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ABSTRACT

OPTIMUM TOPOLOGICAL DESIGN OF GEOMETRICALLY
NONLINEAR SINGLE LAYER LAMELLA DOMES USING
HARMONY SEARCH METHOD

Carbas, Serdar
M.S., Department of Engineering Sciences
Supervisor: Prof. Dr. Mehmet Polat Saka

July 2008, 118 pages

Harmony search method based optimum topology design algorithm is
presented for single layer lamella domes. The harmony search method is a
numerical optimization technique developed recently that imitates the musical
performance process which takes place when a musician searches for a better
state of harmony. Jazz improvisation seeks to find musically pleasing harmony
similar to the optimum design process which seeks to find the optimum
solution. The optimum design algorithm developed imposes the behavioral and
performance constraints in accordance with LRFD-AISC. The optimum
number of rings, the height of the crown and the tubular cross-sectional
designations for dome members are treated as design variables. The member
grouping is allowed so that the same section can be adopted for each group.
The design algorithm developed has a routine that build the data for the
geometry of the dome automatically that covers the numbering of joints, and
member incidences, and the computation of the coordinates of joints. Due to
the slenderness and the presence of imperfections in dome structures it is
necessary to consider the geometric nonlinearity in the prediction of their
response under the external loading. Design examples are considered to

demonstrate the efficiency of the algorithm presented.



Keywords: Optimum Structural Design, Harmony Search Algorithm,

Minimum Weight, Stochastic Search Technique, Lamella Domes.



0z

HARMONI ARAMA YONTEMI KULLANILARAK GEOMETRIK
YONDEN DOGRUSAL OLMAYAN TEK KATMANLI YAPRAKSI
KUBBELERIN OPTIMUM TOPOLOJIi BOYUTLANDIRMASI

Carbas, Serdar
Yiiksek Lisans, Miihendislik Bilimleri B imii

Tez Yoneticisi: Prof. Dr. Mehmet Polat Saka

Temmuz 2008, 118 sayfa

Tek katmanli yapraksi kubbeler i¢in harmoni arama yontemine dayali optimum
topoloji tasarim algoritmasi sunulmaktadir. Bir miizisyenin daha iyi bir
miizikal sunum arayist i¢inde uygulamaya c¢alistigi miizikal performans
siirecine benzetilen harmoni arama yontemi yakin gecmiste gelistirilen bir
sayisal optimizasyon teknigidir. Caz dogaglamasi, optimum ¢6ziime ulagsmaya
calisan optimum tasarim siirecine benzer sekilde, miizikal agidan tatmin edici
uyumu bulmaya cabalar. Gelistirilen optimum tasarim algoritmasi, LRFD-
AISC (Load and Resistance Factor Design-American Institute of Steel
Construction)‘ye uygun olan davranig ve performans sinirlayicilarini uygular.
Optimum halka sayisi, tepe yiiksekligi ve boru seklindeki kesitler kubbe i¢in
tasarim degiskenleridir. Her grupta ayni kesitlerin segilebilmesi i¢in eleman
gruplandirmasmna izin verilmistir. Gelistirilen tasarim algoritmasi, baglanti
noktalarmm ve eleman numaralandirilmalarinin ve baglanti noktalarinin
koordinat hesaplarimin otomatik olarak yapilmasini kapsayan, kubbenin

geometrik verilerini olusturan bir yordama sahiptir. Kubbe yapilarda,

Vi



narinlikten ve kusurlarin var olmasindan dolay1 bu yapilarin dis yiikler altinda
verecegi tepkiyi tahmin ederken geometrik dogrusalsizligi géz Oniine almak
gerekmektedir. Dikkate alinan tasarim Ornekleri sunulan algoritmanin

etkinligini gostermeyi amaglamaktadir.

Anahtar Kelimeler: Optimum Yapisal Tasarim, Harmoni Arama Yontemi,
Minimum Agirlik, Stokastik Arama Teknigi, Yapraks1 Kubbeler.
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CHAPTER 1

INTRODUCTION

1.1 Domes

Engineering is the activity through which designs for material objects are
produced. The engineering design communicates to the agency of manufacture
of construction not only the creative product of the designer, but the results of
all scientific deductions and judgmental decisions which were rendered in
developing design. The majority of engineering tasks have as their ultimate
goal the production of an engineering design or the provision of a means or aid

to designing.

Engineers and designers have been trying to find some new ways to cover large
spans, such as exhibition halls, stadiums, concert halls, shopping centers and
swimming pools, economically and to produce elegant structures from past to
now. Domes supply unimpeded wide spaces and they encompass a maximum
amount of areas with a minimum surface. They are also exceptionally suitable
structures for covering places where minimum interference from internal
supports are required. These specifications of domes make them very
economical structures when they are compared with the classical structure

types in terms of consumption of constructional materials.

Domes are structural systems which include one or more layers of elements
that are arched in all directions. The surface of a dome may be a part of a single
surface such as a sphere or paraboloid, or it may consist of a patchwork of

different surfaces. Besides, domes are either formed by using curved members

1



forming a surface of revolution or by straight members meeting at joints which
lie on the surface. The spherical structure of a dome does not only provide
elegant appearance but also offers one of the most efficient interior
atmospheres for human residence because air and energy are allowed to

circulate without obstruction.

Braced steel dome structures have been widely used all over the world during
the last three decades in many engineering applications. Some examples of
braced domes in the world are shown in Figures 1.1 through 1.7.

Figure 1.2 Nagoya dome, Sport Hall, Nagoya - Japan



Figure 1.5 The Spruce Goose Storage Hall in Long Beach, California - USA
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Figure 1.7 Panora Shopping Hall, Ankara - Turkey

1.1.1 Types of Braced Domes

There are many types of braced domes, some of which are used very often,
while others have limited applications. The eight types of domes maybe listed
below as [1]:

The Scwedler Dome

The Ribbed Dome

The Lamella Dome

The Grid Dome

The Geodesic Dome

The Stiff-jointed Framed Dome

The Plate Type Dome

© N o o M w0 D PF

The Zimmermann Dome



Mostly used dome types are demonstrated in Figure 1.8
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(i) Three-way grid dome (i) Four-way grid dome (k) Geodesic dome (1) Geodesic dome

Figure 1.8 Dome Types

Whilst the early domes were all masonry ones, modern domes construction
have kept abreast with the times, being entirely in concrete, steel and
aluminum. Steel is generally used for construction of braced domes. However,
occasionally aluminum and glass fibers can also be used. Among the latter
materials, aluminum is the most ideal to make up braced domes due to its light

weight and ease of fabrication.



Braced domes can be classified into two main groups about their construction
places as single layer systems and double layer systems. Single layer systems
are appropriate for smaller spans of about 40 m while double layer systems can
cover more than 200 m span lengths. These systems can be designed as rigidly-
jointed systems or pin-connected systems. Semi-rigid connected systems are
also used owing to impracticality of perfect pin connection.

1.2 Optimization in Engineering

A goal of every designer is to design the best (optimum) systems. The
increasing demand on engineers to lower production costs to withstand
competition has prompted engineers to look for rigorous methods of decision
making, such as optimization methods, to design and produce products both

economically and efficiently.

Optimization is the act of obtaining the best result under given circumstances.
In design, construction, and maintenance of any engineering system, engineers
have to take many technological and managerial decisions at several stages.
The ultimate goal of all such decisions is either to minimize the effort required
or to maximize the desired benefit. Since the effort required or the benefit
desired in any practical situation can be expressed as a function of certain
decision variables, optimization can be defined as the process of finding the

conditions that give the maximum or minimum value of a function.

Common problems faced in the optimization field are static and dynamic
response, shape optimization of structural systems, reliability-based design and
optimum control of systems. Any optimization problem requires proper
identification of objective function, design variables and constraints at problem
formulation state. Depending on the class of problems and needs, several types

of design variables and objective functions can be identified. Constraints



usually involve physical limitations, material failure, buckling load and other
response quantities.

An optimization or a mathematical programming problem can be stated as
follows [2];

><1

X
Find X ={ >} which minimizes f(X) (1.2)

subject to the constraints:

9,00<0,j=12,..,m (1.2)
1.(X) =0,j=12,..,p (1.3)

where X is an n-dimensional vector called the design vector, f(X) is termed the

objective function, and g; (X) and I;(X) are known as inequality and equality

constraints, respectively. The number of variables n and the number of
constraints m and/or p need not be related in any way. This kind of problem is
called constrained optimization problem. Some optimization problems do not

involve any constraints and can be stated as;

Xl

X
Find X =4 .2} which minimizes f(X) (1.4)

such problems are called unconstrained optimization problems.



Optimization techniques, having reached a degree of maturity over the past
several years, are being used in a wide spectrum of industries, including
aerospace, automotive, chemical, electrical, and manufacturing industries. With
rapidly advancing computer technology, computers are becoming more
powerful, and correspondingly, the size and the complexity of the problems
being solved using optimization techniques are also increasing. Optimization
methods, coupled with modern tools of computer-aided design, are also being
used to enhance the creative process of conceptual and detailed design of

engineering systems.

1.3 Structural Optimization

The demand for economical and reliable structures in virtually all fields of
endeavor has provided the impetus for the development of rapid, convergent
and effective structural algorithms. Structural optimization (or optimal design)
deals with the problem of designing a mechanical structure in an efficient way
with respect to some criterion, such as minimum weight which is related to
cost, maximum stiffness, minimum displacement at specific structural points

and minimum structural strain energy, subject to design restrictions.

Structural optimization when first emerged has attracted a widespread attention
among designers. It has provided a systematic solution to age-old structural
design problems which were handled by using trial-error methods or
engineering intuition or both. Application of mathematical programming
methods to structural design problems has paved the way in obtaining a design
procedure which was capable of producing structures with cross-sectional
dimensions. The development of computer programs enabled the engineers to
simulate and experiment many different designs without actually building
them. In that way it is easier today for design engineers to create an optimum

design which performs the intended task within the design limits.



The logic in the optimization process is to build the model parametrically so
that the sizes of the model can be changed through iterations and to find the
most efficient design by changing those variables. First of all, the design
should be able to do the task required. For example in case of a beam, the beam
should carry the required load, which it is designed for. An optimum design
should satisfy all the design criteria determined. Those criteria are defined by
constraints in the optimization problem. The maximum normal stress in a beam
may be a constraint for an optimization problem and can be limited to a certain
value like yield stress. In structural optimization, usually the objective is to
minimize the weight of the structure. Thus, an optimum design is usually the
one with least amount of material. Also, to minimize the production cost can be

the objective of the optimization in some cases.

1.3.1 Mathematical Modeling of Structural Optimization Problems

A general mathematical model for the optimum design problem of a pin-

jointed structure has the following form [3];

Find cross-sectional area vectors that are selected as design variables,

A=A A, ... Ap]eS (1.5)
to minimize;

W(A):i p.A L (1.6)
subject t_o;

gi(A)=o;|—|o:?| <0 i=1...,N_ (1.7)
hi(A)=|H,|-|H| <0 i=1,...,N_ (1.8)

U(A)=uj [ ~|u; <0 j=1...,N

m (1.9)



where;

W(A)

P

: a vector of cross-sectional areas,
: available list,
: objective function (weight of the structure),

> unit weight of i-th member,
- length of i-th member,
. cross-sectional area of i-th member,

: total number of structural members,

stress constraint of i-th member,
stability constraint of i-th member,

displacement constraint at the j-th node in the k-th direction,

- stress in the i-th member,

- allowable stres in the i-th member,

: slenderness ratio in i-th member,

: allowable slenderness ratio in the i-th member,

: displacement at the j-th node in the k-th direction,

- allowable displacement at the j-th node in the k-th direction.

1.3.2 Methods of Structural Optimization

There is no single method available for solving all structural optimization
problems efficiently. A number of optimization methods have been developed
for solving different types of structural optimization problems. Methods of
optimization have been studied and developed over the last 35 years. These
methods have matured to the point where they are beginning to be utilized in
the design of realistic engineering systems. Although the methods are currently
being used primarily by large systems, they will undoubtedly be developed

further so that even small design systems will have access to this new
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technology. Optimization methods offer a designer the flexibility of studying
many alternatives in a relatively short time, thus producing better and cost
effective designs more efficiently. The purpose of this section is to describe the
structural optimization methods briefly.

1.3.2.1 Analytical Methods

Analytical methods usually employ the mathematical theory of calculus and
variational methods, in studies of optimal layouts or geometrical forms of
structural elements, such as columns, beams and plates. These analytical
methods are most convenient for fundamental studies of single structural
components, and they are not intended to handle larger structural systems. The
structural design is represented by a number of unknown functions and the goal
is to find the form of these functions. The optimal design is theoretically found
exactly through the solution of a system of equations expressing the conditions

for optimality.

Applications based on analytical methods though they sometimes omit the
practical aspects of realistic structures, are still of certain value. Analytical
solutions provide valuable insight and theoretical lower bound optimum
against which more practical designs may be judged. Problems solved by
analytical methods are called continuous problems or distributed parameter

optimization problems.

1.3.2.2 Numerical Methods

Closed form analytical solutions for practical optimization problems are
difficult to obtain if the number of design variables is more than two and the
constraint expressions are complex. Therefore numerical methods and
computers must be used to solve most of the optimization problems. In these

methods, an initial design for the system is selected which is iteratively
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improved until no further improvements are possible without violating any of

the constraints [4].

One of the advantages of using numerical optimization methods and associated
programs is that once the problem has been properly formulated and defined
for the program, it is quite easy to solve it for a variety of conditions and
requirements. In most practical applications, the design variables cannot have
arbitrary values due to manufacturing and fabrication limitations. For example,
the plate thickness and width must be selected from the available ones, the
number of bolts used must be an integer, the number of rebars must be an
integer and their size must be selected from those available, and so on. Design
problems with such variables are called discrete variable optimization
problems in contrast to the continuous variable problems where design
variables can have any value within the specified limits. To solve discrete
variable problems, the optimization software must have the capability to obtain
a final design for which values of the variables have been selected from a

specified set [4].

Mathematical programming techniques are useful in finding the minimum of a
function of several variables under prescribed set of constraints. The various
techniques available for the solution of different types of optimization
problems are given under the heading of mathematical programming
techniques, such as calculus methods, calculus of variations, linear
programming, nonlinear programming, geometric programming, quadratic
programming, dynamic programming, integer programming, stochastic

programming, separable programming, and mutiobjective programming [5].

The desire to optimize more than one objective or goal while satisfying the
physical limitations led to the development of multiobjective programming
methods. Goal programming is a well-known technique for solving specific

types of multiobjective optimization problems. Game theory technique applied
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to solve several mathematical economics and military problems when it was
firstly developed, but during the last decade game theory has been applied to
solve engineering design problems. Simulated annealing, genetic algorithms,
evolution strategies, tabu search, harmony search, ant colony and particle
swarm represent a new class of mathematical programming techniques that

have come into prominence during last decade.

Another numerical optimization method is Optimality Criteria based on the
derivation of an appropriate criterion for specialized design conditions and
developing an iterative procedure to find the optimum design [6]. Its principal
attraction was that the method was easily programmed for the computer, was
relatively independent of problem size, and usually provided a near-optimum
design with a few structural analyses. This last feature represented a
remarkable improvement over the number of analyses required in mathematical
programming methods to reach an optimum solution. The optimality criteria
methods were originally developed for discrete systems. The methods were
first presented for linear elastic structures with stress and displacement

constraints and later extended to problems with other types of constraints.

1.4 Stochastic Optimization Techniques

In most of the various engineering practices, including structural optimization,
Mathematical Programming and Optimality Criteria Methods, known as
classical optimization methods, have been used up to recent years. However,
differential mathematical solution algorithms, which depend on the acceptance
of continuous design variables of these methods, bring about some difficulties
for the application of methods to large structural systems and do not produce
ideal solutions for engineering structures requiring a design process according
to previously identified discrete profile lists. Stochastic search is a class of
search methods which includes heuristics and an element of nondeterminism in

traversing the search space. Unlike the search algorithms introduced so far, a
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stochastic search algorithm moves from one point to another in the search
space in a nondeterministic manner, guided by heuristics. The next move is
partly determined by the outcome of the previous move. Stochastic search
techniques deal with situations where some or all of the parameters of the
optimization problem are described by random or probabilistic variables rather
than by deterministic quantities. The source of random variables may be

several, depending on the nature and the type of problem.

1.4.1 Genetic Algorithms

Genetic algorithms (GAs) are adaptive heuristic search algorithm based on the
evolutionary ideas of natural selection and genetics. They represent an
intelligent exploitation of a random search used to solve optimization
problems. Although randomized, genetic algorithms are by no means random,
instead they exploit historical information to direct the search into the regions
of better performance within the search space. The basic techniques of the
genetic algorithms are designed to simulate processes in natural systems
necessary for evolution, especially those following the first laid down by

Charles Darwin of survival of the fittest [7].

Genetic algorithms have been applied to optimization problems in many fields,
such as optimal control problems, job scheduling, transportation problems,
pattern recognition, machine-learning [7-8], etc. Genetic algorithms have been
extremely successful in solving unconstrained optimization problems. Several
methods have been proposed to handle constraints in construction with genetic

algorithms for numerical optimization problems.
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1.4.2 Evolutionary Strategies

Evolution strategies (ES) were developed by Rechenberg [9] and Schwefel [10]
in Germany. This method is conceptually similar to Genetic Algorithms, but
originally did not use crossover operators. Evolution strategies have very
complex mutation and replacement functions. Mutation is the main operator
while recombination is the secondary in evolution strategies. In this technique,

selection is a deterministic operator.

Evolution strategies work with vectors of real numbers for representation of
designs and optimization parameters. Mutation and adaptation of mutation
rates are important working mechanisms in this method. Each new design point
is created by adding random noise to the current one. If the new point is better
than the former one search proceeds from this new point, if not the older point
is retained. Historically evolution strategies search only one point at a time but
recently they use a population of designs like GAs [11]. The main difference
between evolution strategies and genetic algorithms is that only the best fit

individuals are allowed to reproduce (elitist selection) in the former.

Evolution strategies are often used for empirical experiments and it is based on

principal of strong causality, that is, small changes have small effects.

1.4.3 Simulated Annealing

Simulated annealing (SA) is the classical algorithm in thermodynamics for
finding low-energy or even optimum configurations for complex physical
problems that cannot be solved analytically. It simulates the cooling process of
a physical system, taking advantage of the fact that if this cooling procedure is
performed slowly enough, the system will end up in the optimum state (e.g., a
flawless crystal). On the other hand, it only reaches a less desirable local

minimum in the energy landscape (e.g., a crystal with many defects), if the
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system is rapidly cooled down. Therefore, starting at a very high temperature, a
series of temperatures steps is performed such that the temperature is slowly
reduced between the steps. With decreasing temperature, the system undergoes
a transition from a high-energy, unordered regime to a relatively low-energy, at
least partially ordered regime. The optimization process ends when the system

is frozen in an optimum state at a low temperature [12].

1.4.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic
optimization technique inspired by social behavior of bird flocking or fish

schooling.

Particle swarm optimization shares many similarities with evolutionary
computation techniques such as genetic algorithms (GAs). The system is
initialized with a population of random solutions and searches for optimum
result by updating generations. However, unlike genetic algorithms, particle
swarm optimization has no evolution operators such as crossover and mutation.
In particle swarm optimization, the potential solutions, called particles, fly

through the problem space by following the current optimum particles.

In the past several years, particle swarm optimization has been successfully
applied in many research and application areas. It is demonstrated that particle
swarm optimization gets better results in a faster and cheaper way compared

with other methods.

Another reason why particle swarm optimization is attractive is that there are
few parameters to adjust. One version, with slight variations, works well in a
wide variety of applications. Particle swarm optimization has been used for
approaches that can be used across a wide range of applications, as well as for

specific applications focused on a specific requirement.
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1.4.5 Ant Colony Optimization

The fundamental theory in an ant colony optimization (ACO) algorithm is the
simulation of the positive feedback process exhibited by a colony of ants. This
process is modeled by utilizing a virtual substance called ‘trail’’ inspired by
real ants. Each ant colony optimization algorithm follows a basic
computational structure. An ant begins at a randomly selected point and must
decide which of the available paths to travel. This decision is based upon the
intensity of trail present upon each path leading to the adjacent points. The path
with the most trail has a higher probability of being selected. If no trail is
present upon a path, there is zero probability that the ant will choose that path.
If all paths have an equal amount of trail, then the ant has an equal probability
of choosing each path, and its decision is random. An ant chooses a path using
a decision mechanism and travels along it to another point. Some ant colony
optimization algorithms now apply a local update to the trail. This process
reduces the intensity of trail on the path chosen by the ant. The idea is that
when subsequent ants arrive at this point, they will have a slightly smaller
probability of choosing the same path as other ants before them. This
mechanism is intended to promote exploration among the ants, and helps to
prevent early stagnation of the search and premature convergence of the
solution. The amount of this trail reduction should not be great enough to
prevent overall solution convergence. The ant continues to choose paths to
travel between points, visiting each point, until all points have been visited and
it arrives back at its point of origin. When it returns to its starting point, the ant
has completed a tour. The combination of paths an ant chooses to complete a
tour is a solution to the problem, and is analyzed to determine how well it
solves the problem. The intensity of trail upon each path in the tour is then
adjusted through a global update process. The magnitude of the trail adjustment
reflects how well the solution produced by an ant’s tour solves the problem.

The paths that make up the tours that best solve the problem receive more trail
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than those paths that make up poor solutions. In this way, when the ant begins
the next tour, there is a greater probability that an ant will choose a path that
was the part of the tour that performed well in the past. When all the ants have
completed a tour and all of the tours have been analyzed and the trail levels on
the paths have been updated, an ant colony optimization cycle is complete. A
new cycle now begins and the entire process is repeated. Eventually almost all
of the ants will make the same tour on every cycle and converge to a solution.
Stopping criteria are typically based on comparing the best solution from the
last cycle to the best global solution. If the comparison shows that the
algorithm is no longer improving the solution, then the criteria are reached
[13].

1.4.6 Tabu Search

Tabu search (TS) is a metaheuristic technique proposed by Glover [14] as a
strategy for solving combinatorial optimization problems. Tabu search is an
iterative improvement method based on neighborhood search methods and on
memories to guide the search. A tabu search algorithm uses a function called
move which transforms a current solution into another solution until certain
conditions to stop the process are met. The algorithm starts with an initial
solution. In scheduling optimization problems this solution can be generated by
a priority rule. A subset of candidate moves is defined for this solution, and for
each move a subset of solutions called the neighborhood is generated. At each
iteration the best neighbor of each move is selected, and similarly the best of
all moves is chosen to lead the current solution to a new solution. The inverse
of this move is stored in a short term memory of fixed size, called tabu list. The
list prevents the process cycling, and guide the search to good regions in the
search space. When a move is in the tabu list, this move is tabu or forbidden for
a fixed number of iterations. However, if a tabu move is attractive according to
an aspiration criterion, then this move is allowed. One aspiration criterion is to

do a tabu move if their solution improves the best solution found to date. To
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further improve the search, an intensification strategy can be used to
concentrate the search in a localized region, and a diversification strategy can
be used to direct the search to unexplored regions. Finally the algorithm
iterates from a solution to another solution until a set of stopping conditions are
satisfied [15].

1.4.7 Harmony Search Optimization

The new HS meta-heuristic algorithm was derived by adopting the idea that
existing meta-heuristic algorithms are found in the paradigm of natural
phenomena. The algorithm was based on natural musical performance
processes that occur when a musician searches for a better state of harmony,
such as during jazz improvisation [16]. Jazz improvisation seeks to find
musically pleasing harmony (a perfect state) as determined by an aesthetic
standard, just as the optimization process seeks to find a global solution (a
perfect state) as determined by an objective function. The pitch of each musical
instrument determines the aesthetic quality, just as the objective function value
is determined by the set of values assigned to each decision variable [17].

Figure 1.9 shows the harmony search optimization procedure.
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Step 1: Initialize the optimization problem and algorithm parameters:

The optimization problem is specified.

Step 2: Initialize the harmony memory (HM):

The ‘‘harmony memory’’ (HM) matrix is filled with as many randomly generated
solution vectors as the size of the HM (i.e., HMS) and sorted by the values of the
objective function, f (x).

Step 3: Improvise a new harmony from the HM:

A new harmony vector is generated from the HM based on memory considerations, pitch
adjustments, and randomization.

Step 4: Update the HM:

If the new harmony vector is better than the worst harmony in the HM, judged in terms
of the objective function value, the new harmony is included in the HM and the existing
worst harmony is excluded from the HM.

Step 5: Repeat Steps 3 and 4 until the termination criterion is satisfied:

The computations are terminated when the termination criterion is satisfied. If not, Steps

3 and 4 are repeated.

Figure 1.9 Harmony search optimization procedure

In this study, optimum topology of a single layer lamella domes is determined
by using harmony search algorithm. This technique is discussed in detail in
Chapter 4.

1.5 Literature Survey on the Optimum Design of Dome Structures

The studies and the algorithms developed in recent years for optimum design

of dome structures can be reviewed in a historical order as follows;

An optimality criteria algorithm has been developed by Saka [18] for the

optimum design of pin-jointed steel structures under multiple loading cases

while considering displacements, buckling and minimum size constraints. In

this study Saka designed a 112-bar pin-jointed steel dome based on minimum
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weight as an example according to AISC design requirements. Hollow pipe
sections were used as dome members and system was subjected to equipment
loading. Optimum design was obtained after 12 iterations having the minimum
volume of 44.47 mm®. In the design problem both buckling and displacement
constraints were equally dominant. It is shown in this example that by means of
optimality criteria method an optimum design algorithm can be developed for
domes that can be effectively used in the design of large structures, which is of

importance in practice.

The space trusses, including the geometrical nonlinearity due to large
displacements, have been optimally designed based on the coupling the
optimality criteria approach with tangent stiffness method by Saka and Ulker
[19]. The nonlinear behavior of the space truss required for steps of optimality
criteria method which was obtained by using iterative linear analysis. In each
iteration the geometric stiffness matrix is constructed for the deformed
structure and compensating load vector is applied to the system in order to
adjust the joint displacements. During nonlinear analysis, tension members are
loaded up to yield stress and compression members are stressed until their
critical limits. The overall loss of elastic stability is checked throughout the
steps of algorithm. The member forces resulted at the end of nonlinear analysis
are used to obtain the new values of design variables for the next cycle. As a
design example, 120-members and 37 joints steel dome truss was taken. The
truss dome was subjected to a vertical loading at different joints acting in the
negative direction of z-axis. The minimum weight was found to be 7587 kg
considering nonlinear response of structure and by taking into account the
linear behavior, optimum weight of the same structure was found to be
8511 kg. It is shown by this study that optimality criteria method can easily be

used for nonlinear structures.

Huyber [20] implemented a study to express the effect of design shape in

material properties, such as weight, cost, strength, thermal insulation, energy
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requirement, for the optimization of dome structures when geometry was taken
as a design variable. The surface of dome was subdivided into three triangular
platonic solids, which are tetrahedron, octahedron, or icosohedron. These three
basic patterns were compared and evaluated two different methods. The
distribution of nodal points were considered as equal as possible on the surface
as a start point of view to his study. The data obtained from developed
algorithm give the opportunity to express the designed shape in material

properties.

Saka and Kameshki [21] dealt with optimum design of a 18-member framed
dome, a 96-member lamella dome, and a 110-member network dome to show
the importance of nonlinearity due to the effect of axial forces in members on
the optimization of three-dimensional rigidly jointed elastic framed domes.
They used the optimality criteria approach together with the stiffness method
which considers geometric nonlinearity. The algorithm developed considers
displacement restrictions and combined stress constraints not to be more than
yield stress. The stability functions for three-dimensional beam-columns are
used to obtain the nonlinear response of the frame. These functions are derived
by considering the effect of axial force on flexural stiffness and effect of
flexure on axial stiffness. The algorithm begins with the optimum design at the
selected load factor and carries out elastic instability analysis until the ultimate
load factor is reached. During these iterations, overall stability of frame is
checked. If the nonlinear response is obtained without loss of stability, the
algorithm then proceeds to the next design cycle. This study shows that in
framed dome without diagonal members, the effect of nonlinearity is

important. Its consideration certainly leads to an economical structure.

Erbatur et. al. [22] investigated a 112-bar steel dome for verifying the
correctness and efficiency of GAOS (genetic algorithm based structural
optimization) program for optimum design of space steel structures. They

collected the dome members in seven distinct groups, whereas with only two

22



groups were considered in the study carried out by Saka [18] for the same
example before. Furthermore, in the place of AISC specifications, the
allowable compressive stress for each member was computed according to the
Turkish specifications. They applied the program on design examples,
compared their results with formers’ and showed the ability of genetic

algorithms on structural optimization.

Lin and Albermani [23] focused on application of a knowledge-based system
which is an integrated computer-aided environment used to design problems of
lattice-domes. The knowledge- based system offers the possibility of gathering

the various aspects of the design process into a unified whole.

Ulker and Hayalioglu [24] considered a 56-bar space dome truss as a design
example to investigate the optimum design algorithm for the space trusses with
the aid of spreadsheets considering displacements, stresses, and buckling
constraints. Matrix displacement method is used for the analysis of design
examples. The optimum designs obtained using the spreadsheets are compared
with those employing a classical optimization method. The developed
algorithm gives better results in comparison with those of the previous ones.
The values of joint displacements obtained are much smaller than their upper
bounds. As a result, it is deduced that the tensile and buckling stress constraints
are dominant in the design. It is demonstrated that the spreadsheets algorithm
can be effectively used in the optimum design of practical large plane and

Space trusses.

Missoum, Giirdal, and Gu [25] optimized a 30-bar space dome structure by
using a displacement-based approach. Displacement-based approach uses
iterative finite element analyses to determine the structural response as the
sizing variables are varied by the optimizer, which makes it different from the
traditional optimization approach. This method searches for an optimal solution

by using the displacement degrees of freedom as design variables. As a result
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of this study, they found lower weights than Khot and Kaman [26], who had
studied the same example before.

Yuan, and Dong [27] studied optimization of cable domes by using nonlinear
analysis. The nonlinear equilibrium equation of cable domes was developed
and solved by Newton-Raphson method. They introduced the prestress which
was very important factor for the design of a cable dome because it has no
initial rigidity before the prestress. This study, also, showed that the impact of
the level of prestress does not only effect the geometric configuration, but it
also determines the load carrying capacity of cable domes.

A 616-member mallow dome is studied by Rajasekaran, Mohan, and Khamis
[28] as a design example to illustrate the computational advantage of evolution
strategies with functional neural networks for the optimization of space trusses.
This dome truss was formed using the Formex algebra of the Formian
software. The evolution strategies has been applied to find the optimal design
of this kind of space trusses considering the areas of the members of the space
structures as discrete variables. The objective function was obtained for first
few generations by using a structural analysis package such as Feast, and for
other generations by functional neural networks. They presented that this study
was suitable for solving large scale space structure optimizations which have

700 degrees of freedom.

A study on a hemispherical space dome truss with 52-bar was taken by
Lingyun, Mei, Guangming, and Gang [29] as a design example to show the
validity, availability, and reliability of nice hybrid genetic algorithm to achieve
size and shape truss optimization with frequency constraints. This example was
a highly nonlinear dynamic optimization problem with frequency—prohibited
band constraints. Lin had reported the optimal results by the optimal criteria for

the same example dealt before. The optimal weight of this structure found from
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nice hybrid genetic algorithm was much lesser than Lin’s results by nearly
%20.

Lamella-suspen dome systems were studied by Kitipornchai, Kang, Lam, and
Albermani [30] with respect to a detailed parametric analysis. The results of
this study demonstrate that the buckling is the most important problem for
dome structures. They investigated the influence of geometric imperfection,
asymmetric loading, rise-to-span ratio, and connection rigidity on buckling
capacity. In the design examples cable prestress force method is used. As a
result of this study it was shown that the bottom tensegrity system helps the
dome structure to increase the buckling capacity and stiffness, and decrease the
member stiffness. They also showed the geometric imperfection has very
important effect on buckling capacity of suspen-dome system. They
implemented extensive nonlinear buckling analysis to show the reduction of

buckling capacity of a suspen-dome system up to 50%.

Togan, and Daloglu [31] proposed an adaptive genetic algorithm which is used
to design 112-bar steel dome truss of Saka [18] and Erbatur [22]. They proved
that the automatic grouping of members, penalty function and static or adaptive
approach has important effect for solving the system. They compared their
results with previous examples and showed that their algorithm finds lighter
domes. They demonstrated that when they use proper grouping and a penalty
function in the adaptive genetic algorithm, the design algorithm becomes quite

effective.

Loépez, Puente, and Serna [32] examined the influence of dome geometry,
slenderness of members, joint rigidity, and loading of single-layer latticed
domes with semi-rigid joints. They ascertained that the angle between
members located along the same meridian line has effect on load carrying

capacity of the dome.
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Kameshki, and Saka [33] studied on a genetic algorithm for determining the
optimum height, and the optimum steel section designations for the members
of a braced dome. They considered the geometrical nonlinearity in their
analysis to obtain realistic response of flexible dome under the external loads.
They checked loss of stability during the nonlinear analysis due to its high
importance. They optimally designed braced domes by using genetic algorithm
and showed that the consideration of nonlinear behavior yields realistic results
and leads to a lighter structure.

Saka [34] presented a comprehensive coupled genetic algorithm for calculation
of the optimum number of rings, the optimum height of crown, and the tubular
cross-sectional designations for the single layer latticed dome members under
given external loading. The topological design of these structures present
difficulty due to the fact that the number of joints and members as well as the
height of the dome keeps on changing during the design process. The most
important characteristic of this study is that currently no study was available
covering the topological design of dome structures that give the optimum
number of rings, the optimum height of crown and the tubular cross-sectional
designations for the dome members under a given general external loading. It
is shown in the design example considered that the optimum number of joints,
members and the optimum height of a geodesic dome under a given external

loading can be determined without designers’ interference.

1.6 The Scope of This Study

The main goal of this study is to develop an algorithm for the optimum
topology design of single layer lamella domes based on harmony search
algorithm. In this thesis, Chapters are arranged as in the following; In Chapter
1, a cursory definition is given about domes and types of braced domes.
Furthermore, engineering design optimization, structural optimization and the

methods of structural optimization are discussed briefly. Besides these, a
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literature survey on the optimum design of dome structures is included in a
historical order. In Chapter 2, the elastic-critical load analysis of braced domes
is discussed. General information about elastic critical load analysis,
calculation of elastic critical load factor, stiffness matrix of a space member,
nonlinear stiffness matrix with stability functions and nonlinear elastic critical
load analysis are also described in this chapter respectively. The morphology,
and the mathematical modeling of the optimum topology design of a single
layer lamella dome are explained in Chapter 3. Chapter 4 contains the general
concept of harmony search optimization method in a detailed manner and
includes information about the harmony search based optimum design of single
layer lamella dome algorithm developed. The last two parts of this study are
allocated for design examples and conclusions, respectively. In Chapter 5, as a
numerical example, a single layer lamella dome subjected to different types of
external loading is designed by the algorithm developed and the results
obtained are shown. The last chapter, Chapter 6, contains the conclusions of

the study.
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CHAPTER 2

ELASTIC-CRITICAL LOAD ANALYSIS OF SPATIAL
STRUCTURES

2.1 Definition of Elastic Critical Load Analysis

Elastic Critical Load Analysis computes the elastic critical load factor, 4., for a

structure subjected to a particular set of applied loads. This load factor is the
ratio by which the axial forces in the members of the structure must be
increased to cause the structure to become unstable due to the flexural buckling
of one or more members (lateral torsional buckling of individual members is
not taken into account). The elastic critical load of the structure is a function of

the elastic properties of the structure and the pattern of loading.

Once the elastic critical load is known, member effective lengths can be
calculated. The effective length of a member is defined as the length of an ideal
pin-ended strut having the same elastic critical load as the load existing in the
member when the structure is at its critical load. The effective length may be

expressed as a factor multiplying the actual member length.

The effective length factor is calculated separately for each of the member
principal axes for each load case. A load factor of less than 1.0 for any load

case indicates that the structure is unstable under the applied loading.

The elastic critical load for any load case is determined by computing the axial

forces in the members of the structure and then increasing them in proportion
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until the structure becomes unstable. At this point the factor by which the axial
forces have been increased is the elastic critical load factor for the structure
under the current loading. The elastic critical load factor is also known as the
buckling load factor.

2.2 Calculation of Elastic Critical Load Factor

The elastic behavior of a structure is governed by the equation:

P=KsA (2.1)

or more precisely:

JP = Ks (OP)A (2.2)

The use of K (AP) implies that K, is a function of the applied load AP . This

equation is nonlinear.

where;

P = external loads applied at the joints of the structure,
A = joint displacements of the structure,

Ks = stiffness matrix of the structure,

A = the load factor.

To determine the value of the critical load factor, 4., the problem is linearized

by carrying out a double iterative process. The value of A is increased in a
step-by-step manner, and at each load level the singularity of K (AP) is
checked. At each load level, also, an inner iteration is performed before the

singularity check to find the correct values of the member axial forces shown
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in equation (2.2) is solved repeatedly until a consistent set of deflections is
obtained. The number of iterations required here depends on how the structure
is near to instability, and how good a guess of axial force can be made initially
[35].

2.3 Stiffness Matrix of a Space Member

p=kd (2.3)

This is the member stiffness equation in which p and d are 12-term vectors of
member force and displacement respectively, and k is a 12x12 member
stiffness matrix for most general case of a prismatic member in space (shear
deformation is neglected), and with the implicit condition that the deformations

are so small as to leave the basic geometry unchanged.

If a member in space is taken into account, there is the possibility of three
linear displacements and three rotations at each of the member as shown in
Figure 2.1. The letter dy denotes linear displacements direction, and 6y
denotes rotations. The first suffix denotes the displacement direction, or the
axis about which a rotation takes place, while the second suffix denotes the
member end concerned. There are thus 12 possible displacement components

for the member, or 12 degrees of freedom.
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Figure 2.1 A Typical Space Member with Displacements and Rotations.
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Associated with each displacement, there is a corresponding force or moment,
and these are illustrated in Figure 2.2. The letter p denotes the direct forces and

m denotes moments. p, is an axial thrust, p, and p, are shears, m, is a

torsional moment, and m, and m, are bending moments.
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Figure 2.2 A Typical Space Member with Forces and Moments.

The physical properties of the member are designated in the conventional
manner as E, G, L, and A, which denote Young’s modulus, shear modulus,

length, and cross-sectional area respectively. The principle second moments of
area for bending are 1, and 1,, the subscripts indicating the axes about which
the second moments are taken. The polar second moment of area, which should
logically be denoted by 1, , is denoted by J which is the conventional symbol

in torsion studies.

To allow Young’s modulus E to be taken as a common factor, the shear

modulus G has been replaced by E/2(1+v), where v is Poisson’s ratio.

It is important to note that the member stiffness matrix k is symmetrical about

its main diagonal [35].
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Figure 2.3 Stiffness matrix of a space member in local coordinate system.
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Many structural members require less than the full matrix of 12 degrees of
freedom to express their deformations. Since a member in a space truss has pin
end connections, it cannot transmit any moment through its hinged ends.
Consequently, its deformation depends only on the linear displacements at each
end, which yields only three degrees of freedom at any joint. The stiffness
matrices in such cases may be obtained by selecting relevant terms from the

full matrix shown in Figure 2.3.

2.4 Derivation of a Nonlinear Stiffness Matrix Using Stability Functions

The axial forces in a member have a significant effect on its flexural bending
that cause nonlinearity in the behavior of structures. Therefore, it is of
importance to study this effect in the behavior of dome structures.

Structures which are subjected to both axial forces and bending moments are
called beam-column. Members carrying both axial force and bending moments
are exposed to an interaction between these effects. The lateral deflection of a
member causes additional bending moment when an axial force is applied. This
changes the flexural stiffness of the member. Similarly, the presence of
bending moments affects the axial stiffness of the member due to shortening of
the member caused by the bending deformations. If the deformations are small,
the interaction between bending and axial forces can be ignored. In such a case,
the force-deformation relationship for a beam-column is same as equation
(2.3). However, if the deformations are large, the stiffness matrix k is affected
by the interaction between bending and axial forces, and it is not linear
anymore [36]. The nonlinear stiffness matrix can be derived by using stability

functions.
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2.4.1 Stability Functions

The stability functions are the modification factors froms, tos,. These

functions can be defined with respect to member length, cross-sectional
properties, axial force, and the end moments. The effect of axial force on
torsional stiffness and the effect of torsional moment on axial stiffness are
neglected [36].

where;
S, . stability function for the effect of flexure on axial stiffness,
S, . stability function for the effect of axial force on flexural stiffness

against rotation of near end about z-axis,

S, . stability function for the effect of axial force on flexural stiffness

against rotation of far end about z-axis,

S, . stability function for the effect of axial force on flexural stiffness

against rotation of near end about y-axis,

Se . stability function for the effect of axial force on flexural stiffness

against rotation of far end about y-axis,

Se . stability function for the effect of axial force on flexural stiffness

(about z-axis) against translation in y-direction,

S, . stability function for the effect of axial force on shear stiffness in y-

direction against translation in y-direction,
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Sg . stability function for the effect of axial force on flexural stiffness

(about y-axis) against translation in z-direction,

Sy . stability function for the effect of axial force on shear stiffness in z-

direction against translation in z-direction.

2.4.1.1 Effect of Flexure on Axial Stiffness

The axial stiffness of the beam in the absence of end moments is given by
EA/L, and the axial deformation due to axial loading P is given by PL/EA.
However, the end moments produce an additional axial deformation in the
beam. In order to include the effect of flexure on axial deformation, the axial

stiffness of the beam-column must be modified. For this purpose, the modified

axial stiffness can be illustrated as s, (EA/L). An expression for s, is derived as

follows [36].
Y
Mza Mzb
é/\ Q p
" L
Fya i Fyb
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an ’III i FZb
SAX
(b) ASNJAL

Figure 2.4 Effect of Flexure on Axial Stiffness: (a) Bending in X-Y plane; (b)
Bending in X-Z plane
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From Figure 2.4 (a) and (b);

ds® = dx® + dy® + dz®

by rearranging this equation,

ds? dy? dz?
=1+
dx? dx*  dx’

Shortening due to bending can approximately be defined as,
do, =ds—dx
dividing equation (2.6) by d,

dé, _ds ,
dx dx

Neglecting higher order terms,

dg, 1 (d_v) (d_]
dx 2| \dx dx
Therefore, the shortening of the beam-column due to bending is,

L
o, = j%dx
0
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(2.7)
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(2.9)
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Total shortening of the beam-column is expressed,

o, = shortening due to axial load (J, ) + shortening due to bending (9,)

-G (&) Jo
-T2 (9 (2 o 212

P
o, = (EAJ (2.13)
S| —
L
1
and s, = > (2.14)
(o))
2PL dx dx
d’y
The curvature [d J can be defined from Figure (2.4) (a),
x?
d’y 1
— M,+—(M,_,+M P 2.15
(dxz j EI |: ( zb) y:| ( )
Let o = Ei (2.16)

Substituting equation (2.16) in equation (2.15) and rearranging the terms,
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d2y ) az a2
— [+d’y=— M, +M, x——M 2.17
(dxz ] a y PL za zb P za ( )

The solution for equation (2.17) is given by the summation of complementary

function and particular integral;

y = Asinax+ Bcosax +{PLL(MZa+MZb)—MF:a} (2.18)

Substituting the boundary conditions y=0 at x=0 and x=L,

A:—% cosecal M, cosal+M

and (2.19)

The slope of beam in the X-Y plane is given by,

ﬂzAaCOSax—Basinaan% M, +M, (2.20)

dx

Similarly, the equation of the beam-column for bending in the X-Z plane is

M
2= Csin x+Dsin fx +{% M, +M, - Pya} (2.21)

where % = 5 (2.22)

y

Substituting the boundary conditions z=0 at x=0 and x=L,
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1
C:_E cosecL [MyacosﬂL+Myb]
and (2.23)

The slope of the beam in the X-Z plane is given by,
Q—Cﬂcosﬁx—Dﬂsinﬂx+i M_+M (2.24)
dx PL * '

Now the integrals in equation (2.14) can be evaluated. The final result of the

integration is;

L 2
J’(d_yj dx = 12 [aL M, ?+M ? cotal +alcosec’al
dx 2P°L

0

-2 M, +M, 2+20¢LMmMZb cosecaL 1+alcotal ] (2.25)

where; H, =[aL M_*+M,* cotal +alcosec’al

2 M_ +M, *+2aLM_M, cosecal 1+alcotal ]

_ 2:2L H, (2.26)

and

L 2
dZJ 1 2 2 2
— | dx=——[pL M “+M ,° cotSL+ SLcosec” L
J(dx 2P°L g Y

2 M, +M, “+2BLM M, cosecAL 1+ALcotpL ] (2.27)
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where; H, =[AL M *+M* cot L+ BLcosec’ AL

2 M, +M, “+2BLM M, cosecAL 1+pLcotpL ]

1
= H 2.28
2P?L Y (2.28)

Therefore, equation (2.14) becomes,

1
— (2.29)

1+4P3L2[Hy+HZ]

)
Il

Note that; when end moments are absent, s, becomes unity.

A similar approach can be used to derive an expression for s, for a beam-

column with axial tensile force P. The final expression is as follows:

1
5, = — (2.30)

H AP°L*[H, +H, |

where; Hy':[ﬂL M2 +M,,° coth,b’L+,BLcosech2ﬂL}

2 M, +M, “+2BLM M, cosechBL 1+pALcoth L (2.31)

and

H ':[aL M, *+M,? cothal +alcosech’al }

z

2 M_+M, *+2aLM_M cosechal 1+alcotheal (2.32)
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2.4.1.2 Effect of Axial Force on Flexural Stiffness

2.4.1.2.1 Bending in X-Y Plane

From Figure 2.4 (a), the differential equation of the beam-column bending in
the X-Y plane is given by Equation (2.17) for which the solution is given by
equation (2.18). The constants A and B are obtained from Equation (2.19). The
end slopes of the beam-column are obtained by substituting x=0 and x=L in
equation (2.20);

(ﬂj :021’:1216\6‘{4'i Mza+MZb (233)
dX x=0 PL

dy _ 1

(&jx=L =92b=AaCOSaL—Bas|na|_+E[Mya+Myb] (2.34)

Equations (2.33) and (2.34) can be rearranged and rewritten in matrix form as;

S 4EI/ s 2EI/
Mza 2 L ’ L Hza
= (2.35)
M, 2El, 4El, 0,
when P is compressive, the s, and s, functions take the following form;
sinaL —aLcosal
s, = Lol i inhtadid (2.36)
4 2-2cosalL—alsinal
L-sinalL
s -1a d dnll (2.37)
2 2-2cosalL—alsinal
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For members subject to axial tensile force P and bending in the X-Y plane, P is
replaced by —P in equation (2.15). Solving the resulting differential equation,

equation (2.35) can again be obtained as;

1 alLcoshal —sinhaL
S,=—a _ (2.38)
4 2—-2cosh oL +aLsinhal
sinhaL—-alL
s, =lal oo (2.39)
2 2—-2coshalL +alLsinalL

2.4.1.2.2 Bending in X-Z Plane

From Figure 2.4 (b), and following the same procedure previously mentioned,
the stability functions for bending in X-Z plane can be derived. The relationship

between end moments and end slopes is given by;

y =54(4El%j Ss(zEl%j{Hya} a0

ya

sin pL— gLcos gL .
S, = E,BL pL-p ﬂ for compressive P (2.41)
4 2—2cos pL— pLsin gL

LcoshpBL —sinhgL
S, =E,BL pLeoshjL —sin _ﬂ for tensile P (2.42)
4 2—2cosh SL+ pgLsinh gL

and
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1 pSL—sin SL
277 2-2cos AL - BLsin AL

for compressive P (2.43)

sinh gL - gL
2 2—2cosh L +aLsinh gL

for tensile P (2.44)

2.4.1.3 Effect of Axial Force on Stiffness Against Translation

If both of the ends of a beam-column are restrained against rotation, but one
end is translated trough a distance A relative to the other, the flexural and
shear stiffnesses of the beam against this translation are affected by the axial

force P.

> <

<

<
AN

)
=

» -\ \ \

>
—
=
4 o
)

Fya E P X
Foo
Figure 2.5 Effect of Axial Force on Stiffness Against Translation
2.4.1.3.1 Translation in X-Y Plane
From Figure 2.5, and using the slope-deflection equation;
4E1 A 2El A
a=S, Zj—y+s3 Zj—y (2.45)
L L L L
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6El 2 1
(%) {Zae3s (246

oS, 2
where;

2 1
Ss ZESZ +§s3 (2.48)

Substituting the values of s, and s, from equations (2.36) and (2.37) when the
axial force is compressive, and from equations (2.38) and (2.39) when the axial

force is tensile, the expressions for s, can be obtained as;

When P is compressive;

1 L’(1-cosaL
5, =L a’l“(1-c sa-) (2.49)
6 (2—-2cosaL —alLsinal)

When P is tensile;

212 _
s, 21 a“L°(cosha L _1) (2.50)
6 (2—2coshaL —aLsinhal)

Once again from Figure 2.5,

Fo ZT'V' (2.51)
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where;

ZM:Mza+Mzb—PA

, (2.52)
and
A A
R e e (253
L L L L
2El. A 4E1. A
M, =s.|—2|—+s z | L 2.54
AL AT s
Thus,

8EI, 4E1) P
FW:{%( = j+%( . j—I1Ay (2.55)

If &? _P is taken:
El

z

12E1, [2 1 &2 12El,
P :T{ESZ "3s ‘7} -5 (%) (250
where;

2 1 &P
S, ==S,+=8,— 2.57
3737 12 (257)

Substituting for s, and s, from equations (2.36) and (2.37) when axial force is
compressive;
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a’l? 1-cosal Ak

: - (2.58)
2—2cosalL —alLsinalL 12

1
37 :E

When the axial force P is tensile, P is replaced by —P in equation (2.52) and

values of s, and s, are obtained from equations (2.38) and (2.39);

2 coshalL-1 22
s -1 ¢ at- Lok (2.59)
6 2—2coshal +alLsinhalL 12

2.4.1.3.2 Translation in X-Z Plane

Proceeding as in the previous section, s, can be given;
1
Sy =—=S,+=5; (2.60)

Substituting the values of s, and s, from equations (2.41) and (2.43) when the
axial force is compressive, and from equations (2.42) and (2.44) when the axial

force is tensile, the expressions for s; is shown as;

B?L? 1—cos L

== . (2.61)
6 2—2cospL—pLsin gL
When P is tensile;
’L? cosh pL-1
o1 P PL- (2.62)
6 2-2cosh gL+ pLsinh gL

Proceeding as in the previous section, S, can be derived;
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2 1. pA . : .

Sy = 554 +§s5 BT when the axial force P is compressive (2.63)
2 1 p . , :

S =§S4 +§s5 + T when the axial force P is tensile (2.64)

Substituting the values of s, and s. from equations (2.41) and (2.43) when the
axial force is compressive, and from equations (2.42) and (2.44) when the axial

force is tensile, the expressions for s, is shown as;

When P is compressive;

212 1—cos AL 2
S —1 d 'B. AL (2.65)
6 2-2cospL—-pLsinpgL 12
When P is tensile;
21?2 cosh AL -1 22
i P pr1 Pl (2.66)
6 2-2cosh gL+ pLsinh SL 12

The nonlinear stiffness matrix using the stability functions s, through s, is

shown below in Figure 2.6.
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1514

pxl

px2

slE 0
L

12EI,
0 s, E
0
0 0
0

6EI,
S T
sl_—EA 0
L

~12El,
0 S, E
0
0 0
0

6EI,
T

0 0 0
0 0 0
12El —6El
; L3 y 0 58 Lz y
0 & 0
L
—6El 4E|
52 - 0 S, Ly
0 0 0
0 0 0
0 0 0
~12El, 6,
9 L3 8 Lz
0 & 0
L
-6El 2El
Sg L2 ’ Sg Ly
0 0 0

0 0
0 0
~12EI,
9 L3 O
0 G
L
6El
58—1?1 0
0 0
0 0
0 0
12EI
9 L3 > O
@
L
6El
S By 0
0 0

Figure 2.6 Nonlinear stiffness matrix for three-dimensional beam-column element in local coordinate system.
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2.5 Geometric Nonlinearity

A variety of classifications may be used to describe the deformational response
of structures; for example, small or large, elastic or inelastic, etc. In general,
deformations of structures under the external loads are small, and hence the
application of the equilibrium equations on the undeformed shape of the
structure does not introduce large errors. However, when structure consists of
slender members, the deformations become large and small deflection theory is
no longer valid. The equilibrium equations are required to be written in such
structures on the deformed shape of its elements. In other words, the deflected
shape of the structure should be taken into account. When this is considered in
the displacement computations, the relationship between the external loads and

displacements become nonlinear.

Geometric nonlinearity is required to be considered in the analysis of a
structure, if its deflections are large compared with its initial dimensions. In
structures with large displacements, although the material behaves linear
elastic, the response of the structure becomes nonlinear [19]. Under certain
types of loading, namely, even when small deformations are presumed,
nonlinear behavior can be predicted. Changes in stiffness and loads occur as
the structure deforms. When geometric nonlinearity occurs in a structure, the

effect of axial forces to member stiffness must be taken into account.

2.5.1 Construction of Overall Stiffness Matrix

After setting up the nonlinear member stiffness matrix in local coordinate

system displacement transformation matrix is conducted.

The equation (2.3) can be rewritten for a 3D truss member in local coordinates;

p=kd (2.67)
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Now, the stiffness matrix in terms of local coordinates (k) must be converted to
stiffness matrix in terms of global coordinates (K). The transformation

equation of stiffness matrix from local to global coordinates is given below;

K=T"kT (2.68)
where;

K = global stiffness matrix,

Kk = local stiffness matrix,

T = transformation matrix (from local to global coordinates).

Although in theory the direction cosine matrices for each member of a structure
may be set up from the orientation of the members in terms of the structure
axes, in practice this can cause some difficulty. It is convenient, therefore, to
restate a rotation matrix Ry in terms of the projections of the members on the
structure axes. This can most easily be done by imagining the members as
initially lying in the x’-direction with their y- and z-axes coinciding with y’ and
z’, and then moving by a series of three rotations to their final positions. The
rotations are i ) a rotation a about y-axis; ii ) a rotation § about the z-axis; and
iii ) a rotation y about the x-axis. (Although there is a number of ways in which
a member might be moved from its initial to its final position, it is essential to

this derivation that the order indicated is preserved.)

Rotation a about y-axis : Figure 2.7 shows the rotation o of the member OA

to OA’. It is a rotation in the xy plane. The rotation matrix Rg;

Ry=| 0 1 0 (2.69)
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X
Zl
o
z
Figure 2.7 Rotation a about y-axis
X X'
Atthisstage; |y =R, | Y' (2.70)
z z'

Rotation p about z-axis; Figure 2.8 shows the rotation 3 of the member from

position OA’ to OA”’. It is rotation in the Xy plane. The rotation matrix Rg;

cosp  sing 0
Rg=|-sing cosp 0 (2.71)
0 0 1
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Figure 2.8 Rotation 3 about z-axis

The effect of this second rotation is obtained by premultiplying the result of
Equation (2.70) by Rg.

X X
Atthisstage; | Y [=R,R, | Y (2.72)
Z z'

Rotation y about x-axis; Rotations a and  bring the member to its final
position, but its z-axis need not to be in the x’z’ plane. If, for instance, the x’y’

plane is a vertical plane, and the member is an | section with its web vertical
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when first placed along the x’-axis, then the web is still in a vertical plane after
rotations a and fB. If the web is inclined to the vertical in the final position, then

a further rotation v is required as shown in Figure 2.9.

g

final position of member

- position of member after
rotations a and 3

initial position of member

Figure 2.9 Final rotation y of the member about yz plane

The rotation matrix Ry;

1 0 0
R, = 0 cosy siny (2.73)
0 —siny cosy
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The effect of this final rotation is obtained by premultiplying the result of
Equation (2.72) by R,. The final state is

X X
y :RyRﬂRa y' (2.74)
Z z'

Then; Ro=R,RgR«

If the member OA is of length L, and its projections in its final position OA’’
on the x’-,y’-, and z’-axes are Ly, Ly, and L, respectively, then it can be seen
from Figure 2.8 that;

OC=L,, OD=L,=BA™ , BC=-L,, OB= (L’ - L") =\/(L,* +L,%)

Hence;
cosa=0C/OB=L_/,/(L?+L2)
sina=-L, /(L7 +L})

cosB=4(L°+L7) /L
sing=L,/L

L/L L, /L L /L

X y 7

(-L.L, cosy-LL,siny) (LE+L%cosy  (-LLcosy+LLsiny)

R,=RR,R, =

rr LJLZ+L?) L LJLZ+LY)
(-L,L,siny-LL, cosy) (LZ+L7)siny  (-LLsiny+LL cosy)
(2.75)

Equation (2.75) gives the most general form of the rotation matrix.
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So, that is to say, direct forces in structure axes are affected only by the direct
forces in member axes, and moments in structure axes are affected only by the

direct forces in member axes. The form of transformation matrix (T) is;

X
o
O o

o

(2.76)

o o o
o o

oMl o o
Jd o o o

0 _l(12x12)

After developing the stiffness matrices for each member of the entire structure
in terms of local coordinates, these matrices can be assembled to form the
global stiffness matrix for the entire structure. Total stiffness at a coordinate is
the sum of the stiffnesses contributed to that coordinate by each element

attached to that coordinate.

The nonlinear response of a structure is obtained through successive linear
elastic analysis as shown in Figure 2.10. Initially the axial forces are presumed
to be zero. With zero values of axial forces, stability functions become
equal to 1. Linear elastic analysis of the structure is carried out and axial forces
in members are determined. With these values of axial forces the stability
functions are calculated and structural analysis is repeated. This process are
continued until the convergence is obtained in the axial force values of

members.
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e 1

| INPUT DATA | 2
[Axial Forces=0  Stability Functions (s1-Sg)=1 ] 3
> [ Construct the overall stiffness matrix K ] 4

A\ 4

Solve the joint equilibrium equations L=KX for the joint displacements X | ¢
(where; L=(L;,Lo...) applied forces, loads, and/or moments acting on structure.)

v
Calculate the member end forces using P:kTX| 6

v
Use the axial loads in the members and calculate their stability functions| 7

A4

Calculate the
stability functions

Is there convergence on

using the new member axial forces? 8
member axial forces|
Yes
\ 4
END
9

Figure 2.10 Nonlinear response of a structure obtained through successive

elastic linear analysis.

From Figure 2.10, an accurate set of joint displacements and member forces
become available for each load factor and nonlinear load-displacement diagram

of the structure can be plotted as shown in Figure 2.12 below.
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Table 1 Y-displacement values of the joint 1 of the dome under different

external loads.

Y-displacements of the joint 1
of the dome (mm)

Loads (P) Number of From Nonlinear From Linear
(kN) Nonlinear Iterations Analysis Analysis
100 3 4.482 4.454
200 3 9.023 8.908
400 3 18.300 17.820
600 4 27.860 26.720
800 4 37.770 35.630
1000 4 48.140 44.540
1200 5 59.380 53.450

In order to show the difference between the displacement values obtained
through linear and nonlinear analysis, the dome structure shown in Figure 2.11

is considered.

6.25m

AN /N /N /N

20m

A 4

A

Figure 2.11 A single layer lamella dome with 3 rings subjected to different

concentrated loads on its crown.
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The dome is subjected to a concentrated load in Y-direction at its crown.

Y-displacements of the crown which is the first joint of the dome are calculated

by using linear and nonlinear analysis under different load levels. These are

shown in Table 1. The results obtained are plotted in Figure 2.12. The effect of

the geometrical nonlinearity on the values of Y-displacement of joint 1 is

clearly seen in this figure. At the load of 1200 kN, the nonlinear displacement

IS 11.1% more than the linear displacement. It is clear that when the load is

increased, the axial forces increase in the members and their effect on the

flexural bending of the member become more emphasized. As a result

nonlinear displacement becomes larger.

1400
1300
1200
1100
1000
900
800
700
600

Loads (kN)

500
400
300
200
100

T

T

T

T

U T T T T T T U T U T U U

—O— linear analysis
==+--nonlinear analysis

r r r r r

r r r r r

r r r
5 10 15 20 25 30 35 40 45 50 55 60 65
Displacements (mm)

70

Figure 2.12 Linear and nonlinear Y-displacements of joint 1 of the lamella

dome.

Figure 2.12 clearly reveals the fact that when the vertical loads become larger

in dome structures, the displacements become larger and inclusion of

geometric nonlinearity in the analysis of such structures becomes a necessity.
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2.6 Elastic Critical Load Analysis

Elastic critical load analysis determines the load factor such that when the
loads are increased by this factor a structure loses its stability. The elastic
critical load analysis of structures involves iterative nonlinear analysis with
load increments. The flowchart shown in Figure 2.13 displays the steps of the
algorithm [35].

The stiffness matrix of a stable structure has the property of positive-
definiteness, and a test for this property is performed at each load level. At the
critical load the determinant of the stiffness matrix becomes zero which means
the stiffness matrix becomes singular. It is not easy to determine exactly at
what value of the load factor the determinant becomes zero. In practice when
the sign of the determinant of the stiffness matrix changes from positive to
negative, it is understood that the structure becomes unstable. The steps of the

algorithm are explained below;

1) The preparatory data should include the type of structure, such as space
frame, grillage, dome, etc., the number of the members, number of joints,
number of load cases and common material properties, such as Young’s
modulus, shear modulus. The coordinates of each joint in the structure axes are
listed against the joint number. The members of structure with same sectional
properties are shown with the same group numbers. The support kind of the
members are given. The load case should be revealed in preliminary data. In
addition to this basic information, the preliminary data must include an initial

value for the load factor (LF), and the increment applied to load factor (INC).

2 ) N denotes the number of loading cycles and DET1, DET2, and DET3 are
the values of the determinant of the stiffness matrix. The axial forces in
members of the structure are not always known before the analysis begins, and

this chart assumes them all zero initially.
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3) To prevent convergence due to ill-conditioning, the number of load cycles
can be limited by inserting a check on N.

Input Data !
A
N=0 DET1=0 Axial Forces=0 2
\ 4
Multiply Axial Forces by > =N+1 < Multiply Axial Forces by |3
LF/(LF - INC) LF/(LF - INC)

A
Multiply initial loading by LF

4
v

LF=LF+INC =1 LF:LF+IN§|

A 4

Gather K using current values of 5
axial forces in stability functions

A

A 4

Solve P=KA for A DET1= DET2
l A

4 DET2= determinant of K | I=1+1 ? S

A\ 4
Calculate axial forces in members

Is ‘W‘ <0.0022 S 7
DET2
Yes Yes
DET3=D 8
A
9

Figure 2.13 Flowchart for the determination of nonlinear elastic critical load
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4) A number of solutions which is counted by | are performed because initially
the axial forces at each load level are only known approximately.

5 ) The structure stiffness matrix K is set up by using stability functions as
shown in Figure 2.6.

6 ) When the terms of the stiffness matrix converge to a steady state at
consecutive cycles, the recurrent performed analysis at each load level should
be canceled. The determinant of the stiffness matrix DET2 is used as a suitable

control parameter as its value depends upon the stiffness matrix terms.

7 ) Once the proportional alteration in the determinant is less than %0.2, the
recurrent analysis is called off. This restriction value is completely random, but
it is reasonable in practice. The final determinant value is taken as the stiffness
matrix determinant stored in DET3 and this value is used for checking the

positive-definiteness.

8 ) When the loading approaches to the critical level, the stiffness matrix
becomes increasingly ill-conditioned and the determinant values become very
large. In such a case it is meaningless to keep repeated analysis going and it
should be terminated when 1=15. If this termination occurs at first load level
(N=1), it means the loading is very near to critical level at the beginning. In
this case the analysis must be terminated and has to be renewed with a smaller
set of loads. In other respects, the load factor can be increased so that the axial

forces increase by the same ratio for examining further load levels.

9 ) As soon as the load level holds the satisfactory convergence, the value of
the determinant obtained is compared with that from the previous cycle. If no
sign change is observed then the load factor and axial forces are increased by
one step and a new load level is studied. If a sign change comes out (changing

from positive to negative), then the process is terminated.

61



As an example, if the dome in Figure 2.11 is considered once again under
different external loading, the determinant values of the stiffness matrix of the
dome for the last nonlinear analysis cycle which is the optimum design stored
as DET3 is shown in Table 2. It is obvious that dome can resist up to 1200 kN
external concentrated loading at its crown. If the loading exceeds this value, the
stiffness matrix of the dome changes its sign from positive to negative. This

means after critical loading value (1200 kN) the dome lost its stability and fail.

Table 2 Determinant values of the stiffness matrix of the dome.

Loads (P) Number of DET3
(KN) nonlinear iterations (stiffness matrix determinant)
100 3 0.397E+231
200 3 0.975E+230
400 3 0.350E+229
600 4 0.538E+227
800 4 0.263E+225
1000 4 0.234E+222
1200 5 0.100E+218
1400 3 -0.999E+194
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CHAPTER 3

OPTIMUM DESIGN OF LAMELLA DOMES

3.1 Morphology of Lamella Domes

The morphology of the single layer lamella dome has a simple geometric form.
If the total number of rings and the height of the crown of the dome are known,
then it is very simple to get the whole topological information about the dome.
Utilizing the geometrical features of the lamella dome, the total number of
members and joints, and the member incidences can be established by the
knowledge about the total number of rings. One additional step to this, using
the geometric configuration and the height of crown of the dome, the exact
coordinates of all joint nodes can also be determined. Lamella domes with
varying crown heights and rings number, therefore, have dissimilar topology
from each other [33-34-37].

The form of commonly used single layer lamella dome is shown in Figure 3.1.
If the diameter of the dome D, the total number of rings n,, and the height of
the crown h are known, then all of the structural data about geometry of the
dome can be computed automatically. The distance between the rings in the
dome on the meridian line has to be equal. It can be easily seen from Figure 3.2
(b) that all the joints are located with equal distance from each other on the
same ring. The top joint at the crown is numbered as the first joint (joint
number 1). Every ring has 12 joints on itself. The first joint on the first ring
according to the positive z direction making an angle of 360°/ 24 = 15° with
the radius drawn on the x axis is numbered as joint 2 and all of the first joints

of the other rings are placed as;
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(b) Plan
Figure 3.2 Automated computation of joint coordinates in a lamella dome.



[ + (r-1)*12] (3.1)

where r is the ring number and Jy; is the first joint number of the first ring

namely 2.

It is worthwhile to mention that all of the first joints of the odd numbered rings
(ring 1, ring 3, ring 5, etc.) are located on the x axis with same angle of 15°.
Beside this, the first joints of the even numbered rings (ring 2, ring4, etc.) are
located on the intersection points of that rings and x-axis. For example the first
joint number of the third ring is numbered as 2 + (3-1)*12 = 26 and it makes
15° angle with x-axis. On the other hand, the first joint number of the fourth
ring is numbered as 2 + (4-1)*12 = 38 and this joint is located on the
intersection point of fourth ring and x-axis. By the aid of this relation every

joint on the rings is numbered in a regular sequence.

Member incidences are arranged in similar manner. First member is taken as
the one which is on the x axis and connects joint 1 to joint 2. The other 11
members connect joint 1 to joints 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. This is
followed by the members that connect joints on the ring as 2-3, 3-4, 4-5, 5-6, 6-
7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-2. This process is repeated for each
ring and member incidences for all the members in the dome are determined

and stored in an array.

Computation of X, y, and z coordinates of a joint on the dome requires the
angle between the line that connects the joint under consideration to joint 1 and
the x-axis as shown in Figure 3.2 (a) and (b). This angle can be calculated for

joint i shown in the same figure.
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For the odd numbered rings;

360 360*(i-j,,)
=—+

.
Y 12 (3.2)
For the even numbered rings;
360*(i-
o = ( Jr,l) (33)

i 12

where «; is shown in Figure 3.2 (b), r is the ring number that joint i is placed

on it and j is the first joint number on the ring number r which is on the x-axis.
For example, the angle between the radius that connects joint 1 to joint 16

located on a even numbered ring (ring 2) and the x-axis;

360*(16-14)
o, =————-=60° 3.4
On the other hand, the angle between the radius that connects joint 1 to joint 28

located on a odd numbered ring (ring 3) and x-axis;

_ 360 360*(28-26)

a =75°
® 04 12

The X, and z; coordinates of joint i can be calculated as;

=racos(c;)

X;
2 (3.5)

=—rasin(«,)
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where r is the ring number that joint i is on it and a is the radius of ring r in x-z

plane.

If the distance between rings are equal to a, then a becomes D/(2n;). The v,

coordinate of joint i;

yi:\/RZ_XiZ_ VR-h (3.6)

where R is the radius of the semi-circle shown in Figure 3.2 (a) computed from
( D* + 4h?) / (8h). By use of equations (3.5) and (3.6) for each joint, it is
possible to obtain the coordinates of the joints in the dome automatically.

3.2 Optimum Topology Design of Lamella Domes

Topological design of a lamella dome with a given base diameter necessitates
the finding out of the optimum number of rings and the height of the crown,
and the steel sections designations for each member group in the dome selected
from a standard steel sections table. These should be specified such that the
strength and serviceability requirements are satisfied according to code of

practice and the overall cost or only the material cost of the dome is minimum.

68



2 2

TN
e

SREBIBE,
PR

oo

2 2

Figure 3.3 (a) Lamella Dome with Two Different Member Groups.

It is possible for the members of a dome to be made of the same section in
practice. However in some cases they can be grouped together to achieve the
minimum construction cost for the structure. The optimum topology design of
single layer lamella domes differs in formulation depending on the way
member grouping is decided in the dome [33-34]. If the members are chosen to
belong to the same group, dome becomes simple to design and member
grouping is independent of the number of rings. In another case, members
located in a meridian line can be one group and members on the rings are
another, total of two groups as shown in Figure 3.3 (a). In both cases number of
groups in the dome is not function of the number of rings and automatic

grouping of the members can be performed without the need of the total
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number of rings in the dome. However, it is also possible that the members of
the dome can be grouped such that the members between each ring are to be
assigned one group and the members on each ring are another group as shown
in Figure 3.3 (b) [34-37]. In this case, the members between the crown and the
first ring are assigned as group 1, the members on the first ring are assigned as
group 2, the members between rings 1 and 2 are assigned as group 3, and the
group number of members on the ring 2 is assigned as group 4 and so on.
Under this circumstance, grouping of the members depend upon the total
number of rings which is one of the design variables of the problem. Hence the
total number of groups in the dome becomes twice the total number of rings in
the design problem. For example, if a dome with three rings is considered, the
total number of design variables becomes 7, six of which are the sectional
designation to be selected for each group and the last one is the height of the
dome. In the case of five rings in the dome the total number of design variables
is 11, ten of which represents the sectional designations to be assigned for each

group and the last one gives the height of the crown in the dome.
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Figure 3.3 (b) Lamella Dome with Eight Different Member Groups.

3.3 Mathematical Model of Optimum Design Problem of Lamella Domes
According to LRFD-AISC

In three dimensional modeling of lamella domes, joints are considered to be
rigidly connected in order to represent real behavior of these domes. As a result
of such modeling, all members of the lamella dome are exposed to both axial
forces and bending moments. Consequently, axial stiffness of the members of
lamella dome are influenced by the bending moments directly because of
members’ slenderness, which requires the consideration of the geometric

nonlinearity in the analysis of these structures.
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The design of lamella domes requires the selection of steel sections for its

members from a standard steel pipe section tables such that the dome satisfies

the serviceability and strength requirements specified by the code of practice

while the economy is observed in the overall or material cost of the dome.
When the design constraints are implemented from LRFD-AISC [38-39] in the

formulation of the design problem the following mathematical programming

problem is obtained.
ng S;
minW =>"m > "I,
i=1 j=1
Subject to;

5'( < §ku ’ k:1,2, ..... ,p

For R >0.2;
oP.

n

M
I:)u + § M ux uy < 1
¢Pn 9 ¢bM nx ¢bM ny

For R < 0.2;
oP

n

M
it + M, +—2|<1
2¢ I:)n ¢bM nx ¢bM ny

oV, =V, , r=212,..,nm
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where m, in equation (3.7) gives the unit weight of a lamella dome member
belonging to group i selected from steel pipe section list of LRFD-AISC, s, is
the total number of members in group i, and ng is the total number of groups
in the dome system. |; is the length of member j . &, in equation (3.8) is the
displacement of joint k and §,, is its upper bound. The joint displacements are

computed by carrying out elastic-critical load analysis for lamella dome

system.

Equations (3.9) and (3.10) represent the strength requirements for a member
subjected to both bending and axial force according to LRFD. In these
inequalities &, is the resistance factor for flexure given as 0.9, ¢ is the
resistance factor for compression given as 0.85, My is the required flexural
strength relating to strong axis (x) bending, Myy is the required flexural strength
related with the weak axis (y) bending, Myx and M, are the nominal flexural
strength related with strong axis (x) bending and weak axis (y) bending
respectively. P, is the required compressive strength, and P, is the nominal

compressive strength which is computed from;
P, =AF, (3.12)
Subjected to;

For 4,<15

F.. =(0.658*)F, (3.13)
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For 4, >15

e {0.877} 3 (3.14)

where in equation (3.12) Ay is the gross area of a lamella dome member, and
Fer is found from equation (3.13) or (3.14) in which Fy is the specified yield

stress taken as 250 MPa and A4, is obtained from;

Kl [F

where K is the effective length factor taken as 1, | is the length of a dome
member, r is governing radius of gyration about the axis of buckling, and E is

the modulus of elasticity.

Equation (3.11) represents the shear strength requirement in load and resistance

factor design according to LRFD. In this inequality ¢, represents the resistance

factor for shear given as 0.9, V,, is the nominal strength in shear and V,, is the

factored service load shear for member r.

The programming problem described with equations (3.7) to (3.11) is discrete
programming problem due to the fact that pipe sections for the groups of the
dome are to be selected from the available steel pipe section lists. Harmony
search method is used to obtain the solution of this problem. It should be
pointed out that the nominal flexural strength and the axial strength of the
dome members are calculated by carrying out elastic critical load factor

analysis of the dome as explained in Chapter 2.
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CHAPTER 4

HARMONY SEARCH METHOD BASED OPTIMUM
DESIGN ALGORITHM

4.1 General Concept of Harmony Search Algorithm

Numerical methods which have the shortcomings, such as using gradient
information and motivated improving the solution in the neighborhood of a
starting point, have compelled researchers to use meta-heuristic algorithms
counterfeiting a natural phenomena such as genetic algorithms (GAs), tabu

search (TS), simulated annealing (SA), evolutionary strategies (ES), etc.

Among these methods, a new meta-heuristic algorithm is called harmony
search (HS) method is developed by Geem [16]. This numerical technique
simulates the musical performance process that comes about once a musician is
looking for a better state of harmony. Jazz improvisation seeks to find
musically pleasing harmony similar to the optimum design process which seeks
to find the optimum solution. The HS algorithm demands fewer mathematical
requirements and does not need initial values for decision variables and the
derivative information of the objective function and constraints when
compared to mathematical programming methods mentioned above. Thereby,
the harmony search method enables easy programming among the

combinatorial optimization algorithms.
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The harmony search method consists of five basic steps [40];

Step 1. Initialize the problem and algorithm parameters.

Step 2. Initialize the harmony memory.

Step 3. Improvise a new harmony.

Step 4. Update the harmony memory.

Step 5. Check the stopping criteria.

The detailed descriptions of these steps can be useful to comprehend the HS

method clearly.

Step 1. Harmony search parameters are initialized.

A possible value range for each design variable of the optimum design problem

is specified as:

Minimize f(x), x€X 4.1)
Subject to g(x) >0 and h(x) =0 (4.2)

where; f(x) is the objective function and g(x) is the inequality constraint
function; h(x) is the equality constraint function. x is the set of each decision
variable, x;, and X is the set of the possible range of values for each decision
variable, that is | xi < X; < yxi, where x; and yx; are the lower and upper bounds

for each decision variable.
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A pool is constructed by collecting these values together from which the
algorithm selects values for the design variables. Furthermore the number of
solution vectors in harmony memory (HMS) that is the size of the harmony
memory matrix, harmony considering rate (HMCR), pitch adjusting rate (PAR)

and the maximum number of searches are also specified in this step.

Step 2. Harmony memory matrix (HM) is initialized.

Harmony memory matrix is initialized. Each row of harmony memory matrix
contains the values of design variables which are randomly selected feasible
solutions from the design pool for that particular design variable. Hence, this
matrix has n columns where n is the total number of design variables, and
HMS rows are selected in the first step. HMS is similar to the total number of
individuals in the population matrix of the genetic algorithm. The harmony

memory matrix has the following form:

X1,1 X21 - - Xp1d Xn,1
X1,2 X2,2 = - Xp12 Xn,2
[H] = . . - . . 43)
X, hms-1  X2,hms-1 = - Xn-L,hms-1 Xn,hms-1
| XLhms  X2,hms - Xn-Lhms  Xn,hms |

X; ; Is the value of the i design variable in the j™ randomly selected feasible

solution. These candidate designs are sorted such that the objective function
value corresponding to the first solution vector is the minimum. In other words,
the feasible solutions in the harmony memory matrix are sorted in descending
order according to their objective function values. It is worthwhile to mention
that only the feasible designs which satisfy the constraints are inserted into
harmony memory matrix. Those designs having a small infeasibility are also

included in the harmony memory matrix with a penalty on their objective
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function. A detailed flowchart for the improvisation of a new harmony memory

matrix is given in Figure 4.1.
Step 3. New harmony memory matrix is improvised.

In generating a new harmony matrix the new value of the i design variable
can be chosen from any discrete value within the range of i column of the
harmony memory matrix with the probability of HMCR which varies between

0 and 1. In other words, the new value of x; can be one of the discrete values of
the vector >€,1,xi12, ........... »Xi hms T]with the probability of HMCR . The same

is applied to all other design variables. In the random selection, the new value
of the i" design variable can also be chosen randomly from the entire pool with
the probability of 1- HMCR . That is

X € X 10X grerreere x . ' with probability HMCR

i,hms

X" = (4.4)
" with probability (1— HMCR)

where ns is the total number of values for the design variables in the pool. If
the new value of the design variable is selected among those of harmony
memory matrix, this value is then checked whether it should be pitch-adjusted.
This operation uses pitch adjustment parameter PAR that sets the rate of
adjustment for the pitch chosen from the harmony memory matrix as follows:

Y ith babiliyy of PAR
Is x""to be pitch—adjusted?{ €S wilh probabiliy 0 :} (4.5)

No with probabiliyy of €-PAR
Supposing that the new pitch-adjustment decision for Xinew came out to be yes

from the test and if the value selected for Xinew from the harmony memory is

the k™ element in the general discrete set, then the neighboring value k+1 or
78



new

k-1 is taken for new X; . This operation prevents stagnation and improves

the harmony memory for diversity with a greater change of reaching the global

optimum.

W

Constraint handling: Once the new harmony vector X{*" is obtained using

the above-mentioned rules, it is then checked whether it violates problem
constraints. If the new harmony vector is severely infeasible, it is discarded. If
it is slightly infeasible, there are two ways to follow. One is to include them in
the harmony memory matrix by imposing a penalty on their objective function
value. In this way the violated harmony vector which may be infeasible slightly
in one or more constraints, is used as a base in the pitch adjustment operation
to provide a new harmony vector that may be feasible. The other way is to use
larger error values such as 0.08 initially for the acceptability of the new design
vectors and reduce this value gradually during the design cycles and use finally
an error value of 0.001 towards the end of the iterations. This adaptive error
strategy is found quite effective in handling the design constraints in large

design problems.
Step 4. Harmony Memory matrix is updated.

After selecting the new values for each design variable the objective function
value is calculated for the new harmony vector. If this value is better than the
worst harmony vector in the harmony matrix, it is then included in the matrix
while the worst one is taken out of the matrix. The harmony memory matrix is

then sorted in descending order by the objective function value.

Step 5. Steps 3 and 4 are repeated until the termination criterion which is the
pre- selected maximum number of cycles is reached. This number is selected
large enough such that within this number of design cycles no further

improvement is observed in the objective function.
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Number of X; =M 4

D; = int(ran*NS)+1
D4 = HM(Dg, | )
NCHV(i)=D,

Ds = int(ran*HMS)+1

. X: : Continuous variables (j =
Dy = HM(Ds, i) i (i=12,...,m)

) HMCR: Harmony memory considering rate
NCHV(1)=D,4 NS: The total number of values for the
design variables in the discrete set (pool)
PAR: Pitch adjustment rate

HMS: Harmony memory size
HM(*,*):Harmony memory matrix

ran: Random numbers in the range 0.0 ~ 1.0
NCHV: A new harmony vector

D3 = D3-l

NCHV(i ) =HM(D3,i)

D3 = D3+1
NCHV(i ) = HM(Ds,)

Figure 4.1 Improvisation of a new harmony memory vector.
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4.2 A Harmony Search Algorithm Based Optimum Design Method For
Single Layer Lamella Domes

Optimum topological design problem of single layer lamella domes under a
given loading case, mathematical formulation of which is shown in Equations
3.7-3.11, is solved by using harmony search method. The steps of the design

algorithm developed are given as follows;

1. Prepare the discrete sets. In this step, discrete design pools are prepared for
the design variables since there are three different types of design variables,
three different design pools are prepared; one for each. There are a set of steel
sections selected from the available pipe section lists, a set of discrete height
values and a set of total ring numbers. The steel pipe sections, height values,
and number of rings are sorted in ascending order according to weight per
meter, minimum height to maximum height, and minimum ring number to
maximum ring number, respectively. The design pool for the total number of
rings for the dome contains 4 values that are 3, 4, 5 and 6. For the height of the
crown a list is prepared starting from 1 m to 8.75 m with the increment of
0.25 m, resulting 32 discrete values as shown in Table 4.1. The size design
variables (members’ ready sections) are selected from 37 steel pipe sections
given in LRFD-AISC [38] as listed in Table 4.2. The sectional designations
selected vary from PIPST13 to PIPDEST203 where abbreviations ST, EST,
and DEST stands for standard weight, extra strong, and double-extra strong

respectively.

2. Select the values of harmony parameters. The harmony memory size
HMS, the harmony memory considering rate HMCR and the pitch adjustment
rate PAR are selected. These parameters are decided after carrying out several

trials.
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3. Generate a harmony memory matrix. Select randomly total number of
rings, crown height and sequence number of a steel pipe section from the
discrete list for each group in the dome. The sequence numbers of steel pipe
sections, height values, and total number of rings varying between 1 to total
number of pipe sections, heights, and total number of ring are included in the
design pool. These sequence numbers are treated as design variable. For
example, if there are 37 steel pipe sections, 32 height values, and 4 ring
numbers in the design pool and 6 member groups in the truss dome to be
designed then the Harmony Search algorithm selects randomly integer numbers
which vary from 1 to 37 for steel pipe sections, 1 to 32 for height values, and 1
to 4 for ring number for each member group. Once the selection is carried out
for each member group, the cross sectional properties of each steel pipe section
become available from the design pool. The structure is then analyzed under
the external loads with these sections to find out whether its response is within

the limitations imposed by the design code.

Table 4.1 Discrete Set of Height Values.

Sequence Number Height (m) Sequence Number Height (m)
1 1.00 17 5.00
2 1.25 18 5.25
3 1.50 19 5.50
4 1.75 20 5.75
5 2.00 21 6.00
6 2.25 22 6.25
7 2.50 23 6.50
8 2.75 24 6.75
9 3.00 25 7.00
10 3.25 26 7.25
11 3.50 27 7.50
12 3.75 28 7.75
13 4.00 29 8.00
14 4.25 30 8.25
15 4.50 31 8.50
16 4.75 32 8.75
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Table 4.2 Dimensions and Properties of Steel Pipe Sections.

1 2 3 4 5 6 7 8 9 10 11
1 PIPST13 213 2,77 160 0,00704 0,661 6,63 141 0,953 0,0125
2 PIPEST13 213 3,73 205 0,00827 0,777 6,35 16,5 1,16 0,0159
3 PIPST19 26,7 2,87 217 0,0156 1,17 8,48 3172 1,65 0,0165
4 PIPEST19 26,7 391 282 0,0188 1,41 8,16 37,6 2,06 0,0215
5 PIPST25 334 338 320 0,0365 2,19 10,7 73 3,07 0,0245
6 PIPEST25 334 455 412 0,044 2,63 10,3 879 3,82 0,0317
7 PIPST32 42,2 356 431 0,0812 3,85 13,7 162 5,32 0,0332
8 PIPST38 483 3,68 518 0,13 5,38 158 260 7,38 0,0397
9 PIPEST32 422 485 569 0,101 4,79 133 202 6,8 0,0439
10  PIPEST38 483 508 692 0,164 6,79 154 327 9,56 0,0531
11 PIPSTS1 603 391 691 0,276 9,15 20 552 12,4 0,0534
12 PIPESTS1 60,3 554 947 0,359 11,9 195 718 16,6 0,0734
13 PIPST64 73 516 1100 0,635 17,4 24 1270 23,8 0,0846
14 PIPST76 889 549 1440 1,26 28,3 296 2520 38,3 0,111
15 PIPEST64 73 7,01 1450 0,799 21,9 235 1600 30,6 0,112
16  PIPDESTS1 60,3 11,1 1710 0,544 18 17,8 1090 27,3 0,132
17 PIPST89 102 5,74 1800 2,08 40,8 34 4160 55 0,133
18  PIPEST76 889 7,62 1940 1,62 36,4 28,9 3240 50,4 0,15
19  PIPST102 114 6,02 2040 2,98 52,3 38,2 5950 70,1 0,158
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