynamic programming algorithm is flawed. 

Elmaghraby (1993) proposes a Dynamic Programming (DP) model for 

solving the general time/cost trade-off problem. The proposed approach is based on 
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the DP algorithm developed by Fulkerson (1961). First the possible durations are 

fixed and then further modes are reduced by the DP algorithm. The reduced 

problem is optimally solved by a branch and bound algorithm. The decision in 

branch and bound node is the selection of the best mode to the selected activity. 

Elmagrahraby (1993) does not present any computational results.  

De et al. (1995) review the previous studies for the Decision Critical Path 

Method (DCPM) problem together with their drawbacks. They introduce a new 

dynamic program for the deadline problem and propose that it can be used to 

construct the time/cost trade-off curve for project networks with no parallel 

modules. These networks with parallel modules are solved by the network 

decomposition methods in polynomial time. For the networks with complicated 

precedence relations, series-parallel conversion is applied.  

Demeulemeester et al. (1996) address all three versions of the discrete 

time/cost trade-off problems, i.e. budget, deadline and curve problems.  Two 

dynamic programming based procedures for the network reduction are proposed. 

The first algorithm intends to find the number of nodes to be reduced in order to 

convert the project network into a series-parallel network. A series-parallel network 

consists of networks that can be broken down to series or parallel networks. A 

series network is a network consisting subnetworks in series, similarly a parallel 

network is a network consisting subnetworks in parallel. In this study serial 

optimization is the replacing two arcs in series with a single arc. Similarly two arcs 

in parallel are replaced for parallel optimization. The second procedure aims 

minimizing the number of alternative solutions hence increasing the computational 

efficiency. The procedure uses the serial and parallel merge operations presented 

by Rothfarb et al. (1970) and Frank et al (1971).  

Philips (1996) presents a solution procedure that uses the cut search 

approach proposed by Philips and Dessouky (1977). His aim is to present a 

practical solution procedure for the deadline problem. 

De et al. (1997) show that the pseudo-polynomial time Dynamic 

Programming (DP) approach for the Decision Critical Path Method (DTCTP), 

which is presented by Hindelang and Muth (1979) is incorrect. In the algorithm the 
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different predecessors of an activity that are not considered may cause different 

earliest start times. Once corrected by using multiple passes of the DP, the resulting 

algorithm exhibits worst case exponential complexity. De et al.(1997) also show 

that all three versions of the discrete time/cost trade-off problems are strongly NP-

hard. However for some structured networks, the problems are polynomially 

solvable. Hindelang and Muth’s (1979) algorithm can solve the deadline problem 

for pure parallel, pure series and series-parallel networks.  

Skutella (1998) reviews the solution algorithms improved by Philips and 

Dessouky (1977) for the linear time/cost trade-off problem (projects having 

activities with affine linear and decreasing cost functions).  He proposes new 

approximation algorithms for both the deadline and budget problems. In the 

proposed approaches performance ratios are guaranteed to be O(log l) where l is 

the ratio of the maximum duration of any activity to its minimum nonzero duration.  

Demeulemeester (1998) proposes a branch and bound procedure to solve 

the deadline problem and construct the time/cost trade-off curve. He adapts 

Fulkerson’s algorithm to find a lower bound. Branching is performed by selecting 

an activity and partitioning its modes into two sets.  The results of the 

computational study shows that the algorithm can solve instances with up to 30 

activities and 5 modes per activity.  

Vanhoucke and Debels (2005) work on three different extensions of the 

deadline problem: (1) time/switch constraints, (2) work continuity constraints and 

(3) net present value maximization. They reuse the exact solution algorithms in the 

literature and introduce a meta-heuristic approach for generating near optimal 

solutions for all extensions. They state that the meta-heuristic yields near-optimal 

solutions for the time switch constrained problem and the results for the net present 

value problem are promising.  

The purpose of the study by Akkan et al. (2005) is to define upper and 

lower bounds for the deadline problems. They add cuts to the LP relaxation of the 

deadline model and present mode elimination rules. The cuts are defined 

considering the predecessor-successor relations in order to improve the LP 

relaxation based lower bounds.  Moreover the column generation based on network 
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decomposition is proposed to obtain lower and upper bounds. Their extensive 

computational results indicate that all bounds are tight and the heuristic approaches 

are competitive with the existing heuristics.  

Hafızoglu (2007) proposes a branch and bound algorithm to solve the 

deadline problem. They derive some results that are similar to ours. Like us, the 

algorithms are LP-based.  

2.4.2 The Budget Problem 

Butcher (1967) studies the budget problem with continuous time/cost 

functions.  He proposes a dynamic programming approach starting with the first 

activity.  The algorithm executes for all activities and all feasible time allocations. 

The algorithm provides a pseudo-polynomial time solution for the pure series and 

pure parallel networks.  

Robinson (1975) proposes a Dynamic Programming (DP) algorithm to the 

resource constrained budget problem with discrete time/cost functions. The 

problem is the allocation of the resources to the activities, considering the 

precedence and resource limitations. The DP procedure includes the decomposition 

of the network according to the precedence relations. Optimal policy is stated as 

follows. If length of a path, say path p, is greater than the length of another path, 

then additional resources should be allocated to path p. Robinson (1975) does not 

present any computational result.    

 

In this thesis, we study the budget problem and propose a branch and bound 

algorithm and heuristic procedures that are capable of solving medium sized 

instances in reasonable times. The next chapters provide our algorithms and their 

computational results.  
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CHAPTER 3 

 

THE BUDGET PROBLEM 

 

 

Recall that, the budget problem in discrete time/cost trade-off project 

scheduling minimizes the total project completion time subject to a given budget 

value. For this problem, there may be many different ways of selecting the activity 

durations so that the completion times of the resulting schedules are all equal. 

However, each schedule may yield a different total cost value. Our aim is to select 

a schedule with the minimum total cost among the ones having minimum total 

project completion time, under the limited budget.  

In the next section, we study the budget problem with the modified 

objective function and present a methodology to construct the time/cost trade-off 

curve, i.e., generate all efficient solutions. In Section 3.2 we discuss the minimum 

deadline problem as a special case of the budget problem, and describe our 

procedures for reducing the problem size and finding lower bounds, and present 

algorithms to produce optimal and high quality approximate solutions. In Section 

3.3 we study the general budget problem.  

3.1 The Modified Budget Problem 

The mathematical model for the budget problem is restated below. 
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i

j

i '

N 1

ij ij

i V j M

ij

j M

i' i ij ij

j M

0

ij i

Min S

s.to.

c x b

x 1 i V

S S t x ( i,i') E

S 0

x :binary i V and j M

+

∈ ∈

∈

∈

≤

= ∀ ∈

≥ + ∀ ∈

>

∀ ∈ ∀ ∈

∑∑

∑

∑

 

The notation is provided below.  

b :  available budget 

ijc :   cost of activity i at mode j 

ijt :  processing time of activity i at mode j 

 

The decision variables are given as below. 

ij

1 if activity i is assigned to mode j
x

0 otherwise


= 


 

iS :Start timeof activity i  

  

The objective of the model is assigning each activity to a mode such that the 

total completion time of the project is minimized and budget limitation is 

respected. There may be many alternative optimal solutions for the model. In 

practice, the aim should be the minimization of total completion time by allocating 

the least possible money, at most the available budget to the project.  However the 

model may return a solution with (project completion time, total cost) values of 

* 1

N 1( S ,B )+  where 1B b≤ , and there  may exist a solution * 2

N 1( S ,B )+  such that 

2 1B B< . We illustrate this case via the following problem instance.  

 

The AoA representation of the project network is given in Figure 3-1. The 

numbers in the parentheses are the time and cost pairs of the activity modes. For 
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instance, activity A can be executed in 2 weeks at a cost of 150 YTL or in 6 weeks 

at a cost of 25 YTL. The available budget is set to 3000 YTL.  

 

 

 

Figure 3-1 - A Sample Multi Mode Project Network 

 

 

The problem has four alternate optimum solutions for the budget problem. 

These alternate solutions are depicted in Figure 3-2 through Figure 3-5. In all 

solutions the assigned modes are shown in bold faces.  

 

Figure 3-2 – The First Optimal Solution 
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Figure 3-3 – The Second Optimal Solution 

 

 

 

Figure 3-4 – The Third Optimal Solution  

 

 

 

Figure 3-5 – The Fourth Optimal Solution 
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In all solutions, the 
N 1S +  value is at its minimum possible value of 8 weeks.   

 

The first solution has the total cost of 3000 YTL, as found below. 

ij ij

i j

c X 150 900 200 300 400 250 800 3000= + + + + + + =∑∑  

The second solution has the total cost of 2620 YTL, as found below. 

ij ij

i j

c X 150 600 120 300 400 250 800 2620= + + + + + + =∑∑  

The third solution has the total cost of 2700 YTL, as found below. 

ij ij

i j

c X 150 600 200 300 400 250 800 2700= + + + + + + =∑∑  

The fourth and last solution has the total cost of 2920 YTL, as found below. 

ij ij

i j

c X 150 900 120 300 400 250 800 2920= + + + + + + =∑∑  

 

The second solution is nondominated, hence efficient. The other solutions 

are inefficient as they are dominated by the second solution. A decision maker, 

who avoids high total cost, prefers the second solution to the others.  

 

The objective function of the budget model is revised in order to eliminate 

all dominated solutions, and select the efficient one(s). Referring to the above 

example, we aim to find the second solution, but not the others. To guarantee this, 

the total cost of the project is added to the objective function of the budget model 

after weighed by coefficient ∈.  The revised objective function is given below. 

i

N 1 ij ij

i V j M

Min S c x+
∈ ∈

+∈∑∑  

 

We hereafter refer to the budget problem with the modified objective 

function as the modified budget problem. The modified budget problem finds the 

minimum cost solution among the ones that minimize the total completion time.  

For a properly selected value of ∈ , the optimal solution of the modified budget 
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problem gives an efficient solution. We find ∈  as follows: The minimum change in 

N 1S +  value is one, when the task times are assumed to be discrete.  

The maximum change in the total project cost value, B ,  is 
max minb b− , 

where minb  and maxb  are the minimum and maximum total cost values in the 

efficient solutions’ set, respectively. ∈  should be small enough so that 
N 1S +  does 

not increase for any decrease of B  value. This is guaranteed 

when N 1 max min N 1S ( B b b ) S 1 B+ ++∈ + − < + +∈ , equivalently max min( b b ) 1∈ − < , i.e.,  

max min

1

b b
∈<

−
  . 

 

To guarantee an efficient solution we solve the modified budget problem 

with 
max min

1

b b
∈<

−
.  We use 

U L

max min

1

b b 1
∈=

− +
 where L

minb ( U

maxb ) is a valid 

lower (upper) bound on the minb ( maxb ) value. 

 

 

The associated objective function is as stated below. 

 N 1 U L

max min

1
Min S ( )B

b b 1
+ +

− +
 

 

We hereafter refer to the modified budget problem as 

N 1Min S B s.t. B b+ +∈ ≤ . 

 

In the next section, we discuss a procedure to generate all efficient solutions 

by solving the modified budget problem. In Section 3.1.2 we discuss the way we 

find the extreme efficient solutions, i.e., efficient solutions having total cost values 

of maxb  and minb . Finally, in Section 3.1.3 we analyze the modified budget problem 

for general b.  
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3.1.1 Generating All Efficient Solutions, i.e., Solving The Time/Cost 

Trade-off Problem 

All efficient solutions with respect to the total cost and project completion 

time criteria, can be generated by solving the modified budget problem for all 

possible values of b between L

minb  and U

maxb .  The procedure below generates all 

efficient solutions by varying the b value, systematically.  

 

Efficient Solution Generation Procedure: 

The solution procedure consists of three steps.  

Step 0. Find L

minb  and U

maxb  

Let U

maxb b= ,  r 1=  

Step 1. Solve the following modified budget problem  

N 1Min S B s.t. B b+ +∈ ≤   

with 
U L

max min

1

b b 1
∈=

− +
 

If there is no feasible solution, Stop 

Let * *

N 1( S ,B )+  be the N 1( S ,B )+ values of the optimal 

solution. * *

N 1( S ,B )+  is the rth efficient solution. 

r = r+1 

Step 2. Stop if * L

minB b=   

Let *b B 1= −  

Go to Step 1. 

 

Each iteration of the procedure generates an efficient solution in Step 1. 

When the procedure terminates, all r efficient solutions are reached.  

 

The example below illustrates the execution of the procedure. Figure 3-6 

gives the AoA representation of the example project.   
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1 2

3

5

4

6
A

(6, 25)
(2, 150)

B
(2, 600)
(1, 900)

D
(3, 200)
(2, 300)

C
(2, 120)
(1, 200)

F
(5, 225)
(4, 250)

G
(2, 800)

E
(7, 75)

(6, 100)
(3, 400)

(t, c)

 

Figure 3-6 - A Sample Multi-Mode Project Network 

 

 

An upper bound on the maxb  value of the above project is found as 2620 by 

using the CPM method.  A lower bound on the 
minb  value is computed as 2045 by 

assigning all activities to their longest duration modes. The efficient solution 

generation procedure is applied as below. 

 

Step 0. L

minb 2045=  and U

maxb 2620=  

Let U

maxb b 2620= =  

 Iteration 1 

Step 1. The modified budget problem is solved. ( 2620,8 )  is the 

N 1( S ,B )+ values of the optimal solution, and it is the first 

efficient solution. 

Step 2. * L

minB 2620 b= ≠  

Let b 2620 1 2619= − =  

Go to Step 1. 

Iteration 2 

Step 1. The modified budget problem is solved. ( 2520,9 )  is the 

N 1( S ,B )+ values of the optimal solution, and it is the second 

efficient solution.  
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Step 2. * L

minB 2520 b= ≠  

Let b 2520 1 2519= − =  

Go to Step 1. 

Iteration 3 

Step 1. The modified budget problem is solved. ( 2195,10 )  is the 

N 1( S ,B )+ values of the optimal solution, and it is the third 

efficient solution.  

Step 2. * L

minB 2195 b= ≠  

Let b 2195 1 2194= − =  

Go to Step 1. 

Iteration 4 

Step 1. The modified budget problem is solved. ( 2170,11)  is the 

optimal N 1( S ,B )+ values of the optimal solution, and it is the 

fourth efficient solution. 

Step 2. * L

minB 2170 b= ≠  

Let b 2170 1 2169= − =  

Go to Step 1. 

 Iteration 5 

Step 1. The modified budget problem is solved. ( 2070,14 )  is the 

optimal N 1( S ,B )+ values of the optimal solution, and it is the 

fifth efficient solution. 

Step 2. * L

minB 2070 b= ≠  

Let b 2070 1 2069= − =  

Go to Step 1. 

Iteration 6 

Step 1. The modified budget problem is solved. ( 2045,15 )  is the 

optimal N 1( S ,B )+ values of the optimal solution, and it is the 

sixth efficient solution. 
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Step 2. * L

minB 2045 b= =  , Stop. 

 

All 6 efficient points are found and shown in the following graph. 

 

 

 

Figure 3-7 – The Efficient Points for The Sample Project 

 

 

The mode assignments of each efficient solution are tabulated in Table 3-1. 

 

 

Table 3-1 – The Mode Assignments of Each Efficient Solution 

Activity A B C D E F G 
Iteration1 
b 2620=  

2 1 1 2 3 2 1 

Iteration2 
b 2619=   

2 1 1 1 3 2 1 

Iteration3 
b 2519=  

2 1 1 1 2 1 1 

Iteration4 
b 2194=  

2 1 1 1 1 1 1 

Iteration5 
b 2169=  

1 1 1 1 2 1 1 

Iteration6 
b 2069=  

1 1 1 1 1 1 1 
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3.1.2 Finding Extreme Efficient Solutions  

In this section we present the methods for finding the extreme efficient 

solutions, i.e., the solutions having total cost values of  bmin and bmax . 

Finding the efficient solution with minimum total cost value,  bmin  

For each activity i, the minimum cost is incurred at maximum duration. 

Hence the minimum total cost will be incurred when all activities are set to their 

longest duration modes. Formally 
min i1

i V

b c
∈

=∑  where 1 is the first, i.e. least cost 

(longest duration) mode.  

An efficient solution having minb  value can be found by the CPM method 

with the longest activity durations. Let N 1S +  value of this solution be Max

N 1S + . 

Max

N 1 min( S ,b+ ) is an efficient solution, as there cannot exist any other solution having 

total cost value that is less than minb .  Note that Max

N 1S +  is the maximum project 

completion time value over all efficient solutions.  

 

Finding the efficient solution with maximum total cost value,  bmax  

When all activities are assigned to their minimum duration modes, the CPM 

method gives the minimum possible project completion time. However, the 

solution produced by the CPM method may not be efficient, as there may exist 

another solution having the same project completion time, but smaller total cost 

value.  We let Min

N 1S +  denote the minimum possible project completion time value 

found by the CPM by setting 
ii imt t= for all i and let Min

N 1b( S )+  be the total cost value 

of the CPM solution.  We can find an efficient solution with project completion 

time value of Min

N 1S +  by solving the following budget problem.  
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Let Min

N 1 max( S ,b )+  be the optimum solution to the above problem. 
maxb  is the 

total cost value of an efficient solution having the smallest project completion time 

and is an upper bound on the total  cost values of all efficient solutions.  

 

The solution produced by the above model, has the same critical activities 

with the Min Min

N 1 N 1( S ,b( S ))+ +  solution. The critical activities need to be at their shortest 

possible durations to keep the project completion time at Min

N 1S + . However the 

noncritical activities of the CPM solution may not be at their shortest durations, 

their durations can increase as long as their slack values permit.  Note that any 

increase in the activity duration leads to a reduction in total cost value. 

  

For the sake of simplicity, we hereafter refer to Min

N 1S +  as minT .  To illustrate 

the case, we use a 5-activity network whose AoA representation is given in Figure 

3-8.  

 

 



 

 

 

 

35 

 

Figure 3-8 - A Sample Network 

 

 

The numbers in parentheses are (duration, cost) pairs. Note that each 

activity has two modes.  

When all activities are assigned to their shortest duration modes, the critical 

activities are A, C and E.  The project completion time, i.e., minT , is 11 and the total 

cost is 3025. When all critical activities are assigned to their shortest duration 

modes and noncritical activities, activity B and D, to their longest duration modes 

the total completion time of the project does not change but the total cost reduces to 

2600. We favor the solution with the smallest total cost, hence the second solution.  

 

We observe that P1 is equivalent to the following deadline problem.  

i

j

i '

2 ij ij

i V j M

Min

N 1 N 1

ij

j M

i' i ij ij

j M

0

ij i

( P ) Min c x
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S S ( 1)

x 1 i V ( 2 )

S S t x ( i,i') E ( 3 )

S 0 ( 4 )
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∈ ∈

+ +

∈

∈

≤

= ∀ ∈
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∑
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Note that as 1( P ) , 2( P )  looks for the minimum total cost solution among 

the ones that have minimum project completion time. As Min

N 1S +  is the minimum 
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possible completion time, constraint (1) will be satisfied as equality. 
2( P )  is a 

deadline problem with the minimum possible completion time value and hereafter 

will be referred to as the minimum deadline problem.   

 

An optimal solution to the minimum deadline problem returns the 

maximum total cost value of all efficient solutions and defines our 
maxb  value. 

 

Rather than solving a budget problem 1( P ) , we prefer to solve the minimum 

deadline problem, i.e., (P2) due to its special structure. This special structure allows 

us to derive more powerful reduction mechanisms and bounding techniques.  Next, 

we analyze the minimum deadline problem in detail. 

3.2 A Special Case – The Minimum Deadline Problem 

In this section, first a simple mode fixing algorithm is explained. Second, 

mode elimination procedures are proposed. Then the optimal Linear Programming 

Relaxation (LPR) solution and its properties are introduced. The section continues 

with the lower bounding procedures. Finally, the branch and bound method is 

presented. Our solution algorithms take their main idea from Hafizoğlu (2007) who 

deals with the general deadline problem. 

 

3.2.1 Mode Fixing Rule 

Recall that in the minimum deadline problem, all critical activities are 

assigned to their shortest modes in all feasible solutions. To find the critical path, 

all activities are assigned to their shortest modes, and the Critical Path Method 

(CPM) is applied. The AoA network in Figure 3-9 is used for discussion purposes.  
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Figure 3-9 - An Example for Mode Fixing 

 

 

In the above project, activities A, D and F are on the critical path. The 

length of the critical path is 8.  As the critical activities are fixed at their shortest 

duration modes, the problem is reduced to find the modes for the noncritical 

activities, B, C, E and G. The optimal mode assignments are given in bold faces in 

Figure 3-10.  

 

 

Figure 3-10 - An Optimal Solution for the Example Project 
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3.2.2 Mode Elimination Rules 

In this section, we introduce short mode, long mode and costly mode 

elimination rules for the noncritical activities. Our aim is to reduce the size of the 

search by eliminating some modes that are either infeasible or nonpromising, i.e., 

cannot lead to an optimal solution. 

 

Short Mode Elimination Rules  

As the short modes are costly, they are selected only to maintain feasibility. 

En route to the minimum cost solution, the attempt is to assign the noncritical 

activities to their longer modes as long as the deadline constraint permits. We need 

the following notation to discuss the short mode eliminations.  

iES _ L : Earliest start time of activity i, when all activities are assigned to 

their longest modes. 

iLC _ L : Latest completion time of activity i, when all activities are 

assigned to their longest modes. iLC _ L  is found by the CPM method, using MinT  

as the deadline.   

 While computing iES _ L  and iLC _ L  we assign all noncritical activities to 

their longest modes and critical activities to their shortest modes, i.e., we set  

i1X 1=  where activity i is noncritical 

iimX 1=  where activity i  is critical 

As all critical activities are assigned to their shortest duration modes, 

iES _ L , 
iLC _ L  and the following theorem are defined for the noncritical 

activities.  

Theorem 1  

If i i ijLC _ L ES _ L t− ≥  then the modes j 1+  through im  for activity i 

cannot lead to an optimal solution.  

 

Proof: Assume a solution that contradicts with the condition of the theorem, i.e., 

i i ijLC _ L ES _ L t− ≥  and ij'X 1=  where j' j> . Since ij' ijc c>  setting ijX 1=  in 
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place of 
ij'X 1=  improves the objective function value by 

ij' ijc c− . And such an 

interchange is feasible as 
i i ijLC _ L ES _ L t− ≥ . Hence any solution that contradicts 

with the condition of the theorem cannot be optimal.     ⁭ 

 

The example whose activity network is given in Figure 3.5 illustrates the 

application of the rule. The bold face modes show the longest modes used in the 

CPM method. Using the result of Theorem 1, we consider longer, i.e., less costly, 

modes as long as total slack values permit.   

 

 

 

Figure 3-11 – A Sample Network with Noncritical Activities at their Longest Mode 

 

 

After assigning all noncritical activities, B, C, E and G, to their longest 

duration modes, iES _ L  and iLC _ L  values are computed and tabulated below.  

Note that some i iLC _ L ES _ L−  values are negative. This is due to the fact 

that assigning some noncritical activities to their longest modes cannot lead to a 

feasible solution.  
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Table 3-2 –The Earliest and The Latest Completion Times 

Activity Assigned 
Duration 
(Week) 

iES _ L  
iLC _ L  

(
MinT 8= ) 

i iLC _ L ES _ L−  

 

A 2 0 -1 -1 
B 2 2 1 -1 
C 2 2 4 2 
D 2 2 4 2 
E 7 4 8 4 
F 4 4 8 4 
G 4 4 8 4 

 

 

Theorem 1 eliminates the last mode of activity E as shown below.  

 

Note that i i EjLC _ L ES _ L t− ≥  is tested for j 1= , 

Ejt 7= and i iLC _ L ES _ L 4− = ≥7  

For j = 2; Ejt 4=  and 4 4≥  hence shorter mode, i.e., mode 3, should be 

eliminated. We drop mode 3, whose processing time is 3.  

 

The idea behind elimination is that the model never assigns activity E to 

mode 3, as mode 2 would be assigned in a cheaper way even when worst  case of 

the longest mode assignments are assumed.  Similarly, for activity C, mode 2 and 

for activity G mode 2 are eliminated as they would never produce optimal 

solutions.  

 

Long Mode Elimination 

Here long modes that lead to infeasible solutions are eliminated.  We use 

the following notation to state the long term elimination theorem.   

iES _ E : Earliest start time of activity i, when all activities are assigned to 

their shortest modes. 

iLC _ E : Latest completion time of activity i, when all activities are 

assigned to their shortest modes. 
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In computing the
iES _ E  and 

iLC _ E  values, the CPM method is used by 

setting all noncritical activities to their shortest modes and the deadline value 

to
MinT . 

iimX 1=  where activity i is noncritical 

i1X 1=  where activity i is critical 

Theorem 2 resembles the one presented in Akkan et. al. (2005) for the 

general problem.  

Theorem 2  

i i ijLC _ E ES _ E t− <  for activity i then modes 1 through j cannot lead to a 

feasible solution.  

 

Proof: As all activities are set to their shortest processing times, the resulting total 

slack, 
i iLC _ E ES _ E− , is the maximum assignable duration for activity i, en 

route to a feasible solution. This follows, the modes from 1 through j cannot lead to 

a feasible solution, as the resulting processing times are greater than the maximum 

total slack value.          ⁭ 

 

Using the result of Theorem 2, we eliminate some long duration modes that 

would lead to an infeasible solution.  

 

We illustrate the theorem on the AoA network in Figure 3-2. The bold-face 

numbers give the shortest modes used in the CPM method.  
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Figure 3-12 - A Sample Network with Noncritical Activities at their Shortest Mode 

 

 

The associated 
iES _ E , 

iLC _ E  and 
i iLC _ E ES _ E− values are tabulated 

below. 

 

 

Table 3-3 - The Earliest Start and Latest Completion Times 

Activity Assigned 
Duration 
(Week) 

iES _ E  iLC _ E  

( MinT 8= ) 
i i ijLC _ E ES _ E t− <  

 

A 2 0 2 2 
B 1 2 5 3 
C 1 2 4 2 
D 2 2 4 2 
E 3 3 8 5 
F 4 4 8 4 
G 2 4 8 4 

 

 

 All noncritical activities (B, C, E and G) are tested whether 

i i ijLC _ E ES _ E t− <  or not.   

 

Using the test the longest duration mode of activity E is eliminated as 

shown below: 

 i i ijLC _ E ES _ E t− <  is tested for Ej M∈  



 

 

 

 

43 

 For j = 1; 
Ejt 7= and 7 5>  hence mode 1 is eliminated.  

For j = 2; 
Ejt 4=  and 4 ≥ 5  therefore mode 2 and the other shorter modes 

cannot be eliminated.  

 

Costly Mode Eliminations 

The cost parameters are used to determine nonpromising costly modes. The 

following notation is used to state the rule.  

iLB : A valid lower bound on the total cost of all activities, other than i.   

UB : A valid upper bound on the total cost of the project.  

 

Like Theorem 1, Theorem 3 states a rule for eliminating short duration 

modes. 

 

Theorem 3  

If i ijLB c UB+ >   then the modes j through im  for activity i cannot lead to 

an optimal solution.  

 

Proof: iLB  is the minimum cost of performing all activities, except activity i. 

Activity i cannot be assigned to mode j and all other shorter duration modes, in any 

optimal solution as it cannot lead to a better solution than UB, even when the other 

activities performed at their lowest possible costs.      ⁭ 

 

 Two different iLB value can be computed as follows.  

Simple Lower Bound 

A lower bound on the total cost for the activities except activity i is the cost 

incurred by these activities when they are assigned to their longest modes.    

i k1

k V ,k i

NLB c
∈ ≠

= ∑  
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LP Based Lower Bound 

iLB  value is computed in two steps. 

Step 1. Activity i is fixed to its shortest duration mode and its cost is 

set to  zero, i.e, 
iimX 1=  and 

iimc 0= . 

Step 2. The discrete nature of ijX  variables is relaxed and the 

problem is solved as a continuous LP model. The objective 

function value of the resulting LP relaxation is the lower 

bound on the total cost of the project. 

  

We implement Theorem 3 by using the LP based lower bound. To find UB, 

we use the heuristic procedure discussed in Section 3.3.4.2. 

 

Iterative Application of the Elimination Rules 

The mode elimination methods affect each other, because in eliminating 

short modes of an activity, all other activities are set to their longest modes and 

then the earliest start and latest completion times are computed. After some long 

modes are eliminated, the earliest start and latest completion times may change. 

Similarly after the short modes are eliminated, the earliest start and latest 

completion times by the long mode eliminations may change, since they rely on the 

shortest modes. Moreover iLB  value used in the costly mode eliminations is 

affected by any mode elimination, and affects the long mode eliminations once it 

eliminates short modes.  The interactions between the elimination rules are 

summarized in Table 3-4.  

As can be observed from the Table 3-4, applying these elimination methods 

iteratively, increases the total number of modes eliminated. The elimination 

procedure is implemented in the following manner. Initially long mode, short mode 

and costly mode iteration algorithms are applied in sequel. Then further iterations 

are performed according to their effects on the others. The table above indicates 

that the costly mode eliminations should be applied after any elimination, long 

mode elimination should be performed if any short mode is eliminated.  There is no 
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need to check short mode elimination unless a long mode is eliminated. The 

iterations stop when no further mode elimination can be done.   

 

 

Table 3-4 – The Interactions between The Mode Elimination Rules  

Affected 

Affecting Long Mode 
Elimination 

Short Mode 
Elimination 

Costly Mode 
Elimination 

Long Mode 
Elimination 

No Yes Yes 

Short Mode 
Elimination 

Yes No Yes 

Costly Mode 
Elimination 

Yes No Yes 

 

 

 

3.2.3 The Optimal Linear Programming Relaxation Solution and Its 

Properties 

We use the Linear Programming Relaxation (LPR), i.e., continuous 

relaxation, of the model to find lower bounds and upper bounds on the optimal total 

cost value.    

Below we give an optimal LPR solution for a sample 4-activity project.  

For i 1= ; { }j 1,2,3,4,5=    14X 1=  

For i 2= ; { }j 1,2,3,4,5=   21X 0.76=  and 25X 0.24=  

For i 3= ; { }j 1,2,3,4=      31X 0.11=  and 34X 0.89=  

For i 4= ; { }j 1,2=             42X 1=  

 

Note that the above optimal LPR solution gives at most two continuous 

variables for each activity. This property is inherent in all optimal LPR solutions as 

stated by the below property.  
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Property 1. The optimal solution of the LPR produces at most two 

continuous assignments for each activity.  

 

Proof We let iLPt  denote the processing time assigned for activity i in the 

optimal LPR solution. Accordingly,  
im

iLP ij ij

j 1

t t X
=

=∑ . 

Given 
iLPt  values, for each activity i , the following LP model can be 

used to make minimum cost mode assignments.   

im

ij ij

j 1

ij

j

ij ij iLP

ij

Min c X

s.to.

X 1

t X t

X 0

=

∀

=

=

≥

∑

∑

∑

  

Since there are two constraints, there are two basic variables in all basic 

feasible solutions. This follows that each basic feasible solution has at 

most two nonnegative variables. From the LP theory, we know the 

optimal solution is in the basic feasible solution set, hence has at most 

two continuous variables.       ⁭ 

 

Hafızoğlu (2007) reports the same result for the general deadline 

problem. 

 

Property 2. The continuous assignments associate to two consecutive 

modes for the activities having convex activity time/cost functions.  

 

Proof Consider an activity i, having convex cost structure and two 

nonconsecutive modes a,b  and a b<  as depicted by Figure 3-12. 

Assume an optimal solution for the activity is on the line connecting 

modes a and b. As the time cost function is convex, any point on the 
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lines connecting a and a+1, and b-1 and b are below the line 

connecting a and b, i.e.,   

ia ia ib ib ia ia ia 1 ibc X c X c X c X++ > +  and  

ia ia ib ib ib 1 ia ia 1 ibc X c X c X c X− ++ > + . 

Hence any point on the line connecting two nonconsecutive modes 

cannot be optimal. In other words, an optimal solution is on the line 

connecting two consecutive modes, for all activities having convex 

time/cost structures.        ⁭ 

 

 

 

Figure 3-13 - A Sample Convex Time/Cost Function 

 

 

According to the result of Property 2; 

If 
ij0 X 1< <  then, 

Either  
ij 1X 0+ >  and 

ij ij 1X X 1++ =  or 

 
ij 1X 0− >  and 

ij ij 1X X 1−+ = . 

 

Property 3. The continuous assignments associate to two extreme modes, 

for the activities having concave time/cost functions.  
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Proof Consider an activity i having concave cost structure and two modes 

a,b  such that a b<  and a 1≠  and 
ib m≠  as depicted in Figure 3-14. 

 

 

 

Figure 3-14 - A Sample Concave Time/Cost Function 

 

 

Any point on the line connecting 1  and 
im  is below the line connecting 

a and b., i.e., 

i iia ia ib ib i1 i1 im imc X c X c X c X+ ≥ +  

Hence any point on the line connecting two modes, other than the first 

and last modes, cannot be optimal. In other words, an optimal solution 

is on the line connecting the first and last modes, for all activities 

having concave time/cost structures.     ⁭ 

 

The result of Property 3 follows that if activity i has a concave time/cost 

function and 
ij0 X 1< <  then j 1=  and

ij m=  and 
ii1 imX X 1+ = . 
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Using the result of Property 3, we solve the LPR model only for the 

shortest and longest modes for the activities having concave time/cost 

functions. 

  

Properties 4 through 7 state some properties of the optimal LPR solution 

for the general time/cost functions. 

 

Property 4. If the optimal LPR solution produces fractional assignments 

for an activity, then that activity is critical for the LP relaxed problem. 

 

Proof Assume an optimal LPR solution with ij0 X 1< < , iLPt  is the 

associated duration for activity i and B is the associated total cost of the 

project. 

If activity i is not critical, then there must be at least one ij't  such that 

ij' iLPt t>  and increasing the activity duration by ij' iLPt t−  units does not 

increase the total completion time of the project. Moreover, the total 

cost of the project, B' , would be lower than B  as  ij' iLPt t>  implies 

ij' iLPc c< . 

Since the optimal LPR model produces a total cost value higher than 

B' , there cannot be such  ij't  hence activity i is critical.   ⁭ 

 

Property 5. If an activity i is noncritical in the optimal LP solution 

then i1X 1= . 

 

Proof Any noncritical activity can be processed in at least one time period 

t  such that  iLPt t> , without increasing the completion time of the 

project.  

If such a t  exists, then the solution is not optimal as the activity 

duration would increase by 
iLPt t−  units. Such an increase would reduce 
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the total cost which contradicts with the optimality of the solution. 

Hence there cannot be any iLPt t> , and this follows i1X 1= .  ⁭ 

 

Property 6. Increasing iLPt , while keeping the processing times of all 

other activities k at kLPt  leads to an infeasible solution.  

 

Proof Say processing activity i in time iLPt t>  is considered.  

Two cases exist. 

Case 1: Activity i is critical. The processing time, iLPt , cannot be 

increased without increasing the total completion time.  

Case 2: Activity i is noncritical. Activity i is already executed at the 

longest duration mode. (See Property 5) 

Hence, increasing the processing time of activity i makes the solution 

infeasible.          ⁭ 

 

Property 7. Decreasing 
iLPt  while keeping the processing times of other 

activities k at kLPt  leads to a feasible solution.  

 

Proof Say processing activity i in time iLPt t<  is considered.  

Two cases exist.  

Case 1: Activity i is critical. The processing time t<
iLPt  can be 

decreased, without increasing the total completion time of the project, 

hence the solution stays feasible. 

Case 2:  Activity i is noncritical. Activity i is already executed at the 

longest duration mode (see Property 5) and decreasing its processing 

time does not affect the total completion time of the project.   ⁭ 
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3.2.4 Procedures for Finding Lower Bound 

In this section, two different procedures are presented to find lower bounds 

on the optimal objective total cost values. The first lower bound that we refer to as 

naïve lower bound, is simple to compute, but inefficient. The second lower bound 

is based on the optimal LPR solutions. It is efficient, but harder to compute.   

 

Naïve Lower Bound (NLB)  

Naïve Lower Bound assigns all activities to their minimum-cost modes. The 

total cost of the resulting assignment is a lower bound on the total cost of the 

project. Formally; 

i1

i V

NLB c
∀ ∈

= ∑  

 NLB is a valid lower bound as any activity i cannot be executed with a cost 

that is smaller than i1c , hence total project cost cannot be lower than i1

i V

c
∀ ∈
∑ . The 

resulting schedule on the hand, may be infeasible, as it leads to the maximum 

duration assignments, hence high project completion times (higher than Tmin). 

 

 A very simple example below illustrates NLB. The project consists of 4 

activities. Modes of each activity are given below.  

 For i 1= , there are 5 modes, with the following time/cost pair set: 

 { }(108,10 ),( 85,537 ),( 81,625 ),(61,1050 ),( 55,1164 )  

 For i 2= , there are 5 modes, with the following time/cost pair set: 

 { }( 99,15 ),( 93,140 ),( 80,407 ),(66 ,666 ),(61,750 )  

 For i 3= , there are 4 modes, with the following time/cost pair set: 

 { }(104,11),(71,313 ),(68,331),( 49,415 )  

 For i 4= , there are 2 modes, with the following time/cost pair set: 

 { }( 88,15 ),( 35,99 )  

 The immediate precedence relations are tabulated below.  
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Table 3-5 - The Precedence Relations for the Example 

Activity Immediate 
Predecessors 

1 4 
2 - 
3 4 
4 - 

 

 

NLB is found by simply taking the minimum cost mode for each activity. 

Accordingly, 
i1

i V

NLB c 10 15 11 15 51
∀ ∈

= = + + + =∑  

 In our experiments, we use the naïve lower bound as filtering mechanisms. 

We first compute naïve lower bound and compute LPR Based Lower Bounds if the 

naïve lower bound cannot eliminate.  

LPR Based Lower Bound (LPLB) 

LPLB is found by relaxing the integrality constraints on the discrete 

variables, ijX s, and solving the resulting LP to optimality. An optimal solution to 

any relaxation, hence the LPR, provides a lower bound on our minimization 

problem.  

 

NLB is a lower bound on the optimal solution of the LPR as well. Hence 

LPLB dominates NLB, but at an expense of additional effort. 

 

LPLB 1823.01=  (found by the LP software), for the sample project whose 

NLB  was 51. 

 

3.2.5 Solution Algorithms 

We first reduce the size of the minimum deadline problem by an iterative 

application of the mode elimination rules, and then solve the reduced problem by 
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branch and bound algorithm and approximation procedures.  In this section we 

discuss our solution procedures. 

3.2.5.1 Branch and Bound Algorithm 

Our branch and bound algorithm uses two different branching strategies. 

Two types of routing strategies are used in each branching strategy. Both strategies 

are based on the optimal LPR solution.  

 

Branching Strategy 1 

 Branching strategy is based on the LP relaxation (LPR) solution. Stepwise 

description of the strategy is presented below. 

  

Step 0.  Solve the LPR problem at the root node.  

Use LP based heuristic algorithm (discussed in Section 3.2.5.2) to find an 

initial feasible solution. Let the UB be the total cost value of the solution.  

Recall from Property 1 that the optimum LPR solution has at most two 

fractional variables for each activity.  

Step 1. The variable with the highest fractional value, say ijX , is chosen.  

Step 2. There are two branches associated with the selected variable. These 

branches are 1ijX =  and 0ijX =  as shown in the following figure. 

 

 

Xij=1 Xij=0

 

Figure 3-15 - Branching Strategy 1 

 

 

Two different routing strategies are proposed.  
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Routing Strategy 1: The branch that set the most fractional variable to 1 is 

followed.  

Routing Strategy 2: Lower bound is used to find the route. LPR is solved 

for both branches. If both routes are feasible then the one which gives the 

smaller lower bound is followed. If both are infeasible then go to Step 4.  

Step 3. Solve the LPR problem.  

There are three cases.  

Case i. LP is infeasible, then go to Step 4.  

Case ii. All variables in the LPR solution are integer, the solution is optimal 

for the associated node. If UB LB>  (LB is the optimal LPR cost) then let 

UB LB= . Go to Step 4. 

Case iii. There are two sub-cases. 

a. LPR is feasible and fractional and UB LB≥  then go to Step 

1.  

b. Fathoming case: UB LB< , then go to Step 4.  

Step 4.  Backtrack to the parent node of the branch and bound tree. Select 

the alternate branch, go to step 0. If the alternate branch is previously 

visited then backtrack to the grand parent node, so on, until finding an 

unvisited branch or reaching the root node. If the current node is the root 

node and both child nodes are visited then the solution giving UB, i.e., the 

best upper bound is the optimal solution.  

 

Branching Strategy 2 

This strategy is also based on the optimal LPR solution; however rather 

than two branches, we consider three branches at each node. The stepwise 

description of the procedure is provided below. 

Step 0. Solve the LPR problem at the root node. Use LP based heuristic 

algorithm (discussed in section 3.2.5.2) to find an initial feasible solution. 

Let upper bound be the total cost value of the solution.  
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Step 1. Find the activity that has the most fractional valued variable. 

Considering 1ij

j

X
∀

=∑  and Property 1, the most fractional and least 

fractional variables in the problem correspond to the same activity. Let 

Min

ijX  and Max

ijX  be least and most fractional variables respectively.  

Step 2. There are three branches.  

First branch: 1Min

ijX =  and 0Max

ijX = .  

Second branch: 0Min

ijX =  and 1Max

ijX = .  

Third branch: Both variables are set to be zero: 0Min

ijX =  and 0Max

ijX = .  

 

The following figure illustrates the branching scheme. 
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Figure 3-16 - Branching Strategy 2 

 

 

If an activity has only two modes, then there are two branches.  

 

The routing strategies that are defined for branching strategy 1 can be used 

to find the route. 

Step 3.  Solve the LPR problem. There are three alternative cases. If none of 

the conditions stated in the cases are satisfied then go to Step 1.  

Case i. LP is infeasible, then go to Step 4.  
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Case ii. All variables in the optimal LPR solution are integer; the solution is 

optimal for the associated node. If UB LB>  (LB is the optimal LPR cost) 

then let UB LB= . Go to Step 4. 

Case iii. There are two sub-cases. 

a. LPR is feasible and fractional and UB LB≥  then go to Step 1.  

b. Fathoming case: UB LB< , then go to Step 4. 

Step 4. Backtrack to the parent node of the branch and bound tree. Select 

the alternate branch, go to step 0. If the alternate branch is previously 

visited then backtrack to the grand parent node, and so on until finding an 

unvisited route or reaching the initial node. If the current node is the root 

node and all three child nodes are visited then the solution giving UB, i.e., 

UB the best upper bound is the optimal solution. 

 

An example to illustrate the branching strategies is provided Table 3-6. 

Time/cost values of the modes are stated in the parentheses. The first number in 

each parenthesis is the processing time, while the second one is the cost of the 

activity. 

 

The fractional variables of the optimal LPR solution of the root node are 

represented in Table 3-7 below.  

 

Branching strategy 1: The index of the variable with the highest fractional 

value is 14-0. If routing strategy 1 is utilized to find the route then 14 ,0X 1= . 

If routing strategy 2 is applied then 14,0X 0=  because when 14 ,0X 1=  the 

problem is infeasible. If 14 ,0X 1=  led to a feasible solution then the total 

costs by the optimal LPR solutions would be compared and the route 

having the smaller lower bound would be selected.  
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Branching strategy 2: Two branches
14 ,0X 1= ;

14 ,1X 0=  and 
14,0X 0= ; 

14,1X 1=  lead to infeasible solutions. The remaining branch 14 ,0X 0= , 

14 ,1X 0=  is feasible solution and hence it is selected. If the other branches 

were also feasible the total cost by the optimal LPR solutions would be 

compared and the route having the smaller lower bound would be selected. 

 

 

Table 3-6 – A Sample Project to Illustrate Branching Strategies 

Activity Immediate 
Successors 

Modes 

0 1,2,3 (0,0) 
1 4,5 (35,1536)(22,1570)(24,1698)(8,1896)(3,1953) 
2 11,12 (99,15)(93,140)(80,407)(66,666)(61,750)(38,1072) 
3 23 (104,11)(71,313)(68,331)(49,415) 
4 6,7 (88,15)(35,99) 
5 11,12 (82,9)(57,236)(35,373)(4,546) 
6 8,9 (108,5)(84,527)(77,678)(40,1386)(30,1565)(24,1672) 
7 11,12 (112,13)(46,156) 
8 10 (58,1622)(40,2005)(38,2042)(21,2340) 

9 11,12 
(117,8)(95,524)(78,906)(72,1023)(67,1115)(33,1673) 

(21,1847)(10,1998) 
10 11,12 (83,8)(79,74)(65,263)(52,413)(44,503)(23,707) 
11 13,14 (111,11)(52,682)(13,1071)(6,1133) 

12 18,19 
(117,15)(112,95)(109,134)(59,709)(41,898)(26,1052) 

(11,1180) 
13 15,16 (85,7)(76,83)(73,99)(20,265) 
14 18,19 (100,14)(38,124) 
15 17 (91,5)(40,193) 

16 18,19 
(118,10)(111,180)(94,586)(86,756)(80,867)(64,1150) 

(62,1182)(42,1488)(32,1635) 

17 18,19 
(121,5)(117,88)(110,220)(99,398)(87,580)(66,842) 

(62,888)(38,1131) 

18 20,21 
(112,12)(91,581)(84,766)(80,862)(76,948)(70,1066) 

(62,1120)(49,1439)(30,1719) 
19 23 (53,8)(48,45)(12,216)(6,228) 

20 22,23 
(91,15)(84,210)(82,263)(78,363)(72,496)(62,694) 

(25,1392)(16,1537)(8,1648) 
21 23 (110,7)(97,37) 
22 23 (63,15)(43,53) 
23 - - 
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Table 3-7 – The Variables at Fractional Values in the Optimal LPR Solution 

Variable Index (i-j) Value 
7-0 0.33 
7-1 0.67 
9-0 0.32 
9-7 0.68 
12-0 0.88 
12-6 0.12 
14-0 0.97 
14-1 0.03 
16-0 0.53 
16-8 0.47 
20-0 0.55 
20-8 0.44 

 

 

3.2.5.2 Approximation Algorithm 

We propose three heuristic procedures to find feasible approximate 

solutions to our problem. The first heuristic is LP based, runs in polynomial time 

and is used as an initial feasible solution in our branch and bound algorithm. The 

second heuristic is branch and bound based, runs in polynomial time and is 

proposed with the hope of obtaining high quality and fast solutions. The third 

heuristic is also branch and bound based, runs in exponential time and proposed 

with the hope of obtaining near optimal solutions. 

 

LP Based Heuristic Algorithm 

Our heuristic procedure to find an upper bound proceeds in two phases: 

construction and improvement.  

 

Construction Phase:  

The construction phase consists of 2 steps. 
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Step 1. The problem is first solved by relaxing the integrality constraints. 

Say iLPt  denotes the processing time of activity and iLPc  is its associated 

cost in the optimal relaxed solution.  

Step 2.  The total completion time is kept at its minimum value of MinT , 

when the processing time of activity i is decreased from iLPt . We decrease 

the processing time of activity i by setting it to the largest processing time 

mode that is no larger than iLPt . (From Property 6 we know that decreasing 

any processing time does not violate feasibility.) Our aim is to increase the 

total cost as small as possible by small movements.  

 

Consider the sample project whose data were given in Table 3-6. In the 

construction phase, the following mode assignments are made and the associated 

upper bound is found as 16549. 

For activity 7, 7 LPt 68=  and the mode with minimum duration that is not 

larger than 68  is mode 2, hence we set 7 ,2X 1= . 

For activity 9, 
9 LPt 44= , and the mode with minimum duration that is not 

larger than 44  is mode 6, hence we set 9 ,6X 1= . 

For activity 12, 
12 LPt 104= , and the mode with minimum duration that is 

not larger than 104  is mode 4, hence we set 12,4X 1= . 

For activity 14, 14 LPt 98= , and the mode with minimum duration that is not 

larger than 98  is mode 2, hence we set 14 ,2X 1= . 

For activity 16, 16 LPt 78= , and the mode with minimum duration that is not 

larger than 78  is mode 5, hence we set 16 ,5X 1= . 

For activity 20, 20 LPt 54= , and the mode with minimum duration that is not 

larger than 54  is mode 6, hence we set 20 ,6X 1= . 
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The other variables at the optimal solution are not fractional. Hence the 

solution obtained after the above shifts is feasible for the original problem, and the 

objective function value is the upper bound for the total cost of the problem.    

 

Improvement Phase: 

The solution found by the construction phase is improved using two 

procedures in sequel. 

First Improvement 

The construction heuristic can be improved by increasing the durations of 

some activities. Such increases are possible, as in construction phase we decrease 

some durations that would give room to some other increases. For each noncritical 

activity, we check whether it can be moved to its next higher duration mode 

without violating feasibility. Among the activities that would lead to feasible 

increases, we select the one that causes the maximum reduction in the total cost 

value. Formally, we select the activity k such that { }kj kj 1 ij ij 1
i

c c max c c− −− = − if 

activity i is assigned to mode j  in the current solution. We terminate the first 

improvement whenever any further increase in durations leads to an infeasible 

solution.  

 

For the sample project used to illustrate the construction phase, activity 22 

is assigned to mode 2, which has a cost of 53. Assigning activity 22 to mode 1, 

which is the next higher duration mode, produces a feasible solution hence the 

activity 22 is moved to its first mode. This movement decreases the total cost of the 

project by 38 units, and the new total cost is 16511.  

 

We terminate the first improvement step, as any further increase in 

durations leads to an infeasible solution.  
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Second Improvement 

The second improvement phase tries to improve the solution returned by the 

first improvement phase using pairwise interchanges. For all pairs on the same 

path, we check whether increasing one activity duration while decreasing the other 

one reduces the total cost without increasing the project completion time. Among 

the pairs that qualify, we select the interchange that decreases the total cost by the 

largest amount. We terminate whenever all pairwise interchanges are either 

infeasible or cannot lead to a reduction in total cost.  

 

Branch and Bound Based Approximation Algorithm I 

To find second approximate solution, we use our branch and bound 

algorithm with the first branching strategy, but do not allow backtracking. We use 

the LPR based heuristic as a starting solution in our curtailed branch and bound 

algorithm.  We terminate whenever we find all integer variables, no feasible 

solution, or no promising solutions (lower bounds are no smaller than the best 

known upper bound). For the sake of completeness Step 0 and Step 1 are restated 

below, although they are the same as in optimization algorithm. In step 2, routing 

strategy 2 defined in the previous section is used.  

 

Step 0. Solve the LPR problem at the root node. Use LP based heuristic 

algorithm to find an initial feasible solution. Let upper bound be the total 

cost value of the solution. Recall from Property 1 that the optimum LPR 

solution has at most two fractional variables for each activity.  

 Step 1. The variable with the highest fractional value is chosen. Say ijX  is 

the most fractional variable.  

Step 2. There are two branches associated with the selected variable. These 

branches are 1ijX =  and 0ijX =  as shown in the following figure.  
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Xij=1 Xij=0

 

Figure 3-17 - Branching Strategy 1 

 

 

Lower bound is used to find the route. LPR is solved for both branches. If 

both routes are feasible then the one with the smaller lower bound is 

followed. If both are infeasible then go to Step 3.  

Step 3. Solve the LPR problem. There are three cases.  

Case i. LP is infeasible, then stop. The solution giving the best upper bound 

is the solution of approximation algorithm. 

Case ii. All variables in the optimal LPR solution are integer; the solution is 

optimal for the associated node. If UB LB≥  (LB is the total cost of found in 

optimal LPR solution) then let UB LB= . Then stop. The solution giving the 

best upper bound is the solution of approximation algorithm. 

Case iii. There are two sub-cases. 

a. LPR is feasible and fractional andUB LB≥ , then go to Step 

1.  

b. UB LB< , then stop. The solution giving the best upper 

bound is the result of approximation algorithm. 

 

In place of Branching Strategy 1, Branching Strategy 2 could also be used 

to arrive at an approximate solution.  

  

Branch and Bound Based Approximation Algorithm II 

In this section we describe another approximation algorithm that is based on 

reducing the problem size using the optimal LPR solution and then solving the 

reduced problem by our branch and bound algorithm.  In doing so, the variables 

that take integer values in the optimal LPR solution are fixed and then branch and 
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bound is applied for the fractional variables. The method consists of the following 

three steps. 

Step 0. The LPR problem is solved.  

Step 1. All variables that take integer values in the optimal LPR solution are 

fixed.  

Step 2. Branch and bound algorithm is used to find the values of the 

activities with fractional assignments. 

3.3 General Modified Budget Problem 

In this section, we consider a general budget problem, with available budget 

b , between minb  and maxb  values (See Section 3.1.2.).  We aim to select the 

solution having the smallest total cost value (no more than b ) among the ones 

having the smallest project completion time value.    

Recall that, when 
minb b=  the problem is trivial. All activities are assigned 

to their longest modes. For maxb b=  the minimum deadline problem is already 

defined and studied as a special case of the budget problem.  We now discuss 

general budget problem with arbitrary b  value, where min maxb b b< < .  In the next 

subsection mode elimination procedures are proposed. In Section 3.3.2 we state the 

properties of the optimal LP relaxation (LPR). We continue with lower bounding 

procedures. The branch and bound method and approximation algorithms are 

presented in Section 3.3.4.  The majority of the results are generalized from the 

minimum deadline problem.   For the sake of simplicity, hereafter we refer to ‘the 

general modified budget problem’ as ‘the budget problem’ 

 

3.3.1 Mode Elimination Rules 

In this section we derive short mode, long mode and costly mode 

elimination rules for the budget problem. Our aim is to reduce the size of the search 

by eliminating some modes that are either infeasible or cannot lead to an optimal 

solution. 
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Short Mode Elimination 

As the short modes are costly, assigning these modes may lead to infeasible 

solutions. We use the following notation in the algorithm.  

iES _ L : Earliest start time of activity i, when all activities are assigned to 

their longest modes.  

iLC _ L( LB ) : Latest completion time of activity i, when all activities are 

assigned to their longest modes. A lower bound for the project completion time is 

used to find the iLC _ L( LB ) , as the exact completion time is not known. 

iES _ L  and iLC _ L( LB ) are found by the CPM method, using a lower 

bound on the completion time of the project. 

 While computing 
iES _ L  and 

iLC _ L( LB )  we assign all noncritical 

activities to their longest modes, i.e., we set 

i1X 1=  for all i. 

 

Theorem 4  

If 
i i ijLC _ L( LB ) ES _ L t− ≥  then for activity i, modes j 1+  through 

im  

cannot lead to an optimal solution.  

 

Proof: Assume a solution that contradicts with the condition of the theorem, 

i.e.,
i i ijLC _ L( LB ) ES _ L t− ≥  and

ij'X 1=  where j' j> .  Since 
ij' ijc c>  setting 

ijX 1=  is certainly feasible and improves the budget by an amount of 
ij' ijc c− . And 

such an interchange is feasible as 
i i ijLC _ L( LB ) ES _ L t− ≥  Hence any solution 

that contradicts with the condition of the theorem cannot be optimal.   ⁭ 

 

The example that associated information is given in Table 3-6 is used to 

illustrate the application of the rule. Let the available budget for the project be 8371 

YTL. The lower bound for the total project completion time is found to be 517.64 

by the CPM method. Consider activity 3 that has neither a successor nor a 

predecessor. Hence; 
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3LC _ L( LB ) 517=  

iES _ L 0=  

Since
3,1517 t 104≥ = , all modes 

ij M∈  that are j 1> , i.e., mode 2, mode 3 

and mode 4 are eliminated. Since mode 1 is feasible in any solution and other 

modes are more costly than mode 1.  

Theorem 4 cannot eliminate any mode of any activity other than the modes 

stated above. 

 

Long Mode Elimination  

The long mode elimination rule eliminates all nonpromising modes, i.e., the 

ones that cannot produce optimal solutions. Recall that in the minimum deadline 

problem, long mode elimination rule disregards the infeasible solution as the 

project completion time is a constraint, but do not appear in the objective function. 

We use the following notation to state long mode elimination algorithm. 

iES _ E : Earliest start time of activity i, when all activities are assigned to 

their shortest modes. 

iLC _ E(UB ) : Latest completion time of activity i, when all activities are 

assigned to their shortest modes. Upper bound for total completion time of the 

project is used to find
iLC _ E(UB )  as the project completion time is not known. 

The procedure for finding the upper bound will be discussed later.  

In computing the iES _ E  and iLC _ E(UB )  values, the CPM method is used 

by setting all activities to their shortest modes, i.e. we set  

iimX 1=  for all i. 

 

Theorem 5  

If i i ijLC _ E(UB ) ES _ E t− < for activity i then mode 1  through j  cannot 

lead to an optimal solution.  
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Proof: Consider an optimal solution where *

N 1S +
 is the associated project 

completion time, *

iS  is the start time of the activity i, *

iLC  is the latest completion 

time of the activity.  

*

i iS ES _ E≥  since 
k

*

k kmt t≥ where k is the immediate predecessor of activity 

i and *

kt  is its optimal processing time.  

*

i iLC LC _ E(UB )≤  because *

N 1S UB+ < and 
k

*

k kmt t≥ . 

This follows * *

i i i iLC S LC _ E(UB ) ES _ E− ≤ − . Any solution that assigns 

activity i to mode j such that ij i it LC _ E(UB ) ES _ E> −  cannot be optimal as the 

condition * *

i i ijLC S t− ≥  is violated.       ⁭ 

We illustrate the application of the theorem with the example that 

associated information is given in Table 3-5. Budget limit for the problem is set to 

1070 YTL. The upper bound for the project completion time is 116. 

1LC _ E(UB ) and 1ES _ E  are computed using the CPM method. 

1LC _ E(UB ) 81=  

1ES _ E 0=  

1,1t 108 81= >  and 1,2t 85 81= >  therefore mode 1 and mode 2 defined for 

activity 1 cannot be in any optimal solution and are eliminated. Similarly first 

modes of activity 3 activity 4 are eliminated.  

 

Costly Mode Eliminations:  

The costly mode elimination rule eliminates the modes that would lead to an 

infeasible solution, without ever being evaluated by a solution algorithm. Recall 

that the costly mode elimination rule eliminates nonpromising modes in the 

minimum deadline problem as the budget is not a constraint, but appears in the 

objective. 

iLB : A valid lower bound on the total cost of all activities, other than i.   

 

 



 

 

 

 

67 

Theorem 6  

If i ijLB c b+ >  then modes 1  through j  cannot lead to a feasible solution.   

 

Proof: iLB  is the minimum cost of performing all other activities, except activity i.  

When activity i is assigned to any mode ij M∈  then the lower bound on total cost 

becomes i ijLB c+  and if i ijLB c b+ > , assignment to mode j violates the budget 

constraint.           ⁭ 

 

iLB used in Theorem 6 is computed in two different ways.  

 

Simple Lower Bound 

A lower bound on the total cost for the activities except activity i is the cost 

incurred by these activities when they are assigned to their longest modes.    

i k 1

k V ,k i

NLB c
∈ ≠

= ∑  

 

LP Based Approach for Finding Lower Bound 

The procedure consists of two steps.  

Step 1:  

Activity i is fixed to its shortest duration mode and its cost is set to zero, 

i.e., 
iimX 1=  and 

iimc 0= . 

Step 2:  

The discrete nature of ijX  variables is relaxed and the problem is solved as 

a continuous LP model. The objective function value of the resulting LP relaxation 

is the lower bound on the total cost of the project.  

 

Iterative Application of the Elimination Rules 

As discussed for the minimum deadline problem, the mode elimination 

methods affect each other. The interactions are the same as those that are defined 
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for minimum deadline problem and are restated in Table 3-8 for the sake of 

completeness.  

 

 

Table 3-8 – The Interactions between Mode Elimination Rules 

Affected 

Affecting Long Mode 
Eliminations 

Short Mode 
Eliminations 

Costly Mode 
Eliminations 

Long Mode No Yes Yes 
Short Mode Yes No Yes 
Costly Mode Yes No Yes 

 

 

Due to the effects of elimination algorithms to each other, iterative 

application of these algorithms increases the effectiveness of the algorithms. 

Initially long mode, short mode and costly mode iteration algorithms are applied in 

sequel. Then further iterations are performed according to the effects of methods to 

each other. The table above indicates that the costly mode elimination algorithm 

should be applied after any elimination, long mode elimination should be 

performed if a short mode or costly mode is eliminated. There is no need to check 

short mode elimination unless a long mode is eliminated. The iterations should stop 

if no further mode elimination is possible. 

3.3.2 The Optimal Linear Programming Relaxation Solution and Its 

Properties 

We use Linear Relaxation programming (LPR), i.e., continuous relaxation, 

of the model to find lower bounds and upper bounds on the optimal objective 

function value. The deadline problem and the budget problem are analogous in the 

sense that the objective function in one problem appears as a constraint in the other 

and vice versa. Hence most of the properties we derived for the minimum deadline 

problem hold for the budget problem. We restate the properties and modify their 

proofs so that they treat the budget as a constraint, but not an objective function.  
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Property 8. The solution of the optimal LPR produces at most two 

continuous assignments for each activity.  

Proof:  We let 
iLPc  and 

iLPt  denote the cost and duration assigned for 

activity i respectively. Accordingly, 

i

iLP ij ij

j M

c c X
∀ ∈

= ∑  and 
i

iLP ij ij

j M

t t X
∀ ∈

= ∑  

Given iLPc  and iLPt  values for each activity i , the following LP model 

can be used to make mode assignments with the minimum cost.  

i

i

m

ij ij

j 1

ij

j

ij ij iLP

j M

ij

Min t X

s.to.

X 1

c X c

X 0

=

∀

∀ ∈

=

=

≥

∑

∑

∑

  

Since there are two constraints, there are two basic feasible variables in 

the basic feasible solution. This follows each basic feasible solution has 

at most two nonnegative variables. From LP theory, we know the 

optimal solution is the basic feasible solutions’ set. Therefore the 

optimal LP solution has at most two positive ijX values.   ⁭ 

 

Property 9. The continuous assignments associate to two consecutive 

modes for the activities having convex time/cost functions.  

 

Proof: Consider an activity i having convex cost structure and two 

nonconsecutive modes ia,b M∈  and a b< , as depicted by the Figure 

3-.  

Assume an optimal solution for the activity is on the line connecting a 

and b. As the time/cost function is convex, any point on the lines 

connecting a and a+1, and b-1 and b are below the line connecting a 

and b.  



 

 

 

 

70 

ia ia ib ib ia ia ia 1 ibt X t X t X t X++ > +  and  

ia ia ib ib ib 1 ia ia 1 ibt X t X t X t X− ++ > + . 

Hence any point on the line connecting two nonconsecutive modes 

cannot be optimal. In other words, the optimal solution is on the line 

connecting two consecutive modes, for all activities having convex 

time/cost structures.        ⁭ 

The result of Property 9 follows that, if ij0 X 1< <  then,  

Either  ij 1X 0+ >  and ij ij 1X X 1++ =  or 

 ij 1X 0− >  and ij ij 1X X 1−+ = . 

  

Property 10. The continuous assignments associate to two extreme modes, 

the activities having concave time/cost functions.  

 

Proof: Consider an activity i having concave cost structure and two modes 

ia,b M∈ , a b<  and a 1≠  and 
ib m≠  as depicted in Figure 3-. Any 

point on the line connecting 1  and im  is below the line connecting a 

and b, i.e., 

i i i iia ia ib ib im im im imt X t X t X t X+ ≥ +  

Hence any point on the line connecting two modes, other than the first 

and last modes, cannot be optimal. In other words, an optimal solution 

is on the line connecting first and last modes for all activities having 

concave time/cost structures.       ⁭ 

 

The result of Property 10 follows that if ij0 X 1< <  then j 1=  

and ij m=  and 
ii1 imX X 1+ = . 

 

Using the result of Property 10, we solve the LPR model only for the 

shortest and longest modes for the activities having concave time/cost 

functions. 
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Properties 11 through 14 state some properties of the optimal LPR 

solution for the general time/cost functions. 

 

Property 11. If the optimal LPR solution produces fractional assignments 

for an activity, then that activity is critical for the LP relaxed problem. 

Proof: Assume an optimal LPR solution with ij0 X 1< < , iLPt  is the 

associated duration for activity i and B is the associated total cost of the 

project. 

If activity i is not critical, then there must be at least one 
ij't  such that 

ij' iLPt t>  and increasing the activity duration by 
ij' iLPt t−  units does not 

increase the total completion time of the project. Moreover, the total 

cost of the project, B' , would be lower than B  as  ij' iLPt t>  implies 

ij' iLPc c< . 

Since the LPR model produces a total cost value higher than B' , there 

cannot be such  ij't  hence activity i is critical.     ⁭ 

 

Property 12. If an activity i is noncritical in the optimal LP solution 

then i1X 1= . 

 

Proof: Any noncritical activity can be processed in at least one time period 

t  such that  iLPt t> , without increasing the completion time of the 

project.  

If such a t  exists, then the solution is not optimal as the activity 

duration would increase by iLPt t−  units. Such an increase would reduce 

the total cost which contradicts with the optimality of the solution. 

Hence there cannot be any iLPt t> , and this follows that 
iimX 1= . ⁭ 
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Property 13. Decreasing 
iLPt  while keeping processing times of all other 

activities k at kLPt  always leads to an infeasible solution.  

 

Proof: 
maxb b<  and *

N 1 MinS T+ >  where 
MinT  is the minimum possible project 

duration and *

N 1S +  is the project duration at optimal. If *B b< , where 

*B  is the total project cost at optimal  then *

N 1S +  can be improved at a 

cost of *b B− . Since *

N 1S +  is the minimum project duration subject to 

available budget, *B b= . Decreasing iLPt  leads to an increase in total 

project cost, *B . If *B  increases further then the problem becomes 

infeasible.         ⁭ 

 

Property 14. Increasing 
iLPt  while keeping the durations of all other 

activities k at kLPt  leads to a feasible solution.  

 

Proof: Say activity k is assigned to mode j, where kj kLPt t>  is considered.  

As kj kLPc c< , 

iLP kj iLP kLP

i V ,i k i V ,i k

c c c c b
∀ ∈ ≠ ∀ ∈ ≠

+ < + =∑ ∑ .       ⁭ 

 

3.3.3 Procedures for Finding Lower Bound 

In this section two different procedures are presented to find lower bounds 

on the optimal objective function values, i.e., the optimal project completion time, 

in this section. The first lower bound that we refer as naïve lower bound is simple 

to compute but inefficient. The second lower bound is based on the optimal LPR 

solutions. It is efficient but harder to compute. 
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Naïve Lower Bound (NLB)  

NLB is found by setting all activities to their shortest duration modes. The 

resulting project completion time, NLB found by the CPM method, is a lower 

bound for the optimal project completion time.  

Formally; 

N 1NLB S +=  where 
iimX 1=  for i V∀ ∈  

 NLB is a valid lower bound because any activity i cannot be executed with 

in a duration that is smaller than 
iimt  and hence total project completion time 

cannot be less than NLB. The resulting schedule on the other hand, may be 

infeasible, as it leads minimum duration assignments, leading to high project cost 

(higher than b). 

 

 An example whose data are given in Table 3-5 is used to illustrate the NLB 

computation.  

NLB is found by simply taking the minimum duration mode for each 

activity. Accordingly, as activity 3 and activity 4 are on the critical path, the total 

completion time is the sum of processing times of these activities. Accordingly, 

N 1NLB S 49 35 84+= = + = . 

 

LPR Based Lower Bound (LPLB) 

LPLB is found by relaxing the integrality constraints on the discrete 

variables, ijX s, and solving the resulting LP to optimality. An optimal solution to 

the LPR of the problem provides a lower bound for our minimization problem.  

 

NLB is a lower bound on the optimal solution of the LPR as well. Hence 

LPLB dominates NLB.  

 

The LPLB value is 116 (found by the LP software) for the sample project 

above whose NLB is 84. 
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3.3.4 Solution Algorithms 

We first reduce the size of the budget problem by an iterative application of 

the mode elimination rules, then solve the reduced problem by branch and bound 

algorithm and approximation procedures. In this section we describe our 

optimization algorithms and approximation algorithms for the general modified 

budget problem. 

3.3.4.1 Branch and Bound Algorithm 

The branch and bound algorithm described for the minimum deadline 

problem is used for the general budget problem. As in the deadline problem two 

different branching strategies together with two types of routing strategies are 

presented. 

 

Branching Strategy 1 

 Branching strategy is based on the LP relaxation (LPR) solution. Stepwise 

procedure for the strategy is presented below.  

 

 Step 0. Solve the LPR problem at the root node.  

Use LP based heuristic algorithm (discussed in Section 3.3.3) to find an 

initial feasible solution. Let upper bound be the total completion time of the 

solution and *B  be its total cost value.  

Recall from Property 8 that LPR solution has at most two fractional 

variables for each activity. 

 Step 1. The variable with the highest fractional value, say ijX , is chosen.  

Step 2. There are two branches associated with the selected variable. These 

branches are 1ijX =  and 0ijX =  as shown in the following figure. 
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Xij=1 Xij=0

 

Figure 3-18 - Branching Strategy 1 

 

 

Considering these two branches at each node, two different routing 

strategies are proposed.  

Routing Strategy 1: Most fractional variable is set to be one.  

Routing Strategy 2: Lower bound is used to find the route. LPR is solved 

for both branches. If both routes are feasible then the one which gives the 

smaller lower bound is followed. If both are infeasible then go to Step 4.  

Step 3. Solve LPR. There are three alternative cases. 

Case i. LP is infeasible, then go to Step 4.  

Case ii. All variables in the LPR solution are integer, the solution is optimal 

for the associated node. Let B be the total cost value of the LPR solution. 

There are two cases. 

a. UB LB>  (LB is the optimal LPR cost) then let UB LB= , 

*B B= .  

b. UB LB= . If *B B<  then *B B= . Go to Step 4. 

Case iii. There two cases. 

a. LPR is feasible and fractional and UB LB≥ , then go to Step 

1.  

b. Fathoming case: UB LB< , then go to Step 4. 

Step 4. Backtrack to the parent node of the branch and bound tree. Try the 

alternate branch, go to step 0. If the alternate branch is previously visited 

then backtrack to the grand parent node, so on, until finding an unvisited 

route or reaching the root node. If the current node is the root node and both 

child nodes are visited then the solution giving UB, i.e., the best upper 

bound is the optimal solution.  
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Branching Strategy 2 

This strategy is also based on the optimal LPR solution; however in place of 

two there are three branches at each node. Stepwise procedure is provided below. 

Step 0. Solve the LPR problem at the root node. Use LP based heuristic 

algorithm to find an initial feasible solution. Let upper bound be the total 

completion time of the solution and *B  be its total cost value.  

Step 1. Find the activity that has the variable with the most fractional value. 

Considering 1ij

j

X
∀

=∑  and Property 8 of the optimal LPR solution, the 

most fractional and least fractional variables in the problem correspond to 

the same activity. Let Min

ijX  and Max

ijX  be least and most fractional variables 

respectively.  

Step 2. There are three branches.  

First Branch: 1Min

ijX =  and 0Max

ijX = .  

Second Branch: 0Min

ijX =  and 1Max

ijX = .  

Third Branch: Both variables are set to be zero: 0Min

ijX =  and 0Max

ijX = .  

 

The following figure illustrates the branching scheme. 
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Figure 3-19 - Branching Strategy 2 

 

 

If an activity has only two modes, then there are two branches.  
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The same routing strategies that are defined for branching strategy 1 can be 

used to find the route. 

Step 3. Solve the LPR problem. There are three alternative cases. If none of 

the conditions stated in the cases are satisfied then go to Step 1.  

Case i. LP is infeasible, then go to Step 4.  

Case ii. All variables in the optimum LPR solution are integer, the solution 

is optimal for the associated node. If UB LB>  (LB is the total completion 

time of the optimal LPR solution) then let UB LB= . Go to Step 4. 

Case iii. There are two sub-cases. 

a. LPR is feasible and fractional and  UB LB≥ , then go to Step 

1.  

b. Fathoming Case: UB LB< , then go to Step 4.  

Step 4. Backtrack to the parent node of the branch and bound tree. Try the 

alternate branch, go to step 0. If the alternate branch is previously visited 

then backtrack to the grand parent node, and so on until finding an unvisited 

route or reaching the initial node. If the current node is the root node and all 

three child nodes are visited then the solution giving UB, i.e., UB the best 

upper bound is the optimal solution. 

 

An illustrative example for both strategies is provided below. The 

associated information is given in Table 3-6. Applying the procedures described 

above in the LPR solution at the root node, there are the fractional variables shown 

in Table 3-9. 

 

 

Table 3-9 – The Variables That Take Fractional Values in LPR Solution 

Variable Index (i-j) Value 
17-0 0.48 
17-7 0.51 
18-0 0.36 
18-8 0.63 
20-0 0.71 
20-8 0.29 
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Branching strategy 1: The index of the variable with the highest fractional 

value is 20-0. If routing strategy 1 is applied to find the route then
20,0X 1= . 

If routing strategy 2 is applied then again 20,0X 1= ; because when both 

14 ,0X 0=  and 14 ,0X 1=  are feasible, but when 14,0X 0=  then the lower 

bound will be worse.  

Branching strategy 2: All three branches 20,0X 1= ; 20,8X 1= ; 20 ,0X 0=  and 

20 ,8X 0=  lead to feasible solutions. The lower bounds of these three 

branches are compared, and the route having the smallest lower bound is 

selected. The lower bounds are provided on the below tree. Accordingly 

when 20,0X 1=  then the lower bound is the lowest, hence it is the selected 

route. 
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Figure 3-20 - A Part of Branch and Bound Tree for the Sample Project 

 

 

3.3.4.2 Approximation Algorithm 

We propose three heuristic procedures to find feasible approximate 

solutions to our problem. The first heuristic is LP based, runs in polynomial time 

and is used as an initial feasible solution in our branch and bound algorithm. The 

second heuristic is branch and bound based, runs in polynomial time and is 

proposed with the hope of obtaining high quality, fast solutions. The third heuristic 
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is also branch and bound based, runs in exponential time and proposed with the 

hope of obtaining near optimal solutions. 

 

LP Based Heuristic Algorithm 

Our heuristic procedure to find an upper bound proceeds in two phases: 

construction and improvement.  

 

Construction Phase 

The construction part consists of 2 steps. 

Step 1. The problem is first solved by relaxing the integrality constraints. 

Say iLPt  denotes the processing time of activity and iLPc  is its associated 

cost in the optimal relaxed solution.  

Step 2. We decrease the cost of activity i and hence total cost of the project 

by setting activity i to the largest cost mode that is no larger than iLPc . Our 

aim is to increase the completion time as small as possible by small 

increments. (From Property 14 we know that decreasing the cost of any 

activity does not violate feasibility.) 

 

Consider the project whose associated information is given in Table 3-6. In 

the construction phase, the following mode assignments are made and the 

associated upper bound is found as 548. In the optimal LPR solution, variables 

associated with activity 17, 18 and 20 take fractional values as seen in Table 3-9.  

 

For activity 17, 17 LPc 588.35=  and the mode with maximum cost that is not 

larger than 588.35  is mode 5, hence we set 
17 ,5X 1= . 

For activity 18, 18 LPc 1100.46= , and the mode with minimum duration that 

is not larger than 1100.46  is mode 6, hence we set 18 ,6X 1= . 

For activity 20, 20 LPc 487.19= , and the mode with minimum duration that 

is not larger than 487.19  is mode 4, hence we set 20,4X 1= . 
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The solution with the above assignments becomes feasible for the original 

problem, and the objective function value is the upper bound for the total 

completion time of the project.  

Improvement Phase: 

The solution found by the construction phase is improved using two 

procedures in sequel. 

 

First Improvement 

The construction heuristic can be improved by decreasing the durations of 

some activities. Such decreases are possible, as in construction phase we increase 

the costs that would give room to some decreases. For each critical activity we 

check whether it can be moved to its next smaller duration mode without violating 

feasibility. Among the activities that would lead to feasible decreases, we select the 

one that causes maximum reduction in total completion time. We terminate the first 

improvement whenever any further increase in durations leads to an infeasible 

solution.  

For the sample project, activity 8 and activity 18 can be moved to their next 

smaller duration mode without violating the feasibility. Activity 8 is assigned to 

mode 1. When it is assigned to mode 2, total completion time of the project is 

decreased to 544. On the other hand when activity 18 is assigned to mode 7, instead 

of mode 6 then the total completion time is 540. Since movement of activity 18 

causes the maximum reduction, we select to move activity 18.  

 

We terminate the first improvement step, as any further increase in 

durations leads to an infeasible solution.  

 

Second Improvement 

The first improved solution is further improved by pairwise interchanges. 

For all pairs on the same path, we check whether increasing one activity duration 

while decreasing the other one reduces the total completion time without violating 

the feasibility. Among the pairs that qualify, we select the interchange that 
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decreases the completion time most. We terminate whenever all interchanges are 

either infeasible or cannot lead to a reduction in completion time.  

 

Branch and Bound Based Approximation Algorithm I 

In this section, we apply our branch and bound algorithm using branching 

strategy1, but with no backtracking. We terminate whenever we find all integer 

solutions, no feasible solution, or no promising solutions (lower bounds are no 

smaller than the best known upper bound). For the sake of completeness Step 0 and 

Step 1 are restated below, although they are the same as in optimization algorithm. 

In step 2, routing strategy 2 defined in the previous section is used.  

 

Step 0. Solve the LPR problem at the root node. Use LP based heuristic 

algorithm to find an initial feasible solution. Let upper bound be the total 

completion time of the solution and *B  be its total cost value. Recall from 

Property 8 that LPR solution has at most two fractional variables for each 

activity. 

Step 1. The variable with the highest fractional value is chosen. Say ijX  is 

the most fractional variable.  

Step 2. There are two branches associated with the selected variable. These 

branches are 1ijX =  and 0ijX =  as shown in the following figure.  

 

 

Xij=1 Xij=0

 

Figure 3-21 - Branching Strategy 1 

 

 



 

 

 

 

82 

Lower bound is used to find the route. LPR is solved for both branches. If 

both routes are feasible then the one with the smaller lower bound is 

followed. If both are infeasible then go to Step 3.  

Step 3. Solve the LPR problem. There are three cases.  

Case i. LP is infeasible, then stop. The solution giving the best upper bound 

is the solution of approximation algorithm. 

Case ii. All variables in the optimal LPR solution are integer, the solution is 

optimal for the associated node. If UB LB≥  (LB is the total completion 

time found in optimal LPR solution) then let UB LB= . Then stop. The 

solution giving the best upper bound is the solution of approximation 

algorithm. 

Case iii. There are two cases. 

a. LPR is feasible and fractional andUB LB≥ , then go to Step 

1.  

b. UB LB< , then stop. The solution giving the best upper 

bound is the solution of approximation algorithm. 

 

In place of Branching Strategy 1, Branching Strategy 2 could also be used 

to arrive at an approximate solution.  

  

Branch and Bound Based Approximation Algorithm II 

In this section we describe another approximation algorithm that is based on 

reducing the problem size and solving the reduced problem by branch and bound. 

The variables that take integer values in the optimal LPR solution are fixed and 

then branch and bound is applied for the fractional variables. The method consists 

of 3 steps. 

Step 0. The LPR problem is solved.  

Step 1. All variables that take integer values in the optimal LPR solution are 

fixed.  

Step 2. Branch and bound algorithm is used to find the optimal values of the 

activities with continuous variables. 
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CHAPTER 4 

 

COMPUTATIONAL RESULTS 

 

 

In this chapter we design an experiment to test the performances of our 

solution algorithms together with reduction and bounding mechanisms.  We first 

present our data generation scheme and state our performance measures.  We then 

discuss the results of our preliminary experiment that are used to set the 

mechanisms of the main runs.   Finally, we present our main experiment and 

discuss its results.   

 

4.1 Data Generation 

The data we use in our experiment are basically taken from Akkan et al. 

(2005).  We use medium-sized problem instances to solve the budget problem and 

large-sized problem instances to solve the minimum deadline problem. We next 

discuss the problem parameters together with their settings.  

In the project scheduling literature, Complexity Index (CI) and Coefficient 

of Network Complexity (CNC) are used to define the network complexity.  

For an AoA representation CNC is the ratio of the number of activities to 

the number of events. Hence higher CNC results in higher number of activities.  

CI is the other measure of complexity for the networks. For an AoA 

representation it provides a measure for the network’s similarity to a series-parallel 

network, and computed as the minimum number of node duplications to convert 

the network into a series-parallel network. A higher CI either refers to higher 
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number of precedence relations or more complex precedence relations that require 

dummy nodes and/or arcs. Hence higher the CI values associate to harder to solve 

networks. For the details of the index, we refer the reader to Bein et al. (1992).  

The number of modes, im , is randomly determined from discrete uniform 

distribution. Two uniform distributions, [ ]U 2,10  and [ ]U 11,20 , are used to see 

the effect of im  on the performance of our algorithms.  

The durations and costs of the activity modes are discrete and generated as 

follows: The durations are generated from [ ]U 3,123 . Then they are sorted such 

that kt  is the kth smallest duration. The minimum cost, cm, is generated from 

U[5,15]. Then 1kc −  is set to 1( )k k k kc s t t −+ −  where 1 [ , 3]k k ks U s s− ∈ +  or 

1 [ (1, 3), ]k k ks U Max s s− ∈ −  

Three different time/cost functions are used: Concave, convex and hybrid. 

The types of time/cost functions affect the computational performance. For 

example, the linear programs are solved only for two modes per activity when the 

time cost function is concave (See Properties 3 and 10).  

 

We try four different budget values: maxb , l arg eb , averageb  and smallb . minb  and 

maxb are the minimum and maximum total cost values of all efficient solutions 

respectively. Using these values, we find l arg eb , averageb  and smallb as follows: 

max min
average

b b
b

2

+
=  

max average

l arg e

b b
b

2

+
=  

min average

small

b b
b

2

+
=  

 We consider 12 combinations with the following parameters for . 
l arg eb , 

meanb  and  
smallb . 

 

 



 

 

 

 

85 

Table 4-1 – The Budget Problem Parameters 

CI CNC Cost 
Function 

Number 
of 

activities 

Number of 
modes/activity 

0 2 Concave [29,30] [1,10] 
0 2 Convex [29,30] [1,10] 
0 2 Hybrid [29,30] [1,10] 
0 2 Concave [29,30] [11,20] 
0 2 Convex [29,30] [11,20] 
0 2 Hybrid [29,30] [11,20] 
4 2 Concave [34,35] [1,10] 
4 2 Convex [34,35] [1,10] 
4 2 Hybrid [34,35] [1,10] 
4 2 Concave [34,35] [11,20] 
4 2 Convex [34,35] [11,20] 
4 2 Hybrid [34,35] [11,20] 

  

 

We solve each 12 combination by 4 different b values. Hence we use 

12* 4 48=  combinations. For each combination we try 10 problem instances. 

Therefore 480 problems are solved. We treat the problem with maxb value as a 

minimum deadline problem, as well. 

  

For the minimum deadline problem, to see the performances of the 

algorithms on large-sized problem instances, we perform an additional experiment 

using the parameters shown in Table 4-2. 

 

 

Table 4-2 – The Parameters for the Large-Sized Instances 

CI CNC Cost 
Function 

Number 
of 

activities 

Number of 
modes/activity 

13 5 Concave 85 [1,10] 
13 5 Convex 85 [1,10] 
13 5 Hybrid 85 [1,10] 
13 5 Concave 85 [11,20] 
13 5 Convex 85 [11,20] 
13 5 Hybrid 85 [11,20] 
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For each of these 6 combinations, we solve 5 problems. We set a 

termination limit of 2 hours for all algorithms. We report the best solution found so 

far, when we stop at the termination limit. 

 

4.1 Performance Measures 

To evaluate the efficiency of our branch and bound algorithm we use the 

following performance measures.  

1. Average and maximum CPU time in seconds  

2. Average and maximum number of nodes generated 

3. Number of unsolved instances  

4. Average and maximum number of nodes generated to reach the 

optimal solution 

 

The following measures are used to evaluate the performance of our 

heuristics. 

1. Average and maximum CPU time 

2. Average and maximum percentage deviation from the optimal 

solution 

 

We evaluate the root node performances of the lower bounds by their 

percentage deviation from the optimal solution in average and maximum terms. 

  

The algorithms are coded in Microsoft C# programming language and run 

on Microsoft Windows Operating System. The optimal LP solutions are found by 

Cplex 10.1. 

 

4.2 Preliminary Experiments 

In designing a preliminary experiment, we aim to see the effects of our 

mechanisms and continue the main run with the most effective components.  
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We use 30 instances whose parameters are tabulated in Table 4-3 to test the 

performance of mode elimination rules, branching strategies and heuristic 

procedures. Moreover the effect of the LPR bound on the performance of the 

branch and bound is investigated. For each of these three combinations, we solve 

10 problem instances. 

 

 

Table 4-3 – The Properties of Instances Used in Preliminary Experiments 

Cost 
Function 

Number 
of 

activities 

Number of 
modes per 

activity 
Concave [29,30] [1,10] 
Convex [29,30] [1,10] 
Hybrid [29,30] [1,10] 

 

 

Upper Bound Selection for a Feasible Solution 

We check the performance of the LPR based heuristic procedure when used 

as an initial feasible solution in a branch and bound algorithm and in a specified 

number of branching nodes with the hope of improving the best known feasible 

solution.  

Table 4-4 gives the combinations used to test the upper bound effects. Table 

4-5 and Table 4-6 report the associated results for the average CPU times and 

number of nodes, respectively.  

 

 

Table 4-4 – The Combinations Used  for UB Settings 

 UB1 UB2 UB3 
LPR Based Procedure at the 

Root Node 
Yes Yes Yes 

Applying UB Procedure at 
First 50 Nodes 

Yes No - 

Applying UB Procedure at 
First 100Nodes 

- No Yes 
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We set the number of nodes for which the upper bound is computed to 

either 50 or 100 and see whether computing upper bounds in more nodes improves 

the performance or not. 

 

 

Table 4-5 – Average CPU Times Regarding UB Finding Procedures 

 Large Mean Small Overall 

UB1 1050.57 245.60 139.40 478.52 

UB2 1035.73 295.57 263.37 531.56 

UB3 1048.60 247.93 259.47 518.67 

 

 

Table 4-6 – Average Number of Nodes Regarding UB Finding Procedures 

 Large Mean Small Overall 

UB1 28834.43 6618.00 6749.80 14067.41 

UB2 30852.57 7963.20 6863.27 15226.34 

UB3 28782.70 6569.17 6735.90 14029.26 

 

 

.As can be observed from Table 4-5 and Table 4-6 for L arg eb b= , UB2 is 

slightly better than UB1 and UB3, however in general UB1 results in smaller CPU 

times. UB1 and UB3 result in smaller number of nodes. As we observe that 

computing upper bounds for more than 50 nodes does not count for an 

improvement, we set the limit to 100 nodes.  Otherwise we would compute upper 

bounds for more than 100 nodes and study the results. 

 

Mode Elimination Algorithm Selection 

We try six different ways of implementing our mode elimination rules. 

Mode elimination rules can be used at the root node and/or every node of the 

branch and bound tree. We consider the short and long mode elimination rules 

together and separated them from costly mode elimination rule which is 

considerably more time consuming. We tabulate the notation used for the mode 

eliminations in Table 4-7. According to the notation, MR2 corresponds to the case 

where the short and long mode elimination rules are used only at root node and no 
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other mode elimination is checked. All experiment is conducted under the same 

conditions by branching strategy 1 and routing strategy 2. We use the LPR based 

heuristic at the first 50 nodes of the branch and bound tree.  

 

 

Table 4-7 – The Notation Used for Mode Reduction Procedures 

  MR0 MR1 MR2 MR3 MR4 MR5 
Short and 

Long Mode 
Elimination 

No No Yes Yes Yes Yes Mode 
Eliminations 

at Root 
Node 

Costly 
Mode  

Elimination 
No Yes No Yes Yes Yes 

Short and 
Long Mode 
Elimination 

No No No No Yes Yes 
Mode 

Eliminations  
at 

Branching 
Nodes 

Costly 
Mode  

Elimination 
No No No No Yes No 

 

 

Table 4-8 and Table 4-9 report the average CPU times and the number of 

nodes generated for different mode elimination implementations and budget values. 

The last column of the tables gives the averages over all b values.  

 

 

Table 4-8 – Average CPU Times for Different Mode Elimination Implementations 

 Large Mean Small Overall 

MR0 1186.53 228.73 249.30 554.86 

MR1 1192.90 228.57 249.63 557.03 

MR2 1016.03 228.23 247.30 497.19 

MR3 927.17 229.13 127.80 428.03 

MR4 1050.57 245.60 139.40 478.52 

MR5 1051.23 244.67 264.77 520.22 

Overall 1070.74 234.16 213.03 505.98 
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Table 4-9 – Average Number of Nodes for Diffferent Mode Elimination Implementations 

 Large Mean Small Overall 

MR0 35131.30 6622.83 6840.83 16198.32 

MR1 35136.93 6622.83 6840.83 16200.20 

MR2 30068.93 6621.70 6811.87 14500.83 

MR3 27571.50 6621.70 6811.87 13668.36 

MR4 28834.43 6618.00 6749.80 14067.41 

MR5 28870.43 6621.70 6811.87 14101.33 

Grand Total 30935.59 6621.46 6811.18 14789.41 

 

 

As seen from the tables the best performance is due to MR3.  That is when 

all rules are used at the root node but not at any branching node, the average CPU 

time is the smallest.  Applying the mode elimination algorithms at each node of the 

branch and bound tree does not decrease the average CPU times. Though MR4 

leads to a higher number of mode eliminations than MR3; the effort spent for 

checking additional eliminations outweighs the additional savings. Thus we choose 

to apply mode elimination rules only at root node in our main runs.  

 

Selection of Branching Strategy 

We now test the effects of our branching rules on the performance of the 

branch and bound algorithm.  We test two cases:  An algorithm using Branching 

Strategy 1 (BS1) and an algorithm using Branching Strategy 2 (BS2).  Both cases 

are checked under the same conditions with mode eliminations at all nodes, upper 

bound at the first 50 nodes.   

   

The average CPU time and number of nodes results are tabulated in Table 

4-10 and Table 4-11, respectively.  

 

 

Table 4-10 – Average CPU Times Regarding Branching Strategies 

Budget Value Large Mean Small Overall 

BS1 1341.57 231.40 122.40 565.12 

BS2 1196.07 238.50 130.90 521.82 
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Table 4-11 – Average Number of Nodes Regarding Branching Strategies 

Budget Value Large Mean Small Overall 

BS1 28834.43 6618.00 6749.80 14067.41 

BS2 26571.73 4325.27 2292.03 11063.01 

 

 

As can be observed from Table 4-10, when L arg eb b= , BS2 is significantly 

slower than BS1. BS2 always results in fewer nodes than BS1, however at an 

expense of additional CPU times.  This is due to the fact that, at each node three 

LPRs are solved in BS2 while two LPRs are solved in BS1. We conduct our main 

rules by BS1 due to its better time performance.    

 

Selection of Routing Strategy 

The optimal LPR solution used to find the LB is expected to have a strong 

impact on the efficiency of branch and bound algorithm. Hence using LB to define 

the next visit is tested and this strategy is denoted as RS1. RS2 is the alternative 

routing strategy that selects the branch with value zero for the most fractional 

variable.  

We test two routing strategies for different budget values, under the same 

conditions with branching strategy 1, and upper bounds by LPR based heuristic for 

the first 50 nodes. 

 

Table 4-12 and Table 4-13 report the average CPU times and the number of 

nodes, respectively. Table 4-12 shows that RS1 runs significantly faster than RS2 

for all b values. Note from the table that the average CPU time is 12.02 seconds 

when RS2 is used, and this time is reduces to 7.58 seconds with RS1. The 

observations are in same line for the number of nodes, as can be seen from Table 

4-13. On average RS1 and RS2 produce 14067.41 and 20291.14 nodes 

respectively. There is an exception when smallb b=  which can be attributed to the 

randomness.  
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Table 4-12 – Average CPU Times for Routing Strategies 

Budget Value Large Mean Small Overall 

RS1 1050.57 245.60 139.40 478.52 

RS2 1465.13 418.27 284.57 722.66 

 

 

Table 4-13 – Average Number of Nodes for Routing Strategies 

Budget Value Large Mean Small Overall 

RS1 28834.43 6618.00 6749.80 14067.41 

RS2 45511.03 10576.13 4786.27 20291.14 

 

 

Comparison of the Minimum Deadline and the Budget Algorithms  

Recall that, the minimum deadline problem is a special case of the budget 

problem with 
maxb b= . Hence all procedures developed for the budget problem 

directly apply to the minimum deadline problem. Recognizing the special structure 

of the minimum deadline problem we derive tighter elimination mechanisms and 

treat the budget in the objective function and the project completion as a constraint. 

As the constraint, N 1 MinS T+ =  is much tighter than the constraint maxB b≤ , we 

expect higher performance from the minimum deadline problem when compared 

with the budget problem with maxB b≤ . Our preliminary tests, based on the 

following parameter combinations have verified our expectations. 

 

 

Table 4-14 – The Parameters for Preliminary Test Instances 

Cost 
Function 

Number of 
activities  

Number of 
modes/activity 

Concave [29,30] [1,10] 
Convex [29,30] [1,10] 
Hybrid [29,30] [1,10] 
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Table 4-15 and Table 4-16 compare the average CPU times and the number 

of nodes of branch and bound algorithms for the minimum deadline problem and 

the budget problem with
maxB b≤ . 

 

 

Table 4-15 – Average CPU Times for the Budget and Deadline Problems 

Model Concave Convex Hybrid Overall 

Budget 745.20 3000.60 1598.70 1781.50 

Deadline 10.30 351.30 67.30 142.97 

 

 

 

Table 4-16 – Average Number of Nodes for the Budget and Deadline Problems 

Model Concave Convex Hybrid Overall 

Budget 20020.80 82540.00 44680.30 49080.37 

Deadline 311.90 10798.60 23468.70 11526.40 

 

 

As can be observed from the above tables, the branch and bound algorithm 

designed for the minimum deadline problem produce significantly fewer nodes in 

significantly smaller CPU times. On average, the minimum deadline algorithm 

produces 11526.4 nodes in 0.02 seconds whereas the budget algorithm produces 

4080.37 nodes in 0.29 seconds. The differences in performances of two algorithms 

are more pronounced for concave and hybrid functions. After verifying our 

expectations with the experimental results, we perform our main runs for maxB b≤  

case using the algorithms designed specifically for the minimum deadline problem.  

 

4.3 Main Experiments 

In this section we first discuss the performance of the solution algorithms 

for the budget problem, and then report the results for the minimum deadline 

problem.  

 

 



 

 

 

 

94 

Performance of the Branch and Bound Algorithm 

Based on the results of our preliminary runs, we use Branching Strategy 1 

to solve the budget problem, after applying mode eliminations at only root node. 

LP based heuristic is used to find an upper bound at the root node and first 50 

branching nodes. The LP based routing strategy, RS1, is used in branch and bound.  

 

In our main experiment, we investigate the effects of the budget values, 

time/cost function types, number of activities and number of modes per activity on 

the performance of the branch and bound algorithm.  

4-17 below reports the performance measures of the branch and bound 

algorithm for l arg eb , meanb  and smallb  values.   

Recall that we terminate the execution of the branch and bound algorithm 

after 2 hours.  Each unsolved instances contribute to the total CPU time by 7200 

seconds.  The number of nodes searched till termination limit is counted in average 

and maximum number of nodes.  

 

 

Table 4-17 – The Performance Measures of Branch and Bound Algorithm for b 

Values 

 Large Mean Small Overall 
Number of Instances 120 120 120 360 
Average CPU Time 4384.16 3055.39 1254.46 2898.00 
Maximum CPU Time 7200.00 7200.00 7200.00 7200.00 
Average Number of Nodes 129359.83 85337.93 31707.23 82135.00 
Maximum Number of Nodes 258162.00 262739.00 215861.00 262739.00 
Average Number of Nodes 
till Optimality 38798.63 24423.38 13037.98 25419.99 
Maximum Number of Nodes 
till Optimality 223980.00 178425.00 174283.00 223980.00 
Number of Unsolved Instances 64 43 14 121 
Average % LB Deviation 5.29 2.88 1.14 3.10 
Maximum % LB Deviation 10.91 7.25 3.28 10.91 
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As can be observed from Table 4-17, the problem is solved significantly 

faster when smallb b= .  The high CPU times for l arg eb  and meanb  can be attributed to 

the relatively high number of unsolved instances.  Note that 64 and 43 out 120 

instances remain unsolved for l arg eb and meanb  respectively.  This number is 14 

when smallb b= . As can be observed from the table, the performances of the lower 

bound deviations at the root node are parallel with the performance of the branch 

and bound algorithm.  When the lower bound deviations are smaller, the number of 

nodes and the CPU times are lower.  Note from the table that these deviations are 

the (largest) smallest when b value is the smallest (largest) and  the best (worst) 

branch and bound algorithm performance associates to  smallest (largest) b values.  

Note that the average and maximum lower bound deviations are 3.1% and 10.91% 

respectively.  This excellent performance of the lower bounds can be attributed to 

the special property of the optimal LPR that divides each activity to at most two 

modes. 

 

We next investigate the effect of activity time/cost functions on the 

performance of the branch and bound algorithm.  Table 4-18 reports the results for 

the concave, convex and hybrid time/cost functions.  

We expect that our algorithm performs better for concave time/cost 

functions as all LP relaxations are solved for only two modes (see Property 10). 

CPU times for the instances with concave time/cost functions are solved smaller 

than those with convex time/cost functions; however note that the instances with 

hybrid time/cost functions can be solved faster than the others. The reason for the 

satisfactory behavior of the branch and bound algorithm for the hybrid functions 

can be explained by the high performance of the lower bounds.  The worst 

performance associates to the convex time/cost functions which is due to the high 

number of unsolved instances.  As can be seen from the table  % LB deviation at 

the root node is relatively small for the convex cost functions; however the optimal 

solutions could not be found quicker, as the consecutive mode assignments (see 

Property 9) cannot differentiate between two branches. 
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Table 4-18 – The Performance of the Branch and Bound Algorithm for Different Time/cost 

Functions 

Function Type Concave Convex Hybrid Overall 
Number of activities 120 120 120 360 

Average CPU Time 2246.63 4623.79 1823.59 2898.00 

Maximum CPU Time 7200.00 7200.00 7200.00 7200.00 

Average Number of Nodes 70564.40 121083.48 54757.13 82135.00 

Maximum Number of Nodes 262739 217883 238778 262739 
Average Number of Nodes till 
Optimality 28810.36 27192.71 20256.92 25419.99 
Maximum Number of Nodes 
till Optimality 223980 174283 216418 223980 

Number of Unsolved Instances 29 70 22 121 

Average % LB Deviation 4.38 2.26 2.67 3.10 

Maximum % LB Deviation 10.91 7.33 9.61 10.91 
 

 

Note that number of nodes visited till the optimal solution does not differ 

significantly between different time/cost functions. By looking at overall average 

number of nodes till optimality, we can state that our algorithm finds the optimal in 

the first one-third of the search and then visits the rest of the branch and bound tree 

to verify optimality.  

 

Table 4-19 below reports the performance of our branch and bound 

algorithm for different project sizes. In the table NAc1 and NAc2 denote instance 

sets with 29-30 and 34-35 activities respectively. M1 and M2, on the other hand, 

denote the instance sets with the number of modes having [ ]U 2,10  and [ ]U 11,20  

distributions respectively. 
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We expect that larger the size of the project, harder to solve is the problem. 

As seen from Table 4-19, all results are in the line with our expectations without 

any exception. For both NAc1 and NAc2, the CPU times and number of nodes are 

smaller for M1. As there are unsolved instances for all instance sets, maximum 

CPU time is 7200 seconds. NAc2 has higher CPU time than NAc1. Number of 

nodes is significantly smaller for M1. Similarly, NAc2 has higher number of nodes 

as there are more decisions in the problem. The number of unsolved instances also 

supports that as the size of the problem gets larger, the problem is solved harder. 

%LB deviation presented in Table 4-19 states that the performance of the LPR is 

sensitive to the number of activities, but not to the number of modes. This is due to 

the fact that the optimal LPR assigns each activity to at most two fractional modes, 

independent from the number of modes (see Property 8).  

 

Approximation Algorithms for the Budget Problem 

In this section we analyze the performances of our branch and bound based 

heuristic (branch and bound with no backtracking), construction heuristic used in 

the first phase of the LPR based heuristic and upper bound produced by LPR based 

heuristic (used in the branch and bound algorithm) results for different b values, 

time cost functions and problem sizes. Branch and bound based heuristic is denoted 

as Heuristic I hereafter.   

 

Table 4-20 reports the performance measures of the approximation 

algorithms for 
l arg eb , 

meanb  and 
smallb . The last column represents the results for all 

b values.  

Table 4-, shows that  Heuristic I runs in at most  3 seconds over all problem 

instances. The average CPU time by Heuristic I for l arg eb  combination (1.32 

seconds), is the largest when compared with other b values, however the 

differences are not significant.  The deviations by Heuristic I is smallest for smallb , 

this is due to the better performance of the LPR based lower bounds for small b.  

The average deviation over all b values is 0.23 % and the maximum deviation is 

2.84%.  Hence Heuristic I should be favored if near optimal solutions are required 

in reasonable time.  
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Table 4-20 – The Performances of the Approximation Algorithms for  different          

b-Values 

b Value Large Mean Small Overall 
Number of Instances 120 120 120 360 
Average CPU Time of Heuristic I  1.32 1.08 0.91 1.10 
Maximum CPU Time of Heuristic I  3.00 2.00 2.00 3.00 
Average % Deviation of Heuristic I 0.39 0.19 0.09 0.23 
Maximum % Deviation of Heuristic I 2.84 1.30 1.23 2.84 
Average % Deviation of Construction 12.76 5.80 2.48 7.02 
Maximum % Deviation of Construction 33.20 16.93 13.70 33.20 
Average % Deviation of LPR Heuristic  1.43 0.75 0.42 0.87 
Maximum % Deviation of LPR Heuristic 7.84 4.63 2.38 7.84 

 

 

As seen in Table 4-20 the largest % deviations of the construction type 

heuristic are observed for 
l arg eb . On the other hand the smallest % deviation is due 

to 
smallb . This is due to the fact that for 

smallb b= , the feasible region gets smaller. 

Table 4-20 shows that for all b values the construction heuristic is improved 

significantly in the improvement phase and the maximum deviation is reduced 

from 33.20% to 7.84%. The maximum % deviation is due to the 
l arg eb  case, which 

also the largest average  % deviation. 
smallb  has the smallest % deviation. 0.87% 

overall deviation from the optimal shows that branch and bound starts with an 

initial feasible solution which is very close to optimal. The CPU times of the 

construction and improvement phases were negligible, hence are not reported. 

 

We next analyze the performance of the approximation algorithms for  

concave, convex and hybrid time/cost functions and report the results in Table 

4-21. 

We observe from Table 4-21 that the CPU times of heuristic I for different 

cost functions are close. The maximum CPU time which is due to the convex 

function differs from the minimum average CPU time which is due to the concave 

function, by only 0.20 seconds.  The minimum average % deviation of heuristic 1 

is 0.14% and is due to the convex functions. This contradicts with our expectations 

that convex time/cost functions are the hardest to solve ones. The explanation may 
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be the following: For convex cost functions there are 70 unsolved instances, while 

for the others this number is less than 30. For the unsolved instances, in place of 

optimal solutions, we use the solution returned by the branch and bound at the 

limit. Hence the deviations for those instances are underestimates of the exact 

deviations.  

The solution found in the construction phase deviates from the optimal 

solution about 7% on average, however the maximum deviations are not 

satisfactory (between 25% and 34%).  After the improvement phase, for all 

time/cost functions the average deviations are reduced to 0.87%.   

 

 

Table 4-21- Performance of Approximation Algorithms for Different Time/Cost Functions 

Function  Concave Convex Hybrid Overall 
Number of Instances 120 120 120 360 
Average CPU Time of Heuristic I  1.02 1.22 1.07 1.10 
Maximum CPU Time of Heuristic I  2.00 3.00 2.00 3.00 

Average % Deviation of Heuristic I 0.29 0.14 0.24 0.23 
Maximum % Deviation of Heuristic I 2.84 2.47 2.06 2.84 
Average % Deviation of Construction 7.23 7.19 6.63 7.02 

Maximum % Deviation of Construction 30.41 33.20 25.40 33.20 
Average % Deviation of LPR Heuristic  1.17 0.60 0.82 0.87 
Maximum % Deviation of LPR Heuristic 7.84 4.32 4.40 7.84 

 

 

 

Finally, we investigate the effect of problem size parameters, i.e., number of 

activities and number of modes, on the performances of the approximation 

algorithms.  Recall that, the CPU times by the branch and bound algorithm increase 

significantly with an increase in the problem size.  However, we do not expect a 

pronounced effect of the problem size on the CPU times of the approximation 

algorithms.  This is because, the approximation algorithms solve only few LPRs 

and the LPs run in polynomial time. The results in Table 4-22 support our 

expectations. The difference between two problem sizes is less than one second.  % 

deviation of heuristic 1 is less than 1% for all problem sizes and we do not observe 

any surprising result for the average deviations.  The deviations for the construction 
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phase are very small for small size instances. As can be seen from Table 4-22 , M1 

and NAc1 consistently produce better quality solutions than M2 and NAc2 

respectively.  The performances of the improvement phase solutions deteriorate 

with an increase in the problem size, but not with the number of modes. 
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Optimal Solution Algorithms for the Minimum Deadline Problem 

Based on the results of our preliminary experiments, we perform Branching 

Strategy 1 and LP based routing strategy, RS1, in branch and bound algorithm for 

the minimum deadline problem.  We use mode eliminations only at the root node. 

The LP based heuristic is used to find upper bounds at the root node and the first 50 

branching nodes.  

We observe that the performances of the minimum deadline problem are in 

line with those of the budget problem in most cases. The performance of the branch 

and bound algorithm for different time/cost functions and problem sizes are 

reported below.  

Table 4-23 reports the performance of our branch and bound algorithm for 

concave, convex and hybrid time/cost functions.  

 

 

Table 4-23 – The Performance of the Branch and Bound Algorithm for Different Time/cost 

Functions 

Function Type Concave Convex Hybrid Overall 
Number of Instances 40 40 40 120 
Average CPU Time 225.80 1046.43 384.20 552.14 
Maximum CPU Time 7200.00 7200.00 7200.00 7200.00 
Average Number of Nodes 7181.70 31825.70 12240.10 17082.50 
Maximum Number of Nodes 229726.00 230126.00 237107.00 237107.00 
Average  Node Number 
till  Optimality  1802.50 6292.65 1019.75 3038.30 
Maximum  Node Number 
till  Optimality 54871.00 89583.00 15672.00 89583.00 
Average % LB Deviation 0.98 1.75 1.10 1.28 
Maximum % LB Deviation 6.48 7.94 4.72 7.94 
Number of Unsolved Instances 1 4 1 6 

 

 

As can be observed from Table 4-23, the CPU times are smallest for the 

instances with concave time/cost functions. This is because, for concave functions, 

the LPRs are solved more efficiently with two modes for each activity.  Note that 

the number of nodes generated by the convex and concave functions are close,  but 
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convex functions have significantly higher CPU times, as the time spent by the LPs 

at the nodes are much higher.  The lower bound performance of the hybrid function 

is better than that of the convex function, with respective deviations of 1.1% and 

1.75%.  This difference in the lower bound performances at the root node justifies 

the better performance of the branch and bound algorithm for the hybrid functions 

over the convex functions.  

Number of nodes visited until reaching the optimal is the highest for convex 

cost functions which is in line with our expectations.  On average over all problem 

instances, the % LB deviations are below 1.3% and the maximum deviation is 8%.  

Small % LB deviations imply that we start the branch and bound algorithm with an 

LPR solution that is very close to the optimal solution. As we use LPR to find the 

branches to be visited, we reach the optimal solution at early nodes of the branch 

and bound tree.  As can be observed from the table, on average, 17082.50 nodes are 

generated and the optimal solutions are found after generating 3038.30 nodes, i.e., 

about 80% of the effort is spent for proving the optimality of the solutions.  We can 

conclude that truncated branch and bound algorithms that terminate at specified 

limits, are very likely to produce high quality solutions. 

 

We next investigate the effects of the problem size parameters, i.e., the 

number of activities and number of modes, on the performance of the branch and 

bound algorithm. Since we observe that performance of the branch and bound 

algorithm is not affected from the interaction of these two parameters, we present 

the tables separately.  In the tables, we use the following notation. 

 

 

Table 4-24 - Notation Used for Number of Activities 

 Number of 
Activities 

NAc1 85 
NAc2 102 
NAc3 111/119 
NAc4 128/135 
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Table 4-25 reports the performance of branch and bound for different 

number of activities.  

We observe from the Table 4-25 that the CPU times are significantly high 

for NAc2, which is mainly caused by the high number of unsolved instances.  

However high number of unsolved instances for NAc2 cannot be explained by the 

number of activities but can be attributed to random effects. One can expect that 

the CPU times increase as the number of activities increases. However we cannot 

observe this in Table 4-25.  The reason for this might be the reductions made by the 

mode elimination rules. As the problem size increases, more modes are eliminated 

by our mode elimination algorithms. Table 4-26 reports the average mode 

eliminations.  

 

 

Table 4-25 – The Performance of the Branch and Bound Algorithm for Different Number of 

Activities 

Instance Size NAc1 NAc2 NAc3 NAc4 Overall 

Number of Instances 30 30 30 30 120 

Average CPU Time 188.17 1427.10 311.67 281.63 552.14 

Maximum CPU Time 4724.00 7200.00 7200.00 7200.00 7200.00 

Average Number of Nodes 5896.67 43874.07 10111.77 8447.50 17082.50 

Maximum Number of Nodes 148392.00 230126.00 237107.00 214310.00 237107.00 

Average  Node Number 
till  Optimality  2774.07 7965.00 745.00 669.13 3038.30 

Maximum  Node Number 
till  Optimality 71658.00 89583.00 7697.00 15672.00 89583.00 

Average % LB Deviation 1.06 1.85 1.18 1.02 1.28 

Maximum % LB Deviation 3.89 7.94 5.52 3.00 7.94 

Number of Unsolved Instances  0 4 1 1 6 

 

 

Table 4-26 – The Number of Modes Eliminated for Changing Number of Activities 

 NAc1 NAc2 NAc3 Nac4 Overall 
Number of Modes 
Eliminated 684.07 798.03 990.43 1143.33 903.97 
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We observe that more modes are eliminated for the instances with large 

number of activities.    

 

Table 4-27 reports that the number of nodes visited till finding the optimal 

solution does not follow a clear pattern. %LB deviations are the highest for NAc2 

and smallest for NAc4.  The satisfactory performance of the lower bounds leads to 

the small CPU time and number of nodes for NAc4. 

  

Table 4-27 reports the performance of the branch and bound algorithm for 

the minimum deadline problem for two sets of the number of modes/activity. As 

stated in the previous section, M1 and M2 consist of the instances with the number 

of modes that follow discrete [ ]U 2,10  and [ ]U 11,20  distributions respectively. 

We observe from Table 4-27 that the CPU times and the number of nodes 

are higher when there are more modes for each activity. This result is in line with 

our expectations.  As can be seen from Table 4-28 , high number of mode 

eliminations cannot outperform the increasing effect of the number of modes.  

 

 

Table 4-27 - Performance of the  Branch and Bound  Algorithm for Changing Number of 

Modes 

 M1 M2 Overall 

Number of Instances 60 60 120 

Average CPU Time 493.35 610.93 552.14 

Maximum CPU Time 7200.00 7200.00 7200.00 

Average Number of Nodes 15024.50 19140.50 17082.50 

Maximum Number of Nodes 229726.00 237107.00 237107.00 

Average  Node Number  till  Optimality  3557.60 2519.00 3038.30 

Maximum  Node Number  till  Optimality 89583.00 71658.00 89583.00 

Average % LB Deviation 1.99 0.56 1.28 

Maximum % LB Deviation 7.94 3.34 7.94 

Number of Unsolved Instances 2 4 6 

 

 

Table 4-28 – The Number of Modes Eliminated for Changing Number of Modes 

 M1 M2 Overall 

Number of Modes Eliminated 433.75 1374.18 903.97 
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The average number of nodes visited until finding the optimal solution is 

smaller for M2, due to its lower %LB deviation. %LB deviation is less than 3.34% 

for M2, while it is less than 7.94% for M1.   

 

Approximation Algorithms for the Minimum Deadline Problem 

We now investigate the performances of our LPR based initial feasible 

solution algorithm (both the construction phase and the improvement phase) and 

the branch and bound based approximation algorithm.  The performances of the 

algorithms are reported for different activity time/cost functions and varying 

problem sizes.  Table 4-29 reports the performance of the approximation 

algorithms for instances with concave, convex and hybrid time/cost functions.  

 

Table 4-29 shows that heuristic 1 runs in 0.81 seconds on average and 6 

seconds at worst.  The resulting % deviations for all function types are consistently 

very low.  The average and maximum deviations over all 120 instances are 0.31% 

and 2.5% respectively.  

 

 

Table 4-29 – The Performance of Approximation Algorithms for DifferentTime/cost 

Functions 

Function Type Concave Convex Hybrid Overall
Number of Instances 40 40 40 120
Average CPU Time for Heuristic 1 0.58 1.10 0.75 0.81
Maximum CPU Time for Heuristic 1 3.00 6.00 4.00 6.00
Average % Deviation of Heuristic I 0.22 0.38 0.33 0.31
Maximum % Deviation of Heuristic I 2.00 1.96 2.50 2.50
Average % Deviation of Construction 0.89 1.23 0.91 1.01
Maximum % Deviation of Construction 5.85 8.10 4.76 8.10
Average % Deviation of LPR Heuristic 0.68 1.03 0.85 0.85
Maximum % Deviation of LPR 
Heuristic 5.82 7.03 3.48 7.03

 

 

We did not report on the CPU times of the LPR based heuristics, as they 

were negligibly small.  We find that the average % deviation of the construction 

phase of the LPR based heuristics is 1.01%.  In the improvement phase the average 
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deviation is reduced to 0.85%.  No significant effect of the time/cost functions is 

observed.  

 

We now study the effect of the number of activities on the performance of 

the algorithms and report the results in Table 4-30.  We use the notation stated in 

Table 4-24. 

 

 

Table 4-30 – The Performances of the Approximation Algorithms for Different Number of 

Activities 

 NAc1 NAc2 NAc3 Nac4Overall
Number of Instances 30 30 30 30 120
Average CPU Time for Heuristic 1 00.40 01.47 00.77 00.60 00.81
Maximum CPU Time for Heuristic 1 01.00 06.00 04.00 03.00 06.00
Average % Deviation of Heuristic I 0.30 0.37 0.29 0.27 0.31
Maximum % Deviation of Heuristic I 2.00 1.96 1.32 2.50 2.50
Average % Deviation of Construction 0.94 1.33 0.94 0.84 1.01
Maximum % Deviation of Construction 5.82 7.03 6.01 3.86 7.03
Average % Deviation of LPR Heuristic 0.93 1.21 0.70 0.57 0.85
Maximum % Deviation of LPR Heuristic 5.85 8.10 3.09 3.48 8.10
 

 

We observe from Table 4-30 that the CPU times and the deviations for all 

algorithms do not follow a pattern as the number of activities increases.  For 

example NAc2 has the largest CPU time for Heuristic 1 and the largest deviations 

for the other algorithms.  

 

Finally, we analyze the effects of the number of modes on the performance 

of the approximation algorithms  and report the results in Table 4-30.  

Table 4-30 shows that Heuristic 1 and the LPR based heuristic produce high 

quality solutions with an average overall deviation of 0.31 % and 1.01% 

respectively. The deviations are consistently small as can be verified from the low 

maximum overall deviations of 2.5% and 1.43%.   As all deviations are very small, 

we could not observe any significant effect of the number of the modes on the 

performance of the algorithms.     
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Table 4-31 – The Performance of  the Approximation Algorithms for Different Number of 

Modes 

Data M1 M2 Overall

Number of Instances 60 60 120

Average CPU Time for Heuristic 1 00.80 00.82 00.81

Maximum CPU Time for Heuristic 1 06.00 06.00 06.00

Average % Deviation of Heuristic I 0.52 0.10 0.31

Maximum % Deviation of Heuristic I 2.50 0.84 2.50

Average % Deviation of Construction 7.03 1.54 7.03

Maximum % Deviation of Construction 8.10 1.26 8.10

Average % Deviation of LPR Heuristic 1.67 0.35 1.01

Maximum % Deviation of LPR Heuristic 1.43 0.28 1.43
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

 

The Discrete Time/Cost Trade-off (DTCT) problem is an important 

research area in project management, particularly in view of the current emphasis 

on time-based competition (De et al., 1995).  Of its obvious practical importance, 

the DTCT problems have attracted the attention of many researchers since early 

sixties.   

In the project management literature, the DTCT problems are studied under 

two main categories: the deadline problem and the budget problem.  Both problems 

are shown to be strongly NP-hard.  The successive solutions of these problems are 

used to construct the time/cost trade-off curve.    

Several procedures have been proposed for the deadline problem including 

bounding approaches and optimization procedures.  However, despite its obvious 

practical importance, only little effort has been spent on the budget problem and to 

the best of our knowledge,  there are two reported solution approaches which are 

based on dynamic programming.   The dynamic programming approach is limited 

to solve only small sized problem instances. Hence more efficient optimization and 

approximation algorithms are needed.  Recognizing this fact, we propose a branch 

and bound algorithm to solve moderate sized problem instances optimally and 

linear programming relaxation based heuristic procedures to solve large sized 

problem instances approximately.  Our heuristic approaches run in polynomial 

time. 
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Our preliminary experiments to detect the effects of our reduction 

mechanisms and bounding approaches have revealed that the mode elimination 

mechanisms are very effective in reducing the problem size.  The reduced problems 

can be efficiently solved by our branch and bound algorithm using the linear 

programming relaxation based lower bounds.  We observe that in the absence of 

the linear programming relaxation based lower bounds, even the small sized 

problem instances could hardly be solved in reasonable times.  The upper bounds, 

when applied to all nodes are not found to be effective.  The effort spent to 

compute them outweighed the amount gained due to the additional node 

eliminations.  Hence we used upper bounds only at a specified number of nodes (50 

nodes), to find an initial feasible solution.  Moreover the initial feasible solutions 

are found to be very close to the optimal solutions and this makes the frequent 

updates worthless. 

Employing the results of our initial experiments, we perform an extensive 

computational study using large sized problem instances.  Our aim is to detect the 

effects of the design parameters on the difficulty of the solutions.  We found that 

the  the number of activities, the number of modes and the project budget have 

strong influences on the problem difficulty.  Moreover the types of the time/cost 

function used, are also effective such that the easiest problems associate to the 

concave functions as the associated linear programs are solved considering only 

two extreme modes for each activity. 

The heuristics are found very effective, they produce close-to-optimal 

solutions in very small solution times.  We suggest to use heuristic procedures in 

place of optimal solutions when the guarantee of optimality is not very essential. 

We hope our study contributes to the current state of the art in discrete 

time/cost trade-off scheduling and our promising results stimulate opening new 

research areas.  Two noteworthy extensions of our budget problem may be deriving 

more powerful mode elimination rules hopefully not based on the bounds, but exact 

values and investigating worst case complexity of our linear programming 

relaxation based upper bounds.  Such a complexity result may be based on the 

maximum possible gap between the upper bound and the linear programming 

relaxation based lower bound. 
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In constructing the time/cost trade-off curve, the previous studies solve the 

deadline problem for all possible realizations of the project completion time.  Our 

time/cost trade-off curve construction method is based on the successive solutions 

of the budget problem. Future research may consider some efficient ways of 

implementing our construction method.  One alternative implementation might be 

to benefit from the optimal solution of the budget problem  for a total cost value of 

b while solving the budget problem with a total cost value of b-1.   

Our discrete time/cost trade-off problem assumes that there are no 

constraints imposed on the availability of the resources.  When there are resources 

of limited quantity, the activities requiring the same resource (which is available 

for one unit at a time) cannot be processed simultaneously, shorter modes for some 

activities should be selected and/or the activity start times should be delayed to 

maintain resource feasibility.  The modification of our procedures so as to include 

resource leveling and/or allocation decisions may fill another gap in the project 

management literature.   
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