

De LAM

THE BUDGET CONSTRAINED DISCRETE TIME/COST TRADE-OFF
PROBLEM IN PROJECT NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜVENÇ DEĞĐRMENCĐ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

AUGUST 2008

Approval of the thesis:

THE BUDGET CONSTRAINED DISCRETE TIME/COST TRADE-OFF
PROBLEM IN PROJECT NETWORKS

submitted by GÜVENÇ DEĞĐRMENCĐ in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ömer Kırca
Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu
Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan
Agricultural and Biological Engineering Dept.,
University of Florida, USA

Assoc. Prof. Dr. Yasemin Serin
Industrial Engineering Dept. METU

Assist. Prof. Dr. Đsmail Serdar Bakal
Industrial Engineering Dept., METU

Date: August 6, 2008

iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I have
fully cited and referenced all material and results that are not original to this
work.

 Name, Last name: Güvenç Değirmenci
Signature :

iv

ABSTRACT

THE BUDGET CONSTRAINED DISCRETE TIME/COST
TRADE-OFF PROBLEM IN PROJECT NETWORKS

Değirmenci, Güvenç

M.S., Department of Industrial Engineering

Supervisor: Prof. Meral Azizoğlu

August 2008, 115 pages

The time/cost trade-off models in project management aim to compress the

project completion time by accelerating the activity durations at an expense of

additional resources.

The budget problem in discrete time/cost trade-off scheduling selects the

time/cost mode -among the discrete set of specified modes- for each activity so as

to minimize the project completion time without exceeding the available budget.

There may be alternative modes that solve the budget problem optimally, however

each solution may have a different total cost value.

In this study we aim to find the minimum cost solution among the optimal

solutions of the budget problem. We analyze the structure of the problem together

with its linear programming relaxation and derive some mechanisms for reducing

the problem size. We solve the reduced problem by linear programming relaxation

and branch and bound based approximation and optimization algorithms. We find

that our branch and bound algorithm finds optimal solutions for medium-sized

problem instances in reasonable times and the approximation algorithms produce

v

high quality solutions. We also discuss the way our algorithms could be used to

construct the time/cost trade-off curve.

Keywords: Project Management, Time/Cost Trade-off, Budget Problem,

Minimum Deadline Problem, Branch and Bound Method

vi

ÖZ

PROJE AĞLARINDA BÜTÇE KISITLI KESĐKLĐ
ZAMAN/MALĐYET ÖDÜNLEŞĐM PROBLEMĐ

Değirmenci, Güvenç

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Meral Azizoğlu

Ağustos 2008, 115 sayfa

Proje yönetiminde zaman/maliyet ödünleşim problemi bazı aktivitelerin

tamamlanma sürelerini azaltarak proje tamamlanma süresini azaltmayı amaçlar.

Proje tamamlanma süresinin azalması aktivitelere ek kaynak aktarılarak mümkün

olur.

Kesikli zaman maliyet ödünleşimi kapsamında bütçe problemi, projeye

ayrılan toplam bütçe sınırını aşmadan, her bir aktivite için proje tamamlanma

süresini en aza indirebilecek zaman/maliyet alternatifi seçer. Bütçe probleminin

birden fazla optimal çözümü olabilir, ancak her optimal çözümde projenin toplam

maliyeti farklıdır.

Bu çalışmada proje toplam maliyeti en az olan optimal bütçe problemi

çözümleri üzerine çalıştık. Problemin yapısını analiz ederek, problemin boyutlarını

küçültebilecek algoritmalar geliştirdik. Doğrusallık kısıtı kaldırılarak ve dal sınır

yöntemi kullanılarak küçülen problemleri çözdük. Geliştirdiğimiz dal sınır

yönteminin orta büyüklükteki problemleri kabul edilebilir zamanlarda

çözebildiğini, yaklaşım algoritmalarının ise optimale yakın sonuçları bulabildiğini

vii

gözlemledik. Ayrıca algoritmalarımızın zaman/maliyet ödünleşim eğrilerinin

oluşturulmasında kullanılabileceğini tartıştık.

Anahtar Kelimeler: Proje Yönetimi, Zaman/Maliyet Ödünleşimi, Bütçe

Problemi, En az Zaman Sınırı Problemi, Dal Sınır Yöntemi

viii

To My Mother and Grandmother

ix

ACKNOWLEDGMENTS

In this thesis I’ve worked with a great number of people whose contribution

to me is inevitable to mention. It is a pleasure for me to express my thanks to them

all in my acknowledgement.

First and foremost, I would like to express thanks to Meral Azizoğlu.

Besides her precious supervision on my thesis, she is a role model for me as an

academician with her way of thinking and discipline. She is more than a thesis

advisor for me who provided an insightful view of my life and with her thoughts,

advices she has an impact as much as those of my family members.

I gratefully acknowledge Melih Celik whose contributions to the entire

work cannot be underestimated. In the long working hours he really encouraged me

to manage the burden of my responsibilities in professional life with his

willingness to help. He also deserves my appreciation together with Nihan Gormez

Karahan and Ibrahim Karahan for shaping up my research with their fruitful

opinions. Many thanks go to Sirin Ozturk and Aras Barutcuoğlu for their

sympathy. I also thank Balkar Erdoğan for his commendable teaching on C# and

his great friendship.

I gratefully thank Omer Kirca, Sencer Yeralan, Yasemin Serin and Ismail

Serdar Bakal for their constructive comments on this thesis. I am very grateful that

they accepted to be the members of the examining committee.

I would like to thank specially to Sara Başkentli for her persistent

confidence on me. I am extraordinary fortunate for having her love and great

support.

My parents deserve special mention for their everlasting support and

prayers. My mother, Aysel Değirmenci, felt all my distress and without being tired

she encouraged me to relieve my stress. Feeling the prayers of my grandmother,

x

Müşerref Soner, help me to become more patient. It is very valuable to know that

my brother Evren Değirmenci aids whenever I call for.

Finally I would like to show gratitude everybody who was important to the

successful realization of the thesis, as well as expressing my apology that I could

not mention personally one by one.

xi

TABLE OF CONTENTS

ABSTRACT... iv
ÖZ.. vi
ACKNOWLEDGMENTS ... viii
TABLE OF CONTENTS... xi
LIST OF TABLES.. xii
LIST OF FIGURES ... xiv
CHAPTERS
1. INTRODUCTION .. 1
2. PROBLEM DEFINITION AND LITERATURE REVIEW... 5

2.1 Project in General ... 5
2.2 Project Scheduling Problems .. 9
2.3 Formulations for the Discrete Time/Cost Trade-off Problems ... 15

2.3.1 The Deadline Problem.. 17
2.3.2 The Budget Problem... 17
2.3.3 The Time/Cost Trade-off Curve Problem .. 17

2.4 Literature Review on the Time/Cost Trade-off Problems... 18
2.4.1 The Deadline Problem.. 18
2.4.2 The Budget Problem... 22

3. THE BUDGET PROBLEM.. 23
3.1 The Modified Budget Problem ... 23

3.1.1 Generating All Efficient Solutions, i.e., Solving The Time/Cost Trade-off
Problem .. 29

3.1.2 Finding Extreme Efficient Solutions .. 33
3.2 A Special Case – The Minimum Deadline Problem ... 36

3.2.1 Mode Fixing Rule... 36
3.2.2 Mode Elimination Rules... 38
3.2.3 The Optimal Linear Programming Relaxation Solution and Its Properties 45
3.2.4 Procedures for Finding Lower Bound .. 51
3.2.5 Solution Algorithms ... 52

3.3 General Modified Budget Problem... 63
3.3.1 Mode Elimination Rules... 63
3.3.2 The Optimal Linear Programming Relaxation Solution and Its Properties 68
3.3.3 Procedures for Finding Lower Bound .. 72
3.3.4 Solution Algorithms ... 74

4. COMPUTATIONAL RESULTS.. 83
4.1 Performance Measures.. 86
4.2 Preliminary Experiments .. 86
4.3 Main Experiments... 93

5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS .. 110
REFERENCES ... 113

xii

LIST OF TABLES

TABLES
Table 2-1- The Precedence Relations of a Sample Project ... 7
Table 2-2 – The Precedence Relations and the Durations of a Sample Project 12
Table 2-3 - The CPM Calculations for the Sample Project... 13
Table 2-4 - A Sample Project Illustrating Time/cost Trade-off .. 15
Table 3-1 – The Mode Assignments of Each Efficient Solution... 32
Table 3-2 –The Earliest and The Latest Completion Times ... 40
Table 3-3 - The Earliest Start and Latest Completion Times.. 42
Table 3-4 – The Interactions between The Mode Elimination Rules.. 45
Table 3-5 - The Precedence Relations for the Example .. 52
Table 3-6 – A Sample Project to Illustrate Branching Strategies.. 57
Table 3-7 – The Variables at Fractional Values in the Optimal LPR Solution 58
Table 3-8 – The Interactions between Mode Elimination Rules ... 68
Table 3-9 – The Variables That Take Fractional Values in LPR Solution.. 77
Table 4-1 – The Budget Problem Parameters ... 85
Table 4-2 – The Parameters for theLarge-Sized Instances.. 85
Table 4-3 – The Properties of Instances Used in Preliminary Experiments...................................... 87
Table 4-4 – The Combinations Used for UB Settings.. 87
Table 4-5 – Average CPU Times Regarding UB Finding Procedures .. 88
Table 4-6 – Average Number of Nodes Regarding UB Finding Procedures 88
Table 4-7 – The Notation Used for Mode Reduction Procedures ... 89
Table 4-8 – Average CPU Times for Different Mode Elimination Implementations 89
Table 4-9 – Average Number of Nodes for Diffferent Mode Elimination Implementations 90
Table 4-10 – Average CPU Times Regarding Branching Strategies .. 90
Table 4-11 – Average Number of Nodes Regarding Branching Strategies 91
Table 4-12 – Average CPU Times for Routing Strategies .. 92
Table 4-13 – Average Number of Nodes for Routing Strategies .. 92
Table 4-14 – The Parameters for Preliminary Test Instances ... 92
Table 4-15 – Average CPU Times for the Budget and Deadline Problems 93
Table 4-16 – Average Number of Nodes for the Budget and Deadline Problems 93
Table 4-17 – The Performance Measures of Branch and Bound Algorithm for b Values 94
Table 4-18 – The Performance of the Branch and Bound Algorithm for Different Time/cost

Functions ... 96
Table 4-19 – The Performance of the Branch and Bound Algorithm for Different Project Sizes 97
Table 4-20 – The Performances of the Approximation Algorithms for different b-Values 99
Table 4-21- The Performance of Approximation Algorithms for Different Time/Cost Functions . 100
Table 4-22 – The Performance Measures of Approximation Algorithms for the Different Problem

Sizes .. 101
Table 4-23 – The Performance of the Branch and Bound Algorithm for Different Time/cost

Functions ... 103
Table 4-24 – The Notation Used for Number of Activities .. 104
Table 4-25 – The Performance of the Branch and Bound Algorithm for Different Number of

Activities ... 105
Table 4-26 – The Number of Modes Eliminated for Changing Number of Activities.................... 105
Table 4-27 – The Performance of the Branch and Bound Algorithm for Changing Number of

Modes .. 106

xiii

Table 4-28 – The Number of Modes Eliminated for Changing Number of Modes 106
Table 4-29 – The Performance of Approximation Algorithms for DifferentTime/cost Functions . 107
Table 4-30 – The Performances of the Approximation Algorithms for Different Number of

Activities ... 108
Table 4-31 – The Performance of the Approximation Algorithms for Different Number of Modes

... 109

xiv

LIST OF FIGURES

FIGURES
Figure 2-1- A Gantt Chart for the Sample Project .. 6
Figure 2-2 The AoA Representation for the Sample Project ... 8
Figure 2-3- The AoN Representation of the Sample Project .. 9
Figure 2-4 - The CPM Computations of the Sample Project .. 14
Figure 3-1 - A Sample Multi Mode Project Network ... 25
Figure 3-2 – The First Optimal Solution... 25
Figure 3-3 – The Second Optimal Solution .. 26
Figure 3-4 – The Third Optimal Solution ... 26
Figure 3-5 – The Fourth Optimal Solution ... 26
Figure 3-6 - A Sample Multi-Mode Project Network ... 30
Figure 3-7 – The Efficient Points for The Sample Project.. 32
Figure 3-8 - A Sample Network.. 35
Figure 3-9 - An Example for Mode Fixing ... 37
Figure 3-11 - A Sample Network with Noncritical Activities at their Longest Mode 39
Figure 3-12 - A Sample Network with Noncritical Activities at their Shortest Mode 42
Figure 3-13 - A Sample Convex Time/Cost Function .. 47
Figure 3-14 - A Sample Concave Time/Cost Function... 48
Figure 3-15 - Branching Strategy 1... 53
Figure 3-16 - Branching Strategy 2... 55
Figure 3-17 - Branching Strategy 1... 62
Figure 3-18 - Branching Strategy 1... 75
Figure 3-19 - Branching Strategy 2... 76

1

CHAPTER 1

INTRODUCTION

Project management involves the planning and organizing activities and

resources so as to create a desired product or service. During the planning phase of

a project, project management must consider many concerns as well as those

involving time, cost (money resource) and physical resource aspects. Classical

network planning techniques like Critical Path Method and Program Evaluation

and Review Technique, essentially study the time aspect. These methods aim to

minimize the project duration, assuming that all resources required by the project

are available. However, in practice, the successful project completion requires the

use of various resources like money, manpower, materials and equipment.

The limited availability of the project resources adversely affects many

factors, including the planning objectives, time estimations and project scheduling.

Project scheduling is concerned with the allocation of the resources and timing of

the activities subject to the precedence and resource constraints.

The various resource problems that may appear during the project

scheduling phase can be divided into two classes: time/cost trade-off problem and

the resource planning problem. The resource leveling and resource allocation are

two well recognized problem areas in resource planning. Resource levelling

occurs, when sufficient resources are available and one tries to keep the resource

usage as much as possible at a constant rate. The resource allocation problem

occurs when total resource usage is restricted to a given limit and the objective is to

2

allocate various resources to the activities in such a way that the project completion

time is minimized.

The resource planning problems assume that the resource usages cause

conflicts in a sense that the activities cannot be started on time due to the

unavailability of the resources or the activities requiring the same resource which is

only available one unit at a time must be delayed. The time/cost trade-off problems

appear when there are no constraints imposed on the unit time availability of the

resources and the activities can be performed at different durations according to

their resource usages.

In time/cost trade-off models, there are options of accelerating activity

durations by putting additional resource funds. These additional funds may be

spent through physical resources like machine purchases and labor recruitment or

alternate processing options like overtime and subcontracting. The aim is to reduce

the project completion time by putting additional resources, hence accelerating

some of the activities. The models that tackle with this time/resource trade-off are

refered to as time/cost trade-off models in the project management literature.

The discrete version of the time/cost trade-off problem considers limited

number of time/cost alternatives, so called modes, for each activity. Such a

consideration is important as the discrete alternatives are very common in practice

and discretization provides a convenient means of studying a general time/cost

structure (see, for example Hindelang and Muth, 1979; Robinson, 1975). The aim

is to select a mode for each activity so that the desired project goals are reached,

this forms the so called discrete time/cost trade-off problem.

The discrete time/cost trade-off problems have been studied under two main

versions: the deadline problem and the budget problem. The deadline problem

minimizes the total cost over all mode assignments subject to the constraint that a

given deadline on the project completion time is met. The budget problem

minimizes the project time without exceeding the budget allocated over mode

assignments. There may be several alternative modes that solve the budget

(deadline) problem optimally, however each solution may have a different total

cost (project completion time) value. A reasonable aim is to find the minimum cost

3

(project completion time) solution among the ones that optimally solve the budget

(deadline) problem.

The deadline problem or the budget problem can be used to generate all

nondominated solutions with respect to the project completion time and total cost

criteria. The problem of generating all nondominated solutions is refered to as the

time/ cost curve problem in the project management literature. The time/cost curve

can be derived by solving the deadline (budget) problem for all possible

realizations of the project completion time (total cost) values.

The deadline problem has been the subject of several research, since the

early sixties. Many approximation and optimization algorithms have been

proposed and their use in solving the time/cost trade-off problem has been

discussed. However, despite its obvious practical importance, we are aware of only

three studies on the budget problem. One of the studies shows that the budget

problem –as well as the deadline problem—is strongly NP-Hard. The other studies

propose dynamic programming algorithms that run into computational troubles

with an increase in the problem size. In this thesis, recognizing this important gap

in the literature, we study the budget problem. We aim to find the minimum cost

solution among the ones that solve the budget problem optimally. We analyze the

structure of the problem together with its linear programming relaxation, and derive

some mechanisms en route to reducing the problem size. We solve the reduced

problem by linear programming and branch and bound based approximation and

optimization techniques. We find that our branch and bound algorithm finds

optimal solutions for large sized (medium sized) problem instances in reasonable

times and the approximation algorithms produce near optimal solutions very

quickly for the minimum deadline (budget) problem. We also discuss the way our

algorithms could be used to generate the time/cost trade-off curve.

The rest of thesis is organized as follows. In Chapter 2, we define the

problem, its environment and present the mathematical programming model. The

related literature is also given in this chapter. In Chapter 3, we present the main

body of our work on the budget problem: the reduction mechanisms, the linear

programming relaxation of the model, the branch and bound algorithm and

4

approximation algorithms together with the bounding approaches for the budget

problem. We also present a procedure to generate the time/cost trade-off curve by

using the budget problem. Chapter 4 reports the results of our computational

experiment. We conclude in Chapter 5 by stating the main results of our work and

pointing out some directions for future research.

5

CHAPTER 2

PROBLEM DEFINITION AND LITERATURE REVIEW

In this chapter, we first give general information on projects and discuss the

single-mode and multi-mode project scheduling problems. The multi-mode

problems form the so called discrete time/cost trade-off problems. We then give

the mathematical formulations of the discrete time/cost trade-off problems.

Finally, we review the related literature.

2.1 Project in General

Project Management Institute defines project as a ‘temporary endeavor

undertaken to create a unique product or service’. A project can be viewed as an

interrelated set of tasks or activities that share resources. The resources are usually

scarce and they may be either physical, like labor, machine, equipment or simply

money.

In project management terminology, terms activity and task are used

interchangeably to mean the smallest indivisible work element. The interrelation of

the activities defines the precedence relations that originate from sharing the same

resources or having technological input-output sequences. For instance, activity B

may need the output of activity A, hence it can start only after A is completed.

To define precedence relations between the activities, predecessor and

successor activities are used. If the start of activity B requires the completion of

activity A, then it is stated that activity A is the predecessor of activity B, and B is

the successor of A. If activity B can start immediately after activity A is

6

completed, then activity A is the immediate predecessor of A and B is immediate

successor of A. The immediate predecessor sets are sufficient to explain all

precedence structure. This is due to the transitivity of precedence relations, i.e., if

activity A precedes activity B, and activity B precedes activity C, then activity A

precedes activity C.

Pictorial representation tools like graphs, charts are used to represent the

relations between the activities. Some events like the activity start and completion

time and the completion time of the entire project are usually depicted on these

representations. The most commonly used pictorial representation tools are Gantt

Charts and Project Networks.

Gantt Charts

Gantt chart is one of the oldest tools used in project scheduling. The

activities are represented by horizontal blocks in the timeline that are located

according to their start and finish times. The arrows connecting horizontal blocks

indicate the precedence relations between the activities. A Gantt chart for a 6-

activity project is provided in Figure 2-1 below. In this project activities 1 and 2

immediately precede activity 5, activity 3 is the immediate predecessor of activity 4

and the project duration is 162 days.

Figure 2-1- A Gantt Chart for the Sample Project

The information that can be depicted from Gantt charts is limited to the start

times, finish times and durations of the activities, precedence relations and project

7

completion time. However the critical times for the project, the criticality of the

activities cannot be found using these charts.

Project Networks

Project Networks also provide a visual aid for the sequence of the activities.

Moreover, they convey information on the critical times of the project and the

critical activities. There are two types of project network representations.

° Activity on Arc (AoA) representation

° Activity on Node (AoN) representation

AoA Representation

In AoA representation the activities are represented by arcs, and the events

are represented by nodes. The events may be the start and/or completion times of

an activity or a set of activities or some particular milestone occurrences, like the

half completion of the project or its entire completion. To represent some

precedence relations dummy nodes and/or arcs may be needed. The dummy arcs do

not consume cost and time. To illustrate the AoA representation, an example taken

from Hoare (1973) is used. Table 2-1 shows the immediate precedence relations.

Table 2-1- The Precedence Relations of a Sample Project

Activity Immediate Predecessors

A -
B A
C A
D A
E B
F C, D
G D

Figure 2.2 shows the AoA network of the project.

8

Figure 2-2 The AoA Representation for the Sample Project

In the above network, each node represents an event or a set of events. Node

1 is the source node, indicating the beginning of the project and node 6 is the sink

node, indicating the end of the entire project. Node 2 represents not only the end of

activity A but also beginning of activities B, C and D. The arc connecting node 1

and node 2 represents activity A. The arc between node 4 and node 5 is a dummy

arc for maintaining the precedence relation between activity D and activity F.

AoN Representation

In AoN representations, each activity is represented by a node and each

immediate precedence relation is represented by an arc. An arc directed from node

A to node B implies that activity A is the immediate predecessor of activity B. The

start and end of the project are represented by source and sink nodes, respectively.

Figure 2-3 gives the AoN representation for the sample project.

In Figure 2-3, node 0, namely source node, represents the start of the

project. Activity A is the predecessor of activities B, C and D. Activity F is the

successor of activity C and activity D. Node S is the sink node and it represents the

end of the entire project.

9

Figure 2-3- The AoN Representation of the Sample Project

2.2 Project Scheduling Problems

Project scheduling involves all decisions regarding the determination of the

start and finish times of the activities and the allocation of the scarce resources.

Each activity in a project has a predetermined processing time and a given

amount of resource usage. The resource may be labor, machine, tool or available

money. Cost is commonly used as an indicator of the resource usage.

According to the number of processing alternatives, two types of projects

are defined: single-mode and multi-mode projects. In single-mode projects, there

is only one processing alternative for each activity with fixed processing time and

cost. On the other hand in multi-mode projects there are more than one alternative

for processing time and resource usage. Each alternative, so called mode, has its

own processing time (duration) and resource usage (cost).

We now discuss the single-mode and multi-mode project scheduling

problems together with their solution algorithms.

2.2.1 Single-Mode Project Scheduling Problems

Single-mode project scheduling problems assign a start time to each activity

such that the precedence relations are respected and project is completed in its

earliest possible time. The well known Critical Path Method (CPM) is used to find

such a schedule. For the sake of completeness, we state the CPM method.

10

The Critical Path Method (CPM)

 CPM finds the earliest and latest start times of the activities, the earliest

possible project completion time and defines the critical activities. To state the

method we need the following definitions.

Critical Path: The longest path(s) in a project is called critical path.

Critical Activities: Activities that are on the critical path are called critical

activities. The earliest and latest start times of the critical activities are equal. Any

delay in the start times of the critical activities delays the entire project completion.

Noncritical Activities: Activities that are not on any critical path are

noncritical activities.

Total Slack: The difference between the earliest start time and latest

completion time of an activity is its total slack. The total slack of an activity is the

maximum duration that the activity can use without affecting the earliest project

completion time. Accordingly, total slack of a critical activity is equal to its

processing time.

In the initialization step, the earliest start times of the activities with no

predecessors are set to zero. The earliest start times of the other activities are equal

to the maximum of the earliest completion times of their immediate predecessors.

After all computations are performed, the earliest project completion time is found.

It is equal to the maximum of the earliest completion times of all activities. In order

to compute the latest completion times, first, the latest completion times of all

activities with no successors are set to the earliest project completion time. Then

the latest start times of these activities are found. The latest completion times of

other activities are equal to the minimum of the latest start times of their immediate

successors. Having known the earliest start and latest times, the total slack values

are computed and the critical activities are defined.

Throughout the thesis, we use the following notation:

ti: Processing time of activity i.

Pi: Set of immediate predecessors of activity i.

11

Si: Set of immediate successors of activity i.

The followings are returned by the CPM method.

ESi: Earliest start time of activity i.

LSi: Latest start time of activity i.

ECi: Earliest completion time of activity i.

LCi: Latest completion time of activity i.

Crit: Set of critical activities

Slacki: Total slack of activity i.

Using the notation, we define the algorithm as follows:

Initialization:

0iES = : ii P = ∅

Main Body:

Repeat

 { }
i

i j j
j P

ES Max ES t
∈

= + : is calculatedi ji j P ES∀ ∈

Until
iES for 1,2,....,i N= are calculated

{ }i i
i

T Max ES t= +

iLC T= : ii S =∅

Repeat

 { }
i

i j j
j S

LC Min LC t
∈

= − : is calculatedi ji j S LC∀ ∈

Until iLC for 1, 2,....,i N= are calculated

Finalization:

i i iSlack LC ES= − 1, 2,....,i N=

{ }1,2,..., | i iCrit i N Slack t= = =

12

We illustrate the implementation of the algorithm via a 7-activity project

whose data are given in Table 2-2.

Table 2-2 – The Precedence Relations and the Durations of a Sample Project

Activity Immediate
Predecessors

Duration
(Week)

A - 2
B A 1
C A 1
D A 2
E B 3
F C, D 4
G D 2

We now give the stepwise implementation of the CPM method on the

sample project.

Initialization:

PA = Ø; ESA = 0

Main Body:

PB = PC = PD = {A}

ESB = ESC = ESD = ESA + tA = 2

Activity B precedes activity E, hence ESE = ESB + tB = 3

Activity C and activity D are predecessors of activity F,

ESF = max{ ESC + tC; ESD + tD } = max{3, 4} = 4

Activity D precedes activity G, ESG = ESD + tD = 4

 Earliest project completion time is T = max{ ESi + ti }= ESF + tF = 8

Having found the earliest project completion time, the latest completion

times are computed as follows.

SE = SF = SG = Ø, hence LCE = LCF = LCG = T = 8

SD = {F, G} thus LCD = min{LCF – tF; LCG - tG} = 4

13

Activity F succeeds of activity C and activity E succeeds activity B,

LCC = LCF – tF = 4 and LCB = LCE – tE = 5

Activities B, C and D are successors of activity A,

LCA = min{LCB – tB; LCC – tC; LCD – tD } = LCD – tD = 2

The total slack values are computed by using the earliest start and latest

completion times. The earliest start times, latest completion times and total slacks

are tabulated below.

Table 2-3 - The CPM Calculations for the Sample Project

Activity Immediate
Predecessors

Processing
Time

(Week)

Earliest
Start

Times

Latest
Completion

Times

Total
Slack

A - 2 0 2 2
B A 1 2 5 3
C A 1 2 4 2
D A 2 2 4 2
E B 3 3 8 5
F C; D 4 4 8 4
G D 2 4 8 4

The critical activities are those that have total slack values equal to their

processing times. Accordingly, activities A, D and F are critical and they are on the

same critical path. The total completion time of the project is equal to the sum of

the completion times of these activities. Those activities that have total slack

values greater than their processing times are noncritical. These activities can be

delayed by the difference between their total slack values and processing times. For

instance, activity B has a total slack of 3 weeks and its processing time is 1 week. It

can be delayed for 2 weeks without increasing the project completion time.

All earliest start times and latest completion times are shown on the AoA

representation of the network. The numbers in parentheses show the processing

14

times. The earliest start time and latest completion time of each activity are shown

in boxes. Critical path is shown with dark arrows.

Figure 2-4 - The CPM Computations of the Sample Project

2.2.2 Multi-Mode Project Scheduling Problems

In multi-mode project scheduling problems, there exist several execution

modes for at least one activity. Each mode is characterized by its processing time

and resource usage and there is usually a trade-off between time and resource

usages. An activity can be completed more rapidly if more resources are allocated

on. Assuming that the resource usage is reduced to money terms; as the processing

time of an activity is shortened, its cost increases. A 5-activity project taken from

Battersby (1970) illustrates the time/cost trade-off. The associated information is

provided in Table 2-4.

The first activity is the transportation of materials to the construction area.

This activity can be completed either in 5 hours or in 4 hours. 3 people can carry

the materials in 5 hours; on the other hand a carrying tool is required to complete

the activity more quickly. Hence it costs ₤ 40, if the activity is performed in 4

hours, while it costs ₤ 30 if the activity is completed in 5 hours.

15

Table 2-4 - A Sample Project Illustrating Time/cost Trade-off

Activity Normal
Duration

(hr)

Cost
₤

Rapid
Duration

(hr)

Cost
₤

A: Material to site 5 30 4 40
B: Erect hut 6 12 2 20
C: Install electricity 4 10 3 18
D: Install plumbing 5 12 3 20
E: Connect services 3 16 - -

In the sample project above, there are two modes for each activity except

activity E, which has to be completed by a single mode in 3 hours at a cost of ₤ 16.

The decision in multi-mode problems is to assign a mode for each activity

considering total cost and the project completion time criteria. This problem is

referred to as the Discrete Time Cost Trade-off (DTCT) problem in the project

scheduling literature. The deadline problem, the budget problem and the time/cost

curve problems are three different versions of the DTCT problem. The

formulations of the deadline and budget problems are provided in the next section.

2.3 Formulations for the Discrete Time/Cost Trade-off Problems

The DTCT problem consists of a set of activities. The activities are

represented by index { }i V 0,1,2,...,n 1∈ = + , where V is the set of activities.

Activity 0 and activity n 1+ are source and sink nodes in the project network,

where AoN representation is used.

The precedence relations are defined in set E V V⊆ × . (i,i') E∀ ∈ implies

that i immediately precedes i' .

For each activity, modes are represented with index { }i ij M 1,...,m∈ = and

characterized by the following cost and processing time parameters.

ijc : cost of activity i at mode j

ijt : processing time(duration) of activity i at mode j

16

According to our convention, if j j'< where
ij , j ' M∈ , then

ij ij'c c<

and
ij ij't t> . In other words 1 denotes the longest and least-cost mode, while

im

denotes shortest and highest-cost mode of activity i. For the sample project, for

activity A, A,1c 30= , A,2c 40= and Am 2= .

Our decision variable that indicates a mode selection for each activity is as

defined below.

ij

1 if activity i is assigned to mode j
x =

0 otherwise





The activity start times are defined as:

iS :Start timeof activity i

Accordingly, N 1S + denotes the start time of the sink node, therefore the

completion time of the entire project. N 1S + is called the project length, project

duration or project completion time in project scheduling terminology. We use

these all these terms interchangeably throughout the thesis.

The constraints of the DTCT problem are defined below.

Each activity should be assigned to exactly one mode. That is,

j

ij

j M

x 1 i V
∈

= ∀ ∈∑

Activity i' cannot start before all its immediate predecessors are completed. That

is,

i '

i' i ij ij

j M

S S t x (i,i') E
∈

≥ + ∀ ∈∑

The project starts at time 0, hence all start times are nonnegative. That is,

0S 0=

The partial mode assignments are not allowed

ij ix :binary i V and j M∀ ∈ ∀ ∈

17

The problem contains
1

N

i

i

m
=
∑ binary variables, 1N + continuous

iS

variables. The number of constraints is equal to N number of elements in set E+ .

The objective of each problem type together with the constraints that are

specific to them are presented below.

2.3.1 The Deadline Problem

The objective of the deadline problem is minimizing the total cost of the

project which is defined as below.

i

ij ij

i V j M

Min c X
∈ ∈
∑∑

The project should be completed in a predetermined time, say T.

1NS T+ ≤

2.3.2 The Budget Problem

In the budget problem, the total project cost cannot exceed the available

project budget, say b. Hence the following constraint is required.

i

ij ij

i V j M

c X b
∈ ∈

≤∑∑

The objective is minimizing the total completion time of the project and is

defined as below.

N 1Min S +

2.3.3 The Time/Cost Trade-off Curve Problem

The time/cost curve problem involves both project completion time and

total cost as criteria. The problem generates all nondominated, i.e., efficient,

solutions with respect to two criteria. A solution L is said to be efficient if there

does not exist any other solution 'L such that (') ()B L B L≤ and 1 1(') ()N NS L S L+ +≤

18

with strict equality holding at least once, where ()B L and 1()NS L+ are the total cost

and total project completion time of solution L.

In order to solve the time/cost curve problem, the previous studies solve the

deadline problem for all possible realizations of the project completion time.

Alternatively, the budget problem for all possible project budget limitations can be

used. In this thesis we focus on the budget problem, and in Chapter 3 we discuss

how the budget problem can be used to generate time/cost curve.

2.4 Literature Review on the Time/Cost Trade-off Problems

We survey the literature studies on the Time/Cost Trade-off Problem in two

parts. The first part is related with the deadline problem and the second one is

devoted to the budget problem. The studies in both parts are discussed in

chronological order.

2.4.1 The Deadline Problem

Fulkerson (1961) proposes a network flow based solution procedure for the

deadline problem with linear time/cost function. The paper is a pioneer work that

emphasizes the importance of the linear time/cost trade-off relations. Fulkerson

(1961) computes the time/cost curves for all feasible project durations and shows

that the associated time/cost curves are convex.

Kelley (1961) also approaches the deadline problem via network flow

theory. His network flow algorithm is based on the primal-dual relations. The

linear time/cost functions are considered for the activities and the objective is

finding the schedule with the maximum project utility. He investigates the

structure of the projects and discusses some practical applications of the project

utility functions.

Meyer and Schafer (1965) propose one of the earliest approaches for the

deadline problem, with discrete time/cost functions. In the study, convex, concave

and hybrid time/cost functions are analyzed. They present a mixed-integer

programming formulation that does not behave consistent over all problem

instances.

19

Crowston and Thompson (1967) use Decision Critical Path Method

(DCPM) that considers the interaction between the scheduling and planning phases

of a project. If there exists more than one way to complete a project like performing

activity i in place of activity j, then these activities are shown on the project

decision graph. They present a general mixed integer program to select the best

project graph and find the associated critical path for the deadline problem. They

also propose a heuristic approach. For small projects, the integer program is shown

to be manageable. For large projects, the heuristic methods produce promising

results.

Crowston (1970) refers to Crowson and Thompson’s (1967) study for the

Decision Critical Path Method (DCPM) problem. Crowston (1970) proposes

repetitive application of the longest path calculations and finds the nondominated

set of paths in the decision network. In this way, the DCPM networks are converted

to the networks having only the decision nodes with maximum distances in

between. Some feasibility and lower bound tests are derived to reduce the network

size and the reduced network is solved by a branch and bound algorithm. Crowston

(1970) provides some numerical examples to illustrate his procedure, however he

does not present a structured computational experiment.

Philips and Dessouky (1977) study the deadline problem with linear

time/cost functions. The problem is solved by repetitively applying minimum cuts

to the network and reducing the project duration at minimal cost. An application of

the procedure is given but no computational experiment is presented.

Hindelang and Muth (1979) propose a Dynamic Programming (DP)

algorithm for the deadline problem. The problem formulation is represented by the

Decision Critical Path Method (DCPM) model, as in Crowston and Thompson

(1967). It is claimed that the shortcomings of the DCPM model is overcome by the

proposed procedure. Hindelang and Muth (1979) show that their algorithm can

solve the large sized problem instances in reasonable time. However as later shown

by De et al (1997), their dynamic programming algorithm is flawed.

Elmaghraby (1993) proposes a Dynamic Programming (DP) model for

solving the general time/cost trade-off problem. The proposed approach is based on

20

the DP algorithm developed by Fulkerson (1961). First the possible durations are

fixed and then further modes are reduced by the DP algorithm. The reduced

problem is optimally solved by a branch and bound algorithm. The decision in

branch and bound node is the selection of the best mode to the selected activity.

Elmagrahraby (1993) does not present any computational results.

De et al. (1995) review the previous studies for the Decision Critical Path

Method (DCPM) problem together with their drawbacks. They introduce a new

dynamic program for the deadline problem and propose that it can be used to

construct the time/cost trade-off curve for project networks with no parallel

modules. These networks with parallel modules are solved by the network

decomposition methods in polynomial time. For the networks with complicated

precedence relations, series-parallel conversion is applied.

Demeulemeester et al. (1996) address all three versions of the discrete

time/cost trade-off problems, i.e. budget, deadline and curve problems. Two

dynamic programming based procedures for the network reduction are proposed.

The first algorithm intends to find the number of nodes to be reduced in order to

convert the project network into a series-parallel network. A series-parallel network

consists of networks that can be broken down to series or parallel networks. A

series network is a network consisting subnetworks in series, similarly a parallel

network is a network consisting subnetworks in parallel. In this study serial

optimization is the replacing two arcs in series with a single arc. Similarly two arcs

in parallel are replaced for parallel optimization. The second procedure aims

minimizing the number of alternative solutions hence increasing the computational

efficiency. The procedure uses the serial and parallel merge operations presented

by Rothfarb et al. (1970) and Frank et al (1971).

Philips (1996) presents a solution procedure that uses the cut search

approach proposed by Philips and Dessouky (1977). His aim is to present a

practical solution procedure for the deadline problem.

De et al. (1997) show that the pseudo-polynomial time Dynamic

Programming (DP) approach for the Decision Critical Path Method (DTCTP),

which is presented by Hindelang and Muth (1979) is incorrect. In the algorithm the

21

different predecessors of an activity that are not considered may cause different

earliest start times. Once corrected by using multiple passes of the DP, the resulting

algorithm exhibits worst case exponential complexity. De et al.(1997) also show

that all three versions of the discrete time/cost trade-off problems are strongly NP-

hard. However for some structured networks, the problems are polynomially

solvable. Hindelang and Muth’s (1979) algorithm can solve the deadline problem

for pure parallel, pure series and series-parallel networks.

Skutella (1998) reviews the solution algorithms improved by Philips and

Dessouky (1977) for the linear time/cost trade-off problem (projects having

activities with affine linear and decreasing cost functions). He proposes new

approximation algorithms for both the deadline and budget problems. In the

proposed approaches performance ratios are guaranteed to be O(log l) where l is

the ratio of the maximum duration of any activity to its minimum nonzero duration.

Demeulemeester (1998) proposes a branch and bound procedure to solve

the deadline problem and construct the time/cost trade-off curve. He adapts

Fulkerson’s algorithm to find a lower bound. Branching is performed by selecting

an activity and partitioning its modes into two sets. The results of the

computational study shows that the algorithm can solve instances with up to 30

activities and 5 modes per activity.

Vanhoucke and Debels (2005) work on three different extensions of the

deadline problem: (1) time/switch constraints, (2) work continuity constraints and

(3) net present value maximization. They reuse the exact solution algorithms in the

literature and introduce a meta-heuristic approach for generating near optimal

solutions for all extensions. They state that the meta-heuristic yields near-optimal

solutions for the time switch constrained problem and the results for the net present

value problem are promising.

The purpose of the study by Akkan et al. (2005) is to define upper and

lower bounds for the deadline problems. They add cuts to the LP relaxation of the

deadline model and present mode elimination rules. The cuts are defined

considering the predecessor-successor relations in order to improve the LP

relaxation based lower bounds. Moreover the column generation based on network

22

decomposition is proposed to obtain lower and upper bounds. Their extensive

computational results indicate that all bounds are tight and the heuristic approaches

are competitive with the existing heuristics.

Hafızoglu (2007) proposes a branch and bound algorithm to solve the

deadline problem. They derive some results that are similar to ours. Like us, the

algorithms are LP-based.

2.4.2 The Budget Problem

Butcher (1967) studies the budget problem with continuous time/cost

functions. He proposes a dynamic programming approach starting with the first

activity. The algorithm executes for all activities and all feasible time allocations.

The algorithm provides a pseudo-polynomial time solution for the pure series and

pure parallel networks.

Robinson (1975) proposes a Dynamic Programming (DP) algorithm to the

resource constrained budget problem with discrete time/cost functions. The

problem is the allocation of the resources to the activities, considering the

precedence and resource limitations. The DP procedure includes the decomposition

of the network according to the precedence relations. Optimal policy is stated as

follows. If length of a path, say path p, is greater than the length of another path,

then additional resources should be allocated to path p. Robinson (1975) does not

present any computational result.

In this thesis, we study the budget problem and propose a branch and bound

algorithm and heuristic procedures that are capable of solving medium sized

instances in reasonable times. The next chapters provide our algorithms and their

computational results.

23

CHAPTER 3

THE BUDGET PROBLEM

Recall that, the budget problem in discrete time/cost trade-off project

scheduling minimizes the total project completion time subject to a given budget

value. For this problem, there may be many different ways of selecting the activity

durations so that the completion times of the resulting schedules are all equal.

However, each schedule may yield a different total cost value. Our aim is to select

a schedule with the minimum total cost among the ones having minimum total

project completion time, under the limited budget.

In the next section, we study the budget problem with the modified

objective function and present a methodology to construct the time/cost trade-off

curve, i.e., generate all efficient solutions. In Section 3.2 we discuss the minimum

deadline problem as a special case of the budget problem, and describe our

procedures for reducing the problem size and finding lower bounds, and present

algorithms to produce optimal and high quality approximate solutions. In Section

3.3 we study the general budget problem.

3.1 The Modified Budget Problem

The mathematical model for the budget problem is restated below.

24

i

j

i '

N 1

ij ij

i V j M

ij

j M

i' i ij ij

j M

0

ij i

Min S

s.to.

c x b

x 1 i V

S S t x (i,i') E

S 0

x :binary i V and j M

+

∈ ∈

∈

∈

≤

= ∀ ∈

≥ + ∀ ∈

>

∀ ∈ ∀ ∈

∑∑

∑

∑

The notation is provided below.

b : available budget

ijc : cost of activity i at mode j

ijt : processing time of activity i at mode j

The decision variables are given as below.

ij

1 if activity i is assigned to mode j
x

0 otherwise


= 


iS :Start timeof activity i

The objective of the model is assigning each activity to a mode such that the

total completion time of the project is minimized and budget limitation is

respected. There may be many alternative optimal solutions for the model. In

practice, the aim should be the minimization of total completion time by allocating

the least possible money, at most the available budget to the project. However the

model may return a solution with (project completion time, total cost) values of

* 1

N 1(S ,B)+ where 1B b≤ , and there may exist a solution * 2

N 1(S ,B)+ such that

2 1B B< . We illustrate this case via the following problem instance.

The AoA representation of the project network is given in Figure 3-1. The

numbers in the parentheses are the time and cost pairs of the activity modes. For

25

instance, activity A can be executed in 2 weeks at a cost of 150 YTL or in 6 weeks

at a cost of 25 YTL. The available budget is set to 3000 YTL.

Figure 3-1 - A Sample Multi Mode Project Network

The problem has four alternate optimum solutions for the budget problem.

These alternate solutions are depicted in Figure 3-2 through Figure 3-5. In all

solutions the assigned modes are shown in bold faces.

Figure 3-2 – The First Optimal Solution

26

Figure 3-3 – The Second Optimal Solution

Figure 3-4 – The Third Optimal Solution

Figure 3-5 – The Fourth Optimal Solution

27

In all solutions, the
N 1S + value is at its minimum possible value of 8 weeks.

The first solution has the total cost of 3000 YTL, as found below.

ij ij

i j

c X 150 900 200 300 400 250 800 3000= + + + + + + =∑∑

The second solution has the total cost of 2620 YTL, as found below.

ij ij

i j

c X 150 600 120 300 400 250 800 2620= + + + + + + =∑∑

The third solution has the total cost of 2700 YTL, as found below.

ij ij

i j

c X 150 600 200 300 400 250 800 2700= + + + + + + =∑∑

The fourth and last solution has the total cost of 2920 YTL, as found below.

ij ij

i j

c X 150 900 120 300 400 250 800 2920= + + + + + + =∑∑

The second solution is nondominated, hence efficient. The other solutions

are inefficient as they are dominated by the second solution. A decision maker,

who avoids high total cost, prefers the second solution to the others.

The objective function of the budget model is revised in order to eliminate

all dominated solutions, and select the efficient one(s). Referring to the above

example, we aim to find the second solution, but not the others. To guarantee this,

the total cost of the project is added to the objective function of the budget model

after weighed by coefficient ∈. The revised objective function is given below.

i

N 1 ij ij

i V j M

Min S c x+
∈ ∈

+∈∑∑

We hereafter refer to the budget problem with the modified objective

function as the modified budget problem. The modified budget problem finds the

minimum cost solution among the ones that minimize the total completion time.

For a properly selected value of ∈ , the optimal solution of the modified budget

28

problem gives an efficient solution. We find ∈ as follows: The minimum change in

N 1S + value is one, when the task times are assumed to be discrete.

The maximum change in the total project cost value, B , is
max minb b− ,

where minb and maxb are the minimum and maximum total cost values in the

efficient solutions’ set, respectively. ∈ should be small enough so that
N 1S + does

not increase for any decrease of B value. This is guaranteed

when N 1 max min N 1S (B b b) S 1 B+ ++∈ + − < + +∈ , equivalently max min(b b) 1∈ − < , i.e.,

max min

1

b b
∈<

−
 .

To guarantee an efficient solution we solve the modified budget problem

with
max min

1

b b
∈<

−
. We use

U L

max min

1

b b 1
∈=

− +
 where L

minb (U

maxb) is a valid

lower (upper) bound on the minb (maxb) value.

The associated objective function is as stated below.

 N 1 U L

max min

1
Min S ()B

b b 1
+ +

− +

We hereafter refer to the modified budget problem as

N 1Min S B s.t. B b+ +∈ ≤ .

In the next section, we discuss a procedure to generate all efficient solutions

by solving the modified budget problem. In Section 3.1.2 we discuss the way we

find the extreme efficient solutions, i.e., efficient solutions having total cost values

of maxb and minb . Finally, in Section 3.1.3 we analyze the modified budget problem

for general b.

29

3.1.1 Generating All Efficient Solutions, i.e., Solving The Time/Cost

Trade-off Problem

All efficient solutions with respect to the total cost and project completion

time criteria, can be generated by solving the modified budget problem for all

possible values of b between L

minb and U

maxb . The procedure below generates all

efficient solutions by varying the b value, systematically.

Efficient Solution Generation Procedure:

The solution procedure consists of three steps.

Step 0. Find L

minb and U

maxb

Let U

maxb b= , r 1=

Step 1. Solve the following modified budget problem

N 1Min S B s.t. B b+ +∈ ≤

with
U L

max min

1

b b 1
∈=

− +

If there is no feasible solution, Stop

Let * *

N 1(S ,B)+ be the N 1(S ,B)+ values of the optimal

solution. * *

N 1(S ,B)+ is the rth efficient solution.

r = r+1

Step 2. Stop if * L

minB b=

Let *b B 1= −

Go to Step 1.

Each iteration of the procedure generates an efficient solution in Step 1.

When the procedure terminates, all r efficient solutions are reached.

The example below illustrates the execution of the procedure. Figure 3-6

gives the AoA representation of the example project.

30

1 2

3

5

4

6
A

(6, 25)
(2, 150)

B
(2, 600)
(1, 900)

D
(3, 200)
(2, 300)

C
(2, 120)
(1, 200)

F
(5, 225)
(4, 250)

G
(2, 800)

E
(7, 75)

(6, 100)
(3, 400)

(t, c)

Figure 3-6 - A Sample Multi-Mode Project Network

An upper bound on the maxb value of the above project is found as 2620 by

using the CPM method. A lower bound on the
minb value is computed as 2045 by

assigning all activities to their longest duration modes. The efficient solution

generation procedure is applied as below.

Step 0. L

minb 2045= and U

maxb 2620=

Let U

maxb b 2620= =

 Iteration 1

Step 1. The modified budget problem is solved. (2620,8) is the

N 1(S ,B)+ values of the optimal solution, and it is the first

efficient solution.

Step 2. * L

minB 2620 b= ≠

Let b 2620 1 2619= − =

Go to Step 1.

Iteration 2

Step 1. The modified budget problem is solved. (2520,9) is the

N 1(S ,B)+ values of the optimal solution, and it is the second

efficient solution.

31

Step 2. * L

minB 2520 b= ≠

Let b 2520 1 2519= − =

Go to Step 1.

Iteration 3

Step 1. The modified budget problem is solved. (2195,10) is the

N 1(S ,B)+ values of the optimal solution, and it is the third

efficient solution.

Step 2. * L

minB 2195 b= ≠

Let b 2195 1 2194= − =

Go to Step 1.

Iteration 4

Step 1. The modified budget problem is solved. (2170,11) is the

optimal N 1(S ,B)+ values of the optimal solution, and it is the

fourth efficient solution.

Step 2. * L

minB 2170 b= ≠

Let b 2170 1 2169= − =

Go to Step 1.

 Iteration 5

Step 1. The modified budget problem is solved. (2070,14) is the

optimal N 1(S ,B)+ values of the optimal solution, and it is the

fifth efficient solution.

Step 2. * L

minB 2070 b= ≠

Let b 2070 1 2069= − =

Go to Step 1.

Iteration 6

Step 1. The modified budget problem is solved. (2045,15) is the

optimal N 1(S ,B)+ values of the optimal solution, and it is the

sixth efficient solution.

32

Step 2. * L

minB 2045 b= = , Stop.

All 6 efficient points are found and shown in the following graph.

Figure 3-7 – The Efficient Points for The Sample Project

The mode assignments of each efficient solution are tabulated in Table 3-1.

Table 3-1 – The Mode Assignments of Each Efficient Solution

Activity A B C D E F G
Iteration1
b 2620=

2 1 1 2 3 2 1

Iteration2
b 2619=

2 1 1 1 3 2 1

Iteration3
b 2519=

2 1 1 1 2 1 1

Iteration4
b 2194=

2 1 1 1 1 1 1

Iteration5
b 2169=

1 1 1 1 2 1 1

Iteration6
b 2069=

1 1 1 1 1 1 1

33

3.1.2 Finding Extreme Efficient Solutions

In this section we present the methods for finding the extreme efficient

solutions, i.e., the solutions having total cost values of bmin and bmax .

Finding the efficient solution with minimum total cost value, bmin

For each activity i, the minimum cost is incurred at maximum duration.

Hence the minimum total cost will be incurred when all activities are set to their

longest duration modes. Formally
min i1

i V

b c
∈

=∑ where 1 is the first, i.e. least cost

(longest duration) mode.

An efficient solution having minb value can be found by the CPM method

with the longest activity durations. Let N 1S + value of this solution be Max

N 1S + .

Max

N 1 min(S ,b+) is an efficient solution, as there cannot exist any other solution having

total cost value that is less than minb . Note that Max

N 1S + is the maximum project

completion time value over all efficient solutions.

Finding the efficient solution with maximum total cost value, bmax

When all activities are assigned to their minimum duration modes, the CPM

method gives the minimum possible project completion time. However, the

solution produced by the CPM method may not be efficient, as there may exist

another solution having the same project completion time, but smaller total cost

value. We let Min

N 1S + denote the minimum possible project completion time value

found by the CPM by setting
ii imt t= for all i and let Min

N 1b(S)+ be the total cost value

of the CPM solution. We can find an efficient solution with project completion

time value of Min

N 1S + by solving the following budget problem.

34

i

i

1 N 1 ij ij

i V j M

Min

ij ij N 1

i V j M

(P) Min S c x

s.to.

c x b(S)

+
∈ ∈

+
∈ ∈

+∈

≤

∑∑

∑∑

j

i '

ij

j M

i' i ij ij

j M

0

ij i

x 1 i V

S S t x (i,i') E

S 0

x :binary i V and j M

∈

∈

= ∀ ∈

≥ + ∀ ∈

>

∀ ∈ ∀ ∈

∑

∑

Let Min

N 1 max(S ,b)+ be the optimum solution to the above problem.
maxb is the

total cost value of an efficient solution having the smallest project completion time

and is an upper bound on the total cost values of all efficient solutions.

The solution produced by the above model, has the same critical activities

with the Min Min

N 1 N 1(S ,b(S))+ + solution. The critical activities need to be at their shortest

possible durations to keep the project completion time at Min

N 1S + . However the

noncritical activities of the CPM solution may not be at their shortest durations,

their durations can increase as long as their slack values permit. Note that any

increase in the activity duration leads to a reduction in total cost value.

For the sake of simplicity, we hereafter refer to Min

N 1S + as minT . To illustrate

the case, we use a 5-activity network whose AoA representation is given in Figure

3-8.

35

Figure 3-8 - A Sample Network

The numbers in parentheses are (duration, cost) pairs. Note that each

activity has two modes.

When all activities are assigned to their shortest duration modes, the critical

activities are A, C and E. The project completion time, i.e., minT , is 11 and the total

cost is 3025. When all critical activities are assigned to their shortest duration

modes and noncritical activities, activity B and D, to their longest duration modes

the total completion time of the project does not change but the total cost reduces to

2600. We favor the solution with the smallest total cost, hence the second solution.

We observe that P1 is equivalent to the following deadline problem.

i

j

i '

2 ij ij

i V j M

Min

N 1 N 1

ij

j M

i' i ij ij

j M

0

ij i

(P) Min c x

s.to.

S S (1)

x 1 i V (2)

S S t x (i,i') E (3)

S 0 (4)

x :binary i V and j M (5)

∈ ∈

+ +

∈

∈

≤

= ∀ ∈

≥ + ∀ ∈

>

∀ ∈ ∀ ∈

∑∑

∑

∑

Note that as 1(P) , 2(P) looks for the minimum total cost solution among

the ones that have minimum project completion time. As Min

N 1S + is the minimum

36

possible completion time, constraint (1) will be satisfied as equality.
2(P) is a

deadline problem with the minimum possible completion time value and hereafter

will be referred to as the minimum deadline problem.

An optimal solution to the minimum deadline problem returns the

maximum total cost value of all efficient solutions and defines our
maxb value.

Rather than solving a budget problem 1(P) , we prefer to solve the minimum

deadline problem, i.e., (P2) due to its special structure. This special structure allows

us to derive more powerful reduction mechanisms and bounding techniques. Next,

we analyze the minimum deadline problem in detail.

3.2 A Special Case – The Minimum Deadline Problem

In this section, first a simple mode fixing algorithm is explained. Second,

mode elimination procedures are proposed. Then the optimal Linear Programming

Relaxation (LPR) solution and its properties are introduced. The section continues

with the lower bounding procedures. Finally, the branch and bound method is

presented. Our solution algorithms take their main idea from Hafizoğlu (2007) who

deals with the general deadline problem.

3.2.1 Mode Fixing Rule

Recall that in the minimum deadline problem, all critical activities are

assigned to their shortest modes in all feasible solutions. To find the critical path,

all activities are assigned to their shortest modes, and the Critical Path Method

(CPM) is applied. The AoA network in Figure 3-9 is used for discussion purposes.

37

Figure 3-9 - An Example for Mode Fixing

In the above project, activities A, D and F are on the critical path. The

length of the critical path is 8. As the critical activities are fixed at their shortest

duration modes, the problem is reduced to find the modes for the noncritical

activities, B, C, E and G. The optimal mode assignments are given in bold faces in

Figure 3-10.

Figure 3-10 - An Optimal Solution for the Example Project

38

3.2.2 Mode Elimination Rules

In this section, we introduce short mode, long mode and costly mode

elimination rules for the noncritical activities. Our aim is to reduce the size of the

search by eliminating some modes that are either infeasible or nonpromising, i.e.,

cannot lead to an optimal solution.

Short Mode Elimination Rules

As the short modes are costly, they are selected only to maintain feasibility.

En route to the minimum cost solution, the attempt is to assign the noncritical

activities to their longer modes as long as the deadline constraint permits. We need

the following notation to discuss the short mode eliminations.

iES _ L : Earliest start time of activity i, when all activities are assigned to

their longest modes.

iLC _ L : Latest completion time of activity i, when all activities are

assigned to their longest modes. iLC _ L is found by the CPM method, using MinT

as the deadline.

 While computing iES _ L and iLC _ L we assign all noncritical activities to

their longest modes and critical activities to their shortest modes, i.e., we set

i1X 1= where activity i is noncritical

iimX 1= where activity i is critical

As all critical activities are assigned to their shortest duration modes,

iES _ L ,
iLC _ L and the following theorem are defined for the noncritical

activities.

Theorem 1

If i i ijLC _ L ES _ L t− ≥ then the modes j 1+ through im for activity i

cannot lead to an optimal solution.

Proof: Assume a solution that contradicts with the condition of the theorem, i.e.,

i i ijLC _ L ES _ L t− ≥ and ij'X 1= where j' j> . Since ij' ijc c> setting ijX 1= in

39

place of
ij'X 1= improves the objective function value by

ij' ijc c− . And such an

interchange is feasible as
i i ijLC _ L ES _ L t− ≥ . Hence any solution that contradicts

with the condition of the theorem cannot be optimal. ⁭

The example whose activity network is given in Figure 3.5 illustrates the

application of the rule. The bold face modes show the longest modes used in the

CPM method. Using the result of Theorem 1, we consider longer, i.e., less costly,

modes as long as total slack values permit.

Figure 3-11 – A Sample Network with Noncritical Activities at their Longest Mode

After assigning all noncritical activities, B, C, E and G, to their longest

duration modes, iES _ L and iLC _ L values are computed and tabulated below.

Note that some i iLC _ L ES _ L− values are negative. This is due to the fact

that assigning some noncritical activities to their longest modes cannot lead to a

feasible solution.

40

Table 3-2 –The Earliest and The Latest Completion Times

Activity Assigned
Duration
(Week)

iES _ L
iLC _ L

(
MinT 8=)

i iLC _ L ES _ L−

A 2 0 -1 -1
B 2 2 1 -1
C 2 2 4 2
D 2 2 4 2
E 7 4 8 4
F 4 4 8 4
G 4 4 8 4

Theorem 1 eliminates the last mode of activity E as shown below.

Note that i i EjLC _ L ES _ L t− ≥ is tested for j 1= ,

Ejt 7= and i iLC _ L ES _ L 4− = ≥7

For j = 2; Ejt 4= and 4 4≥ hence shorter mode, i.e., mode 3, should be

eliminated. We drop mode 3, whose processing time is 3.

The idea behind elimination is that the model never assigns activity E to

mode 3, as mode 2 would be assigned in a cheaper way even when worst case of

the longest mode assignments are assumed. Similarly, for activity C, mode 2 and

for activity G mode 2 are eliminated as they would never produce optimal

solutions.

Long Mode Elimination

Here long modes that lead to infeasible solutions are eliminated. We use

the following notation to state the long term elimination theorem.

iES _ E : Earliest start time of activity i, when all activities are assigned to

their shortest modes.

iLC _ E : Latest completion time of activity i, when all activities are

assigned to their shortest modes.

41

In computing the
iES _ E and

iLC _ E values, the CPM method is used by

setting all noncritical activities to their shortest modes and the deadline value

to
MinT .

iimX 1= where activity i is noncritical

i1X 1= where activity i is critical

Theorem 2 resembles the one presented in Akkan et. al. (2005) for the

general problem.

Theorem 2

i i ijLC _ E ES _ E t− < for activity i then modes 1 through j cannot lead to a

feasible solution.

Proof: As all activities are set to their shortest processing times, the resulting total

slack,
i iLC _ E ES _ E− , is the maximum assignable duration for activity i, en

route to a feasible solution. This follows, the modes from 1 through j cannot lead to

a feasible solution, as the resulting processing times are greater than the maximum

total slack value. ⁭

Using the result of Theorem 2, we eliminate some long duration modes that

would lead to an infeasible solution.

We illustrate the theorem on the AoA network in Figure 3-2. The bold-face

numbers give the shortest modes used in the CPM method.

42

Figure 3-12 - A Sample Network with Noncritical Activities at their Shortest Mode

The associated
iES _ E ,

iLC _ E and
i iLC _ E ES _ E− values are tabulated

below.

Table 3-3 - The Earliest Start and Latest Completion Times

Activity Assigned
Duration
(Week)

iES _ E iLC _ E

(MinT 8=)
i i ijLC _ E ES _ E t− <

A 2 0 2 2
B 1 2 5 3
C 1 2 4 2
D 2 2 4 2
E 3 3 8 5
F 4 4 8 4
G 2 4 8 4

 All noncritical activities (B, C, E and G) are tested whether

i i ijLC _ E ES _ E t− < or not.

Using the test the longest duration mode of activity E is eliminated as

shown below:

 i i ijLC _ E ES _ E t− < is tested for Ej M∈

43

 For j = 1;
Ejt 7= and 7 5> hence mode 1 is eliminated.

For j = 2;
Ejt 4= and 4 ≥ 5 therefore mode 2 and the other shorter modes

cannot be eliminated.

Costly Mode Eliminations

The cost parameters are used to determine nonpromising costly modes. The

following notation is used to state the rule.

iLB : A valid lower bound on the total cost of all activities, other than i.

UB : A valid upper bound on the total cost of the project.

Like Theorem 1, Theorem 3 states a rule for eliminating short duration

modes.

Theorem 3

If i ijLB c UB+ > then the modes j through im for activity i cannot lead to

an optimal solution.

Proof: iLB is the minimum cost of performing all activities, except activity i.

Activity i cannot be assigned to mode j and all other shorter duration modes, in any

optimal solution as it cannot lead to a better solution than UB, even when the other

activities performed at their lowest possible costs. ⁭

 Two different iLB value can be computed as follows.

Simple Lower Bound

A lower bound on the total cost for the activities except activity i is the cost

incurred by these activities when they are assigned to their longest modes.

i k1

k V ,k i

NLB c
∈ ≠

= ∑

44

LP Based Lower Bound

iLB value is computed in two steps.

Step 1. Activity i is fixed to its shortest duration mode and its cost is

set to zero, i.e,
iimX 1= and

iimc 0= .

Step 2. The discrete nature of ijX variables is relaxed and the

problem is solved as a continuous LP model. The objective

function value of the resulting LP relaxation is the lower

bound on the total cost of the project.

We implement Theorem 3 by using the LP based lower bound. To find UB,

we use the heuristic procedure discussed in Section 3.3.4.2.

Iterative Application of the Elimination Rules

The mode elimination methods affect each other, because in eliminating

short modes of an activity, all other activities are set to their longest modes and

then the earliest start and latest completion times are computed. After some long

modes are eliminated, the earliest start and latest completion times may change.

Similarly after the short modes are eliminated, the earliest start and latest

completion times by the long mode eliminations may change, since they rely on the

shortest modes. Moreover iLB value used in the costly mode eliminations is

affected by any mode elimination, and affects the long mode eliminations once it

eliminates short modes. The interactions between the elimination rules are

summarized in Table 3-4.

As can be observed from the Table 3-4, applying these elimination methods

iteratively, increases the total number of modes eliminated. The elimination

procedure is implemented in the following manner. Initially long mode, short mode

and costly mode iteration algorithms are applied in sequel. Then further iterations

are performed according to their effects on the others. The table above indicates

that the costly mode eliminations should be applied after any elimination, long

mode elimination should be performed if any short mode is eliminated. There is no

45

need to check short mode elimination unless a long mode is eliminated. The

iterations stop when no further mode elimination can be done.

Table 3-4 – The Interactions between The Mode Elimination Rules

Affected

Affecting Long Mode
Elimination

Short Mode
Elimination

Costly Mode
Elimination

Long Mode
Elimination

No Yes Yes

Short Mode
Elimination

Yes No Yes

Costly Mode
Elimination

Yes No Yes

3.2.3 The Optimal Linear Programming Relaxation Solution and Its

Properties

We use the Linear Programming Relaxation (LPR), i.e., continuous

relaxation, of the model to find lower bounds and upper bounds on the optimal total

cost value.

Below we give an optimal LPR solution for a sample 4-activity project.

For i 1= ; { }j 1,2,3,4,5= 14X 1=

For i 2= ; { }j 1,2,3,4,5= 21X 0.76= and 25X 0.24=

For i 3= ; { }j 1,2,3,4= 31X 0.11= and 34X 0.89=

For i 4= ; { }j 1,2= 42X 1=

Note that the above optimal LPR solution gives at most two continuous

variables for each activity. This property is inherent in all optimal LPR solutions as

stated by the below property.

46

Property 1. The optimal solution of the LPR produces at most two

continuous assignments for each activity.

Proof We let iLPt denote the processing time assigned for activity i in the

optimal LPR solution. Accordingly,
im

iLP ij ij

j 1

t t X
=

=∑ .

Given
iLPt values, for each activity i , the following LP model can be

used to make minimum cost mode assignments.

im

ij ij

j 1

ij

j

ij ij iLP

ij

Min c X

s.to.

X 1

t X t

X 0

=

∀

=

=

≥

∑

∑

∑

Since there are two constraints, there are two basic variables in all basic

feasible solutions. This follows that each basic feasible solution has at

most two nonnegative variables. From the LP theory, we know the

optimal solution is in the basic feasible solution set, hence has at most

two continuous variables. ⁭

Hafızoğlu (2007) reports the same result for the general deadline

problem.

Property 2. The continuous assignments associate to two consecutive

modes for the activities having convex activity time/cost functions.

Proof Consider an activity i, having convex cost structure and two

nonconsecutive modes a,b and a b< as depicted by Figure 3-12.

Assume an optimal solution for the activity is on the line connecting

modes a and b. As the time cost function is convex, any point on the

47

lines connecting a and a+1, and b-1 and b are below the line

connecting a and b, i.e.,

ia ia ib ib ia ia ia 1 ibc X c X c X c X++ > + and

ia ia ib ib ib 1 ia ia 1 ibc X c X c X c X− ++ > + .

Hence any point on the line connecting two nonconsecutive modes

cannot be optimal. In other words, an optimal solution is on the line

connecting two consecutive modes, for all activities having convex

time/cost structures. ⁭

Figure 3-13 - A Sample Convex Time/Cost Function

According to the result of Property 2;

If
ij0 X 1< < then,

Either
ij 1X 0+ > and

ij ij 1X X 1++ = or

ij 1X 0− > and

ij ij 1X X 1−+ = .

Property 3. The continuous assignments associate to two extreme modes,

for the activities having concave time/cost functions.

48

Proof Consider an activity i having concave cost structure and two modes

a,b such that a b< and a 1≠ and
ib m≠ as depicted in Figure 3-14.

Figure 3-14 - A Sample Concave Time/Cost Function

Any point on the line connecting 1 and
im is below the line connecting

a and b., i.e.,

i iia ia ib ib i1 i1 im imc X c X c X c X+ ≥ +

Hence any point on the line connecting two modes, other than the first

and last modes, cannot be optimal. In other words, an optimal solution

is on the line connecting the first and last modes, for all activities

having concave time/cost structures. ⁭

The result of Property 3 follows that if activity i has a concave time/cost

function and
ij0 X 1< < then j 1= and

ij m= and
ii1 imX X 1+ = .

49

Using the result of Property 3, we solve the LPR model only for the

shortest and longest modes for the activities having concave time/cost

functions.

Properties 4 through 7 state some properties of the optimal LPR solution

for the general time/cost functions.

Property 4. If the optimal LPR solution produces fractional assignments

for an activity, then that activity is critical for the LP relaxed problem.

Proof Assume an optimal LPR solution with ij0 X 1< < , iLPt is the

associated duration for activity i and B is the associated total cost of the

project.

If activity i is not critical, then there must be at least one ij't such that

ij' iLPt t> and increasing the activity duration by ij' iLPt t− units does not

increase the total completion time of the project. Moreover, the total

cost of the project, B' , would be lower than B as ij' iLPt t> implies

ij' iLPc c< .

Since the optimal LPR model produces a total cost value higher than

B' , there cannot be such ij't hence activity i is critical. ⁭

Property 5. If an activity i is noncritical in the optimal LP solution

then i1X 1= .

Proof Any noncritical activity can be processed in at least one time period

t such that iLPt t> , without increasing the completion time of the

project.

If such a t exists, then the solution is not optimal as the activity

duration would increase by
iLPt t− units. Such an increase would reduce

50

the total cost which contradicts with the optimality of the solution.

Hence there cannot be any iLPt t> , and this follows i1X 1= . ⁭

Property 6. Increasing iLPt , while keeping the processing times of all

other activities k at kLPt leads to an infeasible solution.

Proof Say processing activity i in time iLPt t> is considered.

Two cases exist.

Case 1: Activity i is critical. The processing time, iLPt , cannot be

increased without increasing the total completion time.

Case 2: Activity i is noncritical. Activity i is already executed at the

longest duration mode. (See Property 5)

Hence, increasing the processing time of activity i makes the solution

infeasible. ⁭

Property 7. Decreasing
iLPt while keeping the processing times of other

activities k at kLPt leads to a feasible solution.

Proof Say processing activity i in time iLPt t< is considered.

Two cases exist.

Case 1: Activity i is critical. The processing time t<
iLPt can be

decreased, without increasing the total completion time of the project,

hence the solution stays feasible.

Case 2: Activity i is noncritical. Activity i is already executed at the

longest duration mode (see Property 5) and decreasing its processing

time does not affect the total completion time of the project. ⁭

51

3.2.4 Procedures for Finding Lower Bound

In this section, two different procedures are presented to find lower bounds

on the optimal objective total cost values. The first lower bound that we refer to as

naïve lower bound, is simple to compute, but inefficient. The second lower bound

is based on the optimal LPR solutions. It is efficient, but harder to compute.

Naïve Lower Bound (NLB)

Naïve Lower Bound assigns all activities to their minimum-cost modes. The

total cost of the resulting assignment is a lower bound on the total cost of the

project. Formally;

i1

i V

NLB c
∀ ∈

= ∑

 NLB is a valid lower bound as any activity i cannot be executed with a cost

that is smaller than i1c , hence total project cost cannot be lower than i1

i V

c
∀ ∈
∑ . The

resulting schedule on the hand, may be infeasible, as it leads to the maximum

duration assignments, hence high project completion times (higher than Tmin).

 A very simple example below illustrates NLB. The project consists of 4

activities. Modes of each activity are given below.

 For i 1= , there are 5 modes, with the following time/cost pair set:

 { }(108,10),(85,537),(81,625),(61,1050),(55,1164)

 For i 2= , there are 5 modes, with the following time/cost pair set:

 { }(99,15),(93,140),(80,407),(66 ,666),(61,750)

 For i 3= , there are 4 modes, with the following time/cost pair set:

 { }(104,11),(71,313),(68,331),(49,415)

 For i 4= , there are 2 modes, with the following time/cost pair set:

 { }(88,15),(35,99)

 The immediate precedence relations are tabulated below.

52

Table 3-5 - The Precedence Relations for the Example

Activity Immediate
Predecessors

1 4
2 -
3 4
4 -

NLB is found by simply taking the minimum cost mode for each activity.

Accordingly,
i1

i V

NLB c 10 15 11 15 51
∀ ∈

= = + + + =∑

 In our experiments, we use the naïve lower bound as filtering mechanisms.

We first compute naïve lower bound and compute LPR Based Lower Bounds if the

naïve lower bound cannot eliminate.

LPR Based Lower Bound (LPLB)

LPLB is found by relaxing the integrality constraints on the discrete

variables, ijX s, and solving the resulting LP to optimality. An optimal solution to

any relaxation, hence the LPR, provides a lower bound on our minimization

problem.

NLB is a lower bound on the optimal solution of the LPR as well. Hence

LPLB dominates NLB, but at an expense of additional effort.

LPLB 1823.01= (found by the LP software), for the sample project whose

NLB was 51.

3.2.5 Solution Algorithms

We first reduce the size of the minimum deadline problem by an iterative

application of the mode elimination rules, and then solve the reduced problem by

53

branch and bound algorithm and approximation procedures. In this section we

discuss our solution procedures.

3.2.5.1 Branch and Bound Algorithm

Our branch and bound algorithm uses two different branching strategies.

Two types of routing strategies are used in each branching strategy. Both strategies

are based on the optimal LPR solution.

Branching Strategy 1

 Branching strategy is based on the LP relaxation (LPR) solution. Stepwise

description of the strategy is presented below.

Step 0. Solve the LPR problem at the root node.

Use LP based heuristic algorithm (discussed in Section 3.2.5.2) to find an

initial feasible solution. Let the UB be the total cost value of the solution.

Recall from Property 1 that the optimum LPR solution has at most two

fractional variables for each activity.

Step 1. The variable with the highest fractional value, say ijX , is chosen.

Step 2. There are two branches associated with the selected variable. These

branches are 1ijX = and 0ijX = as shown in the following figure.

Xij=1 Xij=0

Figure 3-15 - Branching Strategy 1

Two different routing strategies are proposed.

54

Routing Strategy 1: The branch that set the most fractional variable to 1 is

followed.

Routing Strategy 2: Lower bound is used to find the route. LPR is solved

for both branches. If both routes are feasible then the one which gives the

smaller lower bound is followed. If both are infeasible then go to Step 4.

Step 3. Solve the LPR problem.

There are three cases.

Case i. LP is infeasible, then go to Step 4.

Case ii. All variables in the LPR solution are integer, the solution is optimal

for the associated node. If UB LB> (LB is the optimal LPR cost) then let

UB LB= . Go to Step 4.

Case iii. There are two sub-cases.

a. LPR is feasible and fractional and UB LB≥ then go to Step

1.

b. Fathoming case: UB LB< , then go to Step 4.

Step 4. Backtrack to the parent node of the branch and bound tree. Select

the alternate branch, go to step 0. If the alternate branch is previously

visited then backtrack to the grand parent node, so on, until finding an

unvisited branch or reaching the root node. If the current node is the root

node and both child nodes are visited then the solution giving UB, i.e., the

best upper bound is the optimal solution.

Branching Strategy 2

This strategy is also based on the optimal LPR solution; however rather

than two branches, we consider three branches at each node. The stepwise

description of the procedure is provided below.

Step 0. Solve the LPR problem at the root node. Use LP based heuristic

algorithm (discussed in section 3.2.5.2) to find an initial feasible solution.

Let upper bound be the total cost value of the solution.

55

Step 1. Find the activity that has the most fractional valued variable.

Considering 1ij

j

X
∀

=∑ and Property 1, the most fractional and least

fractional variables in the problem correspond to the same activity. Let

Min

ijX and Max

ijX be least and most fractional variables respectively.

Step 2. There are three branches.

First branch: 1Min

ijX = and 0Max

ijX = .

Second branch: 0Min

ijX = and 1Max

ijX = .

Third branch: Both variables are set to be zero: 0Min

ijX = and 0Max

ijX = .

The following figure illustrates the branching scheme.

1

0

Min

ij

Max

ij

X

X

=

=

0

1

Min

ij

Max

ij

X

X

=

=

0

0

Min

ij

Max

ij

X

X

=

=

Figure 3-16 - Branching Strategy 2

If an activity has only two modes, then there are two branches.

The routing strategies that are defined for branching strategy 1 can be used

to find the route.

Step 3. Solve the LPR problem. There are three alternative cases. If none of

the conditions stated in the cases are satisfied then go to Step 1.

Case i. LP is infeasible, then go to Step 4.

56

Case ii. All variables in the optimal LPR solution are integer; the solution is

optimal for the associated node. If UB LB> (LB is the optimal LPR cost)

then let UB LB= . Go to Step 4.

Case iii. There are two sub-cases.

a. LPR is feasible and fractional and UB LB≥ then go to Step 1.

b. Fathoming case: UB LB< , then go to Step 4.

Step 4. Backtrack to the parent node of the branch and bound tree. Select

the alternate branch, go to step 0. If the alternate branch is previously

visited then backtrack to the grand parent node, and so on until finding an

unvisited route or reaching the initial node. If the current node is the root

node and all three child nodes are visited then the solution giving UB, i.e.,

UB the best upper bound is the optimal solution.

An example to illustrate the branching strategies is provided Table 3-6.

Time/cost values of the modes are stated in the parentheses. The first number in

each parenthesis is the processing time, while the second one is the cost of the

activity.

The fractional variables of the optimal LPR solution of the root node are

represented in Table 3-7 below.

Branching strategy 1: The index of the variable with the highest fractional

value is 14-0. If routing strategy 1 is utilized to find the route then 14 ,0X 1= .

If routing strategy 2 is applied then 14,0X 0= because when 14 ,0X 1= the

problem is infeasible. If 14 ,0X 1= led to a feasible solution then the total

costs by the optimal LPR solutions would be compared and the route

having the smaller lower bound would be selected.

57

Branching strategy 2: Two branches
14 ,0X 1= ;

14 ,1X 0= and
14,0X 0= ;

14,1X 1= lead to infeasible solutions. The remaining branch 14 ,0X 0= ,

14 ,1X 0= is feasible solution and hence it is selected. If the other branches

were also feasible the total cost by the optimal LPR solutions would be

compared and the route having the smaller lower bound would be selected.

Table 3-6 – A Sample Project to Illustrate Branching Strategies

Activity Immediate
Successors

Modes

0 1,2,3 (0,0)
1 4,5 (35,1536)(22,1570)(24,1698)(8,1896)(3,1953)
2 11,12 (99,15)(93,140)(80,407)(66,666)(61,750)(38,1072)
3 23 (104,11)(71,313)(68,331)(49,415)
4 6,7 (88,15)(35,99)
5 11,12 (82,9)(57,236)(35,373)(4,546)
6 8,9 (108,5)(84,527)(77,678)(40,1386)(30,1565)(24,1672)
7 11,12 (112,13)(46,156)
8 10 (58,1622)(40,2005)(38,2042)(21,2340)

9 11,12
(117,8)(95,524)(78,906)(72,1023)(67,1115)(33,1673)

(21,1847)(10,1998)
10 11,12 (83,8)(79,74)(65,263)(52,413)(44,503)(23,707)
11 13,14 (111,11)(52,682)(13,1071)(6,1133)

12 18,19
(117,15)(112,95)(109,134)(59,709)(41,898)(26,1052)

(11,1180)
13 15,16 (85,7)(76,83)(73,99)(20,265)
14 18,19 (100,14)(38,124)
15 17 (91,5)(40,193)

16 18,19
(118,10)(111,180)(94,586)(86,756)(80,867)(64,1150)

(62,1182)(42,1488)(32,1635)

17 18,19
(121,5)(117,88)(110,220)(99,398)(87,580)(66,842)

(62,888)(38,1131)

18 20,21
(112,12)(91,581)(84,766)(80,862)(76,948)(70,1066)

(62,1120)(49,1439)(30,1719)
19 23 (53,8)(48,45)(12,216)(6,228)

20 22,23
(91,15)(84,210)(82,263)(78,363)(72,496)(62,694)

(25,1392)(16,1537)(8,1648)
21 23 (110,7)(97,37)
22 23 (63,15)(43,53)
23 - -

58

Table 3-7 – The Variables at Fractional Values in the Optimal LPR Solution

Variable Index (i-j) Value
7-0 0.33
7-1 0.67
9-0 0.32
9-7 0.68
12-0 0.88
12-6 0.12
14-0 0.97
14-1 0.03
16-0 0.53
16-8 0.47
20-0 0.55
20-8 0.44

3.2.5.2 Approximation Algorithm

We propose three heuristic procedures to find feasible approximate

solutions to our problem. The first heuristic is LP based, runs in polynomial time

and is used as an initial feasible solution in our branch and bound algorithm. The

second heuristic is branch and bound based, runs in polynomial time and is

proposed with the hope of obtaining high quality and fast solutions. The third

heuristic is also branch and bound based, runs in exponential time and proposed

with the hope of obtaining near optimal solutions.

LP Based Heuristic Algorithm

Our heuristic procedure to find an upper bound proceeds in two phases:

construction and improvement.

Construction Phase:

The construction phase consists of 2 steps.

59

Step 1. The problem is first solved by relaxing the integrality constraints.

Say iLPt denotes the processing time of activity and iLPc is its associated

cost in the optimal relaxed solution.

Step 2. The total completion time is kept at its minimum value of MinT ,

when the processing time of activity i is decreased from iLPt . We decrease

the processing time of activity i by setting it to the largest processing time

mode that is no larger than iLPt . (From Property 6 we know that decreasing

any processing time does not violate feasibility.) Our aim is to increase the

total cost as small as possible by small movements.

Consider the sample project whose data were given in Table 3-6. In the

construction phase, the following mode assignments are made and the associated

upper bound is found as 16549.

For activity 7, 7 LPt 68= and the mode with minimum duration that is not

larger than 68 is mode 2, hence we set 7 ,2X 1= .

For activity 9,
9 LPt 44= , and the mode with minimum duration that is not

larger than 44 is mode 6, hence we set 9 ,6X 1= .

For activity 12,
12 LPt 104= , and the mode with minimum duration that is

not larger than 104 is mode 4, hence we set 12,4X 1= .

For activity 14, 14 LPt 98= , and the mode with minimum duration that is not

larger than 98 is mode 2, hence we set 14 ,2X 1= .

For activity 16, 16 LPt 78= , and the mode with minimum duration that is not

larger than 78 is mode 5, hence we set 16 ,5X 1= .

For activity 20, 20 LPt 54= , and the mode with minimum duration that is not

larger than 54 is mode 6, hence we set 20 ,6X 1= .

60

The other variables at the optimal solution are not fractional. Hence the

solution obtained after the above shifts is feasible for the original problem, and the

objective function value is the upper bound for the total cost of the problem.

Improvement Phase:

The solution found by the construction phase is improved using two

procedures in sequel.

First Improvement

The construction heuristic can be improved by increasing the durations of

some activities. Such increases are possible, as in construction phase we decrease

some durations that would give room to some other increases. For each noncritical

activity, we check whether it can be moved to its next higher duration mode

without violating feasibility. Among the activities that would lead to feasible

increases, we select the one that causes the maximum reduction in the total cost

value. Formally, we select the activity k such that { }kj kj 1 ij ij 1
i

c c max c c− −− = − if

activity i is assigned to mode j in the current solution. We terminate the first

improvement whenever any further increase in durations leads to an infeasible

solution.

For the sample project used to illustrate the construction phase, activity 22

is assigned to mode 2, which has a cost of 53. Assigning activity 22 to mode 1,

which is the next higher duration mode, produces a feasible solution hence the

activity 22 is moved to its first mode. This movement decreases the total cost of the

project by 38 units, and the new total cost is 16511.

We terminate the first improvement step, as any further increase in

durations leads to an infeasible solution.

61

Second Improvement

The second improvement phase tries to improve the solution returned by the

first improvement phase using pairwise interchanges. For all pairs on the same

path, we check whether increasing one activity duration while decreasing the other

one reduces the total cost without increasing the project completion time. Among

the pairs that qualify, we select the interchange that decreases the total cost by the

largest amount. We terminate whenever all pairwise interchanges are either

infeasible or cannot lead to a reduction in total cost.

Branch and Bound Based Approximation Algorithm I

To find second approximate solution, we use our branch and bound

algorithm with the first branching strategy, but do not allow backtracking. We use

the LPR based heuristic as a starting solution in our curtailed branch and bound

algorithm. We terminate whenever we find all integer variables, no feasible

solution, or no promising solutions (lower bounds are no smaller than the best

known upper bound). For the sake of completeness Step 0 and Step 1 are restated

below, although they are the same as in optimization algorithm. In step 2, routing

strategy 2 defined in the previous section is used.

Step 0. Solve the LPR problem at the root node. Use LP based heuristic

algorithm to find an initial feasible solution. Let upper bound be the total

cost value of the solution. Recall from Property 1 that the optimum LPR

solution has at most two fractional variables for each activity.

 Step 1. The variable with the highest fractional value is chosen. Say ijX is

the most fractional variable.

Step 2. There are two branches associated with the selected variable. These

branches are 1ijX = and 0ijX = as shown in the following figure.

62

Xij=1 Xij=0

Figure 3-17 - Branching Strategy 1

Lower bound is used to find the route. LPR is solved for both branches. If

both routes are feasible then the one with the smaller lower bound is

followed. If both are infeasible then go to Step 3.

Step 3. Solve the LPR problem. There are three cases.

Case i. LP is infeasible, then stop. The solution giving the best upper bound

is the solution of approximation algorithm.

Case ii. All variables in the optimal LPR solution are integer; the solution is

optimal for the associated node. If UB LB≥ (LB is the total cost of found in

optimal LPR solution) then let UB LB= . Then stop. The solution giving the

best upper bound is the solution of approximation algorithm.

Case iii. There are two sub-cases.

a. LPR is feasible and fractional andUB LB≥ , then go to Step

1.

b. UB LB< , then stop. The solution giving the best upper

bound is the result of approximation algorithm.

In place of Branching Strategy 1, Branching Strategy 2 could also be used

to arrive at an approximate solution.

Branch and Bound Based Approximation Algorithm II

In this section we describe another approximation algorithm that is based on

reducing the problem size using the optimal LPR solution and then solving the

reduced problem by our branch and bound algorithm. In doing so, the variables

that take integer values in the optimal LPR solution are fixed and then branch and

63

bound is applied for the fractional variables. The method consists of the following

three steps.

Step 0. The LPR problem is solved.

Step 1. All variables that take integer values in the optimal LPR solution are

fixed.

Step 2. Branch and bound algorithm is used to find the values of the

activities with fractional assignments.

3.3 General Modified Budget Problem

In this section, we consider a general budget problem, with available budget

b , between minb and maxb values (See Section 3.1.2.). We aim to select the

solution having the smallest total cost value (no more than b) among the ones

having the smallest project completion time value.

Recall that, when
minb b= the problem is trivial. All activities are assigned

to their longest modes. For maxb b= the minimum deadline problem is already

defined and studied as a special case of the budget problem. We now discuss

general budget problem with arbitrary b value, where min maxb b b< < . In the next

subsection mode elimination procedures are proposed. In Section 3.3.2 we state the

properties of the optimal LP relaxation (LPR). We continue with lower bounding

procedures. The branch and bound method and approximation algorithms are

presented in Section 3.3.4. The majority of the results are generalized from the

minimum deadline problem. For the sake of simplicity, hereafter we refer to ‘the

general modified budget problem’ as ‘the budget problem’

3.3.1 Mode Elimination Rules

In this section we derive short mode, long mode and costly mode

elimination rules for the budget problem. Our aim is to reduce the size of the search

by eliminating some modes that are either infeasible or cannot lead to an optimal

solution.

64

Short Mode Elimination

As the short modes are costly, assigning these modes may lead to infeasible

solutions. We use the following notation in the algorithm.

iES _ L : Earliest start time of activity i, when all activities are assigned to

their longest modes.

iLC _ L(LB) : Latest completion time of activity i, when all activities are

assigned to their longest modes. A lower bound for the project completion time is

used to find the iLC _ L(LB) , as the exact completion time is not known.

iES _ L and iLC _ L(LB) are found by the CPM method, using a lower

bound on the completion time of the project.

 While computing
iES _ L and

iLC _ L(LB) we assign all noncritical

activities to their longest modes, i.e., we set

i1X 1= for all i.

Theorem 4

If
i i ijLC _ L(LB) ES _ L t− ≥ then for activity i, modes j 1+ through

im

cannot lead to an optimal solution.

Proof: Assume a solution that contradicts with the condition of the theorem,

i.e.,
i i ijLC _ L(LB) ES _ L t− ≥ and

ij'X 1= where j' j> . Since
ij' ijc c> setting

ijX 1= is certainly feasible and improves the budget by an amount of
ij' ijc c− . And

such an interchange is feasible as
i i ijLC _ L(LB) ES _ L t− ≥ Hence any solution

that contradicts with the condition of the theorem cannot be optimal. ⁭

The example that associated information is given in Table 3-6 is used to

illustrate the application of the rule. Let the available budget for the project be 8371

YTL. The lower bound for the total project completion time is found to be 517.64

by the CPM method. Consider activity 3 that has neither a successor nor a

predecessor. Hence;

65

3LC _ L(LB) 517=

iES _ L 0=

Since
3,1517 t 104≥ = , all modes

ij M∈ that are j 1> , i.e., mode 2, mode 3

and mode 4 are eliminated. Since mode 1 is feasible in any solution and other

modes are more costly than mode 1.

Theorem 4 cannot eliminate any mode of any activity other than the modes

stated above.

Long Mode Elimination

The long mode elimination rule eliminates all nonpromising modes, i.e., the

ones that cannot produce optimal solutions. Recall that in the minimum deadline

problem, long mode elimination rule disregards the infeasible solution as the

project completion time is a constraint, but do not appear in the objective function.

We use the following notation to state long mode elimination algorithm.

iES _ E : Earliest start time of activity i, when all activities are assigned to

their shortest modes.

iLC _ E(UB) : Latest completion time of activity i, when all activities are

assigned to their shortest modes. Upper bound for total completion time of the

project is used to find
iLC _ E(UB) as the project completion time is not known.

The procedure for finding the upper bound will be discussed later.

In computing the iES _ E and iLC _ E(UB) values, the CPM method is used

by setting all activities to their shortest modes, i.e. we set

iimX 1= for all i.

Theorem 5

If i i ijLC _ E(UB) ES _ E t− < for activity i then mode 1 through j cannot

lead to an optimal solution.

66

Proof: Consider an optimal solution where *

N 1S +
 is the associated project

completion time, *

iS is the start time of the activity i, *

iLC is the latest completion

time of the activity.

*

i iS ES _ E≥ since
k

*

k kmt t≥ where k is the immediate predecessor of activity

i and *

kt is its optimal processing time.

*

i iLC LC _ E(UB)≤ because *

N 1S UB+ < and
k

*

k kmt t≥ .

This follows * *

i i i iLC S LC _ E(UB) ES _ E− ≤ − . Any solution that assigns

activity i to mode j such that ij i it LC _ E(UB) ES _ E> − cannot be optimal as the

condition * *

i i ijLC S t− ≥ is violated. ⁭

We illustrate the application of the theorem with the example that

associated information is given in Table 3-5. Budget limit for the problem is set to

1070 YTL. The upper bound for the project completion time is 116.

1LC _ E(UB) and 1ES _ E are computed using the CPM method.

1LC _ E(UB) 81=

1ES _ E 0=

1,1t 108 81= > and 1,2t 85 81= > therefore mode 1 and mode 2 defined for

activity 1 cannot be in any optimal solution and are eliminated. Similarly first

modes of activity 3 activity 4 are eliminated.

Costly Mode Eliminations:

The costly mode elimination rule eliminates the modes that would lead to an

infeasible solution, without ever being evaluated by a solution algorithm. Recall

that the costly mode elimination rule eliminates nonpromising modes in the

minimum deadline problem as the budget is not a constraint, but appears in the

objective.

iLB : A valid lower bound on the total cost of all activities, other than i.

67

Theorem 6

If i ijLB c b+ > then modes 1 through j cannot lead to a feasible solution.

Proof: iLB is the minimum cost of performing all other activities, except activity i.

When activity i is assigned to any mode ij M∈ then the lower bound on total cost

becomes i ijLB c+ and if i ijLB c b+ > , assignment to mode j violates the budget

constraint. ⁭

iLB used in Theorem 6 is computed in two different ways.

Simple Lower Bound

A lower bound on the total cost for the activities except activity i is the cost

incurred by these activities when they are assigned to their longest modes.

i k 1

k V ,k i

NLB c
∈ ≠

= ∑

LP Based Approach for Finding Lower Bound

The procedure consists of two steps.

Step 1:

Activity i is fixed to its shortest duration mode and its cost is set to zero,

i.e.,
iimX 1= and

iimc 0= .

Step 2:

The discrete nature of ijX variables is relaxed and the problem is solved as

a continuous LP model. The objective function value of the resulting LP relaxation

is the lower bound on the total cost of the project.

Iterative Application of the Elimination Rules

As discussed for the minimum deadline problem, the mode elimination

methods affect each other. The interactions are the same as those that are defined

68

for minimum deadline problem and are restated in Table 3-8 for the sake of

completeness.

Table 3-8 – The Interactions between Mode Elimination Rules

Affected

Affecting Long Mode
Eliminations

Short Mode
Eliminations

Costly Mode
Eliminations

Long Mode No Yes Yes
Short Mode Yes No Yes
Costly Mode Yes No Yes

Due to the effects of elimination algorithms to each other, iterative

application of these algorithms increases the effectiveness of the algorithms.

Initially long mode, short mode and costly mode iteration algorithms are applied in

sequel. Then further iterations are performed according to the effects of methods to

each other. The table above indicates that the costly mode elimination algorithm

should be applied after any elimination, long mode elimination should be

performed if a short mode or costly mode is eliminated. There is no need to check

short mode elimination unless a long mode is eliminated. The iterations should stop

if no further mode elimination is possible.

3.3.2 The Optimal Linear Programming Relaxation Solution and Its

Properties

We use Linear Relaxation programming (LPR), i.e., continuous relaxation,

of the model to find lower bounds and upper bounds on the optimal objective

function value. The deadline problem and the budget problem are analogous in the

sense that the objective function in one problem appears as a constraint in the other

and vice versa. Hence most of the properties we derived for the minimum deadline

problem hold for the budget problem. We restate the properties and modify their

proofs so that they treat the budget as a constraint, but not an objective function.

69

Property 8. The solution of the optimal LPR produces at most two

continuous assignments for each activity.

Proof: We let
iLPc and

iLPt denote the cost and duration assigned for

activity i respectively. Accordingly,

i

iLP ij ij

j M

c c X
∀ ∈

= ∑ and
i

iLP ij ij

j M

t t X
∀ ∈

= ∑

Given iLPc and iLPt values for each activity i , the following LP model

can be used to make mode assignments with the minimum cost.

i

i

m

ij ij

j 1

ij

j

ij ij iLP

j M

ij

Min t X

s.to.

X 1

c X c

X 0

=

∀

∀ ∈

=

=

≥

∑

∑

∑

Since there are two constraints, there are two basic feasible variables in

the basic feasible solution. This follows each basic feasible solution has

at most two nonnegative variables. From LP theory, we know the

optimal solution is the basic feasible solutions’ set. Therefore the

optimal LP solution has at most two positive ijX values. ⁭

Property 9. The continuous assignments associate to two consecutive

modes for the activities having convex time/cost functions.

Proof: Consider an activity i having convex cost structure and two

nonconsecutive modes ia,b M∈ and a b< , as depicted by the Figure

3-.

Assume an optimal solution for the activity is on the line connecting a

and b. As the time/cost function is convex, any point on the lines

connecting a and a+1, and b-1 and b are below the line connecting a

and b.

70

ia ia ib ib ia ia ia 1 ibt X t X t X t X++ > + and

ia ia ib ib ib 1 ia ia 1 ibt X t X t X t X− ++ > + .

Hence any point on the line connecting two nonconsecutive modes

cannot be optimal. In other words, the optimal solution is on the line

connecting two consecutive modes, for all activities having convex

time/cost structures. ⁭

The result of Property 9 follows that, if ij0 X 1< < then,

Either ij 1X 0+ > and ij ij 1X X 1++ = or

 ij 1X 0− > and ij ij 1X X 1−+ = .

Property 10. The continuous assignments associate to two extreme modes,

the activities having concave time/cost functions.

Proof: Consider an activity i having concave cost structure and two modes

ia,b M∈ , a b< and a 1≠ and
ib m≠ as depicted in Figure 3-. Any

point on the line connecting 1 and im is below the line connecting a

and b, i.e.,

i i i iia ia ib ib im im im imt X t X t X t X+ ≥ +

Hence any point on the line connecting two modes, other than the first

and last modes, cannot be optimal. In other words, an optimal solution

is on the line connecting first and last modes for all activities having

concave time/cost structures. ⁭

The result of Property 10 follows that if ij0 X 1< < then j 1=

and ij m= and
ii1 imX X 1+ = .

Using the result of Property 10, we solve the LPR model only for the

shortest and longest modes for the activities having concave time/cost

functions.

71

Properties 11 through 14 state some properties of the optimal LPR

solution for the general time/cost functions.

Property 11. If the optimal LPR solution produces fractional assignments

for an activity, then that activity is critical for the LP relaxed problem.

Proof: Assume an optimal LPR solution with ij0 X 1< < , iLPt is the

associated duration for activity i and B is the associated total cost of the

project.

If activity i is not critical, then there must be at least one
ij't such that

ij' iLPt t> and increasing the activity duration by
ij' iLPt t− units does not

increase the total completion time of the project. Moreover, the total

cost of the project, B' , would be lower than B as ij' iLPt t> implies

ij' iLPc c< .

Since the LPR model produces a total cost value higher than B' , there

cannot be such ij't hence activity i is critical. ⁭

Property 12. If an activity i is noncritical in the optimal LP solution

then i1X 1= .

Proof: Any noncritical activity can be processed in at least one time period

t such that iLPt t> , without increasing the completion time of the

project.

If such a t exists, then the solution is not optimal as the activity

duration would increase by iLPt t− units. Such an increase would reduce

the total cost which contradicts with the optimality of the solution.

Hence there cannot be any iLPt t> , and this follows that
iimX 1= . ⁭

72

Property 13. Decreasing
iLPt while keeping processing times of all other

activities k at kLPt always leads to an infeasible solution.

Proof:
maxb b< and *

N 1 MinS T+ > where
MinT is the minimum possible project

duration and *

N 1S + is the project duration at optimal. If *B b< , where

*B is the total project cost at optimal then *

N 1S + can be improved at a

cost of *b B− . Since *

N 1S + is the minimum project duration subject to

available budget, *B b= . Decreasing iLPt leads to an increase in total

project cost, *B . If *B increases further then the problem becomes

infeasible. ⁭

Property 14. Increasing
iLPt while keeping the durations of all other

activities k at kLPt leads to a feasible solution.

Proof: Say activity k is assigned to mode j, where kj kLPt t> is considered.

As kj kLPc c< ,

iLP kj iLP kLP

i V ,i k i V ,i k

c c c c b
∀ ∈ ≠ ∀ ∈ ≠

+ < + =∑ ∑ . ⁭

3.3.3 Procedures for Finding Lower Bound

In this section two different procedures are presented to find lower bounds

on the optimal objective function values, i.e., the optimal project completion time,

in this section. The first lower bound that we refer as naïve lower bound is simple

to compute but inefficient. The second lower bound is based on the optimal LPR

solutions. It is efficient but harder to compute.

73

Naïve Lower Bound (NLB)

NLB is found by setting all activities to their shortest duration modes. The

resulting project completion time, NLB found by the CPM method, is a lower

bound for the optimal project completion time.

Formally;

N 1NLB S += where
iimX 1= for i V∀ ∈

 NLB is a valid lower bound because any activity i cannot be executed with

in a duration that is smaller than
iimt and hence total project completion time

cannot be less than NLB. The resulting schedule on the other hand, may be

infeasible, as it leads minimum duration assignments, leading to high project cost

(higher than b).

 An example whose data are given in Table 3-5 is used to illustrate the NLB

computation.

NLB is found by simply taking the minimum duration mode for each

activity. Accordingly, as activity 3 and activity 4 are on the critical path, the total

completion time is the sum of processing times of these activities. Accordingly,

N 1NLB S 49 35 84+= = + = .

LPR Based Lower Bound (LPLB)

LPLB is found by relaxing the integrality constraints on the discrete

variables, ijX s, and solving the resulting LP to optimality. An optimal solution to

the LPR of the problem provides a lower bound for our minimization problem.

NLB is a lower bound on the optimal solution of the LPR as well. Hence

LPLB dominates NLB.

The LPLB value is 116 (found by the LP software) for the sample project

above whose NLB is 84.

74

3.3.4 Solution Algorithms

We first reduce the size of the budget problem by an iterative application of

the mode elimination rules, then solve the reduced problem by branch and bound

algorithm and approximation procedures. In this section we describe our

optimization algorithms and approximation algorithms for the general modified

budget problem.

3.3.4.1 Branch and Bound Algorithm

The branch and bound algorithm described for the minimum deadline

problem is used for the general budget problem. As in the deadline problem two

different branching strategies together with two types of routing strategies are

presented.

Branching Strategy 1

 Branching strategy is based on the LP relaxation (LPR) solution. Stepwise

procedure for the strategy is presented below.

 Step 0. Solve the LPR problem at the root node.

Use LP based heuristic algorithm (discussed in Section 3.3.3) to find an

initial feasible solution. Let upper bound be the total completion time of the

solution and *B be its total cost value.

Recall from Property 8 that LPR solution has at most two fractional

variables for each activity.

 Step 1. The variable with the highest fractional value, say ijX , is chosen.

Step 2. There are two branches associated with the selected variable. These

branches are 1ijX = and 0ijX = as shown in the following figure.

75

Xij=1 Xij=0

Figure 3-18 - Branching Strategy 1

Considering these two branches at each node, two different routing

strategies are proposed.

Routing Strategy 1: Most fractional variable is set to be one.

Routing Strategy 2: Lower bound is used to find the route. LPR is solved

for both branches. If both routes are feasible then the one which gives the

smaller lower bound is followed. If both are infeasible then go to Step 4.

Step 3. Solve LPR. There are three alternative cases.

Case i. LP is infeasible, then go to Step 4.

Case ii. All variables in the LPR solution are integer, the solution is optimal

for the associated node. Let B be the total cost value of the LPR solution.

There are two cases.

a. UB LB> (LB is the optimal LPR cost) then let UB LB= ,

*B B= .

b. UB LB= . If *B B< then *B B= . Go to Step 4.

Case iii. There two cases.

a. LPR is feasible and fractional and UB LB≥ , then go to Step

1.

b. Fathoming case: UB LB< , then go to Step 4.

Step 4. Backtrack to the parent node of the branch and bound tree. Try the

alternate branch, go to step 0. If the alternate branch is previously visited

then backtrack to the grand parent node, so on, until finding an unvisited

route or reaching the root node. If the current node is the root node and both

child nodes are visited then the solution giving UB, i.e., the best upper

bound is the optimal solution.

76

Branching Strategy 2

This strategy is also based on the optimal LPR solution; however in place of

two there are three branches at each node. Stepwise procedure is provided below.

Step 0. Solve the LPR problem at the root node. Use LP based heuristic

algorithm to find an initial feasible solution. Let upper bound be the total

completion time of the solution and *B be its total cost value.

Step 1. Find the activity that has the variable with the most fractional value.

Considering 1ij

j

X
∀

=∑ and Property 8 of the optimal LPR solution, the

most fractional and least fractional variables in the problem correspond to

the same activity. Let Min

ijX and Max

ijX be least and most fractional variables

respectively.

Step 2. There are three branches.

First Branch: 1Min

ijX = and 0Max

ijX = .

Second Branch: 0Min

ijX = and 1Max

ijX = .

Third Branch: Both variables are set to be zero: 0Min

ijX = and 0Max

ijX = .

The following figure illustrates the branching scheme.

1

0

Min

ij

Max

ij

X

X

=

=

0

1

Min

ij

Max

ij

X

X

=

=

0

0

Min

ij

Max

ij

X

X

=

=

Figure 3-19 - Branching Strategy 2

If an activity has only two modes, then there are two branches.

77

The same routing strategies that are defined for branching strategy 1 can be

used to find the route.

Step 3. Solve the LPR problem. There are three alternative cases. If none of

the conditions stated in the cases are satisfied then go to Step 1.

Case i. LP is infeasible, then go to Step 4.

Case ii. All variables in the optimum LPR solution are integer, the solution

is optimal for the associated node. If UB LB> (LB is the total completion

time of the optimal LPR solution) then let UB LB= . Go to Step 4.

Case iii. There are two sub-cases.

a. LPR is feasible and fractional and UB LB≥ , then go to Step

1.

b. Fathoming Case: UB LB< , then go to Step 4.

Step 4. Backtrack to the parent node of the branch and bound tree. Try the

alternate branch, go to step 0. If the alternate branch is previously visited

then backtrack to the grand parent node, and so on until finding an unvisited

route or reaching the initial node. If the current node is the root node and all

three child nodes are visited then the solution giving UB, i.e., UB the best

upper bound is the optimal solution.

An illustrative example for both strategies is provided below. The

associated information is given in Table 3-6. Applying the procedures described

above in the LPR solution at the root node, there are the fractional variables shown

in Table 3-9.

Table 3-9 – The Variables That Take Fractional Values in LPR Solution

Variable Index (i-j) Value
17-0 0.48
17-7 0.51
18-0 0.36
18-8 0.63
20-0 0.71
20-8 0.29

78

Branching strategy 1: The index of the variable with the highest fractional

value is 20-0. If routing strategy 1 is applied to find the route then
20,0X 1= .

If routing strategy 2 is applied then again 20,0X 1= ; because when both

14 ,0X 0= and 14 ,0X 1= are feasible, but when 14,0X 0= then the lower

bound will be worse.

Branching strategy 2: All three branches 20,0X 1= ; 20,8X 1= ; 20 ,0X 0= and

20 ,8X 0= lead to feasible solutions. The lower bounds of these three

branches are compared, and the route having the smallest lower bound is

selected. The lower bounds are provided on the below tree. Accordingly

when 20,0X 1= then the lower bound is the lowest, hence it is the selected

route.

20,0

20,8

1

0

518,94

X

X

LB

=

=

=

20,0

20,8

0

1

560,19

X

X

LB

=

=

=

20,0

20,8

0

0

520,25

X

X

LB

=

=

=

Figure 3-20 - A Part of Branch and Bound Tree for the Sample Project

3.3.4.2 Approximation Algorithm

We propose three heuristic procedures to find feasible approximate

solutions to our problem. The first heuristic is LP based, runs in polynomial time

and is used as an initial feasible solution in our branch and bound algorithm. The

second heuristic is branch and bound based, runs in polynomial time and is

proposed with the hope of obtaining high quality, fast solutions. The third heuristic

79

is also branch and bound based, runs in exponential time and proposed with the

hope of obtaining near optimal solutions.

LP Based Heuristic Algorithm

Our heuristic procedure to find an upper bound proceeds in two phases:

construction and improvement.

Construction Phase

The construction part consists of 2 steps.

Step 1. The problem is first solved by relaxing the integrality constraints.

Say iLPt denotes the processing time of activity and iLPc is its associated

cost in the optimal relaxed solution.

Step 2. We decrease the cost of activity i and hence total cost of the project

by setting activity i to the largest cost mode that is no larger than iLPc . Our

aim is to increase the completion time as small as possible by small

increments. (From Property 14 we know that decreasing the cost of any

activity does not violate feasibility.)

Consider the project whose associated information is given in Table 3-6. In

the construction phase, the following mode assignments are made and the

associated upper bound is found as 548. In the optimal LPR solution, variables

associated with activity 17, 18 and 20 take fractional values as seen in Table 3-9.

For activity 17, 17 LPc 588.35= and the mode with maximum cost that is not

larger than 588.35 is mode 5, hence we set
17 ,5X 1= .

For activity 18, 18 LPc 1100.46= , and the mode with minimum duration that

is not larger than 1100.46 is mode 6, hence we set 18 ,6X 1= .

For activity 20, 20 LPc 487.19= , and the mode with minimum duration that

is not larger than 487.19 is mode 4, hence we set 20,4X 1= .

80

The solution with the above assignments becomes feasible for the original

problem, and the objective function value is the upper bound for the total

completion time of the project.

Improvement Phase:

The solution found by the construction phase is improved using two

procedures in sequel.

First Improvement

The construction heuristic can be improved by decreasing the durations of

some activities. Such decreases are possible, as in construction phase we increase

the costs that would give room to some decreases. For each critical activity we

check whether it can be moved to its next smaller duration mode without violating

feasibility. Among the activities that would lead to feasible decreases, we select the

one that causes maximum reduction in total completion time. We terminate the first

improvement whenever any further increase in durations leads to an infeasible

solution.

For the sample project, activity 8 and activity 18 can be moved to their next

smaller duration mode without violating the feasibility. Activity 8 is assigned to

mode 1. When it is assigned to mode 2, total completion time of the project is

decreased to 544. On the other hand when activity 18 is assigned to mode 7, instead

of mode 6 then the total completion time is 540. Since movement of activity 18

causes the maximum reduction, we select to move activity 18.

We terminate the first improvement step, as any further increase in

durations leads to an infeasible solution.

Second Improvement

The first improved solution is further improved by pairwise interchanges.

For all pairs on the same path, we check whether increasing one activity duration

while decreasing the other one reduces the total completion time without violating

the feasibility. Among the pairs that qualify, we select the interchange that

81

decreases the completion time most. We terminate whenever all interchanges are

either infeasible or cannot lead to a reduction in completion time.

Branch and Bound Based Approximation Algorithm I

In this section, we apply our branch and bound algorithm using branching

strategy1, but with no backtracking. We terminate whenever we find all integer

solutions, no feasible solution, or no promising solutions (lower bounds are no

smaller than the best known upper bound). For the sake of completeness Step 0 and

Step 1 are restated below, although they are the same as in optimization algorithm.

In step 2, routing strategy 2 defined in the previous section is used.

Step 0. Solve the LPR problem at the root node. Use LP based heuristic

algorithm to find an initial feasible solution. Let upper bound be the total

completion time of the solution and *B be its total cost value. Recall from

Property 8 that LPR solution has at most two fractional variables for each

activity.

Step 1. The variable with the highest fractional value is chosen. Say ijX is

the most fractional variable.

Step 2. There are two branches associated with the selected variable. These

branches are 1ijX = and 0ijX = as shown in the following figure.

Xij=1 Xij=0

Figure 3-21 - Branching Strategy 1

82

Lower bound is used to find the route. LPR is solved for both branches. If

both routes are feasible then the one with the smaller lower bound is

followed. If both are infeasible then go to Step 3.

Step 3. Solve the LPR problem. There are three cases.

Case i. LP is infeasible, then stop. The solution giving the best upper bound

is the solution of approximation algorithm.

Case ii. All variables in the optimal LPR solution are integer, the solution is

optimal for the associated node. If UB LB≥ (LB is the total completion

time found in optimal LPR solution) then let UB LB= . Then stop. The

solution giving the best upper bound is the solution of approximation

algorithm.

Case iii. There are two cases.

a. LPR is feasible and fractional andUB LB≥ , then go to Step

1.

b. UB LB< , then stop. The solution giving the best upper

bound is the solution of approximation algorithm.

In place of Branching Strategy 1, Branching Strategy 2 could also be used

to arrive at an approximate solution.

Branch and Bound Based Approximation Algorithm II

In this section we describe another approximation algorithm that is based on

reducing the problem size and solving the reduced problem by branch and bound.

The variables that take integer values in the optimal LPR solution are fixed and

then branch and bound is applied for the fractional variables. The method consists

of 3 steps.

Step 0. The LPR problem is solved.

Step 1. All variables that take integer values in the optimal LPR solution are

fixed.

Step 2. Branch and bound algorithm is used to find the optimal values of the

activities with continuous variables.

83

CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter we design an experiment to test the performances of our

solution algorithms together with reduction and bounding mechanisms. We first

present our data generation scheme and state our performance measures. We then

discuss the results of our preliminary experiment that are used to set the

mechanisms of the main runs. Finally, we present our main experiment and

discuss its results.

4.1 Data Generation

The data we use in our experiment are basically taken from Akkan et al.

(2005). We use medium-sized problem instances to solve the budget problem and

large-sized problem instances to solve the minimum deadline problem. We next

discuss the problem parameters together with their settings.

In the project scheduling literature, Complexity Index (CI) and Coefficient

of Network Complexity (CNC) are used to define the network complexity.

For an AoA representation CNC is the ratio of the number of activities to

the number of events. Hence higher CNC results in higher number of activities.

CI is the other measure of complexity for the networks. For an AoA

representation it provides a measure for the network’s similarity to a series-parallel

network, and computed as the minimum number of node duplications to convert

the network into a series-parallel network. A higher CI either refers to higher

84

number of precedence relations or more complex precedence relations that require

dummy nodes and/or arcs. Hence higher the CI values associate to harder to solve

networks. For the details of the index, we refer the reader to Bein et al. (1992).

The number of modes, im , is randomly determined from discrete uniform

distribution. Two uniform distributions, []U 2,10 and []U 11,20 , are used to see

the effect of im on the performance of our algorithms.

The durations and costs of the activity modes are discrete and generated as

follows: The durations are generated from []U 3,123 . Then they are sorted such

that kt is the kth smallest duration. The minimum cost, cm, is generated from

U[5,15]. Then 1kc − is set to 1()k k k kc s t t −+ − where 1 [, 3]k k ks U s s− ∈ + or

1 [(1, 3),]k k ks U Max s s− ∈ −

Three different time/cost functions are used: Concave, convex and hybrid.

The types of time/cost functions affect the computational performance. For

example, the linear programs are solved only for two modes per activity when the

time cost function is concave (See Properties 3 and 10).

We try four different budget values: maxb , l arg eb , averageb and smallb . minb and

maxb are the minimum and maximum total cost values of all efficient solutions

respectively. Using these values, we find l arg eb , averageb and smallb as follows:

max min
average

b b
b

2

+
=

max average

l arg e

b b
b

2

+
=

min average

small

b b
b

2

+
=

 We consider 12 combinations with the following parameters for .
l arg eb ,

meanb and
smallb .

85

Table 4-1 – The Budget Problem Parameters

CI CNC Cost
Function

Number
of

activities

Number of
modes/activity

0 2 Concave [29,30] [1,10]
0 2 Convex [29,30] [1,10]
0 2 Hybrid [29,30] [1,10]
0 2 Concave [29,30] [11,20]
0 2 Convex [29,30] [11,20]
0 2 Hybrid [29,30] [11,20]
4 2 Concave [34,35] [1,10]
4 2 Convex [34,35] [1,10]
4 2 Hybrid [34,35] [1,10]
4 2 Concave [34,35] [11,20]
4 2 Convex [34,35] [11,20]
4 2 Hybrid [34,35] [11,20]

We solve each 12 combination by 4 different b values. Hence we use

12* 4 48= combinations. For each combination we try 10 problem instances.

Therefore 480 problems are solved. We treat the problem with maxb value as a

minimum deadline problem, as well.

For the minimum deadline problem, to see the performances of the

algorithms on large-sized problem instances, we perform an additional experiment

using the parameters shown in Table 4-2.

Table 4-2 – The Parameters for the Large-Sized Instances

CI CNC Cost
Function

Number
of

activities

Number of
modes/activity

13 5 Concave 85 [1,10]
13 5 Convex 85 [1,10]
13 5 Hybrid 85 [1,10]
13 5 Concave 85 [11,20]
13 5 Convex 85 [11,20]
13 5 Hybrid 85 [11,20]

86

For each of these 6 combinations, we solve 5 problems. We set a

termination limit of 2 hours for all algorithms. We report the best solution found so

far, when we stop at the termination limit.

4.1 Performance Measures

To evaluate the efficiency of our branch and bound algorithm we use the

following performance measures.

1. Average and maximum CPU time in seconds

2. Average and maximum number of nodes generated

3. Number of unsolved instances

4. Average and maximum number of nodes generated to reach the

optimal solution

The following measures are used to evaluate the performance of our

heuristics.

1. Average and maximum CPU time

2. Average and maximum percentage deviation from the optimal

solution

We evaluate the root node performances of the lower bounds by their

percentage deviation from the optimal solution in average and maximum terms.

The algorithms are coded in Microsoft C# programming language and run

on Microsoft Windows Operating System. The optimal LP solutions are found by

Cplex 10.1.

4.2 Preliminary Experiments

In designing a preliminary experiment, we aim to see the effects of our

mechanisms and continue the main run with the most effective components.

87

We use 30 instances whose parameters are tabulated in Table 4-3 to test the

performance of mode elimination rules, branching strategies and heuristic

procedures. Moreover the effect of the LPR bound on the performance of the

branch and bound is investigated. For each of these three combinations, we solve

10 problem instances.

Table 4-3 – The Properties of Instances Used in Preliminary Experiments

Cost
Function

Number
of

activities

Number of
modes per

activity
Concave [29,30] [1,10]
Convex [29,30] [1,10]
Hybrid [29,30] [1,10]

Upper Bound Selection for a Feasible Solution

We check the performance of the LPR based heuristic procedure when used

as an initial feasible solution in a branch and bound algorithm and in a specified

number of branching nodes with the hope of improving the best known feasible

solution.

Table 4-4 gives the combinations used to test the upper bound effects. Table

4-5 and Table 4-6 report the associated results for the average CPU times and

number of nodes, respectively.

Table 4-4 – The Combinations Used for UB Settings

 UB1 UB2 UB3
LPR Based Procedure at the

Root Node
Yes Yes Yes

Applying UB Procedure at
First 50 Nodes

Yes No -

Applying UB Procedure at
First 100Nodes

- No Yes

88

We set the number of nodes for which the upper bound is computed to

either 50 or 100 and see whether computing upper bounds in more nodes improves

the performance or not.

Table 4-5 – Average CPU Times Regarding UB Finding Procedures

 Large Mean Small Overall

UB1 1050.57 245.60 139.40 478.52

UB2 1035.73 295.57 263.37 531.56

UB3 1048.60 247.93 259.47 518.67

Table 4-6 – Average Number of Nodes Regarding UB Finding Procedures

 Large Mean Small Overall

UB1 28834.43 6618.00 6749.80 14067.41

UB2 30852.57 7963.20 6863.27 15226.34

UB3 28782.70 6569.17 6735.90 14029.26

.As can be observed from Table 4-5 and Table 4-6 for L arg eb b= , UB2 is

slightly better than UB1 and UB3, however in general UB1 results in smaller CPU

times. UB1 and UB3 result in smaller number of nodes. As we observe that

computing upper bounds for more than 50 nodes does not count for an

improvement, we set the limit to 100 nodes. Otherwise we would compute upper

bounds for more than 100 nodes and study the results.

Mode Elimination Algorithm Selection

We try six different ways of implementing our mode elimination rules.

Mode elimination rules can be used at the root node and/or every node of the

branch and bound tree. We consider the short and long mode elimination rules

together and separated them from costly mode elimination rule which is

considerably more time consuming. We tabulate the notation used for the mode

eliminations in Table 4-7. According to the notation, MR2 corresponds to the case

where the short and long mode elimination rules are used only at root node and no

89

other mode elimination is checked. All experiment is conducted under the same

conditions by branching strategy 1 and routing strategy 2. We use the LPR based

heuristic at the first 50 nodes of the branch and bound tree.

Table 4-7 – The Notation Used for Mode Reduction Procedures

 MR0 MR1 MR2 MR3 MR4 MR5
Short and

Long Mode
Elimination

No No Yes Yes Yes Yes Mode
Eliminations

at Root
Node

Costly
Mode

Elimination
No Yes No Yes Yes Yes

Short and
Long Mode
Elimination

No No No No Yes Yes
Mode

Eliminations
at

Branching
Nodes

Costly
Mode

Elimination
No No No No Yes No

Table 4-8 and Table 4-9 report the average CPU times and the number of

nodes generated for different mode elimination implementations and budget values.

The last column of the tables gives the averages over all b values.

Table 4-8 – Average CPU Times for Different Mode Elimination Implementations

 Large Mean Small Overall

MR0 1186.53 228.73 249.30 554.86

MR1 1192.90 228.57 249.63 557.03

MR2 1016.03 228.23 247.30 497.19

MR3 927.17 229.13 127.80 428.03

MR4 1050.57 245.60 139.40 478.52

MR5 1051.23 244.67 264.77 520.22

Overall 1070.74 234.16 213.03 505.98

90

Table 4-9 – Average Number of Nodes for Diffferent Mode Elimination Implementations

 Large Mean Small Overall

MR0 35131.30 6622.83 6840.83 16198.32

MR1 35136.93 6622.83 6840.83 16200.20

MR2 30068.93 6621.70 6811.87 14500.83

MR3 27571.50 6621.70 6811.87 13668.36

MR4 28834.43 6618.00 6749.80 14067.41

MR5 28870.43 6621.70 6811.87 14101.33

Grand Total 30935.59 6621.46 6811.18 14789.41

As seen from the tables the best performance is due to MR3. That is when

all rules are used at the root node but not at any branching node, the average CPU

time is the smallest. Applying the mode elimination algorithms at each node of the

branch and bound tree does not decrease the average CPU times. Though MR4

leads to a higher number of mode eliminations than MR3; the effort spent for

checking additional eliminations outweighs the additional savings. Thus we choose

to apply mode elimination rules only at root node in our main runs.

Selection of Branching Strategy

We now test the effects of our branching rules on the performance of the

branch and bound algorithm. We test two cases: An algorithm using Branching

Strategy 1 (BS1) and an algorithm using Branching Strategy 2 (BS2). Both cases

are checked under the same conditions with mode eliminations at all nodes, upper

bound at the first 50 nodes.

The average CPU time and number of nodes results are tabulated in Table

4-10 and Table 4-11, respectively.

Table 4-10 – Average CPU Times Regarding Branching Strategies

Budget Value Large Mean Small Overall

BS1 1341.57 231.40 122.40 565.12

BS2 1196.07 238.50 130.90 521.82

91

Table 4-11 – Average Number of Nodes Regarding Branching Strategies

Budget Value Large Mean Small Overall

BS1 28834.43 6618.00 6749.80 14067.41

BS2 26571.73 4325.27 2292.03 11063.01

As can be observed from Table 4-10, when L arg eb b= , BS2 is significantly

slower than BS1. BS2 always results in fewer nodes than BS1, however at an

expense of additional CPU times. This is due to the fact that, at each node three

LPRs are solved in BS2 while two LPRs are solved in BS1. We conduct our main

rules by BS1 due to its better time performance.

Selection of Routing Strategy

The optimal LPR solution used to find the LB is expected to have a strong

impact on the efficiency of branch and bound algorithm. Hence using LB to define

the next visit is tested and this strategy is denoted as RS1. RS2 is the alternative

routing strategy that selects the branch with value zero for the most fractional

variable.

We test two routing strategies for different budget values, under the same

conditions with branching strategy 1, and upper bounds by LPR based heuristic for

the first 50 nodes.

Table 4-12 and Table 4-13 report the average CPU times and the number of

nodes, respectively. Table 4-12 shows that RS1 runs significantly faster than RS2

for all b values. Note from the table that the average CPU time is 12.02 seconds

when RS2 is used, and this time is reduces to 7.58 seconds with RS1. The

observations are in same line for the number of nodes, as can be seen from Table

4-13. On average RS1 and RS2 produce 14067.41 and 20291.14 nodes

respectively. There is an exception when smallb b= which can be attributed to the

randomness.

92

Table 4-12 – Average CPU Times for Routing Strategies

Budget Value Large Mean Small Overall

RS1 1050.57 245.60 139.40 478.52

RS2 1465.13 418.27 284.57 722.66

Table 4-13 – Average Number of Nodes for Routing Strategies

Budget Value Large Mean Small Overall

RS1 28834.43 6618.00 6749.80 14067.41

RS2 45511.03 10576.13 4786.27 20291.14

Comparison of the Minimum Deadline and the Budget Algorithms

Recall that, the minimum deadline problem is a special case of the budget

problem with
maxb b= . Hence all procedures developed for the budget problem

directly apply to the minimum deadline problem. Recognizing the special structure

of the minimum deadline problem we derive tighter elimination mechanisms and

treat the budget in the objective function and the project completion as a constraint.

As the constraint, N 1 MinS T+ = is much tighter than the constraint maxB b≤ , we

expect higher performance from the minimum deadline problem when compared

with the budget problem with maxB b≤ . Our preliminary tests, based on the

following parameter combinations have verified our expectations.

Table 4-14 – The Parameters for Preliminary Test Instances

Cost
Function

Number of
activities

Number of
modes/activity

Concave [29,30] [1,10]
Convex [29,30] [1,10]
Hybrid [29,30] [1,10]

93

Table 4-15 and Table 4-16 compare the average CPU times and the number

of nodes of branch and bound algorithms for the minimum deadline problem and

the budget problem with
maxB b≤ .

Table 4-15 – Average CPU Times for the Budget and Deadline Problems

Model Concave Convex Hybrid Overall

Budget 745.20 3000.60 1598.70 1781.50

Deadline 10.30 351.30 67.30 142.97

Table 4-16 – Average Number of Nodes for the Budget and Deadline Problems

Model Concave Convex Hybrid Overall

Budget 20020.80 82540.00 44680.30 49080.37

Deadline 311.90 10798.60 23468.70 11526.40

As can be observed from the above tables, the branch and bound algorithm

designed for the minimum deadline problem produce significantly fewer nodes in

significantly smaller CPU times. On average, the minimum deadline algorithm

produces 11526.4 nodes in 0.02 seconds whereas the budget algorithm produces

4080.37 nodes in 0.29 seconds. The differences in performances of two algorithms

are more pronounced for concave and hybrid functions. After verifying our

expectations with the experimental results, we perform our main runs for maxB b≤

case using the algorithms designed specifically for the minimum deadline problem.

4.3 Main Experiments

In this section we first discuss the performance of the solution algorithms

for the budget problem, and then report the results for the minimum deadline

problem.

94

Performance of the Branch and Bound Algorithm

Based on the results of our preliminary runs, we use Branching Strategy 1

to solve the budget problem, after applying mode eliminations at only root node.

LP based heuristic is used to find an upper bound at the root node and first 50

branching nodes. The LP based routing strategy, RS1, is used in branch and bound.

In our main experiment, we investigate the effects of the budget values,

time/cost function types, number of activities and number of modes per activity on

the performance of the branch and bound algorithm.

4-17 below reports the performance measures of the branch and bound

algorithm for l arg eb , meanb and smallb values.

Recall that we terminate the execution of the branch and bound algorithm

after 2 hours. Each unsolved instances contribute to the total CPU time by 7200

seconds. The number of nodes searched till termination limit is counted in average

and maximum number of nodes.

Table 4-17 – The Performance Measures of Branch and Bound Algorithm for b

Values

 Large Mean Small Overall
Number of Instances 120 120 120 360
Average CPU Time 4384.16 3055.39 1254.46 2898.00
Maximum CPU Time 7200.00 7200.00 7200.00 7200.00
Average Number of Nodes 129359.83 85337.93 31707.23 82135.00
Maximum Number of Nodes 258162.00 262739.00 215861.00 262739.00
Average Number of Nodes
till Optimality 38798.63 24423.38 13037.98 25419.99
Maximum Number of Nodes
till Optimality 223980.00 178425.00 174283.00 223980.00
Number of Unsolved Instances 64 43 14 121
Average % LB Deviation 5.29 2.88 1.14 3.10
Maximum % LB Deviation 10.91 7.25 3.28 10.91

95

As can be observed from Table 4-17, the problem is solved significantly

faster when smallb b= . The high CPU times for l arg eb and meanb can be attributed to

the relatively high number of unsolved instances. Note that 64 and 43 out 120

instances remain unsolved for l arg eb and meanb respectively. This number is 14

when smallb b= . As can be observed from the table, the performances of the lower

bound deviations at the root node are parallel with the performance of the branch

and bound algorithm. When the lower bound deviations are smaller, the number of

nodes and the CPU times are lower. Note from the table that these deviations are

the (largest) smallest when b value is the smallest (largest) and the best (worst)

branch and bound algorithm performance associates to smallest (largest) b values.

Note that the average and maximum lower bound deviations are 3.1% and 10.91%

respectively. This excellent performance of the lower bounds can be attributed to

the special property of the optimal LPR that divides each activity to at most two

modes.

We next investigate the effect of activity time/cost functions on the

performance of the branch and bound algorithm. Table 4-18 reports the results for

the concave, convex and hybrid time/cost functions.

We expect that our algorithm performs better for concave time/cost

functions as all LP relaxations are solved for only two modes (see Property 10).

CPU times for the instances with concave time/cost functions are solved smaller

than those with convex time/cost functions; however note that the instances with

hybrid time/cost functions can be solved faster than the others. The reason for the

satisfactory behavior of the branch and bound algorithm for the hybrid functions

can be explained by the high performance of the lower bounds. The worst

performance associates to the convex time/cost functions which is due to the high

number of unsolved instances. As can be seen from the table % LB deviation at

the root node is relatively small for the convex cost functions; however the optimal

solutions could not be found quicker, as the consecutive mode assignments (see

Property 9) cannot differentiate between two branches.

96

Table 4-18 – The Performance of the Branch and Bound Algorithm for Different Time/cost

Functions

Function Type Concave Convex Hybrid Overall
Number of activities 120 120 120 360

Average CPU Time 2246.63 4623.79 1823.59 2898.00

Maximum CPU Time 7200.00 7200.00 7200.00 7200.00

Average Number of Nodes 70564.40 121083.48 54757.13 82135.00

Maximum Number of Nodes 262739 217883 238778 262739
Average Number of Nodes till
Optimality 28810.36 27192.71 20256.92 25419.99
Maximum Number of Nodes
till Optimality 223980 174283 216418 223980

Number of Unsolved Instances 29 70 22 121

Average % LB Deviation 4.38 2.26 2.67 3.10

Maximum % LB Deviation 10.91 7.33 9.61 10.91

Note that number of nodes visited till the optimal solution does not differ

significantly between different time/cost functions. By looking at overall average

number of nodes till optimality, we can state that our algorithm finds the optimal in

the first one-third of the search and then visits the rest of the branch and bound tree

to verify optimality.

Table 4-19 below reports the performance of our branch and bound

algorithm for different project sizes. In the table NAc1 and NAc2 denote instance

sets with 29-30 and 34-35 activities respectively. M1 and M2, on the other hand,

denote the instance sets with the number of modes having []U 2,10 and []U 11,20

distributions respectively.

97

M

1
M

2
M

1
M

2
N

um
be

r
of

 I
ns

ta
nc

es
90

90
18

0
90

90
18

0
36

0
A

ve
ra

ge
 C

P
U

 T
im

e
49

4.
88

36
73

.9
1

20
84

.3
9

23
28

.6
8

50
94

.5
4

37
11

.6
1

28
98

M
ax

im
um

 C
P

U
 T

im
e

72
00

72
00

72
00

72
00

72
00

72
00

72
00

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

14
51

7.
78

10
44

75
.2

4
59

49
6.

51
67

78
8.

92
14

17
58

.0
6

10
47

73
.4

9
82

13
5.

00
M

ax
im

um
 N

um
be

r
of

 N
od

es
20

95
09

25
81

62
25

81
62

22
08

71
26

27
39

26
27

39
26

27
39

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

ti
ll

O
pt

im
al

ity

M
ax

im
um

 N
um

be
r

of
 N

od
es

ti
ll

O
pt

im
al

ity
N

um
be

r
of

 U
ns

ol
ve

d
In

st
an

ce
s

2
41

43
21

57
78

12
1

A
ve

ra
ge

 %
 L

B
 D

ev
ia

tio
n

2.
46

2.
88

2.
67

3.
58

3.
5

3.
54

3.
1

M
ax

im
um

 %
 L

B
 D

ev
ia

tio
n

9.
61

10
.9

1
10

.9
1

9.
78

10
.2

9
10

.2
9

10
.9

1

19
81

51
20

53
23

22
39

80

T
ab

le
 4

 1
9

–
T

h
e

P
er

fo
rm

an
ce

 o
f

th
e

B
ra

n
ch

 a
n

d
 B

ou
n

d
 A

lg
or

it
h

m
 f

or
 D

if
fe

re
n

t
P

ro
je

ct
 S

iz
es

13
00

14
22

39
80

22
39

80
20

53
23

O
ve

ra
ll

55
10

.1
3

29
45

6.
02

17
48

3.
08

25
97

8.
12

40
73

5.
70

33
35

6.
91

25
41

9.
99

N
A

c1
N

A
c1

 O
ve

ra
ll

N
A

c2
N

A
c2

 O
ve

ra
ll

98

We expect that larger the size of the project, harder to solve is the problem.

As seen from Table 4-19, all results are in the line with our expectations without

any exception. For both NAc1 and NAc2, the CPU times and number of nodes are

smaller for M1. As there are unsolved instances for all instance sets, maximum

CPU time is 7200 seconds. NAc2 has higher CPU time than NAc1. Number of

nodes is significantly smaller for M1. Similarly, NAc2 has higher number of nodes

as there are more decisions in the problem. The number of unsolved instances also

supports that as the size of the problem gets larger, the problem is solved harder.

%LB deviation presented in Table 4-19 states that the performance of the LPR is

sensitive to the number of activities, but not to the number of modes. This is due to

the fact that the optimal LPR assigns each activity to at most two fractional modes,

independent from the number of modes (see Property 8).

Approximation Algorithms for the Budget Problem

In this section we analyze the performances of our branch and bound based

heuristic (branch and bound with no backtracking), construction heuristic used in

the first phase of the LPR based heuristic and upper bound produced by LPR based

heuristic (used in the branch and bound algorithm) results for different b values,

time cost functions and problem sizes. Branch and bound based heuristic is denoted

as Heuristic I hereafter.

Table 4-20 reports the performance measures of the approximation

algorithms for
l arg eb ,

meanb and
smallb . The last column represents the results for all

b values.

Table 4-, shows that Heuristic I runs in at most 3 seconds over all problem

instances. The average CPU time by Heuristic I for l arg eb combination (1.32

seconds), is the largest when compared with other b values, however the

differences are not significant. The deviations by Heuristic I is smallest for smallb ,

this is due to the better performance of the LPR based lower bounds for small b.

The average deviation over all b values is 0.23 % and the maximum deviation is

2.84%. Hence Heuristic I should be favored if near optimal solutions are required

in reasonable time.

99

Table 4-20 – The Performances of the Approximation Algorithms for different

b-Values

b Value Large Mean Small Overall
Number of Instances 120 120 120 360
Average CPU Time of Heuristic I 1.32 1.08 0.91 1.10
Maximum CPU Time of Heuristic I 3.00 2.00 2.00 3.00
Average % Deviation of Heuristic I 0.39 0.19 0.09 0.23
Maximum % Deviation of Heuristic I 2.84 1.30 1.23 2.84
Average % Deviation of Construction 12.76 5.80 2.48 7.02
Maximum % Deviation of Construction 33.20 16.93 13.70 33.20
Average % Deviation of LPR Heuristic 1.43 0.75 0.42 0.87
Maximum % Deviation of LPR Heuristic 7.84 4.63 2.38 7.84

As seen in Table 4-20 the largest % deviations of the construction type

heuristic are observed for
l arg eb . On the other hand the smallest % deviation is due

to
smallb . This is due to the fact that for

smallb b= , the feasible region gets smaller.

Table 4-20 shows that for all b values the construction heuristic is improved

significantly in the improvement phase and the maximum deviation is reduced

from 33.20% to 7.84%. The maximum % deviation is due to the
l arg eb case, which

also the largest average % deviation.
smallb has the smallest % deviation. 0.87%

overall deviation from the optimal shows that branch and bound starts with an

initial feasible solution which is very close to optimal. The CPU times of the

construction and improvement phases were negligible, hence are not reported.

We next analyze the performance of the approximation algorithms for

concave, convex and hybrid time/cost functions and report the results in Table

4-21.

We observe from Table 4-21 that the CPU times of heuristic I for different

cost functions are close. The maximum CPU time which is due to the convex

function differs from the minimum average CPU time which is due to the concave

function, by only 0.20 seconds. The minimum average % deviation of heuristic 1

is 0.14% and is due to the convex functions. This contradicts with our expectations

that convex time/cost functions are the hardest to solve ones. The explanation may

100

be the following: For convex cost functions there are 70 unsolved instances, while

for the others this number is less than 30. For the unsolved instances, in place of

optimal solutions, we use the solution returned by the branch and bound at the

limit. Hence the deviations for those instances are underestimates of the exact

deviations.

The solution found in the construction phase deviates from the optimal

solution about 7% on average, however the maximum deviations are not

satisfactory (between 25% and 34%). After the improvement phase, for all

time/cost functions the average deviations are reduced to 0.87%.

Table 4-21- Performance of Approximation Algorithms for Different Time/Cost Functions

Function Concave Convex Hybrid Overall
Number of Instances 120 120 120 360
Average CPU Time of Heuristic I 1.02 1.22 1.07 1.10
Maximum CPU Time of Heuristic I 2.00 3.00 2.00 3.00

Average % Deviation of Heuristic I 0.29 0.14 0.24 0.23
Maximum % Deviation of Heuristic I 2.84 2.47 2.06 2.84
Average % Deviation of Construction 7.23 7.19 6.63 7.02

Maximum % Deviation of Construction 30.41 33.20 25.40 33.20
Average % Deviation of LPR Heuristic 1.17 0.60 0.82 0.87
Maximum % Deviation of LPR Heuristic 7.84 4.32 4.40 7.84

Finally, we investigate the effect of problem size parameters, i.e., number of

activities and number of modes, on the performances of the approximation

algorithms. Recall that, the CPU times by the branch and bound algorithm increase

significantly with an increase in the problem size. However, we do not expect a

pronounced effect of the problem size on the CPU times of the approximation

algorithms. This is because, the approximation algorithms solve only few LPRs

and the LPs run in polynomial time. The results in Table 4-22 support our

expectations. The difference between two problem sizes is less than one second. %

deviation of heuristic 1 is less than 1% for all problem sizes and we do not observe

any surprising result for the average deviations. The deviations for the construction

101

phase are very small for small size instances. As can be seen from Table 4-22 , M1

and NAc1 consistently produce better quality solutions than M2 and NAc2

respectively. The performances of the improvement phase solutions deteriorate

with an increase in the problem size, but not with the number of modes.

102

D
at

a
M

1
M

2
M

1
M

2
N

90
90

18
0

90
90

18
0

36
0

A
ve

ra
ge

 o
f

H
eu

ri
st

ic
 I

 C
P

U
 T

im
e

0.
83

1.
18

1.
01

1.
04

1.
36

1.
20

1.
10

M
ax

 o
f

H
eu

ri
st

ic
 I

 C
P

U
 T

im
e

1.
00

2.
00

2.
00

2.
00

3.
00

3.
00

3.
00

A
ve

ra
ge

 o
f

%
 D

ev
ia

ti
on

 o
f

H
eu

r
I

0.
25

0.
19

0.
22

0.
31

0.
16

0.
24

0.
23

M
ax

 o
f

%
 D

ev
ia

ti
on

 o
f

H
eu

r
I

2.
63

2.
84

2.
84

2.
40

1.
67

2.
40

2.
84

A
ve

ra
ge

 o
f

%
 D

ev
ia

ti
on

 o
f

C
on

st
ru

ct
io

n
4.

69
5.

93
5.

31
8.

26
9.

20
8.

73
7.

02
M

ax
 o

f
%

 D
ev

ia
ti

on
 o

f
C

on
st

ru
ct

io
n

33
.2

0
23

.6
7

33
.2

0
30

.4
1

30
.3

9
30

.4
1

33
.2

0
A

ve
ra

ge
 o

f
%

 D
ev

ia
ti

on
 o

f
U

B
 a

t
R

oo
t

0.
77

0.
71

0.
74

0.
90

1.
10

1.
00

0.
87

M
ax

 o
f

%
 D

ev
ia

ti
on

 o
f

U
B

 a
t

R
oo

t
4.

40
3.

92
4.

40
5.

71
7.

84
7.

84
7.

84

O
ve

ra
ll

T
ab

le
 4

 2
2

–
T

h
e

P
er

fo
rm

an
ce

 M
ea

su
re

s
of

 A
p

p
ro

xi
m

at
io

n
 A

lg
or

it
h

m
s

fo
r

th
e

D
if

fe
re

n
t

P
ro

b
le

m
 S

iz
es

N
A

c1
N

A
c1

 O
ve

ra
ll

N
ac

2
N

ac
2

O
ve

ra
ll

103

Optimal Solution Algorithms for the Minimum Deadline Problem

Based on the results of our preliminary experiments, we perform Branching

Strategy 1 and LP based routing strategy, RS1, in branch and bound algorithm for

the minimum deadline problem. We use mode eliminations only at the root node.

The LP based heuristic is used to find upper bounds at the root node and the first 50

branching nodes.

We observe that the performances of the minimum deadline problem are in

line with those of the budget problem in most cases. The performance of the branch

and bound algorithm for different time/cost functions and problem sizes are

reported below.

Table 4-23 reports the performance of our branch and bound algorithm for

concave, convex and hybrid time/cost functions.

Table 4-23 – The Performance of the Branch and Bound Algorithm for Different Time/cost

Functions

Function Type Concave Convex Hybrid Overall
Number of Instances 40 40 40 120
Average CPU Time 225.80 1046.43 384.20 552.14
Maximum CPU Time 7200.00 7200.00 7200.00 7200.00
Average Number of Nodes 7181.70 31825.70 12240.10 17082.50
Maximum Number of Nodes 229726.00 230126.00 237107.00 237107.00
Average Node Number
till Optimality 1802.50 6292.65 1019.75 3038.30
Maximum Node Number
till Optimality 54871.00 89583.00 15672.00 89583.00
Average % LB Deviation 0.98 1.75 1.10 1.28
Maximum % LB Deviation 6.48 7.94 4.72 7.94
Number of Unsolved Instances 1 4 1 6

As can be observed from Table 4-23, the CPU times are smallest for the

instances with concave time/cost functions. This is because, for concave functions,

the LPRs are solved more efficiently with two modes for each activity. Note that

the number of nodes generated by the convex and concave functions are close, but

104

convex functions have significantly higher CPU times, as the time spent by the LPs

at the nodes are much higher. The lower bound performance of the hybrid function

is better than that of the convex function, with respective deviations of 1.1% and

1.75%. This difference in the lower bound performances at the root node justifies

the better performance of the branch and bound algorithm for the hybrid functions

over the convex functions.

Number of nodes visited until reaching the optimal is the highest for convex

cost functions which is in line with our expectations. On average over all problem

instances, the % LB deviations are below 1.3% and the maximum deviation is 8%.

Small % LB deviations imply that we start the branch and bound algorithm with an

LPR solution that is very close to the optimal solution. As we use LPR to find the

branches to be visited, we reach the optimal solution at early nodes of the branch

and bound tree. As can be observed from the table, on average, 17082.50 nodes are

generated and the optimal solutions are found after generating 3038.30 nodes, i.e.,

about 80% of the effort is spent for proving the optimality of the solutions. We can

conclude that truncated branch and bound algorithms that terminate at specified

limits, are very likely to produce high quality solutions.

We next investigate the effects of the problem size parameters, i.e., the

number of activities and number of modes, on the performance of the branch and

bound algorithm. Since we observe that performance of the branch and bound

algorithm is not affected from the interaction of these two parameters, we present

the tables separately. In the tables, we use the following notation.

Table 4-24 - Notation Used for Number of Activities

 Number of
Activities

NAc1 85
NAc2 102
NAc3 111/119
NAc4 128/135

105

Table 4-25 reports the performance of branch and bound for different

number of activities.

We observe from the Table 4-25 that the CPU times are significantly high

for NAc2, which is mainly caused by the high number of unsolved instances.

However high number of unsolved instances for NAc2 cannot be explained by the

number of activities but can be attributed to random effects. One can expect that

the CPU times increase as the number of activities increases. However we cannot

observe this in Table 4-25. The reason for this might be the reductions made by the

mode elimination rules. As the problem size increases, more modes are eliminated

by our mode elimination algorithms. Table 4-26 reports the average mode

eliminations.

Table 4-25 – The Performance of the Branch and Bound Algorithm for Different Number of

Activities

Instance Size NAc1 NAc2 NAc3 NAc4 Overall

Number of Instances 30 30 30 30 120

Average CPU Time 188.17 1427.10 311.67 281.63 552.14

Maximum CPU Time 4724.00 7200.00 7200.00 7200.00 7200.00

Average Number of Nodes 5896.67 43874.07 10111.77 8447.50 17082.50

Maximum Number of Nodes 148392.00 230126.00 237107.00 214310.00 237107.00

Average Node Number
till Optimality 2774.07 7965.00 745.00 669.13 3038.30

Maximum Node Number
till Optimality 71658.00 89583.00 7697.00 15672.00 89583.00

Average % LB Deviation 1.06 1.85 1.18 1.02 1.28

Maximum % LB Deviation 3.89 7.94 5.52 3.00 7.94

Number of Unsolved Instances 0 4 1 1 6

Table 4-26 – The Number of Modes Eliminated for Changing Number of Activities

 NAc1 NAc2 NAc3 Nac4 Overall
Number of Modes
Eliminated 684.07 798.03 990.43 1143.33 903.97

106

We observe that more modes are eliminated for the instances with large

number of activities.

Table 4-27 reports that the number of nodes visited till finding the optimal

solution does not follow a clear pattern. %LB deviations are the highest for NAc2

and smallest for NAc4. The satisfactory performance of the lower bounds leads to

the small CPU time and number of nodes for NAc4.

Table 4-27 reports the performance of the branch and bound algorithm for

the minimum deadline problem for two sets of the number of modes/activity. As

stated in the previous section, M1 and M2 consist of the instances with the number

of modes that follow discrete []U 2,10 and []U 11,20 distributions respectively.

We observe from Table 4-27 that the CPU times and the number of nodes

are higher when there are more modes for each activity. This result is in line with

our expectations. As can be seen from Table 4-28 , high number of mode

eliminations cannot outperform the increasing effect of the number of modes.

Table 4-27 - Performance of the Branch and Bound Algorithm for Changing Number of

Modes

 M1 M2 Overall

Number of Instances 60 60 120

Average CPU Time 493.35 610.93 552.14

Maximum CPU Time 7200.00 7200.00 7200.00

Average Number of Nodes 15024.50 19140.50 17082.50

Maximum Number of Nodes 229726.00 237107.00 237107.00

Average Node Number till Optimality 3557.60 2519.00 3038.30

Maximum Node Number till Optimality 89583.00 71658.00 89583.00

Average % LB Deviation 1.99 0.56 1.28

Maximum % LB Deviation 7.94 3.34 7.94

Number of Unsolved Instances 2 4 6

Table 4-28 – The Number of Modes Eliminated for Changing Number of Modes

 M1 M2 Overall

Number of Modes Eliminated 433.75 1374.18 903.97

107

The average number of nodes visited until finding the optimal solution is

smaller for M2, due to its lower %LB deviation. %LB deviation is less than 3.34%

for M2, while it is less than 7.94% for M1.

Approximation Algorithms for the Minimum Deadline Problem

We now investigate the performances of our LPR based initial feasible

solution algorithm (both the construction phase and the improvement phase) and

the branch and bound based approximation algorithm. The performances of the

algorithms are reported for different activity time/cost functions and varying

problem sizes. Table 4-29 reports the performance of the approximation

algorithms for instances with concave, convex and hybrid time/cost functions.

Table 4-29 shows that heuristic 1 runs in 0.81 seconds on average and 6

seconds at worst. The resulting % deviations for all function types are consistently

very low. The average and maximum deviations over all 120 instances are 0.31%

and 2.5% respectively.

Table 4-29 – The Performance of Approximation Algorithms for DifferentTime/cost

Functions

Function Type Concave Convex Hybrid Overall
Number of Instances 40 40 40 120
Average CPU Time for Heuristic 1 0.58 1.10 0.75 0.81
Maximum CPU Time for Heuristic 1 3.00 6.00 4.00 6.00
Average % Deviation of Heuristic I 0.22 0.38 0.33 0.31
Maximum % Deviation of Heuristic I 2.00 1.96 2.50 2.50
Average % Deviation of Construction 0.89 1.23 0.91 1.01
Maximum % Deviation of Construction 5.85 8.10 4.76 8.10
Average % Deviation of LPR Heuristic 0.68 1.03 0.85 0.85
Maximum % Deviation of LPR
Heuristic 5.82 7.03 3.48 7.03

We did not report on the CPU times of the LPR based heuristics, as they

were negligibly small. We find that the average % deviation of the construction

phase of the LPR based heuristics is 1.01%. In the improvement phase the average

108

deviation is reduced to 0.85%. No significant effect of the time/cost functions is

observed.

We now study the effect of the number of activities on the performance of

the algorithms and report the results in Table 4-30. We use the notation stated in

Table 4-24.

Table 4-30 – The Performances of the Approximation Algorithms for Different Number of

Activities

 NAc1 NAc2 NAc3 Nac4Overall
Number of Instances 30 30 30 30 120
Average CPU Time for Heuristic 1 00.40 01.47 00.77 00.60 00.81
Maximum CPU Time for Heuristic 1 01.00 06.00 04.00 03.00 06.00
Average % Deviation of Heuristic I 0.30 0.37 0.29 0.27 0.31
Maximum % Deviation of Heuristic I 2.00 1.96 1.32 2.50 2.50
Average % Deviation of Construction 0.94 1.33 0.94 0.84 1.01
Maximum % Deviation of Construction 5.82 7.03 6.01 3.86 7.03
Average % Deviation of LPR Heuristic 0.93 1.21 0.70 0.57 0.85
Maximum % Deviation of LPR Heuristic 5.85 8.10 3.09 3.48 8.10

We observe from Table 4-30 that the CPU times and the deviations for all

algorithms do not follow a pattern as the number of activities increases. For

example NAc2 has the largest CPU time for Heuristic 1 and the largest deviations

for the other algorithms.

Finally, we analyze the effects of the number of modes on the performance

of the approximation algorithms and report the results in Table 4-30.

Table 4-30 shows that Heuristic 1 and the LPR based heuristic produce high

quality solutions with an average overall deviation of 0.31 % and 1.01%

respectively. The deviations are consistently small as can be verified from the low

maximum overall deviations of 2.5% and 1.43%. As all deviations are very small,

we could not observe any significant effect of the number of the modes on the

performance of the algorithms.

109

Table 4-31 – The Performance of the Approximation Algorithms for Different Number of

Modes

Data M1 M2 Overall

Number of Instances 60 60 120

Average CPU Time for Heuristic 1 00.80 00.82 00.81

Maximum CPU Time for Heuristic 1 06.00 06.00 06.00

Average % Deviation of Heuristic I 0.52 0.10 0.31

Maximum % Deviation of Heuristic I 2.50 0.84 2.50

Average % Deviation of Construction 7.03 1.54 7.03

Maximum % Deviation of Construction 8.10 1.26 8.10

Average % Deviation of LPR Heuristic 1.67 0.35 1.01

Maximum % Deviation of LPR Heuristic 1.43 0.28 1.43

110

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The Discrete Time/Cost Trade-off (DTCT) problem is an important

research area in project management, particularly in view of the current emphasis

on time-based competition (De et al., 1995). Of its obvious practical importance,

the DTCT problems have attracted the attention of many researchers since early

sixties.

In the project management literature, the DTCT problems are studied under

two main categories: the deadline problem and the budget problem. Both problems

are shown to be strongly NP-hard. The successive solutions of these problems are

used to construct the time/cost trade-off curve.

Several procedures have been proposed for the deadline problem including

bounding approaches and optimization procedures. However, despite its obvious

practical importance, only little effort has been spent on the budget problem and to

the best of our knowledge, there are two reported solution approaches which are

based on dynamic programming. The dynamic programming approach is limited

to solve only small sized problem instances. Hence more efficient optimization and

approximation algorithms are needed. Recognizing this fact, we propose a branch

and bound algorithm to solve moderate sized problem instances optimally and

linear programming relaxation based heuristic procedures to solve large sized

problem instances approximately. Our heuristic approaches run in polynomial

time.

111

Our preliminary experiments to detect the effects of our reduction

mechanisms and bounding approaches have revealed that the mode elimination

mechanisms are very effective in reducing the problem size. The reduced problems

can be efficiently solved by our branch and bound algorithm using the linear

programming relaxation based lower bounds. We observe that in the absence of

the linear programming relaxation based lower bounds, even the small sized

problem instances could hardly be solved in reasonable times. The upper bounds,

when applied to all nodes are not found to be effective. The effort spent to

compute them outweighed the amount gained due to the additional node

eliminations. Hence we used upper bounds only at a specified number of nodes (50

nodes), to find an initial feasible solution. Moreover the initial feasible solutions

are found to be very close to the optimal solutions and this makes the frequent

updates worthless.

Employing the results of our initial experiments, we perform an extensive

computational study using large sized problem instances. Our aim is to detect the

effects of the design parameters on the difficulty of the solutions. We found that

the the number of activities, the number of modes and the project budget have

strong influences on the problem difficulty. Moreover the types of the time/cost

function used, are also effective such that the easiest problems associate to the

concave functions as the associated linear programs are solved considering only

two extreme modes for each activity.

The heuristics are found very effective, they produce close-to-optimal

solutions in very small solution times. We suggest to use heuristic procedures in

place of optimal solutions when the guarantee of optimality is not very essential.

We hope our study contributes to the current state of the art in discrete

time/cost trade-off scheduling and our promising results stimulate opening new

research areas. Two noteworthy extensions of our budget problem may be deriving

more powerful mode elimination rules hopefully not based on the bounds, but exact

values and investigating worst case complexity of our linear programming

relaxation based upper bounds. Such a complexity result may be based on the

maximum possible gap between the upper bound and the linear programming

relaxation based lower bound.

112

In constructing the time/cost trade-off curve, the previous studies solve the

deadline problem for all possible realizations of the project completion time. Our

time/cost trade-off curve construction method is based on the successive solutions

of the budget problem. Future research may consider some efficient ways of

implementing our construction method. One alternative implementation might be

to benefit from the optimal solution of the budget problem for a total cost value of

b while solving the budget problem with a total cost value of b-1.

Our discrete time/cost trade-off problem assumes that there are no

constraints imposed on the availability of the resources. When there are resources

of limited quantity, the activities requiring the same resource (which is available

for one unit at a time) cannot be processed simultaneously, shorter modes for some

activities should be selected and/or the activity start times should be delayed to

maintain resource feasibility. The modification of our procedures so as to include

resource leveling and/or allocation decisions may fill another gap in the project

management literature.

113

REFERENCES

Akkan, C., Drexl, A., Kimms, A. (2005). Network decomposition-based

benchmark results for the discrete time/cost trade-off problem. European

Journal of Operational Research, 165, 339-358.

Battersby, A. (1970). Network Analysis for Planning and Scheduling. New York:

John Wiley & Sons, Inc..

Butcher, W. (1967). Dynamic programming for project cost-time curves. Journal

of the Construction Division Procedings of the ASCE, 93, 59-73.

Christian A. Demassey S. Neron E., (Eds.). (2008) Resource-constrained project

scheduling. London: John Wiley & Sons, Inc..

Crowston, W., Thompson, G. L. (1967). Decision CPM: A method for

simultaneous planning, scheduling, and control of projects. Operations

Research, 15, 407-426.

Crowston, W. B. (1970). Decision CPM: Network Reduction and Solution.

Operational Research Quarterly, 21, 435-452.

De, P., Dunne, E. J., Glosh, J. B., Wells, C. E. (1995). The discrete time/cost trade-

off problem revisited. European Journal of Operational Research, 81, 225-

238.

De, P., Dunne, E. J., Glosh, J. B., Wells, C. E. (1997). Complexity of discrete

time/cost trade-off problem for project networks. Operations Research, 45,

302-306.

114

Demeulemeester, E., Retck, B. D., Foubert, B., Herroelen, W., Vanhoucke, M.

(1998). New computational results on the dicrete time/cost trade-off problem

in projet networks. Journal of Operations Research Society, 49, 1153-1163.

Elmaghraby S. E., (1977) Activity Networks. Newyork: John Wiley & Sons, Inc..

Elmaghraby, S. E. (1993). Resource allocation via dynamic programming in

activity networks. European Journal of Operational Research, 64, 199-215.

Fulkerson, D. R. (1961). A network flow computation for project cost curves.

Management Science, 7, 167-178.

Hafızoğlu B. A. Discrete time cost trade-off problem in project scheduling. (Master

Thesis, Middle East Technical University, 2007). E. Thesis.

Hindelang, T. J., Muth, J. F. (1979). A dynamic programming algorithm for

decision CPM networks. Operations Research, 27, 225-241.

Kelley, J. E. (1961). Critical-path planning and scheduling: Mathematical Basis.

Operations Research, 3, 296-320.

Meyer, W. L., Schafer, L. R., (1965). Extending CPM for multiform project

time/cost curves. Journal of Construction Division, 91, 45-65.

Philips, S., Dessouky, M. I. (1977). Solving the project time/cost trade-off problem

using the minimal cut concept. Management Science, 24, 393-400.

Philips, S. (1996). Project management duration/resource trade-off analysis: An

application of the cut search approach. The Journal of Operations Research

Society, 47, 697-701.

Robinson, D. R. (1975). Dynamic programming solution to cost-time trade-off for

CPM. Management Science, 22, 158-166.

Skutella, M. (1998). Approximation algorithms for the discrete time/cost trade-off

problem. Mathematics of Operations Research, 23, 909-929.

115

Vanhoucke, M., Debels, D. (2005). The discrete time/cost trade-off problem under

various Assumptions and Heuristic Procedures. Working Paper: Universiteit

Gent

Wysocki R. K., Beck R. J., Crane D. B. (2000). Effective Project Management.

Newyork: New York: John Wiley & Sons, Inc..

