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ABSTRACT

NUMERICAL INVESTIGATION OF THE VISCOELASTIC FLUIDS

Yapici, Kerim
Ph.D., Department of Chemical Engineering
Supervisor: Assoc. Prof. Dr. Yusuf Uludag
Co-Supervisor: Prof. Dr. Biilent Karasdzen

June 2008, 136 pages

Most materials used in many industries such as plastic, food, pharmaceuticals, electronics,
dye, etc. exhibit viscoelastic properties under their processing or flow conditions. Due to the
elasticity of such materials, deformation-stress in addition to their hydrodynamic behavior
differ from simple Newtonian fluids in many important respects. Rod climbing, siphoning,
secondary flows are all common examples to how a viscoelastic fluid can exhibit quite
distinctive flow behavior than a Newtonian fluid would do under similar flow conditions. In
industrial processes involving flow of viscoelastic materials, understanding complexities
associated with the viscoelasticity can lead to both design and development of

hydrodynamically efficient processes and to improved quality of the final products.

In the present study, the main objective is to develop two dimensional finite volume based
convergent numerical algorithm for the simulation of viscoelastic flows using nonlinear
differential constitutive equations. The constitutive models adopted are Oldroyd-B, Phan-
Thien Tanner (PTT) and White-Metzner models. The semi-implicit method for the pressure-
linked equation (SIMPLE) and SIMPLE consistent (SIMPLEC) are used to solve the coupled

continuity, momentum and constitutive equations. Extra stress terms in momentum



equations are solved by decoupled strategy. The schemes to approximate the convection
terms in the momentum equations adopted are first order upwind, hybrid, power-law second
order central differences and finally third order quadratic upstream interpolation for
convective kinematics QUICK schemes. Upwind and QUICK schemes are used in the
constitutive equations for the stresses. Non-uniform collocated grid system is employed to
discretize flow geometries. As test cases, three problems are considered: flow in entrance of
planar channel, stick-slip and lid driven cavity flow.

Detailed investigation of the flow field is carried out in terms of velocity and stress fields. It
is found that range of convergence of numerical solutions is very sensitive to the type of
rheological model, Reynolds number and polymer contribution of viscosity as well as mesh
refinement. Use of White-Metzner constitutive differential model gives smooth, non
oscillatory solutions to much higher Weissenberg number than Oldroyd-B and PTT models.
Differences between the behavior of Newtonian and viscoelastic fluids for lid-driven cavity,
such as the normal stress effects and secondary eddy formations, are highlighted.

In addition to the viscoelastic flow simulations, steady incompressible Newtonian flow of lid-
driven cavity flow at high Reynolds numbers is also solved by finite volume approach. Effect
of the solution procedure of pressure correction equation cycles, which is called inner loop,
on the solution is discussesed in detail and results are compared with the available data in

literature.

Keywords: Finite volume method, Collocated grid, Non-linear differential constitutive
equations, Viscoelastic fluids, Stick-slip, Lid-driven cavity.
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VISKOELASTIK AKISKANLARIN SAYISAL OLARAK INCELENMES]

Yapici, Kerim
Doktora, Kimya Miihendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Yusuf Uludag
Yardimci Tez Yoneticisi: Prof. Dr. Biilent Karasdzen

Haziran 2008, 136 sayfa

Endistride kullanilan bircok malzeme 6rnegin, plastik, gida, ilag, elektronik ve boya gibi,
Uretim slreci ya da akis kosullar altinda viskoelastik 6zellik gosterirler. Bu malzemelerin,
viskoelastik 6zellik géstermelerinden dolayi, gerilim deformasyonlari ayrica akis hidrodinamigi
Newton’'su akis 0Ozelligi gosteren akiskanlardan birgok yoniyle farklliklar gosterirler.
Tirmanma, “siphoning” ve ikincil akiglar bir viskoelastik sivinin ayni akis kosullari altinda
Newton’su akiskandan nasil farklilk gosterdigini belirten bilinen &zelliklerdir. Viskoelastik
malzemelerin akisini igeren endustriyel stiregler igerisinde, elastik ézelliklerinden kaynaklanan
karmasik davraniglarini anlamak, daha verimli siireglerin tasarlanmasini ve gelistirilmesini,

son urlin kalitesinin arttinimasina yardimci olabilecektir.

Bu calismanin temel amaci viskoelastik akigkanlarin sayisal ¢ézimu igin, sonlu hacimler
metoduna dayali, dogrusal olmayan diferansiyel yardimc esitlik modellerini kullanan ve iki
boyutlu sayisal yontem gelistirmektir. Yardima gerilim esitlikleri icin tic model; Oldroyd-B,
Phan-Thien Tanner (PTT) and White-Metzner benimsenmistir. Birbirleri ile kuvvetli baglantili
durumdaki sireklilik, hiz ve gerilim esitlikleri “SIMPLE” ve “SIMLEC” algoritmasi kullanilarak
¢ozimlenmistir. Sdreklilik esitliliklerindeki ilave gerilim terimlerinin birbirleri ile olan

baglantisinin  giderildigi “decoupled” yontemi ile ¢dziimlenmistir. Sireklilik esitlilikleri

vi



icerisindeki konveksiyon terimleri igin birinci derece yaklasim semalari (“upwind”, “hybrid”,
“power-law”), ikinci derece yaklasim semasi (“central differences”) ve son olarak tglnci
derece yaklasim semasi (“"QUICK") kullaniimigtir. Buna karsin yardimci esitlik modellerindeki
gerilimler icin “upwind” ve “QUICK"” semalari kullanilmigtir. Dizgiin aralikli olmayan ve
“collocated” yapidaki 1zgara sistemi akis geometrilerin ¢dziimiinde kullanilmistir. Ug farkl test

geometrisi; kanal igerisinde akis, aniden sinir kosullarinin degistigi “stick-slip” ve kapall kutu
igerisinde akis olarak bilinen “lid-driven cavity” ele alinmistir.

Akis alaninin  detayli incelenmesi, hiz ve gerilimin dagiliminin  incelenmesiyle
gergeklestirilmistir. Sayisal ¢dziimiin yakinsama davraniginin, reolojik modelin tirine,
Reynolds sayisina, polimer katkili viskoziteye ve ayrica kontrol hacmi sayisina ¢ok duyarli
oldugu bulunmustur. Yiiksek Weissenberg sayilarinda, White-Metzner yardima diferansiyel
esitligi kullanildiginda Oldroyd-B ve PTT modellerine gére cok daha diizgiin, salinim
yapmayan bir c6zim elde edildigi gozlemlenmistir. “Lid-driven cavity” geometrisinde
Newton’su ve viskoelastik akigkanlarin davraniglari arasindaki gerilim ve ikincil girdap

olusumu vb. farklar vurgulanmistir.

Viskoelastik akis simulasyonlarina ilaveten ayrica yilksek Reynolds sayilarinda
sikistirilamayan, yatiskin durumda, Newton’su akigkanlarin ¢géziimiide sonlu hacimler metodu
kullanilarak gergeklestirildi. Basing diizeltme esitligi dongii sayisinin ¢6ziim {izerine olan etkisi

detayl bir sekilde tartisilarak, elde edilen sonuglar literatiirle karsilastirildi.

Anahtar Kelimeler: Sonlu hacimler metodu, “Collocated” 1zgara sistemi, Dogrusal olmayan

diferansiyel yardima esitlikler, Viskoelastik akiskanlar, Stick-slip, Lid-driven cavity.
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CHAPTER 1

INTRODUCTION

1.1. SCOPE

Most materials used in many industries such as plastic, food, pharmaceuticals, electronics,
dye, etc. exhibit viscoelastic properties under their processing or flow conditions.
Viscoelasticity stems from partial memory of the material on the deformation history fading
away over material dependent relaxation time, which is at least comparable to the observed
time scales in the flow. Due to the elasticity of such materials, deformation-stress in addition
to their hydrodynamic behavior differs from simple Newtonian fluids in many important
respects. Rod climbing, siphoning, secondary flows are all common examples to how a
viscoelastic fluid can exhibit quite distinctive flow behavior than a Newtonian fluid would do
under similar flow conditions. In industrial processes involving flow of viscoelastic materials,
understanding complexities associated with the viscoelasticity can lead to both design and
development of hydrodynamically efficient processes and improved quality control of the
final products. Numbers of experimental techniques have been employed to study influence
of the viscoelasticity on the flow kinematics in complicated geometries [1-4].

With the advances in digital computer technology and with the numerical methods of
enhanced accuracy, stability, efficiency and robustness, number of studies based on the
computer simulation of the viscoelastic flows has steadily increased. Therefore, it has been
possible to attack complex viscoelastic flows using computer simulations instead of
experiments which can be labor intensive, expensive, hazardous and even impossible to

conduct in a laboratory [5].

Computing this type of flow phenomena requires viscoelastic rheological models or
constitutive equations that provide relation between stress and material deformation rates
[6]. A large number of constitutive equations have been developed to describe the behavior

of viscoelastic fluids. Some of the nonlinear differential type equations are Upper Convected



Maxwell (UCM), Oldroyd-B, Phan-Thien Tanner (PTT) and White-Metzner models. These are
commonly used in the numerical simulation of complex geometries. So far many researches
have been conducted to developed robustness and stable numerical algorithm to solve
viscoelastic fluids for moderately large values of Weissenberg number, We, which has
introduced main challenge in the simulations. The loss of convergence of numerical
simulation at some critical value of Weissenberg number is called in literature as high
Weissenberg number problem [7-9]. Most of the previous numerical studies agree with that
numerical implementation has been the main cause of failure in iterative solution [8, 10, 11].
Common causes are: extremely large stress components associated with abrupt change of
boundary [12-13], use of unsuitable boundary conditions [11], and changing equation
characteristic from hyperbolic to elliptic or hyperbolic to parabolic when inertia terms are

considerable [14, 15], and constitutive models [8].

So far various numerical techniques have been developed to predict accurately flow
kinematics of viscoelastic fluids by using number of rheological models. Finite difference [16-
18], finite element [19-20], spectral finite element [21] and finite volume [6, 22-26]
techniques have been used in the discretization of the non-linear flow systems. Finite
difference method applications are generally restricted to simple geometries. Finite volume
approximation of fluid flow systems, on the other hand, can be advantageous in terms of
computer space and time requirements as well as in terms of numerical stability compared
to the finite element method [26].

Extra stress terms in momentum equations can be handled by coupled or decoupled
strategy. Description of both approaches is reported by R.I. Tanner and S-C. Xue [27].
Moreover implementation of decoupled strategy for finite volume method in steady and
transient discretization form can be found elsewhere [23, 27]. Most numerical simulations

of viscoelastic fluids using finite volume technique are based on staggered grids

arrangements [6, 23, 24, 28]. Here pressure and stress components 7, and T, are located

at the center of the control volume, while generally 7 is located on corners and velocities

are placed on the faces of the control volume. To avoid checkerboard or zig-zag pressure

distribution, staggered grid arrangements are also preferred in Newtonian flow simulations.

The other kind of arrangement is nonstaggered grid in which all flow variables are located at
the center of the control volume. These two kinds of grids arrangements are compared in
detail by M. Peric et al. [29]. They consider three different test cases; lid driven cavity,



backward facing step and flow through a pipe with sudden contraction involving a
Newtonian fluid at low Reynolds numbers. They conclude that in sudden contraction pipe
flow problem nonstaggered grids converge faster compared to staggered grids. Moreover,
treatment of the boundary conditions and implementation of higher order schemes like
QUICK is easier. However, nonstaggered grids produce checkerboard pressure with coarse
grid [30]. To overcome this problem, Rhie and Chow [31] first proposed the well known and
popular momentum interpolation method (MIM). Although this approach removes the
undesired pressure distribution, under—relaxation parameter dependency occurs [32].
Majumdar [32] proposed a new algorithm to overcome this problem. Detailed derivations of
the proposed algorithm along with two new momentum interpolation methods are well
documented by Yu et al. [33].

Simulations based on finite volume method with nonstaggered grids are also used in the
computation of viscoelastic fluids [25, 34-36]. Oliveira et al. [35] performed MIM
interpolation method of [31] to remove pressure-velocity-stress decoupling for non-
orthogonal grid. Several schemes have been developed and used to approximate the
convection term, such as hybrid differencing scheme [37], power-law differencing scheme
[38], skew upwind differencing scheme (SUDS) [39], central difference scheme (CD) [40],
quadratic upstream interpolation for convective kinematics (QUICK) [41] and sharp and

monotonic algorithm for realistic transport (SMART) [42].

Most of the computational studies involving viscoelastic materials consider sudden expansion
or contraction flows. Few studies on the lid driven cavity geometry exist in the literature [43-
48] even fewer involving viscoelastic flows. Despite its simple geometry, lid driven cavity
offers many challenges that are encountered in industrial applications in the form of
singularity points, circulations and bifurcations in the flow. Therefore it is highly likely that a
numerical methodology efficiently simulating flow of viscoelastic material in this benchmark
geometry, may handle complex flows associated with the industrial applications such as

agitation.

Grillet et al. [47] used finite element method to analyze stability of the recirculating flows in
two dimensional cavity geometry. In order to eliminate the effect of the corner singularities
they introduced small leakages in the upstream and downstream corners of the cavity.
Setting the amount of leakage was critical due to its strong impact on the stresses and
kinematics at the lid corners hence on the entire flow field. Setting the amount the leakage,

however, suffers from experimental verification making the value used in the study



ambiguous. They also investigated the effect of the cavity aspect ratio on the flow field and
proposed dual elastic instability criterion. They suggested a mechanism for elastic instability
based on the convected elastic stresses either from upstream corner to the down stream
corner or from downstream corner to the lid bottom depending on the height/length ratio of
the cavity.

Fattal and Kupferman [49] employed second order finite difference scheme and converted
the algebraic equations into logarithmic form which enabled them to decrease the impact of
the Weissenberg instability. Their results, on the other hand, need to be experimentally
verified especially at challenging conditions, i.e. at high We.

Pak et al. [4] investigated both laminar and turbulent flow of viscoelastic fluid through a
circular pipe with a sudden expansion. They observed that reattachment length for
viscoelastic fluids in the laminar regime was shorter than that of Newtonian fluid. On the
other hand, in turbulent flow regime, the reattachment length for viscoelastic fluids turned

out to be two or three times longer.

The hydrodynamic behavior of viscoelastic fluids in lid driven cavity was also reported in the
literature for creeping flow cases. However, the effect of the high Reynolds number on the

flow field in the literature is not available to the best knowledge of the author.

1.2, OBJECTIVE of THIS STUDY

In the present study, the main objective is to develop a two dimensional finite volume based
convergent numerical algorithm for the simulation of viscoelastic flows using nonlinear
differential constitutive equations. The constitutive models adopted are Oldroyd-B, Phan-
Thien Tanner (PTT) and White-Metzner models. The semi-implicit method for the pressure-
linked equation (SIMPLE) and SIMPLE consistent (SIMPLEC) are used to solve the coupled
continuity, momentum and constitutive equations. Extra stress terms in momentum
equations are solved by decoupled strategy. The schemes to approximate the convection
terms in the momentum equations adopted are first order upwind, hybrid, power-law second
order central differences and finally third order quadratic upstream interpolation for
convective kinematics QUICK schemes. While upwind and QUICK schemes are used in the
constitutive equations for the stresses. Non-uniform collocated grid system is used. As test
case, three problems are considered: flow in entrance of planner channel, stick-slip and lid

driven cavity flow.



CHAPTER 2

GOVERNING EQUATIONS

It was considered steady, incompressible and isothermal flow of a viscoelastic fluid in the
two dimensional Cartesian coordinate system (x,y). The continutity and momentum

equations can be written as follows:

vu=0 (2.1)

au

=+ puvVu=-Vp+V.r+nVu (2.2)

P

Here velocity u has two components that are u in the x-direction and v in the y-direction.
Derivations of differential type constitutive equations which are used in this study are given

separately.

2.1. THE OLDROYD-B CONSTITUTIVE EQUATION

The constitutive equation for Oldroyd-B is given by [50, 51],
v v
T+AT= 277(D + 4, Dj (2.3)
where A, is the material dependent relaxation time, A, is the retardation time, 77 is the

zero shear rate viscosity and 7 is the extra stress tensor. The upper convected derivative of

v
7 is defined by

V.o or T
r=a—+u.Vz'—r.Vu—Vu T (2.4)
t

and the rate of deformation tensor D is given by,



1
D= 5 (Vu + VuT) (2.5)
The stress tensor 7 can be decomposed into two parts as fallows:

T=7 +7, (2.6)
where 7, and 7, are the non-Newtonian and the Newtonian contributions to 7,
respectively, such that

v
T, + At =2nD (2.7)

7, =21,D (2.8)

where 77, is the viscosity of the viscoelastic contribution and 77, is the viscosity of the

Newtonian contribution. The relationship between the constants can be expressed as

n=mn+mn, (2.9)
and
.4
A, =——— 2.10
>l +m,) (2:10)

Substitution of eqn. (2.7) into egn. (2.4) results in the constitutive equation for the Oldroyd-

B fluid which is expressed as

0
T, +/11(8_? +uvre, -vu' .z, —rl.Vuj =5, (Vu+vu’) (2.11)

2.2. THE PHAN-THIEN-TANNER (PTT) CONSTITUTIVE EQUATION
The constitutive equation Phan-Thien-Tanner (PTT) is given by [52],

Flir(e)e+ Az =20 (2.12)



where 77 is the zero shear rate viscosity and 7 is the extra stress tensor, A is the relaxation

v
time and D is the rate of deformation tensor. The upper convected derivative of 7 is

defined by equation 2.4. The function in equation 2.12 is given by

f(n(r)):H%rr(r) (2.13)

where £ is the constant related to the elongational behavior. When & goes to zero

equation (2.12) becomes Oldroyd-B model [53].

2.3. THE WHITE-METZNER TYPE CONSTITUTIVE EQUATION

The constitutive equation of White-Metzner is given by [54, 55],

%+(U.V)T+,B(T,VU)= 2w, p, D (2.14)
17
where,
B(z,Vu)= 28[D.T+T.D]—l(VU)T+T(VU)TJ (2.15)
D:%(Vu+VuT) (2.16)
/1,,=We o , 0<p<1 (2.17)
1+ 4e(-ewenf '
We = }LI—U (2.18)
H



1+4e(l-e)3 11
My = (=2l 0<ac<l (2.19)

i+ det-ewern|

2 2 2
II:ltr(D2)=l (auj J{avJ +1(au+avj (2.20)

2 21ax) "loy) 209y ax

(2.21)

2.4. DIMENSIONLESS FORM OF GOVERNING EQUATIONS

The set of equations which are derived above are converted into their dimensionless form by
using the following dimensionless variables.
X« Y s « pH . H

X ==,y == u =—,p

T =— (2.22)
H H U nu nu

where H and U are the characteristic length and velocity in the flow, respectively. In the
subsequent sections of the text, quantities without asterisk will be used to express
dimensionless quantities for the sake of simplicity.

For a two dimensional system of rectangular coordinates (x,y), the dimensionless steady

state problem can be written as:

Continuity

L 2.23
ox dy (2.23)

X—momentum

;(Reuu—(l—wr)a—uj+ai(Revu—(l—wr)auJ :_a_p

X ox 0 ox
Y Y (2.24)
dr, 97,
+ XX + ')
dx  dy



y-momentum

i(Reuv—(l—w)avj+i Rew—(1-w )av a_p
ox ox) dy dy dy
(2.25)
N 81'_” N a7,
dy  Ox
Oldroyd-B constitutive equation:
Stress components of 7
0 0 du dv ou
T, +—Weut  )+—Wevt We| — —— 2W—1'
ax( eut, )+ ay( evr,)= e(ay axj eax
du 0 %) (2:20)
+We| L+ 2w -
dy ax Y " x
Stress components of 7
T +—(Weu1',,)+—(WevT‘,‘,):W ﬁ_a_u o +2Weir
ox P dy . ox dy ay
ou 0 2 2:27)
+We| L+ 2 T +2w, i
dy ox)” ox
Stress components of 7
T, +2(Weufx,)+i(WevTX,)=—lWe(Z'XX -7, a_u_ﬂ
Y ox YT dy i 2 Y1y ox
+w a_u + ﬁ (2.28)
"(dy ox '
+1We(fm +7, a—u+@
2 A dy  ox
The parameter [ is the ratio of the retardation and relaxation time and is defined by
A
B==* (2.29)
4



w,=1-p (2.30)

The Reynolds number and the Weissenberg number which is defined as the ratio of
characteristic fluid relaxation time to characteristic time scale in the flow are given through

UH
Re = PO (2.31)
n
We = ﬂ (2.32)
H
Phan-Thien-Tanner (PTT) constitutive equation:
Stress components of 7
1+8&(rﬁ +z,. )., +i(Weurﬁ)+i(Wevrﬁ): we 219 T,
w, > ox dy dy odx)
d du 0 d (2339
+2We—urm +We| 24+ T, +2w, &
ox dy ox) " ox
Stress components of T
1+8&(rﬁ +TW) T, +i(WeuTW)+i(WevTW):We &—a—u Ty
w, TP ox T dy > ox dy) "
d du 0 d (239
+2We—vTW +We L4+ 22 T, 2w, &
dy " dy ox) " ox
Stress components of 7
1+ g&(rxx + z'w) 7. +i(W€uTW )+i(Wevfxv)
w, TP ox " dy :
1 ou ov ou Jv
=——We(z'm—2',, — = |+w,| =+ (2.35)
2 : PNy ox dy ox
+lWe(z'XX +7, u + »
2 P dy  ox
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White-Metzner constitutive equation:

Stress components of 7

T +i(u7:xx)+i(v7:xx): —S{Za—uf +(a_u+ﬁj%}

A, Ox dy ox * (dy ox
+2 ou T, +a—uz'n, + Zﬁwra—u
X dy ~ A, " ox

Do 0 9 (e )+ 2 (vr, ) =g 2% r 4[240
A, ox Y7oy Y ay ¥ \ady ox )"
+2 Qr, +ﬁr, +2ﬁwrﬁ
dy 7 ox ” Ay 9y

11

(2.36)

(2.37)
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CHAPTER 3

NUMERICAL METHOD

In this section numerical method and tools used in the non-Newtonian flow simulations are
explained in detail. Computational Fluid Dynamics (CFD) is a tool for solving conservation
equations for mass, momentum, energy and other rheological models or constitutive
equations that provide relation between stress and material deformation rates [6]. With the
advances in computer speed and memory, humber of studies based on computer simulation

has steadily increased.

3.1. FINITE VOLUME FORMULATION

Finite Volume (FV) method uses the integral form of the conservation equations, which are
discretized over the control volumes. Here the discretization of the governing set of PDEs
derived in the previous chapter is outlined. The momentum equations of viscoelastic
equations contain both hyperbolic terms (the convection term) and elliptic terms (the
diffusion terms) and their relative impact on the momentum equation depends on the
Reynolds number [6]. If the convection terms are dominant, momentum equations behave
in a hyperbolic manner. Conversely, if diffusion terms are dominant momentum equations
behave in elliptic manner. Viscoelastic constitutive equations include only hyperbolic terms
and they introduce further complications to the simulation [6]. The nature of conservation
equations and possible changes in type is reported by Gaidos and Darby [20]. They
concluded that type classification depend on the solution to flow problem so that possible

change in type to be cause of numerical instabilities and convergence difficulties.

So far various numerical techniques have been developed to accurately predict flow
kinematics of viscoelastic fluids by using number of rheological models. Finite difference [16-
18], finite element [19-20], spectral finite element [21] and finite volume [6, 22-26]

techniques have been used in the discretization of the non-linear flow systems. Finite

12



difference method applications are generally restricted to simple geometries. Finite volume
approximation of fluid flow systems, on the other hand, can be advantageous in terms of
computer space and time requirements as well as in terms of numerical stability compared
to the finite element method [26]. In this study finite volume formulation [38, 56] is
preferred due to above mentioned advantages.

Continuity, momentum and constitutive equations can be written in the general form as

follows:
0 20 0 20
—| Aug-T"— |+—| Augp—-TI'— |=§ .
ax( ug 8xj+ ay( ug ayj ¢ (3-1)

where A is either density p or relaxation time A, depending on the conservation or

constitutive equation; ¢ is one of the dependent variables; I' is the diffusion coefficient
and S¢ is the source term. Corresponding dimensionless quantities of these variables are

listed in Table 3.1.

Integrating equation (3.1) over a control volume shown in Figure 3.1, the following equation
can be obtained

9 ¢ A
la(/\w—rgjdwl[/\w—rgjdv _lsg,dv (3.2)

Using the divergence theorem

j.;_adA+J{Au¢—F—¢j.1}dA:JS¢dV (3.3)

k) 09 d
| (Au(,/) r3 ~

5, 0X X
where A is the surface enclosing volume V, and 7 is the unit vector normal to the surface.

Integration equation (3.3) gives

{[(Au;m)e - (Au¢A)w]{DAe (?Tfj ‘”%H}

+ {[(AugzﬁA)” —(Auga), |- [FnAn (%1 ~T.A, (%)S }} =S,AV
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where each quantity in the brackets is calculated on the corresponding face of the control

volume.

Control volume
N
n
L SRR
w wlpde E
SESEHHESES
S

Figure 3.1. Schematic diagram of a control volume

3.2. DISCRETIZATION OF THE GOVERNING EQUATIONS

Equation (3.4) contains both diffusion and convective terms. Central difference scheme is

used for the approximation of the gradients which are diffusion terms, in equation (3.4).

Several schemes have been developed and used to approximate the convection terms, such
as first order upwind differencing scheme [57], hybrid differencing scheme [37], power-law
differencing scheme [38], second order central difference scheme (CD) [40] and third order
with uniform grid; quadratic upstream interpolation for convective kinematics (QUICK) [41].
In our calculations, all of these schemes are employed for the discretization of convective
terms in the momentum equations. Upwind differencing scheme and QUICK are used in the
constitutive equations for the stresses.

14



Table 3.1. Definition of the constants and function in equation (3.1) for two dimensional

flow.
Equation A I So
Continuity 1 0 0
ap aTxx aTxy
| - ——+_ —
u-momentum Re | 1-w T ax R
dp 0Ty 0Ty
v-momentum Re 1-w, A + PN e
Oldroyd-B [58]
Normal stress du v ou du v ou
We| — +2W +We 2w, ——
- We | 0 e( oy ox j’ ‘o e( PR ax]T v Mg T
Normal stress v du v du Jv Jv
We| —— ,+2We—1,, +We 2w, —
T We 0 e( FREES jr e % Ty, (8} " jrx} Wy m Tyy
Shear stress W 0 —lWE(T -7 a—u—ﬂ +w au av +— 1 We(T +T a—M+ﬂ -7
T € 2 U9y ox " 3} 8x 2 dy ox el
Xy
PTT [28]
du v du du v
We| — —— [T,y +2We—71 . + We| — + Ty
Normal stress (ay 8xJ v o (ay p) ] o
We 0 N
T + 2w,—u—(1 +s—e(rxx +Tyy )erx
Wr
v du av du  Jv av
We| — — +2We—1,, +We| —+ 2w, —
Normal stress e( dx dy JTX} ‘o o e( dy o JTX} "o
We 0
Ty —[1 + s—e(rxx +Tyy )]rn
r
1 ou v ou v
——Weltyy —Tyy | ——— |+ w,| —+—
Shear stress 2 e » { dy ax] [ay ax]
We 0 1 Ju d W
Tx
Y +— > We(rxx +Tyy { az +8—;J - (1 + ew—f (rxx +Tyy )er‘
White-Metzner [55]
Normal stress
' ' 1 0 S L Za—urxx+(a—u+i] +2[ﬂrxx+a—u X)}+2'7” ,au
T A ox dy o)V ox dy Ay ox
Normal stress Tyy v Ju v av v iy o
———— | 2Ty +| —+— +2| —7Tyy +— +2-=
T Lo A [ oy (ay ax]rxy} [ay o TX-V} Aoy
Shear stress Txy 1 du  dv v Ju i Ju av
1 0 - ¢ —(Txx+fw — ||+ T Ty [F Wy —
Ty i 2 A dy  ox ox ad | Ay dy ax
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3.2.1. Collocated Grids

There are two kinds of grid arrangements used in CFD; staggered grids and nonstaggered or

collocated grids. In staggered grid arrangements stress components 7, and 7 are located

at the center of the control volume, while generally 7 is located at corners and velocities

are placed on the faces of the control volume. Whereas in collocated grids, all flow variables
are located at the center of the control volumes as shown in Figure 3.2. It was used non-
uniform collocated grid arrangements to discretize the governing sets of equations in the
computing domain. It was preferred collocated arrangements because of the some obvious
advantages over the staggered grids as reported by Peric et al. [29]. They compared these
two types of grid arrangements by performing three test cases involving a Newtonian fluid;
lid driven cavity, backward facing step and flow through a pipe with sudden contraction.
Some advantages of collocated grids are listed as follows [29]: (@) because all variables
stored at the same location, the coefficients in the discretization equations are identical for
all velocities. The stress coefficients in the equations are also the same. This feature reduces
computer time and required memory when higher order schemes like QUICK discretization
method are employed in both Newtonian and viscoelastic flow simulations. (b) Treatment of
the boundary conditions is also easy. (c) Implementation of the multigrid method is simpler
than that of staggered since the same interpolation is used for all variables. Therefore
collocated grids have been used in many studies for computation of viscoelastic fluids [25,
34-36].

3.2.2. Discretization of Two-Dimensional Momentum Equations

Central difference scheme is used for the approximation of the gradients in equation (3.4)
which is associated with the diffusion term. We can write expressions for diffusion fluxes

through control volume surfaces in the following form (see Figure 3.1):

East face LA, (%J = Aow). (. =6, )y, —»,) (3.5)
ox ), (XE - XP)

West Face FWAW(%j = M (¢ — & Ny, - ) (3.6)
a'x w ('xP - 'xW )
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North Face LA, (%j = % (¢N - @ )(xe — xw) 3.7)

ox Yn —Yp
Y (1-w,)
South Face I'A, (a— =—7"" (¢P — @ )(xe - xw) (3.8)
x ), (vp =)
T)Qﬂ',jﬂvi’j+1
% Tyy,-,,-n % U; i 1 - Ay,
Pi,j+l
Vi j+l
V. . V.
Txxifl.yH,j Txxi.j " XXy, j i+,
T}’yi—l J ﬁ% U, i Wi ui,] Wisl, j P ui+1,j Ay .
PH j Pz j i+l ] !
XYy i ’ Txy ’ XYViip
i1, ij i+l,j
v, Vi1
ﬁé Yijn P/']\ > l/ti,j_l 1 ijA
i j—1
XY i, j-1
Axl—l Axi AXH—I

Figure 3.2. Location of the flow variables on non-uniform collocated grids

Here for the sake of convenience, constant coefficients in diffusive fluxes are grouped as:
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_ (1=w,)

wa%_%%n—x) Dﬁ?ztg%h_%) (3.9)
_=w) (o _l=w) (o
B e L B A @10

In this study we used several first and high order schemes to discretize convective part in
the momentum equations. The details of the central difference scheme as follows. First we
establish a new symbol for the convective terms in equation (3.4) as follows:

F,=Reu,A, F,=Reu, A (3.11)

w w

F =Reu A F =Reu A (3.12)

Equations from (3.5) to (3.8) are inserted in to the equations (3.4) to yield the convection-

diffusion equations:

{[Fe¢e - Fw¢w]_ [De (¢E - ¢P )_ Dw (¢P - ¢W )]}

+{£.9,-F9,]-[D,(¢y - 4,)-D.(¢, - 9, )= S,aV (3:13)

In equation (3.13) face values of the transported properties are approximated by central

difference scheme.

¢e=fe¢E+(l_fe)¢P (314)

@, = f,0y +(1-1,)8, (3.15)

where f,, f, ., f, and f,, are linear interpolation factors that are defined as

X, =X, X, =Xy

f.= fo=""—" (3.16)
Xgp—Xp Xp— Xy
X —X X —X

[ =" e (3.17)
Xy —Xp Xp = Xg
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When the expressions (3.14) and (3.15) are substituted into equations (3.13) following
expression can be obtained.

Elf.p: + (= 1), - F 11,0 + (1= £, ) ]
- De[(¢E _¢P )]+ Dw[(¢P _¢W )]

VE 1,0, +(0- )0, )-FL1.0,+ (- £,)p,] (318
-D, [(¢N - ¢P )]+ D, [(¢P - ¢s )] = S¢AV
We rearrange equation (3.18) to the form
6,0~ 1,)F, - f,F,+D,+D, +(1- f,)F, - f,F,+ D, +D,]=
+¢;[- f.F,+ D]+ 4,10~ 1,)F, |
(3.19)

+¢y[- £,F, + D, ]+ o[- £, )F.]
+S,AV

The next step is to solve the set of algebraic equations which are non-linear due to the

source term in the constitutive equations. To make the equations linear, first, source term

S¢ is assumed to be a linear function of variable ¢ such that,

S,=Sc+5,0, (3.20)

where Scis constant part of the .S, that is independent of ¢ while S, is the coefficient of

¢P which is set as negative to enhance the numerical stability [38].

The final form of the two dimensional discretized governing equation (see 3.19) over the

control volume can be expressed symbolically as follows:

App = APy + Ay @y + A0y +As¢s +b (3.21)

Discretized form of the x-momentum equation is considered as

APui,j = AEuI.+17j +Awui_1,j +Ayu, . +Au, . +bu, . (3.22)

i,j+l i,j-1 i,j

where the coefficients are expressed through the following relations in the case of central
differences scheme

Ay =—1F, +D, (3.23)
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Ay =(1-f,)F,+D, (3.24)

A, =—fF +D, (3.25)

AS :(l_fv)Fc-i_Ds (326)

A =[ A+ A, +A + A +(F,—F,)+(F,—F)]/e, (3.27)

Convective terms are

F = Re[feuiHJ +(1-71, )ui’j]ij (3.28)

E, :Re|:fwui,j+(l_fw)ui—1,j}ij (3.29)

F,= Re[ﬁzvi,jﬂ +(1_fn )Vi,j]Axi (3.30)

F :Re[fsvi,j+(1_fs)vi,j—1:|Axi (3.31)

Because of the sharing the same location of the control volume, coefficients of the y-

momentum equations are identical to x-momentum equations.

Source terms of the x and y-momentum are

dp o
b ==—2 Avdy 4= AvAy =2 Avdy +(1-a,) A (3.32)
ij ij ij
d dr,, dr,,
bv, ;= _d_]; Ax,Ay; + d); AxAy; + dx} AxAy; + (I-a, )APVi(?j (3.33)
" g -

1]

where superscript 0 denotes the values obtained at previous iteration. Here, under-

relaxation factors &, and ¢, are introduced implicitly in equations (3.27), (3.32) and

(3.33) to the x and y-momentum equations respectively. Furthermore, gradients of the
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pressure and stresses should be evaluated at the location (i,j). These gradients are obtained
by linear interpolation.

_dp =[pri,j+(1_fw)pi—1,j}_|:fepi+1,j+(1_fe)pi,j:| (3.34)
dx|, Ax, '
dp| lfspi,j +(1_fs)pi,j—lJ_lfnpi,j+l +(1_fn)pi,jJ
_d_ = Ay (3.35)
Ylij Y
dTH lfefxyi_,_l’j + (1 - fe )TXXi,j J_ lfwrxxi,j + (1 - fw )T,wci—l,j J
= (3.36)
dx |,.,j Ax,
dey _ lf"TXyi,jH +(1_fn )Txyl-’jJ_ I-fSTXyi,j +(1_fs )Txy,',j_lj 337
dy |i,j ij ( . )
dT)’)’ | _ |~f"T,V,Vi,j+1 + (1 L )T«V«Vi,j J_ lfSTWi,j + (1 —Js )Tyyiaj—lj 3.38
dy |,-,,- Ay, (3.38)
I 0 e L (o 0
= (3.39)

dx | A,

i, i

Aforementioned discretized two dimensional momentum equations are written for interior
nodal points. Boundary nodes, however, require special treatment [56]. In collocated grid
arrangement, to eliminate checkerboard pressure distribution, cell face velocities are
evaluated by momentum interpolation method (MIM) suggested by Majumdar [32]. MIM
was first proposed by Rhio and Chow [31]. Detailed procedure of the original MIM and two
new interpolation methods, called MMIM1 and MMIM2 were well documented by Yu et al.
[33].
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3.2.3. Discretization Two-Dimensional Constitutive Equations

Upwind differencing and QUICK schemes are used in the constitutive equations for the
stresses. Here an Oldroyd-B constitutive equation is discretised in detail by using upwind
scheme. The final form of the two dimensional discretised model equations over the control

volume can be expressed symbolically as follows:

Ay = ApPp + Ay @y + AyPy + As¢s +b (3.40)

Discretized form of the 7 equation is considered as

ApT =A,T + AWTxxi—l,j + ANTxxi,jJrl + ASTxxi,j—l +bTxxi,j (3.41)

P¥xxi,j — CUE Y xxitl,j

where the coefficients are expressed through following relations in the case of upwind

differencing scheme as:

A, = max[— F, ,O] Ay, = max[Fw,O] (3.42)

Ay =max[-F, 0] A; = max[F, 0] (3.43)

where convective terms are

F,=Wel fau, ;+ (1= £, Ay, (3.44)

F,=Welfu, ,+(1—=f)u_,, Jay j (3.45)

F, =Welf,v, ,,+(1-f, ), JAx, (3.46)
F,=Welfv,,+(1-f W, . Ax, (3.47)

A=A+ Ay + A + A+ (F,—F, )+ (F, - F)l e, + AxAy, (3.48)

Because of the sharing the same location of the control volume, coefficients of thez  and
7., equations are identical to 7 equation.

Source term of 7 equations:
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0 0
br,| =2We—z " AxAy, +2We—z.°| AxAy,
xxlj, j y X) N i J ax XX y i J
5 " ’ (3.49)
+2w, = AxAy; + (1 -a; )APT)(c)xi j
ox|; ; '
Source term of 2% equations:
v 0 ov 0
bt = 2We—xz'xy | .Ax,.ij +2We$”r”, Ax,Ay;
S o " (3.50)
v
+2w, = Avdy;+ (1-a,)A, ),
ij
Source term of 7, equations:
0 0
bt | = @ (WeZ'M0 +w, Ax,.ij +_u (Wez'w0 +w, ) AAxlij
S ox y ay| " (3.51)
+(1-a,)AT),

where superscript 0 denotes the values obtained at previous iteration. Gradients of
velocities are computed by central differences at interior domain, however near the

boundary they are calculated by introducing a polynomial function such as:

v=ax’+bx+c ﬂ:2ax+b
X
(3.52)
d
u=ay’ +by+c —u=2ay+b
dy

3.3. SOLUTION ALGORITHM

To date various algorithms have been developed to calculate pressure field. Semi-Implicit
Method for the Pressure-Linked Equation (SIMPLE) was the first proposed by Patankar and
Spalding [59] and widely used in the literature. After that several modifications have been
made to enhance its efficiency, such as SIMPLE revised (SIMPLER) [38], SIMPLE consistent
(SIMPLEC) [60] and pressure-implicit with splitting of operators (PISO) [61]. In this study,
the SIMPLE and SIMPLEC are employed to solve the coupled system of the continuity,
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momentum and constitutive equations. Source terms of the momentum equations contain
extra stresses which are nonlinearly coupled with the stress equations. Here, the decoupling
technique is adopted in such a way that source term of the momentum equations is treated
as pseudo-body forces that are already determined in the previous iteration [23]. The set of
linearized algebraic equations are solved using the Line-by-Line technique based on the
TDMA (Thomas algorithm or the tridiagonal matrix algorithm) and the alternative direction
implicit (ADI) scheme. For pressure correction equation, four ADI sweeps are made [29]
before correcting pressure and velocities. To stabilize the calculations, global under-
relaxation factors are used depending on values of the Reynolds and Weissenberg Numbers.
The solution process is reiterated until the maximum relative change of flow variables (u, v,

P, T, T, T,)arelessthen a prescribed tolerance or residual as:

Yy I

¢n+l _ q)n

‘q)n-H‘

res = MAX <1x10™ (3.53)

where ¢ = (u’ v, p’TX)(?T Txy '

y?

3.4. MOMENTUM INTERPOLATION METHOD (MIM)

The final form of the discretized governing x-momentum equation with the under-relaxation

factor over the control volume can be expressed symbolically as follows:

A 1-a )A
_P”P :ZAiui_Ay(pe_pw)-i_wu?’ (3.54)

o

u

o

u

Equation (3.54) can be written for u velocity at nodes P and E (see Figure 3.3) as follows:

au (Z Aiui +(1_au )APugj OZ”Ay

(3.55)
u, = -—==(p,~p.)
! AP|P AP|P
o Au +(1-a ) Au’
L u(lz ;Ui ( u) Pqu_auAy(p _p) (3.56)
‘ AP|E AP|E “ '

Face velocity u, can be formulated by equations (3.55) and (3.56)
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i u (3'57)
u,= p
) ) (Pe—p»)
WW W w W P e E ce EE
I Xw I Xp I Xe

Figure 3.3. Grid points in the x direction

First term of the right hand side of equation (3.57) can be obtained using equations (3.55)
and (3.56) by linear interpolation.

(ZAu +(-a,)A, OJ (ZAu +(-a, Pqu

=A
AP e AP|E
(3.58)
(ZA u+(1-a,)Au PJ
+(1-A)
AP|P
where A is the linear interpolation factor and defined as
X —X
A=———"= (3.59)
X —Xp

From equation (3.55)
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a, Ay
=u,+="==(p.-p,) (3.60)
AP|P ’ AP|P
From equation (3.56)
a, u+(1-a ) Aul
u(ZAMy ( u) PMEJ —u +aMAy(p _p) (3 61)
E ee e .
AP|E AP|E

Substitution of equations (3.60) and (3.61) into the equation (3.58), yields

a(z Au +(1-a, )Apugj

A
A A|:ME + . y (pee pe)il
Pl, P|E (3.62)
+(1_A uP+ a“Ay( e w)
Al
and finally by inserting equation (3.62) into the equation (3.57)
a A a A
u, = Ay + =2 (p, = p,) [+ (= A) u, + 22 (p, - p,)
Al Al
A (3.63)
(04
- AMP ey (pE - pp)
We rearrange equation (3.63) to the form
a, A a, A
u,=Au, +(1—A)uP +{A A" |y (pee —pe)+(l—A) A” |y (pe —pw):l
rle rie (3.64)
a A
- A“p ey (pE - pP)

1
Last term of the equation (3.64) contains coefficient(— } This term is also obtained

Ple

linearly from P and E nodes.
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1

A

P

L
A

e P

(3.65)

1
+(1-4
( )A—P

E P

Equation (3.64) first introduced by Rhie and Chow’s [31] and is called Momentum
Interpolation Method (MIM) after reformulated by Majumdar [32] to avoid dependency on

the under-relaxation parameter.

a A a A
ue:AuE+(l_A)uP+|:AI4u|y(pee_pe)+(l_A)I4M|y(pe_pw)}
e rie (3.66)
oAy
A

P

(pe = pp)+ (= Nl — Aul —(1- A)ul }

e

At this point all formulations which are derived above to find face velocities like staggered
arrangement. Now we can derive SIMPLE [60] and SIMPLE-C [61] algorithm by using these
face velocities.

3.5. SIMPLE ALGORITHM FOR COLLOCATED GRID

SIMPLE was the first proposed by Patankar and Spalding [59] for staggered grids and has

been widely used in both Newtonian and non-Newtonian simulation to predict pressure field.

The final form of the discretized governing x-momentum equation with the under-relaxation

factor at the face of the control volume can be expressed symbolically as follows:

A -
paLl =D Ay, +Ay(pp—p5)+be+{%&}uf (3.67)

u i u

Equation (3.67) can be written for initial guess values of pressure p*

Ae
a

u

(44

u

Me=sz,~+Ay(pp—pE)+be+[( a”)ALlu? (3.68)

u: in equation (3.68) can be calculated from equation (3.66).

We want to improve guess or previous iterate pressure field ( p*) by introducing correction,

p=p +p (3.69)
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u=u +u (3.70)

If we subtract equation (3.68) from equation (3.67) we obtain

A(f
a,

u

u, = Au+Ay(pp = p;) (3.71)

In SIMPLE algorithm main approximation is to cancel out the term ZAiu; such that [57].

“u, = Ay (pp=pe) = u, === Ay (pp = pp ) = u, = du(p, — pp) (3.72)
a o o
du| =% Ay = du] =A% Ay+(1-4) %A
], =SBy => il = A 8y ( )AP y (3.73)

where A is the interpolation factor defined by equation (3.59).
If we insert uL (3.72) in to the equation (3.70),

u, =1, +di (p, - p}) (3.74)

After applying the same procedures for y-momentum we obtain

v, =v.+ady| (pp - py) (3.75)
a a a
dv| =—2Ax=dv] =B—-Ax+(1-B)—Ax
v|n A” = v|n AN +( )AP (3.76)

where B is the interpolation factor for y direction and defined as:

Yn = Yp

Using the continuity and equations (3.74) and (3.75) we can derive pressure correction

equation as
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%+ﬁ=0 3.78
ox dy (3.78)

Integrating equation (3.77) over the control volume shown in Figure 3.1, the following
discretized form can be obtained

(ue -u, )Ay + (vn -V, )Ax =0 (3.79)

Equations (3.74) and (3.75) are substituted in to the equation (3.79)

lu +dul (p}, - py )~ i (piy = pp Ay

. . . S (3.80)
+[vn +dv|n(pp —pN)—vS —dvs(ps —pP) =0
We rearrange equation (3.80) to the form
p}, [(duL + du|w )Ay + (dv|n + dv|s )Ax] =
+ il A+ pyla] ] -
+pyld Al py ] ad] |
e~y + (7 =v; Jas]
Discretized form of the pressure correction, p' equation is considered as
APP;,j = AEp;+l,j + Ay p;—l,j + ANP;,,'H + A p;,j—l +bp;,j (3.82)
where the coefficients are given by
A, =du| Ay Ay =du| Ay (3.83)
Ay =dv| Ax As =dv| Ax (3.84)
Ap=Ap+ A, + A+ A bp;,j = (”:; _”: )Ay + (V: —V,i )Ax (3.85)

Velocities in source term are calculated MIM method derived as equation (3.66).
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Followings are the summary of the modification of SIMPLE algorithm for collocated grids.

1.

9.

Solve equation (3.95) and (3.96) to obtain velocity field at the center point of the

control volume (u,, and u,).
Evaluate face velocities, ue , by solving equation (3.66).

Solve equations (3.73) and (3.76) to obtain face correction values du|e and dv|n

Solve pressure correction equation (3.82) by using equations (3.66), (3.73) and
(3.76) to obtain pressure correction values at the center of the control volume.
Correct pressure by using p=p +p
Find pressure and pressure correction face values by using linear interpolation.

p.=Ap, +(1-A)p, p.=Ap, +(1=A)p,
Correct velocities at the center of the control volume by using following equation

u, =u,+dul,(p,-p.)

Calculate face velocities by using equation (3.66) and use these face velocities for

calculation convective fluxes (F,,F,,F,,F,) in momentum and stresses equations.

w?

Calculate source term of the momentum equations by solving stresses equations.

10. Check the convergence, if it does not converge, return to step (1).

3.6. SIMPLE-C ALGORITHM FOR COLLOCATED GRID

The main difference between SIMPLE and SIMPLE-C algorithm is the calculation of the
correction values. In SIMPLE algorithm correction value is obtained by using equations
(3.73) and (3.75). While in SIMPLE-C algorithm correction value is calculated by the

following equations.

o, Ay
PolA, —(A + A, + A+ A

(3.86)
a,Ay
£ [AP _(AE +Aw +AN +As)]

and at the face
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duL = Adu|E +(1- A)du|P (3.87)

where A is the interpolation factor defined by equation (3.59).

In SIMPLE algorithm, we have used only one correction values only for both evaluation of
face velocities (equation 3.65) and calculation pressure correction coefficients (equation
3.79). But in the SIMPLE-C algorithm we define two different correction values:
a) For calculation of face velocities (equation 3.66) we used the same correction values
(3.73) in the SIMPLE.
b) However for the correction coefficients in pressure calculation we employed

equation (3.86)
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CHAPTER 4

SIMULATION OF STEADY LID-DRIVEN CAVITY FLOW AT HIGH
REYNOLDS NUMBERS BY FINITE VOLUME APPROACH USING
COLLOCATED GRIDS

In this chapter, simulations of steady incompressible square lid-driven cavity flow at high
Reynolds numbers up to 40000 are presented. Navier-Stokes equations are solved using
finite volume approach with central differences scheme. A non-uniform collocated grid
arrangement of 257x257 is used. Coupled mass and momentum conservation equations are
solved through iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation)
algorithm. Momentum interpolation method (MIM) is used to evaluate face velocities as well
as the evaluation of coefficient of the discretization equation. Effect of the solution
procedure of pressure correction equation, which is called inner loop, on the solution is
discussed in detail. Results are compared with those in literature.

4.1 INTRODUCTION

Lid-driven cavity flow of a Newtonian fluid is one of the most well-known problems in
Computational Fluid Dynamics (CFD) literature [62-70] due to simple geometry, easy
boundary condition implementation and available benchmark results. Despite its simple
geometry depicted in Figure 4.1, lid driven cavity flow offers many challenges that are
encountered in the form of singularity points [67]. Therefore numerical technique that can
be handle lid cavity flow is well poised to be used for the simulation of other challenging

flows.

Sahin and Owens [65] have introduced a novel implicit cell vertex finite volume method for
the solution of the lid-driven cavity flow at high Reynolds nhumbers. They presented steady
and unsteady cavity solution using strongly graded mesh of 257x257 and Reynolds numbers
up to 10000. Lid-driven cavity studies in numerical field are discussed and reviewed in detail

by Erturk [64]. Recently, Erturk et al. [62] have used stream function-vorticity formulation
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for the solution of 2-D steady incompressible flow in a lid-driven cavity. With a uniform grid
size 601x601 they have obtained second-order accurate steady solution up to Reynolds
number of 21000. This is the largest Reynolds number reported so far in literature. In
another report Erturk and Gokcel [63] investigated the same problem with using fourth-
order compact formulation. They have obtained accurate solution up to Reynolds numbers
of 20000 with uniform grid of 601x601. Recent studies on the lid-driven cavity flow problem
were reviewed by Erturk et al. [62] in terms of used numerical methods and their spatial
order of accuracy and highest attainable Reynolds number.

Reports on finite volume solution of high Reynolds number steady lid-driven cavity flow field
through collocated grid structure are not in the literature to the best knowledge of the
author. Therefore, objective of this chapter has two-folds: One is to demonstrate steady
high Reynolds numbers lid-driven cavity solutions available by using collocated structure of
even modest 257x257 grids. The other one is to investigate effect of the pressure correction

inner iteration loop on numerical solutions.

u=1 — v=0

Upper secondary eddy

=0

0, v
A ‘0=n

Primary vortex

u
0

Downstream secondary eddy

Upstream secondary eddy

u=0, v=0

Figure 4.1. Square lid-driven cavity geometry with boundary conditions.

4.2, GOVERNING EQUATIONS AND NUMERICAL METHODOLOGY

For a two dimensional system of rectangular coordinates (X, y), the dimensionless steady-
state, incompressible the governing equations are
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Continuity:

ou dv
a—x+$=0 (4.1)
X-momentum
duu ovu dp 1 (d°u du
—t— ="t —| 5+ (4.2)
ox dy ox Relox” dy
y-momentum
duv ow dp 1 (3 9%
ox dy dy Reldx™ oy

These PDEs are discretized using finite volume method and non-uniform collocated grid
arrangement. A second-order central difference scheme is employed to approximate both
convective and diffusion terms. Pressure field is obtained by solving pressure-correction

procedure of SIMPLE algorithm for collocated grids as outlined in Chapter 3.

Solution procedure of pressure-correction equation and its effect on the performance of the
SIMPLE algorithm with staggered grid system was reported by Deng and Tang [71]. Before
correcting pressure and velocities, pressure correction equation is iterated to satisfy
continuity which is called inner loop. They investigated the role of solving pressure-
correction equation by performing three test cases; lid driven cavity, rectangular tank flow
and backward facing step on Newtonian fluids. They concluded that generally to increasing
number of the inner iterations reduces the required number of iterations for overall
convergence hence effectively improves performance of the SIMPLE algorithm. However, it
is very difficult to determine optimum cycle number for inner loop. Deng and Tang [71]
found that setting number of inner cycle as four is sufficient for all three test cases. Based
on their analysis we can define optimum number of inner cycle for any fluid flow problem.
When the residual ratio between pressure correction equation and momentum equation is
nearly one, the number of cycle number of inner loop can be then considered as optimum.
Deng and Tang [71] did not investigate whether the pressure correction inner loop has any
effect on attainable maximum Reynolds number. Hence, here, the effect of the pressure
correction inner loop on achievable maximum Reynolds number is investigated by

considering lid-driven cavity flow.
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4.3. NUMERICAL RESULTS AND DISCUSSION

In the present study a non-uniform collocated grid arrangement having 257x257 grid points
is employed as shown in Figure 4.2. The smallest cell area of this mesh near the lid is
1.3x10°, Erturk et al. [62] have presented steady solution up to Reynolds number of 21000.
They could not get steady solutions beyond this Reynolds number even they used finer
meshes of 601x601 and 1025x1025 [64]. Barragy and Carey [69] have also presented by
using p-type finite element method to simulate steady flows with non-uniform element
meshes of 257x257 up to Reynolds number of 16000. However, at this Reynolds number
their vorticity solutions showed oscillatory behavior due to coarse mesh. These two reported
studies show that very fine mesh must be used to obtain converged steady solution at high
Reynolds numbers. This study, on the other hand demonstrates that in addition to fine
mesh, numerical method and grid type are important to get high Reynolds number solutions.

Numerical results at Reynolds nhumbers ranging from 100 to 40000 are presented.

Figure 4.3 and Figure 4.4 depict the stream function and vorticity at different Reynolds
numbers. Stream function, g, and vorticity, @ , are obtained through the solution of the

following equations.

Vy=-w (4.4)
a):—a—u+ﬁ 4.5
dy ox (%)

These figures indicate that the numerical implementation employed captures the steady
solutions of cavity flow even at 257x257 grids without any oscillation. In the previous section
the importance of pressure correction inner loop cycle on numerical iteration was discussed.
Then computations were carried out first by four inner cycle iterations. With this number,
steady solutions could not be obtained at Reynolds numbers greater than 15000. Increasing
the inner cycle iteration from four to six improved the maximum attainable Reynolds number
to 25000. This effect of inner cycle iteration number can be expected. As Reynolds number
increases, convective terms become dominant in the momentum equations; hence additional
pressure correction inner loop cycle is required to satisfy the continuity equation. It was then
decided to increase inner loop cycle to twelve for Reynolds number greater than 25000 so

that steady solutions up to Reynolds number of 40000 can be obtained.
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Figure 4.2. Non-uniform graded meshes of 257x257 grid points with enlargement view of right

top corner.

In Figure 4.3, as the Reynolds numbers increases primary vortex center moves to the
center. After Reynolds numbers of 10000 tertiary vortex [62] starts to appear at the top left
corner and it grows with increasing Reynolds numbers. Another feature of these streamline
plots is quaternary eddy at Reynolds number of 10000 is visible. However, this eddy was not
observed by Erturk et al. [62] with grid size less than 513x513 at Reynolds number of
10000.

In Figure 4.4, vorticity contour moves towards the wall with increasing Reynolds numbers.
For Re > 5000 very strong vorticity gradients develops on the lid and walls [65]. Values of
the stream function and vorticity and their primary locations are tabulated in Table 4.1. It
can be seen that beyond Reynolds number 20000 locations of the primary vortex does not
change, as would expected. This behavior was also observed by Erturk et al. [62]
forRe >17500. Figure 4.5 depicts contours of pressure fields. Pressure contours move to

the center with increasing Reynolds numbers.
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Figure 4.4. Vorticity contours at various Reynolds numbers. Contour levels are shown from
-10 to 10 with increment of 1.
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Figure 4.4. Vorticity contours at various Reynolds numbers. Contour levels are shown from

-10 to 10 with increment of 1 (continued).
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Figure 4.5. The pressure contour for various Reynolds numbers

Figure 4.6 and 4.7 show the effect of Reynolds number on the horizontal (u) and vertical (v)
velocity distribution at x=0.5 and y=0.5, respectively. The maximum and minimum values of
the velocity components at the corresponding centerlines are also given in Table 4.2 along
with their locations. Here subscripts denote values pertaining to the minimum and maximum
velocities. Table 4.3 shows comparison of the intensities of the primary eddy and vorticity
results found in the literature. Presented results are in good agreement with second order
accuracy results of Erturk et al. [62]. Higher velocities near the top surface or lid than those

near the bottom naturally result in smaller flow area for the flow in the lid movement
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direction than the flow in the opposite direction. This continuity effect depicts itself in the
form of off-centered stream function, vorticity and pressure contour plots especially at low
Reynolds number. On the other hand, as inertial terms gain strength, top to bottom
distributions of the quantities become more symmetric while gradients in the x or lid
movement direction get stronger.

These results demonstrate that steady high Reynolds number flows can be simulated using

even coarse grids.
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Figure 4.6. Profiles of horizontal velocity (u) at vertical centerline (x=0.5).
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Figure 4.7. Profiles of vertical velocity (v) at horizontal centerline (y=0.5).

43



Table 4.1. Intensities of the primary eddies and vorticity and their locations.

Re ¥ nin @ Xmin Ymin

100 -0.10341067 -3.1647956 0.61553348 0.73744621

400 -0.11382828 -2.2972451 0.55196863 0.60301751
1000 -0.11873676 -2.0661868 0.53253953 0.56485206
5000 -0.12169451 -1.9316066 0.51302859 0.53253953
7500 -0.12161812 -1.9120721 0.51302859 0.53253953
10000 -0.12136419 -1.8977556 0.51302859 0.53253953
15000 -0.12068707 -1.8735867 0.51302859 0.52604257
20000 -0.11990739 -1.8505587 0.50651521 0.52604257
25000 -0.11906834 -1.8272159 0.50651521 0.52604257
30000 -0.11818048 -1.8031062 0.50651521 0.52604257
35000 -0.11725889 -1.7784594 0.50651521 0.52604257
40000 -0.11630788 -1.7532791 0.50651521 0.52604257

Table 4.2. Horizontal minimum velocity, vertical minimum and maximum velocity through

the centerlines of the cavity.

Re Umnin Ymin Vmax Xmax Vmin Xmin

100 |-0.21394837 | 0.46097261 | 0.17952899 | 0.23673843 | -0.25380129 | 0.81058430
400 |-0.32851626 | 0.27869811 | 0.30367493 | 0.22680746 | -0.45401060 | 0.86327752
1000 |-0.38822348 | 0.17213964 | 0.37658325 | 0.15980540 | -0.52687868 | 0.90924372
5000 |-0.44598582 | 0.07421019 | 0.44615107 | 0.07952789 | -0.57472951 | 0.95791870
7500 | -0.45309198 | 0.06174353 | 0.45634260 | 0.06659128 | -0.57796271 | 0.96374108
10000 | -0.45650067 | 0.05258204 | 0.46222745 | 0.05938732 | -0.57925323 | 0.96922480
15000 | -0.45914842 | 0.04410015 | 0.46872173 | 0.04825858 | -0.57841837 | 0.97438591
20000 | -0.45932000 | 0.03816129 | 0.47213103 | 0.04410015 | -0.57609662 | 0.97603732
25000 |-0.45847694 | 0.03439419 | 0.47397444 | 0.04010188 | -0.57416247 | 0.97924015
30000 |-0.45734649 | 0.03256648 | 0.47504879 | 0.03625892 | -0.57141317 | 0.98079270
35000 |-0.45579347 | 0.03077520 | 0.47540200 | 0.03439419 | -0.56905611 | 0.98079270
40000 |-0.45409547 | 0.02901977 | 0.47537552 | 0.03256648 |-0.56701321 | 0.98231343
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Table 4.3. Comparison of the stream function and vorticity values.

Re References W imin @
100 Present -0.103410 -3.164795
[65] -0.103471 -3.1655
400 Present -0.113828 -2.297241
[65] -0.113897 -2.2950
1000 Present -0.118736 -2.066186
[65] -0.118800 -2.0664
[62] -0.118781 -2.065530
[63] -0.118938 -2.067760
5000 Present -0.121694 -1.931606
[65] -0.122050 -1.9392
[62] -0.121289 -1.926601
[63] -0.122216 -1.940547
7500 Present -0.121618 -1.912072
[65] -0.122302 -1.9275
[62] -0.120924 -1.904883
[63] -0.122344 -1.926478
10000 Present -0.121364 -1.897755
[65] -0.122248 -1.9231
[62] -0.120403 -1.888987
[63] -0.122306 -1.918187
15000 Present -0.120687 -1.873586
[62] -0.119240 -1.863618
[63] -0.122060 -1.907651
20000 Present -0.119907 -1.850558
[62] -0.118039 -1.841814
[63] -0.121694 -1.900032
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CHAPTER 5

RESULTS AND DISCUSSION

All the simulations presented were carried out on single computer platform, including an
AMD Athlon 64 FX-57 processor and 1GB Ram. The computer code, which we name as
NONSOL (NOn-Newtonian flow SOLver), was written based on the aforementioned
algorithms. The code is applied to three different test cases: a) laminar steady flow in
entrance planar channel, b) laminar steady flow in stick-slip and c) laminar steady flow in
lid-driven square cavity. Oldroyd-B, Phan-Thien Tanner (PTT) and White-Metzner models are
the constitutive models considered. To approximate of the convection terms in the
momentum equations first order upwind, power-law second order central difference
schemes are adopted. Besides third order quadratic upstream interpolation is used for
convective kinematics QUICK schemes.

In order to test the computational methodology followed in this study first a simple
geometry, flow through a channel, is considered. Satisfactory agreement between the
simulation and analytical results indicate that the computational methodology followed in

this study captures the non-Newtonian laminar flows.

Following the channel flow geometry, steady slip-stick and steady lid-driven flow in a square
cavity are investigated. Various constitutive models are compared together with the
numerical schemes. Loss of convergence at some critical value of Weissenberg number is

also discussed as outlined Chapter 1.

Details and results of these three different flow geometries are presented in the following

sections.

5.1. FLOW IN ENTRANCE OF PLANNER CHANNEL

As shown in Figure 5.1, we first consider channel Poiseuille flow problem to investigate
constitutive model effect on the numerical solutions. Steady incompressible constitutive

models given in Chapter 2 are applied to a planar channel, which has a length of 8H and a
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width of 2H (H=1). At the inlet, the flow is assumed to be plug flow except in the immediate
vicinity of the wall is shown in Figure 5.2, as described first by Gaidos and Darby [20] and
reformulated by Na and Yoo [51].

u(y)=

1.0448 for y<0.8714
(5.1)

(-46.92+110.09y-63.17y>) for y>0.8714

A
v

8H

Figure 5.1. Planar channel flow geometry.
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Figure 5.2. Inlet velocity profile.

47



Because of the hyperbolic structure of the constitutive equations, the stress components
must be specified at the entrance. They are calculated by using the assumed entrance flow

distribution and by the following relations:

2
7, =2We(1- ﬂ)(a—“J (5.2)
dy
7, =0 (5.3)
0
T, = (1—ﬂ)a—u (5.4)
y

No slip boundary conditions are assumed at the solid wall for velocity,

v v ou
=0,v=0, — =0, — =0, —=0 . .
! Y ox dy ox (5-3)

The stress components at the wall are obtained by solving constitutive equations and by

applying known velocity boundary conditions in equation (5.5).

At the centerline

du v
M _0,v=0,Z=0 _
dy ’ ox (5-6)

Similarly the stress components at the symmetry line are obtained by solving constitutive

equations and by using equation (5.6)

At the exit the Neumann boundary conditions are imposed for the flow variables

a7, d7,,
M _o, P op, W, Doy, P g, Py

X - (5.7)
ox ox 0x o0x 0x ox

Boundary values for pressure-correction equations are determined by considering velocity
boundary conditions [71]. For instance, if the velocity boundary conditions are of Dirichlet
type, Neumann type boundary conditions are applied to the pressure- correction equations.
Conversely, if the velocity boundary conditions are of Neumann type, Dirichlet boundary

conditions are used for pressure-correction equations.
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The simple channel flow geometry was investigated previously by Gaidos and Darby [20]
and Na and Yoo [51]. Na and Yoo [51] employed finite volume method with SIMPLER
algorithm on a non-uniform staggered grid arrangement to simulate the flow of a Oldroyd-B
fluid. They found that attainable maximum value of Weissenberg number increases with
increasing Reynolds number. However, Gaidos and Darby [20] observed an opposite trend,
as Reynolds number decreases, the maximum attainable Weissenberg number increases.

This contradiction is discussed in this chapter for all constitutive equations.

To compare our results with Na and Yoo [51], we have chosen polymer
viscosity, w, = (1—,3), as 0.8 in the Oldroyd-B model. Centerline velocity profiles are shown

in Figures 5.3 at Re of 1x10™ and We = 1. We used uniform collocated grids of 65 points in
y-direction. Figure 5.3 illustrates that all schemes used for approximation of the convective
terms in momentum equations produce close results with almost the same iteration number.
However, QUICK scheme is the most expensive one in all schemes in terms of computing
requirements. It almost needs 50% more computer time to achieve a prescribed tolerance
than others. At this low Reynolds humber, maximum attainable Weissenberg number for all
schemes is obtained as 1.This critical value has not been exceeded by any of available
schemes either. Na and Yoo [51] used the same constitutive model and polymer viscosity
with non-uniform staggered mesh. They presented their results at different Reynolds
numbers by using 20 graded grid points in y-direction. Their algorithm converged up to
Weissenberg number of 0.4 which is considerably smaller than that of presented study for
Re<<1. Figures 5.3 and Figure 5.4 show that velocity and stress first overshoot before to
the fully developed flow values. At least channel length of 8H is needed for the relaxation of
the stress. In other words, in order to obtain converged solution under described conditions,
channel length should be set larger than 6H.
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Figure 5.3. Comparison of the centerline velocity for three different schemes at We=1
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Figure 5.5. Comparison of computed and analytical profiles of (a) normal and (b) shear
stresses near exit of the channel at We=1 and Re<<1 by Oldroyd-B model.

Numerical results of the developed normal and shear stresses are shown in Figures 5.5a-b
along with their corresponding analytical solutions [72]. The results show that excellent
agreement between the simulation results and those of the analytical solutions is obtained.
In order to demonstrate effect of the fluid inertia on the numerical solution, simulations are
carried out over a wide range of Re including 1 and 10. We were able to obtain converged
solution at Re and We=1 (see Figure 5.6) with all schemes. At Re=10 and We=1, on the
other hand, no schemes yielded a converged solution for the same channel length.
Increasing the channel length to 12H and 16H did not improve the solutions in terms of
converge, either. The numerical results of centerline velocity at Reynolds number 10 are
presented for two different channel length in Figure 5.7 a) and b). We concluded that
maximum attainable Weissenberg number is strongly dependent on Reynolds number. This
is in parallel with the results of Gaidos and Darby [20] while is in contrast with that of Na
and Yoo [51].
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Figure 5.7. Centerline velocity at We=1 and Re=10 with channel length of a) 12H and b)
16H with Oldroyd-B model.

The viscoelastic entry length flow was also investigated using the equations governing the
flow of single-mode PTT model. In addition to Oldroyd-B model, simulations using PTT
model were also carried out. Polymer viscosity term, w, = (1— ﬂ), in the model was set as
0.8. Also, the material parameter, &, which controls both shear-thinning and extension
properties [24] is chosen as 0.25. The centerline velocity and stress profiles obtained by
using PTT model are depicted in Figure 5.8 and in Figure 5.9 respectively at two different
We and Re<<1. Increasing shear thinning at higher We is captured in the simulations.

Smooth centerline velocity is obtained even at high We of two which is well above the We
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limit of one in the Oldroyd-B case. Figure 5.10 shows centerline velocity profiles obtained by
Oldroyd-B and PTT differential models for creeping flow conditions at We=1. It can be seen;
PTT model predicted more smooth profiles than Oldroyd-B. The main difference between the
models is with their maximum attainable We. Oldroyd-B model simulations become unstable
at We=1. With PTT model, We number could be increased up to 3.

(a) (b)

Figure 5.9. Computed profiles of (a) normal and (b) shear stresses at near the exit of the
channel for Re<<1 at two different We for PTT model.
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Figure 5.10. Centerline velocity profiles between constitutive models Oldroyd-B and PTT
at We=1 for Re<<1.

Finally the effects of using White-Metzner constitutive model on the simulations are
investigated. All the other flow conditions are identical to those of simulations using Oldroy-B
and PTT models. The material parameters of the model are tabulated in Table 5.1.
Numerical results of the developing velocity at the centerline are presented in Figure 5.11 at
various We for Re<<1. It can be seen that White-Metzner model exhibits shear-thinning
behaviors similar to the PTT model. At high We this trend disappears. Numerical results of
the normal and shear stresses are shown in Figures 5.12 at various We values. Their
magnitude decreases with increasing We. We were able to obtained converged solution up
to We = 4 using parameters listed in Table 5.1. Some of the parameters in Table 5.1 were
used previously to simulate general non-linear constitutive equation by Gaidos and Darby
[20]. If we compare stability and maximum attainable We using the same channel length,
grid points and flow conditions, we can say that White-Metzner model is the most stable
model. This fact is confirmed by Figure 5.13 which shows that developing centerline velocity
obtained by using White-Metzner constitutive model is fairly smooth and does not appear

any overshooting near the entrance of the channel.
All the results indicate that maximum achievable We is very sensitive to Re as well as to

used constitutive model. However, all constitutive models which are used in the simulation

of channel flow suffered from high We (We>5) problem. We did not observe any differences
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among schemes which are used to approximate convective terms in the momentum

equations. In other words limiting We was the same for schemes.

Table 5.1. Material parameters used in White-Metzner model

Parameters c £ a Jii

Values 0.8 0.42 0.5 0.171  0.492

0.8
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0.2
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We=1
e - We=2
———- We=4

Figure 5.12. Profiles of (a) normal and (b) shear stresses near channel exit for Re<<1 at

various We with White-Metzner model.
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Figure 5.13. Effect of the constitutive models on predicted centerline velocity profiles at
We=1 for Re<<1.

5.2. STICK-SLIP FLOW

Another test case, we have considered is the stick-slip geometry where boundary conditions
change suddenly from no slip to perfect slip [12] as shown in Figure 5.14. Steady
incompressible three constitutive models given in Chapter 2 are applied to the stick-slip
geometry, which has stick length of 8H and slip length of 16H. At the inlet, the flow is
assumed to be plug flow except at the immediate vicinity of the wall. In addition, stress
components and pressure correction boundary values are specified as described in the

previous section.

To investigate impact of the abrupt change of the boundary conditions on the flow field as
well as solution algorithm, stick-slip flow problem has been studied in the simulation of the
viscoelastic flows in many studies [12, 25, 73-76]. Al Moatassime and Jouron [76] employed
finite differences method on a non-uniform staggered grid arrangement to the discretisize of
the governing flow of Oldroyd-B fluid. They solved stick-slip flow problem as well as four to
one contraction by using the fall approximation storage (FAS) multigrid method. For the
Oldroyd- B model, they were able to simulate stick-slip flow problem up to We of 10.
However, they have imposed fully developed Poiseuille flow in the entry region. They set the

maximum velocity at the center as 0.333. Due to nonlinear relations between stress and
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velocity field, extremely large stress peak was observed at the abrupt boundary change
point. This high sensitivity become stronger as We increases [44]. We believe that, at the
entrance region, streamwise velocity components should be set uniform [25] to test limiting

value of the We.

8H 16H

A
v

Figure 5.14. Stick-slip flow geometry

Below numerical results with polymer viscosity, w. = (1 —,B), of 0.8 in the Oldroyd-B model

are presented at Re of 1x10-4. We used uniform collocated grids of contain 65 grid points
in y-direction. Second order central differences scheme was used for the approximation of
the convective terms in momentum equations. Figure 5.15 shows the velocity development
profiles along the top boundary (see Figure 5.15 (a)) and center line (see Figure 5.15 (b)) at
various values of We for Re<<1. The effect of the high We is to decrease the slope of the
velocity profiles [75, 76] and to increase down stream channel length. This result can be
expected since as We gets higher, it takes longer distances for the flow to relax after sudden
no-slip boundary. Computed normal and shear stress components are presented along the
top boundary in Figure 5.16 and 5.17, respectively. In addition, to demonstrate effect of the

abrupt change of boundary, normal stress of 7 close the top boundary (y=0.9923) is also
plotted in Figure 5.16 (b). At points where boundary changes suddenly from slip to prefect
no slip, normal stress grows enormously and its dimensionless magnitude increases up to

1100 at Weissenberg number 1.5. This sudden huge increase in the normal stress causes
large oscillation in the velocity and stress field.

Al Moatassime and Jouron [76] have computed normal stress value at singularity point as

approximately 10 for We of 1, while in our computation this magnitude is nearly 550,
providing possible explanation for the difference there between two simulations limit
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Weissenberg number. All figures demonstrate that after We of 1 oscillations appear and
increases as We gets higher. Another important concern in numerical simulation of
viscoelastic fluids is mesh refinement. The convergence of the numerical scheme is very
sensitive to mesh refinement. For instance as number of the grid points increases, attainable
maximum We decreases due to large gradients over the smaller distances. This fact
contradicts with the Newtonian flow simulation [63]. Profiles of normal stress components of

T . are shown in Figure 5.18 for two different meshes, M1 and M2 that respectively contain

65 and 33 grid points in y-direction. Here, We is 1.5 and Re<<1. The effect of having lower
grid is to decrease the magnitude of the stress peak at the singularity point giving rise to
non-oscillatory stress field. Although, using low number of grids allows one to get stable
solutions at relatively high We, accurate approximation of the stress field entails a refined
mesh [44].

We=1.5
- —— - We=1

e - We=0.8
———- We=05

Eob b b b b b b b b b bl
0 2 4 6 8 10 12 14 16 18 20 22 24
X

(a) (b)

Figure 5.15. Velocity profiles along the a) top boundary b) center line at various values
of We for Re<<1 by Oldroyd-B model.
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Figure 5.16. Normal stresses, 7, , profiles along a) top boundary b) close to top

boundary (y= 0.9923 ) at various values of We for Re<<1 by Oldroyd-B model.
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Figure 5.17. Shear stresses, Ty profile along top boundary at various values of We for

Re<<1 by Oldroyd-B model.
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Figure 5.18. Normal stresses, 7, profiles along top boundary using two different

uniform mesh M1 and M2 having 66 and 33 grid points in y-direction at We=1.5 and
Re< <1 by Oldroy-B model.

Second constitutive model that is considered to simulate stick-slip flow is single-mode PTT
model. We have chosen polymer viscosity, w, = 0.8, and material parameter, £=0.25.

Velocity development profiles along the top boundary and center line at two values of We
for Re<<1 are shown in Figure 5.19. The horizontal developing velocity component exhibits
different behavior from the flow of Oldroyd-B fluids at both locations. Overshoot and
undershoot are observed. They get more pronounced as We increases. Stress components
of normal and shear stress along the top boundary are shown in Figure 5.20. The values of
the maximum normal stress and shear stress at singularity point are much lower than those
obtained by Oldroyd-B model. Moreover, the predicted velocity and stresses profiles are
smoother than Oldroyd-B model. However, loss of convergence was also observed in this
geometry at We of 3 for the described material parameters. Maximum attainable We level is
2 in the case of PTT model.
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Figure 5.19. Velocity profiles along the a) top boundary b) center line at two values of We
for Re<<1 with PTT model.
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Figure 5.20. Profiles of (a) normal and (b) shear stresses along the top boundary for
Re<<1 at two different We with PTT model.

The last constitutive model used in the stick-slip flow simulations is the White-Metzner
model. The material parameter settings are tabulated in Table 5.1. They are the same as the
values used for the channel flow simulations. Numerical results of the developing velocity
along the top and centerline are presented in Figure 5.21 at We of 4 and 5 for Re<<1. It

can be seen that White-Metzner model results in overshoot and undershoot along the top
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and center line similar to the PTT model. Normal and shear stresses along the top boundary
are shown in Figures 5.22. Calculated stress peak at the singularity point is much higher
than that of PTT model but lower than the one obtained by Oldroyd-B model. We were able
to obtain converged solutions up to We = 5 using parameters in Table 5.1. Like simple
channel flow, White-Metzner model is the most stable model in the simulation of stick-slip
flow. With respect to attainable maximum We and obtaining smooth solutions, the White-
Metzner model seems to be superior than Odroyd-B and PTT models.
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Figure 5.21. Velocity profile along the a) top boundary b) center line at two values of We
for Re<<1 by White-Metzner model.
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Figure 5.22, Profiles of (a) normal and (b) shear stresses along the top boundary at two
We for Re<<1 using White-Metzner model.

5.3. LID DRIVEN CAVITY FLOW

After verifying the computational methodology using the simple benchmarking geometries, it
was proceeded with the square lid driven cavity flow of an OLDROY-B fluid due to more
challenging than PTT and White-Metzner model, for three different meshes, as shown in
Figure 5.23. Mesh 1 (M1) contains 129x129 grid points and has the smallest cell area near
the lid as 2.74x10°. Second mesh M2 contains 193x193 grid points and has the smallest cell
area of 1.22x10° near the lid. Fine mesh contains 257x257 grid points and has the smallest

cell area near the lid as 6.86x10. Most of the results are presented for the fine mesh M3.

In this section, numerical results at We ranging from 0 to 1.1 are presented for three
different polymer viscosities, w, :(1—ﬂ) 0.7, 0.8 and 0.875. From definition of w, in
equation 2.4.9 and 2.1.8, decreasing w, decreases polymer contribution viscosity. To

investigate effect of the Re on the flow field, simulations are carried out over a wide range

of Reynolds numbers including 1x10™, 100 and 400.
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Figure 5.23. Non-uniform graded meshes with enlargements of right top corner (a)
Mesh M1, 129x129 (b) Mesh M2, 193x193 (c) Mesh M3 257x257 grid points.
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5.3.1. Boundary Conditions For Stresses

Boundary values of stress components can be determined by solving the constitutive

equations with the available velocity field.

1) Top wall boundary conditions parallel to the x-axis:

0 0 0
u=1,v=0, Z=0, L=0, L=0
ox ox dy
If we apply these conditions in the constitutive equations through (2.26-2.28) we obtain

following non-linear equations

T+ aa_x(WeM” )=2We (g—ij T, (5.8)
T, +i(WeuTyy ) =0 (5.9)
ox
d ou ou
7y o (Weut, ) =Wer,, (a—yj +w, [5) (5.10)

Therefore, the values of 7., 7,

yy

and 7  on the lid are obtained by solving the set of

xx !

equations above.

2) Bottom wall boundary conditions parallel to the x-axis:

If similar step procedure is applied by using the following conditions.

u=0, v=0, ﬂ:O, i:0, 8_u:0
ox dy ox

we can obtain stress boundary conditions for the bottom wall.

2
T = 2Wew{a—uj (5.11)

7, =0 (5.12)
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T,=W a_u 5.13
xy r ay ( )

3) Solid walls boundary conditions parallel to the y-axis (left and right wall):

The values of7 ., 7

y

and 7, at the solid walls are evaluated through the following

conditions.

ou . Ov ou

=0,v=0, — =0, — =0, —=0
! Y dy dy ox
7,.=0 (5.14)
2
T, =2Wew, (&j (5.15)
> ox
T o=w (@j (5.16)
o ox '

The boundary conditions on pressure-correction are of Neumann type for all boundaries.

5.3.2. Results at Re<<1

At creeping flow conditions, the stream functions and vorticity at different polymer viscosity,
w;, and We are depicted in Figures 5.24 and 5.25 respectively. Results of w, = 0.875, w, =
0.8 and w; = 0.7 are given at top, middle and bottom of these figures, respectively. Stream
function, y, and vorticity, w, are obtained by solving the following equations after

convergence is attained.

Vy=-w (5.17)
o=-2 2 5.18
dy ox (5.18)

In Newtonian cavity simulations, stream function and vorticity values and their locations are
usually taken as a code validation. At We = 0 and Re = 0, i.e. Stokes flow, fore-aft
symmetry is observed, a typical Newtonian fluid behavior. However, for a viscoelastic fluid,

as the value of We increases the primary vortex shifts in the upstream direction (see Figure
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5.26) and streamlines near the downstream corners become more curved due to the
increased normal stress effects. This phenomenon was also observed experimentally by
Pakdel et al. [45] using laser Doppler velocimetry (LDV) and digital particle image
velocimetry (DPIV). The effect of the elasticity is more pronounced at the downstream than
the upstream due to the finite relaxation of the normal stresses for all w, as shown by the

vorticity contours in the Figure 5.25.
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Figure 5.24. The stream functions at top w, = 0.875, middle w, = 0.8, bottom w, = 0.7,
for different We and at Re = 0
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Figure 5.25. The vorticity contour a) wr =0.875, b) wr =0.8, ¢) wr =0.7, for different We
and at Re=0. Contour levels are shown from -10 to 10 with increment of 1.
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Figure 5.25. The vorticity contour a) w, =0.875, b) w, =0.8, ¢) w, =0.7, for different We
and at Re=0. Contour levels are shown from -10 to 10 with increment of 1. (continued)
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Figure 5.25. The vorticity contour a) w, =0.875, b) w, =0.8, ¢) w, =0.7, for different We
and at Re=0. Contour levels are shown from -10 to 10 with increment of 1. (continued)
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Figures 5.27 and 5.28 show the effect of We on the horizontal (u) and vertical (v) velocity
components distribution at x=0.5 and y=0.5, respectively. With increasing We, maximum

magnitudes of the velocity components decrease as expected.
0,82; We=1.1
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Figure 5.26. Primary vortex center location as a function of We and w, for Re=0.

The maximum and minimum values of the velocity components at the corresponding
centerlines are also given in Table 5.2 along with their locations. Here subscripts denote
values pertaining to the minimum and maximum velocities. The results obtained at We=0
compares well with those of a Newtonian fluid study [65]. Vertical position of un, shifts
upward. Horizontal positions of the via and vmin, On the other hand, decrease as a function
of We. As the Newtonian viscosity increases, in other words polymer contribution viscosity
decreases the maximum attainable converged values of We increases. For w, = 0.875, 0.8

and 0.7, maximum We reached are 0.6, 0.8 and 1.1, respectively.
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Figure 5.27. Effects of We on u at vertical centerline (x=0.5) for (a) w, =0.875 (b) w,=0.8
(c)w, =0.7 at Re=0.
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Figure 5.28. Effects of We on v at horizontal centerline (y=0.5) for (a) wr =0.875 (b)
wr=0.8 (c)wr =0.7 at Re=0.

The effect of We on the magnitude and location of the center of the primary eddy are listed
in Table 5.3. The stream function values at the center of the primary eddy decrease as We
gets higher for each w,. Other impact of the increasing We is that the position of the primary
eddy center moves slightly toward the upstream corner of the lid. Effect of the polymer
viscosity is clearly depicted in Figure 5.29, where upstream and downstream bottom corner
streamlines with value of 0 are plotted at different We (the arrows point increasing We from
0 to the maximum value depicted in Table 5.3). Magnitudes and locations of the upstream
secondary eddy (USE) and downstream secondary eddy (DSE) for each We at w, =0.875 are
similar (see Figure 5.29 top). That means there is no reduction in height and width of the
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USE and DSE. When w, decreases (see Figure 5.29 middle and bottom) USE and DSE height
and width begin to shrink with increasing We.
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Figure 5.29. Comparison of the eddy sizes USE and DSE as a function of We in terms of
contour level at top w, =0.875, middle w, =0.8, bottom w, =0.7 for Re=0.
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Table 5.2. Horizontal minimum velocity, vertical minimum and maximum velocity through

the centerlines of the cavity at Re=0.

We Reference Unmin Yemin Vimax Xmax Vimin Xmin
0 Present -0.207703 0.537543 0.181364 0.210522 -0.181364 0.789478
[65] -0.207754 0.537600 0.186273 0.210500 -0.186273 0.789400
w; = 0.875
0.1 Present -0.202034 0.537543 0.176042 0.210522 -0.175110 0.789478
0.2 Present -0.186088 0.546907 0.161904 0.210522 -0.157802 0.781445
0.3 Present -0.166914 0.551583 0.146044 0.206535 -0.138094 0.777400
0.4 Present -0.149482 0.556256 0.132502 0.206535 -0.121522 0.769254
0.5  Present -0.135287 0.556256 0.122030 0.202567 -0.108905 0.765154
0.6 Present -0.123995 0.556255 0.113942 0.198618 -0.099566 0.761033
w, = 0.8
0.1 Present -0.202458 0.537543 0.176462 0.210522 -0.175508 0.789478
0.2  Present -0.187380 0.546907 0.163106 0.210522 -0.159068 0.781445
0.3 Present -0.168658 0.551583 0.147554 0.206535 -0.139630 0.777400
0.4 Present -0.151202 0.556256 0.133855 0.206535 -0.122739 0.769254
0.5 Present -0.136325 0.556256 0.122658 0.202567 -0.109379 0.765154
0.6  Present -0.124182 -0.124182 0.113689 0.198619 -0.099110 0.756898
0.7  Present -0.114430 0.556256 0.106572 0.198619 -0.091309 0.752744
0.8 Present -0.106548 0.556256 0.100908 0.198619 -0.085277 0.752744
w, = 0.7
0.1 Present -0.203008 0.537543 0.176990 0.210522 -0.176055 0.789478
0.2 Present -0.188813 0.542227 0.164324 0.210522 -0.160463 0.781445
0.3 Present -0.170569 0.551583 0.148913 0.206535 -0.141227 0.777400
0.4 Present -0.153022 0.556256 0.134884 0.206535 -0.124003 0.769254
0.5  Present -0.137542 0.560924 0.122966 0.202567 -0.109823 0.765154
0.6  Present -0.124264 0.560924 0.112968 0.202567 -0.098328 0.756898
0.7 Present -0.112980 0.560924 0.104559 0.198619 -0.088975 0.198619
0.8  Present -0.103401 0.560924 0.097433 0.198619 -0.081276 0.748571
0.9  Present -0.095250 0.560924 0.091331 0.198619 -0.074869 0.744382
1.0 Present -0.088284 0.556256 0.086082 0.194690 -0.069472 0.740175
1.1 Present -0.082302 0.556256 0.081527 0.194690 -0.064882 0.740175
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Table 5.3. Intensities of the primary eddies as a function of Weissenberg number at Re=0.

We Reference Whnin Xmin Ymin
0 Present -0.10007595 0.50000000 0.76515381
[66] -0.10005400 0.50000000 0.76260000

w; = 0.875
0.1 Present -0.09789340 0.50000000 0.76925443
0.2 Present -0.09144949 0.49530326 0.77740029
0.3 Present -0.08341255 0.48591125 0.78547102
0.4 Present -0.07605805 0.48121672 0.79346518
0.5 Present -0.07007088 0.47183244 0.80138136
0.6 Present -0.06528044 0.46714342 0.80530980
w, = 0.8
0.1 Present -0.09805254 0.50000000 0.76925443
0.2 Present -0.09196584 0.49530326 0.77740029
0.3 Present -0.08411501 0.48591125 0.78547102
0.4 Present -0.07675354 0.48121672 0.79346518
0.5 Present -0.07046514 0.47652366 0.80138136
0.6 Present -0.06530458 0.47183244 0.80530980
0.7 Present -0.06110342 0.46714342 0.80921826
0.8 Present -0.05766664 0.46714342 0.80921826
w, = 0.7

0.1 Present -0.09826001 0.50000000 0.76925443
0.2 Present -0.09250882 0.49530326 0.77740029
0.3 Present -0.08482177 0.49060688 0.78547102
0.4 Present -0.07737952 0.48591125 0.79346518
0.5 Present -0.07081864 0.48121672 0.79743310
0.6 Present -0.06516975 0.47652366 0.80138136
0.7 Present -0.06034487 0.47183244 0.80921826
0.8 Present -0.05620550 0.46714342 0.80921826
0.9 Present -0.05264022 0.46714342 0.81310660
1.0 Present -0.04954916 0.46245698 0.81697465
1.1 Present -0.04685245 0.46245698 0.82082228
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Normal stress, 7, profiles for different values of w, and We are presented near the

downstream (x=0.9987) as a function of y in Figure 5.30. Increasing elasticity and polymer
viscosity lead to increase in hoop stress in the vicinity of the downstream corner so that
magnitude of the stress gets higher. One of the reasons of why the low polymer contributed
viscosity at very high We becomes computable, may be the fact that as polymer contributed
viscosity decreases. Hence this pollute the velocity field with a lower extend. As polymer
viscosity increases high stress gradients cause to loss of convergence of the numerical
scheme. Effects of the mesh refinement on the stress profile are shown in Figure 5.31 at w;
=0.8 and We=0.8. It can be seen that the prediction of all meshes give a similar trend while
the peak near the down stream corner with fine mesh M3 becomes much higher than those
of the other meshes. The maximum and minimum values of the velocity components for
three different meshes at the corresponding centerlines are given in Table 5.4 along with
their locations. Although predicted stress peak increases with mesh refinement, their size
has little impact on the rest of the flow [10]. This can be seen clearly in Table 5.4. For
instance, stress near the down stream in the case of M3 is nearly four times greater than M1
and two times than M2 (see Figure 5.31). But differences between velocities of each mesh

are very little (see Table 5.4).
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Figure 5.30. Normal stresses, 7 _, near the downstream (x=0.9987) (a) wr =0.875 (b)

wr=0.8 (c)wr =0.7 at different We for Re=0.
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different meshes at We=0.8 and w,=0.8.

Table 5.4. Horizontal minimum velocity, vertical minimum and maximum velocity through

the centerlines of the cavity with three different mesh at Re=0.

Unmin Ymin Vmax Xmax Vmin Xmin

w, = 0.875 and We = 0.6

M1 -0.1241959 0.5560386  0.1097893  0.2075530 -0.0982472  0.7683024
M2 -0.1241545 0.5561832 0.1124586  0.1989656 -0.0991492  0.7634701
M3 -0.1239950 0.5562550 0.1139420 0.1986180 -0.0995660 0.7610330

w, =0.8 and We = 0.8

M1 -0.1073025 0.5560386  0.0981493  0.1996574 -0.0840592 0.7601066
M2 -0.1067921 0.5561832  0.0997698  0.1989656 -0.0847774  0.7524415
M3 -0.1065484 0.5562558 0.1009084  0.1986186 -0.0852773  0.7527436

5.3.3. Results at Re=100

The impact of the non-linear inertial terms in the Cauchy stress equation gets amplified as
Reynolds number increases and eventually flow becomes unstable when a critical Re is
reached, i.e. Re.=500 [46]. In this and following parts of the report, the effects of
increasing Re (100 and 400) on the viscoelastic flow in the square lid are investigated. The
velocity components through the vertical and horizontal centerline of the cavity are

compared with the Weissenberg number and polymer viscosity w; in Figures 5.32 and 5.33
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and their values are tabulated in Table 5.5. As can be seen from both Figures 5.32 and 5.33
and Table 5.5, as Weissenberg number increases the minimum value of the horizontal
velocity component decreases in magnitude and its location moves closer to the lid. Also,
extremal values of the vertical velocity components decrease and their minimum and
maximum values approaches to zero with increasing We. This trend depicts that as the
elasticity increases recirculation flow inside a lid driven cavity gets restricted.
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Figure 5.32. Effects of We on u at vertical centerline (x=0.5) for (a) w, =0.875 (b) w,=0.8
(c)w, =0.7 for Re=100
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Table 5.5. Horizontal minimum velocity, vertical minimum and maximum velocity through

the centerlines of the cavity at Re=100.

We Reference Unmin Yrmin Vmax Xmax Vimin Xemin
0 Present -0.213948 0.4609726 0.179528 0.236738 -0.253801 0.810584
[65] -0.213924 0.459800 0.180888 0.235400 -0.256603 0.812700
[66] -0.210900 0.453100 0.175270 0.234400 -0.245330 0.804700
[67] -0.214042 0.458100 0.179572 0.237000 -0.253803 0.810400
[68]  -0.210600 0.453100 0.178600 0.234400 -0.252100 0.812500
w, = 0.875
0.1 Present -0.186563 0.490607 0.147314 0.234846 -0.198547 0.801381
0.2 Present -0.116733 0.789478 0.045753 0.175351 -0.050539 0.824649
0.3 Present -0.107539 0.797433 0.041586 0.167759 -0.045373 0.824649
w, =0.8
0.1 Present -0.188753 0.490607 0.149660 0.234846 -0.202205 0.801381
0.2 Present -0.160699 0.532857 0.120203 0.230746 -0.147604 0.785471
0.3 Present -0.137966 0.574898 0.099591 0.222600 -0.111286 0.777400
0.4 Present -0.120749 0.593448 0.088454 0.218555 -0.093618 0.773337
0.5 Present -0.107701 0.598068 0.081641 0.218555 -0.083802 0.773337
0.6 Present -0.099129 0.598068 0.076364 0.214529 -0.076978 0.773337
w, = 0.7
0.1 Present -0.191659 0.485911 0.152828 0.234846 -0.207302 0.801381
0.2 Present -0.165225 0.532857 0.123908 0.230746 -0.153196 0.785471
0.3 Present -0.142547 0.574898 0.101308 0.222600 -0.112935 0.773337
0.4 Present -0.124635 0.602681 0.088516 0.218555 -0.092300 0.773337
0.5 Present -0.110441 0.611882 0.080997 0.214529 -0.081339 0.773337
0.6 Present -0.099314 0.611882 0.075704 0.214529 -0.074158 0.773337
0.7 Present -0.090564 0.607286 0.071477 0.210522 -0.068596 0.773337
0.8 Present -0.083503 0.602681 0.067872 0.210522 -0.063928 0.769254

Moreover, effect of the increasing Weissenberg number on the hydrodynamic behavior of
the flow is investigated with streamline and vorticity contours that are shown in Figures 5.34
and 5.35, respectively. Streamline plots of Figure 5.34 show that at high We primary vortex

center moves in the upstream direction and streamlines near the downstream corners more
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curved. Similar effects are observed for creeping flow. However results become quite
different in the case of w, =0.875 (see Figure 5.34 top). After We=0.2, USE and DSE
secondary eddies disappear and almost no circulation occurs in the cavity (see Table 5.6).
Locations of the primary vortex center as a function of Weissenberg number and polymer
viscosity w, are presented in Figure 5.36. Table 5.6 includes the intensities of the primary
eddy with the various values of Weissenberg numbers. Their comparison with the literature
is also given for Newtonian fluid. Results of the Re 100 indicate that attainable maximum
Weissenberg number strongly depends on Reynolds number. At this Reynolds humber, at w;
= 0.875 0.8 and 0.7, maximum We values reached were 0.3, 0.6, 0.8 respectively.
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Figure 5.34. The stream functions at top w, =0.875, middle w, =0.8, bottom w, =0.7, for

different We and for Re=100.

Figure 5.37 shows that downstream (DSE) and upstream (USE) secondary eddy at various
We and at w, = 0.8 and w, = 0.7. It is observed that the DSE and USE shrink with increasing
We for both polymer viscosities. However, it can clearly be seen that as elasticity is
increased, the width and height of the DSE decreases more than USE. These may be due to

the unrelaxed stresses. When stretched stresses arrive at the downstream bottom corner,

they may still be unrelaxed and may need more distance to be relaxed.




We=0.1 We=0.3

o
o

LobuohbrbbioanmwrunoNoo=

o
LobuohbbhioaNOrON®O

o

@

We=0.1 We=0.6

o
o

LobubhhbMOioaNWrOON®O

5]
LobNUOhbhbdOMLio2 MR, N®O =

o

(b)

Figure 5.35. The vorticity contour a) wr =0.875, b) wr =0.8, ¢) wr =0.7, for different We
and at Re=100. Contour levels are shown from -10 to 10 with increment of 1.
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Figure 5.35. The vorticity contour a) wr =0.875, b) wr =0.8, ¢) wr =0.7, for different We
and at Re=100. Contour levels are shown from -10 to 10 with increment of 1. (continued)
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Table 5.6. Intensities of the primary eddies as a function of Weissenberg number at

Re=100.

We Reference Whin Xmmin Ymin
0 Present -0.10341067 0.61553348 0.73744621
[65] -0.10347100 0.61890000 0.74000000
[66] -0.10342300 0.61720000 0.73440000
[67] -0.10260000 0.61720000 0.73440000

w, = 0.875
0.1 Present 0.09429142 0.62104905 0.76103499
0.2 Present -0.04741423 0.58418619 0.87600341
0.3 Present -0.04282108 0.56558728 0.87950867
w, = 0.8
0.1 Present -0.09507428 0.62104905 0.76103499
0.2 Present -0.08312456 0.61647003 0.78947776
0.3 Present -0.07229769 0.60268082 0.81697465
0.4 Present -0.06429992 0.58882050 0.83600592
0.5 Present -0.05837442 0.57489837 0.84347184
0.6 Present -0.05420375 0.56558728 0.84717292
w, = 0.7

0.1 Present -0.09611734 0.62104905 0.75689818
0.2 Present -0.08488373 0.61647003 0.78547102
0.3 Present -0.07391579 0.60728558 0.81310660
0.4 Present -0.06547667 0.59344793 0.83224130
0.5 Present -0.05916544 0.57954536 0.83974947
0.6 Present -0.05426943 0.57024555 0.84717292
0.7 Present -0.05033084 0.56092390 0.85085261
0.8 Present -0.04706214 0.55625578 0.85451080

Normal stress, 7, profiles at different values of Weissenberg number and polymer viscosity

are presented near the downstream upper corner as a function of y in Figure 5.38. Stress

peaks at Reynolds number 100 show similar trends to the creeping flow results.

87



0.88

0.86

0.84

0.82

wr=0.7
— @ - wr=0.8
—-—A—-— wr=0.875

o
3
®

o
3
@

o
3
N

TN EVENENANEN ANV STATEEE SRRV SURTATETE SAETE W)
056 057 058 059 0.6 0.61 0.62
X

o
o

o7
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Figure 5.38. Normal stresses, 7 _, near the downstream (x = 0.9987) (a) wr = 0.875 (b)
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5.3.4. Results at Re=400

In the final test flow at Re = 400 is investigated. At this Reynolds number the maximum
attainable Weissenberg number at which a converged numerical solution was found 0.1, 0.3
and 0.5 for w, = 0.875, 0.8 and 0.7, respectively. Figures 5.39 and 5.40 illustrate distribution
of horizontal velocity along the vertical centerline and vertical velocity along the horizontal
centerline. Their extrema values are listed in Table 5.7. In the Figures 5.39 and 5.40
especially for low polymer viscosity cases, as Weissenberg number increases the minimum

value of the horizontal velocity component decrease in magnitude and its location moves
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closer to the lid. Vertical velocity, on the other hand is almost zero. Computed streamlines
and vorticity contours are displayed in Figures 5.41 and 5.42, respectively. At We = 0.3, two
loop appear in the cavity for both polymer viscosity values. However, after We = 0.3 second
loop in the cavity disappears and DSE and USE begin to shrink with increasing We for w, =
0.7. Figure 5.43 shows location of the primary vortex center as a function of Weissenberg
number at two different w,. It is found that primary vortex shifts in downstream direction,
which is an opposite trend observed in Re =0 and 100 simulations. Table 5.8 includes the
intensities of the primary eddy with the various values of We. Their comparison with the
literature is also given for Newtonian fluid. In Figure 5.44, we demonstrate the graphs of

stress 7 near the downstream upper corner.
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Table 5.7. Horizontal minimum velocity, vertical minimum and maximum velocity through

the centerlines of the cavity at Re=400.

We  Reference Unmin Yrmin Vimax Xmax Vimin Xmin
0 Present -0.327159 0.281107 0.301868 0.226663 -0.449446 0.861762
[65] 0.328375 0.281500 0.304447 0.225300 -0.456316 0.862100
[66] -0.327260 0.281300 0.302030 0.226600 -0.449930 0.859400
w; = 0.875
0.1 Present -0.285669 0.342679 0.241659 0.259825 -0.364606 0.828456
w, = 0.8
0.1 Present -0.289831 0.333723 0.247890 0.255618 -0.373670 0.333723
0.2 Present -0.235405 0.476524 0.132482 0.307161 -0.193572 0.761035
0.3 Present -0.117764 0.639269 0.029975 0.247256 -0.038502 0.752744
w, = 0.7
0.1 Present -0.295010 0.329263 0.255583 0.251429 -0.384803 0.836006
0.2 Present -0.249793 0.448417 0.155438 0.298417 -0.228557 0.765154
0.3 Present -0.139979 0.639269 0.028305 0.289731 -0.038294 0.744382
0.4 Present -0.077242 0.675184 0.035751 0.206535 -0.039309 0.785471
0.5 Present -0.062104 0.537543 0.049668 0.226663 -0.051088 0.801381
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Table 5.8. Intensities of the primary eddies as a function of Weissenberg number at Re =

400.
We Reference Whnin Xmin Ymin
0 Present -0.11391532 0.55625578 0.60728558
[65] -0.11389700 0.55360000 0.60750000
[66] -0.11390900 0.55470000 0.60550000
w, = 0.875

0.1 Present -0.10009768 0.56558728 0.63017903

w, = 0.8
0.1 Present -0.10145504 0.56558728 0.63017903
0.2 Present -0.08103418 0.59806816 0.70158321
0.3 Present -0.05645073 0.71889305 0.83600592

w, = 0.7
0.1 Present -0.10316055 0.56092390 0.62561883
0.2 Present -0.08494495 0.58418619 0.68844592
0.3 Present -0.05982333 0.70158321 0.82082228
0.4 Present -0.04583972 0.75274358 0.88645269
0.5 Present -0.04301233 0.73595167 0.89670163
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Figure 5.42. The vorticity contour a) w, =0.8, b) w, =0.7, for different We and at Re=400.
Contour levels are shown from -10 to 10 with increment of 1.
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CHAPTER 6

PARTICLE MIGRATION AND SUSPENSION STRUCTURE IN STEADY
AND OSCILLATORY CHANNEL FLOW

In this chapter, rates of particle migrations for concentrated suspensions of spherical, non-
Brownian particles in steady and oscillatory pressure driven channel flow is presented in
detail. The equations governing relation between structure and stress in-hard sphere
suspensions has been developed by Stickel [77] at Department of Chemical Engineering and
Material Science University of California at Davis.

6.1. INTRODUCTION

Concentrated suspensions of Brownian, neutrally buoyant hard spheres exhibit rheologically
interesting features that are, in many cases, not as well understood as comparable
phenomena in polymeric liquids. Even in the absence of any elastic response in the
suspending medium, structural rearrangements that follow changes in flow conditions
contribute a time-dependent rheological response in step-strain and small amplitude
oscillatory shear (SAOS) experiments [78,79,80,81]. In addition, normal stress differences
have been measured in viscometric flows [82] and computed in particle-level dynamic
simulations [83].

Among the interesting observations involving concentrated suspensions is the observation
that particles migrate irreversibly in non-homogeneneous shear flows of concentrated
suspensions. Dating to the pioneering work of Gadala-Maria and Acrivos [78] and Leighton
and Acrivous [84], this finding was at first surprising because it appeared to contradict the
well-known principle of reversibility of low Reynolds number flow. However, the presence of
non-hydrodynamic interactions, as well as the non-linear nature of the equations that govern
the trajectories of particles affected by multiparticle interactions, provides suitable
explanations for the irreversible behavior. There is no longer doubt as to existence of
phenomenon. It has been observed directly in flows between concentric cylinders [85],
pressure driven flow between flat plates [86, 87] and in cylindrical tubes [88] as well as in

models of process equipment such as scraped surface heat exchangers and extruders [89].
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A number of modeling approaches have been proposed to predict particle migration in
concentrated suspensions, and its relation to velocity and stress fields. Leighton and Acrivos
[84] proposed expressions for the scaling of particle flux with concentration, shear rate and
particle dimension. The scailing arguments were used in a slightly modified from by Phillips
et al [85] to form a two part, phenomenological model consisting of particle conservation
equation and generalized Newtonian fluid expression for the stress. Although successful in
describing the time-dependent development of concentration variations in flow between
concentric cylinders, the resulting model is not based directly on fundamental principles that
may be readily generalized to mixed or non-viscometric flows. In addition, it fails to explain
qualitative features of concentration profiles that have been measured subsequently [88].
Not and Brady [90] proposed a model that is based on a principle of energy conservation. By
analogy with granular flows, they introduced the concept of “suspension temperature” to
describe the fluctuations in particle velocities in highly filled suspensions. Such a suspension

temperature has since been measured [91].

Of primary interest in this work is the approach proposed by Morris and Boulay [92] and
Miller and Morris [93], who solved that momentum conservation in a two-phase fluid can
lead to migration of one phase relative to other. To be applied, the theory of Morris and
Boulay [92] requires detailed understanding of relation between the stress, structure and
deformation in particulate suspensions. Among the possible approaches to describing, these
complicated relationships are, at the continuum level, the models of Phan-Thien [94],
Goddard [95], and Stickel et al. [96, 97]. Particle level theories have been developed by
Brady and co-workers [98, 99]. In the model of Stickel et al. [96, 97] (hereafter referred to
as SPP model), the term structure refers to a second-order tensor that is calculated based
on the shape formed by the cage of nearest neighbors surrounding any test particle in the
suspension. The structure and stresses predicted by the model were evaluated
independently by comparing with Stokesian dynamics simulations. The SPP model therefore
provides a convenient means of reproducing the dominant structural and rheological
features that would be computed by particle level simulations, if they were computationally
feasible. In addition to comparing with dynamic simulations, direct comparisons have been
made between SPP model and experimental results for the time dependent response of non-
Brownian, neutrally buoyant suspensions [97]. One surprising experimental observation that
has not yet been predicted by any theory describing particle migration is the findings of
Butler et al. [88] that in oscillatory tube flow with small but finite strains, in some cases
particles migrate to tube wall. This observation is at odds whit what is seen in steady flows
and in large strain oscillatory flows, for which the particles generally migrate to regions of
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low shear rate. Although not predicted theoretically, migration toward regions of high shear
rate were found in Stokesian dynamics simulations performed by Morris [100]. Those
simulations were performed for a monolayer of mobile spheres suspended between flat walls

comprised of other, fixed spheres.

6.2. A MODEL FOR STRUCTURE, STRESS AND FLOW

We present here a set of coupled, frame —indifferent equations that can be solved to
obtained the structure, stress and velocity profiles in suspension flowing at low Reynolds
number. The theoretical description of particle migration is that of Morris and Boulay [92]
and Miller and Morris [93], with the addition of a dispersive flux for steady flows, which have
unlimited strain. In that theory, migration across stream lines is shown to be required to
conserve momentum in both suspensions as a whole and in the particle phase. The
divergence of the particle acts as a body force that drives particle motion relative to the
suspension-average velocity, causing an interchange of momentum. To obtain the particle
stress we use the SPP model.

6.2.1 The Migration Model

An approach to modeling particle migration that is based on mass and momentum balances
has been presented by Morris and Boulay [92] and Miller and Morris [93]. Conservation of

mass and momentum in the bulk suspension are described in terms of the suspension

average velocity v and suspension average stress L by

Vy=0 (6.1)

and

VII+(p)g=0 (6.2)

where g is gravitational acceleration and <p> is the density of the bulk suspension. The

bulk stress g is related to the particle contribution EP by

O =—pl+27,y+%’ (6.3)

where 77, is the viscosity of suspending liquid. In general the particle stress 2” contains an

isotropic portion that constitutes a particle contribution to the overall pressure, beyond the

fluid-phase average pressure p . A momentum balance over the particle phase requires that
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0=v.x’ +n<EH>+¢Ap§ (6.4)

where the number of density 7 is related to the volume fraction ¢ by

4 3
¢={ ’;“ jn (6.5)

The average hydrodynamic force <E H> is the mean force on the particles that is caused by
their migration relative to the suspension average velocity. If the divergence of the particle

stress in non-zero, then this hydrodynamic force must be non-zero, to affect an exchange of

momentum between the two phases in the suspension. In the absence of inertia <EH>

depends linearly on that migration velocity, so that the mean volume flux is

v —y)=—M<Eﬁ> (6.6)
6710
Here the function f, (¢) is a sedimentation hindrance that accounts for the finite volume

fraction,

f(0)=(-(p/9,)1-0)" (6.7)

In addition to the flux of particle volume described by equation (6.6), which is required to
satisfy momentum conservation, multiparticle interactions that occur whenever a
concentrated suspension is subjected directly to the random fluctuations in the particle
trajectories relative to the suspension average velocity. It is comparable to the Brownian flux
described by Einstein [101], who showed in very simple terms that if a population of
particles undergoes random jumps, then in the presence of a concentration gradient a flux
results that is proportional to V¢@. In a following, concentrated suspensions, the jumps
relative to the average motion are caused by particle interactions. In the axial direction they
lead to a measurable Taylor dispersion effect [102], but in the current work it is dispersion

in the velocity gradient direction that is of interest. This dispersion coefficient D, () has

been measured experimentally and the results are commonly report in the form

D, (p)=ya’d() (6.8)
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where d(¢) is a dimensionless function of volume fraction. In our computations we use

d(¢) = 0-10016_[(¢_0‘5287)/0-313]2 (6'9)

a correlation that we chose as a convenient and smooth way to represent experimental data
from the literature. A plot of equation (6.9) and experimental data from literature is shown
in Figure 6.1. For the non-Brownian particles of interest here, the full contribution of this
dispersion terms is only present when the deformation is sufficient for multiple particle
interactions to cause a loss of reversibility. Conservation of particles requires that

99 Vo=V, (6.10)
ot =

where j is the volume flux of particles relative to the suspension average velocity v. For

the flux j we have both convective and dispersive contributions,

, & (@) /
=-D (p)Vop——""=(F
j=-D,,(9)Ve r— (F") (6.11)
From equation (6.4) for neutrally buoyant particles with Ap =0
H 1 P
(F")=--vZ (6.12)

n

Substitution of equations (6.11) and (6.12) in to equation (6.10) yields the desired
conservation equation for particles. In that equation, particles are driven to migrate across
streamlines by body force proportional to the divergence of the particle stress, and also by
hydrodynamic dispersion.
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Figure 6.1. Profiles of dimensionless diffusion coefficient curve fit obtained from
experimental data.

6.2.2 The SPP Model

In the SPP model, structure is defined mathematically in terms of the average distance

lmf (gj that a test particle can move in a direction denoted by the unit vector x before

colliding with another particle. The isotropic part of second order structure tensor L is given
by ¢,, where
1
¢, =50y (6.13)

To obtain an evolution equation for the structure, it is presumed that, in a reference frame
rotating with the local fluid vorticity, changes in structure depend in some fashion on the
structure itself and the rate of deformation

(6.14)

I~
Il
I~
<
I~
N
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here the superscript o refers to the corotational derivative or time derivative in reference

frame rotating with local vorticity, given by

o 9
Z:a_Z"‘Z-VZ'W"'W'Y (6.15)
=" 9= =RLAIES
the rate of deformation and vorticity tensors 7/ and w are defined by
1
= E(Vyrvy’) (6.16)
1
Lv:E(V\_/—V\_/) (6.17)

General forms of the function on the right side of equation (6.14) that satisfy the constraint
of frame indifference are well known [104, 105], and form the basis of second order fluid

constitutive model. In the SPP model, in the interest of simplicity, terms non-linear in the

structure tensor Y are also neglected.

I~

=c, yB irly)-3 f(¢)}£ + catr(z.;ji +e, Y —%tr Z)i} +

(6.18)

All tensors on the right side of equation (6.18) are traceless except those explicitly

proportional to the identity tensori. The values of ¢, in equation (6.18) are found by

Stickel et al. [96] and here tabulated in Table 6.1.

An equation for the particle stress gﬂ can be found in manner comparable to that used for

the structure Z .

a, :EP(Y’J (6.19)

Stickel et al. [96, 97] proposed the model as
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X =n, (6.20)
+k, [LZ"’ rY ——tr(z.zji}

k, B tr(Z)— 3f(¢)}£ + kz”(z-j’ji + {ksf(¢)+ k, %tr(i)}z

W [N

The values of k; in equation (6.20) are given in Table 6.2.

Table 6.1. Values of ¢, in equation 6.2.2.6

C, values
¢ 12.2
c, -4.07
Cy -23.5
o -2.41
cs -2.54
Cq -0.95
c 0.47

Table 6.2. Values of k; in equation 6.2.2.8

k, values
k, 0.41752
k, -0.13917
k, 2.428
k, 0

ks -5.3956
kg -0.51987
k, 1.3525
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6.3. NUMERICAL SOLUTION

The flow and structural evaluation of particulate suspension must satisfy equations (6.1) and
(6.10-12) governing conservation of mass and particles, respectively, and equation (6.12)
and (6.14) governing momentum conservation in the bulk suspension and particle phase,
respectively. These equations can be solved in an arbitrary flow by using the constitutive
model for structure and stress represented by equations (6.18) and (6.20) respectively.
These equations take particularly simple form in rectangular channel. We consider a region

of the channel far from the entrance and exit, where variations in structure and flow in the

flow direction x, are negligible in the channel bounded at x, = *H by solid, flat walls. The

pressure gradient G(t) driving the flow varies cosine function in time,

G(t)= G, cos(at) (6.21)

where the values of the frequency @ are constrained such that

(p)oH’
Un

<<1 (6.22)

Under this constraint, the flow in the channel is free of inertial effects [106]. Although
suspension structure responds to changing conditions only after several strain units of

deformation, with a given structure the suspension flow responds instantaneously to

changes in the pressure gradient. The function G(t) is thus actually a dynamic pressure

gradient from which hydrostatic variations are removed according to G(t) =Vp—-p 8-

For fully developed flow, the convective transport term v.V ¢ in equation (6.10) is negligible,

and the equation governing conservation of particles simplifies to

9 __ 9J
a—t:—g (6.23)
2
where
. 0 2a’ ox?
jo = =D, (9) 22+ 2L 1 () 2 (6.24)

ax, 9, """ ox,
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The channel width and amplitude of the pressure gradient G, may be used to identify

scales for normalizing the variables in equation (6.24). We define a characteristic shear rate

according to

- G,H
Vo = (6.25)
o
Then the dimensionless shear rate, position and time are given by

A 7 A x A

y==, X2 =%, t=y,t (6.26)

L H

Yo

The particle stress is made dimensionless by a characteristic stress based on the solvent

viscosity,
AP Zp
; == (6.27)

Yoo

Then in dimensionless form, the particle conservation equation is

9 a2 3w+ J
a—¢=—(§j s £ - Prdle) (6.28)
t d x> d x2 dx2

where equation (6.8) has been used to specify the scaling of dispersion coefficient. Here P is
represent the effect of the hydrodynamic dispersion. If P=1 means fully hydrodynamic
dispersion included. The 22 component of the particle contribution to the stress is given

AP k 27 k
Tn=y klf(gzﬁ)+?2trg)+—7:12 (k3 +?7le2 (6.29)
/4

scalar rate of strain is related to the 12 tensor component by

y (6.30)

A A 1/2
7:{21/:7} =2

A
4 Vi
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Momentum conservation in the bulk suspension is governed by equation (6.2) with the
average density term included in the pressure gradient. The component in the x direction

yields,

a A AP A A
—A(zno Vit ZZIJ =G, cos((otj (6.31)

0 x>

where the total stress has been separated in to the solvent and particle contributions and

pressure by using equation (6.3). Equation (6.31) is now integrated, with the requirement

that the total shear stress I1  be zero at the centerline.

A AP A A A
Vit =x2G, cos(a)tj (6.32)

The yx component of the particle stress tensor may be found from (6.20) and in

dimensionless form is given by

1 k ’
T = E{ksf(¢)+?6tr(£)+k7 (%, + s, )} Vs (6.33)

In viscometric flow, the structure tensor Z is specified by the 3 diagonal components

Y,,,Y,, andY,; along with the off-diagonal componentY,,. The evolution of structure is

governed by equation (6.18), the relevant components of which are

dy, A ) A

—h=2y Y12(1+c3 +?7j+ yefg)+yel,

dt ( ) (6.34)

Y, +Y,, 47,
(] ORI

dy, A ;). 0 A
—2=2 7/12 le(—l+c3 +?7j+ 7/c1f(¢)+ 7/c4Y22

di (6.35)

AT

3
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dy, . ¢ )4y .
> =27/12le(cs —%)* yal@)tyets
4 A (6.36)
v, . )
—r= 9/12 (Yzz _Yu)+ 7/C4Y12 to 9/12 (Y22 +YH)
e (6.37)

(Yll tY,+ Yaa)j
3

+ kz(csf(¢)+c6

Equations (6.28), (6.29), (6.32-37) are 8 equations for the unknown

A AP AP

variablesY,,, Y,,,Y.,,Y,,, 7,5, 22, X12 and ¢ . Because the fully developed flow, the velocity

does not appear explicitly as an unknown, but velocity profiles can be obtained by
integrating shear rate. Equations (6.32) and (6.33) can be solved to obtain an explicit
relation for the shear rate, which can be substituted directly in to the other equations. The
particle stress component can then be substituted in to particle conservation equation
(6.28), leaving 5 equations, equation (6.28) and equations (6.34-37), for the 4 unknown
components of structure tensor and the volume fraction¢@. The 5 equations were solved
with 3 different approaches. First, under steady conditions, set of nonlinear algebraic
equations by solved using optimization toolbox of Matlab®. In transient state, both

MacCormack and finite volume methods were used to solve the conservation equation, in

conjunction with a fourth-order Runge-Kutta method to integrate the structure equations.

6.3.1 The MacCormack Method

The MacCormack method use to solve equation (6.28) consist of predictor and corrector
step [107]. To advance from a time step n to n+1 the volume fraction at an intermediate

point in time n +1 is calculated according to

n n A; -n *n
9, t= o' - ~ (]i+1 —Ji ) (6.38)
Axa

This predictor step is followed by a corrector step given by
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At Tl
¢in+l _ ¢in+l/2 —— (jin+1 _ jir:l) (6.39)
2A x>

where the volume fraction at the half-step is given by

¢in+1/2 :%(@n +¢l_n+1) (6.40)

To evaluate the flux component in equation (6.38), it is necessary to have structure
components at time step n. Starting from special initial condition these were found by

integrating equations (6.34-37) by using fourth-order Runge-Kutta method [108].
Derivatives needed to evaluate j" were evaluated by using central difference formulae,

except near boundaries. At the wall at the top of the channel, the second-order backward

difference, at the center of the channel second-order forward difference was used [109].

6.3.2 The Finite Volume Method

In order to implement finite volume method, we rearrange the divergence of flux in equation
(6.28) to the form

P d FNn0p | n
22 (2] a2 |+d (6:41)
ot d x, dx,
where
> A
A J |2 0x » 9
2212 a2 e
0x dy dy

In equation (6.41) and (6.42) are identical to equation (6.28), except that a dispersive flux

term always appears explicitly, both when dispersion is present (a :1) and when it is
absent (a = 0). The scheme for one-dimensional, time-dependent system is shown in Figure

6.2. The superscript i denotes a point in time, with i = 0 representing the initial condition.

Equation (6.41) is integrated over a time step A¢ and from positions s'to n' to obtain

equations governing the evaluation field variables at P' [57]. The result is
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Boundary condition at the solid surface is obtained by requiring the particle flux to be zero at

the pale n' located at the wall. This condition is implemented directly in the finite volume

approach, via the term ¢ in equation (6.41). Note that the dispersive and convective fluxes
must also be zero at the wall, because the dispersion coefficient D, and sedimentation

hindrance f, vanish even in the presence of a finite gradients in particle concentration or

A

stress. Boundary condition at the symmetry line is obtained by requiring strain ¥ be zero.

In addition particle flux to be zero.

" i+1
Ax, n n
A
Ax,| @ p ®p
R § §i
Ax, B I
. S; ‘SHI
A
At

Figure 6.2. 1-D control volume

6.4 RESULTS AND DISCUSSION

Steady state particle concentration profiles were calculated for pressure-driven flow through
a rectangular channel, using the model described 6.2.1 and 6.2.2 and numerical methods of
Section 6.3. The results are shown as solid curves in Figure 6.3 for are-average volume
fractions of§ =0.2, ¢=03, ¢=04 and ¢=0.5. Clearly the model predicts a net
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migration of particles toward the channel center at all of these average volume fractions.
The data points in Figure 6.3 were measured experimentally by Koh et al. [86] and Lyon and
Leal [87]. Overall data are in good agreement with the simulations, even though no
adjustable parameters were used in performing the calculations. As noted by Lyon and Leal
[87], it is possible that results of Koh et al. [86] were measured before steady state had
been reached. Lyon and Leal [87] also state that their measurements near the channel wall

at x>/ H =1are the least reliable data, providing a possible explanation for the differences

there between the simulations and experiments especially at high volume fractions.

Changes in the velocity profile caused by particle migration in pressure driven channel flow

are depicted in Figure 6.4 where the velocity v, normalized by the centerline valueU is

plotted versus normalized position x, / H . The higher concentration at the channel center,

the cause the viscosity in that region to be relatively high. In Figures 6.5 is plotted results
predicted by the model for change in suspension structure as a result of the steady channel

flow, for average volume fractions in the range 0.2 < ¢ <0.5. Both isotropic structure
function ¢ and the off-diagonal component Y,, vary by several orders of magnitude over

the flow domain.
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Figure 6.3. Particle volume fraction versus position at steady state. Data are

experimentally measurements reported by Koh et al. [86] and Lyon and Leal [87].

114



0.8

0.6

u/U

0.4

0.2

3500
$=0.5
3000 _oTT o=0.t 0=05
S <-4 A 1 I L [P 0=04
T 9202 — - == $=03
2500 e =02
2000 |-
. I
L
1500 Fr
I
1000 [
h
)\
A
sooj\ \
QW
0", ]
0 0.4 0.6 0.8 1 Y N R I TR RN
x,/H 0 0.2 0.4 0.6 0.8 1
Xo/H
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1
¢, = tr(Z) b) Y,, at steady state for various ¢ .

s

In Figures 6.6 is plotted results predicted by the model for change in particle contribution
stress and migration flux as a result of the steady channel flow, for average volume fractions
inthe range0.2<¢ <0.5.

115



or o
01 F F
F -1E-05 [
02F r
o3 -2E-05 [
(1 -04F o= I
osE -3E-05 |-
»0.6:— [
s -4E-05 [
07F L] - — — - ¢=03
F e )
el v b eEosl T T T ]
08¢ 0.2 0.4 0.6 0.8 1 SE-053 0.2 0.4 0.6 0.8 1
%/H x./H
a) b)
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Also we investigated effect of the initial distribution of the volume fraction on the transient

evolution of concentration. Figure 6.7 shows three different initial particle concentrations

versus normalized positionx, / H .
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Figure 6.7. Profiles of different initial concentration distributions for ¢ =0.3

All initial concentration distributions predict a net migration toward the center, shown in
Figure 6.8. We conclude that initial distribution of particle concentrations does not effect

steady solution.
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An interesting aspect of transient evolution of structure, both near the wall and near the
channel center, maybe seen in Figures 6.9 and 6.10 respectively. In Figure 6.9, the isotropic

structure function, ¢, is plotted for dimensionless time in the range 0<7 <10 for

suspension in which ¢ = 0.4 that is homogeneous and isotropic at the initial time. The

structure near the wall develops much more quickly than that near the center, because the
shear rate there is much larger. Structure in these suspension develops primarily because
particles are moved by the imposed flow, and the development of structure occurs as the
strain reaches a value of approximately 2 -3 [97]. At the higher shear rates, the strain grows
more rapidly and hence so does the non-homogeneity in the structure. The long time
behavior shown in Figure 6.10 is caused by particle migration.
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For the second case, computations are carried out for oscillatory pressure driven channel
flow where the pressure gradient followed a cosine function as specified in equation 6.21.
Pressure oscillatory results may be described as large strain or small strain by using the

characteristic shear rate defined in equation 6.3.5, to gather with the period of the

118



A A
oscillation 277/ . Small values of the dimensionless frequencies @ therefore correspond to

large strains and large values of frequencies correspond to small strains. The effect of

hydrodynamic dispersion were included in simulations with large strains ¥ >>1, but not for
small strains y <<1. Concentration profiles for the low frequencies of w=0.1 and

@ =0.5o0r very large displacement are shown in Figure 6.11. The effects of having low
frequencies are to decrease the maximum concentration at the channel center. When the

maximum strain in the oscillation is small, the concentration profiles are qualitatively
different from those in Figure 6.11. Results for frequencies of =20, @w=30 and

2): 50for ¢ =0.4are shown in Figure 6.12 after N=50000 oscillations have been
completed. Near the channel center, there is slight decrease in particle concentration, but
greatest change in particle concentration occurs in the region of channel close the wall. The
effect of continuing the simulation to N=150000 cycles is shown in Figure 6.13. Relative to
the concentration profiles in Figure 6.12 after many oscillations the values of the maximum
concentrations increase in all 3 cases and the positions of the peaks move toward the

channel center. For the results in Figure 6.12 and 6.13 the dimensionless time step

was At =5x10"". Results at higher frequencies are shown in Figure 6.4.12 at @ =100 the

results are qualitatively the same as those in Figure 6.4.11. However as the frequency of

A
oscillation increases, a transition occur at @=250the position of the maximum

concentration is at the wall is shown in Figure 6.15. Three concentration profiles are shown

at w=2500ne after 1x10° cycles, second after 5x10° and the last after 10°, the latter
showing the higher concentration at the wall. Because the migration occurs only after many
cycles and because the time step must be small compares the period of the oscillation, those

simulations took several days to complete, for that reason we were not able to study even

higher values of 2) These results shown at 2): 250 were computed dimensionless time
steps 9x10°® and 2x10® and the results differed by 0.5 % or less is shown in Figure 6.16. In
general the rate of migration in oscillatory flow depends on the dimensionless frequencies or
the amplitude of the strain. However since the migration occurs on a time scale that is long
compared to the period of the oscillation at a given frequency the rate of migration scales

with (H /a)2 just as in steady flow. Since the particles respond the time-average of the

conditions during an oscillation, the concentration changes in Figure 6.13-15 may be
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AP
deduced in terms of time-averaged profiles of the particle stress component<222>, where

angle brackets are used to indicate an average over one period of oscillation. The plots of

this averaged normal stress component at position in the channel are shown in Figure 6.17

at frequencies ofg):SO, 2):100 and (:):250after N=10* period of oscillations. At
N=10* very little migration has occurred, but the suspension has experienced ample
deformation to have forgotten its initial condition. Particles migrate toward the wall in
regions where the slope is positive and toward the center where it is negative. The plots
therefore indicate that at lower frequencies 50 and 100 there is a region near the channel
center where particles move toward the wall but near the wall they migrate inward toward
the center. The concentration maximum is therefore expected to be located near the wall,
but at x, < H . By contrast, at the highest frequency of 250 the slope is positive in the
entire domain, and consequently the maximum value of the concentration is expected to be

located at x, = H .
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Figure. 6.11. Concentration profiles after N=1000 cycles, with full hydrodynamic dispersion
included.

120



0.5

T R R RS BRI
0.2 0.4 0.6 0.8 1
x,/H

2

o

Figure. 6.12. Concentration profiles at average volume fraction, ¢ = 0.4 after N=50000

oscillations.

o
o 14
[

I
'S
&

o
n
(&
© T A T T T T T R T

I
IS

0.35

S

=20
———=- ©=30
7777777 =50

o
)

o
o

PRI (R WTARAN [N N WA NS S SR [T S |
0.2 0.4 0.6 0.8 1
X,/H

2

o

Figure. 6.13. Concentration profiles at average volume fraction, ¢ = 0.4 after N=150000

oscillations.

121



0.45

0.4

<0.35
©=80 \
03 ———— =100
PRI RATRRE SRR R R SR |
0255 0.2 0.4 0.6 0.8 1
x,/H

2

Figure. 6.14. Concentration profiles at average volume fraction, ¢ = 0.4 after N=200000

oscillations.

0.47
0.46
0.45

0.44

0.43

— — —~ n=100000
e - n=500000
———— n=1000000

0.42

0.41

I
~

ASAASAL RAARS RERAN EARRS RARS RARRY REARD]

o
w
©

o

I R BRI R BN |
0.2 0.4 0.6 0.8 1
X,/H

2

0.38

Figure. 6.15. Concentration profiles at average volume fraction, ¢ = 0.4 for @ = 250.

122



042~

o dt=1e®
I O dt=2e”®
L1 I IR I IR |
04390 0.2 0.4 0.6 0.8 1
x,/H

2

Figure. 6.16. Time step size dependency on the solution for @ = 250 after N=10° cycles.

0=50
———- ©=100
—m - ©=250

PRI EAVRRRRTRIN NSARNRNIN AN BRTSR
0.2 04 0.6 0.8 1
X,/H

o
=3
S
N
[ L L L

-0.0018

AP A A A
Figure. 6.17. Time averaged values of (X2 ) for@=50, @=100and @ =250 after

N=10* cycles.

123



CHAPTER 7

CONCLUSIONS

In this study numerical calculations are carried out for steady laminar flows of both
Newtonian and non-Newtonian fluids. Oldroyd-B, Phan-Thien Tanner (PTT) and White-
Metzner constitutive models are used to capture viscoelasticity. Flows are simulated at
various Reynolds and Weissenberg numbers and polymer viscosity, w, by utilizing the finite
volume method on a uniform and non-uniform graded collocated grid systems. Convective
terms in the momentum equations are treated by using first order upwind, power-law
second order central differences and QUICK schemes. Upwind and QUICK approximations
are employed for the viscoelastic stresses. The semi-implicit method for the pressure-linked
equation (SIMPLE) and SIMPLE consistent (SIMPLEC) are used to solve the coupled
continuity, momentum and constitutive equations. Extra stress terms in momentum
equations are solved by decoupled strategy. The code is applied to three different test
cases: a) laminar steady flow in planar channel entrance, b) laminar steady flow around
stick-slip and c¢) laminar steady flow in lid-driven square cavity. The results obtained in this
study allow one to draw the following conclusions:

1. Numerically it is possible to obtain steady solutions of lid-driven cavity flow at high

Reynolds nhumbers up to 40000 even with coarse grids of 257x257.

2. If Reynolds number increases, convective terms become dominant in the
momentum equations; hence additional pressure correction inner loop cycle is
required to satisfy continuity equation. For example, for Reynolds number 25000, six

inner cycle iterations are needed to obtain convergence solution.

3. Our analysis shows that momentum interpolation method (MIM) should be used
instead of the simple linear interpolation to evaluate coefficients in the constitutive
equations and to obtain velocity gradients because of the robustness. However near
the boundary they should be calculated at least by introducing a second order

polynomial.
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10.

Detailed examination of the numerical solutions of the flow in channel of planner
entrance flow has revealed that all schemes result in almost the same results and
they require nearly the same iteration numbers for an Oldroyd-B fluid at Re<<1.
However, QUICK scheme is the most expensive one in all schemes in terms of
computing requirements. At this creeping flow condition maximum attainable

Weissenberg number is 1 for all schemes.

It is also shown that maximum attainable value of Weissenberg number is
dependent on Reynolds number as well as the used constitutive model. However all
constitutive models used in the simulation of channel flow suffered from instabilities

at high Weissenberg number.

In stick-slip flow, as the value of Weissenberg number increases, the slope of
velocity profiles decreases at top boundary and the magnitude of the normal and
shear stresses at singularity point grow enormously. These large stresses peaks

cause large oscillation in the velocity and stress field.

The convergence of the numerical scheme is found to be very sensitive to mesh
refinement. For instance as number of the grid points increase, attainable maximum

Weissenberg number decreases.

An opposed to the Oldroyd-B fluid model, the velocity profile of White-Metzner and
PTT models show overshoot and undershoot along the top and centerline of the
stick-slip. In addition, White-Metzner model predicts much higher stress peaks at

the singularity point than PTT model but lower than Oldroyd-B model.

With respect to attainable maximum value of Weissenberg number as well as
smooth solutions, the White-Metzner model seems to yield smoother solutions at
much higher Weissenberg number than Oldroyd-B and PTT models.

Attainable maximum value of Weissenberg number is very sensitive to polymer
viscosity as well as Reynolds number. Upstream secondary eddy (USE) and
downstream secondary eddy (DSE) sizes are also strongly affected by the value of
polymer contributed viscosity. For instance at creeping flow condition (Re<<1) and
small Reynolds number (Re=100) DSE and USE sizes decrease with increasing
Weissenberg number. However, at moderately large value of Reynolds number
(Re=400), DSE and USE come together and form second loop at the bottom of the
cavity at Weissenberg number 0.3. However when Weissenberg number is greater
than 0.3, DSE and USE shrink and become similar to the those at low Reynolds

numbers.
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11.

12.

13.

Dimensionless magnitude of normal stress near the downstream increases with
increasing Weissenberg number for all Reynolds numbers. On the other hand at a
fixed Weissenberg number magnitude of the stress decreases as Reynolds nhumber

increases.

Under steady conditions, the SPP model predicts that the resulting migration causes
particles to the center of the channel where the concentration approaches the

maximum packing for hard sphere suspensions.

In oscillatory flow, the behavior depends strongly on the amplitude of the strain. For
oscillations with large strains, the particles migrate to the channel center. However,
when the strain is small, the maximum concentration is located either at a position
between the channel center and walls, or in the limit of very small strains, at the

wall.
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