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ABSTRACT 

OBJECT DETECTION FROM REGISTERED VISUAL 

AND INFRARED SEQUENCES WITH THE HELP OF 

ACTIVE CONTOURS 

 

Yürük, Hüseyin 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor : Assist. Prof. Dr. İlkay Ulusoy 

 

July 2008, 82 pages 

 

Robust object detection from registered infrared and visible image streams is 

proposed for outdoor surveillance. In doing this, halo effect in infrared images is 

used as a benefit to extract object boundary by fitting active contour models (snake) 

to the foreground regions where these regions are detected by using the useful 

information from both visual and infrared domains together. 

Synchronization and registration are performed for each infrared and visible image 

couple. Various background modeling methods such as Single Gaussian, Non-

Parametric and Mixture of Gaussian models are implemented. For Single Gaussian 

and Mixture of Gaussian background modeling, infrared, color intensity and color 

channels domains are modelled separately. First of all, background subtraction is 

applied in the infrared domain in order to find the initial foreground regions and 

these are used as a mask for the foreground detection in the visible domain. After 

removing the shadows from the foreground regions in the visible domain, pixel-

wise OR operation is applied between the foreground regions of the infrared and 
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visible couple and the final foreground mask is formed. For Non-Parametric 

background modeling, all domains are used altogether to extract foreground 

regions. For all background modelling methods, the resulting mask is used to get 

the final foreground regions in the infrared image. Finally, snake is applied to each 

connected component of the foreground regions on the infrared image for the 

purpose of object detection. 

Two datasets are used to demonstrate our results for human detection where 

comparisons against manually segmented human regions and against other results in 

the literature are presented. 

Keywords : Background modeling, shadow detection, fusion of infrared and color 

domain, application of snake algorithm  
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ÖZ 

AKTİF KONTURLAR YARDIMIYLA, BIRBIRIYLE 

UYUMLANMIŞ RENKLİ VE KIZIL ÖTESİ 

DİZİLERİNDEN NESNELERIN BULUNMASI 

Yürük, Hüseyin 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi :Dr. İlkay Ulusoy 

 

Temmuz 2008, 82 sayfa 

 

Bu tez kapsamında, dış alan güvenliği için birbiriyle uyumlanmış kızıl ötesi ve 

renkli görüntü dizilerinden sağlam nesne bulunması önerilmiştir. Bu işi 

gerçekleştirmek için, kızıl ötesinde bulunan “halo” etkisi, bir avantaj olarak, 

nesnelerin sınırlarının, aktif kontur modellerin ön plan alanlarına uyarlanarak 

çıkartılmasında kullanılmıştır. Ön plan, kızıl ötesi ve renkli alanlardan elde edilen 

kullanışlı bilgilerin kullanılmasıyla bulunmaktadır. 

Her bir kızıl ötesi ve renkli resim çifti için eşleme ve uyumlama işlemi 

gerçekleştirilmektedir. Tekli Gaussian, parametrik olmayan ve karma Gaussian 

modelleri gibi, bir çok arka plan modelleme metotları uygulanmıştır. Tekli ve 

karışım Gaussian arka plan modelleri için, arka plan istatistiksel olarak her bir kızıl 

ötesi, renk yoğunluğu ve kanalları alanında ayrı ayrı modellenmiştir. Arka plan 

çıkarma işlemi ilk olarak kızıl ötesi alanda, ön planın çıkarılması için yapılmış ve 

bu bölge renkli alanlarda arka plan çıkarma işleminde maske olarak kullanılmıştır. 

Renkli alanın ön planında bulunan gölgeler çıkarıldıktan sonra, son maske, kızıl 
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ötesi ve renkli çiftin ön plan bölgelerine, piksel bazında “veya” işlemi uygulanması 

ile oluşturulur. Parametrik olmayan model için, bütün alanlar ön plan alanlarının 

çıkartılması için birlikte kullanılmıştır. Bütün arka plan modelleme metotları için, 

sonuçta oluşan maske, kızıl ötesi resimden ilgili bölgelerin elde edilmesi amacıyla 

kullanılmaktadır. Son olarak, nesne bulunması amacıyla, kızıl ötesi resmindeki 

bulunan ön plan bölgelerinden her bir bağlı parçasına “snake” algoritması 

uygulanır. 

İnsan bulma için elde ettiğimiz sonuçları göstermek amacıyla iki veri kümesi 

kullanılmıştır. El il insan nesnesi bölgeleri ve ayrıca literatürde bulunan diğer 

sonuçlar ile kıyaslamalar sunulmuştur. 

Anahtar Kelimeler : Arka plan modelleme, gölge bulma, kızıl ötesi ve renkli 

alanların birleştirilmesi, “snake” algoritmasının uygulanması 
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CHAPTER 1  

 

INTRODUCTION 

Outdoor surveillance has gained a lot of attention in recent years. Outdoor 

surveillance includes the tasks such as monitoring of sites, critical areas, borders for 

intrusion or threats from people and vehicles.  

The most significant and also desirable feature of the outdoor surveillance systems 

is their operation all around the day. Color or grayscale video cameras which 

produce visible spectrum images need an external illumination. This illumination 

can be provided from the sun light in day time but at night this problem should be 

solved by artificial illumination. Unfortunately, this solution at night is not always 

adequate and also not applicable for everywhere. There will still be remaining 

darker places in which undesirable activities may most likely occur. Infrared 

spectrum sensors are more suitable and effective for these situations. Infrared 

cameras produce infrared spectrum images by detecting the amount of thermal 

radiation emitted/reflected from objects which are at nonzero absolute temperature 

and can be used both at day and night time. On the other hand, when the 

temperature of an object is close to the surrounding area, detection of the object 

becomes more difficult. In these situations, if the color of the object and 

background is not similar and illumination is available, visual spectrum cameras 

give more cues which can be used to detect the object. Infrared cameras lack some 

information such as texture and color which are normally available for visual 

spectrum cameras. With these complementary properties, using infrared and visible 
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images together becomes increasingly important in human detection systems in 

recent years. 

The benefits obtained from using infrared and visible images together, come with a 

question: At which points these sources would be fused? Each information source 

brings its own unique challenges. Visual spectrum image has problems such as 

sudden illumination changes, the presence of shadows and poor night time 

visibility. Infrared image has also problems such as lower signal to noise ratio, 

polarity inversion and the “halo effect” that appears around hot or cold objects with 

ferroelectric sensors. 

In this study, it is mostly focused on detecting humans. Beneficial information is 

combined from both visual and thermal images. The proposed approach uses the 

problem of the halo effect as a benefit to detect objects in infrared images. Snakes 

are used to obtain the boundary of humans where halo effect helps snakes fit the 

boundaries easily. 

The rest of this paper is organized as follows: in Chapter 2 the related work is 

summarized. In Chapter 3, the algorithms starting from image registration to snake 

application are explained. In Chapter 4 experiments and results are demonstrated. In 

Chapter 5 conclusion and some ideas about future works are given. 
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CHAPTER 2  

 

AN OVERVIEW OF RELATED WORKS 

Object detection from visual and/or infrared images requires some steps of 

processing such as background modeling, foreground detection and also some post 

processing in order to extract the clean boundaries of the object. 

In this chapter, the related works which include or help for the human detection task 

are summarized. This chapter is divided into four parts by considering the used 

source of image. Namely the algorithms are classified as the ones using both 

infrared and visible image together, the ones using infrared or visible image, the 

ones using only infrared image and the ones using only visible image. Shadow 

detection methods are presented also at the end of this chapter. 

2.1 Algorithms Which Use both Infrared and Visible Image 

Davis and Sharma [1] present a background-subtraction technique which is based 

on fusion of the contours extracted from thermal and visible image for persistent 

object detection in urban settings. Conaire et. al.[2] present an approach to model 

background robustly by using data from visible and infrared spectrum. Leykin et. 

al. [4] present a tracking system using information taken from color and thermal 

cameras and present a method to classify tracked object as a pedestrian or not. 
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Since each algorithm has a different method for registration, background modeling, 

foreground detection and fusion of visual and infrared information, these steps are 

investigated in separate subsections as follows: 

2.1.1 Image Registration 

In [1], for a particular camera location, a set of corresponding feature points are 

selected manually from the pair of infrared and visible images. Using this set of 

points, a homography matrix [17] is constructed to register infrared and visible 

image pairs.  

The camera system used in [2] allows the simultaneous capture of the infrared and 

visible spectrum video. Temporal alignment is achieved by using the cameras’ gen-

lock inputs which allow their frame clocks to be synchronized. Spatial alignment is 

achieved by planar homography. Numerous corresponding points in both domains 

are selected manually for calculation of homography matrix where least mean 

squared error is used for optimization. 

2.1.2 Background Modelling 

In [1], Single Gaussian method is applied to model each background pixel. N 

frames are captured from both infrared and visible domains to construct proper 

mean/variance background models. This is done to manage with foreground 

contained images. Median images of both domains are computed from N images. 

By using this median image, a weight is computed for each pixel to minimize the 

effect of the outliers. The statistical background model of each pixel in infrared and 

intensity component of visible image is constructed by computing weighted means 

and variances. Mean and covariance model of the normalized color-space 

component of visible image is computed without weighting parameters. For longer 

sequences, background model can be updated by using time and update factor. 
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In [2], non-parametric background model described in [3] is originally used as the 

background model. Before background modelling, infrared images are pre-

processed to get rid of noises. Due to the nature of infrared radiation, hot objects 

including the device itself emit non-significant amounts of radiation. So infrared 

images contain high noise and to reduce this noise, anisotropic diffusion is applied 

to each infrared image. Besides noise removal, before the initialization of the 

background model, a rough pedestrian detection is made in the infrared image by 

using size, aspect ratio and thermal features. This detection module has to be very 

precise and should not miss any pedestrians, so that person pixels are not included 

into the background model. For each pixel, N samples are stored and are considered 

to belong to the background distribution. The statistical parameters (mean and 

variance) of each pixel are calculated separately for 4 bands (L, U, V and infrared). 

Each background model is updated for the purpose of managing gradual changes in 

lighting, such as the turning of day to night. This updating is also necessary to 

include the foreground pixels to the background model which remain static in the 

scene for some time. Incorrectly labeled foreground regions (such as those caused 

by changes in brightness rapidly) are also considered as background by this 

updating. 

In [4], multi-model adaptive background model is constructed based on codebook 

(represented for a single RGB input in [5]). Each pixel in the frame has its own 

codebook which consists of dynamically growing codewords. In each codeword of 

that pixel, features are reserved during training frames. For the color input, these 

features are average pixel value and luminance range. For the thermal input, these 

features are intensity range occurring at the pixel location. Each codeword also 

includes a parameter to record the longest interval during the period that the 

codeword has not occurred. By using this parameter in a learning period, frames can 

be free of foreground objects. 
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2.1.3 Foreground Detection 

In [1], the squared Mahalanobis distance is used for foreground detection. The 

result of the distance calculation is thresholded to get foreground pixels. Each 

threshold value (the infrared, the color intensity and the color channels) is set 

empirically. Firstly, foreground pixels for an infrared image are found (D
T
). Then 

on the corresponding pair of visible image components, the foreground pixels for 

intensity and color channels (Dint and Dcol respectively) are found within D
T
. Using 

the D
T
 as a mask, provides a liberal and generalized thresholding for visible image 

components which ensures that the detections mostly occur at the desired regions. 

Extraction of the region of interests (ROIs) of the infrared image is done by 

applying 5x5 dilation operation and then finding connected components in the D
T
. 

The visible domain ROIs are obtained by pixel-wise union of Dint and Dcol 

(construct D
V
) followed by 5x5 dilation operation. 

In [2], the probability of a pixel in the new frame is computed using statistical 

background model and thresholded to label it as foreground or not. Some 

morphological operations are applied to remove noise and to close holes in the 

foreground regions. 

In [4], for a color image, if the luminance of an incoming pixel is within the 

luminance range of the codeword and the dot product of the input RGB with the 

average value ρRGB of the codeword is less than a predefined value, the pixel is 

considered as a background pixel otherwise it is considered as a foreground pixel. 

For an infrared image, the ratio of pixel value pT with the maximum value Thi of the 

codeword (pT/Thi) and the ratio of is pT with the minimum value Tlow of the 

codeword (pT/Tlow) are calculated and these ratios are compared against some 

predefined thresholds to find foreground pixels. 
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2.1.4 Fusion of Infrared and Visible Images 

In some studies, fusion of infrared and visual information is proposed. Some 

perform fusion in data level and some others in decision level. 

In [1], contours are extracted within selected ROIs in either domain and these are 

combined into single fused contour image. Fused contours are then closed and 

completed to form silhouette regions. Input and background gradient information 

within detected ROIs are evaluated to form Contour Saliency Map (CSM) which 

shows the reliability degree of that pixel belonging to the boundary of a foreground 

object. CSM is computed for all ROIs in both thermal and visible domains. After 

thinning and thresholding operations, binary contour fragments which correspond to 

the same image region in both thermal and visible domain are fused by applying 

union operation. Any gaps are connected and completed via an A* search algorithm 

(described in [26], [27]) before applying the flood-fill operation for creating 

silhouettes. In the final stage high level processing, temporal filtering, is used to 

eliminate sporadic detections and confidence value is assigned to each silhouette. 

Each resulting silhouette in either domain is weighted with a contrast value which 

represents how distinct that region is from the background model. The ratio of 

maximum input-background intensity difference within the silhouette region to the 

intensity range of the background image in both domains is calculated and it gives 

the confidence value. To further improve detection results, temporal median filter is 

applied to blobs to eliminate sporadic detections. 

Fusion of the infrared and visible domain is done in background modeling in [2] by 

storing N frames for each band L, U, V and infrared. Single foreground mask is 

extracted from the foreground detection application which is described in Section 

2.1.3. 

In [4], fusion of the infrared and visible domain is also in background modeling step 

where a pixel is assigned as foreground if that pixel is not part of the background 

model for both domains. 
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2.2 Algorithms Which Use Infrared or Visible Image 

Haritaoglu, et. al. [8] present a real time visual surveillance system, W
4
, which 

detects and tracks multiple people and monitors their activities in outdoor 

environment. It works with a monocular gray-scale camera or an infrared camera. 

Bimodal background modeling is used for the statistical background modeling. 

During the training period, for each pixel, the values of the minimum intensity, the 

maximum intensity and the maximum intensity difference between consecutive 

frames are found to model the background. While constructing initial background 

model, moving foreground pixels are eliminated in two steps. In the first step, a 

median filter is applied typically 20-40 seconds to each pixel. In the second step, 

stationary pixels are found by using median and standard deviation of the pixels and 

only those stationary pixels are taken for the background model. Background model 

is updated by two methods: a pixel-based update and an object based update. The 

pixel base update model deals with illumination changes. The object based update 

deals with physical changes. 

Background pixel parameters are compared with incoming pixel intensity and it is 

decided whether the incoming pixel is foreground or not. The intensity differences 

between incoming pixel and the corresponding maximum and minimum 

background pixel are calculated. Incoming pixel is classified as foreground or 

background pixel by comparing these differences with the weighted maximum 

intensity difference between consecutive frames of background pixel. Region-based 

noise cleaning, morphological operations and binary connected component analysis 

are applied to the extracted foreground regions.  

2.3 Algorithms Which Use Only Infrared Image 

Zhang, et. al. [9] examine the methods which are used for detecting humans in 

visible spectrum and try to determine if these methods can be applicable for infrared 
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spectrum. Two feature classes, Edgelets and Histogram of Oriented Gradient 

(HOG) [10] and two classification models AdaBoost and SVM cascade are 

extended to infrared images. The proposed method is not constructed based on the 

reliable model of the background that can be learned. Human detection is treated as 

a general object classification problem. Two types of local features Edgelets and 

HOG are transformed into a feature space. To represent an object globally usually 

comes with the problem of the need for a large number of local features. Selection 

procedure should be applied to decrease computation cost. After the features have 

been selected, all the training samples of the object and the background are 

represented in this feature space. By using these two types of local features Edgelets 

and HOG, classification is made via AdaBoost cascade classifier and cascade of 

SVM classifier. In training part, three feature-learner combinations are evaluated: 

Edgelet based AdaBoost cascade, Edgelet based poly-kernel SVM cascade and 

HOG based poly-kernel cascade. 

Dai, et. al [11] present a layered representation for infrared image and demonstrate 

its effectiveness in pedestrian detection and tracking. IR images are decomposed 

into background (still objects) and foreground (moving objects) by applying 

Expectation-Maximization (EM) algorithm. An image is represented by the 

summation of inverse of mask layer times background layer, foreground layer times 

mask layer and noise layer. Mask layer includes moving object information and 

noise layer is represented as a Gaussian distribution from the empirical analysis. 

Phase correlation method is used to register K infrared images for initial estimation 

of background. At each iteration, mask layer is updated by thresholding difference 

of current image with background layer. The alignment results are purified by 

eliminating foreground pixels. Background layer is updated via adaptively average 

operation of K registered images. If the difference between current background 

model and previous one is smaller then a predefined value, iteration will stop. 

Foreground layer is extracted after finding the background and mask layer. 
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2.4 Algorithms Which Use Only Visible Image 

Zhou and Hoang [12] present a robust real time system which is capable of 

detecting and tracking the human for video surveillance. This system can also be 

used in varying environments. Running average method is used to model the 

background. Background model is updated via an updating rate to deal with gradual 

light changes. A modified version of background subtraction is used for foreground 

detection. Some noises caused by motion of camera, shaking of tree are aimed to be 

eliminated with this modified version. Foreground mask image is constructed by 

using two threshold values which are applied to the result of background 

subtraction. The result of the shadow detection module is also used in the 

construction of foreground mask image. 

Hussein, et. al. [13] present a real time system for human detection, tracking and 

verification by using a color camera which is installed on a freely moving platform 

such as a vehicle or a robot. It is emphasized that system design and implementation 

are focused rather than algorithmic issue. In [13], before the foreground detection, 

an image registration algorithm which is described in [14] is applied. It recovers 

affine motion between a pair of image to align the current frame with a preceding 

frame and with a succeeding frame. To find foreground regions, the current frame is 

subtracted from the preceding frame and succeeding frame. Binary image is 

constructed by thresholding subtracted image. Binary images show locations of 

foreground regions in the subtracted images. To find foreground regions in current 

frame, AND operation is applied between two binary images. 

In [29], a real-time computer vision and machine learning system is presented to 

model and recognize human behaviors for visual surveillance. An eigenspace model 

is used to detect moving objects by using sample images as feature vectors. The 

dimension of the constructed eigenspace is reduced by applying Principal 

Component Analysis (PCA). It is aimed to keep K eigenvectors which should 

represent only the static parts of the scene. Current frame is projected onto the space 
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spanned by K eigenvectors and the reconstructed frame is obtained. By thresholding 

the difference between the current frame and the projected frame, foreground 

regions are extracted.  

Salient (interesting e.g, a person) motion detection is performed in [30] by 

combining temporal difference imaging and a temporal filtered motion field for 

real-time video surveillance in complex environments. In five steps, the salient 

moving objects are detected: (1) the temporal differences of consecutive frames are 

calculated to get region of change; (2) frame to frame optical flow is computed by 

using Lucas-Kanada method; (3) the temporal filter is applied to the region of 

changes (found in step one), with the assumption of salient moving objects move in 

a consistent direction in a period time on X-component or Y-component; (4) the 

pixels are considered as seed pixels if they move unceasingly in the same direction 

for the X-component and Y-component of optical flow; (5) salient moving objects 

are detected by combining the temporal difference imaging, temporal filtered 

motion and region information. 

2.5 Algorithms for Shadow Detection 

In [20], shadow detection is performed via comparing the current pixel chrominance 

and brightness value with the corresponding background pixel values. The 

computational color model expressed in [23] is used. In this model, a chromaticity 

line passing through the origin is formed by using the background R, G and B 

values (mean values) of each pixel location. The distortion of chromaticity line of 

the current pixel values to the corresponding background model line is calculated 

for that pixel. Two distortion measurements are calculated: Brightness and 

chromaticity distortion. The brightness distortion   measures how close the current 

pixel value to the expected chromaticity line is. The orthogonal distance from the 

current chromaticity line to the background chromaticity line is defined as the color 

distortion iCD . A pixel is considered as a shadow pixel if the brightness distortion 

  and the chromaticity distortion iCD .is within some threshold values. 
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In [2], shadow detection is found by calculating the decrease in brightness and the 

chromaticity for each pixel. Only mean values of L, U and V bands of the 

background model are used for these purposes. In order a pixel to be accepted as a 

potential shadow pixel, some conditions should be satisfied. Detected foreground 

regions that overlap with the potential shadow regions is computed. If the ratio of 

shadow region to the overlapped foreground region is within some threshold values, 

this region is considered as a final shadow region.  



13 

 

CHAPTER 3  

 

APPLIED METHODS 

In this chapter, each block of the algorithm is presented one by one. The proposed 

algorithm requires registered image streams, hence the first step is synchronization 

in time and space of infrared and visible image pairs of our dataset. In the next step, 

the various background models are implemented. Each model is described with 

their own updating parts. The foreground detection for each model is also explained 

in this chapter. Some of the shadow detection algorithms are presented to remove 

shadow regions from the detected foreground regions of visible domain. Using the 

resulting foreground mask, corresponding regions of infrared image is extracted. In 

the resulting foreground regions, connected components are detected as object 

candidates. Finally, a snake is fit to each connected component so that the 

boundaries of the objects are extracted. This snake algorithm is presented at the end 

of this chapter. 

3.1 Image Registration 

An external synchronization clock is available neither for our infrared nor for our 

visible camera. Thus, before registering the images in space, synchronization in 

time must be completed to get correspondence for the image pairs. For this purpose; 

evident cues which exist in both domains are chosen manually and frame difference 

between infrared and visible image sequences is calculated. Figure 3-1 shows an 
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infrared image which has the frame number 1463 and corresponding visible image 

pair which has the frame number 1400. 

  

Figure 3-1 Infrared and Visible Image at Frame Number 1463 and 1400 

Respectively 

 

Figure 3-2 Addition of Original Images of Infrared and Color Domain 

If the resulting images are used without registration, the results do not give desired 

outputs. Figure 3-2 shows addition of the infrared and visible image pairs. Spatial 

registration task is started by finding common field of view manually from the 

image pairs. After that, the regions which are not seen in both domains are cut out. 

Sizes of the images in both domains are made similar by up sampling or down 

sampling via bilinear interpolation. Translation transformation is also applied to the 

visible image to match it with the corresponding infrared image. After get 

correspondence for image pairs in space, registration parameters are fixed to use 

them for all scenes. Figure 3-3 shows registered infrared and visible image. Figure 
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3-4 shows addition of these registered image pairs. This algorithm is applied to 

every corresponding image pair in video streams. By using these registered infrared 

and visible images, two video files are created separately that is a video which 

includes only registered infrared images and a video which includes only 

corresponding registered visible images. These registered video files are used in the 

experiments. 

For the other recorded scenarios, just finding frame difference between infrared and 

visible video streams is enough to register these two streams automatically (because 

the parameters which are used in registration in space are fixed) by using above 

registering algorithm for this experimental setup. 

  

Figure 3-3 Registered Infrared and Visible Image 

 

Figure 3-4 Addition of Registered Images of Infrared and Color Domain 
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3.2 Background Modeling 

3.2.1 Single Gaussian Model: Infrared, Color Intensity, Color 

Channels Separately 

In [1], Single Gaussian method is applied at each pixel to model the background. N 

frames are captured form both infrared and visible domains to construct proper 

mean/variance background models. Median images medI  of both domains are found 

from the N thermal and visible images. By using the median image, the weight of 

each pixel is calculated to minimize the effect of the outliers. The weights are 

computed from a Gaussian distribution centered at ),( yxImed  
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),( yxI i  values which are far from the median ),( yxImed  (outliers) has smaller 

contribution. ̂ represents the standard deviation and it is taken as 5. The statistical 

background model of each pixel in infrared and intensity component of visible 

image is constructed by computing weighted mean (3-2) and variance (3-3). For the 

color channels component of visible image, mean (3-4) and covariance (3-5) are 

calculated without weights. 
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For longer sequences background model can be updated by using update factor   

as follows: 

 ),(),()1(),( 1 yxIyxyx ttt     (3-6) 

 )),(),(()),(),(()1(),( 2

1

2 yxyxIyxyxIyx tt

T

tttt     (3-7) 

Update factor   parameter is chosen different for updating mean and variance of 

the pixel. 

In Figure 3-5, the results of mean images of each infrared, color intensity and color 

channels domain are shown. These images are taken from frame 300 of sequence1 

of OTCBVS dataset. Although mean images of color intensity and color channels 

contain two transparent people silhouettes, mean image of infrared contains no 

people silhouettes. One of the people (close to building) stays almost first 150 

frames in front of the building and the other one walks along the road up during the 

frame 300. This situation causes transparent people silhouettes in background 

model of color domain. 



18 

 

   

Figure 3-5 Mean Images of Infrared, Color Intensity and Color Channels of Single 

Gaussian Background Method 

3.2.2 Single Gaussian Model: Infrared and Color Intensity as One 

Vector 

In this model, infrared and color intensity are used as one vector to model the 

background with Single Gaussian method. 

  IRCX Int  (3-8)  

Each pixel is expressed as (3-8). IntC  and IR  represent the color intensity and 

infrared components of each pixel respectively. Mean and covariance of this vector 

is calculated using equations (3-4) and (3-5) without weights. Update procedure is 

performed similar to the procedure that is expressed in Section 3.2.1 (equations (3-

6) and (3-7)). 

3.2.3 Single Gaussian Model: Infrared and Color Channels as One 

Vector 

In this model, infrared and color channels are used as one vector to model the 

background with Single Gaussian method. 

  IRBGRX   (3-9)  



19 

 

Each pixel is expressed as (3-9). R , G , B and IR  represent the red, green, blue 

and infrared components of each pixel respectively. Mean and covariance of this 

vector is calculated using equations in (3-4) and (3-5) without weights. Update 

procedure is performed similar to the procedure that is expressed in Section 3.2.1 

(equations (3-6) and (3-7)). 

3.2.4 Single Gaussian Model: Infrared, Color Intensity and Color 

Channels as One Vector 

In this model, infrared, color intensity and color channels are used as one vector to 

model the background with Single Gaussian method. 

  IRCBGRX Int  (3-10)  

Each pixel is expressed as (3-10). R , G , B , IntC  and IR  represent the red, green, 

blue, color intensity and infrared components of each pixel respectively. Mean and 

covariance of this vector is calculated using equations in (3-4) and (3-5) without 

weights. Update procedure is performed similar to the procedure that is expressed in 

Section 3.2.1 (equations (3-6) and (3-7)). 

3.2.5 Non-Parametric Model 

In [2], non-parametric background model described in [3] is taken the origin of the 

background model. The non-parametric model stores N frames for each band L, U, 

V and infrared. RGB bands are converted to LUV bands to get less correlation 

between channels such that background model becomes more valid. For each band 

and for each pixel, consecutive image pair differences 1 ii xx  are calculated. 

Median q  of these differences is calculated. Variance of each band 2  is found as: 

 
268.0

2 q
  (3-11) 
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LUV (also known as CIELUV) is a color space adopted by CIE (International 

Commission on Illumination). The CIE has defined a system that classifies color 

according to the HVS, the human visual system. LUV color space is nearly linear 

with visual perception, or at least as close as any color space is expected to 

sensibility get and the conversions are reversible. It is device independent but not 

very intuitive to use.  

Conversion of R, G, B to CIE XYZ: 
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Conversion CIE XYZ to CIE LUV: 
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On output 1000  L , 220134  u , 122140  v . The values are then 

converted to the destination data type: 
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Conversion of CIE XYZ to R, G, B: 
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Before modelling background, anisotropic diffusion and rough pedestrian detection 

are performed. 

Anisotropic Diffusion: 

Infrared images are processed to deal with noises. Due to the nature of the infrared 

radiation, hot objects including the device itself emit non-significant amounts of 

radiation at this spectrum. Hence infrared images contain high noise. To reduce 

these noises, anisotropic diffusion is applied to each infrared image. 

The following algorithm is applied iteratively to the smoothed version of the 

infrared image I  until convergence for anisotropic diffusion (by observing the 

results of anisotropic diffusion, five iterations are enough to get the convergence). 

An isotropic Gaussian kernel is applied for smoothing:  

1. Gradient magnitude is calculated for the smoothed image.  

 IM   (3-18) 

2. Coefficients C  are calculated.  
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
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C  (3-19) 

3. Each pixel in I  is multiplied with its corresponding coefficient in C  . 

4. I  is set with the given equation (3-20). )(XF  is obtained by replacing each 

value in X , with the sum of eight neighbors of the value and the value 

itself.  

 )(/)( CFIFI   (3-20) 
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Infrared frame 5 (in Figure 3-6) of sequence1 of OTCBVS dataset is used to 

demonstrate anisotropic diffusion. The results of the first and the fifth iterations of 

anisotropic diffusion operation are shown in Figure 3-7. 

 

Figure 3-6 Infrared Frame 5 of Sequence1 of OTCBVS Dataset  

  

Figure 3-7 First and Fifth Iteration of Anisotropic Diffusion Respectively 

If a 5x5 Gaussian kernel is applied five times to the same infrared image given in 

Figure 3-6, the result will be so blurred as shown in Figure 3-8. As can be seen from 

Figure 3-7, anisotropic diffusion operation preserves edges while smoothing 

internal regions. 
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Figure 3-8 Fifth Iteration of Gaussian Filter 

Rough Pedestrian Detection: 

Before initializing background model, a rough pedestrian detection is made in the 

infrared image by using size, aspect ratio and thermal features. It is aimed to not to 

miss any pedestrians, so that their pixels are not put into the background model. 

Regarding the observation of an infrared image histogram, a dominant Gaussian 

distribution is contained in the histogram which represents environment temperature 

(essentially noise). Interest of objects is assumed to have brighter pixels and lie far 

outside this distribution. An importance score function (3-21) is generated for each 

brightness value by using the histogram. Each pixel is replaced with the importance 

value of its brightness.  
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Where x  represents pixel brightness value, )(xh  is the histogram of infrared image 

and n  is a parameter which decreases importance value of noises. n  is taken as 10. 

After replacing each pixel by its importance value, two threshold values LT  and UT  

are applied for segmentation of hysteresis. All pixels which are below LT  are 

discarded. From the remaining connected components only those regions which 

contain at least one pixel which is greater than UT  are taken into consideration for 
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valid regions. From these regions, non-pedestrians are eliminated if any of the 

following statements are true: 

1. maxmin SsorSs rr   

2. 51  rr borb  

3. 5.2/)(  mar  

4. 4/)(  mmr  

Where rs  represents its pixel area, rb is the height to width ratio of its bounding box 

using original infrared image (not the importance image), ra  represent its average 

brightness, and rm  is the maximum brightness. m  and   are the mean and 

standard deviation of the pixel brightness in the infrared image. minS  and maxS are 

set empirically regarding the expected pedestrian size. Namely minS  is set to one-

quarter of the size of the smallest expected pedestrian and maxS  is set to slightly 

greater than the largest expected pedestrian size. The output of this rough pedestrian 

detection is a binary mask ),( yxP . All the parameters for detecting pedestrians are 

chosen empirically, and it is aimed to not miss any pedestrians so that their pixels 

are not put into the background model.The same infrared image in Figure 3-6 is 

taken to show some results of the rough pedestrian detection algorithm. Non-

pedestrian elimination step and the meanings of colours are shown in Figure 3-9. 

Elimination order is the same as in the table. If the region is failed from applied 

condition, it is filled with corresponding colour and no more comparison is done for 

this particular region. 
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Figure 3-9 Non-Pedestrian Detection and Meaning of Colors 

In Figure 3-10 output of the rough pedestrian detection is shown. Morphological 

dilation operation is applied to the result with 5x5 rectangle structural element and 

it is shown also in the same figure. 

  

Figure 3-10 Output of Rough Pedestrian Detection and Dilation Operation 

One of the people (in Figure 3-6) is detected, but the other one is eliminated. 

Because the upper part of the body, which has a temperature value close to the 

pavement, is connected with a part of the pavement. This connected component  

exceeds the specified maximum area limit.  

Background Updating: 

Background modeling is updated for the purpose of dealing with gradual changes 

like day to night changes. The objects are also placed to the background, in 

following cases: If the objects remain enough time in the scene and if the objects 
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are decided as foreground by mistake such as caused by rapid changes. This update 

procedure should also be capable of updating quickly in the presence of ghost 

objects or sudden illumination changes. Background modeling process has been 

performed continuously to deal gradual changes. Background modeling B, is 

updated by the following rules: 

1. if 1),(  yx , update ),( yxB , where   is explained below  

2. otherwise, if ),( yxB =? (unknown), update ),( yxB  only if ),( yxP = 0 

3. otherwise, if this pixel is classified as shadow, it is not updated 

4. otherwise, update this pixel if it has been detected as background 

If the Background model has already N samples, the new coming pixel is updated 

by oldest sample, if the model is less than N samples, it is added to the sample set. 

The variances of each band are also periodically updated. 

Likelihood image ),( yx  finds cues and takes the pixel to the corresponding 

background model. These cues are time, size, edge magnitude and thermal 

brightness. If an object spends enough long time in the scene, it should be treated as 

background. Normally, tinny areas appearing in the foreground regions are caused 

by detection errors. Edges give cues about the foreground region. These cues tell if 

the background is a ghost or not. Thermal cue is based on the assumption that the 

colder objects are more likely to be part of background model. Each pixel location 

of ),( yx , which is detected as a foreground pixel, is updated as follows: 

 )()()( ,,,1,,,, bfefsfC
bbeess TrTrTTtyxtyx     (3-22) 
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where, rs  is the size of foreground region which includes the pixel ),( yx , b is the 

maximum thermal brightness in a 77x  window around the pixel ),( yx  within the 

same foreground region area, TC  is time constant to determine how fast static 

objects will be part of the background model, C is constant to control the function 

value. Gradient values corresponding to the boundaries of the detected foreground 

regions and the background regions ( r  is the set of these points) are calculated. 

Differences of these values are accumulated to get re  value. This approach is based 

on [22]. The function of )(, xfT  is a sigmoid function which has center point at T  

and whose transition width is controlled by  . Parameters of equation (3-22), are 

chosen empirically.  

The value of the background likelihood of the pixel which is greater than 1 

( 1),(  yx ), is shown as an image in Figure 3-11 (from frame 300 of sequence1 of 

OTCBVS dataset). This image is constructed by using each cue given in equation 

(3-22). During the 300 frames, one of the people (close to building) stands almost 

first 150 frames on front of the building and the other one walks along the road. The 

standing person pixels are starting to be taken into the background frames because 

of time cue TC . The other person causes ghost regions behind. For these situations, 

edge cues give more information. Because there exist normally no human in the 

current image so value of the term )(, rT ef
ee 

 in equation (3-22) increases. Tinny 

areas, which are detected as a foreground, are updated because of size cue 

)(, rT sf
ss 

. The colder objects which are detected as foreground, are also updated 

because of thermal cue )(, bf
bbT  . 
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Figure 3-11 Likelihood Image of the Non-Parametric Method 

3.2.6 Non-Parametric Model: Infrared and Color Separately 

The same procedure as the one described in Section 3.2.5 is applied in this method. 

Anisotropic diffusion and the rough pedestrian detection module are performed on 

the infrared image. Update procedure is also the same, as the one described in 

Section 3.2.5. 

3.2.7 Mixture of K Gaussian Model 

In [19] each pixel in the background model is modeled by a mixture of K Gaussian 

distributions. The probability of a pixel’s having a value of Nx  at time N  can be 

written as: 
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where kw  is the weight parameter, k  is the mean and  2

kk   is the covariance 

of the k
th

 component. R, G and B components are assumed to be independent. The 

initial weights of the K distributions at time N are adjusted as: 
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where   is the learning rate and )|(ˆ 1Nk xw  is 1 for the first matched Gaussian 

component and 0 for the remaining part. N

kw  represents weight parameter at time 

N of the k
th

 component. The K Gaussian distributions are ordered by the value of 

kkw /  and the first B distributions are used for the background modeling. 
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where T represents the threshold for the minimum portion of the background model. 

Every new pixel value tx  is checked against existing K Gaussian distributions until 

a match is found. A match is defined as a pixel value within 2.5 standard deviations 

of a distribution. If there is no match, the mean of the least probable distribution is 

replaced with the current value and initially high variance and low prior weights are 

assigned to this distribution. If there is a match to one of the components, first 

matched model component will be updated as follows: 
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where the second learning rate,   is 
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N

k  and N

k  represent mean and variance values at time N of the k
th

 component. 

In [20], an improved version of [19] is explained. Initial estimation of Gaussian 

mixture model is made up with static update equations given below: 
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when the first L samples are processed, L-recent window version equations are used 

as given below: 
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In Figure 3-12, the results of mean images of each infrared, color intensity and color 

channels domain are shown. These images are taken from frame 300 of sequence1 

of OTCBVS dataset. Sudden illumination changes occur during the sequence in 

visible domain. This situation affects the model of the background in that domain. 

The effect of these sudden illumination changes can be seen on the background 

model, in front of the building (Figure 3-12).  
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Figure 3-12 Mean Images of Infrared, Color Intensity and Color Channels of 

Mixture of Gaussian Background Method 

3.3 Foreground Detection 

3.3.1 Foreground Detection Based on Single Gaussian Background 

Model 

In [1], the squared Mahalanobis distance is used for foreground detection. For the 

infrared and intensity component of visible image, foreground detection is made by 

equation (3-38). For the color channels component of visible image, it is made by 

(3-39) 
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Where Z  represents the threshold value. Each threshold value, for either of the 

infrared, the color intensity and the color channels, is set empirically. Especially in 

infrared domain, it is aimed to detect whole regions of the people if it is possible.  
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For the Single Gaussian background models which are explained in Sections 3.2.2, 

3.2.3 and 3.2.4, the foreground regions are extracted with the same equation given 

in (3-39). 

To demonstrate the results of foreground detection based on the Single Gaussian 

background model, frame 803 of sequence4 of the OTCBVS dataset is chosen. The 

current images of infrared, color intensity and color channels are given in Figure 

3-13.  

   

Figure 3-13 Current Infrared, Color Intensity and Color Channels Image (Frame 

803 of Sequence4 of the OTCBVS Dataset) 

The results of foreground regions (for the images given in Figure 3-13) of the 

Single Gaussian method, which is described in Section 3.2.1 is shown in Figure 

3-14. The color domain contains highly spurious foreground regions, if it is not 

masked by infrared foreground. Some of the spurious foreground regions (for 

example rectangle regions) are detected because of compression of row data. 

Foreground regions of color intensity and color channels which are masked by 

infrared foreground are shown in Figure 3-15. Spurious foreground regions of the 

color domain are mostly removed by masking them with foreground regions of 

infrared domain. 



33 

 

   

Figure 3-14 Foreground Regions of Infrared, Color Intensity and Color Channels 

(without Masked by Infrared Foreground)  

  

Figure 3-15 Foreground Regions of Color Intensity and Color Channels (with 

Masked by Infrared Foreground) 

In Figure 3-16, foreground regions of Single Gaussian methods which are modelled 

by combinations of bands as one vector (described in Section 3.2.2, 3.2.3 and 3.2.4) 

are shown. The leftmost image shows the foreground regions of the Single Gaussian 

model which is constructed by infrared and color intensity modelled as one vector 

(described in Section 3.2.2). The middle image shows the foreground regions of 

which infrared and color channels are represented as one vector (described in 

Section 3.2.3) to model the background. The rightmost image shows the foreground 

regions of the model which is constructed by representing each infrared, color 

intensity and color channels domain as one vector (described in Section 3.2.4). As 

can be seen from the images, many spurious foreground regions are detected for all 

combinations. Some of the spurious foreground regions especially in rightmost 

image (for example rectangle regions) are detected because of compression of row 
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data. Trying to model each domain as one vector causes the model to be more 

sensitive to noises.  

   

Figure 3-16 Foreground Regions of Single Gaussian Methods (Combination of 

Bands as One Vector) 

3.3.2 Foreground Detection Based on Non-Parametric Background 

Model 

In [2], for a new pixel the probability that it came from the background distribution 

is calculated as below: 
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where N and d represent the number of stored frames and used channels 

respectively. d is taken 4 for this model that is L, U, V and infrared domains. 
2

j  

represents the variance of corresponding channels. 

If the )Pr( tx  of a new pixel is lower than a threshold, it is taken as a foreground 

pixel. If the pixel has zero samples due to binary mask ),( yxP  from the rough 

pedestrian detection module, it is taken as a foreground pixel as well. 
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To demonstrate the results of foreground detection based on the Non-Parametric 

background model, the same figure (Figure 3-13) is chosen. In Figure 3-17, the 

results of the foreground regions of Non-Parametric model, which is described in 

Section 3.2.5, is shown. Equation (3-40) is used to detect foreground regions. The 

foreground region of non-parametric model does not contain so many foreground 

regions. In addition, human regions of the foreground are close to manually 

segmented foreground. 

 

Figure 3-17 Foreground Regions of Non-Parametric Method 

In the non-parametric model, for which infrared and color domains are modeled 

separately (described in Section 3.2.6), the foreground regions in the infrared 

domain are extracted by using equation (3-40) (d parameter is taken 1 for only 

infrared band). The foreground regions found in the color domain are extracted 

from foreground regions found in the infrared domain by using the same equation 

(3-40) (d parameter is taken 3 for L, U and V bands).  

To show results of foreground detections of each band, the same figure (Figure 

3-13) is chosen. In Figure 3-18, the left image shows the foreground regions of 

infrared and the right image shows foreground regions of LUV image without using 

infrared foreground as a mask image. In Figure 3-19, the foreground region of LUV 

image is shown with using infrared foreground as a mask image. By applying 

infrared foreground as a mask image, the spurious regions are mostly removed from 

the foreground region of LUV. 
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Figure 3-18 Foreground Regions of Infrared and LUV (without Masked by Infrared 

Foreground) 

 

Figure 3-19 Foreground Regions of LUV (with Masked by Infrared Foreground) 

3.3.3 Foreground Detection Based on Mixture of Gaussian 

Background Model 

In [19], by considering the equation (3-28), a pixel is classified as a foreground 

pixel, if it is more than 2.5 standard deviations away from any of the B distributions. 

The threshold T is a measure of the minimum portion of the background model. If it 

is chosen too high desired foreground regions cannot be detected. Especially in 

infrared domain, it is aimed to detect whole regions of the person. 

The results of foreground regions (for the images given in Figure 3-13) of the 

Mixture of Gaussian method, which is described in Section 3.2.7, are shown in 

Figure 3-20. The color domain contains also shadow regions, if it is not masked by 

infrared foreground. Foreground regions of color intensity and color channels which 
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are masked by infrared foreground are shown in Figure 3-21. Shadow regions of the 

foreground regions of the color domains are mostly removed by masking them with 

foreground regions of infrared domain. 

   

Figure 3-20 Foreground Regions of Infrared, Color Intensity and Color Channels 

(without Masked by Infrared Foreground)  

  

Figure 3-21 Foreground Regions of Color Intensity and Color Channels (with 

Masked by Infrared Foreground) 

3.3.4 Shadow Detection 

3.3.4.1 Method-1 for Shadow Detection 

If a pixel will be considered a shadow pixel, difference between ratios of the 

normalized components of each channel of the current pixel and the background 

model should be lower than a threshold value. 
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where subscript c demonstrates the current pixel and b demonstrates the background 

model of that pixel. If the above equation is hold true for each color channel 

component of the pixel, it is considered as a shadow pixel.  

To demonstrate the results of shadow detection algorithm, frame 319 is taken from 

the sequence2 of the OTCBVS dataset which is shown in Figure 3-22. 

 

Figure 3-22 Frame 319 of Sequence2 of the OTCBVS Dataset for Shadow 

Detection 

The result of method-1 for shadow detection is given in Figure 3-23. Left image 

shows the result of the condition equation (3-41) and the right image shows the 

masked image with the foreground region of color image. Desired shadow regions 

could not be extracted by applying the equation (3-41). It is almost impossible to 

eliminate shadows from the foreground regions of color image by this method. So, 

it is not used in our algorithm.  
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Figure 3-23 Shadow Detection Results for Method-1, Originally Shadow Image and 

Final Shadow Image After Masked with Foreground Region of Color Image 

3.3.4.2 Method-2 for Shadow Detection 

In [20], shadow detection is performed via comparing the current pixel chrominance 

and brightness value with the corresponding background pixel values. The 

computational color model expressed in [23] is used. In this model, a chromaticity 

line passing through the origin is formed by using the background R, G and B 

values (mean values) of each pixel location. The distortion of chromaticity line of 

the current pixel values to the corresponding background model line is calculated 

for that pixel. Two distortion measurements are calculated: Brightness and 

chromaticity distortion. The brightness distortion   measures how close the current 

pixel value to the expected chromaticity line is. It is a scalar value and is calculated 

by minimizing the equation given below: 

 2)()( iiii EI    (3-42) 

where iE  is the expected color of the background model.  

The orthogonal distance from the current chromaticity line to the background 

chromaticity line is defined as the color distortion iCD  and calculated as given 

below: 

 iiii EICD   (3-43) 
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After some derivations, brightness distortion and color distortion are calculated by 

the equations given below; 
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A pixel is considered as a shadow pixel if brightness distortion   is within 2.5 

standard deviation and the condition of 1 iCD  is true for chromaticity 

distortion iCD .  

The same figure (Figure 3-22) is used to demonstrate the result of method-2. In 

Figure 3-24, the left image shows the original shadow regions where conditions of 

brightness   and chromaticity distortion CDi  are hold true. The right image shows 

the masked image with foreground regions of color image. This method is not used 

in our algorithm, because the shadow regions could not be differentiated from the 

foreground regions of color image, as it can be seen in Figure 3-24. 

  

Figure 3-24 Shadow Detection Results for Method-2, Originally Shadow Image and 

Final Shadow Image After Masked with Foreground Region of Color Image 
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3.3.4.3 Method-3 for Shadow Detection 

In [2], shadow detection is found by calculating the decrease in brightness and the 

chromaticity for each pixel. Only mean values of L, U and V bands of the 

background model are used for these purposes. In order a pixel p to be accepted as a 

shadow pixel, all the conditions below should be satisfied: 

1. 98.08.0  LC , where LLL BpC /  

2. 20UVC , where 
22 )()( VVuUUV pBpBC   

Where LC  is the change of luminance, UVC  is the change of chrominance, LB , UB  

and VB  are the average background values of each band. These pixels are 

considered as potential shadow pixels. Detected foreground regions that overlapped 

with the potential shadow regions is computed and the ratio of: 

 
F

S
  (3-46) 

is calculated. Where, S  is the area of the shadow and F  is the area of the 

foreground regions. Final shadow regions are found by the condition:   . 

  and   parameters limit the shadow region area with the corresponding 

overlapped foreground.   and   parameters are set such that any of the person 

regions do not considered as shadow regions. 

The same figure (Figure 3-22) is used to demonstrate the result of method-3. In 

Figure 3-25, left image shows possible shadow regions before the application of 

condition equation (3-46) and the right image shows the result of shadow detection 

after applying the equation. As it can be seen in Figure 3-25, almost whole shadow 

regions are detected as possible shadow regions. Final shadow regions are extracted 
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from these possible shadow regions. This method is used in our algorithm to 

remove shadow regions from the foreground regions of color domain.  

  

Figure 3-25 Shadow Detection Results for Method-3, Possible Shadow Image and 

Final Shadow Image  

3.3.5 Fusion of Infrared and Visible Domains 

For the background models, (described in Section 3.2.1, 3.2.6 and 3.2.7) where the 

infrared and color domains are modeled separately, the fusion of the infrared and 

visible domain is performed as explained below:  

Pixel-wise OR operation is applied between the foreground regions of masked color 

intensity and color channels. From these regions, detected shadows regions are 

removed. After shadow elimination from the foreground regions of color domain, 

pixel-wise OR operation is applied between these regions and the foreground 

regions of the infrared. The resulting foreground regions are used as a mask in the 

application of the snake algorithm. 

To demonstrate the results of fusion of infrared and visible domains based on the 

Single Gaussian (SG), Mixture of Gaussian (MOG) and Non-Parametric (Non-

Param) background models (described in Section 3.2.1, 3.2.6 and 3.2.7), frame 665 

is taken from the sequence3 of the OTCBVS dataset which is shown in Figure 3-26. 

As it can be seen from Figure 3-27, Figure 3-28 and Figure 3-29 some regions of 

the people cannot be detected, furthermore the person regions are divided into at 
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least two parts in infrared domain. After the addition of the color foreground, these 

regions are almost completed as seen in the rightmost image of each figure. 

   

Figure 3-26 Current Infrared, Color Intensity and Color Channels Image (Frame 

665 of Sequence3 of the OTCBVS Dataset) 

   

Figure 3-27 Foreground Region of Infrared, Foreground Region of Color and 

Resulting Final Foreground (Based on SG Background Model) 

   

Figure 3-28 Foreground Region of Infrared, Foreground Region of Color and 

Resulting Final Foreground (Based on Non-Param Background Model) 
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Figure 3-29 Foreground Region of Infrared, Foreground Region of Color and 

Resulting Final Foreground (Based on MOG Background Model) 

For the background models, (described in Section 3.2.2, 3.2.3, 3.2.4, 3.2.5) fusion 

of the infrared and color domain is performed in background model. For the Single 

Gaussian methods, a pixel is represented as a vector which contains each domain 

and only one foreground region is extracted by applying the equation (3-39). For the 

Non-Parametric method, N frames are stored for each band and only one 

foreground region is extracted by applying the equation (3-40). Finally shadow 

regions are removed from these foreground regions and it is used as a mask for the 

application of snake algorithm.  

Frame 240 is taken from the sequence4 of the OTCBVS dataset which is shown in 

Figure 3-30 to demonstrate the results. In Figure 3-31, the leftmost image shows the 

final foreground regions of the Single Gaussian model which is constructed by 

infrared and color intensity modelled as one vector (described in Section 3.2.2). The 

next image shows the final foreground regions of which infrared and color channels 

domains are represented as one vector (described in Section 3.2.3) to model the 

background. The next image shows the final foreground regions of the model which 

is constructed by representing each infrared, color intensity and color channels 

domain as one vector (described in Section 3.2.4). Rightmost image shows the final 

foreground regions of Non-Parametric background model (described in Section 

3.2.5). 

As it can be seen from the Figure 3-31, final foreground region, which is based on 

Non-Parametric background model, does not contain so many spurious and it is so 
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close to the manually segmented human region. Representing the combinations of 

each band as one vector does not give desired results. 

   

Figure 3-30 Current Infrared, Color Intensity and Color Channels Image (Frame 

240 of Sequence4 of the OTCBVS Dataset) 

    

Figure 3-31 Final Foreground Regions (Combination of Bands as One Vector of 

Single Gaussian and Non-Parametric Background Model) 

3.4 Application of Snake Algorithm 

The main goal of active contour models or snakes is to detect objects in a given 

image, by evaluating a curve. In [21] Chan and Vese proposed a model which can 

detect objects whose boundaries are not necessarily defined by gradient. It is based 

on Mumford-Shah segmentation techniques [28] and the level set method. The 

model is trying to separate the image into regions based on intensities. Starting with 

a curve whose position can be anywhere in the image, the curve moves toward its 

interior normal and stops on the boundary of the object. The main problem is the 

minimization of energy based-segmentation. 
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To explain the main idea in a simple way, the equation (3-47) can be considered: 

 dxdycyxudxdycyxuCFCF
CoutsideCinside

2

)(
20

2

)(
1021 ),(),()()(    (3-47) 

where C  is the curve which will be evolved, ),(0 yxu  is the given image and it is 

assumed that two regions exist in the image which has approximately constant 

intensities. 1c  and 2c  are the average intensity values of the inside and outside of 

the C . It can be seen that the boundary of the object 0C  will minimize the (3-47) 

After adding some regularizing terms to (3-47), the energy function becomes: 
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Where 0 , 0 , 121    and the problem becomes of minimization of 

 CccF ,, 21  with respect to 1c , 2c  and C . The model is solved by level set 

formulation. The contour C  is represented by the zero level set of a Lipschitz 

function : such that 
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Introducing the Heaviside function H, and the one-dimensional Dirac measure 0 , 

the terms in the energy function of F can be expressed as: 
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The intensity terms: 
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The average intensities 1c  and 2c  can be calculated as: 
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Minimizing F function with respect to   is done by Euler-Lagrange equation while 

keeping 1c  and 2c  constant: 
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where the curvature   can be expressed as: 
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The basic algorithm:  

1. Initialization n and contour   (any shape can be the initialization shape) 

2. Increase n by 1 
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3. Compute the average intensities 1c  and 2c  of the image pixels inside and 

outside (3-51) 

4. Evolve the level set function (3-52) 

5. Repeat the steps 2, 3 and 4 until the solution is stationary or n exceeds the 

limit of iteration 

The algorithm given in [24] is tried to be implemented for this purpose. This 

algorithm is applied to each connected component of the foreground image 

extracted from the thermal channel. To get more precise results, the area and the 

center of each connected component are computed and used for the initialization of 

the snake. The shape of the contour is chosen as a circular. The radius of the circle 

and the iteration number of the algorithm is changed according to the area of the 

connected component.  

To demonstrate the results of application of snake algorithm, frame 319 is taken 

from the sequence2 of the OTCBVS dataset which is shown in Figure 3-32. 

Because of the halo effect around the people is weaker for this OTCBVS dataset 

and the background temperature is so close to the human temperature, in the snake 

algorithm, contour can not surround the boundary of the human objects as it can be 

seen in Figure 3-33. In our database the halo effects that surround the people are 

more evident than in OTCBVS dataset and contour could surround the boundary of 

the human objects more precisely. The results of the application of snake algorithm 

are also given in Section 4.4.  
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Figure 3-32 Current Infrared, Color Intensity and Color Channels Image (Frame 

319 of Sequence2 of the OTCBVS Dataset) 

   

Figure 3-33 Foreground Region of Infrared, Resulting Final Foreground Region and 

Application of Snake Algorithm 



50 

 

CHAPTER 4  

 

EXPERIMENTAL RESULTS 

In this study, various background models are implemented to get foreground 

regions and proposed snake algorithm is applied to the final foreground regions in 

order to detect people in two different databases. One of them is the “OSU Color-

Thermal Dataset” in OTCBVS benchmark [25] and the other one is constructed by 

us. Results are demonstrated and compared against manually segmented human 

regions. Our results are also compared with a previous study [1] (described in 

Section 2.1). 

“OSU Color-Thermal Dataset” contains six challenging thermal/color video 

sequences. They are recorded from two different locations, at different times of the 

day and with different camera gain and level settings. Our dataset also contains six 

challenging thermal/color video sequences. Three different places are used for 

recording at different times of the day and recorded with different camera gain and 

level settings. 

4.1 Experimental Setup 

The main parts of the experimental setup are as follows: 

i) A box which consists of an infrared and a visible camera: The infrared 

camera, TU2, is a long wave infrared imaging camera designed for use in 

the security industry. The infrared detector has the features: 320 x 240 
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pixels, Uncooled Focal Plane Array, 625 Lines (PAL/CCIR) Compliant. The 

visible camera, EQ2700, is ¼” day/night camera. The specifications of the 

EQ2700: PAL signal system, total pixels no. 795 (H) x 596 (V), electronic 

shutter 1:50~1:10000, 1 Vp-p composite PAL, BNC, S-video mini DIN 

video output, 27x optical and 10x digital zoom. 

ii) Two PAL recorders (Mini-DV) to record each video stream. 

iii) An interface box: It is prepared to control the parameters of both infrared 

and visible camera and also provide links between PAL recorders and 

cameras. For infrared camera, by using focus switch, far/near focusing is 

adjusted, by using polarity switch, black/white polarity is chosen, via gain 

and level button, gain and level tuning is done. For visible camera, 

parameters can be changed via RS232 connection. 

iv) Power supply unit to supply the cameras. 

Figure 4-1 shows the components of our experimental setup and one of the 

experimental setup places. 

  

Figure 4-1 Experimental Setup and Place  

Scenarios are recorded into tapes via PAL recorders. Recorded videos are captured 

by using Microsoft Windows Movie Maker via IEEE1394 port. Captured frames are 
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saved using digital device format (DV-AVI). Xvid MPEG-4 codec is used to 

compress saved file to save space in the storage device. The proposed algorithms 

are applied to these recorded files. 

4.2 Background Modelling 

Background modelling methods which are described in Section 3.2 are 

implemented. Some of the results are presented to compare differences of the 

methods. 

In Figure 4-2, the results of mean images of each infrared, color intensity and color 

channels domain of the Single Gaussian method, which is described in Section 

3.2.1, are shown. The results of the Mixture of Gaussian which is described in 

Section 3.2.7, is also given in Figure 4-3. These images are taken from frame 300 of 

scene3 of our dataset. One person walks through the road and gets out of the sight 

of the cameras during the frame 300. The path followed by the person can be seen 

on the mean image of the color channels based on the Single Gaussian method (in 

Figure 4-2). Whereas the mean image of the color channels, which is based on the 

Mixture of Gaussian background model, does not include this path and it is 

modelled more correctly.  

   

Figure 4-2 Mean Images of Infrared, Color Intensity and Color Channels of Single 

Gaussian Background Method 
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Figure 4-3 Mean Images of Infrared, Color Intensity and Color Channels of Mixture 

Gaussian Background Method 

 

4.3 Foreground Detection 

In this part, detected foreground regions for each background model is presented. 

The foreground detection algorithms are explained in Section 3.3.  

To demonstrate the foreground regions for all background modelling methods from 

our dataset, the current images of infrared, color intensity and color channels which 

are shown in Figure 4-4, are taken from frame 373 of scene2 of our dataset. 

   

Figure 4-4 Current Infrared, Color Intensity and Color Channels Image (Frame 373 

of Scene2 of Our Dataset) 

The results of foreground regions (for the images given in Figure 4-4) of the Single 

Gaussian method, which is described in Section 3.2.1 is shown in Figure 4-5. In our 

dataset, the halo effects around the people are more evident than OTCBVS dataset. 
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The color domain contains highly spurious foreground regions, if it is not masked 

by infrared foreground. Some of the spurious foreground regions (for example 

rectangle regions) are detected because of compression of row data. Foreground 

regions of color intensity and color channels which are masked by infrared 

foreground are shown in Figure 4-7. Spurious regions of the foreground regions of 

the color domains are mostly removed by masking them with foreground regions of 

infrared domain. 

   

Figure 4-5 Foreground Regions of Infrared, Color Intensity and Color Channels 

(without Masked by Infrared Foreground) Based on Single Gaussian Background 

Model  

  

Figure 4-6 Foreground Regions of Color Intensity and Color Channels (with 

Masked by Infrared Foreground) Based on Single Gaussian Background Model 

The results of foreground regions (for the images given in Figure 4-4) of the 

Mixture of Gaussian method, which is described in Section 3.2.7, are shown in 

Figure 4-7. The color domain contains spurious foreground regions and also shadow 

regions. Spurious foreground regions are reduced compared with Single Gaussian 
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method (Figure 4-7). They are mostly removed by masking them with infrared 

foreground. The results are shown in Figure 4-8. 

   

Figure 4-7 Foreground Regions of Infrared, Color Intensity and Color Channels 

(without Masked by Infrared Foreground) Based on Mixture of Gaussian 

Background Model  

  

Figure 4-8 Foreground Regions of Color Intensity and Color Channels (with 

Masked by Infrared Foreground) Based on Mixture of Gaussian Background Model  

In Figure 4-9, the results of the foreground regions of Non-Parametric model with 

IR and L, U, V bands used separately which is described in Section 3.2.6, are 

shown. Left image shows foreground regions of infrared and the right image shows 

foreground regions of LUV image without using infrared foreground as a mask 

image. By applying infrared foreground as a mask image to the foreground regions 

of LUV image, the spurious regions are mostly removed (see Figure 4-10). 

Silhouette of the person is more evident for foreground region of color domain in 

this model compared with Single Gaussian and Mixture of Gaussian background 

models. 
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Figure 4-9 Foreground Regions of Infrared and LUV (without Masked by Infrared 

Foreground) Based on Non-Parametric Method 

 

Figure 4-10 Foreground Regions of LUV (with Masked by Infrared Foreground) 

Based on Non-Parametric Method 

In Figure 4-11, the results of the foreground regions of Non-Parametric model 

which is described in Section 3.2.5, are shown. The foreground region of non-

parametric model does not contain so many spurious foreground regions. In 

addition, human regions of the foreground are close to the manually segmented 

human regions. 
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Figure 4-11 Foreground Regions of Non-Parametric Method 

In Figure 4-12, foreground regions of Single Gaussian methods which are modelled 

by combinations of bands as one vector (described in Section 3.2.2, 3.2.3 and 3.2.4) 

are shown. The leftmost image shows the foreground regions of the Single Gaussian 

model which is constructed by infrared and color intensity modelled as one vector 

(described in Section 3.2.2). The middle image shows the foreground regions of 

which infrared and color channels domains are represented as one vector to model 

the background (described in Section 3.2.3). The rightmost image shows the 

foreground regions of the model which is constructed by representing each infrared, 

color intensity and color channels domain as one vector (described in Section 

3.2.4). As can be seen from the images, many spurious regions are detected for all 

combinations. Some of the spurious foreground regions especially in middle and 

rightmost image (for example rectangle regions) are detected because of 

compression of row data. 

   

Figure 4-12 Foreground Regions of Single Gaussian Methods (Combination of 

Bands as One Vector) 
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4.3.1 Fusion of Infrared and Visible Domain 

When the temperature of an object and its surrounding area is closer, detection of 

the object from thermal image becomes more difficult. In these situations, if the 

colors of the object and the background are not similar and illumination is available, 

visual spectrum cameras give more cues that can be used to detect the object. This 

situation is illustrated in Figure 4-14. The leftmost image shows the foreground 

detection in infrared domain without the addition of foreground in the visible 

domain. As can be seen in the image, some regions of the people cannot be 

detected, furthermore the person regions are divided into at least two parts. The 

middle image shows the foreground regions of color domain. After the addition of 

the visible cues, these regions are almost completed as seen in the rightmost image 

in Figure 4-14. This completion procedure is described in Section 3.3.5. These 

images are taken from the results of foreground regions based on Single Gaussian 

background modeling (described in Section 3.2.1) and frame 1721 of scene3 is used 

from our database. 

   

Figure 4-13 Frame 1712 of Scene3 of Our Dataset for Fusion of Infrared and 

Visible Domain 
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Figure 4-14 Completion of Infrared Foreground Regions, Foreground Region of 

Infrared, Color Domain and Resulting Final Foreground 

4.4 Application of Snake 

To demonstrate the results of application of snake algorithm (described in Section 

3.4), frame 1400 is taken from the scene4 of our dataset which is shown in Figure 

4-15. One of the examples of the application of snake algorithm is illustrated in 

Figure 4-16. The leftmost image shows the detected foreground regions of the 

infrared image including the objects (people) and the halo effects around them. The 

middle image shows the constructed final foreground region. The snake algorithm is 

applied to each connected component of the image which is formed by masking the 

infrared image by the constructed foreground mask. The result of the snake 

algorithm is shown in the rightmost image of Figure 4-16. Here, people are 

segmented and the boundaries of people are very clear. 

   

Figure 4-15 Frame 1400 of Scene4 of Our Dataset for Fusion of Infrared and 

Visible Domain 
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Figure 4-16 Foreground Region of Infrared, Resulting Final Foreground Region and 

Application of Snake Algorithm 

4.5 Performance for the Whole Algorithm 

To measure the performance of our algorithm and to compare the results with the 

results given in [1], the human regions of the 60 image pairs from the “OSU Color-

Thermal Dataset” in OTCBVS benchmark (10 frames for each sequence) are 

manually segmented. All the parameters and threshold values are fixed to present 

the applicability of the proposed algorithm for various sequences. Different 

background models are used to demonstrate the affects of background model to the 

results.  

The performance is also presented by Recall (R) (Sensitivity), Precision (P) 

(Positive Predictive Value) and F-measure values (described in [1]). Recall 

indicates the ratio of object pixels that the algorithm has found correctly over 

actually manually segmented region. Precision indicates the ratio of object pixels 

that the algorithm has found correctly over in fact object regions. F-measure is a 

harmonic mean of the precision and the recall value.  

Let S(A) represents the area of the object pixels that the algorithm has found 

correctly and let S(B) represents the area of the object pixels that manually 

segmented.  

Recall value is calculated as:  

 
)(

)(

BS

BAS 
 (4-1) 
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Precision value is calculated as:  
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F-measure value is calculated as: 

 
RP

PR
F




2
 (4-3) 

Especially threshold values for detecting foreground regions are tuned to get best 

performance from these measurement values and the threshold values are fixed for 

all sequences before application of the proposed algorithm. 

Quantitative results for six sequences are summarized in comparison with [1] in 

Table 4-1. Different background modeling methods are used to reveal the effect of 

the results. In the Table 4-1: 

SG: the method where each band infrared, color intensity and color channels, is 

modeled separately as a Single Gaussian (described in Section 3.2.1). The block 

schema of the algorithm is given in Figure 4-17. 
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Figure 4-17 The Block Schema of the Algorithm Based on SG and MOG 

Background Models 

MOG: the method where each band, infrared, color intensity and color channels, is 

modeled separately as a Mixture of Gaussian (described in Section 3.2.7). The 

block schema of the algorithm is given in Figure 4-17. 

Non-Param-1: the method where each band, infrared and color domains, is modeled 

separately as a Non Parametric (described in Section 3.2.6). The block schema of 

the algorithm is given in Figure 4-18. 
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Figure 4-18 The Block Schema of the Algorithm Based on Non-Param-1 

Background Model 

Non-Param-2: the method where each band is modeled as a Non Parametric in the 

background model by storing N frames (described in Section 3.2.5). The block 

schema of the algorithm is given in Figure 4-19. 

 

Figure 4-19 . The Block Schema of the Algorithm Based on Non-Param-2 

Background Model 

In all sequences, for our algorithm, recall values are higher but the precision values 

are smaller than the ones expressed in [1]. This means that more actual regions are 

detected. And the main reason of smaller precision is the weakness of the halo 



64 

 

effects surrounding the people in this database. In the snake algorithm, contour can 

not surround the boundary of the human objects exactly. And also if the temperature 

of the human object is close to the temperature of the background, contour also 

includes background objects.  

From the comparison of background modeling techniques, the results can be 

explained as follows:  

MOG method has the weakest performance for all quantitative measurement 

parameters. Especially, the low Precision value shows that extracted foreground 

regions from the MOG method includes much more spurious regions around the 

people. Because of the halo effect around the people is weaker for this OTCBVS 

dataset and the background temperature is so close to the human temperature, in the 

snake algorithm, contour can not surround the boundary of the human objects and 

the contour surrounds also these spurious regions. It causes this poor Precision 

value. 

Non-Param-2 method has higher Precision and F-measure values. Detected 

foreground regions from this model are so close to the manually segmented data, 

that the contour of the snake algorithm could surround human objects more 

precisely. The background updating procedure can also be affecting these results. 

But this updating procedure is more complex and also consumes much more time 

from other updating procedures described in Section 3.2. Because of the non-

existence of infrared foreground mask in this model, the results of this model 

include some of spurious and shadow regions. 

SG and Non-Param1 methods also give promising results for this dataset and have 

similar quantitative measurements. 
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Table 4-1 Comparison of Results: Our Algorithm (Based on Kinds of Background 

Modelling) and Reference [1]  

Sequences SG MOG 
Non 

Param-1 

Non 

Param-2 
In [1] 

Seq1 

Recall 0.731 0.793 0.786 0.753 0.714 

Precision 0.722 0.564 0.659 0.712 0.914 

F-Measure 0.726 0.659 0.717 0.732 0.802 

Seq2 

Recall 0.811 0.705 0.786 0.800 0.719 

Precision 0.722 0.658 0.731 0.770 0.874 

F-Measure 0.764 0.680 0.757 0.785 0.789 

Seq3 

Recall 0.748 0.776 0.753 0.767 0.655 

Precision 0.915 0.822 0.822 0.879 0.905 

F-Measure 0.823 0.799 0.786 0.819 0.760 

Seq4 

Recall 0.912 0.894 0.834 0.892 0.734 

Precision 0.747 0.660 0.842 0.921 0.955 

F-Measure 0.821 0.760 0.838 0.907 0.830 

Seq5 

Recall 0.915 0.587 0.873 0.900 0.809 

Precision 0.705 0.612 0.822 0.905 0.957 

F-Measure 0.796 0.599 0.847 0.902 0.877 

Seq6 

Recall 0.962 0.939 0.922 0.954 0.780 

Precision 0.569 0.412 0.697 0.814 0.931 

F-Measure 0.715 0.573 0.847 0.878 0.851 

Overall 

Recall 0.846 0.782 0.826 0.844 0.722 

Precision 0.730 0.621 0.762 0.833 0.916 

F-Measure 0.784 0.693 0.793 0.839 0.808 

 

The results from each sequence are visualized below where the first row includes 

from left to right the tested images of infrared, color intensity, color channels and 

manually segmented human regions. The second row shows the output of the 

proposed algorithm. In the second row, leftmost image is based on SG method, the 

next image is based on MOG method, the next one is based on Non-Param-1 

method and the rightmost image is based on Non-Param-2 method. 
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Figure 4-20 Results from Frame 652 of Sequence1 of OTCBVS Dataset 

    

    

Figure 4-21 Results from Frame 442 of Sequence2 of OTCBVS Dataset 
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Figure 4-22 Results from Frame 680 of Sequence3 of OTCBVS Dataset 

    

    

Figure 4-23 Results from Frame 803 of Sequence4 of OTCBVS Dataset 
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Figure 4-24 Results from Frame 508 of Sequence5 in OTCBVS Dataset 

    

    

Figure 4-25 Results from Frame 820 of Sequence6 in OTCBVS Dataset 

The results of our algorithm when Single Gaussian method is used for background 

modelling (described in Section 3.2.2, 3.2.3 and 3.2.4) where combinations of each 

band are represented as one vector, is shown as on a single sequence. The reason of 

for this is that highly spurious foreground regions are detected when this 

background modelling is used.  
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The results are presented in Table 4-2. Where SG-1 stands for a background model 

where infrared and color intensity domains are expressed as one vector (described 

in Section 3.2.2). SG-2 stands for a background model where infrared and color 

channels domains are expressed as one vector (described in Section 3.2.3). SG-3 

stands for a background model where infrared and color intensity and color 

channels domains are expressed as one vector (described in Section 3.2.4). SG-4 

stands for a background model where infrared and color channels (L, U and V 

bands) are expressed as one vector. The block schema of the algorithm is given in 

Figure 4-26. For the SG-4 model, the color conversion is performed RGB to LUV 

before processing the color image.  

 

Figure 4-26 The Block Schema of the Algorithm Based on Single Gaussian where 

Combinations of each band is modelled as One Vector 

Although SG-1 has the weakest performance for Precision and F-measure value, it 

has the maximum Recall value and minimum spurious regions compared to the 

other two methods. Most spurious regions are detected from the SG3 and this model 

is the most sensitive model to noises. Foreground regions for all four methods 

include highly spurious regions around the people. Contour can not surround the 

boundary of the human objects and it surrounds also these spurious regions. So, it 

causes this poor Precision value for these methods. 
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Table 4-2 Results of Our Algorithm Based on Single Gaussian Methods 

(Combination of Bands as One Vector) and Reference [1] 

Sequences SG-1 SG-2 SG-3 SG-4 In [1] 

Seq4 

Recall 0.887 0.742 0.779 0.706 0.734 

Precision 0.387 0.573 0.524 0.531 0.955 

F-Measure 0.539 0.647 0.626 0.606 0.830 

 

The results from each sequence are visualized below where the first row includes 

the tested images of infrared, color intensity, color channels and manual segmented 

human regions. The second row shows the output of our proposed algorithm. In the 

second row, leftmost image is based on SG-1 method, the next image is based on 

SG-2 method, the next image is based on SG-3 and the rightmost image is based on 

SG-4 method. 

    

    

Figure 4-27 Results from Frame 803 of Sequence4 of OTCBVS Dataset 
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Our database is also used to measure the performance of our proposed algorithm. In 

our database the halo effects that surround the people are more evident than in 

OTCBVS dataset. From each sequence, 10 frames are selected and compared with 

the manually segmented regions. Quantitative results are given in Table 4-3 for our 

database. All of the parameters and threshold values are fixed to present the 

applicability of the proposed algorithm for various sequences. Different background 

models are used to demonstrate the effects of background modelling to the results. 

In our dataset, the performance of the algorithm is also demonstrated when only 

infrared domain is used based on Single Gaussian background model. SG-Only IR  

the method where infrared band is modeled as a Single Gaussian. The block schema 

of the algorithm is given in Figure 4-28. 

 

Figure 4-28 The Block Schema of the Algorithm Based on SG-IR where Only 

Infrared Band is Used 

Since the halo effects surrounding people are more evident in our dataset, high 

performance can be obtained. Overall Recall value is greater than or equal to 0.95 

for all background models (except SG-Only IR) which shows that our algorithm 

covers almost all manually segmented human regions. Precision values is greater 

than 0.875 for all background models (except Non-Param1) which shows that 

detected object from our algorithm is not scattered so much around the manually 

segmented human regions. For the Non-Param1 method, in some of the frames 

(Figure 4-33), two people are extracted as one connected component. It decreases 

the overall Precision value of this model. For the SG-Only IR method, because of 

only infrared domain is used, there exist no cues available to complete missing parts 

of the regions of the people (Figure 4-29). It causes low overall recall value for the 

model.  
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Table 4-3 Results of Our Algorithm: Based on Several Kinds of Background 

Models Obtained by Using Our Dataset 

Scenes 
SG-Only 

IR 
SG MOG 

Non 

Param-1 

Non 

Param-2 

Scene1 
Recall 0.804 0.968 0.910 0.981 0.952 

Precision 0.925 0.922 0.905 0.853 0.936 

F-Measure 0.861 0.944 0.907 0.913 0.944 

Scene2 
Recall 0.935 0.962 0.990 0.953 0.969 

Precision 0.875 0.888 0.766 0.809 0.893 

F-Measure 0.904 0.923 0.864 0.875 0.929 

Scene3 
Recall 0.749 0.926 0.943 0.946 0.950 

Precision 0.918 0.930 0.924 0.833 0.935 

F-Measure 0.825 0.926 0.933 0.886 0.942 

Scene4 
Recall 0.928 0.933 0.932 0.978 0.966 

Precision 0.943 0.937 0.893 0.862 0.936 

F-Measure 0.936 0.931 0.912 0.917 0.950 

Scene5 
Recall 0.975 0.984 0.977 0.993 0.992 

Precision 0.856 0.856 0.814 0.723 0.862 

F-Measure 0.912 0.913 0.888 0.836 0.922 

Scene6 
Recall 0.891 0.929 0.951 0.970 0.971 

Precision 0.959 0.960 0.952 0.825 0.946 

F-Measure 0.924 0.943 0.951 0.892 0.958 

Overall 
Recall 0.880 0.950 0.951 0.970 0.966 

Precision 0.913 0.916 0.876 0.817 0.918 

F-Measure 0.896 0.930 0.909 0.887 0.942 

 

The results from each sequence are visualized below where the first row includes 

the tested images of infrared, color intensity, color channels and manually 

segmented human regions. The second row shows the output of the proposed snake 

algorithm. In the second row, leftmost image is based on SG-Only IR method, the 

next image is based on SG method, the next image is based on MOG method, the 

next one is based on Non-Param-1 method and the rightmost image is based on 

Non-Param-2 method. 
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Figure 4-29 Results from Frame 1656 of Scene1 of Our Dataset 

    

     

Figure 4-30 Results from Frame 373 of Scene2 of Our Dataset 

    

     

Figure 4-31 Results from Frame 300 of Scene3 of Our Dataset 
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Figure 4-32 Results from Frame 1400 of Scene4 of Our Dataset 

    

     

Figure 4-33 Results from Frame 1834 of Scene5 of Our Dataset 

    

     

Figure 4-34 Results from Frame 1876 of Scene6 of Our Dataset 
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The results of our method when Single Gaussian background modelling is used 

where combinations of each band are represented as one vector, is shown only for a 

single sequence in Table 4-4. The reason of this is that highly spurious foreground 

regions are detected for these methods. The results based on the SG-1 model have 

the least spurious object and this model has highest Precision value compared to 

other three methods for our dataset. SG-2, SG3 and SG-4 model have higher 

spurious foreground regions and this affects the results as can be seen from the 

Table 4-4.  

Table 4-4 Results of Based on Single Gaussian Methods (Combination of Bands as 

One Vector) Obtained by Using Our Dataset 

Scenes SG-1 SG-2 SG-3 SG-4 

Scene2 

Recall 0.645 0.727 0.607 0.764 

Precision 0.750 0.419 0.633 0.713 

F-Measure 0.693 0.532 0.620 0.738 

 

The results from each sequence are visualized below where the first row includes 

the tested images of infrared, color intensity, color channels and manual segmented 

human regions. The second row shows the output of our proposed algorithm. In the 

second row, leftmost image is based on SG-1 method, the next image is based on 

SG-2 method, the next image is based on SG-3 and the rightmost image is based on 

SG-4 method. 
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Figure 4-35 Results from Frame 373 of Scene2 of Our Dataset 
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CHAPTER 5  

 

SUMMARY AND CONCLUSIONS 

In this thesis, detection of foreground objects, especially people, is performed 

using synchronized and registered infrared and visual images all together. 

Sudden illumination changes and shadows do not generally affect the 

background model in infrared domain. The temperature of the background is 

more stable over time and operation of all around the day is valid in infrared 

domain. These are the main reasons that the initial regions of interest are found 

firstly in infrared domain and these regions are used as a mask in the visible 

domain. However, some object regions may not be detected from infrared image 

due to the fact that the temperature of the foreground objects may be very close 

to the background model. Thus, after finding the corresponding foreground 

regions in visible domain, addition of the visible cues (if available) to foreground 

regions of infrared domain is performed. As a result, the missing regions are 

complete on the thermal foreground mask using corresponding visual 

information. Finally, application of snake algorithm to the current infrared 

image, which is masked with the constructed foreground regions, gives very 

successful results for people detection. Results are more robust when the halo 

effects surrounding the people are more evident.  

Performance of the proposed algorithm is tested with two datasets (OTCBVS 

benchmark and our dataset) each of which includes six challenging sequences. 

For each sequence, 10 frames are chosen and segmented manually. To show 

applicability of our algorithm for various sequences, all parameters/thresholds 
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are fixed before tests. The quantitative performance is demonstrated by precision 

and recall parameters. The results are compared also with the results given in [1] 

by using the OTCBVS benchmark. Although these sequences have weaker halo 

effects which surround the people, promising results are derived. In all sequences 

our recall values are higher but the precision values are smaller than the ones 

expressed in [1]. This means that we detect more of the actual regions. In our 

dataset, halo effects are more evident and in these sequences we obtain better 

results. Various background modeling methods have been used for this purpose. 

Effects of these methods to human detection performance are also given in 

Section 4.5. 

Object identification will be the topic of future research. For example, some 

basic parameters like area of the blob, height to width ratio etc. will be used to 

eliminate non-human objects. If clear human silhouettes could be extracted, 

further tasks such as activity recognition could also be studied. 
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