INTELLIGENT HEALTHCARE MONITORING SYSTEM BASED ON
SEMANTICALLY ENRICHED CLINICAL GUIDELINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GOKCE BANU LALECI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER ENGINEERING

JUNE 2008

Approval of the thesis

“INTELLIGENT HEALTHCARE MONITORING SYSTEM BASED ON
SEMANTICALLY ENRICHED CLINICAL GUIDELINES ”

submitted by Gokge Banu Laleci in partial fullfillment of the requirements for
the degree of Doctor of Philosophy in Computer Engineering, Middle East
Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Prof. Dr. Asuman Dogag
Supervisor, Department of Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ismail Hakk: Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Dogag
Department of Computer Engineering, METU

Prof. Dr. Mehmet Resit Tolun
Department of Computer Engineering, Cankaya University

Assoc. Prof. Dr. Nihan Kesim Cicekli
Department of Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Cosar
Department of Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. 1
also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Gokce Banu Laleci

Signature

il

ABSTRACT

INTELLIGENT HEALTHCARE MONITORING SYSTEM BASED ON
SEMANTICALLY ENRICHED CLINICAL GUIDELINES

Laleci, Gokce Banu
Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Asuman Dogag

June 2008, 175 pages

Clinical guidelines are developed to assist healthcare practitioners to make decisions on a
patient’s medical problems and as such they communicate with external applications to re-
trieve patient data, to initiate medical actions through clinical workflows and to transmit
information to alert/reminder systems. The interoperability problems in the healthcare IT
domain for interacting with heterogeneous clinical workflow systems and Electronic Health-
care Record (EHR) Systems prevent wider deployment of clinical guidelines because each
deployment requires a tedious custom adaptation phase.

In this thesis, we provide machine processable mechanisms that express the semantics of
clinical guideline interfaces so that automated processes can be used to access the clinical re-
sources for guideline deployment and execution. For this purpose, we propose a semantically
enriched clinical guideline representation formalism by extending one of the computer inter-
pretable guideline representation languages, GuideLine Interchange Format (GLIF). To be
able to deploy the semantically extended guidelines to healthcare settings semi-automatically,
the underlying application’s semantics must also be available. We describe how this can be
achieved based on two prominent implementation technologies in use in the eHealth domain:
Integrating Healthcare Enterprise (IHE) Cross Enterprise Document Sharing Integration
Profile (XDS) for discovering and exchanging EHRs and Web service technology for inter-

acting with the clinical workflows and wireless medical sensor devices. Since the deployment

v

and execution architecture should be dynamic, and address the heterogeneity of underlying
clinical environment, the deployment and execution is coordinated by a multi-agent system.

The system described in this thesis is realized within the scope of the SAPHIRE Project.

Keywords: Semantics, Clinical Guidelines, Interoperability, Clinical Decision Support Sys-

tems

OZ

ANLAMSAL OLARAK ZENGINLESTIRILMIS KLINIK UYGULAMA KLAVUZ
TABANLI AKILLI SAGLIK TAKIP SISTEMI

Laleci, Gokce Banu
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Asuman Dogac

Haziran 2008, 175 sayfa

Klinik yol haritalar: hastalarin saglik problemleri konusundaki kararlarda doktorlara yardimci
olmak icin geligtirilmiglerdir. Bunu gerceklegtirebilmek icin hastanin saglik kayitlarina erige-
bilmeleri, klinik ig siireglerindeki uygulamalar: ¢aligtirabilmeleri ve alarm-hatirlatma sistem-
lerine bilgi gonderebilmeleri gerekmektedir. Saglik bilisimindeki heterojen kilinik igsiirec-
lerine ve Elektonik Saglik Kayit Sistemlerine erigme agamasindaki birlikte iglerlik problem-
leri, her hastaneye 6zgii farkli entegrasyon siiregleri gerektirdiginden klinik yol haritalarinin
yaygin bir gekilde sahada kullanimini engellemektedir.

Bu tezde klinik yol haritalarinin arayiizlerinin anlamsal olarak bilgisayarlar tarafindan
iglenebilir bir gekilde tanimlanmasini saglayacak mekanizmalar 6nerilmektedir. Boylece klinik
yol haitalarinin hastane sistemleri iizerine otamatik olarak konuslandirmak ve caligtirmak
miimkiin kihnmaktadir. Bu amacla, var olan klinik yol haritasi betimleme dillerinden GLIF
tizerine kurulu anlamsal bir model 6nerilmektedir. Anlamsal olarak zenginlegtirilmig bu
klinik yol haritas1 tanimlarini yari-otamatik olarak hastane sistemleri {izerine konuslandira-
bilmek icin, var olan hastane bilgi sistemleri altyapilarinin da anlamsal olarak tanimlanmasi
gerekmektedir. Bu tezde bu anlamsal tanimlama igleminin e-saglik alaninda yaygin olarak
kullanilan iki uygulama teknolojisinin {izerine nasil kurulabilecegi de anlatilmaktadir. Bu

teknolojiler saglik kayitlarina erigebilmek i¢in “Saglhk Kurumlarini Entegrasyonu- Kurumlar

vi

Arasi Dokiiman Paylagim Profili (IHE-XDS)” ve klinik ig siireg sistemlerine ve kablosuz al-
gilayic1 cihazlarina erigmek igin Ag Servisleridir. Konuglandirma ve galigtirma, altyapisinin
dinamik olmasi ve heterojen bir altyapinin ihtiyaglar ile baga gikabiliyor olmasi gerektigin-
den, konuglandirma ve caligtirma altyapisi bir ¢oklu-etmen platformu tarafinda koordine

edilmektedir. Bu tezde geligtirlen sistem SAPHIRE projesi tarafindan desteklenmektedir.

Anahtar Kelimeler: Anlamsallik, Klinik Uygulama Klavuzu, Birlikte-Islerlik, Klinik Karar

Destek Sistemleri

vii

ACKNOWLEDGMENTS

First of all, T would like to express my deepest gratitude to my supervisor Prof. Dr. Asuman
Dogag for all her guidance, encouragement, motivation and continuous support throughout
my graduate studies. Without her great advice, help and understanding this work would
never been possible.

I wish to express a lot of thanks to Prof. Dr. Ugur Halici and Assoc. Prof. Dr. Nihan
Kesim Cigekli for their valuable suggestions and comments throughout the steering meetings
of this study.

Special thanks to Mehmet Olduz, Ibrahim Tagyurt, Mustafa Yiiksel, Yildiray Kabak and
all other members at the Software Research and Development Center for the cooperation
and support they have provided.

I would also like to thank SAPHIRE End-users, SCUB Team, especially Dr. Ana Frun-
telata for her support in understanding clinical guidelines.

I also want to express my gratefulness to my dear husband, Alpay, for all his patience,
friendship and tolerance. Without his continuous support and encouragement, I would have
never had the strength to complete this work.

Finally, I would like to thank to my parents and brother, for their support.

viii

To my dear husband, Alpay..

X

TABLE OF CONTENTS

ABSTRACT . . . iv
OZ . o o vi
ACKNOWLEDGMENTS e viii
DEDICATON . .« e e ix
TABLE OF CONTENTS e e X
LIST OF FIGURES e e xiii
LIST OF ABBREVIATIONS e xvii
CHAPTER
1 INTRODUCTION 1
2 BACKGROUNG ON ENABLING TECHNOLOGIES 13
2.1 Guideline Interchange Format, GLIF 13

2.2 HLT7 Clinical Document Architecture (CDA) and EN 13606-1 EHRcom . . 18
2.3 Medical Terminologies and Terminonology Servers. 20

2.4 Integrating the Healthcare Enterprise - Cross Enterprise Document Shar-

ing Profile (THE-XDS) 22
2.5 OWLmt, An Ontology Mapping Tool 23
2.6 Semantically Annotating Web services 26
2.7 IEEE 11073 Standards Family 27
2.8 JADE: Java Agent Development Environment 28

3 THE SEMANTICALLY ENRICHED GUIDELINE MODEL: THE MEDICAL
KNOWLEDGE LAYER 30
3.1 Semantically Extending GLIF to Facilitate Accessing the Electronic Health-

care Record Systemso 32

3.2 Semantically Extending GLIF to Enhance Communication with Clinical
Workflows 37
3.3 Semantically Extending GLIF to Improve Communication with Alert and

Reminder Systems 42

4 THE ENABLING SEMANTIC ARCHITECTURE FOR THE DEPLOYMENT

AND EXECUTION OF THE EXTENDED GLIF MODEL 44
4.1 Addressing the Semantic Interoperability for Accessing EHRs 47
4.1.1 Addressing the Interoperability of Patient Identifiers 50

4.1.2 Addressing the Interoperability of EHR Content 50

4.2 Addressing the Interoperability in Interacting with the Clinical Workflows 56
4.2.1 Addressing the Interoperability of Exchanged Messages used in the

Clinical Web Services 58

4.3 Addressing the Interaction with the Alert/Reminder Services 61

5 THE MULTI-AGENT SYSTEM RESPONSIBLE FOR DEPLOYMENT AND

EXECUTION OF CLINICAL GUIDELINES 63
51 EHR Agent 67
5.2 Ontology Agent 70
5.3 Agent Factory Agento 76
54 Guideline Agento 79

5.4.1 Action Specification Handlers 84
5.5 Alarm Distribution Agent 86
5.6 Monitoring Agento 88

6 A CASE STUDY IN THE ACUTE TREATMENT OF MYOCARDIAL INFARC-
TION 94

7 RELATED WORK 104

7.1 Clinical Practice Guideline Representation Formalisms and Execution En-

vironments based on these Formalisms 104
7.1.1 Arden Syntax 104
7.1.2 Asbru Model 105
713 GUIDE 106
714 PROforma 108
715 GLEE 108

x1

71.6 GLARE
7.1.7 SAGE: Standards-Based Sharable Active Guideline Environment
7.1.8 An Analysis of the support of the Available Clinical Guideline Repre-
sentation and Execution Architectures for the interfaces with EHRs
and Clinical Workflows and Discussion of How this thesis comple-
ments these efforts oo oo
7.2 HeCase2: Agent Based Management of Clinical Guidelines

7.2.1 How this thesis complements HeCase2

8 CONCLUSIONS
REFERENCES o o e

A THE EXTENDED GLIF MODEL

B THE SERVICE FUNCTIONALITY ONTOLOGY

C AN EXAMPLE CDA USED IN THE PILOT APPLICATION

xii

FIGURES

Figure 1.1

Figure 1.2

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5

Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

LIST OF FIGURES

A Part of the Management of Diabetes Mellitus Guideline Text and
Algorithm [59]

The main components of Thesis Study

A Part of the GLIF Model
An algorithm for the stable angina guideline in GLIF [29] |
The Reference Information Model used by GLIF
A very simple guideline flowo oo oL
An Example Get Data Action retrieving Aspirin Medication Status and

an Example Medically Oriented Action Ordering Aspirin Prescription

in GLIF Model
Logical Building Blocks of HL7 CDA
Logical Building Blocks of EHRcom [51]
IHE-XDS Architecture
Architecture of OWLmt [6]

A Part of the Formal GLIF Model
Extending GLIF with EHR Semantics
The Formal Description of GetDataAction and EHREntity in the Ex-
tended GLIF Model
An example GetDataAction Instance in the Extended GLIF Model
The Formal Description of MedicallyOrientedAction and Medical Actio-
nEntity in the Extended GLIF Model
Annotating “Medical ActionEntity” class with the Service Functionality
Ontology

Figure 3.7 A Partial presentation of an example Service Functionality Ontology
Figure 3.8 An example MedicallyOrientedAction Instance in the Extended GLIF
Model o
Figure 3.9 An example MedicalActionEntity Instance for annotating interaction
with Sensor Devices in the Extended GLIF Model
Figure 3.10 The MessageAction and AlarmEntity in the Extended GLIF Model . .
Figure 3.11 Annotating “AlarmEntity” class with semantics

Figure 3.12 An Example MessageAction Instance in the Extended GLIF Model

Figure 4.1 Semantic Annotation of Guidelines and the Complementing Infrastruc-

Figure 4.2 The Relationship between the Runtime Implementation Classes and
the Medical Knowledge Layer Classes
Figure 4.3 The Implementation Layer Specification in the Extended GLIF Model .
Figure 4.4 The Registration and Query of a HL7 CDA document to a XDS Reg-
istry/Repository Architecture oL
Figure 4.5 An example EHRImpl Instance in the Extended GLIF Model
Figure 4.6 Annotation and Discovery of Web Services Exposing EHRs
Figure 4.7 Patient Identifier Cross Referencing Architecture
Figure 4.8 An Example of Extracting GLIF Patient Entity from the HL7 CDA . .
Figure 4.9 The Discrete Data Import Algorithm
Figure 4.10 Mapping of terms from different Terminology System through UMLS
Concept Hierachy

Figure 4.11 Relating Service Functionality and Service Message Ontologies with

Figure 4.12 Publishing Medical Web Services with their Semantics to UDDI
Figure 4.13 An example Servicelmpl Instance in the Extended GLIF Model

Figure 4.14 An example mapping definition of WS parameters
Figure 4.15 Semantic Mediation of Clinical Web Service Messages

Figure 5.1 The Multi-Agent System responsible for Deployment and Execution of
Clinical Guidelines

Figure 5.2 The Multi-Agent System spanning across clinical affinity domains . . .

Figure 5.3 Interaction of EHR Agent with other components for discovering EHR

References L

xiv

39

41

41
42
43
43

45

46
46

48
48
49
51
52
23

54

26
o7
28
60
60

64
67

Figure 5.4 An example queryEHR request and response 69
Figure 5.5 Interaction of EHR Agent with other components for Retrieving Clin-

ical Statementso 70
Figure 5.6 An example retrieveEntry request and response 71
Figure 5.7 The Ontology Agent Interactions with other agents 72
Figure 5.8 The Ontology Service Reference Model proposed by FIPA [28] 73
Figure 5.9 An example translation request and response 74
Figure 5.10 The Architecture of the Ontology Agent 75

Figure 5.11 Interaction of Agent Factory Agent with other components for deploy-

ing and Initializing a Clinical Guideline 76
Figure 5.12 The Agent Factory Agent Graphical Interface 7
Figure 5.13 Example MonitorGuideline and LoadGuideline request messages 79
Figure 5.14 The Guideline Agent Handlers 80
Figure 5.15 An example Java Script used as the “specification” of a Criterion 81
Figure 5.16 The Guideline Step Handlers 82
Figure 5.17 The Action Specification Handlers 84
Figure 5.18 Example Distribute Alarm Message request messages 86
Figure 5.19 The Architecture of Alarm Distibution Agent [1] 87
Figure 5.20 An example JESS Rule created by Alarm Distribution Agent 87
Figure 5.21 The Architecture of Monitoring Agent 88
Figure 5.22 Example Subscribe Monitoring Messages request message 89
Figure 5.23 The Graphical Interface of the Monitoring Agent 92
Figure 5.24 The Guideline History Window of Monitoring Agent 93

Figure 6.1 The Flowchart of “Management of acute myocardial infarction in pa-
tients presenting with ST-segment elevation” Guideline 95

Figure 6.2 The Flowchart of “FirstLine Medication” 96

Figure 6.3 The first part of the representation of the guideline in the extended
GLIF model 97

Figure 6.4 The “getBloodPressure” GetData Action representation in the extended

Figure 6.5 The “getAsthmaStatus” GetData Action representation in the extended

Figure 6.6 The Script used in Morphine Treatment Decision Option 99

XV

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1
Figure 7.2
Figure 7.3

Figure 7.4
Figure 7.5

Figure 7.6

Figure 7.7

The “morphineRecommendation” Message Action representation in the
extended GLIF
The second part of the representation of the guideline in the extended
GLIF model
The “orderCoronaryAngiography” Medically Oriented Action represen-
tation in the extended GLIF,

The Architecture proposed in GUIDE [11]
The Architecture of the Interence Engineproposed in GUIDE [11] . . .
The internal structure of GLEE and its interactions with a local envi-

ronment [100] L
The GLARE’s three layered architecture [92]
SAGE deployment architecture [77]
An example table that maps the patient data stored in institutional

databases to the data model used in GLARE [72]
The Multi-agent System proposed by HeCase2 [42]

Xvi

LIST OF ABBREVIATIONS

ACC Agent Communication Channel RIM
ACL Agent Communication Language SAGE
AMS Agent Management System

SFO
CDA Clinical Document Architecture

Reference Information Model

Standards Based Sharable Active
Guideline Environment

Service Functionality Ontology

SNOMED Systematized Nomenclature of

DIM Domain Information Model

DF Directory Facilitator UDDI
DL Description Logics
EHR Electronic Healthcare Record UMLS
EMR Electronic Medical Record XDS
GUID Globally Unique Agent Identifier
XML
GLIF GuideLine Interchange Format
vMR
ICD International Statistical Classifi-
cation of Diseases WHO
WSDL

IHE Integrating Healthcare Enterprise

JADE Java Agent Development Frame-
work

JVM Java Virtual Machine
KIF Knowledge Interchange Format

LOINC Logical Observation Identifiers Names
and Codes

MeSH Medical Subject Headings
MLM Medical Logic Module
MTP Message Transport Protocol
OWL Web Ontology Language
OWLmt OWL Mapping Tool

OWL-QL OWL Query Language

Xvil

Medicine

Universal Description Discovery and
Integration

Unified Medical Language System

Cross Enterprise Document Shar-
ing

Extensible Markup Language
Virtual Medical Record
World Health Organization

Web Service Definition Language

CHAPTER 1

INTRODUCTION

Clinical guidelines are systematically developed statements to assist general practitioners
in making clinical decisions and managing medical actions more effectively [41]. They usu-
ally include plans for treatment and are used in developing the “Clinical Decision Support”
systems.

The scope of the clinical guidelines is ultimately to assist the physician in clinical decision,
by providing evidence-based approach to certain conditions. The purpose of the guidelines
is to provide standard, optimal healthcare based on the most recent evidence/ clinical trials

in the field. The benefits of adopting clinical guidelines can be summarized as follows:

e Improved patient safety by reducing medical errors and improving selection of right

medication and laboratory tests

e Improved quality of care by facilitating the use of up-to-date clinical evidence and by

reducing inter-practice variations

e Improved efficiency in healthcare delivery by reducing test duplications and incidences

of adverse events

Over the past 20 years, there has been an explosion in the availability of clinical prac-
tice guidelines. A variety of government and professional organizations are producing and
disseminating clinical guidelines [97, 8, 14, 61, 46, 12|. Guidelines are usually developed by
Task Forces of experts in the field such as “The Task Force on the Management of Acute My-
ocardial Infarction of the European Society of Cardiology” or by National and International
Medical Societies such as “Infectious Diseases Society of America”. They are regularly up-
dated (at least once in 4-5 years) and usually represent standard of medical knowledge that

is recommended to be followed by the medical practitioners in their clinical practice. Guide-

MODULE D - CORE
SUMMARY OF RECOMMENDATIONS

General

. Children with diabetes should be referred to a pediatric diabetic team for consultative care,

. All fernale patients of reproductive potential with pre-existing diabetes should ke counssled to plan and prepare fol
each pregnancy,

All female patients of reproduciive potential with pre-existing diabetes should be counseled on the need for
optimal glyeemic eantrol,

. Diabetes melitus (DM management should be evaluated in the context of the patient's tolal health status,

. Urgent or semi-urgent medical conditions, including severe hypo - or hyperglycemia must be treated before
long-term diseass management principles are applied.
Determine and document if diabetes mellitus is type 1or 2

w o

Ly

@

Diabstes Mallitus Algorithm D: Cara
Aspirin Therapy

Prescribe aspirin therapy (75 to 325 maiday} for all adult patients with type 2 dabetes
cardiovascular disease.
. Consider beginning aspirin therapy (75 ta 325 mgiday) for primary prevention in patie
diabetes and one ar more other cardiavascular risk factors.
Consider individual evaluation for aspirin therapy for palients age 30 to 40 with type 2 PR . S 3
other cardiovascular risk factors or with type 1 DM and long duration of disease. " 1s patient 17 years ¥ = Refer to Pediatric Diabetes
old or yeungar? » Har e

o

wu

Management of Dlabetes .

If the individualized HbAqe Is not at target. refer to Madule G = Glyeemie Control

. If systalie blood pressure (SBP) >140 or diastolic bleod pressure (DBP) is >80 mmbg 9 /] = tomale of . / [
Practice Guideline for the Management of Hypertension, {Also see Summary of Man L I_: fjj:i’:f\l "“t:[ﬁ‘:l, b 75 / Is patlent pregnant or 4 Refer Lo materng
If & lipids evaluation was not done within ane year or the patient has elevated cholest \ P IC P / *: intending pregnancy? madicine spaci|
TR SR |

WA/DeD Clinical Practice Guideline for the Management of Dyslipidemia (Lipids) (Als ! e
Managernent of Lipids) W
. If a renal evaluaticn was not done within one year or the patient has micro-'macmalii
ining, refer to Module R — Renal Disease.
If an eye evaluation was not done within two years, the patient has symptoms, ora pr
higherigk for visual loss or retinopathy, refer to Module E = Eye Care.
If a foat-risk assessment was not done within cne year or the patient has risk factors .
Module F - Foot Care. [*
If the patient needs additional nuiritional or lifestyle education, refer to Madule M — Se v
Education. &
If the patient is & i forani vaceine, ini: it in season,
Administer ia vaccine if indi {See VA/DoD ive Index Guids
If the patient is using tebaces, refer ta the VADeD Clinieal Practice Guldeline for the

W

-

Counsel patient about

#

contraception appropriately

o

~

Identify comerbid conditions
(0]

Swm

9 e

ANNOTATIONS

The care module provides an overview of the important components of diabetes care that she
visit and perfermed at appropriate intervals. This module will assist the provider lo organize 2
persons with diabetes mellitus (M),

r

Identify/update related problems from
medical record, history, physical exam,
|aboratory tests, and nutritional and
educational assessment

Is patient medically,

/ psycholegically, and 24
sacially stable? -

f&i

A, Patient with Diabetes Melltus

B. Reler to Pediatric Diabetes Management

C. Is Patient a Femals of Reproductive Potential?

D.

E

Provide appropriste treatment
and stanilization
. ldentify Camuorbid Conditions

. Isthe Patient Medically, Psychologically, and Sociglly Stable? |

v

Determine and document if DM is type
1 or 2 (if not already done)
e]

izt

Consider Aspirin Therapy

Screen for use of tobacco and advise
to quit if patient is using tobacco
Provide influenza vaccination (in s2ason)

l

Figure 1.1: A Part of the Management of Diabetes Mellitus Guideline Text and Algorithm
[59]

lines are usually provided as narrative descriptions accompanied by flowcharts, as presented
in Figure 1.1.

It has been realized that clinician behavior is most effectively influenced through patient-
specific advice, particularly if delivered during patient encounters. However, conventional
narrative guidelines present population-based recommendations, and the information con-
tained within such guidelines may be difficult to access and apply to a specific patient during
patient encounters [72]. In order to address this problem, guideline-based point-of-care de-
cision support systems are started to be built. A prerequisite for the development of such
systems is the creation of computer interpretable representations of the clinical knowledge
contained in clinical guidelines. For this purpose several computer interpretable models of

clinical guidelines have been proposed such as GLIF [29], ASBRU [84], PROforma [90], AR-

DEN [71] and EON [93]. Different approaches have been followed to model clinical guidelines,
such as rule-based formalisms where the guidelines are represented as cause-effect relation-
ships and network based models where algorithms, or hierarchical task networks are used.
These computer interpretable formalisms increased the understandability and sharability of
clinical guidelines by medical practitioners.

Several different guideline execution engines have been built processing these models,
such as GLEE [100], GLARE [91], NewGuide [11] and DeGel [85] demonstrating that the
guideline definitions can be executed to automate the decision making process.

However despite the benefits the clinical guidelines provide, it is a well accepted fact that
wider adoption of computerized clinical practice guidelines by the healthcare community in
real life healthcare setting is yet to be realized. The reasons for this failure can be summarized

as follows:

e “The failure of integration of guideline implementations with clinical workflows” [25,
86|: The success of clinical decision-support systems requires that they are seamlessly
integrated with the underlying clinical workflows of the healthcare organizations. The
recommendations generated by the guideline should be reflected as events (institutional
procedures) in the clinical workflow system of the hospitals such as a lab order, alerts

or reminders to the respective healthcare staff.

e “The complexity of fully integrated decision support systems due to the nature of het-
erogeneous set of clinical applications need to be involved in the decision process” [22]:
Lack of a common set of interoperable interfaces to proprietary hospital information
systems hampers wide adoption of clinical guidelines, since developing generic clinical
guideline execution engines that can be run on any set of clinical information systems

based on the available guideline representation formalisms is not possible.

e “The failure of integration of guideline implementations with comprehensive comput-
erized patient healthcare record data” In order to be able to provide patient-specific
recomendations, clinical guideline execution environments need to access the electronic
healthcare records of a patient. Lack of commonly agreed Electronic Healthcare Record
standards is listed as another major problem that hinders wide adoption of clinical
guidelines. This problem is usually cited as “Curly Braces Problem” in the literature.
In one of the earliest guideline representation formalism, in Arden Syntax [71], the
guideline is defined in term of Medical Logic Modules (MLMs). While the guidelines

are being modeled, the references to clinical data are represented in curly braces in

MLMs. These references in curly braces should be mapped to queries to the institu-
tional databases of healthcare organizations where actual patient electronic healthcare
records are stored. Since then, the problem of this manual localization process for

deploying guideline models is usually cited as “Curly Braces Problem”.

These problems are cited as the main obstacles for achieving fully sharable and deployable
clinical practice guideline implementations. The available clinical guideline execution engines
often address the automation in a single homogeneous healthcare institute and either built
on top of an already available clinical information system as an integrated add-on feature,
or require custom adaptation phases to communicate with clinical applications such as for
accessing the patient records or invoking medical services. These adaptation phases usually
consist of manual mappings of the data models used in clinical guidelines to the data models
used in local clinical repositories, and manual binding of clinical events supported by the
underlying clinical information system to the action definitions in clinical guideline execution
environment. This lack of integration support in the guideline representation languages and
guideline execution environments is stated in GLIF specifications [29] as follows: “There is a
need for an implementable specification that can be incorporated into an institutional system
where the actions specified must be mapped to institutional procedures and the patient data
references must be mapped to the electronic medical records of the underlying system”. GLIF
identified this requirement however latest GLIF specification left this level open as a possible
future work.

In this thesis, we address this interoperability problem by developing a semantically en-
riched guideline model that enables the specification of enough level of semantics of the
interfaces of the clinical guideline representation formalism to the underlying clinical appli-
cations and Electronic Healthcare Record (EHR) systems. The aim of this enrichment is
to enable semi-automatic deployment of guidelines. Furthermore a semantic infrastructure
based on widely accepted healthcare standards is described for the semi-automatic deploy-
ment and automated execution of guidelines using the semantics encoded in the guideline
model proposed in heterogeneous healthcare settings. For this purpose we first describe how
the semantics of underlying healthcare information systems can be enriched and annotated
based on widely accepted industry standards. As a second step, we have built a multi-agent
system which coordinates the semi-automatic deployment of clinical guidelines in heteroge-
neous healthcare settings using the semantically enriched clinical guideline definition and the

semantically enriched healthcare information systems. The main components of this thesis

is presented in Figure 1.2.

Semantically Enriched
Guideline Model

Semi-Automatic
Deployment of Clinical
Guidelines

Coordinated by

’
; . Matchi Mediati
ﬁemant/cally Enr/ched\ atching ediation
Healthcare Infrastructure

Accessing Accessing
EHRs Clinical Workflows
e

Service. f Automatic \
- Functionality . ..

XDs$ Ontology Execution of Clinical

Clinical - Guidelines

CDA Terminology upDI Accessin
Systems Accessing 9
Clinical Workflows EHRs

Semantic ——
L Terminology Coordinated by
Mediation Server

Figure 1.2: The main components of Thesis Study

The contributions of this thesis and details of these components can be introduced as

follows:

e In this thesis, we propose a semantically enriched clinical guideline representation
formalism. We decided to base our extensions on one of the available guideline repre-
sentation formalism, in order to benefit from the already available substantial domain
knowledge in these representation formalisms. We choose to semantically enrich the
GuideLine Interchange Format (GLIF) [29] since GLIF model is formally expressed as

an ontology.

GLIF in its current version, describes the clinical guidelines in two layers: first, at
the conceptual level as a flowchart, second, by formally defining the medical concepts
involved in the guideline definition as an ontology. A third layer is mentioned which
aims to provide an implementable specification that can be deployed at a healthcare
setting but this layer is left unspecified in the latest GLIF specifications. We argue

that to have an implementable guideline specification, first the semantics of guideline’s

interfaces with clinical applications, and EHR systems must be described. In line with
this requirement, we extend the GLIF model through a “Medical Knowledge Layer”
to describe the semantics of GLIF execution steps based on the domain knowledge

exposed by the related prominent healthcare I'T standards as follows:

— Accessing the Content of Electronic Healthcare Records (EHRs): The most promi-
nent EHR standards are the Health Level 7 (HL7) Clinical Document Architecture
(CDA) [36] and the European Committee for Standardization (CEN) EN 13606-1
EHRcom [10]. Investigating these standards reveals that to locate an EHR doc-
ument and to extract the requested patient clinical information from the EHR
document, the semantics needs to be explicated at two levels: at the EHR doc-
ument semantics level to discover the related EHR and at the entry semantics
level to extract the clinical statement requested by the guideline. Based on this
observation, we have created the “EHREntity” class as a subclass of the “Medical
Knowledge Layer”, where EHR Document Semantics and EHR Entity Seman-
tics is formally represented. The “EHREntity” class is used to annotate GLIF’s

flowchart entities (namely the GetDataAction) while accessing EHRs.

— Accessing the medical services: The success of a clinical guideline execution system
widely depends on how well it is integrated with the clinical workflow running in
healthcare organizations. Previous efforts either did not attempt to define the se-
mantics of clinical workflow interfaces of guidelines, or identified a number of fixed
event types that should be manually bound to the events supported by the under-
lying clinical workflow. We choose to define the operational semantics of medical
services through ontologies, and to use this semantics to semi-automatically dis-
cover and bind the services of the clinical workflows to guideline execution envi-
ronment. For this purpose we defined an example Service Functionality Ontology
based on well-established standards in the healthcare domain: for representing
the semantics of clinical workflow services we exploited HL7 [34], which has cat-
egorized the events in healthcare domain by considering service functionality.
Furthermore during the execution of a guideline, there are decision points where
the vital signs of a patient are needed. Currently wireless medical sensor devices
are widely used both in hospital and in homecare settings. Representing the
operational semantics of services through an ontology enables us to extend the

types of events that can be described in a guideline definition: in our Service

Functionality Ontology we define the semantics of sensor services through the
nomenclature defined by the IEEE 11073-10101 standard [39] for medical devices.
In order to annotate the operational semantics of GLIF’s flowchart entities (namely
the MedicallyOrientedAction), we created a “Medical ActionEntity” as a subclass
of the “Medical Knowledge Layer”.

— Accessing the Alert/Reminder Systems: The clinical guideline systems need to
interact with the Alert/Reminder systems of the underlying clinical information
systems. In order to seamlessly integrate guideline execution environment with
alert /reminder systems, the required semantics is investigated and the healthcare
roles to whom the alert messages should be delivered to and the urgency of the
alarm are identified as necessary attributes of the “AlarmEntity” class of our
“Medical Knowledge Layer”. The “AlarmEntity” class is used to annotate the
“MessageAction” flowchart entity of GLIF.

e Providing the semantics of guideline execution steps solves only one part of the prob-
lem: when deploying the extended guideline model over existing clinical applications,
the underlying applications’ semantics must also be available so that matches can be
discovered. Therefore the extended guideline model is complemented with an “Imple-
mentation Layer” addressing both the technical interoperability challenge in accessing
these underlying clinical applications and exposing the semantics of them. In this way
we also demonstrate that through the extended guideline model, the deployment and
execution of guidelines can be facilitated in heterogeneous healthcare environments.
In this semantic infrastructure facilitating the semi-automatic deployment and execu-
tion of guidelines, latest trends and the most widely accepted medical standards are
adopted for accessing EHRs and clinical workflow interfaces. This demonstrates that
the proposed GLIF extensions can facilitate the deployment and execution of Clinical
Guidelines in real life settings, i.e, what has been identified as a future research area
in the latest GLIF specifications. Different facets of the “Implementation Layer” can

be summarized as follows:

— Addressing the Semantic Interoperability for Accessing FHRs: In our architecture

we provide support for two different semantic mechanism for accessing the EHRs:

* The healthcare institutes may implement THE Cross-Enterprise Document
Sharing (XDS) profile [40] to share clinical records. THE is an industry ini-
tiative, and XDS profile has been adopted for sharing EHRs in the National

eHealth System blueprints of Canada, USA, Ttaly, Norway and France. In
IHE XDS, the healthcare institutes store the medical documents of the pa-
tients to repositories of their choice and access these repositories through the
document metadata stored in the associated registries. In other words, the
semantics of EHRs are expressed through metadata defined through termi-
nology systems such as LOINC [58] stored at the “DocumentRegistry”s so
that the documents of interest can be discovered and retrieved by using this

metadata.

* The healthcare institutes may choose to expose the available Electronic Health-
care Records of the patients through Web Services. In this case, in order to
find the EHR documents through their semantics, the functionality semantics
of the Web services exposing them can be defined through LOINC document
type codes [58].

In this thesis, we describe in detail how these two widely used industry standards
can be exploited for enabling the discovery of the necessary Electronic Healthcare
Records in the semi-automatic deployment of guidelines. It may be the case that
different ontologies, or clinical terminology systems are used for the semantic
annotation of clinical guidelines and EHR systems, in this case, we describe how

this issue can be addressed through ontology mediation and terminology servers.

Addressing the Interoperability of EHR Content: After the required EHR is located
through the XDS Registries, or through the Web Services exposing EHRs, in order
to execute the clinical guidelines, there is a need to extract a specific clinical
statement from the EHR of the patient. For example, the guideline may need
information on whether the patient has experienced any “asthma’” previously.
From the retrieved EHR, this specific clinical information must be extracted.

In this thesis, we describe how clinical statement data can be extracted from a
machine processable EHR formats by using semantic mechanisms proposed in this
work through an example based on HL7 Clinical Document Architecture (CDA)
[36]. For this purpose we make use of a terminology server, the UMLS Knowledge
Source Server Metathesaurus [96]. UMLS comprises over one million biomedical
concepts and five million concept names, all of which are from over a hundred
controlled vocabularies and classification systems such as ICD-9, SNOMED and

LOINC, providing a mapping structure between them. In our architecture a

mapping functionality supporting subsumption is used based on the concepts and
mapping provided by UMLS. In this way although different terminology systems
(such as LOINC, SNOMED, ICD-10) are used to annotate the content of EHRs
and the interfaces of clinical guidelines, the related clinical statement can be

retrieved seamlessly from the CDA document.

Addressing the Interoperability in Interacting with the Clinical Workflows: Consid-
ering that there could be several different applications running on different plat-
forms that need to be invoked while the clinical guideline is being executed, Web
services are used to address the technical interoperability problem in our imple-
mentation layer. Web service technology is already being used by the Healthcare
Industry as a solution to technical interoperability problem, hence our implemen-
tation layer is realizable in real healthcare settings. The Dutch national infras-
tructure for healthcare messaging is implemented by wrapping HL7v3 messages
as Web services [63] and Health Level Seven (HL7) has announced the approval
of a Web Services Profile as Draft Standards for Trial Use (DSTUs) [35]. In an-
other study, the integration of different medical systems in a configurable network
of interconnected organizations in Canada is achieved by wrapping existing sys-
tems using Web services to provide a uniform and adaptable interface among the
individual systems [65].

In this thesis, we presented how the operational semantics of the Web services
exposing the functionality of clinical workflows can be described through our
“Service Functionality Ontology” via their OWL-S [69] descriptions, and also how
these services can be semantically published to UDDI registries [95], so that the
discovery of these services can be achieved in the semi-automatic deployment
phase [16].

Service functionality semantics enables us to discover the Web services based on
their semantics. However, in order to invoke the discovered Web services while
the guideline is executing, message level interoperability is also needed. Service
functionality semantics may suffice to achieve interoperability only when all the
Web services and guideline execution engines use the same message standards,
and same reference information models. However, it is not realistic to assume
that all the healthcare organizations comply with the same message structure and

content. Hence, there is a need to transform one message content into another.

In order to facilitate message transformation, our architecture utilizes ontology
mapping. The OWLmt tool [6] is used for mapping the input and output param-
eters of Web services to the instances of the reference information model used in

GLIF specification.

e The implementation layer described allows the semantically enriched guideline model
to be semi-automatically bound to real life medical applications in the deployment
phase and it becomes possible to specialize the guideline definition to a specific patient
at run time for accessing his electronic healthcare records, and communicating with
the healthcare institutes where he has been cured. The guideline needs deployed and
executed in a distributed heterogeneous environment and the components involved
must be capable of interacting with each other reactively. Therefore the semantically
enriched clinical guidelines are deployed and executed on the semantic infrastructure
through a multi-agent system. In this way it also becomes flexible to dynamically create
and eliminate components based on the needs of the application when the components
are implemented as software agents. The multi-agent system is implemented using

JADE [45] agent development platform.

All the agents in our system has distinct roles that provides a level of abstraction to
the other agents which is especially necessary in heterogeneous distributed healthcare
settings, where different standards, ontologies, terminology systems and technologies
may have been implemented to access Electronic Healthcare Records and clinical ap-

plications. The roles of the agents can be summarized as follows:

— The Agent Factory Agent is the coordinator of the deployment phase. It is capable
of processing the generic guideline definition annotated with semantics and in co-
operation with other agents in the system and by interacting with the resources of
medical information systems, it discovers the real implementations of the medical
services exposing hospital information system functionalities and sensor services
and the document identifiers of the EHR documents of the patients, so that the
guideline definition becomes ready to be executed.

— In our architecture, the healthcare institutes are organized as “Clinical Affinity
Domains” to cooperate in the care of patients. The EHR Agent functions as
the gateway to access and extract clinical data from the Electronic Healthcare
records of the patient within a Clinical Affinity Domain. EHR Agent is modelled

as a separate agent, to abstract the access to EHR from other agents. It has the

10

ability of communicating with the EHR Agents of other clinical affinity domains,
to locate the EHRs of the patients wherever they are stored. Also each EHR
Agent is capable of processing the EHR content format used within that affinity

domain.

— The Ontology Agent is capable of reconciliation of semantic interoperability prob-
lems such as the use of different reference information models to represent clin-
ical data or using different ontologies or clinical terminologies while accessing
the resources of healthcare institutes. It implements the FIPA Ontology Service
Specification [28].

— The Guideline Agent processes the guideline definition specialized to a patient
and executes the activities specified in the guideline definition in co-operation
with other agents. It can be thought as the enactment engine for the clinical

guideline.

— The Monitoring Agent provides an interface to the clinical practitioners to visu-

alize the execution of the guideline.

— The Alarm Distribution Agent is specifically designated to distribute the alert-
reminder messages to the necessary recipients in the most efficient and reliable

way.

The system described in this thesis is realized within the scope of the SAPHIRE Project
[82]. The aim of SAPHIRE Project is to provide an intelligent healthcare monitoring platform
as a response to the challenge of providing high quality healthcare services with reasonable
costs while the elderly population in Europe and the associated chronic diseases increase.
The semantic clinical guideline description model and the semantically enriched guideline
deployment and execution environment proposed in this thesis serves as one of the core com-
ponents of SAPHIRE intelligent healthcare monitoring architecture: the intelligent clinical
decision support system based on clinical guidelines. Through the extensions proposed in
this thesis, the intelligent monitoring architecture is able to access seamlessly the medical
history of a patient stored in medical information systems as well as the vital signs of the pa-
tients through wireless medical sensors. In this way, not only the observations received from
wireless medical sensors but also the patient medical history can be used in the intelligent
clinical decision support system.

SAPHIRE is deployed through two pilot applications, one in a hospital environment and

another for homecare. The hospital pilot application aims to demonstrate that the SAPHIRE

11

system can provide bedside intelligent monitoring of patients with subacute coronary syn-
dromes in a wireless fashion to provide computer-generated clinical decision in accordance
to the latest European Cardiology Guidelines. In this pilot application, the guideline execu-
tion environment provides continuous feedback to the physicians that is patient-specific and
guideline-oriented, to provide optimized medical care in accordance with medical standards.

The rest of this thesis is organized as follows: Chapter 2 briefly summarizes the enabling
technologies and standards. In Chapter 3, the semantic extensions we propose to the GLIF
model are presented. The enabling semantic architecture for the deployment and execution
of the extended GLIF model is described in Chapter 4. In Chapter 5, the Multi-Agent
System architecture that coordinates the deployment and execution of clinical guidelines is
presented. The implementation details of SAPHIRE Hospital Pilot Application is presented
as a case study in Chapter 6. Chapter 7 presents the related work in the literature in
comparison with the architecture presented in this thesis. Finally, Chapter 8 concludes the

thesis and suggests possible future research directions.

12

CHAPTER 2

BACKGROUNG ON ENABLING
TECHNOLOGIES

2.1 Guideline Interchange Format, GLIF

The semantically extended guideline model we describe in this thesis is based on GuideLine
Interchange Format (GLIF) [29]. GLIF is proposed as a standard computer interpretable
representation model for sharing clinical guidelines among different healthcare institutes.
It is presented by a research consortium including the Columbia University, the Harvard
University and the Stanford University.

In the GLIF Model, clinical guidelines are represented as instances of a formal model
called guideline. This formal model is represented as an ontology and editable by Protege
[75]. GLIF uses a “task-based” paradigm for representing the guidelines, i.e., it decomposes
the guideline definition hierarchically into networks of component tasks that unfold over

time. A brief overview of the GLIF Model is given in Figure 2.1.

Criterion
-getDataltems

GetData
Action
ActionStep
-tasks
Algorithm DecisionStep
-step GuidelineStep BranchStep
Synchronization
Step
PatientState
Step

Figure 2.1: A Part of the GLIF Model

Guideline

-expression - -
P ProgrammingOriented

Action Specification

MedicallyOriented
Action Specification

eligibilityCriteriae—] Message]

Action
GetData
Action
SubGuideline
Action

Action Specification

The Eligibility Criteria defines the features of the medical problem for which this guideline
can be applied for. It is represented through a number of Criterion classes. The criteria
is represented through the “expression” attribute of the Criterion. To be able to assess the
eligibility, it may be necessary to check the current situation of the patient and his/her past
medical history, hence these data gathering steps are added as “get data item” attributes to
the Criterion class.

The clinical process is represented through an algorithm, which is a flowchart of guideline

steps, including;:

e An Action step is used for modeling actions to be performed which may include
two types of tasks: Medically Oriented Actions, and Programming Oriented Actions.
Through Medically Oriented Actions medical procedures usually run by medical staff
such as recommendation for a particular course of treatment can be represented. The
Programming Oriented Actions are divided into three: through the Get Data Action the
actions that feeds data to guideline such as retrieving data from an electronic patient
record are represented; through Message Action the messages that should be passed
between medical systems, such as reminders, alerts are represented; finally through

SubGuideline Actions the guideline definitions can be nested.

e A Decision step represents decision points in the guideline defined in terms of formal
expressions. The GLIF specification exploits an expression language that is derived
from the logical expression grammar of Arden Syntax [71]. Decision Steps include
a number of Decision Options where decision expressions and destination steps that

should be followed if this expression evaluates to true are presented.

e The Branch step is used to model concurrent guideline steps. Branch steps direct flow
to multiple guideline steps. All of these guideline steps must occur in parallel. A

branch step may link a guideline step to any other guideline step.

e The Synchronization steps are used in conjunction with branch steps. When multiple
guideline steps follow a branch step, the flow of control can eventually converge in a
single step. Each branch may lead to a series of steps, resulting in a set of branching
paths. The step at which the paths converge is the synchronization step. When the flow
of control reaches the synchronization step, a continuation attribute specifies whether
all, some, or one of the preceding steps must have been completed before control can

move to the next step.

14

e A Patient state step is usually used as a label that describes a patient state that is
achieved by previous steps. This way, a guideline may be viewed as a state transition
graph, where states are scenarios, or patient states, and transitions between these
states are the networks of guideline steps (excluding patient state steps) that occur
between two patient state step. A patient state step has a criterion that describes the

state of the patient who is at that patient state.

An example of such guideline algorithm defined in GLIF is presented in Figure 2.2.

E:EAII AHA ACP_ASIM Guidelines for the Management of Patients with Chronic Stable Angina: Clinical Assessment (E:

|ACC AHAACP_ASIM Guidelines for the Management of Patients with Chronic Stable Angina: Clinical Assessment | ® Chestpain. Cause unknown
2 [=/ @&
Steps Sn42|s|A] [v]c]
3 Based.an histary, what -
Patient . . :
. Diagnostic iz the probability of i Man-cardiac Treat
History and _. cause of chest - " -
Flinsioal Tests coranary artery [E:1(1ET4 pain? Far cardiEe T chest pain Appropriately
. disease? \JW\‘ . " :
<action step> S Diagnostic
T . tests for cause
Chest pain igh of chest pain
Cause
unkniwn Intetmediate or See AHCPR
<patient state step> njgh Risk Unstable troe . U:Stable »Lnstahle Angina
.. Angina? Rana
<decision steps Guldeline
alse
Recent bl, Recent M, See approptiate
FTCA, - » PTCAOr e ACC-AHA
CABGY CABG Guideling
Jralse
o Angina resaled
s with freatment of
present that coul underiying
ina?
cause angina? condition?
alse
Historyardiorexarn specte
suggests valvular, Structural ' : Docurnented Soc ACCTAHA
peticardial disease or Heart |—EChBCAOOiSm , SR pHEL e Valvular Valvular Heart
ventricular dysfunction? Disease valvular lesion? Abnormality Disease
alse Guideling
Ise e Jalse
Probahility of CAD, Ly
hased an histary, .
et e BEE Tat ahnarmality?
at .
F‘gh igh]
Enter Stress Testing f CAD. ndlcathn iy P Ermnpiric Presumed Stable
o 1w algorithm *+———— Evaluation - prognostic frisk Stable . P X
naiography algorithm Reguired assessment Angina Therapy —* Angina afier . Treatment
Ernpiric Therapy

Figure 2.2: An algorithm for the stable angina guideline in GLIF [29]

GLIF Model proposed to represent the guidelines in three layers. The Core GLIF Model
described above constitutes the “Level A”. It enables the guideline author to concentrate
on conceptualizing a guideline as a flowchart: the guideline is defined as a workflow of
hierarchical steps defined in GLIF Formal Model. At this level of abstraction, the guideline

author is not concerned with formally specifying details, such as decision criteria, relevant

15

patient data, and iteration information that must be provided to make the specification
computable. GLIF proposes that in the second level of abstraction, that is, in “Level B”,
this workflow is detailed by formally expressing the patient data item definitions, the clinical

concepts, and the logical criteria:

RIM Entity

Patient Data

-service_cd:Concept
-mood_cd:Mood_Code

—id:String

—status_cd:Status_Code
—activity_time:Time_Interval
—critical_time:Time_lInterval
—recording_time:Time_Interval
-method_cd:Concept
—body_site_cd:Concept
—interpretation_cd:Interpretation_Code
—confidentiality_cd:Confidentiality_Code

/

Observation

Procedure
-value:Observation_Valuse —entry_site_cd:Concept
—derivation_expression:String
-normal_range:Range
—certainty:int Medication
—severity:int

—check_dose_quantity:Physical_Quantity|
—doseform_cd:Doseform_Code
—dosage_quantity:Physical_Quantity
—route_cd: RouteCode

Figure 2.3: The Reference Information Model used by GLIF

e In “Level B” the Clinical data is represented as data items. For representing medical
data items, GLIF supports the use of a Reference Information Model derived from HL7
RIM (USAM) [37] presented in Figure 2.3. This RIM defines a class hierarchy that
organizes medical concepts into classes. For each class, it provides a data model that
defines the attributes of the different classes. This enables the formal definition of high

level Patient data items such as Medication, Observation, and Procedure.

o Knowledge items are used to define the clinical concepts which can be used to annotate
the data items to relate them with well known medical terms. Clinical concepts are
defined through the tuple <conceptName, conceptID, conceptSource>. For example,

the “chronic cough” concept can be represented through the following tuple <chronic

16

cough, C0010201, UMLS> in reference to Unified Medical Language System (UMLS)

[96] semantic network.

e A formal expression language is used for representing decision criteria, triggering
events, exceptional conditions, duration expression, and states in the guideline defi-
nition. For example a decision criteria can be defined as “selectAttribute(pq_ value,

selectAttribute(value, Current LDL _Cholesterol)) >= 160" in this expression lan-

guage.

ActionStep

GetDataAction
<retrieving Aspirin
medication status>

GetDataAction
<retrieving Aspirin
contraindication status>

DecisionStep
<prescribe Aspirin or

Clopidogrel>
MedicallyOrientedAction MedicallyOrientedAction
<prescribe Aspirin> <prescribe Clopidogrel>

Figure 2.4: A very simple guideline flow

GLIF uses these two levels of abstractions to represent a guideline definition as follows:
Asgsume an overly simplified guideline that decides whether to prescribe “Aspirin” or “Clopi-
dogrel” as a firstline medication to a patient who is suffering from myocardial infarction as
presented in Figure 2.4. The first guideline step in the guideline’s “algorithm” can be an “ac-
tion step” where it is necessary to gather data from patient’s Electronic Healthcare Records
(EHR). The tasks included in this “action step” are two “get data actions”. The first “get
data action” instance as shown in Figure 2.5 is to discover whether the patient is currently
using the medication “Aspirin”. This action states that the information should be retrieved
from the “EHR” (also termed as Electronic Medical Record, EMR). The second “get data
action” is for accessing the contraindications of the patient to the medication “Aspirin”. After
executing these actions, through a “decision step”, it is checked whether it is advisable to

7 L

prescribe Aspirin to the patient as presented in Figure 2.5, in the “OrderAspirin” “medically

oriented action”.

17

MedicallyOrientedAction Instance
GetDataAction Instance

name: OrderAspirin

medical _task:
attribiteTobeAssigned: data_value — \v/

variableName: aspirinMedicationStatus
data_source type: EMR

LiteralDataltem Instance

. Concept Instance
datajtem: —— data_model_class: medication
name: Aspirin data_model_source: USAM
i id: C0004057 .
VariableDataltem Instance data_value: —
source: UMLS :
name: Aspirin ~=——concept: I}
data_model_class: medication
data_model_source: USAM Medication Instance
data valuee To be filled
concept: service_cd: J

moodCode: order
route_code: subl i ngual
dosageQuantity: ...

Figure 2.5: An Example Get Data Action retrieving Aspirin Medication Status and an
Example Medically Oriented Action Ordering Aspirin Prescription in GLIF Model

As presented in the example, through GLIF Levels “A” and “B”, a guideline is defined only
at the conceptual level. In other words, how this model can be executed at a specific medical
institute, how the EHR of the patient can be accessed, how the clinical procedures can be
discovered and invoked are not specified. GLIF recognizes this requirement by defining a
third level of abstraction, “Level C” or “Medical Knowledge Layer”, which aims to provide
an implementable specification. In this layer, the actions specified in the Level “A” and the
patient data references presented in Level “B” must be mapped to institutional procedures
and the electronic medical record systems of the underlying system of the medical institution
where the guideline is to be deployed. For this third level of abstraction, the following needs

have been identified:
e Interfaces to clinical repositories to retrieve Electronic Healthcare Records of a patient,
o Interfaces for interacting with applications such as clinical workflows and alert systems.

In the latest GLIF specification, these requirements have been noted but not addressed.

2.2 HLT7 Clinical Document Architecture (CDA) and EN 13606-
1 EHRcom

In the semantically enriched guideline model proposed in this thesis, the Electronic Health-

care Record semantics descriptions are based on the two prominent EHR standards, namely,

18

ClinicalDocutment
Header

StructuredBody

Section

Entry

Entry

Section

Entry

Entry

Figure 2.6: Logical Building Blocks of HL7 CDA

the HL7 Clinical Document Architecture (CDA) [36] and the EN 13606-1 EHRcom [10].

The HL7 CDA is a document markup standard that specifies the structure and semantics
of “clinical documents” for the purpose of exchange. CDA documents are encoded in Exten-
sible Markup Language (XML) and they derive their machine processable meaning from the
HL7 Reference Information Model (RIM) [37] and use the HL7 Version 3 Data Types.

A CDA Document has two main components (Figure 2.6): the Header and the Body. The
Header identifies and classifies the document and provides information on authentication,
the encounter, the patient, and the involved providers. The Body of the CDA document
contains the actual clinical report. The Body can be either an unstructured blob, or can
be comprised of structured markup. The structured CDA Body is composed of nestable
Sections. Each CDA Section can contain a single Narrative Block and a number of CDA
Entries. These entries typically encode content presented in the narrative block of the same
section in a machine processable manner through coded terms.

In the EHRcom specification [10], the Eztract package defines the root class of the refer-
ence model (“EHR_EXTRACT”) and the data structures for EHR content. Figure 2.7 shows
the logical building blocks of EHR content. The top level is a directory of possibly nested
Folders for a patient, allowing for a high-level organization of the EHR, for example, per
episode or per clinical specialty. Folders contain zero or more Compositions by reference. A
Composition (which roughly corresponds to a single clinical document) may contain Sections
with section headers and Entries which consist of Elements or Clusters of elements. Each
Element has a single value of a single data type.

In extending GLIF, we describe the patient clinical information needed at a guideline

19

’ EHR ‘ The electronic healtcare recofdr one person

’ ‘ High-level organization of the EHR e.g. per
Folders episode, per clinical speciality

‘ A clinical care session, encounter or docume
e.g. GP Consultation, Discharge Summary

‘ Clinical headings reflecting the workflow and
consultation process, e.g. Clinical Synopses

Clinical "statement" about Observations,

Evaluations, and Instructons

| Compositions

’ Sections

’ Entries ‘

Nested multi—part data structures (tables anc
’ Clusters ‘ interval time series) e.g. audiogram

’ Elements ‘ Leaf nodes with single data values e.g. reasc
for encounter, body weight
Data types for instance values e.g. coded ter
’ Data Values ‘

measurements with units

Figure 2.7: Logical Building Blocks of EHRcom [51]

execution step based on the way the structure and semantics are encoded in these two

standards.

2.3 Medical Terminologies and Terminonology Servers

Terminologies are a collection of terms or concepts with subsumption relationships between
them, which is used to build a classification hierachy of concepts. Terminologies provide
a framework within which communities can communicate and express ideas in a consistent
manner and facilitate unambiguous information share [3]. Medicine has a long tradition in
structuring its domain knowledge through terminologies and coding schemes for diseases,
medical procedures and anatomical terms such as SNOMED [87], LOINC [58], READ Codes
[78], MeSH [60] and ICD-10 [38]. In the extended GLIF Model, clinical terms used are based

on these terminology systems:

e SNOMED (Systematized Nomenclature of Medicine) [87], is a systematically organized
computer processable collection of medical terminology covering most areas of clinical
information such as diseases, findings, procedures, microorganisms, and pharmaceuti-
cals. It allows a consistent way to index, store, retrieve, and aggregate clinical data
across specialties and sites of care. SNOMED CT is a compositional concept sys-
tem based on Description Logic [15], which means that concepts can be specialised by

combinations with other concepts.

e Logical Observation Identifiers Names and Codes (LOINC) [58] is a universal standard

for identifying laboratory observations and clinical results. Since its inception, it has

20

expanded to include not just medical and laboratory code names, but also nursing

diagnosis, nursing interventions, outcomes classification, and patient care data set.

e The International Statistical Classification of Diseases and Related Health Problems
10th Revision (ICD-10) [38] is a coding of diseases and signs, symptoms, abnormal
findings, complaints, social circumstances and external causes of injury or diseases, as

classified by the World Health Organization (WHO) [102].

e READ CODES [78] are a coded thesaurus of clinical terms which enable clinicians to
make effective use of computer systems. The codes facilitate the access of information
within patient records to enable reporting, auditing, research, automation of repetitive

tasks, electronic communication and decision support.

e Medical Subject Headings (MeSH) [60] is a huge controlled vocabulary for the purpose
of indexing journal articles and books in the life sciences. MeSH vocabulary is created

and updated by the United States National Library of Medicine (NLM) [98].

Since the available medical terminology systems are often developed for purposes with
different requirements, the way the knowledge is organized differs between these hetero-
geneous terminologies; they exhibit considerable variability both in terms of coverage and
granularity [83|. This created the need for homogeneous multi-purpose Clinical Terminology
Servers that will allow the consistent and comparable entry of clinical data, e.g. patient
observations, findings and events.

A Clinical Terminology Server provides the following services to client applications:

e management of external references to clinical concepts

e management of internal representations of clinical concepts
e mapping natural language to clinical concepts

e mapping clinical concepts to Medical classification schemes

e management of extrinsic information about clinical concepts

The Unified Medical Language System (UMLS) [96] is one of such clinical terminology
servers. It is a controlled compendium of many medical vocabularies, also providing a map-
ping structure between them. The UMLS is composed of three main knowledge components:

Metathesaurus, Semantic Network and SPECIALIST Lexicon:

21

e The Metathesaurus forms the base of the UMLS and it comprises over one million
biomedical concepts and five million concept names, all of which are from over a hun-
dred controlled vocabularies and classification systems such as ICD-9, SNOMED and
LOINC. The purpose of the Metathesaurus is to provide a basis of context and inter-
context relationships between these various coding systems and vocabularies to provide

a common basis of information exchange between the variety of clinical systems.

e The UMLS Semantic network is designed to categorize concepts in the UMLS Metathe-
saurus and provide relationships among the concepts. It has 135 semantic types and

54 semantic relationships.

e The SPECTALIST Lexicon contains syntactic (how words are put together to create
meaning),morphological (form and structure) and orthographic (spelling) information

for biomedical terms.

GALEN [31] is another clinical terminology server which defines medical concepts in a
descriptive logics model, called GRAIL, supporting subsumption.
In our architecture a mapping functionality supporting subsumption is used based on the

concepts and mapping provided by UMLS.

2.4 Integrating the Healthcare Enterprise - Cross Enterprise
Document Sharing Profile (IHE-XDS)

In thesis’s architecture, an industry initiative called “Integrating the Healthcare Enterprise
(IHE) Cross Enterprise Document Sharing (XDS)” Profile [40] is used for sharing Electronic
Healthcare Records (EHRs) among different organizations in executing clinical guidelines.
This profile has received considerable attention and appeared in the National eHealth System
blueprints of Canada, Italy, Norway and France [80].

In the IHE XDS Profile, healthcare enterprises that agree to work together for clinical
document sharing are called a “Clinical Affinity Domain” (Figure 2.8). Such institutes agree
on a common set of policies such as how the patients are identified, the access is controlled,
and the common set of coding terms to represent the metadata of the documents.

In each affinity domain there are a number of “Document Repositories”: the healthcare
institutes store the medical documents of the patients to these repositories in a transparent,
secure, reliable and persistent way. It should be noted that these repositories can be the

document stores that are already being used by the institutes, i.e., the profile does not force

22

s f———,
.- ~.

.4 | An XDS Affinity ebXML Registry 3. Query Registry N,
Vi Domain \
1 1. Provide & 2. Regist
. Register Document - negister
\ et Document Set
\ Document
N\ Source

e
B Document] .
N Repository 4.Retrieve
S Document .~
N, ~ P
~ . -

......

Figure 2.8: IHE-XDS Architecture

the institutes to create new dedicated repositories. There is a “Document Registry” which is
responsible for storing metadata about those documents so that the documents of interest for
the care of a patient may be easily found, selected and retrieved irrespective of the repository
where they are actually stored.

The document repositories register the documents along with a set of metadata to the
Document Registry. Whenever a “DocumentConsumer” wishes to discover a specific docu-
ment of a patient, the “Query Registry” transaction is issued along with the specified query
criteria, and as a response a list of document entries that contain metadata found to meet
the specified criteria is returned including the locations and identifier of each corresponding
document in one or more “Document Repositories”. Using these document identifiers and
the Document Repository URI’s, the “Retrieve Document” transaction is issued to get the

document content.

2.5 OWLmt, An Ontology Mapping Tool

Ontology Mapping is the process where two ontologies with an overlapping content are related
at the conceptual level, and the source ontology instances are automatically transformed into
the target ontology instances according to these relations. OWLmt tool [6] aims to handle
ontology mediation by mapping the OWL ontologies in different structures and with an
overlapping content one into other. The architecture of the system, as shown in Figure
Figure 2.9, allows mapping patterns to be specified through a GUI tool based on a Mapping
Schema. The Mapping Schema, is also defined in OWL.

Mapping patterns basically involve the following:

o Matching the source ontology classes to target ontology classes: In order to represent the

23

Mapping [Mapping GUI Property [Mapplng Engine | Mapping
Schema \ -_Main Panel |- — —={Transformations ool Engine
— ntology .
N\, |Ontology <= Panel Handler L N\
Source Handler Value] Y\ Javascript Query
Ontology 7 Transformation Object Property L Engine Engine
/ Wizard Definition Panel | |
-
Target v ¥
|

Ontology | Javascript OWL-QL

Mapping Source Target Interpreter Engine

Definition Instance Instance

Figure 2.9: Architecture of OWLmt [6]

matching between the classes of source and target ontologies, four mapping patterns are
available: FquivalentTo, SimilarTo, IntersectionOf and UnionOf. Two identical classes
are mapped through EquivalentTo pattern. SimilarTo implies that the involved classes
have overlapping content. How the similar classes are further related is detailed through
their data type properties and object properties by using “property mapping patterns”.
The IntersectionOf pattern creates the corresponding instances of the target class as the
intersection of the declared class instances. Similarly, the UnionOf pattern implies the
union of the source classes’ instances to create the corresponding instances of the target
class. Furthermore, a class in a source ontology can be a more general (super class) of a
class in the target ontology. In this case, which instances of the source ontology makes
up the instances of the target ontology is defined through KIF (Knowledge Interchange
Format) [52] conditions to be executed by the OWLmt mapping engine. When a source
ontology class is a more specific (sub class) of a target ontology class, all the instances

of the source ontology qualify as the instances of the target ontology.

e Matching the source ontology Object Properties to target ontology Object Properties:
In addition to matching a single object property in the source ontology with a single
object property in the target ontology, in some cases, more than one object property
in the source ontology can be matched with one or more object properties in the
target ontology. OWLmt allows defining “ObjectPropertyTransform” pattern which
represents the path of classes connected through object properties such that whenever
a path defined in the source ontology (inputPath) is encountered in the source ontology
instance, the path defined for target ontology (outputPath) is created in the target
ontology instance. Paths are defined as triples in KIF [52] format and executed through
the OWL Query Language (OWL-QL) [68] engine. OWLmt constructs the specified

24

paths among the instances of the target ontology in the execution step based on the

paths defined among the instances of the source ontology.

e Matching source ontology Data Properties to target ontology Data Properties: Speci-
fying the “DatatypePropertyTransform” helps to transform data type properties of an
instance in the source ontology to the corresponding data type properties of instance
in the target ontology. Since the data type properties may be structurally different in
source and target ontologies, more complex transformation operations may be neces-
sary than copying the data in source instance to the target instance. XPath specifica-
tion defines a set of basic operators and functions which are used by the OWLmt such
as “concat”, “split”, “substring”, “abs”, and “floor”. In some cases, there is a further need
for a programmatic approach to specify complex functions. For example, the use of con-
ditional branches (e.g. if-then-else, switch-case) or iterations (e.g while, for-next) may
be necessary in specifying the transformation functions. Therefore, JavaScript support
is added to OWLmt. By specifying the JavaScript to be used in the “DatatypeProp-
erty Transform” pattern, the complex functions can also be applied to the data as well

as the basic functions and the operators provided by XPath.

The mapping definition is created in terms of these patterns through a graphical inter-
face. The mapping engine is responsible for creating the target ontology instances using the
mapping patterns given in the Mapping Definition and the instances of the source ontology.
It uses OWL-QL to retrieve required data from the source ontology instances. OWL-QL is
a query language for OWL developed at the Stanford University [68]. While executing the
class and property mapping patterns, the query strings defined through the mapping GUI
are send to the OWL-QL engine with the URL of the source ontology instances. The query
engine executes the query strings and returns the query results. The use of the OWL-QL en-
ables OWLmt to have reasoning capabilities. When querying the source ontology instances
or while executing the KIF [52] patterns, OWL-QL reasons over the explicitly stated facts
to infer new information.

After executing the class mapping patterns, the mapping engine executes the property
mapping patterns. Similar to the class mapping patterns, OWL-QL queries are used to
locate the data. In order to perform value transformations, the mapping engine uses the
JavaScripts in the “DatatypePropertyTransform” pattern. To execute the JavaScripts, an
interpreter is used. The engine prepares the JavaScript by providing the values for the input

parameters and sends it to the interpreter. The interpreter returns the result, which is then

25

inserted as the value of the data type property in the target ontology instance.

The OWLmt tool is publicly available in SourceForge [67].

2.6 Semantically Annotating Web services

In this thesis we use semantically enriched Web services for accessing the underlying clinical
applications and sensor devices. In this way, the Clinical Web Services can be referenced with
their semantics in the guideline definition, and the Web Service instances can be discovered
automatically while the guideline is being deployed.

Several methodologies have been proposed for automated discovery of Web services
through their semantics in the literature such as [99, 70, 104, 57]. In [57], the design and
implementation of a service matchmaking prototype which uses a DAML-S based ontology
and a Description Logic reasoner to compare ontology based service descriptions is given.
In [70], another service matching algorithm based on DAML-S ontologies [13] are presented,
where all the input and output parameters of the advertisements in UDDI registries are
compared with those of the requested service. Alternatively, in [99], an extension to WSDL
is proposed to semantically annotate and advertise Web services to UDDI registries in or-
der to facilitate their discovery. In addition to these initiatives, WSMO [104] provides a
formalism based on F-Logic to define goals and web service capabilities, and also a service
discovery mechanism based on these. In our architecture we have chosen to use an OWL-S
[69] (formerly DAML-S) based approach for semantically annotating the Web services.

OWL-S provides an upper ontology which defines a top level “Service” class with some
generic properties common to most of the services. The “Service” class has the following

three properties:

e presents: The range of this property is ServiceProfile class. That is, the class Service
presents a ServiceProfile to specify what the service provides for its users as well as

what the service requires from its users.

o describedBy: The range of this property is ServiceModel class. That is, the class Service

is describedBy a ServiceModel to specify how it works.

e supports: The range of this property is ServiceGrounding. That is, the class Service

supports a ServiceGrounding to specify how it is used.

In our architecture, after the service semantics is defined through OWL-S, the Web services

are published to UDDI registries [95] in order to facilitate their discovery. UDDI itself

26

does not provide support for storing ontologies to the Registry and for relating the Service
definitions with these ontologies. Previously in [16], we have presented how UDDI registries
can be extended to store functionality ontologies, and how this semantics can be used to
discover Web services. In this thesis we have used the mechanisms presented in [16] to store
ontologies, and advertise Web services to the UDDI registries through the nodes of these

ontologies.

2.7 IEEE 11073 Standards Family

The IEEE 11073 Standards Family[39] aims to enable functional and semantic ad-hoc inter-
operability of medical devices such as medical sensors. For this purpose, the IEEE 11073
proposes an Object-oriented modeling of function and application area, the “Domain In-
formation Model” (DIM). Through the DIM it is possible to define and represent devices,
functionalities, measurement data, calibrations, alert information and so on. On top of the
DIM, it provides standardized codes for naming all information elements in the DIM such
as medical devices and device systems, units of measurements through the “Nomenclature”
and “Data Dictionary”. IEEE 11073 assumes that all device vendors to adopt this DIM to
represent sensor data to achieve interoperability. In our architecture the Web Services ex-
posing the data to be received wireless medical sensor devices are conforming to IEEE 11073
domain information model.

However for the time being the vendors still using proprietary formats or different stan-
dards can not be ignored. Also the guideline representation languages such as GLIF, may use
different Reference Information Models such as HL7 RIM. In our architecture for the seman-
tic mapping of the messages coming from medical sensor devices to GLIF RIM, we exploit
a tool developed that is capable of definition of mapping relationships and also execution of
these mapping definitions in order to automatically handle the translations [64].

In addition to the DIM, the IEEE 11073 standards family also provides a Nomenclature
and a Data Dictionary to present standard classification of the medical devices. This Nomen-
clature is used in this thesis to create a Sensor Service Functionality Ontology to annotate

the Sensor Web Services exposing sensor data.

27

2.8 JADE: Java Agent Development Environment

JADE (Java Agent Development Framework) is a software framework to aid the development
of agent applications in compliance with the FIPA specifications for interoperable intelligent
multi-agent systems. JADE is an Open Source project, and the complete system can be
downloaded from JADE Home Page [45].

The main aim of JADE is to simplify development of agent-based systems and ensuring
FIPA standard compliance [26] through a set of system services and agents. This goal is

achieved by offering the following features to the agent programmer [4]:

e FIPA-compliant agent platform including the main components of FIPA, namely, AMS
(Agent Management System), DF (Directory Facilitator), ACC (Agent Communica-
tion Channel). These three agents are by default inserted into the run-time system
to manage multi-agent system coordination, agent communication and discovery and

agent name service.

e JADE offers a distributed agent platform. That is, the platform can be split on several
hosts. At each host only one Java Virtual Machine (JVM) is executed and agents are
created as threads on each host and JVM to increase system performance. Java events
are used for agent-to-agent communication on the same host and Java RMI across
hosts. An agent may divide its tasks for parallel execution and JADE schedules these
tasks more efficiently than JVM does for threads.

e More than one FIPA-compliant DFs (Directory Facilitator) can be started in order to

implement multi-domain applications logically divided into domains.

e A programming interface to simplify registration of agent services with one, or more,

domains (i.e. DF);

e Automatic conversion of messages to/from FIPA-compliant string format from/to en-

coded transferable encoded Java objects.
e A library of FIPA agent interaction protocols ready to be used by agents.
e A transport mechanism and interface to send/receive messages to/from other agents.

e A FIPA-compliant MTPs (Message Transport Protocol) to connect different agent

platforms.

28

e A light-weight transport of Agent Communication Language (ACL) [27] messages in-
side the same agent platform, since messages are transferred encoded as Java objects,
rather than strings, in order to avoid marshalling and unmarshalling procedures. When
sender or receiver do not belong to the same platform, the message is automatically
converted to/from the FIPA compliant string format. In this way, this conversion is
hidden to the agent implementers that only need to deal with the same class of Java

object.
e Automatic registration of agents with the AMS.

e A FIPA-compliant naming service: at start-up agents obtain their GUID (Globally
Unique Agent Identifier) from the platform.

e A graphical user interface (GUI) is provided by JADE agent platform to remotely
manage the life-cycle of agents and agent containers, as well as monitoring and control
of agents. A user may stop, restart, create and start agents provided that an agent

container is already running.

e Graphical tools for debugging the multi-agent system, like the dummy agent to send/
receive ACL messages and the sniffer agent to monitor the on-going communication
between several agents. The Sniffer Agent, as the name implies, allows to track mes-
sages exchanged in a JADE agent platform. When the user decides to sniff an agent,
or a group of agents, every message directed to or coming from that agent is tracked
and displayed in the sniffer window. The user can view, save, and load, every message

track for later analysis.

The JADE system can be described from two different points of view. On the one hand,
JADE is a middleware for FIPA-compliant Multi Agent Systems, supporting application
agents whenever they need to exploit some feature covered by the FIPA standard specification
(message passing, agent life-cycle management, etc.). On the other hand, JADE is a Java
framework for developing FIPA-compliant agent applications, making FIPA standard assets
available to the programmer through object oriented abstractions.

In this thesis, JADE Agent development platform is used to develop the Multi Agent

System that is responsible for deploying and executing clinical guidelines.

29

CHAPTER 3

THE SEMANTICALLY ENRICHED
GUIDELINE MODEL: THE MEDICAL
KNOWLEDGE LAYER

Computer interpretable models of clinical guidelines such as GLIF [29], ASBRU [84], PRO-
forma [90], ARDEN [71] and EON [93] have been proposed to increase the understandability
and sharability of clinical guidelines by medical practitioners. Several different guideline ex-
ecution engines have been built processing these models, such as GLEE [100], GLARE [91],
NewGuide [11] and DeGel [85] demonstrating that the guideline definitions can be executed
to automate the decision making process.

When it comes to deploy and execute the guidelines in real life settings, it is a well ac-
cepted fact that, the current formalism to represent guidelines fall short in enabling the share
of computable guidelines [76]. On the other hand the success of a clinical guideline execution
system widely depends on how well it is integrated with the clinical workflow running in
healthcare institutes |25, 86|. The complexity of fully integrated decision support systems is
usually based on the nature of heterogeneous set of clinical applications need to be involved
in the decision process” [22], and the lack of de-facto standards in accessing Electronic Healt-
care Records and clinical applications served by clinical workflows. As discussed in Chapter
7, available guideline representation formalisms assume local reference information models
to represent clinical data, and either not attacked to formally defining the interfaces to clin-
ical workflows, or proposed some fixed event types to communicate with clinical workflows.
As a result, in the deployment phase, custom manual adaptations becomes necessary: the
events supported by the underlying clinical workflows should be manually bound to these

events by patches to the clinical workflow engines and usually re-coding of the clinical data

30

represented in guideline definition is required to match the reference information model used

by the clinical workflow.

Guideline = (GuidelineModelEntity N (3 algorithm.Algorithm))

Algorithm = (GuidelineModelEntity N (3 steps.GuidelineStep))

PatientStateStep C (GuidelineStep)

BranchStep C (GuidelineStep)

SynchronizationStep C (GuidelineStep)

DecisionStep C (GuidelineStep)

ActionStep = (GuidelineStep N (3 tasks.ActionSpecification))

ProgrammingOriented ActionSpecification C (ActionSpecification)

GetDataAction = (ProgrammingOriented ActionSpecification N (V dataSourceType.({User} U
{EMR})))

MedicallyOriented Action = (ActionSpecification N (3 medicalTask.LiteralDataltem))
MessageAction = (ProgrammingOriented ActionSpecification N (3 message.xsd:String))
SubGuidelineAction C (ProgrammingOriented ActionSpecification)

Concept = (KnowledgeItem N (3 conceptID.xsd:String) N (3 conceptName.xsd:String)
N (3 conceptSource.xsd:String))

Dataltem = (BasicDataType N (3 dataValue.DataltemValue))

PatientData = (DataltemValue N (3 serviceCD.Concept))

Observation C (PatientData)

Medication C (PatientData)

Procedure C (PatientData)

Figure 3.1: A Part of the Formal GLIF Model

To address this problem, we aim to extend one of the computer interpretable guideline
representation formalisms, namely GLIF, so that a not only human-sharable, but also a
semantically enriched machine processable clinical guideline representation is achieved that
results in a deployment driven computable guideline representation formalism. The essence
of extending GLIF is to provide a machine processable mechanism that can express the
structure and the semantics of its references to clinical workflows and Electronic Healthcare
Records so that automated processes can be used to access the clinical resources for guideline

deployment and execution.

31

This lack of support in the guideline representation languages and guideline execution
environments is also stated in the latest GLIF specifications [29] as follows: “There is a need
for an implementable specification that can be incorporated into an institutional system
where the actions specified must be mapped to institutional procedures and the patient data
references must be mapped to the electronic medical records of the underlying system”. GLIF
identified the requirement for a “Medical Knowledge Layer”, that will enable the definition

of the following interfaces:
e Interfaces to clinical repositories to retrieve Electronic Healthcare Records of a patient,
e Interfaces for interacting with applications such as clinical workflows
e Interfaces for interacting with alert systems.

In this chapter, we describe how these interfaces can be semantically defined formally
in guideline definition. The formal GLIF model is defined as an ontology for representing
guidelines referring to medical ontologies for representing medical data and concepts [30] as
shown in Figure 3.1. In the following sections we present our extensions to this formal model.
The aim of this formal extension is to describe the data needed at each guideline deployment
and execution step semantically in a machine processable way. Furthermore, since we want
to deploy the clinical guidelines to real healthcare settings, we base the semantics of the
proposed extensions to the standards in use in the healthcare IT domain. The formal model

of our extensions are also presented in Appendix A in an integrated format.

3.1 Semantically Extending GLIF to Facilitate Accessing the

Electronic Healthcare Record Systems

At various steps in executing a guideline, there is a need for a specific patient clinical data.
For example, the guideline may need information on whether the patient has previously
suffered from “bronchial spasm”. To be able to retrieve this information, first various EHR
systems serving patient clinical data must be discovered in a heterogeneous environment and
from these EHR Systems, the specific clinical information, such as “bronchial spasm”, must
be extracted.

The original GLIF model uses a “GetDataAction” class to represent data to be retrieved
from EHR Systems. However, since in its current form GLIF aims to create a sharable

guideline definition, rather than a deployable and directly executable one, the dataSource Type

32

property of this object is either the String “EMR” (Electronic Medical Records) or the String
“User” as presented in Figure 3.1, i.e. it does not have a mechanism to represent how to
access the underlying EHR system.

Since the clinical databases vary in structure, access methods and vocabulary used to
represent data, accessing the Electronic Healthcare Records of the patients has become an
important problem for guideline execution. In one of the guideline representation languages,
Arden [71], the database queries to access patient records are encoded in ad hoc ways and
enclosed in “curly braces” in Medical Logic Modules (MLMs). Since then, the necessity to
adapt these queries to the needs of site specific implementations to access EHRs are cited as
“curly braces problem”.

In many other clinical guideline execution engines such as GLEE [100] which uses GLIF
as guideline representation format, a guideline data model is used in the guideline definition
for representing patient data and a centralized repository is assumed to be supported by the
local medical institutes where the patient data is forwarded to be stored using the guideline
data model. However converting patient data to the model supported by the guideline and
storing it in a centralized repository are not practical.

In some other studies, the “Virtual Medical Record” (vMR) [50] concept is used such
as in EON [93], ProDIGY [49] and SAGE [94]. “Virtual Medical Record” (vMR) concept
provides a structured data model for representing information related to individual patients
where the mapping of local EHR to vMR is facilitated. In some other guideline models such
as PROFORMA [90], ASBRU [84] and GUIDE [11], relational tables are used to store the
mappings between the data model entities and the “columns of the database tables” where
the patient data is actually stored.

Instead of hard-coding the mappings between the data model entities in guideline defini-
tions and the “columns of the database tables” of the clinical workflow systems, or assuming
that there is a commonly accepted “Virtual Medical Record” standard and a central repos-
itory to collect the patient data in this format, we chose to represent the semantics of the
clinical data needed by the guideline, and in the deployment and execution phase, use this
machine processable semantics to access the EHR of the patient wherever it is stored based
on industry accepted standard mechanisms.

In order to create a sound and interoperable “Medical Knowledge Layer” to define the se-
mantics of the patient data in order to support the deployment and execution of guidelines, it
is necessary to follow the current standardization trends in exchanging Electronic Healthcare

Records. As mentioned in Section 2.2, the most prominent EHR standards are the Health

33

Level 7 (HL7) Clinical Document Architecture (CDA) [36] and the European Committee
for Standardization (CEN) EN 13606-1 EHRcom [10]. Investigating these standards reveals
that to locate the EHR document and to extract the piece of information from the EHR
document, the semantics needs to be explicated at two levels: the EHR document semantics
to discover the document and the entry semantics to extract the clinical statement requested
by the guideline.

In HLL7 CDA documents, the type of the EHR document is presented in the document
heading in the code attribute such as “Discharge Summary Note”. In the document itself
the clinical statements represented as “Entries” that are grouped under “Sections”, such as
“Past Medical History”, “Medications” and “History of Present Illnesses”. In order to locate
an EHR document that contains the requested clinical statement, both the document type
semantics and the semantics of the relevant sections are needed.

Similarly in EHRCom [10], the “Compositions” represent a single EHR document, and the
semantics of “Composition” presents the document type such as “Consultation Note”. The
“Sections” in EHRCom corresponds to the “Sections” in CDA, that is, the clinical statements
are grouped under “Sections” such as “Adverse Reactions” and “Family Clinical History”
based on their semantics. As in the CDA, in the EHRCom the “Composition” semantics
together with the “Section” semantics represent the EHR, semantics. The “Entry” semantics,
on the other hand, is readily provided by both of these standards.

In order to embed this semantics into GLIF “GetDataAction” class, we have created an
“EHREntity” class as a subclass of our “Medical Knowledge Layer”. Then the range of the
dataSourceType property is made to point to a newly defined “EHREntity” class as shown

in Figure 3.2. Then the following properties are defined for the “EHREntity” class:

e chrSemantics property is used for annotating the semantics of an EHR document with
nodes from clinical terminologies or ontologies. As the range of this property, the
“Concept” class (Figure 3.1) defined in GLIF is used. In this way, it becomes possible
to specify the EHR document and section semantics with formally defined terms from
terminology systems. For example, the Document Type Codes of LOINC [58] can be
used to specify this semantics with the following instance of the “Concept” class: <Past
Medical History, 11348-0, LOINC>. This property can have multiple values, that is, in
an “EHREntity” instance definition, the document type semantics and the semantics
of the sections it contains can be specified through multiple instances of ehrSemantics

property as presented in Figure 3.2.

34

MedicalKnowledgeLayer

i
|
dataSourceType: n H /

HL7 CDA

conceptlD:
conceptName..

<observation classCode=OBS
moodCode=EVN>

—<code code="F-20250"

codeSystem=2.16.840.1.113883.6.96"/>|

1 1 .
i 1+ Concept ! <ClinicalDocument>
EHREntity :—p: P <code code="11488-4"
ehrSemantics: | conceptSource:—— -11488-4 codeSystem="2.16.840.1.113883.6.1"
entrySemantics: — E conceptID:—E— Consultation Note—— “Cl(‘)deSystemName=“LO|NC”/>
' conceptName ——
b ! 113480, | | o)
-------------- Past Medical History. ssection> X
i Concebt ! i <code code="11348-0
____________ B P ! codeSystem="2.16.840.1.113883.6.1"
| Dataltem | | conceptSource:_} codeSystemName="LOINC"/>
' | ! <entry>
! i
i
1

i
' Concept

b P </observation>

| conceptSource: b -F20250, <observation classCode=0BS

moodCode=EVN>
<code code="121"
codeSystem=2.16.840.1.113883.6.3"/>
</observation>

> Bronchial Spasm

-D2-50000, Lung
Disease

= 1

I
! . conceptlD..
! PatientData E P
_ ! conceptName:
-D4790., Asthma

Figure 3.2: Extending GLIF with EHR Semantics

e The entrySemantics property is introduced for annotating the EHR entry semantics.
The range of this property is the “Dataltem” class as defined in GLIF (formally pre-
sented in Figure 3.1). The dataValue property of “Dataltem” class in GLIF is special-
ized to the “PatientData” class which is further specialized to “Observation”, “Medica-
tion”, and “Procedure” classes. “PatientData” class has a property called service cd
inherited from HL7 RIM, whose range is the “Concept” class as shown in Figure 3.1.
Through the instances of the “Concept” class, we represent the semantics of EHR, en-
tries, such as <BronchialSpasm, F-20250, SNOMED> to indicate that the guideline

needs to know whether the patient previously experienced “Bronchial Spasm” or not.

A formal description of these extensions is given in Figure 3.3. An example instance of
this description is depicted in Figure 3.4. Here, as the range of the dataSource Type property
of the “getAsprinMedicationStatus : GetDataAction” instance, the “CEHREntity” instance
“medicationStatusMedicalDataEntity” is selected. For annotating the semantics of the EHR
document needed, a “Concept” instance, “medicationUseHistoryConcept” is created and se-
lected as the range of the ehrSemantics property of the “medicationStatusMedicalDatakFn-
tity” class instance. In the definition of the “‘medicationUseHistoryConcept” the UMLS

35

GetDataAction = (ProgrammingOriented ActionSpecification N

(3 dataSourceType.EHREntity))

EHREntity = (MedicalKnowledgeLayer N (3 ehrSemantics.Concept) N
(3 entrySemantics.Dataltem))

Figure 3.3: The Formal Description of GetDataAction and EHREntity in the Extended
GLIF Model

concept “C0489536” is used [96]. Note that the code “C0489536” in UMLS indicates “History
of Medication Use”. The “aspirinMedicationDataltem” instance defines the entry semantics
of the “medicationStatusMedicalDataEntity”. For this purpose the “aspirinMedication” in-
stance is specified as the range of the dataValue property of “aspirinMedicationDataltem?”.
Finally the “aspirinConcept” instance pointing to a node in UMLS semantic network is used

to specify the serviceCD semantics of the “aspirinMedication” instance.

getAspirinMedicationStatus : GetDataAction

<getAspirinMedicationStatus, medicationStatusMedicalDataEntity> : dataSourceType
medicationStatusMedicalDataEntity : EHREntity
<medicationStatusMedicalDataEntity, medicationUseHistoryConcept> : ehrSemantics
<medicationUseHistoryConcept,C0489536> : conceptID
<medicationUseHistoryConcept,UMLS> : conceptSource
<medicationUseHistoryConcept,History of Medication Use> : conceptName
<medicationStatusMedicalDataEntity, dischargeSummaryConcept> : ehrSemantics
<dischargeSummaryConcept,C0743221> : conceptID
<dischargeSummaryConcept,UMLS> : conceptSource

<dischargeSummaryConcept, Discharge Summary> : conceptName
<medicationStatusMedicalDataFEntity, aspirinMedicationDataltem> : entrySemantics
<aspirinMedicationDataltem,asprinMedication> : dataValue

aspirinMedication : Medication

<aspirinMedication,aspirinConcept> : serviceCD

<aspirinConcept,C0004057> : conceptID

<aspirinConcept,UMLS> : conceptSource

<aspirinConcept,aspirin> : conceptName

Figure 3.4: An example GetDataAction Instance in the Extended GLIF Model

36

It is clear that through these two levels of semantics, the data needed at each guideline

execution step is described in a machine processable way.

3.2 Semantically Extending GLIF to Enhance Communication

with Clinical Workflows

GLIF uses the “MedicallyOrientedAction” class to specify the medical actions or services
provided by the underlying clinical workflow, for example, for prescribing medicine, giving
lab orders or making referrals. Currently these tasks are specified with the medical_task
property whose range is the LiteralDataltem class as presented in Figure 3.1. As presented
in the example in Section 2.1, the LiteralDataltem is not capable of describing the semantics
of a specific medical action.

The clinical workflow applications are complex and usually diverse software systems,
therefore adoption of a single client software solution is not feasible to interact with them.
In order to be able to define an implementable guideline specification, it is necessary to
propose a solution that can address this technical interoperability problem to be able to
interact with diverse clinical workflows. Web service technology is already being used by the
Healthcare Industry as a solution to technical interoperability problem. The Dutch national
infrastructure for healthcare messaging is implemented by wrapping HL7v3 messages as
Web services [63]; Health Level Seven (HL7) has announced the approval of a Web Services
Profile as Draft Standards for Trial Use (DSTUs) [35]. In another study, the integration
of different medical systems in a configurable network of interconnected organizations in
Canada is achieved by wrapping existing systems using Web services to provide a uniform
and adaptable interface among the individual systems [65].

When the medical information systems expose their medical applications as Web services
for interacting with the clinical workflows such as placing lab orders, the endpoints of these
Web services (references to their Web Service Description Language (WSDL) definitions)
can be used in clinical guideline definitions. However, in a generic guideline definition that
has not been specialized for a specific patient and a healthcare institute, it is not feasible
to directly refer to the end point of a Web service. Therefore we propose to specify the
semantic definitions of the Web services in the guideline definition rather than the references
to their concrete implementations. This also enables us to find alternative resources when
exceptions are raised in accessing the specified Web Service in the execution phase.

To be able to define the semantics of the medical action to be interacted during the guide-

37

MedicallyOrientedAction = (ActionSpecification N (3 medicalTask.MedicalActionEntity))
MedicalActionEntity = (MedicalKnowledgeLayer N (3 functionality.Concept) N (3 input.Dataltem)
N (3 output.Dataltem))

Figure 3.5: The Formal Description of MedicallyOrientedAction and MedicalActionEntity
in the Extended GLIF Model

line execution, the GLIF model is extended as follows: First, the “MedicalActionEntity” class
is created as a subclass of “MedicalKnowledgeLayer”. The range of medicalTask property
of the “MedicallyOrientedAction” class is set to be the “MedicalActionEntity” (Figure 3.5).
The “Medical ActionEntity” class is used to specify the semantics of the guideline execution

steps which correspond to clinical services.

MedicalKnowledgeLayer E MedicallyOrientedAction E
/ 1 medicalTask.—} 1
|

MedicalActionEntity e
' Concept E
functionality: S |
Input: | conceptSource: http://144.122.230.12:8080/saphire/FuncOnt.ow! '
I |
Output: i conceptlD: CoronaryAngiogram E

1 conceptName: Coronary Angiogram Procedure
I

| serviceCD.

.............................

Figure 3.6: Annotating “MedicalActionEntity” class with the Service Functionality Ontology

To describe this semantics, we define a functionality property for the “Medical ActionEn-
tity” class whose range is the “Concept” class defined in the GLIF Model. In this way, it
becomes possible to annotate the clinical services with a node from a clinical terminology or
ontology.

To be able to define the operational semantics of Healthcare services through this “func-

38

OWL-S Profile

HealthcareServices

|:FinancialManagementServices :| {PatientCareServicesj' [ReferralServices :'\q SchedulingServices |: |nformationManagememServices:|

) [PatientAdministrationServices}

[DiagnosticServices } {LabProcedureServices }
Therapeutic or preventive

/\‘ Services

{ Diagnostic Operation }{SensorServices }
Services - Therapeutic Operation
. Tl Services
CoronaryAngiogram A = Tl
|: Analyzer } |:Calculator } |: Filter] |: Meter } [PTCA } |:CAGB }

ElectricalPotential ElectricalPotential
Sa02Sensor ECGSensor
4104

Pressure

Figure 3.7: A Partial presentation of an example Service Functionality Ontology

tionality” property, we define a Service Functionality Ontology (SFO) based on the UMLS
Semantic Network [96], HL7 event definitions [34], and IEEE 11073 Nomenclature [39] as pre-
sented in Figure 3.7. The HL7 standard groups the clinical events into the following clusters:
Patient Administration, Order Entry, Query, Financial Management, Observation Report-
ing, Master Files, Medical Records/Information Management, Scheduling, Patient Referral,
and Patient Care. On the other hand in UMLS Semantic Network, the Patient Care Services
are categorized as: Diagnostic Services, Lab Procedure Services and Therapeutic or Preven-
tive Services. We have used these major categorizations to create an ontology to be able to
annotate the operational semantics of these services. It should be noted that the aim of this
Service Functionality Ontology is to demonstrate if such a functionality ontology exist, how
it can be exploited for annotation of clinical events to be able to deploy clinical guidelines
semi-automatically. The subclasses of these major categories have been filled with sub-classes
representing clinical services which are majorly used in clinical guideline-clinical workflow
interaction, such as Medication Services, Therapeutic or Diagnostic Operation Services and
so on. The Service Functionality Ontology is presented in Appendix B.

We use this Service Functionality Ontology to annotate the operational semantics of the
clinical services. For example, Figure 3.6 shows how the “MedicalActionEntity” class can

be annotated through a Service Functionality Ontology. The advantages of annotating the

39

semantics of Medical Actions through ontologies rather than binding them to some pre-

defined action types in the guideline model are as follows:

e The ontology is easily extensible allowing us to widen the scope of medical actions
that the guideline needs to invoke in clinical workflows without the need to update
the whole guideline model. For example, currently wireless medical sensor devices
are widely used in clinical environments especially in homecare settings. During the
execution of a guideline, there are decision points where the current vital signs of the
patient are needed. For example, for a patient suffering from myocardial infarction
with persistent ST-elevation, the decision on whether to start an “Oxygen Therapy”
depends on the current value coming from the Pulse Oximeter sensor. In previous
guideline definition formalisms the interaction with medical sensor devices to receive
the vital signs of patients have not been covered. In our architecture the semantics of
services exposing the data produced by wireless medical sensor devices are defined in
the functionality ontology, under the node of “Diagnostic activities”, where the “IEEE
11073 Nomenclature” are exploited to create a hierarchy of sensor device services. This
capability moves the semantic support beyond what is currently available in guideline
models; it becomes possible to easily extend the type of actions that the guideline

deployment /execution engine can interact with.

e Medical Information systems can expose the services of the clinical workflows by an-
notating their semantics with any ontology of their choice. When the semantics of
the actions in the guideline definition are also defined through ontologies, it becomes
possible to use “ontology mapping/alignment” mechanisms for service matching. In the
deployment phase, although different ontologies may be used to annotate the services
of the clinical workflows and the actions in guideline definition, it becomes possible
to locate the corresponding clinical services of the guideline actions through semantic

mediation.

An example instance of Figure 3.5 is given in Figure 3.8 to show how a guideline execution
step semantics can be expressed using this Service Functionality Ontology to express that the
guideline execution engine needs an “Coronary Angiogram Procedure”. This is expressed by
selecting the <“Coronary Angiogram Procedure”, Coronary Angiogram, http://144.122.230.
12:8080/saphire/FuncOnt.owl> “Concept” class instance as the range of the functionality
property.

In the example presented in Figure 3.9, we see how the IEEE 11073-10101 standard

40

orderAngiography : MedicallyOrientedAction

<coronaryAngiography, coronary AngiographyMedicalActionEntity> : medical Task
coronaryAngiographyMedical ActionEntity : MedicalActionEntity
<coronaryAngiographyMedicalActionEntity, coronary AngiogramConcept> : functionality
<coronaryAngiogramConcept,Coronary Angiogram> : conceptID
<coronaryAngiogramConcept,Coronary Angiogram Procedure> : conceptName
<coronaryAngiogramConcept,http://144.122.230.12:8080/saphire/FuncOnt.owl> :

conceptSource

Figure 3.8: An example MedicallyOrientedAction Instance in the Extended GLIF Model

[39] nomenclature integrated to our Service Functionality Ontology can be used to denote
that in some certain step of clinical guideline, the oxygen saturation of the patient should
be retrieved from a sensor device. This semantics is expressed by selection the following
“Concept” class instance: <Oxygen Saturation Sensor, SP02Monitor, http://144.122.230.

12:8080 /saphire/FuncOnt.owl> as the range of the functionality property.

getOxygenSaturationStatus : MedicallyOriented Action

<getOxygenSaturationStatus, getoxygenSaturationMedicalActionEntity> : dataSourceType
getoxygenSaturationMedical ActionEntity : MedicalActionEntity

<MedicalActionEntit, Sp02SensorConcept> : functionality

<Sp02SensorConcept,“Oxygen Saturation Sensor”’> : conceptName
<Sp02SensorConcept,SP02Monitor> : conceptID
<Sp02SensorConcept,http://144.122.230.12:8080 /saphire /FuncOnt.owl> : conceptSource

Figure 3.9: An example MedicalActionEntity Instance for annotating interaction with Sensor

Devices in the Extended GLIF Model

This semantics is used during the guideline deployment to describe the functionality of
the service needed. Symmetrically, there is a need to expose the semantics of the underlying
technical interoperability layer. How to map this layer to technical interoperability layer is
detailed in Chapter 4.

On top of the functionality semantics of the clinical services, we need to define the

semantics of the input and output messages of them. In guideline specification, the input

41

and output parameter semantics are specified through GLIF RIM classes such as Medication,

Prescription and Observation as presented in Figure 3.6.

3.3 Semantically Extending GLIF to Improve Communication

with Alert and Reminder Systems

MessageAction = (ActionSpecification N (3 message.AlarmEntity))
AlarmEntity = (MedicalKnowledgeLayer N (3 alarmMessage.xsd:String)
N (3 alarmUrgency.Concept) N (3 roles.Concept)

Figure 3.10: The MessageAction and AlarmEntity in the Extended GLIF Model

As identified in the GLIF specification, another interface of the guideline definition with
external applications is the alarm and reminder services. The basic information needed for
delivering an alarm includes determining whom to send it, through which channels and also
the priority of the alarm. At the conceptual level, there is a need to express this information
with possible extensions as needed.

GLIF model uses the “MessageAction” class for sending messages to other entities. This
“MessageAction” has an attribute named message whose range is the “String” class in the
GLIF model as presented in Figure 3.1. Through this class only the content of the alarm
message can be expressed.

To handle the requirements of message delivery including the ability to specify different
roles and the different communication media, we extend the range of the message attribute
to be the “AlarmEntity” class defined in the “Medical Knowledge” layer as presented in
Figure 3.10 and Figure 3.11. Through the roles property of the “AlarmEntity” class, the
healthcare professional roles to whom the message should be sent is specified in reference
to a medical terminology. For example the <Cardiologist, J-0612B, SNOMED> “Concept”
instance can be used to specify one of the roles in reference to SNOMED clinical terminology.

In addition to this, the urgency of the alarm is one of the factors that may affect the
alert delivery mechanisms. The alarmUrgency property is also bound to a “Concept” class
so that a node in an urgency level taxonomy can be referenced. Finally through the message

property the alert message itself is represented. An example instance of Figure 3.10 is given

42

MedicalKnowledgeLayer

/ | mesage T .

AlarmEntity | ..
Concept

roles:

alarmUrgency: conceptSource: SNOMED

alarmMessage: Urgent
catheterization Needed

conceptID: J-0612B

conceptName: Cardiologist

Concept

conceptSource: http://144.122.230.12:8080/saphire/AlarmUrgency.ow!
conceptID: RED

conceptName: Red Alert

__

Figure 3.11: Annotating “AlarmEntity” class with semantics

in Figure 3.12 describing the message semantics in a machine processable way.

catheterizationRecommendation : MessageAction
<catheterizationRecommendation, catheterizationAlarmEntity> : message
catheterizationAlarmEntity : AlarmEntity

<catheterizationAlarmEntity, cardiologistConcept> : roles
<cardiologistConcept,J-0612B> : conceptID

<cardiologist Concept,SNOMED> : conceptSource

<cardiologist Concept,Cardilogist> : conceptName
<catheterizationAlarmEntity, redAlertConcept> : alarmUrgency
<redAlertConcept,RED> : conceptID
<redAlertConcept,http://144.122.230.12:8080/saphire/AlarmUrgency.owl> : conceptSource
<redAlertConcept,Red Alert> : conceptName

<catheterizationAlarmEntity,Urgent catheterization needed> : alarmMessage

Figure 3.12: An Example MessageAction Instance in the Extended GLIF Model

43

CHAPTER 4

THE ENABLING SEMANTIC
ARCHITECTURE FOR THE
DEPLOYMENT AND EXECUTION OF
THE EXTENDED GLIF MODEL

Through the extended GLIF Model presented in Chapter 3, we are able express the detailed
semantics of what the guideline execution engine expects from the underlying EHR systems,
sensor systems or clinical workflows. To be able to deploy a guideline to a healthcare setting,
the underlying applications’ semantics also need to be available so that in the deployment
phase the clinical applications that can address the needs of the clinical guideline’s interfaces
can be automatically discovered and bound to the specialized guideline definition to be used
in the execution phase.

Our aim is to enable the semi-automatic deployment and execution of clinical guidelines
in real life settings and this can be successful only if the implementation layer is based on
open standards enabling interoperability [56]. Hence we based our deployment and execu-
tion architecture on widely accepted healthcare and IT standards supporting interoperability.
There are two prominent technologies in use in the eHealth domain that provide implementa-
tion layer semantics: Integrating Healthcare Enterprise Cross Enterprise Document Sharing
Integration Profile (IHE XDS) [40] for discovering and exchanging EHRs and the Web ser-
vice technology for interacting with the clinical workflows and the sensor devices. IHE XDS
exposes the semantics of clinical documents through document metadata and well-defined
mechanisms exist for exposing Web service semantics such as OWL-S [69].

The implementation architecture based on these technologies consists of two layers: the

deployment layer and the execution layer. When a semantically extended guideline is de-

44

: (Ta Y !

—BronchalSpasm | .
-F-20250 .
-SNOMED '
etDataAction (EAREnNiity !

L —entrySemantics__f
_¢ -

—dataSourceType
discovered

—ehrSemanti
/ J

KedicallyOrien /— MedicalAction
(e ERoeey (WegegAcTo

IH DS
Repository

-medicalTask —functionality
J \ J

Expression

SP02Sensor
4104
IEEE 11073-10101

r

I Clinical

| " MedicaJAction Wep Service

| Entity %

| —functionality.

' ;/_l =
I

. — o Web Servicg
oronaryAngiogram .

) & _ 9199 discovered - é §
FunctionalityOnt o

A- Semantic Annotation of Guideline Definition B—- Semantic Infrastucture

Figure 4.1: Semantic Annotation of Guidelines and the Complementing Infrastructure

ployed to a healthcare setting, the guideline execution steps are bound to the underlying
applications by matching the semantics of both. In other words, the guideline instance pa-
rameters are initialized so that it becomes ready for execution when needed. Figure 4.1
depicts this process pictorially where Figure 4.1. A shows a part of a semantically extended
guideline and Figure 4.1.B describes how the related EHR documents of the specific patient
are located, the instances of the services are discovered.

The parameters initialized at the deployment phase, such as the EHR document refer-
ences, the OWL-S [69] and WSDL (Web Service Description Language) [103] descriptions of
the Web services are used at the execution level. To be able to store these parameters in a
specialized clinical guideline definition after the deployment phase, we introduced a new layer
in the extended GLIF model: “The Implementation Layer”. As presented in Figure 4.2, the
“Implementation Layer” sits on top of the “Medical Knowledge Layer” introduced in Chapter
3: new properties are also added to each of the AlarmEntity, EHR Entity, and MedicalActio-
nEntity classes to link the Entities introduced in “Medical Knowledge layer” to the classes
introduced in “Implementation Layer”. The formal model of the “Implementation Layer” is

presented in Figure 4.3. In the following sections we provide details of the implementation

45

o
> -
8 Alarmimpl Servicelmpl
c
EHRImpl
'% +agentID:String P +serviceWSDL:String I
t - +serviceOWLS:String
g +doclD:String
] Y +serviceWSDL:String
g— i +serviceOWLS:String
= : A
o i
& EHREntity
-
)
2 +ehrSemantics:Concept
= H +entrySemantics:Dataltem
e AlarmEntity +accessParams:EHRImpl MedicalActionEntity
X
w® +alarmMessage:String A “functionality:Concept
% +alarmUrgency:Concept +input:Dataltem
2 +roles:Concept . +output:Dataltem
+accessParams:Servicelmpl +accessparams:Servicelmpl
A : N
E !._._._._._._._4_._2_._._._._._._4._ H
2 ' MessageAcion ~ 77 | GetDataAction | MedicallyOrientedAction
w : - - 3 ; +dataSourceType: i : = i
Gl i+message.AIarmEnt|ty i i MedicalDataEntity i i +mgd|ca|Te_15k:] :
o i ; i ! : MedicalActionEntity ;
8 AR i bomrmmimm s '

Figure 4.2: The Relationship between the Runtime Implementation Classes and the Medical

Knowledge Layer Classes

architecture elaborating on how the “Implementation Layer” classes are initialized to be used

in the execution phase.

EHREntity = (MedicalKnowledgeLayer N (3 ehrSemantics.Concept) N

(3 entrySemantics.Dataltem) N (3 accessParams. EHRImpl))

MedicalActionEntity = (MedicalKnowledgeLayer N (3 functionality.Concept) N

(3 input.Dataltem) N (3 output.Dataltem) N (3 accessParams.ServiceImpl))

AlarmEntity = (MedicalKnowledgeLayer N (3 alarmMessage.xsd:String) N

(3 alarmUrgency.Concept) N (3 roles.Concept) N (3 accessParams.AlarmImpl))

EHRImp = (ImplementationLayer N (3 docID.String) N (3 serviceWSDL.String) N

(3 serviceOWLS.String))

ServiceImp = (ImplementationLayer N (3 serviceWSDL.String) N (3 servicecOWLS.String))
AlarmImp = (ImplementationLayer N (3 agentID.String))

Figure 4.3: The Implementation Layer Specification in the Extended GLIF Model

46

4.1 Addressing the Semantic Interoperability for Accessing EHRs

In our architecture, the healthcare institutes are organized as “Clinical Affinity Domains” to
cooperate in the care of patients. For sharing electronic healthcare records of a patient, our

architecture supports the following two widely adopted alternatives:

e The healthcare institutes may implement THE Cross-Enterprise Document Sharing
(XDS) profile [40] to share clinical records. THE is an industry initiative, and XDS
profile has been adopted for sharing EHRs in the National eHealth System blueprints
of Canada, USA, Italy, Norway and France. In THE XDS, the healthcare institutes
store the medical documents of the patients to repositories of their choice and access
these repositories through the document metadata stored in the associated registries.
Although THE XDS Profile is document content neutral, by recognizing the need to
access the EHRs through their semantics, it has specified metadata mechanisms such as
“document type codes” through standard terminologies. In other words, the semantics
of EHRs are expressed through metadata defined through terminology systems such as
LOINC [58] stored at the “DocumentRegistry”s so that the documents of interest can
be discovered and retrieved by using this metadata. THE XDS specifies well-defined

transactions for these operations.

For example, as presented in Figure 4.4, when a medical institute stores an HL7 CDA
document to an XDS Document Repositorty with ITI15- Provide & Register Document
Set transaction [40], the Document Repository registers the CDA document to XDS
Registry with its document type and section content semantics represented through
LOINC Document Type codes: 11488-4 (Consultation Note) and 11348-0 (Past Medi-

cal History). ITT 14- Register Document Set transaction [40] is issued for this purpose.

The extended GLIF Model is deployed on the IHE XDS layer as follows:

— The first step is to locate the relevant Electronic Healthcare Records of the pa-
tient. For this purpose the “ehrSemantics” property of the FHR Entity class in the
extended GLIF Model is processed. In the example given in Figure 3.4, the UMLS
code “C0552487” is used to indicate that the metadata of the EHR is “PastMedi-
calHistory”. To locate the relevant EHR document references, a “queryRegistry”
transaction (ITI-16) is issued to IHE Document Registry. As a response, the list
of document references is returned. These references are saved back to the guide-

line definition as an instance of “EHRImpl” (Figure 4.2) whose formal definition

47

[ITI-17] Retrieve Document (1654b3de-8b51-420e-839e-b1c¢39e35bb90.xml)

——

v [ITI-14] Register
Document Set-
> XDS docURI, {(1 1:88 4,
ocURI, -4,
[ITI-15] Provide & Register Document LOINC), (11348-0.
Document Set - . " '
Repository LOINC)}
EEm EEm : -~
H
A 4
HL7 CDA /— [ITI-16] Query Registry GUIDELINE
. <ClinicalDocument> (LOINC, 11348-0)
Hospital <code code="11488-4" o DEPLOYER
codeSystem="2.16.840.1.113883.6.1"
codeSystemName="LOING"/>
o XDS
<section> .
de code="11348-0"
:xe;;;e;:“m 840.1.113883.6.1" Registry
codeSystemName="LOING">
<entry>
<observation classCode=OBS
moodCode=EVN>
<code code="F-20250"
codeSystem="2.16.840.1.113883.6.96"":
<Jobservation>
<observation classCode=0BS
<cr:§:dc%§2§§:/‘w Creates a Registry Object XDSDocumentEntry with docURI:
codeSystem="2.16.840.1.113883.6.3"/> 1654b3de-8b51-420e-839e-b1c39e35bb90.xml
<Jobservation>
entry>

Figure 4.4: The Registration and Query of a HL7 CDA document to a XDS Reg-
istry /Repository Architecture

medicationEHRImp: EHRimp
<medicationEHRImp, 1654b3de-8b51-420e-839e-b1¢39e35bb90.xml> : docID

<medicationStatusMedicalDataEntity, medicationEHRImp> : accessParams

Figure 4.5: An example EHRImpl Instance in the Extended GLIF Model

is given in Figure 4.3. EHRImpl is bound to the “CEHREntity” as presented in
Figure 4.5 through the “accessParams” property. In this way these documents can
be retrieved from the Repository through the “retrieveDocument” (ITI-17) ITHE

transaction, while the guideline is executed.

— It may be the case that different clinical terminologies are used in the guideline
definition, and in the XDS Registry to annotate the EHR document metadata.
In this case, before the query transaction is issued, a translation request may be

sent to a terminology server in order to map the terminology nodes to each other

as described in Section 4.1.2.

e In our architecture, we do not expect every healthcare institute to implement the IHE-
XDS Profile. Some healthcare institutes may choose to expose the available Electronic

Healthcare Records of the patients through Web Services. In this case, in order to find

48

the EHR documents through their semantics, the functionality semantics of the Web
services exposing them can be defined through LOINC document type codes [58]. For
example, a Web service retrieving the “Past Medical History” of a given patient can
be annotated with LOINC code “11348-0” to indicate this fact. In other words, since
these Web services are used only passing the EHR Documents, it suffices to annotate

their semantics with the semantics of the documents they carry.

Published to UDDI

& Described with OWL-S

<?xml version="1.0’ encoding="1S0-8859-1'7>
<IDOCTYPE uridef{
<IENTITY rdf *hitp://www.w3.0rg/1999/02/22-df-syntax-ns">

ubpDI
Registry
T-Model overviewDoc
wsdISpec
T-Model
(owlsSpec]

overviewDoc
T-Model
CoronayAngiograph!

OWL-SLURI

Medical Information

System Database <IENTITY rdfs "hitp:/iwww.w3.0rg/2000/01rd-schema’>
<IENTITY ow!"hitp:/www.w3.01g/2002/07/owi">

<EENTITY senvice ° " r>
<IENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
<IENTITY process *htip:/www.daml.org/services/owl-s/1.1/Process.owl">
<IENTITY FuncOnt "http:/144.122.230.12:8080/Saphire/FuncOnt.owi">

Hospital

<service:Service rdf:ID="CorobaryAngiographyResultService’>
a1 ProfileC:

</service:Service>....

<FuncontC 1dtD="Profil
<profile:hasinput rdf-resource=#patientiDs.
<profile:haslnput rdf:resource=#operationDate> Queries with LOINC 11488-4
<FuncOnt:CoronaryAngiography> and 11348-0 codes
< D= P
<process hasinput>
<process:Input rdfD=" PatientID ">
Type rddatatype= >
axsd;dsling<lprocessparamelerType> GUIDELINE
<lprocessinput>
<Jprocess-haslnput> DEPLOYER

<process:hasOutput>
<process:Output rdf:1D=" CoronaryAnatomy ">

Typ >
Ont#C: Types
</process:Input>
<Jprocess:hasinput>

Figure 4.6: Annotation and Discovery of Web Services Exposing EHRs

In our architecture, HL.7 CDA level three documents are used, hence the semantics
at all the levels such as the document type, section and entry are annotated with the
coded terms. In the CDA documents, the document metadata is already available in
the machine processable CDA document header and sections in the “code” attribute.
This metadata is extracted automatically and used as the metadata of the related Web

services while publishing them to the UDDI registry [95] as presented in Figure 4.6.

When it comes to discover the EHR Web services in the deployment phase, simi-
lar to IHE-XDS case, the “ehrSemantics” property of the EHREntity class is ex-
tracted from the GLIF instance (Figure 3.4), a mapping is achieved if necessary
and a Web Service Query transaction is issued to UDDI registry. As a result the
WSDL and OWL-S references are saved back to the specialized GLIF instance such as

49

<medicationStatusMedicalDataEntity, http://hospitalA.com:8080/services/ ExEHRSer-

vice?wsdl> : serviceWSDL.

In this way, in the deployment phase it is possible to locate the EHRs which are se-
mantically referred in the guideline definition, by querying either the XDS or Web Service

registries.

4.1.1 Addressing the Interoperability of Patient Identifiers

In the previous section, we have discussed how to discover the resources allowing us to access
EHRs of the patients, once the semantics of the EHR documents are presented in extended
guideline model. However, before using semantic mechanisms to locate patient EHRs, there
is another important problem that needs to be addressed: Patient Identifiers. The use
of patient identifiers is the accepted practice for locating patient EHRs. However, each
organization may (and typically will) have a different patient identifier domain. Additionally,
in the THE XDS profile, the Document Registry also assigns a unique ID to the patient when
a document of the patient is registered. To resolve the different patient identifiers assigned to
a patient, we use IHE “Patient Identity Cross-referencing” (PIX) Profile [40]. PIX Managers
facilitate the mappings between the local patient identifiers and the identifiers used in the
DocumentRegistry.

To facilitate the identifier mapping process, the hospitals send a “Patient Identifier Feed”
message to the PIX Manager whenever a new patient is admitted to the hospital (Figure 4.7).
The PIX manager applies a probabilistic matching algorithm to check whether the new
patient demographics information matches to one of the already existing patients. In this
way, given a local patient identifier number in one domain, the PIX Manager can match
it to a local patient identifier in another domain. Details of probabilistic record linkage
algorithms are available in |7, 47|. In our architecture, there are also Cross Affinity Domain
PIX managers, which facilitate the mapping of unique Patient Identifiers used in each clinical

affinity domain to one another.

4.1.2 Addressing the Interoperability of EHR Content

After the required EHR is located through the XDS Registries, or through the Web Services
exposing EHRs, in order to execute the clinical guidelines, there is a need to extract a
specific clinical statement from the EHR of the patient. For example, the guideline may

need information on whether the patient has experienced any “corticoadrenal insufficiency”

20

XDS

ﬂaﬁient admitted..
3.1 Provide & Register Doc. Set (ITI-15)
Registry
/ Repository

3.2 Patient Identifier Feed (ITI-8) / \
Hospital 1
ospita 1.3, 2.3, 3.3 Patient Identiffer Feed (ITI-8)

| PIX 4.3 Query Registry (ITI-16)

1.2 Patient Identifier Feed (ITI-8 Manager ;1”‘_1' F;I;t)rieve Document
Guideline Deployer

2.2 Patient Identifier Feed (ITI-8)

2.1.Patient admitte: 4.1 PIX Query (ITI-9)
XDS

GQ 1.1 Patient admitted..
Clinical Affinity Domain A Hospital 2
(a Registry

v / Repository

Cross Affinity PIX 3.2 Patient Identifier Feed (ITI-8;
Manager
y Hospital 1

b | oy | 22 Pationt Identifr Feed (T1-)

1.2 Patient Identifier Feed (m—ai Manager
2.1.Patient admitted..
Clinical Affinity Domain B .
Hospital 2

Figure 4.7: Patient Identifier Cross Referencing Architecture

1 Provide & Register Doc. Set (ITI-15)

3

1.3,2.3 & 3.3 Patient Identifier Feed (ITI-8),
4.2 PIX Query (ITI-9)

previously. From the retrieved EHR, this specific clinical information must be extracted. It
is clear that to achieve this, the EHR must be available in a machine processable content
standard such as CEN EHRcom [10] or HL7 CDA [36]. In addition to this, since different
EHR document formats and coding schemes can be used to represent the EHR content,
there should be a semantic mediation mechanism available to use the data retrieved from
the documents.

In the following, we describe how clinical statement data can be extracted from a machine
processable EHR by using semantic mechanisms proposed in this work. First we give an
insight to the problem through an example based on HL7 CDA [36].

In Figure 4.8, on the left hand side, a part of a sample HL7 CDA document is given.
In this document, the semantics of a section is annotated with the “11348-0” code from
LOINC to describe that this section is about the “Past Medical History”. Additionally each
entry is an instance of HL7 RIM classes such as the “Observation” class, and their content is
also annotated with coded terms. For example, in one of the “Observation” class instances,
the MeSH code “D000224” is used to indicate that the patient has suffered from “Addison
Disease”.

On the other hand, as presented in Figure 4.8 in the extended model through the

o1

EHREntity

-ehrSemantics
-entrySemantics

Past Medical History section Concept
-conceptName: Past Medical History
<component> | -conceptID: C00552487
<section 1 .
<codelcode="11348-0} bodeSystem="2.16.840.1.113883.6.1"> _| -conceptSource: UMLS
<title>PastMedicalHistory</title>

A

<entry>

<observation classCode="OBS" moodCode="EVN"> Dataltem
<code code="110" odeSystem="2.16.840.1.113883.6.3"></code>
<!|--Essential (primary) hypertension; ICD-10 -->
</observation>
</entry>
<e <Observation v
<observation|classCode="OBS" moodCode="EVN"> mood_cd="event">
<code[code="D000224" | <service_cd>
|codeSystem=“MeSH"></code> | <Concept
<I—Addison’s disease; MeSH — I > concept_id="C154."
</observation> " concept_source="READ Codes"
concept_name="Corticoadrenal
</entry> Insufficiency">
<entry> , </Concept>
<observation classCode="OBS" moodCode="EVN"> </service cd>
<code code="121" codeSystem="2.16.840.1.113883.6.3"></code> <Observations>
<!l--Acute myocardial infarction; ICD-10 -->

</observation>

Figure 4.8: An Example of Extracting GLIF Patient Entity from the HL7 CDA

“EHREntity” class, the type of the data to be extracted from the EHR document is specified

through the following mechanisms:

e First the semantics of the “Section” to be discovered is specified in the “ehrSemantics”
attribute of the “EHREntity”. As an example, <Past Medical History, C0552487,

UMLS> expresses such a meaning.

e The “entrySemantics” attribute of the “EHREntity” specifies the exact semantics of the
data needed as an instance of a Dataltem class of GLIF. The range of the dataValue
property of the “Dataltem” class, specifies the semantics of the clinical statements in
terms of the “PatientData” (Observation, Medication or Procedure) instances defined
in GLIF RIM [29]. In terms of granularity, the data specified in these “DataltemValue”
instances corresponds to one of the entries in the CDA documents. For example,
on the right hand side of Figure 4.8, there is an example “DataltemValue” instance,
representing the “Corticoadrenal Insufficiency” observation. Here, the meaning is given

through the “GLIF RIM Observation class”, and the “Concept” that are bound to this

02

observation. In the “Concept” class, the semantics of the data is specified with the
code of “CorticoAdrenal Insufficiency” in READ Codes|[78]. In this way, it is possible
to represent the semantics of the clinical data required by the guideline execution

formally in a machine processable manner.

if(glifCodingScheme!= DocCodingScheme)
then
targetEHR SemanticCategory= map(glifEHRSemanticCategory, glifCodingScheme,
DocCodingScheme);
else targetEHRSemanticCategory=glifEHRSemanticCategory;

Section targetSection = sectionImport(EHRDoc,targetEHRSemanticCategory);
Entry targetEntry = discreteDatalmport(targetSection,glifEntrySemanticCategory,
glifCodingScheme);

function discreteDatalmport(targetSection,glifEntrySemanticCategory,glifCodingScheme)
forall Entry e in targetSection
{entryCodingScheme=/(e.getCode()).get CodingScheme();
if (entryCodingScheme!= glifCodingScheme)
then
targetSemanticCategory— map (entrySemanticCategory,entryCodingScheme,
glifCodingScheme);
else targetSemanticCategory=entrySemanticCategory;
if (targetSemanticCategory == glifEntrySemanticCategory)

then return e;

}

Figure 4.9: The Discrete Data Import Algorithm

The algorithm used in extracting EHR entry semantics is presented in Figure 4.9.

First, it is necessary to check whether the coding schemes for annotating the Sections
(through the ehrSemantics attribute) used in GLIF specification match the coding schemes
used in the CDA Document. If not, the coded terms used to annotate the section contents
should be mapped to each other so that the relevant section in the CDA document can be

imported. In our example, in the CDA document, the section is annotated with the LOINC

93

Endocrine Diseases
D004700

Diabetes Mellitus
D003920

Adrenal Gland Diseases
D000307

READ Codes

Endocrine Disorder
Clzz.

Endocrine System Diseases
C0014130

Adrenal Gland Diseases

C0001621 Disorder of Adrenal Gland
C15..
Adrenal Cortex Dieases Adrenal Cortex Diseases) /\
D000303 1614
co016 Hypoadrenalism Cushing’s
i X40N9 C150.
Adrenal Insufficiency Adrenal Gland Hypofunction \
D000309 C0001623 :
Adrenal Hypofunction
X40Mb

Adrenal Corticol Hypofunction
C0405580

\

Adrenal medullary

Addison’s Disease Insgf:igi‘ency
D000224 .
Addison's Disease Corticoadrenal Insufficiency
€0001403 C154.
MeSH Terms

UMLS Concepts

v

Addison’s Disease
C1541

Figure 4.10: Mapping of terms from different Terminology System through UMLS Concept
Hierachy

code “11348-0" to represent that it is about “Past Medical History”. However in the guideline
definition the same concept is represented with the UMLS code “C0552487” to specify that
the Guideline needs the “Past Medical History” of the patient.

Once we have mapped the term used in guideline definition to the the term used to
identify the section in the CDA Document, this particular section is imported by parsing the
CDA document. For retrieving the particular clinical statement mapped the term used in
guideline definition to the guideline specification, a similar approach is followed as outlined
in the “discreteDatalmport” function in Figure 4.9. The coded terms used to annotate
the entries in the CDA document, and the entry semantics in guideline definition may be
different. For example, in the example CDA document presented in Figure 4.8, the entry is
annotated with a MesH code while a READ code is used to annotate the entry semantics in
the extended guideline definition.

To find the correspondences among different coding schemes, it is possible to use a
terminology server. A medical terminology server serves a controlled vocabulary for medical
information systems by modeling medical concepts in a descriptive manner. Among other

functionalities, medical terminology servers handles the mapping of these medical concepts

54

to Medical classification schemes; through this facility they also provide translation facilities
between the terms of different classification schemes.

GALEN [31] is one of the first implementations of such a medical terminology server
which defines medical concepts in descriptive logics supporting subsumption. Another such
terminology server is UMLS: the UMLS Knowledge Source Server Metathesaurus [96] com-
prises over one million biomedical concepts and five million concept names, all of which
are from over a hundred controlled vocabularies and classification systems such as ICD-9,
SNOMED and LOINC, providing a mapping structure between them. In our architecture a
mapping functionality supporting subsumption is used based on the concepts and mapping
provided by UMLS.

In Figure 4.10, a part of the UMLS Concept hierarchy and mappings of these concepts to
different terminology systems is presented as defined by UMLS Knowledge Metathesaurus.
Once such mapping definitions are stored in an ontology server supporting subsumption, it
becomes possible to deduce implicit relationships and mapping between the terms of different
coding schemes. Our mapping service queries the Ontology Server bootstrapped with the
UMLS concepts and term mappings to different terminology systems, in order to discover
the respective equivalent terms of the coded terms used in the extended guideline definition
in several other medical terminology systems.

As an example, in Figure 4.8, the READ Code “C154.” is specified as the “entrySeman-
tics” in the GLIF definition, to be able to check whether the patient has previously suffered
from “Corticoadrenal Insufficiency”. However in the CDA document in Figure 4.8, the MeSH
codes are used to represent this semantics.

As seen in Figure 4.10, there is a direct mapping between the term “C154.” and UMLS
Concept “Adrenal Corticol Hypofunction, C0405580”, however this term does not have a
direct correspondent in MeSH codes. On the other hand, from the UMLS Concept hierarchy
we see that the concept “Addison’s Disease, C0001403” is a subclass of the UMLS Concept
“Adrenal Corticol Hypofunction, C0405580”, and the concept “Addison’s Disease, C0001403”
has a direct mapping to the “D000224” term in MeSH. Using the subsumption relation-
ship between these terms, the mapping service deduces that the term “Addison’s Diseases,
D000224” is in fact “IS-A” “Corticoadrenal Insufficiency, C154.”. Hence a match in the CDA
document can be found and used in the guideline execution.

In this way, using the semantics defined in the extended GLIF model, the related entry

can be retrieved seamlessly from the CDA document, if such a clinical statement exists.

95

. . OWL-S Profile
FunctionalityOntologyNode

subclassOf

Input
haslnput arameterT! MessageOntolol
P P yp# NogeURl o

hasOutput
Output
MessageOntology

parameterTyp% NodeURI

Figure 4.11: Relating Service Functionality and Service Message Ontologies with OWL-S

4.2 Addressing the Interoperability in Interacting with the
Clinical Workflows

Considering that there could be several different applications running on different platforms
that need to be invoked while the clinical guideline is being executed, in our architecture Web
services are used to address the technical interoperability problem. In order to facilitate the
discovery of these Web services, first the OWL-S descriptions of the Web Services are defined.
As also presented in Figure 3.7, the Service Functionality Ontology is expressed through the
“ServiceProfile” class of OWL-S [69]. For this purpose, as presented in Figure 4.11, the
top-most class of our Service Functionality ontology is created as a subclass of OWL-S
ServiceProfile class. OWL-S Release 1.1 also indicates that service characterization must
effectively position a service within the broad array of services that exists within some
domain, or perhaps in the world at large [74]. OWL-S proposes to construction of a “Service
Profile hierarchy”, with inheritance of properties by subclasses as a technique for this kind
of service characterization. In the same manner, we have created our Service Functionality
Ontology (Figure 3.7) as a “Profile Hiearchy”.

To express the service functionality semantics of Web services, the ServiceProfile instance
of the specific Web service is represented as an instance of one of the Functionality ontology
nodes as presented in Figure 4.12. Similarly in order to be able to annotate the Web services
exposing wireless sensor data, the nodes of our Functionality Ontology created based on
IEEE 11073 standard nomenclature are exploited. In this way the semantic annotation of
Web Services through one of the Functionality ontology nodes is achieved.

After the OWL-S service descriptions of the Web services are created they are published
to UDDI registries through their semantics. For this purpose we have used the methodolo-
gies we have previously proposed in [16] for storing Functionality Ontologies to UDDI, and

annotating the semantics of Web Services through this functionality ontology. The following

o6

uDDI

Registry

T-Model
(wsdISpec

overviewDoc

Published to UDDI

overviewDoc

v

Described with OWL-S WSDLURI

<7xml version="1.0’ encoding="1SO-8859-1'?>

<IDOCTYPE uridef[
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema">

OWL-S URI
<IENTITY owl *http:/iwww.w3.0rg/2002/07/owl"> T-Model
<IENTITY service "htip:/www.daml.org/services/owl-s/1.1/Service.owl’> CoronayAngiogram

<IENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl">
<IENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl">
<IENTITY FuncOnt "htlp://144.122.230.12:8080/Saphire/FuncOnt.owl">

<IENTITY messageOnt “ExURI/MessageOnt.owl">

<service:Service rdf:ID="CoronaryAngiographyResultService">

Medical Information

System Database
overviewDoc

Hospital

Queries with
funcOnt:CoronaryAngiogram
class

</service:Services...

<FuncOnt:C rdf:ID="ProfileCy jice”>

<profile:hasinput rdf:resource=#patientiD>
g B Date

oAt CnerAnatomy gg LDLEEIEE

<process? 1dfD=" ProcessC ">
<process:hasinput>
<process:Input rdf:ID=" PatientlD ">

JRI">

Type =
&xsd#string</process:parameter Type>
<Jprocess:input>
<Jprocess-hasinput>
<process:hasOutput>
<process:Output rdf:ID=" CoronaryAnatomy ">
<process:parameterType rdf:datatype="8xsd;#tanyURI">
&messageOnt;#CoronaryAnatomy</process:parameterType>
<Jprocess:input>
<Jprocess-hasinput>

Figure 4.12: Publishing Medical Web Services with their Semantics to UDDI

steps are followed as presented in Figure 4.12:

e First of all, the functionality ontology is parsed and a TModelKey is created for each of

these functionality ontology nodes. TModels provide the ability to describe compliance
with a specification, a concept, or a shared design. When a particular specification
is registered with the UDDI as a tModel, it is assigned a unique key, which is then
used in the description of service instances to indicate compliance with the specifi-
cation. The specification is not included in the tModel itself. The "OverviewDoc”
and "OverviewURL” elements of tModels are used to point at the actual source of a

specification.

Two more TModels are created for representing the WSDL and OWL-S Specifications

of Web services.

When a Web Service is to be published to the UDDI Registry, first of all its WSDL
and OWL-S file URIs are bound to the service by adding the Tmodels with “wsdlSpec”
and “owlsSpec” keys and WSDL and OWL-S URIs as OverviewURLs to the category

bag of the Service Definition.

e For annotating the functionality semantics, the OWL-S file is parsed and the TModel

o7

coronary AngiographyMedical ActionImp: ServiceImpl
<coronaryAngiographyMedical ActionImp, http://81.180.27.130:8080/axis/services/
CoronaryAngiography?WSDL> : serviceWSDL
<coronaryAngiographyMedical ActionImp, http://81.180.27.130:8080/serviccOWLS/
CoronaryAngiography.owl> : servicecOWLS

<coronaryAngiographyMedicalDataEntity,coronary AngiographyMedical ActionImp> : accessParams

Figure 4.13: An example Servicelmpl Instance in the Extended GLIF Model

previously created for the Service Functionality Ontology node in Service Profile Hier-

archy is found and this Tmodel is added to the category bag of the Service.

In the deployment phase of a generic guideline definition for a specific patient and an
institute, the range of the functionality property of a Medical ActionEntity in the guideline
instance (Figure 3.8) is used in querying the UDDI registry. The discovered service instances
WSDL and OWL-S references are saved to the executable guideline instance as a property

of a “Servicelmpl” (Figure 4.2) instance as presented in Figure 4.13.

4.2.1 Addressing the Interoperability of Exchanged Messages used in the

Clinical Web Services

Service functionality semantics enables us to discover the Web services based on their se-
mantics. However, in order to invoke the discovered Web services while the guideline is
executing, message level interoperability is also needed. Service functionality semantics may
suffice to achieve interoperability only when all the Web services and guideline execution
engines use the same message standards, and same Reference Information Models. However,
it is not realistic to assume that all the healthcare organizations comply with the same mes-
sage structure and content. Hence, there is a need to transform one message content into
another.

In order to facilitate message transformation, our architecture utilizes ontology mapping.
The OWLmt tool [6] is used for mapping the input and output parameters of Web services
to the instances of the reference information model used in GLIF specification.

OWLmt is an Web Ontology Language (OWL) [66] based ontology mapping tool to
handle ontology mediation by mapping the OWL ontologies in different structures and with

an overlapping content to each other. It aims to define a document called the “Mapping

o8

Definition” describing how the source ontology and the target ontology classes and properties
relate. This document includes the units of information called the “Mapping Patterns”,
which are the matchings between the source ontology and the target ontology classes and
properties. The “Mapping Definition” is then used to transform the source ontology instances
to the target ontology instances automatically.

The semantic mediation in our architecture is enabled through the following steps:

e Service message ontologies are created to express the semantics of the Clinical Web
service messages. In the healthcare domain, the Web services usually exchange XML
messages. Through a normalization tool [32], we create the OWL ontology of the Web

service messages from the XML Schema (XSD) [105] definitions of the service messages.

It is clear that when an OWL ontology is created from an XML Schema (XSD), it is
not possible to extract some of the OWL specific semantics such as class expressions
or various types of properties. Yet, it is still possible to obtain the class hierarchies

and the properties of classes and this information proves useful in ontology mapping.

e Based on the service functionality and service message ontologies, Web services are
annotated in our architecture through OWL-S [69] as depicted in Figure 4.11. The
OWL-S Profile class has properties called hasInput and hasOutput whose ranges are
“Input” and “Output” classes. These classes, in return have a property, namely, param-
eterType. The value of this property is set to a node in the local message ontologies.
In this way the service’s input and output parameters are annotated with the service

message ontologies.

e In the GLIF model, the data exchange with the external resources is realized through
the instances of Procedure, Medication and Observation RIM classes. We have created
an XML schema (XSD) of these classes. Then, the OWL ontology from the XSD file

is created automatically through the Normalization Tool.

e The next step is to create the mapping definition between the GLIF RIM ontology
and Clinical Web service Message Ontologies through the graphical interface of the
OWLmt tool. An example mapping is illustrated in Figure 4.14. On the left hand
side, the Medication concept in GLIF RIM ontology is presented, the parts of which
are mapped to the Medication instance expected by the Web Service. Apart from the
copy and the concatenation functionalities, the OWLmt tool also allows the user to

define more advanced transformation functions in terms of java scripts.

29

MEDICATION MEDICATION

Fservice_cd medicationCode
concept Pdosage
concept_name route

concept_id

copy
concept_source

rdoseform
-dosageQuantity

PhEsicaIQuantity

value
it [oonaf

Lroute cd

Figure 4.14: An example mapping definition of WS parameters

e Once such a “Mapping Definition” is created by the OWLmt tool, the mediation of

message instances are achieved as presented in Figure 4.15:

GLIF RIM
Ontology ,—@
OWL \<—!| Normalize Guideline

Execution

Automatic) |
() — nvironment—=
M \ . .
apping) | Mapers,
Engine T Inout
=~ npu
OWL % Clinical
Normalize ;
; Web Service
<—| (Automatic = —
. ¢) < XML
Clinical Web Service Output

Message Ontology

Figure 4.15: Semantic Mediation of Clinical Web Service Messages

While the guideline is being executed, the Web service parameters are provided

as the XML instances of the Reference Information Model used in GLIF.

— These XML instances are normalized to OWL instances of the Reference Infor-

mation Model used in GLIF.

— The OWL instances are automatically transformed to the instances of the Clinical
Web Service message ontologies through the OWLmt tool mapping engine using

the “Mapping Definitions” previously created.

— The instances of the Clinical Web Service message ontologies are normalized to

XML instances which are the messages the Clinical Web services are expecting to

60

receive.

e The same procedure is followed when a response is received from the Web Service.

In this way, the guideline execution environment always processes the data encoded as in-
stances of the GLIF RIM, as proposed in the GLIF specification; the Clinical Web Services
always process the input, output parameters as the instances of the Reference Information

Model used internally in the hospitals.

4.3 Addressing the Interaction with the Alert/Reminder Ser-

vices

In our architecture, a role based, publish/subscribe mechanism is implemented for delivering
the alerts and reminders generated by guideline execution to the related recipients [1|. The

alert /reminder system works as follows:

e The alert/reminder system has a Web Service Interface with the underlying Medical
Information Systems. Through the Web Services exposed by the hospitals, the infor-
mation about the Patients, the Guidelines assigned to them, the doctors responsible

for their care can be retrieved.

e Graphical Interfaces are provided to the Healthcare Professionals to subscribe to the
alerts/reminders about a patient/guideline pair. In addition to this, healthcare profes-
sionals may define rules to specify the transmission mechanism of the alerts/reminders

(such as SMS, Pager, or email) based on the urgency of the alert/reminder.

e The alert system has a Transmission Layer. In this layer modular transmission mech-
anisms are provided. Currently message transmission through SMS, email and the
Google messenger are supported. SMS transmission is achieved through a Web Service

provided by a mobile service provider company.

e The alert system has an interface to receive the alert/reminder message delivery re-
quest. The message tuple has the following structure: (patientID, guidelineID, ur-
gency, roles and message content). The alert/reminder message created as a result of
the guideline execution is sent to the Alert/Reminder System, by specifying the “roles”
to whom the message should be delivered. The roles currently available are: “doctor”,

“nurse” or “patient relative”.

61

e The alert system has a rule engine which coordinates the publish/subscribe mechanism.
The healthcare users who have the specified role and have subscribed to receive the
alert /reminder messages of the given patient/guideline pair are located. Then by
running the rules specified by the healthcare user, the delivery mechanism is decided

and the delivery of the messages are initiated through the Transmission Layer.

This alert system is used in cooperation with the tools developed in this thesis in order
to demonstrate how the semantic extensions proposed in this thesis to represent the seman-
tics of alert messages can be exploited to deploy the guideline that can communicate with

alert /reminder systems.

62

CHAPTER 5

THE MULTI-AGENT SYSTEM
RESPONSIBLE FOR DEPLOYMENT AND
EXECUTION OF CLINICAL GUIDELINES

The semantically enriched clinical guidelines described in Chapter 3 are deployed and exe-
cuted on the semantic infrastructure described in Chapter 4 through a multi-agent system.
Using the semantically enriched guideline definition, the multi-agent system is capable of
specializing the clinical guideline definition to a specific patient and can locate the resources
for accessing patient data in heterogeneous healthcare settings.

An overview of the subcomponents and their interaction is depicted in Figure 5.1. The
system is implemented as a multi-agent system, since as a result of the conceptual design
phase we have realized that in order to deploy and execute the clinical guidelines in a het-
erogeneous distributed environment, there should be a number of autonomous components
that should be communicating with each other in a reactive manner, and some of these
components should be instantiated and eliminated dynamically based on the demand.

The roles of each agent in our multi-agent can be introduced as follows:

e Agent Factory Agent: The Agent Factory Agent is mainly responsible for specializ-
ing the guideline definition to a patient, and creating the Guideline Agent which will
execute the clinical guideline. The Agent Factory Agent is capable of processing the
generic guideline definition annotated with semantics. By interacting with the re-
sources of medical information systems, it discovers the real implementations of the
medical services exposing hospital information system functionalities and sensor ser-
vices and the document identifiers of the EHR documents of the patients, so that the

guideline definition becomes ready to be executed. As a result, a specialized guideline

63

XDS
Registry

EHR Docs published with
Document ontology

10.Retrieves document

Guideline 5,Querying EHR
Assignments

monitoring
messages

11.Processes
document

Saphire
> Repository 3. Retrieving
Assignments 7.EHR
~\ 3. Processes Handler 8., 12.Mapping
Guideline Request

2. store) 4% Definition ﬁ

assignmen e -A:“;’ i

1. Discovers y i I
ol guideline = 6,Creates Guideline Agept 14") 13.Ws é?j}
GI y 4“ c }& andler Xy
Repository| Guideline : <]
Assignment Agent Factory gappl 0 %Y) e
Agent eauest Guideline Request '

Specialized

Guideline
Definition /

end [

S -
Agent monitoring
Send alam{'©55298S Ontology .
essages r Agent Terminology
Server
3]

. Querying Sensor /
Medical, EHR Web
Services

4

o, @sg

@ : OWL-MT

Sensor Medical Mapping

Services Services : Monitoring Agent Engine

Published Published N
ublishe: Alarm Distribution
Agent

Queries
monitoring
messages

Figure 5.1: The Multi-Agent System responsible for Deployment and Execution of Clinical

Guidelines

definition whose “Implementation Layer” classes are initialized is produced. The Agent
Factory Agent achieves these by interacting with a number of different components,
namely, the XDS Registry, UDDI Registry, Saphire Repository, Guideline Repository,
Ontology Agent and Guideline Agent.

e FHR Agent: In our architecture, the EHR Agent functions as the gateway to access
and extract clinical data from the Electronic Healthcare Records of the patient within
a Clinical Affinity Domain. EHR Agent is modelled as a separate agent, to abstract the
access to EHR from other agents. Currently in our architecture for sharing EHR doc-
uments two different mechanisms are supported: the IHE XDS Registry/Repository
architecture and a Web Service based architecture. The EHR Agent is capable of com-
municating with either the IHE XDS Registry /Repository or Web Services to retrieve
the EHR documents. On top of this, in each affinity domain, the EHR Content stan-
dard conformed, such as HL7 CDA or EHRCom, may differ. The EHR Agent also

64

abstracts how to process these machine processable EHR Content standards to extract

the clinical statements sought by the clinical guideline.

e Ontology Agent: Our architecture is capable of reconciliation of semantic interoper-
ability problems while accessing the resources of healthcare institutes. In the guideline
definition, patient data references are modelled in a reference information model based
on HL7 RIM. It is possible that the medical Web services, the sensor data, and the
EHR documents use different reference information models, and clinical terminologies.
Through Ontology Agent this semantic interoperability problem is solved. For this
purpose the Ontology Agent exploits the OWLmt ontology mapping tool, and the
UMLS terminology server.

o Guideline Agent: The Guideline Agent is the main entity which executes the Clinical
practice guidelines. It is created by the Agent Factory Agent for each patient-guideline
assignment. The Guideline Agent processes the guideline definition specialized to a pa-
tient and executes the activities specified in the guideline definition. It can be thought
as the enactment engine for the clinical guideline. The Guideline Agent exploits several
modular handlers to achieve this responsibility. The Guideline Agent also communi-
cates with other entities in the architecture such as EHR Agent, Ontology Agent,

Monitoring Agent and Alarm Distribution Agent.

e Monitoring Agent: While the guideline is executed, the current status of the guideline
execution is sent to a specific agent which we call Monitoring Agent. Monitoring
Agent provides an interface to the clinical practitioners to visualize the execution of

the guideline. Monitoring Agent is directly in contact with the Guideline Agent.

e Alarm Distribution Agent: While the guideline is executed, several alarms, notifica-
tions, reminders may need to be issued to medical practitioners, and when necessary
to the patient relatives. In such cases the alarm message and the role to whom the
message should be delivered is informed to an agent, the Alarm Distribution Agent,
which is specifically designated to distribute these messages to the necessary recipients
in the most efficient and reliable way. The Alarm Distribution Agent is directly in

contact with the Guideline Agent.

Apart from these agent the roles of the other entities in the architecture can be summa-

rized as follows:

65

e Guideline Repository: In our architecture the clinical guideline definitions modelled
in the extended guideline model are stored in a Guideline Repository so that they
can be accessed by healthcare institutes which want to deploy such guidelines to their
institutes. These generic guideline definitions are stored to this Guideline Reposi-
tory by annotating them with a number of ICD 10 codes. ICD 10 codes presents a
categorization of diseases and signs, symptoms, abnormal findings, complaints, social
circumstances and external causes of injury or diseases, as classified by the World
Health Organization (WHO). The healthcare institutes can discover the relevant clin-
ical guidelines from the Guideline Repository given a problem definition coded in ICD

10 codes.

e Saphire Repository: In order to share information entities among the components of the
architecture, we use the Saphire Repository. It is a persistent object store, enabling
the storage and retrieval of internal information entities such as Patient-Guideline

Assignments, Monitoring messages and so on.

e Patient Identifier Cross-Referencing Manager: As discussed in Section 4.1.1, Patient
Identifier Cross-Referencing Managers (PIX Managers), enables the mapping of differ-
ent Patient identifiers assigned to the same patient by different healthcare institutes.
The EHR Agent uses this component to be able to access Electronic Healthcare Records

of the patients.

e UDDI Registry: As discussed in Section 4.2, the Web services exposing the function-
alities of Clinical Workflows and the data produced by medical sensor devices are

published in UDDI registries through their functionality semantics.

e XDS Registry: As discussed in Section 4.1, the Electronic Healthcare Documents are
registered in XDS registries through their semantics, so that their URI’s can be dis-

covered to retrieve them from the respective EHR repositories.

The Multi-agent System supported with additional components briefly described enables
the deployment and execution of clinical guidelines not only within a single clinical affinity
domain, but also across clinical affinity domains: i.e. the resources necessary for the execu-
tion of the clinical guideline such as Electronic Healthcare Records and medical services of
clinical workflows can be discovered and accessed across affinity domains. For this purpose,
besides the entities that should be available in each clinical affinity domain, some supplemen-

tary components should also be hosted to enable the communication across affinity domain

66

queryPID

Health w b Healthcare
(ealthcare == 4_———> Institute 3
> Institute ———» o
PIDFeed 1/
P

A
Request
ublishes Cross Documems pubhshes
PIX Affinity PIX EH Agent
) queryPID Manager Ma’zV xns
quevyDucumenls RGPOS" N
- queryServices queryPIDI queryDocumefhts eryPID
® “

Healthcarg

Institute \wf

publishes

publish
%cal -
S Request XDs Tegisters Web
ervice Documents Clinical
queryDocuments Reglstry Serwces Service
ha < > Registn
|
: Agent Factory
Lab Mapping|
\ EHR Agent Request p|x \ﬁ’*j
hs Creates / Manager 4
\ﬁw‘?‘i Load Behavior Eiﬂﬁfe'ms | » L g \ér': ‘/V,. ’i b
ini 5 =
Affinity s Invokes services =) Ontology Agent 2 Jﬁ Agent Factory
Domain A s ‘}%‘*ﬁ Mapping Guideline Alarm
Alarm e iR Request Agent «———————————— Distribution
—>
Distribution Send Alarms, Gwdelme Affinity Domain B Agent
Agent reminders Agent

Figure 5.2: The Multi-Agent System spanning across clinical affinity domains

as depicted in Figure 5.2. These are the Cross-Affinity PIX Managers to resolve different
patient identifiers used in different clinical affinity domains, and the Ontology Agents to
resolve different clinical terminology systems used by different clinical affinity domains.

For implementing the Multi-agent System we have utilized the JADE [45] agent devel-
opment platform. The agents communicate with each other using JADE Ontologies im-
plemented conforming to FIPA Agent Communication Language specifications [27]. In the
following sections the functionalities of these agents and their interaction with each other

will be detailed.

5.1 EHR Agent

As presented in Chapter 3, accessing the Electronic Healthcare Records of the patient is
an indispensable requirement for executing the clinical guidelines. However the EHR’s of a
patient may be stored separately in each healthcare institute s/he has been previously hospi-
talized. In our architecture, the healthcare institutes that cooperate for the care of a patient
are grouped as clinical affinity domains. These clinical affinity domains may have agreed on
different platforms for sharing the EHRs of the patient that are not interoperable with each
other. This is in fact a real life situation: in U.K as the national health infrastructure, a
central architecture called SPINE [89] will be used for sharing medical summaries of patients,
while in Canada, an IHE-XDS based infrastructure is being built for the same purpose [9].

To abstract the access to the EHR from the Clinical Guideline Execution Environment, we

67

AF Agent EHRAgent A PIX Manager XDS Registry EHR Agent B Cross-PIX Manager Ontology Agent

]) <) gji <) <)
L - B -
o= o o< & [[

queryEHR

(PID,ehrSemantics) PIXQuery(PID,H1,XDS

translationRequest(ehrSemantics,SourceOnt, TargetOnt)

queryRegistry(ehrSemantics,PID)
[
D add(documentReferences)

queryEHR
(PID,ehrSemantics)

»| PIXQuery(PID,CADa,CADb)

translationRequest(ehrSemantics,SourceOnt, TargetOnt)

D queryEHRwithinCAD(ehrSemantics,PID)

D add(documentReferences)

Figure 5.3: Interaction of EHR Agent with other components for discovering EHR References

have created a dedicated agent, the EHR Agent for each such affinity domain as presented
in Figure 5.2.

The EHR Agent can be thought as a gateway for locating and accessing EHRs of the
patients. Each EHR Agent is specialized in the platform agreed in that affinity domain for
sharing EHRs. When a request for discovering and requesting an EHR document is received
by an EHR Agent, the EHR Agent both tries to locate the EHR document within its affinity
domain through the methodology agreed by the clinical affinity domain such as ITHE-XDS,
and also forwards the request to the EHR Agents of the other clinical affinity domains as
presented in Figure 5.3. In this way, the EHR documents will be available to the requesting
entity, although heterogeneous systems are used by different affinity domains.

In our architecture, we have implemented EHR Agents accessing the IHE-XDS EHR
Registry /Repositories: When a specific EHR of a specific patient is sought, a “queryEHR”
message is sent to the EFHR Agent as presented in Figure 5.4. In this example message, the
patient identifier is presented and the document type metadata is specified with “LOINC
Document Type Codes” such as “11450-4” for “Active Problems”. Using this metadata, and
the patient identifier, a “QueryRegistry” transaction is issued to the XDS Registry, and as
a response a set of Document Identifiers pointing to document stored in EHR Reposito-

ries is presented (Figure 5.4). These document identifiers are used to access the document

68

An example queryEHR request An _example response to a queryEHR request
(request (inform
:sender :sender
(agent-identifier (agent-identifier
:name agentfactory-agent@foo.com :name ehr-agent@foo.com
:addresses (sequence iiop://foo.com/acc)) :addresses (sequence iiop://foo.com/acc))
:receiver (set :receiver (set
(agent-identifier (agent-identifier
:name ehr-agent@foo.com :name agentfactory-agent@foo.com
:addresses (sequence iiop://foo.com/acc))) :addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request :language FIPA-SL2
:language FIPA-SL2 :ontology (set AF-EHR-Ontology)
:ontology AF-EHR-Ontology :content
:content (= (iota 71
(action (result
(agent-identifier (action
:name ehr-agent@foo.co (agent-identifier
:addresses (sequence iiop://foo.com/acc)) :name ehr-agent@foo.com
(queryEHR :addresses (sequence iiop://foo.com/acc))
(EHR-description (queryEHR
:pid 12345678 (EHR-description
:ehrSemantics (concept :pid 12345678
conceptname : Past MedicalHistory :ehrSemantics (concept
conceptSource: LOINC conceptname : Past MedicalHistory
conceptID :11348-0)))) conceptSource: LOINC
:reply-with queryEHR-1123234) conceptID :11348-0))))
)
(sequence (1654b3de-8b51-420e-839e-b1c39e35bb90.xml
)
‘in-reply-to queryEHR-1123234)

Figure 5.4: An example queryEHR request and response

content from the Repositories by issuing a “RetrieveDocument” transaction as presented in
fig-queryEHR.

Apart from locating and retrieving EHR documents, EHR Agents also serve another
important feature: retrieving a specific piece of information from the EHR content. The
EHR content standard agreed by each clinical affinity domain may be different, however
the EHR Agent of that domain, is capable of processing the document format agreed and
extract the requested piece of information in the format requested by the clinical guideline
execution environment. As presented in section 4.1.2, in our architecture, we are using HL7
CDA documents as EHR documents, and in our implementation, we have implemented an
EHR Agent that is capable of processing the CDA document, locate the requested piece of
information among the CDA Entries, and present it to the requesting entity. The algorithm
presented in Figure 4.9 is collaboratively executed by the EHR Agent and the Ontology
Agent in the Multi-agent System. In the RetrieveEntry request sent to the EHR Agent,

69

Guideline Agent EHRAgent A Ontology Agent XDS Registry
< - x Repository
<5 Ey
))

< <

45

RetrieveEntry(ehrSemantics,
entrySemantics,DocID)

retrieveDocument(DocID)

translationRequest(ehrSemantics,
SourceOnt, TargetOnt)

:) sectionimport(ehrSemantics)

For All Entry in the Section

translationRequest(entrySemantics,
SourceOnt, TargetOnt)

compareSemantics
(ehrSemantics)

Figure 5.5: Interaction of EHR Agent with other components for Retrieving Clinical State-

ments

the semantics of the piece of information requested is also specified with coded terms. For
example, the clinical guideline execution environment may be in need of discovering whether
the patient has previously experienced “bronchial spasm”. In the request sent to the EHR
Agent (Figure 5.6), besides the document type code for “Past Medical History”, the coded
term representing “bronchial spasm” is also specified for example as “C0006266” in UMLS
medical terminology. In the CDA document all the entries are also annotated with coded
terms, however another code from a different terminology may have been used for identifying
the same entry in the CDA document which could be the “F-20250” term from SNOMED
terminology [87]. To solve this interoperability problem, the EHR Agent consults to the
Ontology Agent, and receives an answer to its translation request. In this way although
different medical terminologies may have been used, the requested part of the EHR can be

extracted from the whole EHR document as presented in Figure 5.5.

5.2 Ontology Agent

The Ontology Agent in our architecture is responsible for handling the semantic mediation
of the clinical content used in guideline deployment and execution architecture. It is used

for the following purposes as presented in Figure 5.7:

70

An example retrieveEntry request An example response to a retrieveEntry request
(request (inform
:sender :sender
(agent-identifier (agent-identifier
:name guideline-agent@foo.com :name ehr-agent@foo.com
:addresses (sequence iiop://foo.com/acc)) :addresses (sequence iiop://foo.com/acc))
:receiver (set :receiver (set
(agent-identifier (agent-identifier
:name ehr-agent@foo.com :name guideline-agent@foo.com
:addresses (sequence iiop:/foo.com/acc))) :addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request :language FIPA-SL2
:language FIPA-SL2 :ontology (set GA-EHR-Ontology)
:ontology GA-EHR-Ontology :content
:content (= (iota 71
(action (result
(agent-identifier (action
:name ehr-agent@foo.co (agent-identifier
:addresses (sequence iiop://foo.com/acc)) :name ehr-agent@foo.com
(retrieveEntry :addresses (sequence iiop://foo.com/acc))
(Entry-description (retrieveEntry
:ehrSemantics (concept (Entry-description
conceptname : Past MedicalHistory :ehrSemantics (concept
conceptSource: LOINC conceptname : Past MedicalHistory
conceptID :11348-0) conceptSource: LOINC
:entrySemantics (concept conceptID :11348-0)
conceptname : BronchialSpasm : entrySemantics (concept
conceptSource:UMLS conceptname : BronchialSpasm
conceptID :C0006266) conceptSource:UMLS
:docID : 1654b3de-8b51-420e-839¢e-b1¢39e35bb90.xml conceptID :C0006266)
) :docID : 1654b3de-8b51-420e-839e-b1¢39¢35bb90.xml
:reply-with retrieveEntry-1123234)))
(<observation > <service_cd> <Concept conceptID="F-
20250 conceptSource="Snomed" conceptName="Bronchial
Spasm’/> </service_cd></observation>))))
:in-reply-to retrieveEntry-1123234)

Figure 5.6: An example retrieveEntry request and response

o Mapping the parameters of Medical Web Services: In our architecture, the guideline
execution environment uses a reference information model based on HL.'7 RIM subset to
represent the clinical information. However, it is a fact that several other standards or
even propriety formats may be used by the healthcare institutes to represent clinical
information. The guideline execution environment needs to communicate with the
hospital information systems to reflect the results of guideline execution. For example,
the guideline execution can result with a proposal of prescription of a medication
to the patient; in this case this information may need to be stored to the hospital
information system to affect the clinical workflow. In our architecture, these kinds of

interactions are handled through the Web services exposed by the healthcare institutes.

71

5. WS-Input in
IEEE 11073 DIM

6. WS-Input in
IEEE 11073
DIM

4.WS-Input
in HL7RIM

Guideline
Agent

Sensor WS

1.WS-Input
in HL7RIM

3.WS-Input in

Proprietary RIM
2.WS-Input in
Proprietary RIM
Ontology Medical WS
Agent (("7
ve)
9.Mapping 7.EHR e
Request between Request
Coding Scheme
AtoB

EHR

A gent 8. Retrieve
Document

Figure 5.7: The Ontology Agent Interactions with other agents

However it is natural that the parameters of these Web services are conforming to the
messaging and content standards used within the hospital, not to the one used in
the guideline execution environment. Whenever the Guideline Agent needs to invoke a
Medical Web Service, it consults with the Ontology Agent and the input parameters are
automatically mediated to the messaging and content standards used by the hospital.

The same mechanism is used for mapping the output parameters.

Mapping the parameters of Sensor Web Services: In our architecture, the guideline
execution environment represents the sensor data to be used in guideline execution in
the same reference information model based on HL7 RIM. Currently in our architecture
the sensor data are exposed as Web services which represent the data in IEEE 11073
Domain Information Model [39]. Whenever a data is received form a Sensor Web
Service, the Guideline Agent consults with the Ontology Agent to mediate the sensor

data to the reference information model used in the guideline execution environment.

Mapping the content of the Electronic Healthcare Records of the Patient: In our ar-

chitecture the Electronic Healthcare Records of the patients are represented as HL7

72

Ontology
Cesigner
Cntology Cntology Crntology
Server 1 Serverd Server 3
{Ontalingua) (ODL A I
OKBC oQL HTTF
Ontolagy MortFIPA Components
Agent1 FIFA Components
‘ Message Transport Service
Ontology
‘ Agent 3 Agent 1 ‘ Agent 2 DF

public ontologies,

73

Figure 5.8: The Ontology Service Reference Model proposed by FIPA [28]

CDA documents. In HL.7 CDA, the document sections and entities can be coded with
coded terms from different coding schemes. In the extended guideline definition model
the EHR data can also be annotated with concepts from ontologies or coding schemes.
Whenever different coding scheme standards are used, the Ontology Agent is consulted
for mediation. Since the Guideline Agent cooperates with the EHR Agent whenever
an EHR content is necessary, the mediation request to Ontology Agent is sent by the
EHR Agent.

The Ontology Agent is compliant with the FIPA Ontology Service Specifications [28].
According to FIPA Specifications, an Ontology Agent is an agent that provides access to one
or more ontology servers and which provide ontology services to an agent community. The

Ontology Agent (OA) is responsible for the one or some of these services:

e maintain (for example, register with the DF, upload, download, and modify) a set of

e translate expressions between different ontologies and/or different content languages,
e respond to query for relationships between terms or between ontologies,

The FIPA Specification deals with a standard way to serve the ontology services; it does

not mandate any mechanism on how to map the ontologies to one another as presented in

An example translation request

An example response to a translation request

(request
:sender
(agent-identifier
:name client-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
:receiver (set
(agent-identifier
:name ontology-agent@foo.com
:addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request
:language FIPA-SL2
:ontology FIPA-Ontol-Service-Ontology
:content
(action
(agent-identifier
:name ontology-agent@foo.co
:addresses (sequence iiop://foo.com/acc))
(translate (C0262926))
(translation-description
:from UMLSDocTypeOntology
:to LOINCDocTypeOntology)))

:reply-with translation-query-1123234)

(inform
:sender
(agent-identifier
:name ontology-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
:receiver (set
(agent-identifier
:name client-agent@foo.com
:addresses (sequence iiop://foo.com/acc)))
:language FIPA-SL2
:ontology (set FIPA-Ontol-Service-Ontology)
:content
(= (iota 7
(result
(action
(agent-identifier
:name ontology-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
(translation-description
:from UMLSDocTypeOntology
:to LOINCDocTypeOntology))) ?i))
(11348-0))
:in-reply-to translation-query-1123234)

Figure 5.9: An example translation request and response

Figure 5.8. As well as all the other agents, the OA registers its service with the Directory
Facilitator (DF) and it also registers the list of maintained ontologies and their translation
capabilities in order to allow agents to query the DF for the specific OA that manages a
specific ontology. Being compliant with the FIPA Ontology Service Specification necessitates
the Ontology Agent to be able to accept and respond to the ontology service requests in FTPA-
Ontol-Service-Ontology ontology. An example translation request and response is presented
in Figure 5.9.

As presented, the FIPA Ontology Service Specification does not deal with how the map-
ping is facilitated. In our architecture, the mapping is facilitated through three different

mediation mechanisms (Figure 5.7 and Figure 5.10):

o Mapping the parameters of Medical Web Services: In one of our previous projects,
Artemis [18], we have developed an OWL Ontology Mapping Tool, the OWLmt [6], to
mediate the input and output parameters of medical Web services between different
standards. The Ontology Agent handles such mapping requests through the OWLmt
tool. The OWLmt tool provides a graphical interface to define the mapping patterns

between OWL ontologies in different structures but with an overlapping content. This

74

~
/

OWLmt Ontology Server
Tool bootstrapped with
UMLS mappings

>
Ontology Agem]

5 J
)

Message Transport Service

—Y

[Ontolo;i/ Agent] [Guideline Agent] [EHR Agent ’ E)ireclory Facilitalor]

Figure 5.10: The Architecture of the Ontology Agent

mapping definition is used to automatically translate ontology instances to one an-
other. In our architecture, the schemas of Web service messages, and the schema of
the Reference Information Model used by the clinical guideline execution environment
are lifted to metamodel level and represented as OWL ontologies. Then through the
OWLmt GUI, the mapping relationships between them is defined graphically once,
which will be used by the OWLmt Mapping engine to mediate the Web service param-
eters to the reference information model understood by the clinical guideline execution
environment. For the details of the OWLmt tool, please refer to [6], where detailed

examples of mapping definitions from medical domain are presented.

Mapping the terminologies used in Clinical Document Content: The Ontology Agent
handles such requests by communicating our Ontology Server bootstrapped by the
UMLS concepts and their mappings to the nodes of medical terminology systems [96].
The UMLS Metathesaurus contains information about over one million biomedical
concepts defined based on the terms from many controlled vocabularies and classi-
fications used in patient records, administrative health data, bibliographic and full-
text databases, and expert system. These controlled vocabularies and classifications
(i.e. medical terminology systems) are referred to as the “source vocabularies” of
the Metathesaurus. The Metathesaurus reflects and preserves the meanings, concept
names, and relationships from its source vocabularies. It provides mapping of the terms
in these “source vocabularies” to the concepts in UMLS concept hierarchy. The UMLS
Knowledge Sources are downloadable as databases in UMLS Site. In our architecture,

we have bootstrapped an Ontology Server, saved the UMLS concept hierarchy and the

75

mappings of the terms of medical terminology systems to these concepts as presented
in Figure 4.10. The Ontology Agent queries this Ontology server which supports sub-
sumption for finding the synonyms of clinical terms in different medical terminology

systems such as ICD10, LOINC and SNOMED CT if there are any.

o Mapping the parameters of Sensor Web Services: As presented in Section 2.7 in our
architecture the sensor data is exposed as Web services in IEEE 11073 DIM. However
this information in DIM, should be translated to HL7 RIM which is used by the clinical
guideline execution environment. The IEEE 11073 Standards family names this level
as “Observation Reporting Interface”, and provides guidelines to map the IEEE 11073
DIM to the HLT7 observation reporting messages, segments, and fields. The Ontology
Agent uses a tool that implements these guidelines to handle the mediation of messages

in DIM to HL7 RIM used by GLIF [64].

5.3 Agent Factory Agent

AF Agent EHRAgent UDDI Registry DF Agent Saphire Guideline Agent Monitoring Agent
& & Repository &

queryEHR(PID,
ehrSemantics)

D UpdateGuidelineDefinition

discoverWS(functionality)

D UpdateGuidelineDefinition

Search(AlarmAgentDescription)

D UpdateGuidelineDefinition
Store(SpecializedGuidelineURI)

Store(PatientGuidelineAssignemnt)

atientGui ignment)

I
Initialize(GuidelineAgentID)

Figure 5.11: Interaction of Agent Factory Agent with other components for deploying and

Initializing a Clinical Guideline

In our architecture the agent that is responsible for leading the deployment of a generic

76

£ Entity Manager

Patient
Guideline List of available patient - quideline pairs

Di i [Filer Query | [Patiert arae [=] Saarch

s a—
Assignment Patient Marne | GL Title | Doctor [Assignment Date
Data Access ibrahim taskesen |Guu:|eline1 [scubduideline]_Instance 0] \Méhmet'o\dui |2uus-05—23 18119:26.0

" M. Message

Load Guideline Patient Detals Guideling Cetails

Guideline Actions |- Matching Table ‘|-Data Sources
i Management of Acute Myocardial Infarction Guidelire Action Data Source | [Mot 3earched Yet...
Y =4 EligibleTalmmedisteManagemertCriterion Get Patient Generated Event :
i o B Get Patiert Generated Event Get ECG Mew LBBE Status
- @ Get ECG New LBBE Status Get ECG 5T Elevation Status

- @ Get ECG ST Elevation Stalus

GetHeartRate
V& FirstLineMedication

GelBP

V(& NTGandorB-Blocker Treatment&ctionStep GelBaseliNEBf nading data services for GetBaseline B [13:23]
- @ GetHesrtRate i
- @ cetEp NTGTreatmerk
" @ GelBaseinesP IntravenouslyNTGTreatmentAction

GetContradictionswithAsprin
GethspitinhiedicationStatus
PrescribeAsprin
GetDateofBirth
GetContradictions

L5 MitroglycerinTrestmentCaze

o 8 GetanginaStatus

v MitroglycerinTreatmentActionStep
o [NTGTrestmentReccomendation

V[RepeathTGAlgorthmCase

. | GelKilipClass
T@' IntraveneoushTGTrestment ActionStep | GetChestPain
= B ntravenousyNTG Trestmentaction || | WegicallySupporiedFibrinolysiahl.
VL& aspirinPrescriptionCase | ClopidogrelPrescriptionTask

-8 GetContratictionswithAsprin
- B GetasprinmedicationStatus

V-2 AsprinPrescription
L 11

|a]

s e

[« [

| Assing Assignables. | ‘ Check Completeness ‘ Clear all Save Patient Guideline

Figure 5.12: The Agent Factory Agent Graphical Interface

clinical guideline definition to a specific patient in a healthcare institution is the Agent Fac-
tory Agent. The Agent Factory Agent processes the clinical guideline definitions represented
in our extended model, and based on the semantic annotations of the external resources,
discovers the instances of the specified resources that are relevant for our specific patient.

This process can be summarized as follows (Figure 5.11):

e In our architecture, the medical Web services exposing functionalities of healthcare in-
formation systems, and also the sensor Web services exposing the sensor data retrieved
from wireless medical sensor devices are published to a UDDI registry by annotating
them with their functionality semantics as described in Section 4.2. Whenever the
Agent Factory Agent encounters a reference to a medical procedure represented as
an instance of “MedicallyOrientedAction” class, it locates the medical services from
UDDI service registries by their functionality semantics which has been specified in

the extended GLIF model.

e Whenever the Agent Factory encounters a reference to a clinical data of patient to be

retrieved from an EHR document (represented through an instance of “EHREntity”

7

linked to a “GetDataAction” task), it sends a message to the EHR Agent presenting
the Document type, and Entry type semantics (the ehrSemantic and entrySemantics
properties of “EHREntity” class) presented in the semantically extended GLIF model.
As a response a set of document identifiers are received pointing to relevant EHR

documents as explained in Section 5.1.

e When the Agent Factory Agent encounters a “MessageAction” in the guideline defini-
tion, the Agent Factory Agent sends a discovery message to the “Directory Facilitator”
(DF) Agent to locate the Alarm Distribution Agent in our multi-agent system. The
DF Agent is a centralized registry of entries which associate service descriptions to
agent IDs. The agents that wish to advertise their services to other agents register

their services to the the DF Agent, so that they can be discovered by the other agents.

This process is supported with a graphical interface as presented in Figure 5.12; whenever
more than one possible resource is located by the Agent Factory Agent, those are presented
to the user, so that one of the alternative can be selected.

In addition to that, as explained in Chapter 4, in the semantically extended GLIF model
in the Implementation Layer (Figure 4.2), we have also reserved slots for storing the pointers
to the discovered resources, for example, document identifiers in EHR repositories, the WSDL
and OWL-S files of Web services, and Agent Identifier of the Alarm Distribution Agent. As
a result of the deployment phase briefly presented, the Agent Factory Agent specializes the
generic guideline definition to a patient by creating the instances of the Implementation
Layer classes. The specialized clinical guideline definition is saved to SAPHIRE Repository,
so that other components such as Guideline Agent can access it.

Whenever the clinical guideline is wished to be executed for remote monitoring of a
specific patient, the Agent Factory Agent instantiates a dedicated Guideline Agent for a
specific guideline patient pair. Then a request message is sent to the newly created guideline
agent to load the guideline-patient assignment, presenting the identifier of the specialized
guideline’s identifier and patient identifier as presented in Figure 5.13. In addition to this,
the Agent Factory Agent informs the Monitoring Agent, about this instantiation, so that
the execution of the remote monitoring process can be traced by clinical practitioners as

presented in Figure 5.13.

78

(request
:sender
(agent-identifier
:name agent-factory-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
receiver (set
(agent-identifier
:name guideline-agent@foo.com
:addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request
:language FIPA-SL2
:ontology AF-GA-Ontology
:content
(action
(agent-identifier
:name guideline-agent@foo.co
:addresses (sequence iiop://foo.com/acc))
(loadGuideline
(Assignment-description
:patientID 12345678
:guidelineID 1654b3de
)
:reply-with loadGuideline-1123234)

An example Load Patient-Guideline Assignment request

(request
:sender
(agent-identifier
:name agent-factory-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
:receiver (set
(agent-identifier
:name monitoring-agent@foo.com
:addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request
:language FIPA-SL2
:ontology AF-MA-Ontology
:content
(action
(agent-identifier
:name monitoring-agent@foo.co
:addresses (sequence iiop://foo.com/acc))
(monitorGuideline
(Guideline-description
:patientID 12345678
:guidelineID 1654b3de
:guidelineagent (agent-identifier
:name guideline-agent@foo.co
:addresses (sequence iiop://foo.com/acc))
)
:reply-with monitorGuideline-1123234)

An example Monitor Guideline _request

Figure 5.13: Example MonitorGuideline and LoadGuideline request messages

5.4 Guideline Agent

Guideline Agent is the leading agent that coordinates the execution of the clinical guideline
definition for remote monitoring of the patients. The Guideline Agent is capable of processing
any guideline definition represented in the extended GLIF model, and execute the guideline
in cooperation with the other entities of the Multi-agent System. As presented in Figure 5.14,
the guideline definition is composed of a number of building blocks. For each building block
we have implemented modular handlers. The data sharing among these modular handlers
is facilitated through a “Global Variable Pool”, where each handler can access to store or
retrieve the values of variables used in extended guideline definition. Global Variable Pool
is a hash table located in Guideline Agent. Keys of the hash table are the names of the

variables as strings. The values of these keys are in GLIF PatientData type which can be

79

-

[Guideline

Eligibility Criteria

Guideline Step
ynchronizationM Patient State }

[Decision Step M Branch Step J (Action Step} F Step Step

[Action Specification J
edically OrienledJ

M
[GetDataAction} [MessageActionJ [Action

Figure 5.14: The Guideline Agent Handlers

either Medication, Observation or Procedure classes defined in GLIF RIM (Figure 2.3).
The Guideline Agent behavior is implemented to process the extended guideline definition

and instantiate these modular handlers as follows:

o FExpression Handler: The first step to be executed before a guideline algorithm is ini-
tiated is the Eligibility Criteria. The longitudinal records and vital signs of a patient
has to be eligible in order to perform the guideline execution. Eligibility Criteria con-
sists of a number of Criterion all of which have to be eligible to start the execution
of clinical guideline. A Criterion includes a number of GetDataActions and Medical-
lyOrientedActions, which define the needed data to be acquired from the EHR records
or Sensor devices respectively. The assessment of eligibility criteria is done via eval-
uating the “expression” component of the Criterion. The Criterion expressions are
scripts that specifies whether the Criterion is eligible or not. In our extended guide-
line model, these Criterion expressions are represented as JavaScript expressions an
example of which is presented in Figure 5.15. JavaScript Expressions are executed in

our architecture by the Rhino JavaScript Execution Engine [79].

In this execution process, first of all the GetDataActions and MedicallyOrientedActions
specified in the Eligibility Criteria Step are executed through the respective handlers.
As a result of this, the results of these data gathering actions are stored to Global
Variable Pool through their variable names. Then the parameters of the JavaScript

expression are fetched from the Global Variable Pool. After each variable is fetched

80

function EligibleTolmmediateManagementCriterion(ECGSTElevationStatus,
ECGNewLBBBStatus, PatientGeneratedEvent)

{
if ((ECGSTElevationStatus.getValue().getText() == "true") ||
((ECGNewLBBBStatus.get Value().getText() == "true") &&
((PatientGeneratedEvent.getService cd().getConcept name() == "Angina")||
(PatientGeneratedEvent.getService_ cd().getConcept _name() == "Dyspnea"))))
then return true;
else return false;

}

Figure 5.15: An example Java Script used as the “specification” of a Criterion

from the Global Variable Pool, they are stored in another hash table named “parameter
table”, during JavaScript execution, expression variables are accessed through this table

by the Rhino Java Script Handler.

If an expression evaluates to false, it means that the guideline has failed to pass the
eligibility test and execution is stopped; otherwise the “Eligibility Criteria Handler”
continues with the next criteria in the guideline specification. If all of the criteria
evaluate to “true”, it means that the guideline algorithm needs to be executed. At this
point the functionality of “Eligibility Criteria handler” is completed. The execution

continues with “Algorithm Handler”.

o Algorithm Handler: After the eligibility test yields to “true”, the execution of the
guideline algorithm starts. Guideline Algorithm is handled by “Algorithm Handler”.
The functionality of the “Algorithm Handler” is quite simple as fetching the first step
from the Guideline Algorithm and calling the “Guideline Step Handler” with the proper
parameters. The “Guideline Step Handler” is a generic handler that takes care of ev-
ery kind of guideline step and calls the appropriate step handler. After step handlers
complete their jobs, they call the guideline step handler again. As a result, the algo-
rithm steps can be followed in a mutual recursive procedure. Then the “Guideline Step

Handler” calls the next guideline step in the algorithm till “Final” state is reached.

As described in Section 2.1, there are five basic types of guideline steps, for each such

step a handler is implemented as presented in Figure 5.16.
— Patient Step Handler: Patient State Step is the simplest guideline step that takes

81

PatientStateStepH ander

BranchStepHandler

Al gorithmHandier GuidelineStepHandler SynchronizationStepH ander

CaseStepH andler

ActionStepHandier

Figure 5.16: The Guideline Step Handlers

place in the GLIF specification. There is no medical or computerized function-
ality associated with it. The functionality of Patient State Step is serving as a
milestone in guideline execution. They are used to inform the healthcare users
who are monitoring the Guideline Agent about the phases of the guideline exe-
cution. Typically in GLIF, the initial and final steps of every clinical guideline
are modeled as a Patient State Step. These steps are displayed separately in the

graphical interface of the Monitoring Agent.

Branch and Synchronization Step Handlers: Branch and Synchronization Steps
are required to execute multiple guideline steps at a point of time and rejoin them
when their execution is finished. In Branch Step, the steps that the guideline
execution will branch are placed under the “branches” attribute. This attribute
refers to a set of guideline steps (branches). Another attribute in the Branch Step
definition, declares the order constraint of the guideline execution. If the order
constraint is “parallel”, multiple branches are executed in parallel. Otherwise order
constraint is “any order” in this case branches are executed one after another. If
“parallel” constraint is selected, for each branch step, a new thread is created

providing the parameters of the parent thread.

Synchronization of the branches is performed through “Synchronization Step Han-

dler”. To keep the track of the branch executions, a “synchronization table” is

82

implemented within the Guideline Agent. Synchronization Table is a hash table
the keys of which are the names of “Synchronization Steps”, the values corre-
sponding to these keys are integers determining the continuity parameter of the
synchronization step. Continuity attribute is specified in the Synchronization
Step definition, and it is the number of branches that are needed to be completed
in order to proceed to the next step. For example if continuity is equal to 4, it
means that 4 different branches must arrive at that synchronization step. The ex-
ecution mechanism of “Synchronization Step Handler” is briefly as follows: When
a synchronization step is reached, the synchronization table of the guideline step
is checked. If the step is not present in the table, it denotes that this is the first
visit to the step. The step is added to the table with its continuity parameter. In
the case that the step is currently in the table, then the continuity value is fetched
and decremented by 1. If new value is equal to 1, it means sufficient number of
branches has reached Synchronization Step. The step is then deleted from the
table. Since the synchronization table is accessed by multiple threads, the table
itself needs synchronization. In the implementation, the methods dealing with
synchronization table are encapsulated and synchronized so that no two threads
access the table at the same time. This prevents the inconsistencies which may
occur when different threads reading and updating the table at the same time.
When enough number of branches reaches the synchronization step, “Guideline

Step Handler” is called by the last thread reaching the Synchronization Step.

Case Step Handler: In Decision steps one of the steps is selected among the
“options” listed in the option list of the Decision Step. The option list is a set
of DecisionOptions each of which contains an attribute referring to a Condition
Value class. ConditionValue class has an attribute named “caseValue” which
is nothing but a Criterion. As the Eligibility Criteria Step, Criterion has a
list containing GetDataltems and MedicallyOrientedActions and an expression to
be executed. As in FEligibility Criteria Step execution, first the data items are
retrieved from the related sources and put in the Global Variable Pool of the
Guideline Agent, parameter list formed and JavaScript is executed. This process
is carried out by “Expression Handler” classes.

If a Criterion yields to “false”, the option encapsulating the Criterion is aborted

and the next option in the option list is evaluated in the same way. In this way

83

GetDataActionHander

P i pecificati MessageActionH andler

Figure 5.17: The Action Specification Handlers

the execution is analogous to the “if-then-else” statements execution. The options
have priority according to their position in the option list. If the Criterion bound
to an option returns true, the destination of that option (which is a guideline
step) is selected directly and guideline continues its execution from that step.
The other steps are directly bypassed. If all of the options in the option list fail
to result “true” then the “default next step” of the Decision Step is compulsorily
selected. The guideline execution continues from that default next step through

the “Guideline Step Handler”.

Action Step Handler: Action steps are the major group of the guideline steps
by means of which the Guideline Agent interacts with the other components of
the guideline deployment and execution architecture including the Multi-agent
System. Through the functionality of action steps, the Guideline Agent gets data
from EHR sources (XDS) and sensor Web services, generates alarm messages,
and conducts medically oriented actions such as prescription recommendations.
The “Action Step Handler” executes the Action Specifications listed in the “tasks”
attribute one by one. For this purpose three different “Action Specification Han-
dlers” are created as presented in Figure 5.17. These are detailed in Subsection

5.4.1.

Action Specification Handlers

As presented, three different types of action specifications may occur as a“task” in an Action

Step in the guideline model: Get Data Action, Message Action, and Medically Oriented

Action. In our implementation each of these action specification types are dealt by means

84

of separate handler classes which can be detailed as follows:

e (et Data Action is the action specification where the required patient data is retrieved
from the related data source. After the data is retrieved from the source, they are
stored into the Global Variable Pool with the “variable name”. In our extended GLIF
model, the nature of the data required in the guideline specification is mentioned in
“data source type” attribute of the GetDataAction building block of GLIF through an

instance of an EHRFEntity class.

In order to retrieve the required clinical statement from an EHR document, through
the “GetDataAction Handler”, the Guideline Agent as a first step extracts the en-
trySemantics and ehrSemantics properties of EHRFEntity, and the docID of the EHR
document which has been previously discovered by the Agent Factory Agent. The
Guideline Agent creates a “RetrieveEntry” message and sends it to EHR Agent of that
clinical affinity domain in an ACL Message (Figure 5.6). After the message is sent,
the Guideline Agent waits for the response from the EHR Agent. EHR Agent queries
the XDS repository, makes necessary transformations and sends the result back to
the Guideline Agent. Guideline Agent which waits busy until the response from the
Guideline Agent arrives then extracts the data which comes in XML format. First the
data is unmarshalled into a PatientData class and then is stored into Global Variable

Pool of the Guideline Agent.

e The Medically Oriented Actions represent the medical Web services in the extended
GLIF definition. Through the “MedicallyOriented Action Handler” the Guideline Agent
extracts the WSDL and OWL-S of the Web service from the guideline definition spe-
cialized to a patient by the Agent Factory Agent. The Guideline Agent prepares the
input parameters in HL7 RIM, since GLIF uses this RIM for representing clinical data.
While the Web services are discovered from the UDDI registry by the Agent Factory,
the OWL-S files of the Web services are also retrieved and saved to the specialized
guideline definition. Using this OWL-S file, the Guideline Agent checks the semantics
of the input/output parameters, and sends a translation request to the Ontology Agent
to translate the input messages from the HL7 RIM to the message ontology specified
in the OWL-S file. The same procedure is repeated when the output is received from
the Web service. The Sensor Web services are also invoked as the Medical Web service,

by contacting with the Ontology Agent to mediate the input and output parameters.

e The Message Actions are used to generate alarm messages within the clinical guideline

85

An example Distribute Alarm Message request

(request
:sender
(agent-identifier
:name guideline-agent@foo.com
:addresses (sequence iiop://foo.com/acc))
:receiver (set
(agent-identifier
:name ada-agent@foo.com
:addresses (sequence iiop://foo.com/acc)))
:protocol FIPA-Request
:language FIPA-SL2
:ontology GA-ADA-Ontology
:content
(action
(agent-identifier
:name ada-agent@foo.co

:addresses (sequence iiop://foo.com/acc))

(distributeAlarmMessage
(AlarmMessage-description
:patientID 12345678
:guidelineID 1654b3de
:alarmContent (MessageContent
:urgency (concept
conceptname : Red Alert
conceptSource:ExampleAlarmOnt
conceptID :Red)
:role (concept
conceptname : Cardiologist
conceptSource:SNOMED
conceptID :J-0612B)
:message « Urgent Catheterization Needed »
)
)

:reply-with distributeAlarm Message-1123234)

Figure 5.18: Example Distribute Alarm Message request messages

execution. When the “ActionStep Handler” encounters a Message Action in the tasks
list the “MessageAction Handler” is called which immediately constructs an Alarm
Message by combining information coming through guideline definition and Guideline
Agent properties. Alarm message, healthcare roles to whom the message is to be de-
livered and alarm urgency parameters are retrieved from guideline definition whereas
patient and guideline IDs are retrieved from Guideline Agent properties. The con-
structed alarm messages are transmitted to Alarm Distribution Agent as presented in

Figure 5.18.

5.5 Alarm Distribution Agent

Alarm Distribution Agent is responsible from accurate and punctual delivery of alarm mes-
sages to the healthcare users. It triggers the distribution of the alarms when it receives such
a request from the Guideline Agent as presented in Figure 5.18.

Alarm Distribution Agent employs a role based delivery mechanism, in which the real
responsible healthcare users for a patient-guideline pair are determined based to the roles

indicated by the alarm message. Through a web based interface, the healthcare users can

86

aid {
/ Web-based User Interface \

T

Rules &
Database Rule Engine %11

JADE Platform k]
& Alarm Distribution Agents <::> o

Guideline
I
Communication Layer
C
‘: 1 =
I o -
) &% TE

Agents
Figure 5.19: The Architecture of Alarm Distibution Agent [1]

7
h\"} ’)

s
X
<

Qr
’]l

1

subscribe to receive alarm messages related with a specific patient guideline pair. Alarm
messages are delivered to the users through three different mediums: SMS, GoogleTalk
Instant Messaging and secure e-mail. The users can customize their preferences for receiving
alarm messages in different urgencies (medium type, number of deliveries, acknowledgement
requirement, routing option etc.) through a web based user interface. User preferences are
stored as JESS [48] rules. An example such rule is presented in Figure 5.20. Based on the
information presented in the DistributeAlarm Message, these rules are executed in delivery

time and the delivery terms are determined [1].

(defrule decide-urgency-Contactl 1 3
(userid 1)(assignmentid 1)(urgency RED)=>
(store mediumid 3)
store needack true)
store numberoftry 4)

store waitduration 3)

~ o~ o~

store mustsend true)

Figure 5.20: An example JESS Rule created by Alarm Distribution Agent

87

1. monitorGuideline sy
= .
4.n. Update -#= Py
>, Monitoring | T | ==L i’ SN

GUI o -~
——l

2. subscribeMonitoringMessages

Guideline Agent 3.n. SendMonitoringMessages

3.n. StoreMonitoringMessages

5.n. RetrieveMonitoringMessages

{ SAPHIRE REPOSITORY }

Figure 5.21: The Architecture of Monitoring Agent

5.6 Monitoring Agent

Whenever a guideline execution is initiated for a specific agent through the Agent Factory
Agent graphical interface, a Monitoring Agent is created besides a Guideline Agent, and
the Monitoring Agent is informed about this new Guideline Agent which will execute the
guideline as presented in Figure 5.13. As a response to this message the Monitoring Agent
subscribes to Guideline Agent to be able to be informed about the steps of guideline execu-
tion. This is achieved through a “SubscribeMonitoringMessages” ACL message sent to the
Guideline Agent as presented in Figure 5.22.

As a result of this request, the Guideline Agent, periodically sends Monitoring Messages
to each of the subscribed Monitoring Agents while the guideline execution continues. For
this purpose while the guideline is being executed, each “Guideline Handler” prepares Mon-
itoring Messages to be ready to sent to the Monitoring Agent. As explained in Section
5.4, the “Guideline Step Handler” calls its subclasses such as “Case Step Handler”,“Action
Step Handler”, and “Patient Step Handler” for the execution of guideline algorithm. Fach
of these subclasses prepare their Monitoring Messages, based on their execution semantics,
and pass this message to the “Guideline Step Handler”. The “Guideline Step Handler” sends
these Monitoring Messages to the subscribed agents. Among the subclasses of “Guideline
Step Handler”, the “Action Step Handler” is the most information rich one since it may in-

clude a number of tasks defined as Action Specification classes. The “Action Specification

88

An example Subscribe to Monitoring Messages request
(request :content
:sender (action
(agent-identifier (agent-identifier
:name monitoring-agent@foo.com :name guideline-agent@foo.co
:addresses (sequence iiop://foo.com/acc)) :addresses (sequence iiop://foo.com/acc))
:receiver (set (subscribeMonitoringMessages
(agent-identifier (Assignment-description
:name guideline-agent@foo.com :patientID 12345678
:addresses (sequence iiop://foo.com/acc))) :guidelineID 1654b3de
:protocol FIPA-Request))
:language FIPA-SL2 :reply-with subscribeMonitoringMessages-1123234)
:ontology MA-GA-Ontology

Figure 5.22: Example Subscribe Monitoring Messages request message

Handlers” such as “GetDataAction or MedicallyOrientedAction Handlers”, prepare their own
monitoring messages and these are collected by the “Action Step Handler” and passed to
the “Guideline Step Handler” as an integrated message. In the following paragraphs, the

semantics of each monitoring message will be presented:

e Script Fxecution Message: In Eligibility Criteria evaluation phase and Case Step han-
dling, scripts need to be executed to take appropriate decisions. The clinician has to
be informed about these decisions and their reasons. The functionality of the “Script
Execution Message” is to inform the clinician about the JavaScripts executed and their

results. “Script Execution Message” structure is composed of the following parts:

— Step Name: Step name is a string which indicates the name of the Guideline Step.
Step name enables the user to view, in which phase the execution is; furthermore
it transmits the necessary information to the Monitoring GUI to update the status
of the Guideline Steps. If a message is sent in an Eligibility Step, the Step Name
is “Eligibility” by default.

— Script Expression: It is the JavaScript Expression String that has been executed.

It is the complete script as a function with parameters and body.
— Script Result: It is the return value of the function.
— Time Stamp: Every message has a timestamp which indicates the sending time

from the Monitoring Agent. The timestamp facility has two functionalities: to

89

inform the healthcare user about the times of the actions and to archive the
monitoring messages in the SAPHIRE repository to enable later monitoring of

the execution.

o Action Step Execution Message: Action Step has a number of tasks that should be
executed. For each of such task, an information message is prepared and appended to

each other. This appended message consists of the following parts:

— Step Name
— Time Stamp

— Executed Tasks: This part is either a “Web Service Message” or “EHR Message”

or “Alarm Message” as described below.

e FHR Message: “EHR Messages” are generated after the “RetrieveEntry Result” mes-
sages are received from the EHR Agent. Its functionality is to report the retrieved

clinical statement. “EHR Message” contains the following parts:

— Step Name: The name of the GetData Action Specification Class

— Variable: The variable name of the EHR data in the Global Variable Pool of the
Guideline Agent. It is retrieved from the variable name attribute of the GetData

Action.

Value: The clinical statement retrieved from the EHR Agent. Value is an XML
formatted string that corresponds to the PatientData instance of the retrieved

data.

Time Stamp

o Web Service Message: The “Web Service message” is sent to the user before and after
invoking a Web service in a Medically Oriented Action. The viewer is informed about

the Web service called and its response. The structure of the message is as follows:

— Step Name: The name of the Medically Oriented Action Specification Class
— Web Service Name

— Input: The input parameter which is used to invoke the Web service. It is an

XML formatted string that corresponds to the PatientData instance

— Output: The out parameter which is received as a response the invoked the
Web service. It is an XML formatted string that corresponds to the PatientData

instance

90

— Time Stamp

o Alarm Message: “Alarm Messages” are sent to the user after a Message Action task
is executed and an Alarm Message is sent to the Alarm Distribution Agent. In this
message the alarm message content and its attributes are presented to the user as

follows:

— Step Name: The name of the Message Action Class

— Roles: The Healthcare roles to whom this message should be sent

Alarm Message content as a string

Alarm Urgency

— Time Stamp

Apart from these, the “Guideline Step Handler” send a “Step Status Message” after
guideline execution process enters or exits one of the Guideline Steps. The Step Status

Message is composed of three parts:
e Step Name
e Step Status: Step Status field denotes the latest status of the steps:

— RUNNING denotes that the guideline started execution of the step but has not

completed yet
— ABORTED denotes the execution of the step has aborted unexpectedly

— COMMITTED denotes successfully completed Guideline Steps.
e Time Stamp

Monitoring Agent presents a graphical user interface to the healthcare users for mon-
itoring the execution of the clinical guidelines. Through the Monitoring Agent Interface,
healthcare users can start/stop and monitor the execution of clinical guidelines by interact-
ing with the Guideline Agent. Guideline execution is monitored on a user friendly interface
which is composed of three parts as presented in Figure 5.23. The main part of the interface
depicts the flowchart of the clinical guideline model, whereas the others are for presenting a
brief history of executing guideline steps and the legend of the flowchart.

Guideline execution can be traced on the flowchart model. The status of the guideline

steps (committed/ongoing/not visited) are identified with different colors. User can click

91

£ Monitor Guideline Execution

File Help

| Main [ibrahim taskesen

~Graphical Exgcution of Guideline

FPatient Health Record

Guideling Steps :

Macr Step

-ﬂ

Patient |0
Narre:

age:

@

Gerider:

Details.

Guideline List

o

®:

utili step

ie

Sereor Li———————————

4

Macro Step

Patient State Step
Synohronization Step

Default Step
av
Hotes | Guideline Histary |

EMRandSensorStatus [scubGuidelinel Instance_40023] ConsultPTCAStatus [scubGuidelinelw3_Instance 0] conpleted,
ElRandfensoritatus [scubfuidelinel Instance_40023] GetChestPain [scubGuidelinel Instance 400401 completed.
EMRandfensoritatus [scubfuidelinel Instance 40023] GetKillipClass [scubGuidelinel Instance 40030] completed.
EMRandSensoritatus [scubbuidelinel Instance 40023] GetContradictions [scubGuidelinel Instance 40044] completed.
EMRandSensorStatus [scubGuidelinel Instance_40023] GetDateofBirth [scubGuidelinelws _Instance 10001] completed.
EMRandiensoritatus [scubfuidelinel Instance 40023] RUNNING

FirstlineMedicationSynchron [scubGuidelinel Instance 30000] COMAITTED

FirstlineMedicationSynchron [scubGuidelinel Instance_30000] RUNNING

Sa0zStatusCheckCase [scubGuidelinel Instance 40003] RUNNING

|0xygencase [scubGuidelinel Instance 40002] COMMITTED

Figure 5.23: The Graphical Interface of the Monitoring Agent

on the steps to get detailed information about the step. In the detailed information screen,
user can view the tasks, retrieved patient data (sensor, EHR etc.) and the invoked medical
services within these tasks as presented in Figure 5.24.

Whenever requested, the flowchart of previously executed guidelines can also be moni-
tored. For this purpose, the Guideline Agent stores all of the Monitoring Messages sent to
Monitoring Agent also to the SAPHIRE Repository. Whenever necessary, the Monitoring
Agent retrieves these messages from the SAPHIRE Repository and presents in the Moni-
toring GUIL. Apart from these, an important outcome of the Monitoring Agent is the visual
model that it provides for clinical guidelines. This visual flow-chart model can be utilized as

an educative medium in training healthcare professionals.

92

Management of Acute Coro N-ST-SEGMENT Elevatio

History of the Guideline : History Types
Sequence Mu... | Timestamp Message Type Shiort Descrip.., | Guideline Mame ;

£l } [wed, 13 Jun 200.., SENSOR‘ WS PatientGenerate‘d‘.. Management of A... . Medical v,

0 [wed, 13 Jun 200.,, SEMSOR WS patientGenerated,., Management of f..

29 [wed, 13 Jun 200.,, SEMSOR WS Sa02Status Management of A... — | . EHR Data

£ [iived, 12 Jun 200... SEMSOR WS SystolicBP Management of A...

20 [iired, 13 Jun 200.,, MEDICAL WS MarphineTreatme... Management of . ALARM
adic.

2 E] d 2 alis
iSU [wed, 13 Jun 200.,, MEDICAL WS Coronory Angiog.. Management of A... o Waiting

[Wed, 13 Jun 2007 16:40:12] | . Decision Made
operation : DxygenMedicationTask D'Eonsult
input :
. . Sensor W5
Patient TD : 1234123412341
Concept { Hame : Source) : OxygenTheraphy : UMLS
Dosage Quantity :
Hame :
Value : 2.0, 1/min
Rate Ouantity :
Hame : 1-2 1/Min
Value : 1.2, min e
w

Wiew messages from sub-guidelines.

Figure 5.24: The Guideline History Window of Monitoring Agent

93

CHAPTER 6

A CASE STUDY IN THE ACUTE
TREATMENT OF MYOCARDIAL
INFARCTION

In this chapter, we present a case study where we define a clinical guideline model for the
management of acute myocardial infarction in our semantically extended model.

This case study is one of the pilot applications of SAPHIRE project which is currently
being developed for the Emergency Hospital of Bucharest (SCUB). This pilot application
aims to demonstrate that the SAPHIRE system can provide bedside intelligent monitoring
of patients with subacute coronary syndromes in a wireless fashion to provide computer-
generated clinical decision in accordance to the latest European Cardiology Guidelines. In
this pilot application, the guideline execution environment provides continuous feedback to
the physicians that is patient-specific and guideline-oriented, to provide optimized medical
care in accordance with medical standards.

In our pilot application we are using the “Management of acute myocardial infarction in
patients presenting with ST-segment elevation” guideline defined by the European Society
of Cardiology [101]. It should be noted that the patients with acute myocardial infarction
on admission is not our target population. We are addressing patients who are in subacute
phase who can still have acute Myocardial Infarction during hospital stay.

A very brief overview of the guideline is presented in Figure 6.1. The guideline document
is examined and comprehended by our medical doctor colleagues in SAPHIRE project, who
then provided us the flowcharts as presented in Figure 6.1. Then we modelled these flowcharts
in the semantically extended GLIF Model that we propose.

The guideline is triggered by a sensor alarm indicating “Persistent ST Elevation® and/or

1ST-segment elevation is usually associated with looming infarction, but can also be due to pericarditis

94

Persistent Angina or
ST Elaevation New LBBB Dyspnea

W

Asprin or Oxygen Morphine
Clopidegrel Theraphy Treatment
Prescription

First Line

B-Blocker Ntroglycerin Medication
Treatment Treatment

ves / Guideline for
i Killip Class>3 Acute Heart
PTCA Available Failure
YES
NO
Killip Class>3
OR Invasive
BPs<90mmHg reperfusion
OR theraphy
Age>75 YES
NO
Chest Pain
Duration <1h
NO
Contraindication YES

for Fibrinolysis
NO

Fibrinolysis

Medication

Figure 6.1: The Flowchart of “Management of acute myocardial infarction in patients pre-

senting with ST-segment elevation” Guideline

new LBBB?” coming from the ECG sensor, or by a sensor alarm indicating a “patient gen-
erated event” such as dyspnea or angina by pushing a button on one of the sensor devices.
This initiates the “First Line Medication” step (detailed in Figure 6.2), where depending on
the current medication and medical history of the patient coming from Electronic Healthcare
Records (EHR), and also vital signs coming from sensor devices, medications and therapies
are proposed by the guideline. After the first-line medication (such as giving aspirin, ap-
plying nitroglycerin therapy), based on the vital signs coming from sensors and patient’s
medical history, either another Guideline for Acute Heart Failure is followed, or a Fibrinol-
ysis therapy® or an appropriate “invasive reperfusion therapy” is applied to patient. The

parallelograms in Figure 6.1 indicate sub-flows that are not detailed in the figure.

or variant angina and it directly comes as an alert from the ECG
’LBBB means left bundle branch block and usually indicates widespread cardiac disease. When the left

bundle is blocked, activation of the left ventricle proceeds through the muscle tissue, resulting in a wide (0.12

msec) QRS complex
3Fibrinolytic drugs are given after a heart attack to dissolve the thrombus blocking the coronary artery,

experimentally in stroke to reperfuse the affected part of the brain, and in massive pulmonary embolism

95

First Lin Medication

BPs<90mmHg HF NYHA>2 Angina
OR OR OR

Aspirin—is itin
treatment?

Sa02<90%7?

PR>240ms Anxiety?
BPs<BPbs- OR
o 1-21 30mg:g AVB>1 vES
i xygen 1-2 I/mjn
cl orAspiin? = OR Asthma / Bronchial spasm
HR<60bpm Asthma / Bronchial OR
NO Spasm
7 BPs<100mmHg
[Aspirin 250 mg] [Clopidogrel 300m}; Angina? NO OR

Killip Class>3?

YES
Algorithm for B—Blockel
HR>100bpm? i NO
NO Morphine IV

Algorithm for NTG

Figure 6.2: The Flowchart of “FirstLine Medication”

The triggering conditions initiating “First Line Medication” are modelled as “Eligibility-
Criteria” as presented in Figure 6.3. When such sensor alarms are fired, the steps in the
“Algorithm” are initiated. The first item in the “Algorithm” is the "First Line Medication”
steps. To be able to model the treatment options for “First Line Medication” (flow of which
is detailed in Figure 6.2) a “Branch Step” is created. Four “Case Steps” to represent each
treatment option are created and bound to this “Branch Step”. This graph model conforming
to extended GLIF model is presented in Figure 6.3.

In Figure 6.3 the “Morphine Treatment” “Case Step” is detailed. As presented in the
figure, each “Case Step” may have a number of options, each of which are instances of
“Decision Options”. Each “Decision Option” has a “Case Condition” which is an instance of
“Criterion” and a “Case Destination” which is an instance of “Action Step”. In the “Criterion”,
the “Expression” to be evaluated to decide whether this option will be followed is defined. It
is also possible to add a number of “GetData Actions” and “MedicallyOriented Actions” that
will be executed before evaluating the “Expression” in order to collect the data necessary to
decide whether this “Case Step” is followed or not. For example, in order to decide whether
it is appropriate to provide “Morphine” to the patient, it should be known that whether
this patient has previously experienced angina or anxiety, whether asthma or bronchial
spasm are medical problems he has previously encountered in his/her medical history, the
stage of his/her heart problem condition (Killip Class) and his/her current blood pressure.

Some of these data should be retrieved from patient’s medical history, (GetAnginaStatus,

96

(Eligibility Criteria)

E

[

branches

(Algorithm)
first_step
(Branch Step)

(Case Step)

Morphine Treatment
—options

(Decision Option) h

(Case Step) (Case Step
Oxygen NTG-BBlocker
Treatment Treatment

(Case Step)
AspirinOrClopidogrel
Treatment

—case_condition

(

.

(Criterion) h

—get_data_items

*GetAnginaStatus *GetKillipClass
*GetAnxietyStatus *GetBloodPressur
*GetAsthmaStatus
*GetBronchalSpasmStatus

—expression

a java scipt instance...)

—case_destination

-

%ction Step) .
Morphine TreatmentAction

—tasks

E

MorphineTreatmentMessage

(Message Action) }

J

J

next_step

J
‘ next_step

‘L(Synchronization Ste})

i next_step

97

next_step

next_step

Figure 6.3: The first part of the representation of the guideline in the extended GLIF model

GetAsthmaStatus, GetBronchialSpasmStatus, GetKillipClass) i.e. from the EHR documents
and modelled as “GetDataActions”, while some of the data should be gathered from medical
sensor devices such as GetBloodPressure and GetAnxietyStatus, and should be modelled
as “MedicallyOrientedActions”. In Figure 6.4, one of these “MedicallyOrientedActions” is
presented. As a requirement of our extentions, as the range of the medical Task property of
a “MedicallyOrientedAction” , a “MedicalActionEntity” instance should be created. Since
the recent “Blood Pressure” should be retrieved from a wireless sensor device through a Web

Service, we have created “Medical ActionEntity” instance, the BPSensorEntity. As seen in the

MedicallyOrientedAction: getBloodPressure MedicalActionEntity:BPSensorEntity

medicalTask: functionality: -/
variableName:SystolicBP

Concept: BPSensorConcept

conceptID: Blood_Pressure_Analyzer
conceptSource: http:144.122.230.12:8080/saphire/FunctOnt.o
conceptName: BPSensor

getBloodPressure:MedicallyOrientedAction
<getBlodPressure,BPSensorEntity>:dataSourceType
BPSensorEntity:MedicalActionEntity
<BPSensorEntity,BPSensorConcept>:funcionality
<BPSensorConcept,Blood_Pressure_Analyzer>:conceptlD
<BPSensorConcept,http://144.122.230.12:8080/saphire/FuncOnt.owl>:conceptSource
<BPSensorConcept,BPSensor>:conceptName

Figure 6.4: The “getBloodPressure” GetData Action representation in the extended GLIF

Figure 6.4, the functionality of this instance is selected as an instance of Service Functionality
Ontology which is also a class IEEE 11073-10101 Nomenclature defining a blood pressure

sensor device.

GetData Action: getAsthmaStatus Concept: pastMedicalHistoryConcept
conceptlD: C0455458
conceptSource: UMLS

variableName:AsthmaStatus
dataSourceTyper—
Y

conceptName: PMH:PastMedicalHistory

EHREntity:asthmaEHREntity

ehrSemantics: Concept: asthmaConcept

entrySemantics: conceptlD: J45

conceptSource: ICD-10
conceptName: Asthma

getAsthmaStatus:GetDataAction
<getAsthmaStatus,asthmaEHREntity>:dataSourceType
asthmaEHRENtity:EHRERtity
<asthmaEHREntity,pastMedicalHistoryConcept>:ehrSemantics
<pastMedicalHistoryConcept,C0455458>:conceptID
<pastMedicalHistoryConcept,UMLS>:conceptSource
<pastMedicalHistoryConcept,PMH:PastMedicalHistory>:conceptName
<asthmaEHREntity,asthmaConcept>:entrySemantics
<asthmaConcept,J45>:conceptlD
<asthmaConcept,|ICD-10>:conceptSource
<asthmaConcept,Asthma>:conceptName

Figure 6.5: The “getAsthmaStatus” GetData Action representation in the extended GLIF

Similarly, for representing the need to retrieve the information from patient’s previous

98

medical history related with “asthma”, another “GetData Action” instance is created as pre-
sented in Figure 6.5. Here as the range of the dataSourceType property, an “EHREntity”
instance (asthmaEHREntity) is created. The entrySemantics property of the asthmaEHREn-
tity instance is set to be the pastMedialHistoryConcept “Concept” instance. This will guide
the guideline deployment engine, i.e. the Agent Factory Agent in our architecture, to lo-
cate the Electronic Healthcare Records of the patient, that contain a section related with
“Past Medical History”. The entrySemantics property of asthmaFEHREntity instance is on
the other hand selected to be the asthmaConcept “Concept” instance. Here in the “Concept”
instance the semantics of the entry to be located is represented through referencing the
“J45” node in ICD-10 medical terminology. This indicates that, once the EHR that contain
a “Past Medical History” section is located, the “EHR Agent” should look for the related
entry presenting previous observations asthma in the EHR document. The other “GetData
Action” and “MedicallyOriented Action” instances instances are created similarly to retrieve
the required information either from Sensor devices, or EHR documents.

In our architecture the “Expressions” are defined as Java Scripts. The “Expression” for

“Morphine Treatment” Case Step is defined in Figure 6.6.

function morphineTreatmentDecisionCriterion(SystolicBP, AsthmaStatus,
BronchialSpasmStatus, KillipClass, AnginaStatus, AnxietyStatus)

if (1((SystolicBP.getValue().getIndex() < 100) ||

AsthmaStatus.get Value().get Text()=="true") ||

f
(
(BronchialSpasmStatus.getValue().get Text() == "true") ||
(KillipClass.getValue().getIndex() > 3)) &&
((AnginaStatus.getValue().get Text()=="true") ||
(AnxietyStatus.get Value().get Text()=="true")))

return true;

else return false;

Figure 6.6: The Script used in Morphine Treatment Decision Option

As a “Case Destination” of the “MorphineTreatment” Case Step‘s only option (Figure 6.3),

99

Message Action: morphineRecommendation | Concept: nurseConcept
conceptlD: C0028661
conceptSource: UMLS

message:

conceptName: Nurses

AlarmEntity:morphineAlarmEntity

roles: Concept: yellowAlertConcept
alarmUrgency: ‘ ‘ conceptID: YELLOW
alarmMessage: "Provide Morphing

conceptSource: http://144.122.230.12:808

intravenously”
saphire/AarmUrgency.ow!
conceptName: Yellow Alert

morphineRecommendation:MessageAction
<morphineRecommendation,morphineAlarmEntity>:message
morphineAlarmEntity:AlarmEntity
<morphineAlarmEntity,nurseConcept>:roles
<nurseConcept,C0028661>:conceptID
<nurseConcept,UMLS>:conceptSource
<nurseConcept,PMH:Nurses>:conceptName
<morphineAlarmEntity,yellowAlertConcept>:alarmUrgency
<yellowAlertConcept,YELLOW>:conceptID
<yellowAlertConcept,http://144.122.30.12/saphire/AlarmUrgency.owl>:conceptSource
<yellowAlertConcept,YellowAlert>:conceptName

Figure 6.7: The “morphineRecommendation” Message Action representation in the extended

GLIF

we need to define an “Action Step” that will alarm a nurse to provide “Morphine” intra-
venously to the patient to relieve him/her. For this purpose a “MessageAction” instance,
morphineRecommendation is created as presented in Figure 6.7. We create an “AlarmEn-
tity” as the range of the message property, where we define the range of the roles property
as the nurseConcept “Concept” instance, and the range of alarmUrgency property as the
yellowAlertConcept “Concept” instance.

The “Case Steps” are synchronized through a “Synchronization Step” as presented in Fig-
ure 6.3, and the guideline continues with an “Action Step”, Get EHR and Sensor Data Status
Action, that aims to gather the information that will be required by the forthcoming decision
steps. This second part of the guideline representation in the extended model is presented
in Figure 6.8. In this “Action Step”, a number of “GetData Actions” and “MedicallyOriented
Actions” are added as tasks, to know the current blood pressure of the patient, whether Chest
Pain was among the admission diagnoses, the type of medications that the patient has con-
traindication and so on. As the next step of this “Action Step” a “Case Step” is added. This
“Case Step” has three options. Each of these options are implemented as “Decision Options”
where certain conditions expressed through “Criterion” classes are checked to decide whether
it is appropriate to provide “Fibrinolysis Treatment” or a “Invasive Reperfusion Therapy” or

whether it is necessary to follow the steps of the “Guideline for Acute Heart Failure”.

100

(Synchronization Step

next_step

/ (Action Step) \

Get EHR and Sensor Data Status Action
—tasks

*GetChestPainStatus *GetPTCAStatus

*GetBloodPressure *GetDateofBirth

*GetContraindications

- /

next_step

(Case Step)
Evaluate EHR and Sensor Data

—options

B

(Decision Option)
Goto Guideline for
Acute Heart Failure

—case_condition

(Criterion)
—expression

(Decision Option)
Fibrinolyis Medication

—case_condition

(Criterion)
—expression

(Decision Option)

Invasive Reperfusion Theraphy

—case_condition

(Criterion)
—expression

a java scipt instance..|

—case_destination

(Action Step)

[a java scipt instance... j [a java scipt instance... j

—case_destination

(Action Step)

—case_destination

(Action Step)

—tasks —tasks —tasks

(SubGuideline Action)

(Medically Oriented Action)

Start Fibrinolysis
Medication

(Medically Oriented Action)

Order Coronary
Angiography

—output
(Data Item)
Coronary Anatomy

‘ next_step

Goto ACF Guideline

(Case Step)

Decide Necessary Reperfusion
Theraphy
—options

next_step (Decision Option (Decision Optiol
PTCA CAGB

(Decision Option)
Not Needed

next_step

next_step

i default_next_step

FINAL

Figure 6.8: The second part of the representation of the guideline in the extended GLIF

model

101

In the third option of the Fvaluate FHR and Sensor Data Case step, the guideline checks

whether it is necessary to apply an invasive reperfusion therapy. However to decide the

type of the invasive reperfusion therapy (i.e. that is whether to perform a PTCA operation

(Percutaneous transluminal coronary angioplasty), or to perform CAGB operation (Coronary

artery by-pass graft)), the type of the “Vessel Disease” the patient is suffering from should

be known. It is only possible to know the condition of the vessels through a “Coronary

Angiograpgy” diagnostic operation. Hence as the case destination of Invasive Reperfusion

Therapy “Decision Option”, a “Medically Oriented Action” which describes a procedure for

ordering a Coronary Angiography operation to the necessary department of the hospital is

specified. A detailed presentation of how this “Medically Oriented Action” can be represented

in the extended GLIF model as presented in Figure 6.9.

Medically Oriented Action: orderCoronaryAngiograph MedicalActionEntity:orderCoronaryAngiographyMedialActionEntity

medicalTask:

functionality: —

output: j

'

Data Item:coronaryAnatomy

Concept: orderCoronaryAngiographyConcept

datavalue:—

!

conceptlD: CoronaryAngiogram

Observation:coronaryArtery

conceptSource: http://144.122.230.12:8080/saphire/FuncOnt.owl

conceptName: Coronary Angiography

serviceCD: 7j

Concept: CoronaryArteryConcept
conceptlD: C0205042
conceptSource: UMLS

conceptName: CoronaryArtery

orderCoronaryAngiography:MedicallyOrientedAction
<orderCoronaryAngiography,orderCoronaryAngiographyMedicalActionEntity>:medicalTask
orderCoronaryAngiographyMedicalActionEntity:MedicalActionEntity
<orderCoronaryAngiographyMedicalActionEntity,orderCoronaryAngiographyConcept>:functionaliy
<orderCoronaryAngiographyConcept,CoronaryAngiogram>:conceptiD
<orderCoronaryAngiographyConcept,http://144.122.230.12:8080/saphire/FuncOnt.owl>:conceptSource
<orderCoronaryAngiographyConcept,Coronary Angiography>:conceptName
<orderCoronaryAngiography,coronaryAnatomy>:output

coronaryAnatomy:Dataltem

<coronaryAnatomy,coronaryArtery>:datavalue

coronaryArtery:Observation

<coronaryArtery,coronaryArteryConcepy>:serviceCD
<coronaryArteryConcept,C0205042>:conceptID

<coronaryArteryConcept,UMLS>:conceptSource
<coronaryArteryConcept,CoronaryArtery>:conceptName

Figure 6.9: The “orderCoronaryAngiography” Medically Oriented Action representation
the extended GLIF

n

As can be seen in Figure 6.9, the functionality of the “Medical Action Entity” is set to

102

be a “Concept” class representing a node in the Service Functionality Ontology that we have
created. In this way, the guideline deployer, the Agent Factory Agent in our case will be
able to locate the required service of the hospital from a service registry for ordering an
Coronary Angiography operation in the hospital worklist. When this Web service is found
and invoked in the guideline execution phase, the output of the Web service should be set
to a variable in the guideline definition, so that the type of the vessel disease that the patient
18 suffering from can be exploited to decide the type of the invasive reperfusion theraphy to
be applied to the patient. As presented in Figure 6.9, the output of the orderCoronaryAn-
giographyMedical Action Entity is set to be the coronaryAnatomy “Data Item”. The data Value
of this “Data Item” is a subclass of “HL7 Reference Information Model”, the “Observation”
class. In this coronaryArtery “Observation” instance, the semantics is defined through the

serviceCD property, which is set to a “Concept” representing a node in UMLS ontology.

103

CHAPTER 7

RELATED WORK

7.1 Clinical Practice Guideline Representation Formalisms and

Execution Environments based on these Formalisms

In this section a brief overview of computer interpretable clinical guideline representation
formalisms, and the guideline execution architectures built based on these formalisms will
be presented. While analyzing these formalisms especially their support for formalizing the
interfaces with the underlying medical information system functionalities and Electronic
Healthcare Record systems will be surveyed and compared with the contribution of this

thesis.

7.1.1 Arden Syntax

Arden Syntax [71] is cited as one of the best-known language for representing clinical knowl-
edge needed to create patient-specific decision-support systems. It is a rule-based formalism
that encodes medical knowledge in knowledge base form as Medical Logic Modules (MLMs).
An MLM is a hybrid representation formalism between a production rule (i.e. an "if-then"
rule) and a procedural formalism. Each MLM is invoked as if it is a single-step "if-then" rule,
but then it executes serially as a sequence of instructions, including queries, calculations,
logic statements and write statements.

Arden was developed for embedding MLMs into proprietary clinical information systems.
It was designed to support clinical decision making, each MLM contains sufficient logic to
make a single medical decision. Sequencing tasks can be modelled by chaining a sequence
of MLMs. MLMs have been used to generate clinical alerts and reminders, interpretations,
diagnoses, screening for clinical research studies, quality assurance functions, and adminis-

trative support.

104

With an appropriate computer program (known as an event monitor), MLMs run au-
tomatically, generating advice where and when it is needed, e.g. to warn when a patient
develops new or worsening kidney failure.

One of the deficiencies of the Arden Syntax that it does not provide full support for
conceptualizing a multi-step guideline that unfolds over time [72]. It has been presented
that the Task Network Model (TNM) approach has arisen in response to this problem. TNM
languages typically provide modeling primitives specifically designed for the representation
of complex, multi-step clinical guidelines, and for describing temporal and other relationships
between component tasks. Unlike rule - based systems, alternative pathways or sequences
of tasks (i.e., control flow) can be explicitly modeled, and tools for the visual representation
of plans and the organization of tasks within them are provided.

In Arden syntax the references to clinical data is represented in curly braces in MLMs.
This is because, these data references must be adapted to the local institution in order to
use the local clinical repository. When a clinical guideline model is to be deployed to a local
institution, these references in curly braces are mapped to the data model of the local clinical
repository. After Arden, this localization problem of deploying guideline models is usually

cited as “Curly Braces Problem" in the literature.

7.1.2 Asbru Model

Asbru is a collaboratively effort of Ben Gurion University and the Vienna University of
Technology within the scope of Asgaard project [2|. In Asbru formalism, clinical guidelines
are viewed as generic skeletal-plan schemata that represent clinical procedural knowledge
and that are instantiated and refined dynamically by care providers over significant time
periods. As areflection of this idea, Asbru is designed a task-specific and intention-based plan
representation language to embody clinical guidelines and protocols as time-oriented skeletal
plans. Skeletal plans provide a powerful way to reuse existing domain-specific procedural
knowledge, while leaving room for execution-time flexibility to achieve particular goals [84].
The skeletal plans have been enriched by adding plan attributes such as intentions, conditions
and effects; adding formalisms to support rich set of ordering plans; and defining temporal

dimension of states and plans [2]:

e Arguments are values passed from the invoking or calling plan (called parent) to the

invoked or called plan (called child).

e Preferences describe the costs, resource constraints, and responsible actor.

105

e Intentions are high-level goals of the plan - an annotation specified by the designer
independently of the plan body. Intentions are represented by temporal patterns of

actions and states that should be maintained, achieved or avoided.

e Conditions mediate the changes between plan states. Fach plan is initially considered.
After the filter precondition is fulfilled, it becomes activated. When it is activated and
the complete condition is fulfilled, the plan is completed. When in the same situation

the abort condition is fulfilled first, the plan becomes aborted.

o Effects describe the relationship between plan arguments and measurable parameters
by means of mathematical functions or in a qualitative way. A probability of occurrence

can be denoted.

e The plan body contains set of plans to be executed in a particular way. Four different
types of plans are available: in sequence, in parallel, in any-order, and unordered. The
difference between any-order and unordered is that for any-order only one child plan

may be active at a time while for unordered there is not any restriction.

7.1.3 GUIDE

GUIDE is part of a guideline modeling and execution framework being developed at the Uni-
versity of Pavia. One of the important properties of GUIDE and its re-engineered execution
environment NewGuide, is that it is a component-based multi-level architecture designed to
integrate a formalized model of the medical knowledge contained in clinical guidelines and
protocols with both workflow management systems and Electronic Patient Record technolo-

gies. It proposes an architecture that aims to integrate:
e Guideline Management System (GIMS) (providing clinical decision support)
e Electronic Patient Record (EPR)
e Careflow Management System (CfMS) (providing organisational support).

The architecture proposed by NewGuide is presented in Figure 7.1. After the guideline
is formalized through an editor it is stored to a guideline repository to be shared with other
organizations. Then a healthcare organization that aim to run a guideline in its environment
selects a guideline from the repository. The final user invokes the inference engine and creates
an instance of the GL for the management of an individual patient. This requires data from

a Virtual Medical Record (VMR). VMR is the NewGuide middle layer that stores every

106

—
<— 3

o GLs GENERAL

> CENTRAL INFO

w ~—

o NEWGUIDE | » GL REPOSITORY

j(EDITOR MANAGER Q

g GLs

= ﬂ TEMPLATES
" =

(@]

X | WEB INTERFACE |
ﬁ

-~
foc) —> MANAGER - —

NEWGUIDE ﬂ P e——
EDITOR GLs GENERAL
INFO
GL REPOSITORY

GLs
TEMPLATES

%
)
)

INFERENCE
ENGINE

REPORTING
SYSTEM

LOCAL LEVEL

WEB INTERFACE
3

z@(

v

Figure 7.1: The Architecture proposed in GUIDE [11]

INFERENCE ENGINE

Gls
TEMPLATES

GEMNERAL
MANAGER

N

MESSAGE
MAMNAGER

INSTANCE
MANAGER

WEB INTERFACE

{‘?
-
| SOAP INTERFACE |

JT JT

| LEGACY SYSTEM | | CfMS |

Figure 7.2: The Architecture of the Interence Engineproposed in GUIDE [11]

kind of patient information either acquired through a legacy system (HIS) or entered by the
Guideline user. Each inference engine step implies both producing recommendations, such as
a drug prescriptions or laboratory tests, and updating a logs database. The latter contains
care process information such as progress status of each GL task with relative time stamps.
In other words, the VMR and Logs database is the interface of the Guideline Management
System with Careflow Management System. In the architecture, the communication between
NewGuide and the external world is managed by the message manager, which delegates
requests and responses to the web user interface or to a SOAP interface on the basis of the

system configuration as presented in Figure 7.2.

107

7.1.4 PROforma

PROforma was developed at Cancer Research UK for the general purpose of building decision
support and intelligent agents. The technology includes the PROforma language, which is
a formal knowledge representation language capable of capturing the structure and content
of a clinical guideline in a form that can be interpreted by a computer [90]. The language
forms the basis of a method and a technology for developing and publishing executable
clinical guidelines. In PROforma, a guideline application is modelled as a set of tasks and
data items. The notion of a task is central - the PROforma task model divides from the

keystone (generic task) into four types: plans, decisions, actions and enquiries:

e Plans are the basic building blocks of a guideline and may contain any number of tasks

of any type, including other plans.

e Decisions are taken at points where options are presented, e.g. whether to treat a

patient or carry out further investigations.

e Actions are typically clinical procedures (such as the administration of an injection)

which need to be carried out.

e Enquiries are typically requests for further information or data, required before the

guideline can proceed.

PROforma software consists of a graphical editor to support the authoring process, and
an engine to execute the guideline specification. The engine can also be used as a tester
during the application development phase. Tallis is one of such software which is a Java
implementation of PROforma-based authoring and execution tools developed by Cancer
Research UK. Tallis is based on a later version of the PROforma language model. It consists
of a Composer (to support creation, editing, and graphical visualisation of guidelines), Tester

and Engine (to enact guidelines and allow them to be manipulated by other applications).

7.1.5 GLEE

GLIF Guideline Execution Engine (GLEE) [100] is developed as a tool for executing guide-
lines encoded in the GLIF format [29]. It is built as middleware that is intended to be
integrated with the clinical information system at a local institution through defined inter-
faces to its electronic medical records (EMRs) and clinical applications. GLEE provides

interfaces intended to support integration with the host clinical information system at a

108

EMR
data Guideline Repository Trace Records Clinical Data Repository [Clinical Event Monitor }
guidelines execution traces patient data clinical events
4 i |
YYY
)-| GLEE Server |-(—)- Back-End Interface] |
GLIF3 Model |----- A |
business : r |
logic : v |
sane -’, Vool = = . [b |
()L Fad W vl =l i
GLEE Client |
GLEE |
\
y alerts and reminders v
user
interface Clinical Applications Standalone User Interface of GLEE] [Physician Order Entry }

seeeneeneenenn e coneeptual control through GLIF3 model or interfaces
~——————> physical communication among GLEE components and environment

- — — = communications among environment components for other purposes

Figure 7.3: The internal structure of GLEE and its interactions with a local environment

[100]

local institution. These interfaces are used to link GLEE to a local EMR at the back-end
and associated clinical applications (e.g., a physician order-entry system) at the front-end.
The communication between GLEE and the EMR at the back-end enables GLEE’s access to
various resources in the local environment, such as retrieval of patient data and monitoring
of clinical events in case the local institution needs to trigger a guideline through specific
clinical events. The communication between GLEE and associated clinical applications at
the front-end is intended to enable smooth integration of the decision support services pro-
vided by GLEE, such as alerts and reminders, within a clinician’s workflow. In other words,
GLEE defines the business logic of a guideline application, the local EMR will provide data,
and the associated clinical application will support the interactions between users and a
guideline implementation system. The overall system architecture is shown in Figure 7.3.
GLEE’s components can be classified into three conceptual layers: (1) the GLIF guide-
line representation model, (2) the core components of GLEE, and (3) the interfaces to a
host clinical information system. The GLIF guideline representation model specifies a set

of generic functions, such as recommendations for specific clinical actions and assistance in

109

medical decision-making, which should be supported by any tool executing guidelines en-
coded in the GLIF format. The core components of GLEE, as an execution environment
for GLIF, define an execution model to realize the generic functions that are required by
the GLIF representation model. The interfaces to a host clinical information system reflect
GLEE’s assumptions on the interactions between GLEE and its host environment during
guideline execution. In the GLEE architecture, the system interface between the GLEE
server and a host clinical information system is maintained at the back-end based on these
assumptions.

GLEE believes that for guidelines to be shared across different institutions, a standard
data encoding system and a generic patient data model are two prerequisites. This standard
data encoding system plus a generic patient data model will enable references to patient
data in an encoded guideline such as in a specification of decision criteria without the need
to know the implementation details. It is believed that once such a standard data model
exists, at a local institution, the standard definition of patient data are then mapped to
the implementation- specific data schema and access methods of the local EMR. GLEE’s
implementation is based on this assumption, and it is assumed that using the patient data
required by GLEE during guideline execution can then be retrieved from the local clinical
data repository where clinical data is stored in this standard data model. GLEE itself accepts
that it has not yet solved the curly braces problem which refers to the hindrance of medical
knowledge sharing caused by incompatible approaches to patient data representation.

Registration of clinical events and notification of clinical actions are implemented in
GLEE using a similar approach, through a standard controlled terminology corresponding
to the events or the clinical actions that will enable the communication between GLEE and
the local environment.

Finally it has been stated that wide acceptance of a guideline system in clinical practice
depends on the development of a widely-accepted standard patient-data model and the in-
depth understanding of local adaptation of guidelines. These issues are not addressed in

GLEE but it helped to define the challenges for the future.

7.1.6 GLARE

GLARE is a domain-independent system for acquiring, representing and executing clinical
guidelines [91]. The system is based on a modular architecture, which includes an acquisition
tool and an execution tool. The acquisition tool is used when a guideline is introduced in

the system, e.g., by a committee of expert, and the execution tool is used when a guideline

110

Expert physician Userphisician

System layer | Acouisition Interfuce | | Execution Interface |
r

3 i3

Acguistion Execution
F 3
R AN £x :L
XML hyer / X
Cliniral Fharmar ICD Resaiwe CG Imstarce Patient
EML EML EML EZML XML EML EML

'y 'y 'y F 'y

DBEMS hyer

Fy F Y
B EEE
DB DB DB DB DB
Figure 7.4: The GLARE’s three layered architecture [92]

is applied by physicians to a specific situation.

The GLARE representation language is designed to achieve a balance between expres-
siveness and complexity. The formalism consists of a limited, but very focused and clearly
understandable set of primitives. It is made up of different types of actions: plans (i.e. com-
posite actions, hierarchically decomposable in their sub-actions) and atomic actions. Atomic
actions can be queries, decisions, work actions and conclusions. All actions are linked by
control relations (e.g. sequence, alternative, repetition), defining their order of execution.

The architecture is based on three layers as presented in Figure 7.4: The System Layer
contains the two modules called acquisition and execution; The DBMS Layer contains several
databases with all data required for both create and execute guidelines. There is stored
data about available resources, terminology used in guidelines, information about drugs,
information about all open instances of guidelines, a repository of guidelines, and a patient’s
medical record. Finally The XML Layer allows to represent/manage/exchange data between

DBMS layer and System Layer in a structured way.

7.1.7 SAGE: Standards-Based Sharable Active Guideline Environment

The SAGE (Standards-Based Sharable Active Guideline Environment) [94] project is a col-
laborative research and development project among research groups at IDX Systems Corpo-
ration, the University of Nebraska Medical Center, Mayo Clinic-Rochester, Intermountain
Health Care, Apelon, Inc., and Stanford University to develop a standards-based compre-

hensive technology infrastructure that will enable encoding and dissemination of computable

111

Event

Event Notifications|
. O€—
Listener
o—

SAG E Action Service calls
Execution VMR Service calls | VMR/ ClIs
Engine Term. - Action
FunctiongTerminology| | sycs
1 Server

Figure 7.5: SAGE deployment architecture [77]

clinical practice guidelines. Key objectives of the SAGE project are: interoperability of en-
coded guideline content across disparate Clinical Information System (CIS) platforms and
active rendering of guideline content via real-time interaction with existing CIS application
functions.

The SAGE guideline model is designed to encode guideline content at the level of detail
required for execution within the context of a specific care workflow supported by existing
functions of the CIS. To this end, guideline content is represented as detailed clinical “recom-
mendation sets" comprising action specifications, decision logic, and the clinical context in
which the recommendations are to be active. The SAGE guideline model uses standard infor-
mation models, constructs, and data-types to express medical and decision-making concepts.
A virtual medical record (VMR) information model [50] has been employed and extended
for representation of patient data and guideline-driven actions and all medical concepts are
referenced to standard medical terminologies (e.g., SNOMED CT, LOINC).

SAGE aims to develop a deployment driven guideline environment. For this purpose
SAGE proposes a methodology for representing clinical content in a standard way through
vMR’s supported with “Clinical Expression Models (CEMs) which place constraints on the
attributes of vMR classes. A compositional method is proposed to express new complex
concepts.

For technical interoperability with the underlying clinical information systems, SAGE
proposes a set of fixed Action Types for abstracting Clinical Information System’s (CIS)
functions (such as Notify, Inquire, Recommend _OrderSet) inside the guideline model [81].
SAGE engine supports communication with clinical workflows through events based on these
action types as presented in Figure 7.5.

In SAGE methodology, before a formalized guideline can be installed and used in a

local institution, its medical content must be reviewed and revised (localization process) and

112

its data models, terminologies, and organization assumptions (roles, events, and resources)
must be mapped to those of the local institution by the medical staff (the binding process).
The semantics represented in the guideline model is presented to the medical staff, who
should manually choose and bind the most appropriate clinical workflow interfaces to the
“action types" defined in the guideline definition in order to be able to interact the guideline
execution environment. SAGE assumes a set of standard vMR/Action Service Interfaces will
be set by standard bodies [77], and clinical information systems will be using these standard

messages, VMR interfaces to interact with guideline execution systems.

7.1.8 An Analysis of the support of the Available Clinical Guideline Rep-
resentation and Execution Architectures for the interfaces with
EHRs and Clinical Workflows and Discussion of How this thesis

complements these efforts

The difficulty of deploying guideline implementations to healthcare institutes has been ad-
dressed in the literature where achieving interoperability with the underlying systems is
highlighted as the key challenge.

Some clinical guideline execution engines such as GLEE [100] expect the local medical
institutes to store their data in a centralized repository conforming to the guideline data
model. However converting patient data to the model supported by the guideline and storing
it in a centralized repository are not practical approaches.

In some other guideline models such as PROFORMA [90], ASBRU [84] and GUIDE [11],
the relational database tables are used to store the mappings between the guideline model
entities and the “columns of the database tables" where the patient data is actually stored.
For example in [72], and example table that aims to store mapping guideline data items to
EMRs in the GUIDE model is presented (Figure 7.6). The description column gives the
name of the data item that guidelines use (Guidelines column). The three other columns are
related to the EMR; code is a unique code for that attribute. If possible, it is the SNOMED
code. Datatype is the data type of the attribute, and tablename is the name of the EMR
table where the attribute value is stored.

In EON [93], ProDIGY [49] and SAGE [94], the availability of “Virtual Medical Record"
(VMR) [50] concept is assumed. A vMR is a concept that is claimed to support (1) a
structured data model for representing information related to individual patients (2) domains

for values of attributes in the data model and (3) queries through which guideline decision

113

Guideline_Outputs
Code | Description | Table name Data Type | Guidelines
111 Patient_id Patient_anagraphic Number GERD
112 Pregnancy | Patient_table2 Boolean GERD

Figure 7.6: An example table that maps the patient data stored in institutional databases

to the data model used in GLARE [72]

support system can test the states of the patient. It is assumed that vMRs allows guideline
authors to encode clinical guidelines in a standard way, and the clinical information system
developers to accept this standard to communicate with the systems that execute clinical
guidelines. The HL7 Clinical Decision Support Technical Committee is undertaking the task
of developing a virtual medical record that transforms HL7 RIM [37] to a view of patient
data that can be utilized by decision support systems since year 2001, however no standard
model has been agreed upon yet.

EON [93], ProDIGY [49] and SAGE [94] assumes that the mapping of local EHR to the
vMR is facilitated. For example, in SAGE [94]| which addresses the integration of guideline-
based decision support systems with the workflow of care process, a guideline is encoded
using the Virtual Medical Record. As in GLIF, the clinical concepts are defined through
referencing clinical terminologies such as SNOMED CT where complex concepts are defined
as boolean combinations of existing terms. The guideline itself is defined as an activity graph
referring to the vMR instances.

It is clear that, these approaches either propose hard coded solutions to the problem
like manual deployment procedures to map database tables to variables, or a single common
model is assumed to solve the problem. However, even when such a common model is finally
agreed upon, the local adaptations of this model are very likely. In other words, even when
the vision of vMR is achieved, it is very likely that there will be more than one vMR that
the clinical guideline execution engine should be able to handle due to local adaptations.

Our work complements these efforts as follows:

e The extended GLIF Model that we propose aims to facilitate guideline deployment
through semantic mediation rather than hard coding the underlying systems to the
guideline, or assuming a central repository that provides all the data in the format

needed by the guideline.

114

None of the previous approaches addresses automatic or semi-automatic deployment
of clinical guidelines. We describe both the semantics of the guideline steps accessing
external resources and the semantics of the interfaces of the underlying applications.
Our work complements these effort such that we facilitate the semantic matching pro-
cess by defining both the machine processable semantics of the guideline interfaces and
the underlying clinical applications. When different standards, or proprietary formats
are used for representing and accessing data, we provide the ability of mapping the

clinical content from one standard to the other.

e We describe the semantics of the actions that will interact with Clinical Information
System services through a Service Functionality Ontology. This ontology is easily
extensible, and also semantic mediation is possible when different ontologies are used
to represent clinical services and the actions in the guideline definitions. Additionally
we facilitate a semi-automatic semantic matching, discovering and binding process
based on the this machine processable semantics of the guideline interfaces and the

underlying clinical applications.

e When different message schemas are used by clinical information systems and guideline

execution systems, we support a semantic mediation mechanism.

7.2 HeCase2: Agent Based Management of Clinical Guide-

lines

One of the important works that uses a multi-agent system for the execution of clinical
practice guidelines is HeCase2 System [44]. It proposes an agent-based system, where Clinical
Practice Guidelines are automatically incorporated into the workflow of doctors and hospital
services. The system works on top of HeCase system [43]. The system allows the doctors to
be reminded about the steps that should be followed in the treatment of a certain disease,
and in this way it reduces the possibility of making errors or forgetting tasks to be done. In
addition to this, agents representing patients, doctors and hospital services can automatically
coordinate their activities to provide a fast care (e.g. they can arrange the dates for different
tests to be performed on the patient easily, without the patient having to visit personally
different units of the hospital to arrange those tests).

The multi-agent system proposed is outlined in Figure 7.7. This multi-agent system maps

different entities in a healthcare organization (e.g. medical centres, departments, services,

115

looking for External
medical cenlres container

—— — — = —e— e e -

Internal

qt::gﬁ:;:d container
Medical Centre| .. [MCA
Agent (MCA) —kJ
Medical Centres
7 ina m‘:y ora counry
F-ﬁ. DEPTn

fomg™ Departments in a cenire

nurse

Doctors in

Dervices in a
a department

department
[Service| [Service [Doctor Doctor [GL
¥ Agent |-::| Agent Agent | sas AgenthAgeni
W | (8A) (SA) | (DRA) (DRA) (GA)
v o % A A A

- :

resource

secure transmission "z

m VYVY ﬁ Guidelines
_ " consult or

. = N
S B Medical Record
li{?f“"‘:“—‘] s Agent (MRA) doctor

Figure 7.7: The Multi-agent System proposed by HeCase2 [42]

doctors, patients) as agents with different roles.

The functionalities of different agents can be summarized as follows:

e The users interacts with the system through User Agents (UA). These agents stores
static data related to the user (e.g. national healthcare number, name, address, access
information -login, password, and keys-) and dynamic data (the timetable and the

preferences of the user).

e The Broker Agent (BA) is an agent that knows about all the medical centres located

in a certain area.

e A Medical Centre Agent (MCA) centralises and monitors the outsiders accesses to the

agents that manage the information of a medical centre.
e The departments of Medical Centres are represented by Department Agents (DAs).

e Service Agents (SAs) represent a set of general services linked to human or physical

resources (e.g. a blood test service).

e FEach department has a staff of several doctors, modelled through Doctor Agents

(DRASs), and offers more specific services, also modelled as SAs (e.g., a nurse that

116

can take different observations in situ). Both MCAs and DAs are aware of the services
they can provide (when a SA enters the system, it sends a message detailing its services

to the associated MCA or DA).

Each department contains a Guideline Agent (GA) that performs all actions involved
with guidelines (e.g. it can retrieve the CPG associated to a specific illness). The

guidelines are represented in PROforma language [90].

Each department also contains an Ontology Agent (OA) that provides access to the

designed medical ontology and complements the information provided by the GA.

Medical Record Agent (MRA) controls the access to a database that stores all medical

records of the patients of the medical centre.

A clinical practice guideline is executed by this multi agent system as follows:

e When the doctor diagnoses that the patient has a certain disease, its associated DRA

requests from GA the associated guideline and it starts to execute it.

e The DRA has a partial knowledge of the system and it does not know all the agents or

its responsibilities. The OA is intended to provide that information. Concretely, which
agents perform a task or who is the responsible of a required parameter contained in an
enquiry. Once the required source/agent/service has been identified, the DRA knows

exactly where it can be found.
The DRA accesses the PHR through the MRA to look for the required parameters.

Sometimes an action has to be performed on the patient, or the guideline needs data
that is not included in the Healthcare Record (e.g. the level of glucose in blood, which
can be known with a blood analysis). In these cases, the DRA has to contact with the
appropriate SA (it is known by way of the OA) which performs the required action,

from the same medical centre or another medical centre.

e The BA allows to exchange information between different medical centres and the UA.

In HeCase2, a medical ontology is defined which describes all the relations established

in the multi-agent system associated to a healthcare organisation. It has three main groups

of concepts: organisational information of agents, all possible semantic types (entities and

events) of the used concepts, and a set of medical concepts related to the clinical guidelines.

The ontology agent manages this ontology, and supports the execution of the clinical practice

guideline by providing domain knowledge.

117

7.2.1 How this thesis complements HeCase2

The architecture described in this thesis complements HeCaSe2 architecture in the following

aspects:

e In our architecture, the guideline definition is semantically extended so that semi-
automatic deployment can be feasible. HeCase2 architecture does not address how a

clinical guideline is deployed to a healthcare setting.

e Our architecture enables to retrieve patient records from disparate information sources
not only from a database within the institute as proposed in HeCase2. This is achieved

by exploiting an industry initiative, namely, IHE XDS.

e In our architecture healthcare services are exposed as Web services and we show that
the semantic interoperability problem of guideline automation for accessing disparate
clinical workflows can be handled through semantically enriched Web services. Web
services have already started to be used in the Healthcare Industry as a solution to
technical interoperability problem. In HeCase2 architecture it has been assumed that
each healthcare institute has a Service Agent, which enables communication with the
underlying medical information system. In our architecture the multiagent system is
loosely coupled with the underlying systems of healthcare institutes. We assumed that
the healthcare institutes use healthcare industry standards to communicate with Clin-
ical guideline execution systems. The multi agent system in our architecture can be
easily deployed on top of a regular healthcare institute’s information system infrastruc-
ture. However in HeCase2 all the internal applications are modelled as agents, which
may not be practically easy to deploy. It needs every other healthcare institute to be
re-designed in terms of a multi-agent system, which may not be practical in real life

cases.

e In our architecture, the guideline definition as well as the various healthcare institutes
may use different reference information models and EHR standards for representing
the clinical information about a patient. These are resolved through the semantic
mediation capabilities of our Ontology Agent. The Ontology Agent used in HeCase2

architecture serves a medical ontology, does not facilitate semantic mediation.

e In our architecture, it is possible to access and process not only Electronic Healthcare

records but also the vital signs coming from sensor devices.

118

CHAPTER 8

CONCLUSIONS

The World is facing the challenge of delivering high-quality healthcare at affordable cost while
the greying population continues to grow at an increasing pace. Due to aging population,
chronic diseases and their management costs are also on the rise. In parallel with these, the
load of medical practitioners continues to increase. Intelligent healthcare monitoring systems
supported with clinical decision support systems are seen as promising tools to address this
problem.

Clinical decision support systems are in need of formally expressed domain knowledge,
and in healthcare domain, the domain knowledge in clinical practice is usually represented as
clinical guidelines which provide evidence-based diagnostic and therapeutic guidelines given
a certain clinical condition. Clinical guideline aim to reduce inter-practice variations and
cost of the medical services, improve the quality of care [24]. A variety of government and
professional organizations are producing and disseminating clinical guidelines [97, 8, 14, 61,
46, 12| for this purpose in the form of narrative documents accompanied by flowcharts.

In order to increase sharability and understandability of these narrative guidelines, several
different computer interpretable modeling mechanisms have been proposed such as GLIF
[29], ASBRU |[84], PROforma [90], ARDEN [71] and EON [93]. Based on these a number of
different clinical decision support systems have been built processing these models, such as
GLEE [100], GLARE [91], NewGuide [11] and DeGel [85] demonstrating that the guideline
definitions can be executed to automate the decision making process.

Although clinical decision support systems based on clinical guidelines are seem to be
promising supportive tools for medical practitioners, there are some critical challenges that
should be addressed to achieve wide adoption of such tools. First of all the clinical guideline
execution environments need to seamlessly access the medical histories of the patients so

that personalized guidance for a specific patient rather than text book solutions can be

119

provided to the medical practitioners. In addition to this, these clinical decision support
systems need to seamlessly interact with the underlying clinical workflow applications so
that the suggestions of the clinical guidelines can be reflected as clinical workflow actions.
The interoperability challenges of interacting with diverse clinical workflow systems and
Electronic Healthcare Record systems are usually cited as one of the important reasons
why clinical guidelines failed to be adopted widely [25, 86]. For this reason the available
clinical guideline models aimed to create a “sharable” models rather than “directly” deployable
ones, and available clinical guideline execution engines address the automation in a single
homogeneous healthcare institute and they are either built on top of an already available
clinical information system as an integrated add-on feature, or require custom adaptation
phases to communicate with clinical applications.

In this thesis we propose a semantically enriched clinical guideline representation for-
malism to address this problem. This model is a deployment-driven model that enables
the specification of enough level of semantics of the interfaces of the clinical guideline rep-
resentation model to the underlying clinical applications and Electronic Healthcare Record
(EHR) systems [53, 54]. These semantic enrichments are based on widely adopted industry
initiatives in healthcare domain. For this purpose we have surveyed the available Electronic
Healthcare Record standards[21], and based the semantic enrichments on these widely ac-
cepted standards. Through this semantic model we believe that we provide a solution for
the “curly-braces” problem cited in the clinical guideline literature, which is the problem of
manual localization and deployment of clinical guidelines to healthcare settings.

On top of this semantically enriched clinical guideline model, we have addressed the se-
mantic enrichment of the underlying clinical applications so that semi-automatic deployment
of clinical guidelines can be made possible. We described how the semantics of Electronic
Healthcare Records systems and Clinical Workflows can be annotated based on widely ac-
cepted healthcare standards, and how this semantics can be exploited to facilitate semi-
automatic deployment and automatic execution of clinical guidelines: We presented how
semantically enriched Web services [18] and IHE-XDS architecture [17] can be exploited
for the semantic enrichment of the underlying clinical applications. We demonstrate that
it becomes possible to exploit semantic mediation mechanisms (such as ontology mapping
tools [6] and terminology servers) to discover and exploit the clinical resources in guideline
deployment and execution phases, once machine processable semantics of both clinical guide-
line interfaces and also the clinical applications are made available. Since the deployment

and execution environment is highly distributed and heterogeneous, we have designed and

120

implemented a multi-agent system to coordinate the deployment and execution of clinical
guidelines [55]. The system is composed of different agents that can be dynamically instan-
tiated whenever necessary, that can reactively interact with the other entities, and that can
abstract the complexity of their roles from the other agents.

The implementation of this thesis is being deployed in real life clinical settings in the
Emergency Hospital of Bucharest, for the management of patients with acute myocardial
infarction [62, 19]. This deployment aims to increase adherence to the guidelines, hence
provide standardization to care processes, to reduce costs of care with optimal benefit for
the patient and doctor, to reduce human error in hospital events/complications and finally
to provide a feedback system for medical staff in training.

Clinical guidelines usually address a single phase in the patients’ treatment, such as
screening, diagnosis or rehabilitation. The challange of aging population all over the World
can be better addressed by long term care rather than acute care where the citizens take a
more informed role in his lifestyle management rather than hospital centered treatments. As
a future work, we plan to build an Adaptive Care Planner which aims to ensure continuity and
coordination of care between the nursing care, primary, secondary healthcare and homecare
based on the results of this thesis. The Adaptive Care Planner will be based on care pathways
and will use clinical guidelines as building blocks to define the medical processes for diagnosis,
cure, care and monitoring. The control flow of the whole process will be based on the citizen’s
context such as vital signs, behavioral patterns gathred through environmental sensors, and

his electronic healthcare records.

121

1]

2]

3]

4]

[5]

6]

[7]

8]

REFERENCES

Bugrahan Akcay. An Agent-Based Alert Distribution System For Intelligent Healthcare
Monitoring. Master’s thesis, Middle Eact Technical University, Computer Engineering
Department, Ankara, Turkey, 2006.

The ASGAARD Project: Plan Representation, The Asbru Language.
http://www.asgaard.tuwien.ac.at /plan_representation/asbru_doc.html, last vis-

ited on May 2008.

S. K. Bechhofer, C. A. Goble, A. L. Rector, and W. D. Solomon. Terminologies and
terminology servers for information environments. In Proceedings of the 8th Inter-

national Workshop on Software Technology and Engineering Practice, pages 484-497,
1997.

F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA-compliant Agent Framework.
Technical report, CSELT. http://sharon.cselt.it /projects/jade/papers. PAAM.pdf, last
visited on May 2008.

B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web
services discovery. VLDB Journal, 14:84-96, 2005.

V. Bicer, G. Laleci, A. Dogac, and Y. Kabak. Artemis Message Exchange Framework:
Semantic Interoperability of Exchanged Messages in the Healthcare Domain. ACM
Sigmod Record,, 34(3), September 2005.

T Blakely and C Salmond. Probabilistic record linkage and a method to calculate the
positive predictive value. International Journal of Epidemiology, 31:1246-1252, 2002.

Canadian Medical Association Clinical Practice Guideline Infobase. http://mdm.ca/-

cpgsnew /cpgs/index.asp, last visited on May 2008.

122

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Canada Health Infoway. http://www.infoway-inforoute.ca/en/home/home.aspx, last

visited on May 2008.

CEN prEN 13606-1. Health informatics — Electronic health record communication —
Part 1: Reference model. Draft European Standard for CEN Enquiry prEN 13606-1,

European Committee for Standardization, Brussels, Belgium, 2004.

P. Ciccarese, E. Caffi, L. Boiocchi, S. Quaglini, and M. Stefanelli. A Guideline Man-
agement System. In Proceedings of MedInfo 2004, pages 28-32, 2004.

Clinical Guidelines in Russian. http://www.klinrek.ru/, last visited on May 2008.

DAML-S 0.7 Draft Release. http://www.daml.org/services/daml-s/0.7/, last visited
on May 2008.

Danish Secretariat for Clinical Guidelines. http://www.sst.dk /Planlaegning-

_og_behandling/SfR.aspx?lang=en, last visited on May 2008.
Description Logics. http://dlLkr.org/, last visited on May 2008.

A. Dogac, I. Cingil, G.B. Laleci, and Y. Kabak. Improving the Functionality of UDDI
Registries through Web Service Semantics. In Proceedings of 3rd VLDB Workshop on
Technologies for E-Services (TES-02), August 23-24, 2002.

A. Dogac, G. Laleci, M. Eichelberg, and T. Aden. Enhancing THE XDS for Federated
Clinical Affinity Domain Support . IEEE Transactions on Information Technology in
Biomedicine, 11(2):213-221, 2007.

A. Dogac, G. Laleci, S. Kirbas, Y. Kabak, S. Sinir, A. Yildiz, and Y. Gurcan. Artemis:
Deploying Semantically Enriched Web Services in the Healthcare Domain. Information
Systems Journal, special issue on Semantic Web and Web Services, 31(4-5):321-339,
2006.

M. Dorobantu, A. N. Fruntelata, S. Ghiorghe, L. Ghilencea, G. B. Laleci, and A. Do-
gac. Intelligent Wireless Monitoring of Acute Cardiac Patients in a Platform Using
Computerized Guidelines Models: the SAPHIRE Project. In The American College of
Cardiology 57th Annual Scientific Session, March 2008.

ebXML Registry/Repository Architecture. http://www.ebxml.org/, last visited on
May 2008.

123

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac A, and G. Laleci. A Survey and
Analysis of Electronic Healthcare Record Standards . ACM Computing Surveys, 37(4),
2005.

M Entwiste and R. N. Shiffman. Turning Guidelines into Practice: Making It Happen
With Standards - Part 1. Healthcare and Informatics Review Online, March 2005,
March 2005.

Federal Health IT Initiatives. http://www.hhs.gov/healthit/, last visited on May 2008.

M J Field and K N Lohr. Guidelines for Clinical Practice: From development to use.
Institute of Medicine, National Academy Press, Washington DC, 1992.

M Fieschi et al. Medical decision support systems: Old dilemmas and new paradigms?

Methods Inf Med.,, 42(3):190-198, 2003.

Foundation for Intelligent Physical Agents (FIPA). http://www.fipa.org/, last visited
on May 2008.

FIPA Agent Communication Language. http://www.fipa.org/specs/fipa00061 /-
SC00061G.html, last visited on May 2008.

FIPA Ontology Service Specification. http://www.fipa.org/specs/fipa00086 /-
XC00086C.html, last visited on May 2008.

Guideline Interchange Format (GLIF) 3. Technical report, InterMed Collaboratory,
2004.

The GLIF Ontology. http://www.smi.stanford.edu/projects/ intermed-web/-

guidelines/Protege Ontology.htm, last visited on May 2008.

Carole A. Goble, Peter Crowther, and Danny Solomon. A medical terminology server.

In Database and Expert Systems Applications, pages 661-670, 1994.

Harmonise, [ST-200029329, Tourism Harmonisation Network, Deliverable 3.2 Semantic

mapping and Reconciliation Engine subsystems.

A. Hein, O. Nee, D. Willemsen, T. Scheffold, A. Dogac, and G.B. Laleci. SAPHIRE
- Intelligent Healthcare Monitoring based on Semantic Interoperability Platform -
The Homecare Scenario . In Proceedings of the 1st European Conference on eHealth

(ECEH), Geneva, Switzerland, 2006.

124

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Health Level Seven (HLT7). http://hl7.org, last visited on May 2008.

HL7 Approves Web Services Profile and ebXML as 24-Month DSTUs for Messaging
Standard. http://xml.coverpages.org/ni2004-05-06-a.html, last visited on May 2008.

HL7 Clinical Document Architecture, Release 2.0. http://hl7.org/library/ Com-
mittees/structure/ CDA.ReleaseTwo.CommitteeBallot03.Aug.2004.zip, last visited on
May 2008.

HL7 Reference Information Model. http://www.hl7.org/
v3ballot8/html/foundationdocuments/welcome/index.htm, last visited on May

2008.

International Statistical Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10), Second Edition. Technical report, World Health Organization,
Geneva, Switzerland, 2005. http://www.who.int/whosis/icd10/, last visited on May
2008.

ISO/IEEE 11073-10101:2004:Health informatics, Point-of-care medical device commu-
nication, Part 10101: Nomenclature. http://www.iso.org/iso/en/ CatalogueDetail-
Page.CatalogueDetail?lCSNUMBER=37890, last visited on May 2008.

IHE IT Infrastructure Technical Framework. http://www.ihemet/ Technical-
_ Framework /upload/ihe iti tf 2.0 voll FT 2005-08-15.pdf, last visited on May
2008.

Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st
Century. National Academy Press, Washington DC, 2001.

D. Isern and A. Moreno. Agent-based careflow using CPGS. In Proceedings of Sete Con-
gres Catala d’Intelligencia Artificial (CCIA’04), pages 293-300, Barcelona, Catalunya,
2004.

D. Isern, A. Moreno, and D. Sanchez. Provision of agent-based health care services.

Journal of Biomedical Informatics,, 16(3):167-178, 2003.

Sr. David Isern. Agent-Based Management of Clinical Guidelines. PhD thesis, Univer-

sitat Politecnica de Catalunya, Catalunya, 2005.

JAVA Agent Development Platform, JADE. http://jade.tilab.com/, last visited on
May 2008.

125

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

Japan Council for Quality Health Care. http://jcghc.or.jp/html/, last visited on May
2008.

M A Jaro. Advances in Record Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida. Journal of the American Statistical Association,,

84(406):414-420, 1989.

Jess, the Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess/, last
visited on May 2008.

P. Johnson, S. Tu, and N. Jones. Achieving Reuse of Computable Guideline Systems.
In Proceedings of MedInfo 2001, pages 99-103, London, UK, 2001.

P.D Johnson, S.W. Tu, M.A Musen, and I. Purves. A Virtual Medical Record for
Guideline-based Decision Support. In Proceedings of AMIA Annual Symposium, Wash-
ington, DC: Hanley and Belfus, 2001.

Dipak Kalra. CEN prEN 13606, draft standard for Electronic Health Record Commu-
nication, and its introduction to ISO TC/215. Document CEN/TC 251/WG I/N04-52,
CEN/TC 251 Health Informatics, Brussels, Belgium, 2004.

Knowledge Interchange Format (KIF). http://logic.stanford.edu/kif/kif.html, last vis-
ited on May 2008.

G. Laleci and A. Dogac. A Semantically Enriched Clinical Guideline Model Enabling
Deployment in Heterogeneous Healthcare Environments. submitted for publication to

IEEE Transactions on Information Technology in Biomedicine, 2008.

G. Laleci, A. Dogac, B. Akcay, M. Olduz, M. Yuksel, U. Orhan, I. Tasyurt, T. Sen,
Y. Kabak, T. Namli, O. Gulderen O, and A. Okcan. SAPHIRE: A semantic Web
service based Clinical guideline deployment infrastructure exploiting THE XDS. In

eChallenges Conference, October 2006.

G. Laleci, A. Dogac, M. Olduz M, I. Tasyurt, M. Yuksel, and A. Okcan. SAPHIRE: A
Multi-Agent System for Remote Healthcare Monitoring through Computerized Clinical
Guidelines. In Roberta Annicchiarico, Ulises Cortés, and Cristina Urdiales, editors,
Agent Technology and e-Health, Whitestein Series in Software Agent Technologies and
Autonomic Computing. Birkhduser Basel, 2008.

126

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

T Leong, K Kaiser, and S Miksch. Free and Open Source Enabling Technologies for
Patient-Centric, Guideline-Based Clinical Decision Support: A Survey. IMIA Yearbook
of Medical Informatics, Methods of Information in Medicine, 46-1:74-86, 2007.

L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic

Web Technology. In Proceedings of WWW03, Budapest, Hungary, 2003.

Logical Observation Identifiers Names and Codes (LOINC). http://www. regen-
strief.org/loinc/, last visited on May 2008.

Management of Diabetes Mellitus in Primary Care, Clinical Practice Guideline.
http://www.ogp.med.va.gov/cpg/DM/DM3 _ cpg/frameset.htm, last visited on May
2008.

Medical Subject Heading Home provided by National Library of Medicine, National
Institutes of Health (U.S.). http://www.nlm.nih.gov/mesh/, last visited on May 2008.

National Institute for Clinical Excellence- England/Wales (NICE) Published Guide-
lines. http://www.nice.org.uk/page.aspx?o=guidelines.completed, last visited on May

2008.

O. Nee, A. Hein, T. Gorath, N. Hulsmann, G. Laleci, M. Yuksel, M. Olduz, I. Ta-
syurt, U. Orhan, A. Dogac, A. Fruntelata, S. Ghiorghe, and R. Ludwig. SAPHIRE:
Intelligent Healthcare Monitoring based on Semantic Interoperability Platform - Pi-
lot Applications. IEE Proceedings Communications-Special Issue on Telemedicine and

e-Health Communication System, June, 2007.
Nationaal ICT Instituut in de Zorg. http://www.nictiz.nl, last visited on May 2008.

Alper Okcan. Automatic Acquisition and Use of Multimodal Medical Device Obser-
vations based on CEN/ISO/IEEE 11073 and HL7 standards. Master’s thesis, Middle
Eact Technical University, Computer Engineering Department, Ankara, Turkey, 2007.

A. Onabajo, I. Bilykh, and J. Jahnke. Wrapping Legacy Medical Systems for Integrated
Health Network. In Proceedings of Migration and Ewvolvability of Long-life Software
Systems (MELLS-038) Workshop at the Conference NetObjectDays, Erfurt, Germany,
2003.

OWL Web Ontology Language Overview. http://www.w3.org/ TR /owl-features/, last
visited on May 2008.

127

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

OWL Mapping Tool (OWLmt). http://sourceforge.net/projects/owlmt/, last visited
on May 2008.

OWL Query Language. http://www-ksl.stanford.edu/projects/owl-ql/, last visited on
May 2008.

OWL-S 1.0 Release. http://www.daml.org/services/owl-s/1.0, last visited on May
2008.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Matching of Web Service Ca-
pabilities. In Proceedings of ISWC 2002, pages 333-347, 2002.

M. Peleg, O. Ogunyemi, and S. Tu. Using features of Arden Syntax with object-oriented
medical data models for guideline modeling. In Proceedings of AMIA Symposium, pages
523-527, 2001.

M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R.A. Greenes, R. Hall, P.D. Johnson,
N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E.H. Shortliffe, and M. Ste-
fanelli. Comparing computer-interpretable guideline models: a case-study approach. J

Am Med Inform Assoc,, Jan-Feb;10(1):52-68, 2003.

M. Peleg, S.W. Tu, R. Haux, and C. Kulikowski. Decision Support, Knowledge Repre-
sentation and Management in Medicine. IMIA, Schattauer, 2006.

Profile-based Class Hierarchies, Explanatory remarks for ProfileHierarchy.owl.
http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.html, last visited on May
2008.

Protégé Ontology Editor and Knowledge Acquisition System
http://protege.stanford.edu/, last visited on May 2008.

T. Pryor and G. Hripcsak. Sharing MLMs: An experiment between Columbia-
Presbyterian and LDS Hospital. In Proceedings of the Seventeenth Annual Symposium
on Computer Applications in Medical Care, pages 399403, 1993.

P. Ram, D. Berg, S. Tu, G. Mansfield, Q. Ye, R. Abarbanel, and N. Beard. Executing
clinical practice guidelines using the SAGE execution engine. In MedInfo, pages 251
255, 2004.

READ Codes. http://www.connectingforhealth.nhs.uk /systemsandservices/data/-

readcodes/% -introduction, last visited on May 2008.

128

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Rhino: JavaScript for Java. http://www.mozilla.org/rhino/, last visited on May 2008.

RIDE Deliverable 2.1.1 European Best practices. http://www.srdc.metu.edu.tr/-

webpage/projects/ride/modules.php?name=Calendar, last visited on May 2008.

SAGE Guideline Model Specification Document. http://sage.wherever.org/references/-
docs/SAGEGuidelineModelSpec.pdf, last visited on May 2008.

SAPHIRE: Intelligent Healthcare Monitoring based on Semantic Interoperability Plat-
form. http://www.srdc.metu.edu.tr/webpage/projects/saphire/, last visited on May
2008.

S . Schulz and U. Hahn. Medical knowledge reengineering converting major portions
of the UMLS into a terminological knowledge base . International Journal of Medical

Informatics,, 64:207-221, 2001.

A. Seyfang, S. Miksch, and M. Marcos. Combining Diagnosis and Treatment using
Asbru. International Journal of Medical Informatics, 68 (1-3):49-57, 2002.

Y. Shahar, O. Young, E. Shalom, M. Galperin, A. Mayaffit, R. Moskovitch, and A. Hes-
sing. A Framework for a Distributed, Hybrid, Multiple-Ontology Clinical-Guideline
Library and Automated Guideline-Support Tools. Journal of Biomedical Informatics,,

37(5):325-344, 2004.

R N Shiffman, Y Liaw, C A Brandt, and G J Corb. Computer-based Guideline Imple-
mentation Systems: A Systematic Review of Functionality and Effectiveness. Journal

of American Medical Informatics Assoc.,, 6(2):104—114, Mar-Apr 1999.

SNOMED (The Systematized Nomenclature of Medicine) Clinical Terms.

http://www.snomed.org/snomedct _txt.html, last visited on May 2008.

Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/TR/soap/, last vis-
ited on May 2008.

SPINE- NHS Connecting for Health. http://www.connectingforhealth.nhs.uk /systems

andservices/spine, last visited on May 2008.

D.R. Sutton and J. Fox. The Syntax and Semantics of the PROforma guideline mod-
elling language. J Am Med Inform Assoc,, Sep-Oct;10(5):433-443, 2003.

129

[91] P. Terenziani, G. Molino, and M. Torchio. A modular approach for representing and
executing clinical guidelines. Artificial Intelligence in Medicine,, 23(3):249-276, 2001.

[92] P. Terenziani, S. Montani, A. Bottrighi, M. Torchio, G. Molino, L. Anselma, and
G. Correndo. Applying Artificial Intelligence to Clinical Guidelines: The GLARE
Approach. AI*IA 2003: Advances in Artificial Intelligence, 2829/2003:536-547, 2003.

[93] S.-W. Tu and M.A. Musen. Modeling Data and Knowledge in the EON Guideline
Architecture. In Proceedings of MedInfo 2001, pages 280-284, London, UK, 2001.

[94] S.-W. Tu, M.A. Musen, and R. Shankar. Modeling Guidelines for Integration into
Clinical Workflow. In Proceedings of MedInfo 2004, pages 174-178, 2004.

[95] Universal Description, Discovery and Integration (UDDI). http://www.uddi.org/, last
visited on May 2008.

[96] Unified Medical Language System (UMLS). http://www.nlm.nih.gov/ research/umls/,
last visited on May 2008.

[97] US National Guideline Clearinghouse. http://www.guideline.gov/, last visited on May
2008.

[98] United States National Library of Medicine. http://www.nlm.nih.gov/, last visited on
May 2008.

[99] K. Verma, K. Sivashanmugam, A.P. Sheth, A. Patil, S. Oundhakar, and J.A. Miller.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication
and Discovery of Web Services. Journal of Information Technology and Management,

Special Issue on Universal Global Integration, 6(1):17-3, 2005.

[100] D. Wang, M. Peleg, S.W. Tu, A. Boxwala, O. Ogunyemi, Q. Zeng, A.R. Greenes, V.L.
Patel, and E.H. Shortliffe. Design and Implementation of GLIF3 guideline execution
engine. Journal of Biomedical Informatics,, 37:305-318, 2004.

[101] F. V. Werf, D. Ardissino, A. Betriu, D. Cokkinos, E. Falk, K. Fox, D. Julian,
M. Lengyel, F. Neumann, W. Ruzyllo, C. Thygesen, S. Underwood, A. Vahanian,
F. Verheugt, and William Wijns. Management of acute myocardial infarction in pa-

tients presenting with ST-segment elevation. Furopean Heart Journal, 24:28-66, 2003.

[102] World Health Organization. http://www.who.int/en/, last visited on May 2008.

130

[103] Web Services Description Language (WSDL) 1.1. http://www.w3.org/ TR/wsdl, last
visited on May 2008.

[104] Web Service Modeling Ontology (WSMO), WSMO Working Draft 20 September 2004.
http://www.wsmo.org/2004/d2/v1.0/, last visited on May 2008.

[105] XML Scheme Definition (XSD). http://www.w3.org/XML/Schema, last visited on
May 2008.

131

APPENDIX A

THE EXTENDED GLIF MODEL

<?xml version="1.0"7>

<!DOCTYPE uridef[

<!ENTITY glifModel "http://www.owl-ontologies.com/GLIF3_5.owl">
1>

<rdf :RDF
xmlns="http://www.owl-ontologies.com/Ontology1210275825.owl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
xmlns:rdf="http://www.w3.0org/1999/02/22-rdf -syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://wuw.w3.0rg/2002/07/owl#"
xmlns:glifModel="&glifModel;#"
xml:base="http://www.owl-ontologies.comExtendedGLIF.owl">
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://www.owl-ontologies.com/GLIF3_5.owl"/>
</owl:0Ontology>
<owl:Class rdf:ID="MedicalActionEntity">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:ID="accessParams"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="ServiceImpl"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="MedicalKnowledgeLayer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#ServiceImpl">
<rdfs:subClass0f>

<owl:Class rdf:ID="ImplementationLayer"/>

132

</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="EHRImpl">
<rdfs:subClass0f rdf:resource="#ImplementationLayer"/>
</owl:Class>
<owl:Class rdf:ID="AlarmEntity">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="AlarmImpl"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#accessParams"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#MedicalKnowledgeLayer"/>
</owl:Class>
<owl:Class rdf:about="#AlarmImpl">
<rdfs:subClass0f rdf:resource="#ImplementationLayer"/>
</owl:Class>
<owl:Class rdf:ID="EHREntity">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:FunctionalProperty rdf:about="#accessParams"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#EHRImpl"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#MedicalKnowledgeLayer"/>
</owl:Class>
<owl:0ObjectProperty rdf:ID="input">
<rdfs:domain rdf:resource="#MedicalActionEntity"/>
<rdfs:range rdf:resource=&glifModel;#Data_Item"/>
</owl:0bjectProperty>
<owl:ObjectProperty rdf:ID="ehrSemantics">
<rdfs:range rdf:resource="&glifModel;#Concept"/>
<rdfs:domain rdf:resource="#EHREntity"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="functionality">
<rdfs:domain rdf:resource="#MedicalActionEntity"/>
<rdfs:range rdf:resource="&glifModel;#Concept"/>
</owl:0bjectProperty>
<owl:0ObjectProperty rdf:ID="output">
<rdfs:range rdf:resource="&glifModel;#Data_Item"/>
<rdfs:domain rdf:resource="#MedicalActionEntity"/>

</owl:0bjectProperty>

133

<owl:0ObjectProperty rdf:ID="entitySemantics">
<rdfs:domain rdf:resource="#EHREntity"/>
<rdfs:range rdf:resource="&glifModel;#Data_Item"/>
</owl:0bjectProperty>
<owl:FunctionalProperty rdf:ID="serviceOWSL">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#ServiceImpl"/>
<owl:Class rdf:about="#EHRImpl"/>
</owl:unionQf>
</owl:Class>
</rdfs:domain>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="medicalTask">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#0bjectProperty"/>
<rdfs:range rdf:resource="#MedicalActionEntity"/>
<rdfs:domain rdf:resource="&glifModel;#Medically_Oriented_Action_Specification"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="agentID">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#AlarmImpl"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="dataSourceType">
<rdfs:range rdf:resource="#EHREntity"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#0bjectProperty"/>
<rdfs:domain rdf:resource="&glifModel;#Get_Data_Dbject_Action"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="message">
<rdfs:range rdf:resource="#AlarmEntity"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#0bjectProperty"/>
<rdfs:domain rdf:resource="&glifModel;#Message_Action"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:about="#accessParams">
<rdfs:domain rdf:resource="#MedicalKnowledgeLayer"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#0bjectProperty"/>
<rdfs:range rdf:resource="#ImplementationLayer"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="docID">
<rdfs:domain rdf:resource="#EHRImpl"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="serviceWSDL">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

134

<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#ServiceImpl"/>
<owl:Class rdf:about="#EHRImpl"/>
</owl:union0f>
</owl:Class>
</rdfs:domain>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
</owl:FunctionalProperty>

</rdf :RDF>

<!-- Created with Protege (with OWL Plugin 3.2.1, Build 365) http://protege.stanford.edu -->

135

APPENDIX B

THE SERVICE FUNCTIONALITY

ONTOLOGY

<?xml version="1.0"7>

<rdf :RDF

xmlns:expr="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#"

xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns="http://144.122.230.12:8080/saphire/FuncOnt.owl#"
xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:xsd="http://wuw.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://wuw.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://wuw.w3.0rg/2002/07/owl#"
xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xml:base="http://144.122.230.12:8080/saphire/FuncOnt.owl">
<owl:Ontology rdf:about=""/>
<rdfs:Class rdf:about="http://www.daml.org/services/owl-s/1.1/Profile
<owl:Class rdf:ID="HealthcareServices">
<rdfs:subClass0f rdf:resource="http://www.daml.org/services/owl-s/1
</owl:Class>
<owl:Class rdf:ID="Lung_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:ID="analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Lung"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="Multi-ParameterAnalyzer"/>
</rdfs:subClass0f>

</owl:Class>

136

.owl#Profile"/>

.1/Profile.owl#Profile"/>

<owl:Class rdf:ID="Skin_generator">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Skin"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ElectricalPotentialGenerator"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="QueryServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="SchedulingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestNewAppointmentBookingServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="NoChangeOnAppointmentPlacerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="AdmitVisitProcess">
<rdfs:subClass0f>
<owl:Class rdf:ID="AdmitVisitService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestForPatientClinicalInformationServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="ClinicalInformationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="DemographicDataServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="PatientInformationRequestServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Haemodynamics_calculator">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="Heart"/>
</owl:allValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#analyzesSubstance"/>

137

</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="MultiParameterCalculator"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Heart_output_device">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Blood"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="FlowAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Generator">
<rdfs:subClass0f>
<owl:Class rdf:ID="SensorServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientProblemServices">
<owl:disjointWith>
<owl:Class rdf:ID="TherapeuticorPreventiveServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:ID="PatientPathwayServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:ID="PatientGoalServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:ID="LabProcedureServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:ID="DiagnosticServices"/>
</owl:disjointWith>
<rdfs:subClass0f>
<owl:Class rdf:ID="PatientCareServices"/>
</rdfs:subClass0f>
</owl:Class>

<owl:Class rdf:ID="ClinicalObservationReportingServices">

138

<rdfs:subClass0f>
<owl:Class rdf:ID="ObservationReportingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Pneumotacograph">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Airway"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="FlowMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="ConcentrationGenerator">
<rdfs:subClass0f rdf:resource="#Generator"/>
</owl:Class>
<owl:Class rdf:ID="PatientGoalUpdateServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientGoalServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Electromyograph">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:ID="Muscle"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ElectricalPotentialMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Skin_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>

</owl:onProperty>

139

<owl:allValuesFrom>
<owl:Class rdf:about="#Skin"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#Multi-ParameterAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="UrineChemistryAnalyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Urine"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ConcentrationAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#Airway">
<rdfs:subClass0f>
<owl:Class rdf:ID="Substance"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#Heart">
<rdfs:subClass0f>
<owl:Class rdf:ID="BodyPart"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="NoChangeOnAppointmentFillerServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="FillerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="DischargeProcess">
<rdfs:subClass0f>
<owl:Class rdf:ID="DischargeService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="LabResultServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientInformationRequestServices"/>

</rdfs:subClass0f>

140

</owl:Class>
<owl:Class rdf:ID="PatientTreatmentAuthorizationRequestServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="PatientReferralServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientPathwayResponseServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientPathwayServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Recommendation">
<rdfs:subClass0f>
<owl:Class rdf:ID="PlacerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestForPatientDemographicDataServices">
<rdfs:subClass0f rdf:resource="#DemographicDataServices"/>
</owl:Class>
<owl:Class rdf:ID="ChangeService">
<rdfs:subClass0f>
<owl:Class rdf:ID="PatientAdministrationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Consult">
<rdfs:subClass0f>
<owl:Class rdf:about="#PlacerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Airway_volume_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Airway"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="VolumeMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Urine_output_transducer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Urine"/>

</owl:allValuesFrom>

141

<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#FlowMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Meter">
<rdfs:subClass0f>
<owl:Class rdf:about="#SensorServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestReceiptOfPatientSelectionDisplayListServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="PatientNameListServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="UpdateRegistrationToClinicalTrialForObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:ID="ObservationReporting0fClinicalTrialsServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="GoOffRegistrationToClinicalTrialForObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:about="#0bservationReporting0fClinicalTrialsServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="ElectricalPotentialAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:ID="Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="VolumeAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RegisterProcessService">
<rdfs:subClass0f>
<owl:Class rdf:ID="RegisterService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#Muscle">
<rdfs:subClass0f>
<owl:Class rdf:about="#BodyPart"/>

</rdfs:subClass0f>

142

</owl:Class>
<owl:Class rdf:about="#NoChangeOnAppointmentPlacerServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PlacerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="ECG">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Heart"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#ElectricalPotentialMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="TemperatureGenerator">
<rdfs:subClass0f rdf:resource="#Generator"/>
</owl:Class>
<owl:Class rdf:about="#PatientInformationRequestServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="InformationManagementServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientPathwayUpdateServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientPathwayServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#DischargeService">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientAdministrationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Urine_flow_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Urine"/>
</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClass0f>

143

<rdfs:subClass0f>
<owl:Class rdf:about="#FlowAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="CAGB">
<rdfs:subClass0f>
<owl:Class rdf:ID="TherapeuticOperationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Heart_pressure_transducer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Heart"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="PressureMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="C02_scrubber">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Airway"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ConcentrationFilter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Blood_pressure_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Blood"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>

<owl:Class rdf:ID="PressureAnalyzer"/>

144

</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#FlowAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Lung_resistance_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ResistanceMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestPatientReferralStatusServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientReferralServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="UnsolicitedInsuranceInformationServices">
<rdfs:subClass0f>
<owl:Class rdf:ID="InsuranceInformationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="AirwayFlowAnalyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Airway"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#FlowAnalyzer"/>
</owl:Class>
<owl:Class rdf:ID="Spirometry_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Airway"/>

<owl:onProperty>

145

<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#PressureAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#ResistanceMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="RequestForCncellationToAnAuthorizationServices">
<rdfs:subClass0f rdf:resource="#PatientTreatmentAuthorizationRequestServices"/>
</owl:Class>
<owl:Class rdf:ID="UnsolicitedResponseForClinicalObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:ID="ResponseForClinicalObservationReportingService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestForTreatmentAuthorizationInformationServices">
<rdfs:subClass0f rdf:resource="#PatientTreatmentAuthorizationRequestServices"/>
</owl:Class>
<owl:Class rdf:about="#DiagnosticServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientCareServices"/>
</rdfs:subClass0f>
<owl:disjointWith>
<owl:Class rdf:about="#TherapeuticorPreventiveServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#PatientProblemServices"/>
<owl:disjointWith>
<owl:Class rdf:about="#PatientPathwayServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#PatientGoalServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#LabProcedureServices"/>
</owl:disjointWith>
</owl:Class>
<owl:Class rdf:ID="Skin_transducer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Skin"/>
</owl:allValuesFrom>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#analyzesSubstance"/>

146

</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="Multi-ParameterMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Filter">
<rdfs:subClass0f>
<owl:Class rdf:about="#SensorServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#ElectricalPotentialGenerator">
<rdfs:subClass0f rdf:resource="#Generator"/>
</owl:Class>
<owl:Class rdf:ID="DischargePending">
<rdfs:subClass0f rdf:resource="#DischargeService"/>
</owl:Class>
<owl:Class rdf:ID="Heart_output_transducer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Heart"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#FlowMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#PatientGoalServices">
<owl:disjointWith>
<owl:Class rdf:about="#TherapeuticorPreventiveServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#PatientProblemServices"/>
<owl:disjointWith>
<owl:Class rdf:about="#PatientPathwayServices"/>
</owl:disjointWith>
<owl:disjointWith>
<owl:Class rdf:about="#LabProcedureServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#DiagnosticServices"/>
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientCareServices"/>
</rdfs:subClass0f>
</owl:Class>

<owl:Class rdf:ID="Blood_chemistry_analyzer">

147

<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Blood"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#Multi-ParameterAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#ElectricalPotentiallMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="MultigasAnalyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Multi-Gas"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#ConcentrationAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="EEGAnalyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:ID="Brain"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ElectricalPotentialAnalyzer"/>
</owl:Class>
<owl:Class rdf:about="#TherapeuticOperationServices">
<owl:disjointWith>

<owl:Class rdf:ID="MedicationServices"/>

148

</owl:disjointWith>
<rdfs:subClass0f>
<owl:Class rdf:about="#TherapeuticorPreventiveServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="GoOffRegistrationToPhase0fClinicalTrialForObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:ID="Phase0fClinicalTrialRelatedServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#TherapeuticorPreventiveServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientCareServices"/>
</rdfs:subClass0f>
<owl:disjointWith rdf:resource="#PatientProblemServices"/>
<owl:disjointWith>
<owl:Class rdf:about="#PatientPathwayServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#PatientGoalServices"/>
<owl:disjointWith>
<owl:Class rdf:about="#LabProcedureServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#DiagnosticServices"/>
</owl:Class>
<owl:Class rdf:ID="Pacemaker">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Heart"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="RateGenerator"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientProblemAddServices">
<rdfs:subClass0f rdf:resource="#PatientProblemServices"/>
</owl:Class>
<owl:Class rdf:about="#0bservationReporting0fClinicalTrialsServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#0bservationReportingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#MedicationServices">
<rdfs:subClass0f rdf:resource="#TherapeuticorPreventiveServices"/>

<owl:disjointWith rdf:resource="#TherapeuticOperationServices"/>

149

</owl:Class>
<owl:Class rdf:about="#InformationManagementServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:ID="RequestDisplayForClinicalObservationReportingService">
<rdfs:subClass0f>
<owl:Class rdf:ID="RequestForClinicalObservationReportingService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Muscle_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Muscle"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#Multi-ParameterAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientGoalQueryServices">
<rdfs:subClass0f rdf:resource="#PatientGoalServices"/>
</owl:Class>
<owl:Class rdf:ID="Muscle_generator">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Muscle"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ElectricalPotentialGenerator"/>
</owl:Class>
<owl:Class rdf:about="#ClinicalInformationServices">
<rdfs:subClass0f rdf:resource="#PatientInformationRequestServices"/>
</owl:Class>
<owl:Class rdf:ID="RequestForResubmissionToAnAuthorizationServices">
<rdfs:subClass0f rdf:resource="#PatientTreatmentAuthorizationRequestServices"/>
</owl:Class>
<owl:Class rdf:ID="Air_temperature_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Airway"/>
<owl:onProperty>

<owl:ObjectProperty rdf:about="#analyzesSubstance"/>

150

</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="TemperatureMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#PatientPathwayServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientCareServices"/>
</rdfs:subClass0f>
<owl:disjointWith rdf:resource="#TherapeuticorPreventiveServices"/>
<owl:disjointWith rdf:resource="#PatientProblemServices"/>
<owl:disjointWith rdf:resource="#PatientGoalServices"/>
<owl:disjointWith>
<owl:Class rdf:about="#LabProcedureServices"/>
</owl:disjointWith>
<owl:disjointWith rdf:resource="#DiagnosticServices"/>
</owl:Class>
<owl:Class rdf:ID="Intracranial_pressure_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Brain"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#PressureAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientProblemUpdateServices">
<rdfs:subClass0f rdf:resource="#PatientProblemServices"/>
</owl:Class>
<owl:Class rdf:about="#FlowMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="PatientProblemResponseServices">
<rdfs:subClass0f rdf:resource="#PatientProblemServices"/>
</owl:Class>
<owl:Class rdf:ID="PatientPathwayQueryServices">
<rdfs:subClass0f rdf:resource="#PatientPathwayServices"/>
</owl:Class>
<owl:Class rdf:ID="AdmitVisitCancel">

<rdfs:subClass0f>

151

<owl:Class rdf:about="#AdmitVisitService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#RegisterService">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientAdministrationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#Multi-Gas">
<rdfs:subClass0f rdf:resource="#Substance"/>
</owl:Class>
<owl:Class rdf:about="#MultiParameterCalculator">
<rdfs:subClass0f>
<owl:Class rdf:ID="Calculator"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Intracranial_pressure_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Brain"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#PressureMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="UpdateRegistrationToPhase0fClinicalTrialForObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:about="#Phase(0fClinicalTrialRelatedServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#InsuranceInformationServices">
<rdfs:subClass0f rdf:resource="#PatientInformationRequestServices"/>
</owl:Class>
<owl:Class rdf:ID="TransferPending">
<rdfs:subClass0f>
<owl:Class rdf:ID="TransferService"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#ConcentrationFilter">
<rdfs:subClass0f rdf:resource="#Filter"/>
</owl:Class>

<owl:Class rdf:about="#PatientCareServices">

152

<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:ID="CancelRegistrationToPhase0fClinicalTrialForObservationReporting">
<rdfs:subClass0f>
<owl:Class rdf:about="#Phase0fClinicalTrialRelatedServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="ChangeOnAppointmentPlacerServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PlacerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="CancelRegistrationToClinicalTrialForObservationReporting">
<rdfs:subClass0f rdf:resource="#0bservationReporting0fClinicalTrialsServices"/>
</owl:Class>
<owl:Class rdf:ID="PatientGoalDeleteServices">
<rdfs:subClass0f rdf:resource="#PatientGoalServices"/>
</owl:Class>
<owl:Class rdf:ID="FinancialManagementServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:ID="OtherServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#SchedulingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#PatientNameListServices">
<rdfs:subClass0f rdf:resource="#PatientInformationRequestServices"/>
</owl:Class>
<owl:Class rdf:ID="ChangeOnAppointmentFillerServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#FillerServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Lung_resistance_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ResistanceAlayzer"/>

</rdfs:subClass0f>

153

</owl:Class>
<owl:Class rdf:about="#TransferService">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientAdministrationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#AdmitVisitService">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientAdministrationServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#PlacerServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#SchedulingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Lung_flow_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#FlowMeter"/>
</owl:Class>
<owl:Class rdf:ID="CancelPatientReferralServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientReferralServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="RequestReceiptOfClinicalDatalListingServices">
<rdfs:subClass0f rdf:resource="#ClinicallnformationServices"/>
</owl:Class>
<owl:Class rdf:about="#Calculator">
<rdfs:subClass0f>
<owl:Class rdf:about="#SensorServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#RateGenerator">
<rdfs:subClass0f rdf:resource="#Generator"/>
</owl:Class>
<owl:Class rdf:ID="RequestForModificationToAnAuthorizationServices">
<rdfs:subClass0f rdf:resource="#PatientTreatmentAuthorizationRequestServices"/>

</owl:Class>

154

<owl:Class rdf:ID="PatientProblemDeleteServices">
<rdfs:subClass0f rdf:resource="#PatientProblemServices"/>
</owl:Class>
<owl:Class rdf:about="#LabProcedureServices">
<owl:disjointWith rdf:resource="#TherapeuticorPreventiveServices"/>
<owl:disjointWith rdf:resource="#PatientProblemServices"/>
<owl:disjointWith rdf:resource="#PatientPathwayServices"/>
<owl:disjointWith rdf:resource="#PatientGoalServices"/>
<owl:disjointWith rdf:resource="#DiagnosticServices"/>
<rdfs:subClass0f rdf:resource="#PatientCareServices"/>
</owl:Class>
<owl:Class rdf:about="#Phase0fClinicalTrialRelatedServices">
<rdfs:subClass0f rdf:resource="#0bservationReporting0fClinicalTrialsServices"/>
</owl:Class>
<owl:Class rdf:about="#SensorServices">
<rdfs:subClass0f rdf:resource="#DiagnosticServices"/>
</owl:Class>
<owl:Class rdf:about="#Skin">
<rdfs:subClass0f>
<owl:Class rdf:about="#BodyPart"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#Multi-ParameterAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PTCA">
<rdfs:subClass0f rdf:resource="#TherapeuticOperationServices"/>
</owl:Class>
<owl:Class rdf:ID="PatientPathwayDeleteServices">
<rdfs:subClass0f rdf:resource="#PatientPathwayServices"/>
</owl:Class>
<owl:Class rdf:about="#ResistanceAlayzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="TemperatureAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="TransferCancel"”>
<rdfs:subClass0f rdf:resource="#TransferService"/>
</owl:Class>
<owl:Class rdf:ID="CompleteClinicalTrialForObservationReporting">

<rdfs:subClass0f rdf:resource="#0bservationReporting0fClinicalTrialsServices"/>

155

</owl:Class>
<owl:Class rdf:ID="GetLabResultServices">
<rdfs:subClass0f rdf:resource="#LabResultServices"/>
</owl:Class>
<owl:Class rdf:ID="Spirometer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Airway"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#Multi-ParameterAnalyzer"/>
</owl:Class>
<owl:Class rdf:about="#Brain">
<rdfs:subClass0f>
<owl:Class rdf:about="#BodyPart"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="TransferProcess">
<rdfs:subClass0f rdf:resource="#TransferService"/>
</owl:Class>
<owl:Class rdf:ID="Vaporizer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Airway"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ConcentrationGenerator"/>
</owl:Class>
<owl:Class rdf:about="#FillerServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#SchedulingServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="AdmitVisitPending">
<rdfs:subClass0f rdf:resource="#AdmitVisitService"/>
</owl:Class>
<owl:Class rdf:about="#TemperatureMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:about="#PressureMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>

</owl:Class>

156

<owl:Class rdf:ID="ModifyPatientReferralServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientReferralServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Heart_volume_transducer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Heart"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#VolumeMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="ChangeInToQut">
<rdfs:subClass0f rdf:resource="#ChangeService"/>
</owl:Class>
<owl:Class rdf:ID="RegisterToPhase0fClinicalTrialForObservationReporting">
<rdfs:subClass0f rdf:resource="#Phase0fClinicalTrialRelatedServices"/>
</owl:Class>
<owl:Class rdf:about="#Blood">
<rdfs:subClass0f rdf:resource="#Substance"/>
</owl:Class>
<owl:Class rdf:ID="RegisterToClinicalTrialForObservationReporting">
<rdfs:subClass0f rdf:resource="#0bservationReporting0fClinicalTrialsServices"/>
</owl:Class>
<owl:Class rdf:about="#VolumeMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="Diathermy_device">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Muscle"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#TemperatureGenerator"/>
</owl:Class>
<owl:Class rdf:about="#ResponseForClinicalObservationReportingService">
<rdfs:subClass0f rdf:resource="#ClinicalObservationReportingServices"/>
</owl:Class>

<owl:Class rdf:about="#Urine">

157

<rdfs:subClass0f rdf:resource="#Substance"/>
</owl:Class>
<owl:Class rdf:ID="PatientReferralRequestServices">
<rdfs:subClass0f>
<owl:Class rdf:about="#PatientReferralServices"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="PatientPathwayAddServices">
<rdfs:subClass0f rdf:resource="#PatientPathwayServices"/>
</owl:Class>
<owl:Class rdf:ID="Lung_pressure_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#PressureMeter"/>
</owl:Class>
<owl:Class rdf:ID="SolicitedResponseForClinicalObservationReporting">
<rdfs:subClass0f rdf:resource="#ResponseForClinicalObservationReportingService"/>
</owl:Class>
<owl:Class rdf:about="#0bservationReportingServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:about="#BodyPart">
<rdfs:subClass0f rdf:resource="#Substance"/>
</owl:Class>
<owl:Class rdf:ID="Lung_rate_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="RateAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>

<owl:Class rdf:ID="Urine_chemistry_transducer">

158

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Urine"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:ID="ConcentrationMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="DiagnosticOperationServices">
<rdfs:subClass0f rdf:resource="#DiagnosticServices"/>
</owl:Class>
<owl:Class rdf:ID="Brain_temp._meter">
<rdfs:subClass0f rdf:resource="#TemperatureMeter"/>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Brain"/>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Heart_output_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Blood"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#TemperatureAnalyzer"/>
</owl:Class>
<owl:Class rdf:ID="Kidney">
<rdfs:subClass0f rdf:resource="#BodyPart"/>
</owl:Class>
<owl:Class rdf:ID="Lung_pressure_analyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>

<owl:Class rdf:about="#Lung"/>

159

</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#PressureAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#SchedulingServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:about="#RateAnalyzer">
<rdfs:subClass0f>
<owl:Class rdf:about="#Analyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#RequestForClinicalObservationReportingService">
<rdfs:subClass0f rdf:resource="#ClinicalObservationReportingServices"/>
</owl:Class>
<owl:Class rdf:ID="Defibrillator">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Heart"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ElectricalPotentialGenerator"/>
</owl:Class>
<owl:Class rdf:ID="Catheter_tip_temp._probe">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Blood"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#TemperatureMeter"/>
</owl:Class>
<owl:Class rdf:ID="Wait">
<rdfs:subClass0f rdf:resource="#PlacerServices"/>
</owl:Class>
<owl:Class rdf:ID="DisplayResponseForClinicalObservationReporting">
<rdfs:subClass0f rdf:resource="#ResponseForClinicalObservationReportingService"/>
</owl:Class>
<owl:Class rdf:about="#Analyzer">

<rdfs:subClass0f rdf:resource="#SensorServices"/>

160

</owl:Class>
<owl:Class rdf:about="#Multi-ParameterMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="Electrobraingraph">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Brain"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ElectricalPotentialMeter"/>
</owl:Class>
<owl:Class rdf:ID="Transcutaneous_gas_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Multi-Gas"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#ConcentrationMeter"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="CompletePhase0fClinicalTrialForObservationReporting">
<rdfs:subClass0f rdf:resource="#Phase0fClinicalTrialRelatedServices"/>
</owl:Class>
<owl:Class rdf:ID="HeartActivityAnalyzer">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Heart"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#ElectricalPotentialAnalyzer"/>
</owl:Class>
<owl:Class rdf:ID="DischargeCancel">
<rdfs:subClass0f rdf:resource="#DischargeService"/>
</owl:Class>
<owl:Class rdf:ID="Lung_flow_analyzer">
<rdfs:subClass0f>

<owl:Restriction>

161

<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#Lung"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#FlowAnalyzer"/>
</owl:Class>
<owl:Class rdf:ID="PushLabResultServices">
<rdfs:subClass0f rdf:resource="#LabResultServices"/>
</owl:Class>
<owl:Class rdf:ID="PatientGoalResponseServices">
<rdfs:subClass0f rdf:resource="#PatientGoalServices"/>
</owl:Class>
<owl:Class rdf:about="#ConcentrationMeter">
<rdfs:subClass0f rdf:resource="#Meter"/>
</owl:Class>
<owl:Class rdf:ID="PatientGoalAddServices">
<rdfs:subClass0f rdf:resource="#PatientGoalServices"/>
</owl:Class>
<owl:Class rdf:ID="SpO2Monitor">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Blood"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#ConcentrationAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:ID="Blood_flow_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Blood"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#FlowMeter"/>
</owl:Class>
<owl:Class rdf:ID="PatientProblemQueryServices">

<rdfs:subClass0f rdf:resource="#PatientProblemServices"/>

162

</owl:Class>
<owl:Class rdf:about="#PatientReferralServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:ID="MultiGasIdentifier">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Airway"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Class rdf:about="#ConcentrationAnalyzer"/>
</rdfs:subClass0f>
</owl:Class>
<owl:Class rdf:about="#PressureAnalyzer">
<rdfs:subClass0f rdf:resource="#Analyzer"/>
</owl:Class>
<owl:Class rdf:about="#ConcentrationAnalyzer">
<rdfs:subClass0f rdf:resource="#Analyzer"/>
</owl:Class>
<owl:Class rdf:ID="ChangeOutToIn">
<rdfs:subClass0f rdf:resource="#ChangeService"/>
</owl:Class>
<owl:Class rdf:ID="RequestForInsuranceInformationServices">
<rdfs:subClass0f rdf:resource="#InsuranceInformationServices"/>
</owl:Class>
<owl:Class rdf:about="#Lung">
<rdfs:subClass0f rdf:resource="#BodyPart"/>
</owl:Class>
<owl:Class rdf:ID="Blood_chemistry_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Blood"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#Multi-ParameterMeter"/>
</owl:Class>
<owl:Class rdf:ID="CoronaryAngiogram">
<rdfs:subClass0f rdf:resource="#DiagnosticOperationServices"/>
</owl:Class>
<owl:Class rdf:ID="RequestReceiptOfPatientSelectionListServices">

<rdfs:subClass0f rdf:resource="#PatientNameListServices"/>

163

</owl:Class>
<owl:Class rdf:about="#PatientAdministrationServices">
<rdfs:subClass0f rdf:resource="#HealthcareServices"/>
</owl:Class>
<owl:Class rdf:ID="Renal_function_calculator">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Kidney"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#MultiParameterCalculator"/>
</owl:Class>
<owl:Class rdf:ID="Air_pressure_meter">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Airway"/>
<owl:onProperty>
<owl:0ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#PressureMeter"/>
</owl:Class>
<owl:Class rdf:ID="Blood_pressure_strain_gauge">
<rdfs:subClass0f>
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Blood"/>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#analyzesSubstance"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f rdf:resource="#PressureMeter"/>
</owl:Class>
<owl:0ObjectProperty rdf:about="#analyzesSubstance">
<rdfs:domain rdf:resource="#SensorServices"/>
<rdfs:range rdf:resource="#Substance"/>
</owl:0bjectProperty>
<owl:FunctionalProperty rdf:ID="code">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#SensorServices"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
</owl:FunctionalProperty>
</rdf :RDF>
<!-- Created with Protege (with OWL Plugin 3.2.1, Build 365) http://protege.stanford.edu -->

164

APPENDIX C

AN EXAMPLE CDA USED IN THE
PILOT APPLICATION

<?xml version="1.0" encoding="UTF-8"7>

<ClinicalDocument xmlns="urn:hl7-org:v3"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<id root="111" extension="01" assigningAuthorityName="SAPHIRE"/>
<code code="34133-9" codeSystem="2.16.840.1.113883.6.1" displayName=’>SUMMARIZATION OF EPISODE NOTE’/>
<effectiveTime value="20060413"/> <!--yyyymmdd -->

<author>

<time value="20060413"/><!--yyyymmdd -->

<assignedAuthor>

<assignedAuthoringDevice>

<code code="111" codeSystem="222" codeSystemVersion="1"></code>
</assignedAuthoringDevice>

</assignedAuthor>

</author>

<custodian>

<assignedCustodian>

<representedCustodianOrganization>

<name>Dr Ana Fruntela</name>

</representedCustodianOrganization>

</assignedCustodian>

</custodian>

<r--

ok ok ok ook ok ook kok ok ok ok ok skokkok ok ko kok ok okokkok ok ok kok ok ok sk k ok
Demographics

ok ok ok ook ok ook kok ok ok ok ok skokkok ok ko kok ok okokkok ok ok kok ok ok sk k ok
-=>

<recordTarget>

<patient>

<patientPatient>

<administrativeGenderCode code="F" codeSystem="2.16.840.1.113883.5.1"></administrativeGenderCode>

165

<birthTime value="19790623"/>

<maritalStatusCode code="S" codeSystem="2.16.840.1.113883.5.2"></maritalStatusCode>
</patientPatient>

</patient>

</recordTarget>

<component>

<structuredBody>
<t--
sk sk ok sk ok ok ok ok ok o ok ok ok o ok o ok ok o o ko o ok o o ok o sk ok ok ok o ko o ok o sk ok sk o o ok ok o ok ok o ok ok
Active Problems section
sk ok ok sk o oK ok oK K oK oK ok o K oK o K oK o K oK o oK o o K oK ok o K ok o K oK o K ok o oK K o K oK o KoK ok K oK
->
<component>
<section>
<code code="11450-4" codeSystem="2.16.840.1.113883.6.1"></code>
<title>Active Problems</title>
<entry>
<observation classCode="0BS" moodCode="EVN">
<code code="R07.4" codeSystem="2.16.840.1.113883.6.3"/> <!-- Chest pain, unspecified; ICD-10 -=>
<effectiveTime>
<low value="20060413100000"/>
<high value="20060413103500"/>
</effectiveTime>
<value>46666</value>
</observation>
</entry>
<entry>
<observation classCode="0BS" moodCode="EVN">
<code code="134434004" codeSystem="2.16.840.1.113883.6.96"/> <!-- NYHA Class; SNOMED CT -=>
<value> 4 </value>
</observation>
</entry>
</section>

</component>

<t--

stk ok ok ok ok sk ook o ok ok ok ok ok sk ok ok ok sk ok o Kok ok sk sk o K ok ok sk sk ok ok ok o ok o ok sk ok ok ook ok
Past Medical History section

stk ok ok ok ok sk ook o ok ok ok ok ok sk ok ok ok sk ok o Kok ok sk sk o K ok ok sk sk ok ok ok o ok o ok sk ok ok ook ok
->

<component>

<section>

<code code="11348-0" codeSystem="2.16.840.1.113883.6.1"></code>
<title>PastMedicalHistory</title>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="I10" codeSystem="2.16.840.1.113883.6.3"></code> <!--Essential (primary) hypertension; ICD-10 -->

166

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="I21" codeSystem="2.16.840.1.113883.6.3"></code> <!--Acute myocardial infarction; ICD-10 -=>
<value>2 </value>

</observation>

</entry>

<entry>

<procedure classCode="PROC" moodCode="EVN">

<code code="297183000" codeSystem="2.16.840.1.113883.6.96"></code> <!--myocardial revascularization; SNOMED CT
</procedure>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="Z95.5" codeSystem="2.16.840.1.113883.6.3"></code> <!--Presence of coronary angioplasty
implant and graft; ICD-10 -=>

<value>true</value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="I20.0" codeSystem="2.16.840.1.113883.6.3"></code> <!--Angina pectoris; ICD-10 -->
<value>true</value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="I50.0" codeSystem="2.16.840.1.113883.6.3"></code> <!--Heart failure,ICD10 -->
<value>true</value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="I05.0" codeSystem="2.16.840.1.113883.6.3"></code> <!--Rheumatic mitral valve diseases, ICD10 -->
<value>1</value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="F41.9" codeSystem="2.16.840.1.113883.6.3"></code> <!--Anxiety disorder, unspecified, ICD10 -->
<value>true</value>

</observation>

<!-- pulmunary, bleeding.... to be added -->

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="271649006" codeSystem="2.16.840.1.113883.6.96"></code> <!--BP, Snomed CT -->

167

<value>100</value>
</observation>
</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="J45" codeSystem="2.16.840.1.113883.6.3"/> <!-- Asthma; ICD10 -->

<value> true </value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">
<code code="4386001" codeSystem="2.16.840.1.113883.6.96"/> <!--
<value> true </value>

</observation>

</entry>

</section>

</component>

<te-

ek ok ok Rk K K K K K Rk Rk ok s sk ok ok ok ok ok Kok 3K ok K KoK K K K K K ok o sk o ok ok ok ok Kok oK
Medications section

sk ok ok ok ok ok ok ok ok ok ok ok sk ko sk ok ok sk sk ok sk ok K KoK K kK 3 ko sk ok sk ok ok ok sk ok ok

>

<component>

<section>

<code code="19789-7" codeSystem="2.16.840.1.113883.6.1"></code>
<title>Medications</title>

<entry>

<substanceAdministration classCode="ActClass" moodCode="EVN">
<consumable>

<manufacturedProduct>

<manufacturedLabeledDrug>

Bronchial Spasm; SNOMED CT

<code code="33252009" codeSystem="2.16.840.1.113883.6.96"/> <!--Beta blocker. SNOMED CT -->

</manufacturedLabeledDrug>

</manufacturedProduct>

</consumable>

<statusCode code="active"/>

</substanceAdministration>

</entry>

<entry>

<substanceAdministration classCode="ActClass" moodCode="EVN">
<consumable>

<manufacturedProduct>

<manufacturedLabeledDrug>

<code code="387458008" codeSystem="2.16.840.1.113883.6.96"/> <!--Asprin. SNOMED CT -->

</manufacturedLabeledDrug>
</manufacturedProduct>

</consumable>

168

<statusCode code="completed"/>

</substanceAdministration>

</entry>

<entry>

<substanceAdministration classCode="ActClass" moodCode="EVN">
<consumable>

<manufacturedProduct>

<manufacturedLabeledDrug>

<code code="108979001" codeSystem="2.16.840.1.113883.6.96"/> <!--Clopidogrel. SNOMED CT -->
</manufacturedLabeledDrug>

</manufacturedProduct>

</consumable>

<statusCode code="suspended"/>

</substanceAdministration>

</entry>

</section>

</component>

<t--

stk ok ok ok ok sk ook o ok ok ok ok ok sk ok ok ok sk ok o Kok ok sk sk o K ok ok sk sk ok ok ok o ok o ok sk ok ok ook ok
Allergies and Adverse Reactions section

stk ok ok ok ok sk ook o ok ok ok ok ok sk ok ok ok sk ok o Kok ok sk sk o K ok ok sk sk ok ok ok o ok o ok sk ok ok ook ok

-=>

<component>

<section>

<code code="10123-x" codeSystem="2.16.840.1.113883.6.1"></code>
<title>Allergies and Adverse Reactions</title>

<entry>

<observation classCode=’COND’ moodCode=’EVN’ negationInd=’false’>
<statusCode code=’active’/>

<effectiveTime> <low value=’20041100000000°/> </effectiveTime>
<value xsi:type=’CD’ code=’387458008’ displayName=’asprin’
codeSystem="2.16.840.1.113883.6.96° codeSystemName=’>SNOMED CT’>
<originalText><reference value=’#allergen-1’/></originalText>
</value>

<entryRelationship typeCode=’SPRT’>

<observation classCode=’0BS’ moodCode=’EVN’>

<code code=’RXNASSESS’/>

<statusCode code=’completed’/>

<!-- reactions -->

<entryRelationship typeCode=’SUBJ’>

<observation classCode=’0BS’ moodCode=’EVN’>

<id root=’369bb3eb’/>

<statusCode code=’completed’/>

<value xsi:type=’CD’ code=’247472004’ displayName=’weal’
codeSystem=’2.16.840.1.113883.6.96° codeSystemName=’>SNOMED CT’>
<originalText><reference value=’#reaction-1’/></originalText>
</value>

</observation>

169

</entryRelationship>

</observation>

</entryRelationship>

</observation>

</entry>

</section>

</component>

<!--

sokokskok skl ksl sk sk skokskokskokskokskok sk ks ksk ok sk ks sk skok sk sk sk kb ksk ok sk ok skok sk sk ok sk
Resting ECG Features

sk kskoksk ksk sk ok skokskokskokskokskok sk sk sk kskok skt ks sk skok sk ks kb ksk ks ok skok sk sk ok sk
->

<component>

<section>

<code code="34752-6" codeSystem="2.16.840.1.113883.6.1"></code>
<title> EVALUATION AND MANAGEMENT NOTE, Cardiology</title>
<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="9874-9" codeSystem="2.16.840.1.113883.6.1"></code> <!--ECG Rythm Segment, LOINC -->
<value>2</value>

</observation>

</entry>

<entry>

<observation classCode="0BS" moodCode="EVN">

<code code="250908004" codeSystem="2.16.840.1.113883.6.96"></code>
<!--Left ventricular ejection fraction Snomed -->

<value> 38</value>

</observation>

</entry>

</section>

</component>

</structuredBody>

</component>

</ClinicalDocument>

170

VITA

PERSONAL INFORMATION

Surname, Name:
Nationality:

Date and Place of Birth:
Marital Status:

Laleci Ertiirkmen, Gokce Banu
Turkish (TC)

23 June 1979, Ankara

Married

Phone: +90 312 210 2076
e-Mail: banu@srdc.metu.edu.tr
EDUCATION
Degree Institution Year of Graduation
MS METU-Computer Engineering 2003
BS METU-Computer Engineering 2001

High School Yildirim Bayezit Anatolian High School, Ankara 1997

WORK EXPERIENCE

Year Place

Enrollment

2008-present SRDC, Reseach, Development and Consultancy Ltd. Sti Researcher
2001-2008 Software Research and Development Center, METU Researcher
2000-2001 Software Research and Development Center, METU Part Time

Software Developer

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

171

. Laleci G., Dogac A., “A Semantically Enriched Clinical Guideline Model Enabling
Deployment in Heterogeneous Healthcare Environments”, submitted for publication to

IEEE Transactions on Information Technology in Biomedicine

. Laleci G., Dogac A., Olduz M., Tasyurt I., Yuksel M., Okcan A., “ SAPHIRE: A
Multi-Agent System for Remote Healthcare Monitoring through Computerized Clinical
Guidelines”, Book Chapter in “Agent Technology and e-Health, Whitestein Series in

Software Agent Technologies and Autonomic Computing”, 2008

. Nee O., Hein A., Gorath T., Hulsmann N., Laleci G., Yuksel M., Olduz M., Ta-
syurt I., Orhan U., Dogac A., Fruntelata A., Ghiorghe S., Ludwig R., “* SAPHIRE:
Intelligent Healthcare Monitoring based on Semantic Interoperability Platform - Pi-
lot Applications”, Communications, IET, Special Issue on Telemedicine and e-Health

Communication Systems, Volume 2, Issue 2, February 2008 Page(s):192 - 201

. Dogac A., Namli T., Okcan A., Laleci G., Kabak Y., Eichelberg M., “ Key Issues of
Technical Interoperability Solutions in eHealth and the RIDE Project”, eChallenges
Conference, The Hague, The Netherlands, October 2007

. Della Valle E., Cerizza D., Celino 1., Dogac A., Laleci G., Kabak Y., Okcan A., Gul-
deren O., Namli T., Bicer V. , “ An eHealth Case Study”, Book Chapter in "Seman-
tic Web Services: Concepts, Technologies, and Applications", Studer, Rudi; Grimm,
Stephan; Abecker, Andreas (Eds.), 2007, Approx. 15 p., 100 illus., Hardcover, ISBN:
978-3-540-70893-3, Due: April 5, 2007, Springer.

. Dogac A., Laleci G., Aden T., Eichelberg M., “ Enhancing THE XDS for Federated
Clinical Affinity Domain Support”, IEEE Transactions on Information Technology in
Biomedicine, Vol. 11, No. 2, March 2007, pp. 213-221.

. Eichelberg M. ;Aden T., Riesmeier J., Dogac A., Laleci G., “ ELECTRONIC HEALTH
RECORD STANDARDS - A BRIEF OVERVIEW?”, 4th International Conference on
Information and Communications Technology (ICICT 2006), Cairo, Egypt, December
2006, pp. 7-19.

. Hein A., Nee O., Willemsen D., Scheffold T., Dogac A., Laleci G., “ SAPHIRE - In-
telligent Healthcare Monitoring based on Semantic Interoperability Platform - The
Homecare Scenario”, European Conference on eHealth (ECEH06) , Fribourg, Switzer-

land, October 2006, pp 179-190 (2006).

172

10.

11.

12.

13.

14.

15.

16.

17.

. Laleci G., Dogac A., Akcay B., Olduz M., Yuksel M., Orhan U., Tasyurt I., Sen T.,

Kabak Y., Namli T., Gulderen O., Okcan A., “ SAPHIRE: A semantic Web service
based Clinical guideline deployment infrastructure exploiting IHE XDS”, eChallenges

Conference, Barcelona, Spain, October 2006.

Dogac A., Laleci G., Kirbas S., Kabak Y., Sinir S., Yildiz A., Gurcan Y., “Artemis:
Deploying Semantically Enriched Web Services in the Healthcare Domain”, Information

Systems Journal (Elsevier), Volume 31, Issues 4-5, June-July 2006, pp.321-339

Dogac A., Laleci G., Kabak Y., Unal S., Beale T., Heard S., Elkin P., Najmi F., Mat-
tocks C., Webber D., Kernberg M., “Exploiting ebXML Registry Semantic Constructs
for Handling Archetype Metadata in Healthcare Informatics”, International Journal of

Metadata, Semantics and Ontologies, Volume 1, No. 1, 2006.

Della Valle E., Cerizza D., Bicer V., Kabak Y., Laleci G., Lausen H., “ The Need for
Semantic Web Service in the eHealth”, W3C workshop on Frameworks for Semantics

in Web Services, 2005.

Eichelberg M., Aden T., Riesmeier J., Dogac A., Laleci G., “A Survey and Analysis
of Electronic Healthcare Record Standards”, ACM Computing Surveys, Vol. 37, No:4,
December 2005.

Bicer V., Kilic O., Dogac A., Laleci G., “ Archetype-based Semantic Interoperability
of Web Service Messages in the Healthcare Domain”, Int’l Journal on Semantic Web

and Information Systems, Vol. 1, No.4, October 2005, pp. 1-22.

Bicer V., Laleci G., Dogac A., Kabak Y., “ Providing Semantic Interoperability in
the Healthcare Domain through Ontology Mapping”, eChallenges 2005, October 2005,

Ljubljana, Slovenia.

Bicer V., Laleci G., Dogac A., Kabak Y., “ Artemis Message Exchange Framework:
Semantic Interoperability of Exchanged Messages in the Healthcare Domain”, ACM
Sigmod Record, Vol. 34, No. 3, September 2005

Dogac A., Kabak Y., Laleci G. C. Mattocks, F. Najmi, J. Pollock, “ Enhancing ebXML
Registries to Make them OWL Aware”, Distributed and Parallel Databases Journal,
Springer-Verlag, Vol. 18, No. 1, July 2005, pp. 9-36

173

18.

19.

20.

21.

22.

23.

24.

25.

26.

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Tumer A., “* SATINE Project:
Exploiting Web Services in the Travel Industry”, eChallenges 2004 (e-2004), 27 - 29
October 2004, Vienna, Austria.

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Kirbas S., Gurcan Y., “ Semantically
Enriched Web Services for Travel Industry”’, ACM Sigmod Record, Vol. 33, No. 3,
September 2004.

Laleci G., Kabak Y., Dogac A., Cingil 1., Kirbas S., Yildiz A., Sinir S., Ozdikis O.,
Ozturk O., “ A Platform for Agent Behavior Design and Multi Agent Orchestration”,
Agent-Oriented Software Engineering (AOSE-2004) Workshop, the Third International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004),
New York City, New York - July 19, 2004

Dogac A., Kabak Y., Laleci G., “ Enriching ebXML Registries with OWL Ontologies
for Efficient Service Discovery”, 14th International Workshop on Research Issues on

Data Engineering, Boston, USA , March 28-29, 2004.

Dogac A., Laleci G., Kabak Y., “ Context Frameworks for Ambient Intelligence”, eChal-
lenges 2003, October 2003, Bologna, Italy.

Athanasiadis 1. N., Mitkas P. A., Laleci G., Kabak Y., “ Embedding Data-driven
Decision Strategies on Software Agents", 10th International Conference on Concurrent

Engineering, Madeira Island - Portugal, 26-30 July, 2003.

Dogac A., Kabak Y., Laleci G., “ A Semantic-Based Web Service Composition Facil-
ity for ebXML Registries”, 9th International Conference of Concurrent Enterprising,

Espoo, Finland, June 2003.

Dogac A., Tambag Y., Pektas S., Laleci G., Kurt G., Toprak S., Kabak Y., “An ebXML
Infrastructure Implementation through UDDI Registries and RosettaNet PIPs”, ACM

SIGMOD International Conference on Management of Data, Madison, Wisconsin,

USA, June 2002.

Dogac A., Laleci G., Kabak Y., Cingil I., “ Exploiting Web Service Semantics: Tax-
onomies vs. Ontologies”, IEEE Data Engineering Bulletin, Vol. 25, No. 4, December
2002,

174

27.

28.

29.

30.

Mitkas P., Symeonidis A., Kechagias D., Athanasiadis I., Laleci G., Kurt G., Kabak
Y., Acar A., Dogac A., “ An Agent Framework for Dynamic Agent Retraining: Agent
Academy”, €2002: European Commission’s e-Business and e-Work Annual Conference,

Czech Republic, October 2002.

Dogac A., Cingil I., Laleci G., Kabak Y., “ Improving the Functionality of UDDI
Registries through Web Service Semantics”, 3rd VLDB Workshop on Technologies for
E-Services (TES-02), Hong Kong, China, August 23-24, 2002

Dogac A., Laleci G., Kurt G., Kabak Y., Acar A., “A Platform for Semantically En-
riched Mobile Services", in Proc. of the First International Conference on Mobile

Business, Athens, Greece, July 2002.

Dogac A., Laleci G., Kurt G., Kabak Y., Acar A., “ An ebXML Infrastructure Imple-
mentation through UDDI Registries and RosettaNet PIPs”, ACM SIGMOD Interna-

tional Conference on Management of Data, Madison, Wisconsin, USA, June 2002

Number of Citations Received: 13 (Based on ISI Web of Science)

175

