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ABSTRACT

SCALAR MESONS IN RADIATIVE PHI-MESON DECAYS INTO CHARGED
K-MESON STATES

Öztürk, Fahri

M.S., Department of Physics

Supervisor : Prof. Dr. Ahmet Gökalp

June 2008,50 pages

The role of f0(980) and a0(980) scalar meson intermediate states in the mecha-

nism of radiative φ(1020) meson decay into two charged K(494) mesons and a

photon φ → K+ + K− + γ is investigated. For the contribution of scalar meson

intermediate state two models are considered. In the kaon-loop model, the scalar

meson intermediate state couples the final state to the initial φ meson through

a charged kaon-loop. The second model, called no-structure model, consist of

point-like coupling of intermediate scalar meson state to the initial state. It is

found that in the kaon-loop model, scalar meson intermediate state results in a

considerable modification of the pure Bremsstrahlung photon spectrum.

Keywords: Radiative decays, φ meson, Bremsstrahlung, Scalar mesons, Kaon-

loop model, No-structure model.
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ÖZ

PHI-MEZONUN YÜKLÜ K-MEZON DURUMLARINA IŞINSAL
BOZUNMALARINDA SKALAR MEZONLAR

Öztürk, Fahri

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Gökalp

Haziran 2008, 50 sayfa

φ(1020) mezonunu iki yüklü K(494) mezona ve bir fotona ışınsal bozunma φ →
K+ + K− + γ tepkime mekanizmasında ortaya çıkan f0(980) ve a0(980) skalar

mezon ara durumlarının rolü araştırıldı. Skalar mezon ara durumlarının katkıları

için iki model gözönüne alındı. Kaon ilmek modelinde, skalar mezon ara durum-

ları yüklü bir kaon ilmeği aracılığı ile φ mezonunu son duruma bağlarlar. Yapısız

model olarak adlandırılan ikinci model de ise, skalar mezon ara durumu başlangıç

durumuna noktasal olarak bağlanır. Kaon ilmek modelinde, skalar mezon ara

durumlarının Bremsstrahlung foton spektrumunda önemli oranda değişikliğe ne-

den olduğu bulundu.

Anahtar Kelimeler: Işınsal bozunmalar, φ mezonu, Bremsstrahlung, Skalar mezon-

lar, Kaon ilmek modeli, Yapısız model.
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CHAPTER 1

INTRODUCTION

The low-mass scalar mesons with masses M ≤ 1 GeV and with vacuum quan-

tum numbers JPC = 0++ have a fundamental importance in hadron physics.

On the one hand, they play an essential role in understanding the confinement

problem and the realization of chiral symmetry and symmetry breaking mech-

anisms in the low-energy region in Quantum Chromodynamics (QCD) which is

the currently accepted theory of strong interactions. Moreover, the nature and

the quark substructure of these scalar mesons have not been established yet,

and this question have been a subject of controversy in hadron spectroscopy

over the years. On the other hand, the scalar mesons play an important role

in the mechanism of different reactions in hadron physics, in particular in re-

actions in hadron electrodynamics. Two such categories of reactions in hadron

electrodynamics are the photoproduction of vector mesons on nucleons in the

near threshold region, and the radiative decay processes of vector mesons into a

pair of pseudoscalar mesons and a photon.

The light scalar mesons isoscalar f0(980) and isovector a0(980) have been well

established experimentally. Recent experimental and theoretical analyses have

found evidence for the existence of an isoscalar σ(600) [1] and an isodoublet

κ(900) [2] scalar mesons. The properties of most of the known pseudoscalar and

vector mesons can be understood within the framework of naive quark model [3].

In this model, they are classified according to the representations of the SU(3)

symmetry group. Their mass patterns and quantum numbers are consistent

with their assignment to SU(3) multiplets formed from a quark (q) and an
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antiquark (q̄). Vector mesons are identified as the spin triplet S = 1 ground

states L = 0 of qq̄ states and they form a nonet in which the mass splittings can

be understood by the number of strange quarks (s) present in each state. For

example, φ(1020) has the structure ss̄, and it is heavier than K∗0

(896) which

has one light down quark (d) and one anti-strange quark (s̄) with the structure

(ds̄). K∗ vector mesons are then heavier than the other vector mesons ρ(770)

and ω(782) which are formed from the light down (d) and light up quarks (u).

Similarly pseudoscalar mesons in the quark model are formed from u,d and s

quarks as qq̄ states with relative orbital angular momentum L = 0 and total

quark spin S = 0, and they show the similar mass patterns as in the case of

vector mesons depending on their quark content. It is therefore natural to assign

the scalar mesons to a nonet in the quark model as well [4]. In this model, the

scalar mesons are expected to be qq̄ states with relative angular momentum

L = 1 so that the parity of the state will be (−1)L+1 = 1 taking into account

the opposite intrinsic parities of q and q̄. However, it is then expected that

such qq̄ states in p-wave state will be more or less in the same mass range as

the other p-wave multiplets in the quark model which have masses more than

1 GeV. Therefore, the low masses of scalar mesons cannot be explained in this

model. Furthermore, equality of the masses of the isoscalar f0(980) and isovector

a0(980) scalar mesons poses a serious problem in quark model assignment of

scalar mesons. The f0(980) scalar meson has strong coupling to K-meson, or

kaon, system (KK̄), and thus it can be interpreted as an ss̄ state. However,

this then does not explain the mass degeneracy between f0(980) and a0(980)

because the quark model assignment to a0(980) consistent with its quantum

numbers is a (uū− dd̄)/
√

2 state. It was also suggested that scalar mesons may

also form a multiplet with qqq̄q̄ (q2q̄2) quark structure with zero relative orbital

angular momentum within the context of the MIT bag model which incorporates

the confinement phenomenologically in a Lorentz covariant manner [5]. The

other commonly discussed possibility suggests that the scalar mesons can be

considered to be mesonic molecules, that is they are taken to be the bound

states of hadrons [6]. This proposal was originally formulated for the structure
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of f0(980) and a0(980) scalar mesons suggesting that they can be considered

as KK̄ molecules with spatially extended structures. In contrast, although the

quark content of scalar mesons is the same in (q2q̄2) model, scalar mesons in

(q2q̄2) are spatially compact objects.This difference stems from the fact that in

(q2q̄2) case the multiquark system is confined within the scalar meson state with

radius of the order of Λ−1
QCD, where ΛQCD sets the distance scale for confinement

in QCD, forming a compact system, on the other hand in the mesonic molecule

model the two pseudoscalar mesons are spread over a region with radius of the

order of
√

µE forming a bound state, where µ is the reduced mass of the mesonic

molecule and E is binding energy of the mesons which is significantly larger than

Λ−1
QCD, thus the resulting bound state is a spatially extended system.

One category of reactions in hadron electrodynamics where scalar mesons play

a decisive role is the photoproduction of vector mesons on nucleons (N). For

the vector meson (V) photoproduction on nucleons γ + N → V + N in the

near threshold region several mechanisms have been considered for the reaction,

these are pseudoscalar meson and scalar meson exchanges in the t-channel, one-

nucleon exchange in (s+u) channels, and pomeron exchange [7]. In the analyses

of these reactions different combinations of these contributions to reaction mech-

anism are usually considered. The essential ingredient in these analyses is the

coupling constants of scalar mesons to hadron states and to hadron and photon

states. These coupling constants reflect the quark substructure of the scalar

mesons.

The other category of reactions involving scalar mesons in a critical way in

the reaction mechanisms in hadron electrodynamics are the radiative decays of

vector mesons into a pair of neutral pseudoscalar (P 0) mesons and a photon

V → P 0 + P 0′ + γ [8]. These reactions have been studied over the years by the

SND [9] and CMD-2 [10] groups at Novosibirsk and by the KLOE Collaboration

at Frascati [11]. The theoretical studies of these reactions have resulted in the

understanding that the scalar meson intermediate states play an important role

in the reaction mechanisms along with the vector meson dominance contribution.

3



Moreover, it has also been established that the mechanism of the scalar meson

production in the radiative decays φ → f0+γ and φ → a0+γ are the one-loop, or

charged kaon-loop, mechanism φ → K+K− → f0 + γ and φ → K+K− → a0 + γ

[12]. Therefore, the experimental data on radiative φ-decays φ → π0 + π0 + γ

and φ → π0 + η + γ are described by the φ → (γf0 + π0ρ) → π0 + π0 + γ and

φ → (γa0 +π0ρ) → π0 +η +γ models for the reaction mechanism. Furthermore,

the confrontation of the theoretical analyzes with the experimental data for the

radiative decays φ → π0 + π0 + γ and φ → π0 + η + γ along with the decays

φ → f0 +γ and φ → a0 +γ have been used to provide evidence for the structure

of scalar f0 and a0 mesons. Although not generally accepted yet, these analyzes

seem strongly to suggest the q2q̄2 structure for scalar mesons [13].

In this thesis, we study the radiative φ → K++K−+γ decay in order to analyze

the reaction mechanism for this reaction. For the description of the contribution

of the scalar f0 and a0 mesons in the intermediate state to the amplitude of the

reaction we employ two different approaches. One is the commonly used kaon-

loop model (KL) where the scalar f0 and a0 mesons are coupled to the φ-meson

through a charged kaon loop [14]. The other one is the recently proposed no

structure (NS) formulation where the coupling describing the φf0γ and φa0γ

vertex is pointlike [15]. We calculate the branching ratio in two approaches and

we analyze the contributions of scalar meson intermediate states to the total

bremsstrahlung amplitude for different physical observables.
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CHAPTER 2

FORMALISM

In this chapter, we present the theoretical framework that we employ in our study

of the radiative decay of φ(1020) vector meson into a K+K− pair of charged

K(494) pseudoscalar mesons and a single photon. We first give the general

expressions for the calculation of the decay rate of the radiative φ → K++K−+γ

decay. Next, we present a discussion of the bremsstrahlung mechanism for this

decay. We then outline the kaon-loop (KL) mechanism for the contribution of

scalar mesons to this radiative decay and obtain the relevant expressions. In

the last section, we discuss the recently proposed no structure (NS) model for

the calculation of the contribution of the scalar meson intermediate state to the

amplitude of the radiative φ → K+ + K− + γ decay.

2.1 General Considerations

The radiative φ(p) → K+(q1)+K−(q2)+γ(q) decay, where we indicate the four-

momenta of the particles, can be represented by the general Feynman diagram

shown in Fig. 2.1.

The invariant amplitude M representing this decay can be taken to be a function

of K+ meson energy E1 and photon energy Eγ in the rest frame of the decaying φ

meson utilizing four-momentum conservation p = q1+q2+q. In order to calculate

the invariant amplitude M(E1, Eγ) we have to consider two mechanisms that

can contribute to this radiative decay. The first one is internal bremsstrahlung

where one of the charged K mesons from the decay φ → K+ + K− emits a

5



Figure 2.1: General Feynman diagram representing the φ → K+ + K− + γ

decay.

photon, the amplitude of which is well described by quantum electrodynamics

[16]. The second mechanism is the structural radiation which is caused by the

internal transformation of the φ-meson quark structure. The contribution to

the structural radiation amplitude results from the scalar f0(980) and a0(980)

meson intermediate states. In order to calculate the contribution of scalar meson

intermediate states we employ two different models. The first model is the kaon-

loop model where the scalar meson couples to φ meson through a charged kaon

loop [14]. The second one is the recently proposed no structure (NS) model,

which should more properly be called point coupling model, where the coupling

of scalar meson to φ meson is considered to be point-like [15].

In terms of the invariant amplitude M(E1, Eγ) the differential decay probability

for an unpolarized φ meson at rest is given by

dΓ

dEγdE1

=
1

(2π)3

1

8Mφ

|M|2 (2.1)

where we perform an average over the spin states of φ meson and a sum over

the polarization states of the photon. The decay width Γ(φ → K+ + K− + γ) is

obtained by integration

Γ =
∫ Eγ,max.

Eγ,min.

dEγ

∫ E1,max.

E1,min.

dE1
dΓ

dEγdE1
. (2.2)

The maximum photon energy Eγ,max is given as Eγ,max = (M2
φ − 4M2

K)/2Mφ
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which is equal to Eγ,max = 31.5 MeV . The minimum photon energy is kinemat-

ically equal to zero, however in our calculation we consider the experimentally

detected minimum photon energy which we use as Eγ,min = 10 MeV . The

maximum and minimum values for K+ meson energy E1 are given by

E1max,1min =
1

2(2EγMφ − M2
φ)

{

−2E2
γMφ + 3EγM

2
φ − M3

φ

±Eγ

√

(−2EγMφ + M2
φ)(−2EγMφ + M2

φ − 4M2
K) } .(2.3)

The above relations given in Eq. 2.1, 2.2 and 2.3 have been discussed previously

on several occasions [12], and we present the derivations in Appendix A for

completeness.

For a particular reaction the invariant amplitude M can be obtained from the

Feynman diagrams describing the mechanism of the given reaction [16]. The

intermediate scalar meson states in these diagrams are represented by the scalar

meson propagator D(q) = i/(q2 − M2
s + iǫ) in the corresponding amplitude.

Since the scalar mesons f0 and a0 are unstable with a finite lifetime and they

are broad, we use the Breit- Wigner prescription in the propagators of these

resonances. In the scalar meson propagators we make the replacement q2−M2
s →

q2−M2
s +i

√
q2 Γs where the energy dependent widths for these scalar resonances

are given as

Γf0
(q2) =

g2
f0K+K−

16π
√

q2

√

√

√

√1 − 4M2
K+

q2
θ(
√

q2 − 2MK+)

+
gf0K0K̄0

16π
√

q2

√

√

√

√1 − 4M2
K0

q2
θ(
√

q2 − 2MK0)

+
2

3
Γf0

Mf0√
q2

√

1 − 4M2

π0

q2

√

1 − 4M2

π0

M2
f0

θ(
√

q2 − 2Mπ0) , (2.4)

7



Γa0
(q2) =

g2
a0K+K−

16π
√

q2

√

√

√

√1 − 4M2
K+

q2
θ(
√

q2 − 2MK+)

+
ga0K0K̄0

16π
√

q2

√

√

√

√1 − 4M2
K0

q2
θ(
√

q2 − 2MK0)

+Γa0

Ma0√
q2

√

[

1 − (M
π0+Mη)2

q2

] [

1 − (M
π0−Mη)2

q2

]

√

[

1 − (M
π0+Mη)2

M2
a0

] [

1 − (M
π0−Mη)2

M2
a0

]

× θ(
√

q2 − (Mπ0 + Mη)) , (2.5)

and we use the experimental values for the widths Γf0
and Γa0

of the scalar

resonances f0 and a0 in the above expressions [17].

2.2 Internal Bremsstrahlung Mechanism

The interaction of charged pseudoscalar K-mesons, and vector φ-meson is de-

scribed in lowest order of chiral perturbation theory by the following Lagrangian

LφK+K− = −igφK+K−φµ(K−∂µK+ − K+∂µK−) (2.6)

where gφK+K− is the coupling constant characterizing the φK+K−-vertex and

the fields for the relevant particles are denoted by the same symbols as the

respective particles. Interaction with the electromagnetic field Aµ is introduced

with the replacement ∂µ → ∂µ + iqAµ, where q is the charge of the particle

destroyed by the field on which the operator ∂µ acts in the above and in the

free Lagrangian of K-meson system, and this way we obtain the gauge invariant

Lagrangian describing the interaction of charged K-mesons, φ-meson and the

photon as

8



LI = −i(eAµ + gφK+K−φµ)(K−∂µK+ − K+∂µK−) + 2egφK+K−φµAµK
+K− .

(2.7)

We determine the coupling constant gφK+K− by employing experimental in-

formation for the φ-meson decays. The main decay mode of φ meson is the

φ → K+ + K− decay. The decay rate for the φ → K+ + K− decay that results

from the Lagrangian given in Eq. 2.6 can be calculated as

Γ(φ → K+ + K−) =
g2

φK+K−

48π
Mφ



1 −
(

2MK

Mφ

)2




3

2

. (2.8)

The derivation of this decay rate and the other two-body decay rates that we

use in this thesis are presented in Appendix B for completeness. We then use

the experimental value for the branching ratio BR(φ → K+ + K−) = 0.491 for

the decay φ → K+ + K− [17] and this way we determine the coupling constant

gφK+K− as gφK+K− = 4.43.

The Feynman diagrams that describe the internal bremsstrahlung that follow

from the Lagrangian given in Eq. 2.7 are shown in Fig. 2.2. The first two terms

in this figure are not gauge invariant and they are supplemented by the direct

term shown in Fig. 2.2(c) that results from the minimal coupling prescription.

γ

γ

γ

φ φ φ

Figure 2.2: Feynman diagrams for internal bremsstrahlung for the decay reaction
φ → K+ + K− + γ decay reaction.

We denote the corresponding amplitudes of the Feynman diagrams for inter-
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nal bremsstrahlung as MBa, MBb and MBc, and write the amplitude for the

internal bremsstrahlung process as MB = MBa+MBb +MBc. We note that al-

though each amplitude is not gauge invariant, the total amplitude MB is gauge

invariant. We give the amplitude MB and |MB|2 explicitly in Appendix C.

2.3 Kaon-Loop Mechanism For The Scalar Meson Contribution

The kaon-loop model was suggested for the radiative decays φ → f0 + γ and

φ → a0 + γ of φ(1020) vector meson into isoscalar f0(980) and isovector a0(980)

scalar mesons and a photon through the theoretical analyses of experimental

investigations [18]. Although these decays have been studied extensively [12],

we present a brief discussion of these decays through the kaon-loop mechanism

for completeness. The interaction of vector φ-meson, charged K-mesons and the

photon is described by the gauge invariant chiral Lagrangian given Eq. 2.7. The

interaction of the scalar meson S, where S stands for either f0(980) or a0(980)

meson, with the pseudoscalar K+ and K− mesons is described by the effective

Lagrangian

LSK+K− = −gSK+K−K+K−S . (2.9)

The Feynman diagrams that describe the radiative decays φ → S + γ through

the kaon-loop mechanism are shown in Fig. 2.3.

γ

φ φ

γ

φ

γ

Figure 2.3: Feynman diagrams for the φ → S + γ decay.

10



The vertices in these Feynman diagrams can be read off from the Lagrangian

given in Eqs. 2.7 and 2.9, and we then obtain the amplitude for the radiative

decay of φ meson into a scalar meson and a single photon as

MKL(φ → S + γ) = uµǫν(pνqµ − gµνp · q)egφK+K−gSK+K−

i2π2M2
k

I(a, b) (2.10)

where (u,p) and (ǫ, q) are the polarization vector and four momentum of the φ

meson and the photon, respectively. In this expression, the parameters a and

b are given by a = M2
φ/M2

K and b = M2
s /M2

K . In this case the unstable scalar

meson then decays into the final state K+K−, the factor M2
s in the parameter

b must be replaced by the square of the invariant mass of the K+K− final

state. It should be noted that the amplitude M(φ → S + γ) has the structure

required by gauge invariance. The invariant function I(a, b) is given in terms

of Feynman integrals appropriate to the Feynman diagrams shown in Fig. 2.3.

These integrals have been evaluated previously in different works several times

by different methods [19], and the function I(a, b) is obtained as

I(a, b) =
1

2(a − b)
− 2

(a − b)2

[

f
(

1

b

)

− f
(

1

a

)]

+
a

(a − b)2

[

g
(

1

b

)

− g
(

1

a

)]

(2.11)

f(x) =











−
[

arcsin( 1
2
√

x
)
]2

, x > 1
4

1
4

[

ln( η+

η−
) − iπ

]2
, x < 1

4

g(x) =











(4x − 1)
1

2 arcsin( 1
2
√

x
) , x > 1

4

1
2
(1 − 4x)

1

2

[

ln( η+

η−
) − iπ

]

, x < 1
4

η± =
1

2x

[

1 ± (1 − 4x)
1

2

]

. (2.12)

We present a derivation of the above result in Appendix D.

The decay rate Γ(φ → S + γ) of the radiative decay φ → S + γ of the vector φ

meson into a scalar meson S, which is f0(980) or a0(980), and a single photon

11



can then be obtained from the corresponding amplitude MKL(φ → S +γ) given

in Eq. 2.10 in a straightforward fashion which is outlined in Appendix B as

Γ(φ → Sγ) =
αg2

φK+K−g2
SK+K−

3(2π)4

ω

M2
φ

| (a − b)I(a, b) |2 (2.13)

where α is the fine structure constant and ω = (M2
φ − M2

S)/2Mφ is the energy

of the emitted photon. The coupling constants gf0K+K− and ga0K+K− can be

therefore obtained using the above formula for the decay rate Γ(φ → S +γ) and

by utilizing the experimental values of the branching ratios BR(φ → f0 + γ)

and BR(φ → a0 + γ). These radiative decays have been studied by different

experimental groups. We use the recent results BR(φ → f0 + γ) = (4.40 ±
0.21) × 10−4 and BR(φ → a0 + γ) = (0.76 ± 0.06) × 10−4 reported by the

KLOE collaboration [11], and we obtain these coupling constants as gf0K+K− =

(5.14 ± 1.2) and ga0K+K− = (2.13 ± 0.8).

In the kaon-loop model for the radiative decay of the φ-meson into a pair of

charged K+K− mesons and a single photon there are two contributions to the

decay mechanism. One is the internal bremsstrahlung contribution discussed in

section 2.2, and the other one is the contribution coming from the scalar mesons

taken into account through the coupling of the scalar mesons to the φ-meson

by a charged kaon-loop. Therefore, in the kaon-loop model, the mechanism of

the radiative decay φ → K+ + K− + γ is represented by the Feynman diagrams

shown in Fig. 2.4. The amplitude M(φ → K+ +K− +γ) can thus be written as

M = MB +MKL where the internal bremsstrahlung amplitude MB is obtained

from the Feynman diagams shown in Fig. 2.4.(a,b,c) and the amplitude MKL

representing the contribution coming to the decay from the scalar mesons is

obtained from the Feynman diagrams shown in Fig 2.4.(d,e,f).

The individual amplitudes as well as |M|2 calculated from these contributions

are presented in Appendix E.

12



φ

γ

φ

γ

γ

φ

φφ

γ

γ

γ
φ

Figure 2.4: Feynman diagrams for the decay φ → K+ + K− + γ in the kaon-loop
mechanism, where S denotes the scalar f0 or a0 meson.

2.4 No-Structure Model For The Scalar Meson Contribution

No-structure model, or point-coupling model, has been recently introduced to

study the basic Φ-factory observables, such as e+ + e− → P + P ′ + γ cross

sections, where P, P ′ denote pseudoscalar mesons, because an accurate and

possibly model-independent description of all the components of these reactions

are very valuable in order to obtain reliable information about the low-mass

scalar meson sector of QCD [15]. In this model, the contribution of the scalar

meson to the radiative decay φ → K+ +K−+γ is characterized by the Feynman

diagram shown in Fig. 2.5 where S denotes f0 or a0 scalar meson.

φ

γ

Figure 2.5: Feynman diagrams for the contribution of scalar meson in the no-structure
model.
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In the Feynman diagram describing the contribution of the scalar meson inter-

mediate state to the radiative decay φ → K+ + K− + γ, the SK+K−-vertex

is described by the effective Lagrangian given in Eq. 2.9. We describe the

φSγ-vertex by the gauge invariant effective Lagrangian

LφSγ =
e

Mφ
gφSγ∂

µφν [∂µAν − ∂νAµ]S (2.14)

where φµ denotes the φ-meson field, Aµ is the photon field, S denotes the scalar

meson field, and gφSγ is the coupling constant characterizing the point-coupling

of the φ-meson, the scalar meson and the photon. The decay rate Γ(φ → S +γ)

for the radiative decay of the φ-meson into a scalar meson and a photon resulting

from this Lagrangian is given as

Γ(φ → S + γ) =
α

24π

(

M2
φ − M2

s

)3

M5
φ

g2
φSγ . (2.15)

We then use the experimental branching ratios BR(φ → f0 + γ) and BR(φ →
a0 + γ) determined by the KLOE collaboration [11] and obtain the coupling

constants gφf0γ and gφa0γ as gφf0γ = −3.72, gφa0γ = −1.87. We note that if

isoscalar σ-meson, isoscalar f0-meson and isovector a0-meson are assigned to a

unitary SU(3) nonet, then it follows that gφf0γ < 0 and gφa0γ < 0 [16].

The amplitude of the radiative decay φ → K+ + K− + γ has contributions

coming from the internal bremsstrahlung mechanism and from the scalar me-

son intermediate state as described by the point coupling mechanism in the

no-structure model for this radiative decay. Therefore, the mechanism of the

radiative φ → K+ +K− +γ decay in the no-structure model is described by the

Feynman diagrams shown in Fig. 2.6. The amplitude M of the decay is then

obtained as M = MB + MNS where the amplitude MB characterizing the

internal bremsstrahlung mechanism is calculated using the Feynman diagrams

given Fig. 2.6 (a,b,c), and the amplitude MNS characterizing the contribution

of the intermediate state scalar mesons f0 and a0 are calculated from the Feyn-

14



γ

γ

γ

γγ

φ φ φ

φφ

Figure 2.6: Feynman diagrams for the radiative decay φ → K+ + K− + γ in the
no-structure model.

man diagrams shown in Fig. 2.6 (d,e). The bremssrahlung amplitudes MB

and scalar meson contribution amplitudes MNf0
and MNa0

as well as |M|2

calculated using these amplitudes are given and discussed in Appendix F.
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, we present our results and our discussions about the role of the

scalar mesons in the mechanism of the radiative φ → K+ + K− + γ decay.We

compare the results we obtained for the two different models, namely the kaon-

loop model and the no-structure model, to include the scalar meson intermediate

states into the mechanism of the vector φ-meson radiative φ → K+ + K− + γ

decay. It should be mentioned that the radiative decay reactions of the type

V → P +P ′ +γ where V denotes a vector meson, P and P ′ denote pseudoscalar

mesons have been analyzed in order to obtain information about the nature and

the quark substructure of the scalar mesons contributing in the intermediate

states to the amplitudes of these reactions. However, our discussion will not be

about the structure of the scalar mesons but about their role in the mechanism of

the φ → K++K−+γ reaction. In our phenomenological approach, the coupling

constants of scalar mesons to different hadron and photon states reflecting their

structure are taken from the relevant experimental quantities.

3.1 Kaon-Loop Model

In our numerical calculation of the decay width of the radiative φ → K++K−+γ

decay reaction as well as in our analysis of the contributions of the internal

bremsstrahlung and of the scalar mesons calculated using kaon-loop mechanism

to the decay width of this reaction we use the mass values MK+ = 494 MeV ,

Mφ = 1020 MeV , Mf0
= 980 MeV , Ma0

= 984.7 MeV , and the coupling con-

16



stants gφK+K− = 4.47, gf0K+K− = 5.24, and ga0K+K− = 2.30. In our calculation,

the minimum photon energy is taken as Eγ = 10 MeV . For the decay width and

consequently for the branching ratio of the φ → K+ + K− + γ radiative decay

reaction we obtain the values Γ(φ → K+ + K− + γ) = 2.21 × 10−4 MeV, and

BR(φ → K++K−+γ) = 5.18×10−5, respectively. On the other hand, for mini-

mum photon energy Eγ,min = 5 MeV these values become Γ(φ → K++K−+γ) =

4.56 × 10−4 MeV and BR(φ → K+ + K− + γ) = 1.07 × 10−4. If we consider

the contribution of scalar meson intermediate state only, we then obtain for

the branching ratio the value BR(φ → Sγ → K+ + K− + γ) = 9.94 × 10−6 for

Eγ,min = 5 MeV, and BR(φ → Sγ → K++K−+γ) = 9.71×10−6 for Eγ,min = 10

MeV. If we calculate the branching ratio by considering the bremsstrahlung am-

plitude only, the resulting branching ratio is BRBrem(φ → K+ + K− + γ) =

9.07× 10−5 for Eγ,min = 5 MeV and BRBrem(φ → K+ + K− + γ) = 3.55× 10−5

for Eγ,min = 10 MeV. In the figures, we show the results for minimum photon

energy Eγ,min = 10 MeV. The photon spectra for the decay width of the de-

10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

 d
/d

E
   

(x
10

5 )

E  (MeV)

 Bremsstrahlung
 only f0
 only a0

 f0+a0

 interference
 Total

Figure 3.1: The photon spectra for the decay width of φ → K+ + K− + γ in the
kaon-loop model. The contributions of different terms are indicated.

17



cay φ → K+ + K− + γ is plotted in Fig. 3.1 as a function of photon energy

Eγ . The contributions of bremsstrahlung and structural radiation amplitude

calculated with the f0- and a0- scalar meson intermediate states calculated in

the kaon-loop model, the interference contribution of the bremsstrahlung ampli-

tude with the total structural radiation amplitude of the both scalar mesons are

shown as a function of photon energy. The contribution of the scalar mesons

amplitude becomes increasingly important in the region of high photon energies.

The contribution coming from the interference term is constructive, therefore in

the region of high photon energies shape of the photon spectra curve is con-

siderably modified and it is quite different from that obtained using only the

bremsstrahlung amplitude.

494 496 498 500 502 504

0

1

2

3

4

 d
/d

E 1   
(x

10
5 )

E1 (MeV)

 Bremsstrahlung
 only f0
 only a0

 f0+a0

 interference
 Total

Figure 3.2: The kaon energy spectra for the decay width of φ → K+ + K− + γ in the
kaon-loop model. The contributions of different terms are indicated.

The kaon energy spectra for the decay width of the φ → K+ + K− + γ reaction

is shown in Fig. 3.2 where the contribution of different terms are also indicated.
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The effect of including the scalar meson contributions is again significant in the

region of low kaon energies which becomes quite insignificant for high values

of kaon energy where the spectra is determined solely by the bremsstrahlung

amplitude. We show the dependence of the decay width of the radiative φ →

0 5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

 
 (x

10
3    

M
eV

)

E
, min

MeV

Figure 3.3: The decay width of φ → K+ +K− + γ as a function of minimum detected
photon energy in the kaon-loop model.

K+ + K− + γ decay on the minimum detected photon energy which results in

our calculation in Fig. 3.3. This dependence is quite strong, however since there

is no experimental study of this reaction we use the minimum detected photon

energy as Eγ = 10 MeV in our calculations.

Furthermore, in order to provide an experimental test for the magnitude of the

structural radiation mechanism involving scalar mesons in the future experimen-

tal studies of the radiative φ → K+ + K− + γ reaction, we plot the ratio Rβ as

a function of β which we show Fig. 3.4.
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Figure 3.4: The ratio Rβ =
Γβ

Γtot
as a function of β for the decay reaction φ →

K+ + K− + γ in the kaon-loop model.

The ratio Rβ is defined by

Rβ =
Γβ

Γtot(φ → K+ + K− + γ)
, (3.1)

where the terms in the numerator and in the denominator of this ratio are given

as

Γβ =
∫ 10+β

10
, Γtot =

∫ Eγ ,max

10
dEγ

dΓ

dEγ
(3.2)

The shape of this curve indicates through its derivation from that of pure

bremsstrahlung mechanism the contributions of scalar meson amplitudes and

shows that the dependence of the decay width in the contribution of the struc-

tural radiation characterized by the scalar meson amplitudes is quite important

in the region of high photon energies.
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3.2 No-Structure Model

In our calculation of the decay width of radiative φ → K+ + K− + γ decay

in the framework of the no-structure model the additional parameters that are

needed are the coupling constants characterizing the point couplings of vector

meson φ, scalar mesons f0 and a0, pseudoscalar mesons K+ and K−, and the

photon. The coupling constant gφSγ which characterizes the vector φ-meson,

scalar S-meson (S = f0 or a0) and the photon point vertex is determined by

employing the effective Lagrangian given in Eq. 2.14 and using the experimental

values of the branching ratios BR(φ → f0 + γ) and BR(φ → a0 + γ). The

coupling constants obtained this way are gφf0γ = −3.71, and gφa0γ = −1.87.

However, since there are no direct experimental information that we can employ

to determine the point coupling of scalar mesons to a charged kaons K+K−

final state, we use the results for these coupling constants obtained through

QCD sum rules techniques. The values of the coupling constants gf0K+K− and

ga0K+K− determined through studies using light cone QCD sum rules method

are gf0K+K− = 7.14 [21] and ga0K+K− = −5.08 [22]. It should be noted that the

relative minus sign between these coupling constants which is consistent with

the q2q̄2 model for the structure of the scalar mesons has a pround effect for the

contribution of scalar meson amplitudes to the total amplitude for the decay

width of the radiative φ → K+ + K− + γ reaction because these amplitudes

are linear in these coupling constants in the no-structure model. On the other

hand, the scalar meson amplitudes are quadric in these coupling constants in the

kaon-loop model for the contribution of scalar mesons to the decay amplitude

of φ → K+ + K− + γ reaction. For the decay width and consequently for the

branching ratio of the φ → K+ + K− + γ radiative decay reaction in the no-

structure model we obtain the values Γ(φ → K+ + K− + γ) = 4.36 × 10−6

MeV, and BR(φ → K+ + K− + γ) = 1.02 × 10−6, respectively. On the other

hand, for minimum photon energy Eγ,min = 5 MeV these values become Γ(φ →
K++K−+γ) = 2.26×10−4 MeV and BR(φ → K++K−+γ) = 5.30×10−5. If we

consider the contribution of scalar meson intermediate state only, we then obtain
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for the branching ratio the value BR(φ → S → K+ +K− +γ) = 1.76×10−6 for

Eγ,min = 5 MeV, and BR(φ → Sγ → K++K−+γ) = 1.69×10−6 for Eγ,min = 10

MeV. If we calculate the branching ratio by considering the bremsstrahlung

amplitude only, the resulting branching ratio is BRBrem(φ → K+ + K− + γ) =

9.07× 10−5 for Eγ,min = 5 MeV and BRBrem(φ → K+ + K− + γ) = 3.55× 10−5

for Eγ,min = 10 MeV, as before. In the figures, we show the results for minimum

photon energy Eγ,min = 10 MeV. In Fig. 3.5 we show the photon spectra for
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Figure 3.5: The photon spectra for the decay width of φ → K+ + K− + γ in the
no-structure model. The contributions of different terms are indicated.

the decay width of the radiative φ → K+ + K− + γ decay calculated using

the no-structure model for including the effects of intermediate scalar mesons

to the total amplitude of the reaction where we also show the contributions of

the different amplitudes in the mechanism of the reaction. It can be observed

from this figure that the scalar meson amplitude again contributes in the region

of high photon energies, however this contribution is not as pronounced as in
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the kaon-loop model so that the shape of the photon spectra does not deviate

significantly from that of the bremsstrahlung mechanism. This is due to the

relative minus sign between the coupling constants gf0K+K− and gf0K+K− which

results in a cancelation of some degree of the contributions coming from the f0-

and a0-scalar meson intermediate state amplitudes.
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Figure 3.6: The kaon energy spectra for the decay width of φ → K+ + K− + γ in the
no-structure model. The contributions of different terms are indicated.

In Fig. 3.6 we show the energy spectra of the final state kaon for the decay width

of φ → K+ +K− +γ decay as a function of kaon energy where the contributions

of bremsstrahlung amplitude, the contributions of scalar meson intermediate

state amplitudes as well as the contribution of the interference term are shown

together with the result obtained using the total amplitude. We again observe

that the contributions of scalar mesons are significant only in the region of high

photon energies, however they are small as compared to the contribution of the
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bremsstrahlung amplitude so that the energy spectra of the total amplitude

essentially show the bremsstrahlung character.
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Figure 3.7: The decay width of φ → K+ +K− + γ as a function of minimum detected
photon energy in the no-structure model.

In Fig. 3.7 we show the decay width of the radiative φ → K+ + K− + γ decay

as a function of minimum detected photon energy. Since it is observed from

Fig. 3.5 and Fig. 3.6, that the scalar meson intermediate state contribution is

not pronounced enough to significantly change the bremsstrahlung spectra, the

dependence of the decay width of the radiative φ → K+ + K− + γ decay as a

function of minimum detected photon energy is more critical as compared to the

previous analysis where the kaon-loop was used for the scalar meson contribution

which is shown in Fig. 3.3.

Finally, we show the ratio Rβ =
Γβ

Γtot
as a function of β in Fig. 3.8 for the

no-structure model calculation of the scalar meson contributions to the φ →
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K+ + K− + γ radiative decay. It is to be observed that the modification of

this ratio in the region of high photon energies is not as significant as in Fig.

3.4 calculated using the kaon-loop model for the intermediate scalar meson
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Figure 3.8: The ratio Rβ =
Γβ

Γtot
as a function of β for the reaction φ → K+ + K− + γ

in the no-structure model.

contributions.

3.3 Conclusion

In this thesis, we study the role of scalar mesons in hadron physics. Although still

the controversial question of the nature and structure of scalar mesons is very

important in hadron spectroscopy, our concern is to elucidate the role that the

scalar mesons play in the mechanisms of reactions in hadron electrodynamics.

It has been realized some time ago that the radiative decay processes where a

vector meson decays into a pair of pseudoscalars and a photon are the source of
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valuable information about the nature of scalar mesons as well as the role they

play in the reaction amplitudes.

We consider the particular radiative decay reaction where a vector φ-meson

decays into a charged kaon pair K+K− and a photon. Our aim is to study the

role that the scalar f0- and a0- mesons play in the mechanism of this reaction.

We consider two models to investigate the f0- and a0- scalar meson intermediate

states in the mechanism of this reaction. The first model is called the kaon-

loop model where the scalar meson intermediate state couples to the initial

φ-meson through a charged kaon-loop. In the second model the coupling of

the intermediate scalar meson states to the initial φ-meson is point-like which

is called no-structure model. In these models, we calculate the decay width of

the φ → K+ + K− + γ radiative reaction and we analyze the photon spectra

for the decay width of this reaction as a function of photon energy and the

final kaon energy spectra for the decay width as a function of kaon energy. We

conclude that of when the contribution of intermediate scalar meson states in

the mechanism of the radiative φ → K+ +K− +γ reaction is taken into account

using the kaon-loop model the photon spectra and the kaon energy spectra are

modified considerably in the high photon energy regions whereas if we use the

no-structure model for the contribution of scalar mesons the modifications are

insignificant. Therefore, although the phase space for this reaction is small

thus the experiment is difficult to perform, future experimental studies of the

φ → K+ +K− +γ radiative decay reaction may shed light on the role the scalar

mesons play in the reaction mechanism of this decay in particular and also on

their importance in hadron electrodynamics.
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APPENDIX A

THREE BODY FINAL STATE

We consider the decay of a vector φ-meson at rest to a three body final state

consisting two pseudoscalar mesons and a photon. We denote the relevant four

momenta as V (p) → P (q1) + P ′(q2) + γ(q). Since the decaying particle is at

rest, the invariant matrix element can be taken to be a function of E1 and Eγ

as Mfi(E1, Eγ). The differential decay rate is given by [23]

dΓ =
1

(2Ep)(2π)5
δ(4)(p − q1 − q2 − q)

d3q1

(2E1)

d3q2

(2E2)

d3q

2Eγ)
|Mfi|2 . (A.1)

The absolute square of the invariant matrix element of the decay |Mfi|
2

is

obtained by performing an average over the spin states of the initial vector

meson and a sum over the polarization states of the photon. Since the vector

meson is at rest, we can write the δ-function as

δ(4)(p − q1 − q2 − q) = δ(Mφ − E1 − E2 − Eγ)δ
(3)(~q1 + ~q2 + ~q) . (A.2)

Three-momentum δ-function can be eliminated by performing the integral over

d3q2. Since

d3q

2Eγ

=
|~q|2dqdΩγ

2Eγ

=
1

2
EγdEγdΩγ , (A.3)
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d3q1

2E1

=
|~q1|2dq1dΩ1

2E1

=
1

2
|~q1|dE1dΩ1 , (A.4)

and

E2 =
√

(~q + ~q1)2 + M2
2 , (A.5)

from the equation of the differential decay rate we obtain

dΓ

dEγdE1
=

|~q1|Eγ |Mfi|2
16M(2π)5

∫

dΩγdΩ1

δ(Eγ + E1 − M +
√

(~q + ~q1)2 + M2
2 )

√

(~q + ~q1)2 + M2
2

.

(A.6)

We then consider the integral I defined by

I = |~q1|Eγ

∫

dΩγdΩ1

δ(M − Eγ − E1 +
√

(~q + ~q1)2 + M2
2 )

√

(~q + ~q1)2 + M2
2

, (A.7)

where (~q + ~q1)
2 = E2

γ + E2
1 − M2

1 + 2Eγ |~q1|cosθ .

The angular integrals can be performed which results in

I = 8π2
∫ 1

−1
d(cos θ)|~q1|Eγ

δ
(

Eγ + E1 − M +
√

E2
1 + E2

γ − M2
1 + 2Eγ|~q1| cos θ + M2

2

)

√

E2
1 + E2

γ − M2
1 + 2Eγ|~q1| cos θ + M2

2

,

(A.8)

We then make a change of variables defined by

ρ =
√

E2
1 + E2

γ − M2
1 + 2Eγ|~q1| cos θ + M2

2 , (A.9)

and obtain the integral as

I = 8π2
∫

dρ δ(M − Eγ − E1 − ρ) = 8π2 , (A.10)

where the condition M − Eγ − E1 − ρ = 0 is satisfied. Therefore we obtain the

double differential decay rate as
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dΓ

dEγdE1

=
1

(2π)3

1

8M
|Mfi|2 , (A.11)

and consequently the decay rate is given by

Γ =
∫ Eγ ,max

Eγ ,min
dEγ

∫ E1,max

E1,min
dE1

dΓ

dEγdE1

. (A.12)

The limits of integral are obtained using the contain M − Eγ − E1 − ρ = 0 as

(M − Eγ − E1)
2 = E2

1 + E2
γ − M2

1 + 2Eγ|~q1| cos θ + M2
2 . (A.13)

Since cosθ satisfies the inequality −1 ≤ cosθ ≤ 1, we obtain

−1 ≤ (M − Eγ − E1)
2 − E2

γ − E2
1 + M2

1 − M2
2

2|~q||~q2|
≤ 1 , (A.14)

which can also be written in the form

−1 ≤ (M − Eγ − E1)
2 − E2

γ − E2
1 + M2

1 − M2
2

2Eγ

√

E2
1 − M2

1

≤ 1 , (A.15)

since E2
γ = |~q2| and E2

1 = |~q1
2| + M2

1 . We then solve this equation and find two

roots for E1 as

E1min =
1

2(2EγMφ − M2
φ)

{

−2E2
γMφ + 3EγM

2
φ − M3

φ

+Eγ

√

(−2EγMφ + M2
φ)(−2EγMφ + M2

φ − 4M2
K) } .(A.16)

E1max =
1

2(2EγMφ − M2
φ)

{

−2E2
γMφ + 3EγM

2
φ − M3

φ

−Eγ

√

(−2EγMφ + M2
φ)(−2EγMφ + M2

φ − 4M2
K) } .(A.17)
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APPENDIX B

TWO BODY DECAY RATES

We consider the decay of a particle of mass M and four momentum p into two

particles of masses M1 and M2 with four momenta p1 and p2, respectively. The

differential decay rate is given by [24]

dΓ =
1

2Ep
|Mfi|2dΦ2 (B.1)

where the two body phase space is

dΦ2 = δ(4)(p − p1 − p2)
d3p1

(2π)3(2E1)

d3p2

(2π)3(2E2)
. (B.2)

Since in the rest frame of decaying particle ~p1 = −~p2 ≡ ~p and M = E1 + E2,

then the phase space becomes

dΦ =
1

(2π)6

δ(~p1 + ~p2)δ(E1 + E2 − M)

4E1E2
d3p1d

3p2 (B.3)

We can eliminate the first δ-function by performing d3p2 integration and obtain

dΦ2 =
1

(2π)6

δ(E1 + E2 − M)

4E1E2
d3p1 (B.4)

where d3p1 = p2
1 d|~p1| dΩ1 = |~p1| dΩ E1E2 d(E1+E2)

E1+E2
.
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We then eliminate the second δ-function by integrating over (E1 + E2) which

yields

dΓ =
1

32π2M2
|Mfi|2|~p|dΩ . (B.5)

After a final integration of both sides the decay rate is obtained as

Γ =
1

8π2M2
|Mfi|2|~p| . (B.6)

In the rest frame of the decaying particle

|~p| =
1

2M

√

[M2 − (M1 + M2)2][M2 − (M1 − M2)2] . (B.7)

Therefore for two body decay M → M1 + M2 where M1 = M2

|~p| =
1

2
M

√

1 −
(

2M1

M

)2

. (B.8)

In addition, for the decay M → M1 + γ

|~p| =
1

2
M

[

1 −
(

M1

M

)2
]

. (B.9)

For the decay φ → K+ + K− the invariant matrix element is obtained from the

effective Lagrangian

LφK+K− = −igφKKφµ(K−∂µK+ − K+∂µK−) (B.10)

as M(φ → K+ + K−) = −igφK+K−(2q1 − p)µuµ, where (p,u) are the four-

momenta and polarization of the decaying φ-meson and q1 is the four-momenta

of the plus signed kaon. As a result, the decay rate is
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Γ(φ → K+ + K−) =
g2

φK+K−

48π
Mφ



1 −
(

2MK

Mφ

)2




3/2

. (B.11)

Furthermore, for the decay φ → S + γ, where S = f0 or a0, the amplitude in

the kaon-loop model is obtained as

M(φ → S + γ) = uµǫν(qµpν − gµνq · p)
egφK+K−(gSK+K−MS)

i2π2M2
K

I(a, b) , (B.12)

where (u, p) denotes the polarization and four-momentum of the decaying vector

meson and (ǫ, q) of the photon, respectively, and a = M2
φ/M2

k , b = M2
s /M2

k .

Thus, the decay rate is

Γ(φ → S + γ) =
α

6(2π)4

M2
φ − M2

S

M3
φ

g2
φK+K−(gSK+K−MS)2|(a − b)I(a, b)|2 .(B.13)

Finally, for the decay S → K+ + K− described by the effective Lagrangian,

LSK+K− = −gSK+K−K+K−S , (B.14)

the invariant amplitude is determined as M(S → K+K−) = −igSK+K−MS, and

then the decay rate is obtained as

Γ(S → K+K−) =
g2

SK+K−

16π
MS

[

1 −
(

2MK

MS

)2
]1/2

. (B.15)
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APPENDIX C

INVARIANT BREMSSTRAHLUNG AMPLITUDE OF

THE RADIATIVE φ → K+ + K− + γ DECAY

For bremsstrahlung processes of the radiative decay φ(p) → K+(q1)+ K−(q2)+

γ(q) the invariant amplitude MB is expressed as

MB = MBa + MBb + MBc , (C.1)

where MBa, MBb, and MBc are the invariant amplitudes obtained from the

diagrams (a), (b), and (c) in Fig. 2.2 as

MBa = 4i(egφK+K−)

[

q2µq1ν

(p − q2)2 − M2
K

]

uµǫν (C.2)

MBb = 4i(egφK+K−)

[

q1µq2ν

(p − q1)2 − M2
K

]

uµǫν (C.3)

MBc = 2i(egφK+K−)uµǫ
µ . (C.4)

Using the gauge ǫ · p = 0, we then obtain the total invariant amplitude as

MB = 2i(egφK+K−)ǫν

[

2
q2µq1νu

µ

(p − q2)2 − M2
K

+ 2
q1µq2νu

µ

(p − q1)2 − M2
K

+ uµgµν

]

. (C.5)

Although each single amplitude is not gauge invariant, the total amplitude MB

is gauge invariant. We present a brief discussion of this point. When any external

photon polarization vector in the amplitude is replaced by the four-momentum
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of the corresponding photon, the amplitude must vanish. The amplitude can be

writen as, M = ǫνMν corresponding to a process involving one external photon

[19]. If ǫν is replaced by qν (ǫν → qν) and then we must have qνMν = 0. We

apply this prescription to MB and obtain

qν(MB)ν = 4i(egφK+K−)

[

(q2 · u)
1

p2 − 2p · q2 + q2
2 − M2

K

(q1 · q)

+(q1 · u)
1

p2 − 2pq1 + q2
1 − M2

K

(q2 · q)
]

+ 2i(egφK+K−)(u · q) .

(C.6)

We then note that q2
1 = q2

2 = M2
K and p − q = q1 + q2, and since φ-meson

is at rest

p · q1 = MφE1

p · q2 = MφE2

p · q = MφEγ , (C.7)

q1 · q =
1

2

(

M2
φ − 2MφE2

)

q2 · q =
1

2

(

M2
φ − 2MφE1

)

. (C.8)

We use these relations and obtain qνMν
B = 0.

The complex invariant amplitude is parameterized with MB = i(M′
Ba +M′

Bb +

M′
Bc). Therefore, the square of the invariant amplitude is obtained as

|MB|2 = |M′
Ba|2 + |M′

Bb|2 + |M′
Bc|2 +2(M′

Ba
∗M′

Bb +M′
Ba

∗M′
Bc +M′

Bb
∗M′

Bc)

(C.9)

As mentioned above, bremsstrahlung diagrams are not separately gauge invari-
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ant. If the diagram is gauge invariant, then we can use

∑

λ

εα(q, λ)εβ(q, λ) = −gαβ (C.10)

However, we perform calculations for bremsstrahlung diagrams which are not

separately gauge invariant. Therefore, in the calculation either we can use the

following relation

∑

λ

εα(q, λ)εβ(q, λ) = −gαβ − 1

(qn)2
[qαqβ − (qn) (qαnβ + qβnα)] , (C.11)

where n is the four-vector nµ = (1, 0, 0, 0) [24], or we can choose a suitable gauge.

Therefore, we use the gauge ǫ · p = 0 in our calculations. In this gauge, there is

no time component of ǫα, thus

∑

λ

ǫi (q, λ) ǫj (q, λ) = δij − q̂iq̂j . (C.12)

Moreover, since decaying vector meson φ is at rest, its polarization vector has

no time component since uµ pµ = 0. In this case, the polarization sum becomes

∑

λ′

ul(p, λ
′)um(p, λ′) = δlm . (C.13)

On the other hand, for vector meson we can use the polarization sum as

∑

λ′

uα(p, λ′) uβ(p, λ′) = −
(

gαβ − pαpβ

M2
φ

)

. (C.14)

The terms in Eq. C.9 are evaluated in the above framework. The absolute

square of MBa amplitude is written as

|MBa|2 =

[

4egφK+K−q2αu∗
α(p, λ′)

1

(p − q2)2 − M2
K

q1βǫ∗β(q, λ)

]

×
[

4egφK+K−q2µuµ(p, λ
′)

1

(p − q2)2 − M2
K

q1νǫν(q, λ)

]
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= 16(egφK+K−)2(q2α q1β q2µ q1ν) u∗
α(p, λ′) uµ(p, λ′)

∑

λ

ǫ∗β(q, λ) ǫν(q, λ)

×
[

1

(p − q2)2 − M2
K

]2

(C.15)

Using the gauge ǫ · p = 0 and in φ-meson rest frame we have

|MBa|2 = 16(egφK+K−)2

[

1

(p − q2)2 − M2
K

]2

(q2i q1j q2k q1ℓ)

× u∗
i (p, λ

′) uk(p, λ′)
∑

λ

ǫ∗j (q, λ) ǫℓ(q, λ) (C.16)

where

u∗
i (p, λ

′) uk(p, λ′) =
1

3

∑

λ′

ui(p, λ
′)uk(p, λ

′) =
1

3
δik ,

∑

λ

ǫ∗j (q, λ)ǫl(q, λ) = δjl − q̂j q̂l . (C.17)

We then obtain

|MBa|2 =
(

16

3

)

(egφK+K−)2

[

1

(p − q2)2 − M2
K

]

~q2
2
[

~q1
2 − (~q1 · q̂)2

]

(C.18)

where ~q1
2 = E2

1−M2
K , ~q2

2 = E2
2−M2

K , and ~q1·q̂ =
(

2E1Eγ − M2
φ + 2MφE2

)

/2Eγ .

The absolute square of MBb amplitude is obtained by the same way

|MBb|2 =

[

4egφK+K−q1αu∗
α(p, λ′)

1

(p − q1)2 − M2
K

q2βǫ∗β(q, λ)

]

×
[

4egφK+K−q1µuµ(p, λ
′)

1

(p − q1)2 − M2
K

q2νǫν(q, λ)

]

=
(

16

3

)

(egφK+K−)2

[

1

(p − q1)2 − M2
K

]

~q1
2
[

~q2
2 − (~q2 · q̂)2

]

(C.19)

where ~q2 · q̂ =
(

2E2Eγ − M2
φ + 2MφE1

)

/2Eγ .

The other amplitude becomes

|M′
Bc|2 = [2egφK+K−u∗

α(p, λ′)ǫ∗α(q, λ)] [2egφK+K−uµ(p, λ
′)ǫµ(q, λ)]

=
(

8

3

)

(egφK+K−)2 . (C.20)
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The remain amplitudes in Eq. C.9 are found as

|M′
Ba

∗M′
Bb| =

[

4egφK+K−q2αu∗
α(p, λ′)

1

(p − q2)2 − M2
K

q1βǫ∗β(q, λ)

]

×
[

4egφK+K−q1µuµ(p, λ′)
1

(p − q1)2 − M2
K

q1νǫν(q, λ)

]

=
(

16

3

)

(egφK+K−)2

{

~q1 · ~q2 [~q1 · ~q2 − (~q1 · q̂)(~q2 · q̂)]
[(p − q1)2 − M2

K ] ](p − q2)2 − M2
K ]

}

(C.21)

|M′
Ba

∗M′
Bc| =

[

4egφK+K−q2αu∗
α(p, λ′)

1

(p − q2)2 − M2
K

q1βǫ∗β(q, λ)

]

× [2egφK+K−uµ(p, λ
′)ǫµ(q, λ)]

=
(

8

3

)

(egφK+K−)2

[

(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)
(p − q2)2 − M2

K

]

(C.22)

|M′
Bb

∗M′
Bc| =

[

4egφK+K−q1αu∗
α(p, λ′)

1

(p − q1)2 − M2
K

q2βǫ∗β(q, λ)

]

× [2egφK+K−uµ(p, λ
′)ǫµ(q, λ)]

=
(

8

3

)

(egφK+K−)2





(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)
(p − q1)2 − M2

K





(C.23)

where ~q1 · ~q2 =
(

2E1E2 − M2
φ + 2MφEγ + 2M2

K

)

/2.
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APPENDIX D

THE DERIVATION OF THE FUNCTION I(a,b)

In this Appendix, we outline a derivation of the function I(a, b) that appear in

the amplitude of the φ → S + γ decay in the kaon-loop model. the amplitude

of this radiative decay is given Eq. 2.10 as

MKL(φ → S + γ) = uµǫν(pνqµ − gµνp · q)egφK+K−gSK+K−

2iπ2M2
K

I(a, b) . (D.1)

We consider the diagram shown in Fig. 2.3.(a) and denote the momentum

assignments in Fig. C-1.

φ

Figure D.1: Momentum assignments in the loop diagram.

We can write the contribution of this diagram in the form M = uµǫνMµν where

Mµν = egφK+K−gSK+K−

∫

d4k

(2π)4

(2k − p)µ(2k − q)ν

(k2 − M2
K)[(k − q)2 − M2

K ][(k − p)2 − M2
K ]

(D.2)

We then use the Feynman technique to combine the denominator and obtain
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Mµν = egφK+K−gSK+K− 8
∫ 1

0
dz
∫ 1−z

0
dy
∫ ∞

−∞

1

2π

4 d4k kµkν

[(k − qy − pz)2 − c + iǫ]3
,

(D.3)

where c = M2
k − z(1 − z)M2

φ − zy(M2
s − M2

φ). We then perform the shift

k → k + qy + pz in the integral. We note that the form of the amplitude

M(φ → S + γ) given Eq. C.1 is the one required by gauge invariance. We

therefore consider the coefficient of the pνqµ term that we obtain after the shift

in the integral. There is a similar term coming from the diagram where the

photon is emitted by K−-meson in the loop shown in Fig. 2.3.(b). The contact

term shown in Fig. 2.3.(c) does not make any contribution to the pνqµ term, we

thus obtain

I(a, b) =
∫ 1

0

∫ 1−z

0
dy yz[M2

k − 2(z − 1)M2
φ − zy(M2

S − M2
φ)]−1 . (D.4)

If we define a = M2
φ/M2

K , b = M2
s /M2

K and note that a > 4, b < 4, we obtain

I(a, b) =
1

(a − b)

∫ 1

0

dz

z

[

z(1 − z) − (1 − z(1 − z)a)

(a − b)
ln

(

1 − z(1 − z)b

1 − z(1 − z)a

)]

− iπ

(a − b)

∫ 1/η−

1/η+

(1 − z(1 − z)a)
dz

z
, (D.5)

where η± = 1
2
a(1 ± α) with α =

√

1 − 4/a .

After a final integration we obtain the expression for I(a, b) given in Eq. 2.10.
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APPENDIX E

INVARIANT AMPLITUDE OF THE φ → K+ + K− + γ

DECAY IN KAON-LOOP MODEL

For the radiative decay φ(p) → K+(q1)+K−(q2)+γ(q) contribution of the scalar

meson intermediate state to the invariant amplitude M in kaon-loop model is

expressed in the form

MKL = MKLa + MKLb + MKLc , (E.1)

where MKLa, MKLb, and MKLc are the invariant amplitudes obtained from the

diagrams (a), (b), and (c) in Fig. 2.2 as

MKLa = MKLb

= egφK+K−(gSK+K−)2

×
∫

d4k

(2π)4

(2k)µuµ(2k)νǫ
ν

(k2 − M2
K)[(k − p)2 − M2

K ][(k − q)2 − M2
K ]

× 1

[(p − q)2 − M2
S + iΓSMS]

(E.2)

MKLc = −2egφK+K−(gSK+K−)2
∫

d4k

(2π)4

uµǫ
µ

(k − q)2 − M2
K)[(k − p)2 − M2

K ]

× 1

[(p − q)2 − M2
S + iΓSMS]

, (E.3)

where (u,p) and (ǫ, q) are the polarization and four momenta of the φ meson

and the photon, respectively. Using the relations uνpν = 0 and ǫµqµ = 0, we

then obtain the invariant amplitude
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MKL = 2egφK+K−(gSK+K−)2 1

[(p − q)2 − M2
S + iΓSMS]

× uµǫν
∫ d4k

(2π)4

4kµkν − gµν

(k2 − M2
K)[(k − q)2 − M2

K ][(k − p)2 − M2
K ]

= egφK+K−(gSK+K−)2 (p − q)2 − M2
S − iΓSMS

{

[(p − q)2 − M2
S ]

2
+ (ΓSMS)2

}

×
{

1

2π2M2
K

I(a, b)[(ǫ · u)(q · p) − (ǫ · p)(q · u)]

}

(E.4)

where a = M2
φ/M2

k , b = (p − k)2/M2
K = (M2

φ − 2MφEγ)/M
2
K . The invariant

function I(a,b) is discussed in Appendix D.

The complex invariant amplitude is parameterized with

MKL = M′′
KL + iM′

KL (E.5)

where M′′
KL and M′

KL are

M′
KL =

1

2π2M2
K

egφK+K−(gSK+K−)2[(ǫ · u)(q · p) − (ǫ · p)(q · u)]

×
{

[(p − q)2 − M2
S]ImI(a, b) − (ΓSMS)ReI(a, b)

}

∆0
S(p − q)

M′′
KL =

1

2π2M2
K

egφK+K−(gSK+K−)2[(ǫ · u)(q · p) − (ǫ · p)(q · u)]

×
{

[(p − q)2 − M2
S]ReI(a, b) + (ΓSMS)ImI(a, b)

}

∆0
S(p − q)

(E.6)

and

∆0
S(q) =

1

(q2 − M2
S)2 + (ΓSMS)2

. (E.7)

The absolute value of the square of the invariant amplitude is obtained as

| MKL |2= |M′′|2 + |M′|2. The squares of the real and imaginary parts become

44



|M′
KL|2 =

{

1

2π2M2
K

egφK+K−(gSK+K−)2

}2

×
{{

[(p − q)2 − M2
S]ImI(a, b) − (ΓSMS)ReI(a, b)

}

∆0
S(p − q)

}2

×[ǫαuαq.p − ǫαpαqβuβ]∗[ǫα′uα′q.p − ǫα′pα′qβ′uβ′ ] (E.8)

|M′′
KL|2 =

{

1

2π2M2
K

egφK+K−(gSK+K−)2

}2

×
{{

[(p − q)2 − M2
S ]ReI(a, b) + (ΓSMS)ImI(a, b)

}

∆0
S(p − q)

}2

×[ǫαuαq.p − ǫαpαqβuβ]
∗[ǫα′uα′q.p − ǫα′pα′qβ′uβ′ ] . (E.9)

Using the relations
∑

λ

ǫ∗α(q, λ)ǫα′(q, λ) = −gαα
′ and u∗

α(p, λ′)uα′(p, λ′) = −1
3
gαα

′ ,

we evaluate the polarization terms as

[ǫαuαq · p − ǫαpαqβuβ]∗[ǫα′uα′q · p − ǫα′pα′qβ′uβ′ ]

=
∑

λ

ǫ∗α(q, λ)ǫα′ (q, λ) u∗
αuα′ (q · p)2

−
∑

λ

ǫ∗α(q, λ)ǫα
′ (q, λ) u∗

αuβ
′ (q · p)pα

′qβ
′

= −
∑

λ

ǫ∗α(q, λ)ǫα′ (q, λ) u∗
βuα′ (q.p)pαqβ

+
∑

λ

ǫ∗α(q, λ)ǫα′ (q, λ) u∗
βuβ′ pαqβpα′qβ′

=
1

3
[4(q · p)2 − (q · p)2 − (q · p)2 + p2q2]

=
2

3
(q · p)2 . (E.10)

We then obtain

|M′
KL|2 =

{

1

2π2M2
K

egφK+K−(gSK+K−)2

}2
2

3
(q · p)2

×
{{

[(p − q)2 − M2
S]ImI(a, b) − (ΓSMS)ReI(a, b)

}

∆0
S(p − q)

}2

(E.11)
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|M′′
KL|2 =

{

1

2π2M2
K

egφK+K−(gSK+K−)2

}2
2

3
(q · p)2

×
{{

[(p − q)2 − M2
S]ReI(a, b) + (ΓSMS)ImI(a, b)

}

∆0
S(p − q)

}2
.

(E.12)

We note that in the rest frame of φ meson p·q = MφEγ and (p−q)2 = (q1+q2)
2 ≡

M2
KK .

Since both f0 and a0 resonances make a contribution to the decay φ → K+ +

K− + γ the complex amplitudes are parameterized with

MKL =
[

M′′
f0

+ M′′
a0

]

+ i
[

M′
f0

+ M′
a0

]

. (E.13)

The absolute square of the invariant amplitude is now obtained as

| MKL |2=
[

M′′
f0

+ M′′
a0

]2
+
[

M′
f0

+ M′
a0

]2
.

The interference term of the bremsstrahlung amplitude and the kaon-loop scalar

meson amplitude becomes

Mint = 2
(

M′∗
BM′

KL

)

= 2

{

4(egφK+K−)

[

(q2µ q1ν uµ ǫν)∗

(p − q2)2 − M2
K

+
(q1µ q2ν uµ ǫν)∗

(p − q1)2 − M2
K

]

+ 2(egφK+K−)(ǫµ uµ)∗
}

× [pα uβ(qα ǫβ − qβ ǫα)]

×
{

(egφK+K−)(gSK+K−)2

2π2M2
K

[(

(p − q)2 − M2
S

)

II − (ΓSMS)2IR

]

× ∆0
S(p − q)

}

(E.14)

where I(a, b) = ReI(a, b) + i ImI(a, b) = IR + i II .

In the p · ǫ = 0 gauge, we have (q2µ q1ν uµ ǫν)∗ [pα uβ(qα ǫβ − qβ ǫα)] =
(

1
3

)

(p ·
q) [(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)] .

We finally obtain
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Mint =
(

8

3

)

(egφK+K−)2(gSK+K−)2

(2π2M2
K)

{

[(p − q)2 − M2
S]II − (ΓSMS)IR

}

×
{

[(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)]
(p − q2)2 − M2

K

+
[(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)]

(p − q1)2 − M2
K

+ 1

}

× ∆0
S(p − q)(p · q) (E.15)
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APPENDIX F

INVARIANT AMPLITUDE OF THE φ → K+ + K− + γ

DECAY IN NO-STRUCTURE MODEL

For the radiative decay φ(p) → K+(q1)+K−(q2)+γ(q) contribution of the scalar

meson intermediate state in no-structure model to the invariant amplitude of

the reaction is parameterized as

MNS = M′′
NS + iM′

NS ,

M′
NS = − e

Mφ
gφSγgSK+K−

{

(p − q)2 − M2
S

[(p − q)2 − M2
S ]

2
+ (ΓSMS)2

}

[(ǫ·u)(q·p)−(ǫ·p)(q·u)]

(F.1)

M′′
NS =

e

Mφ
gφSγgSK+K−

{

ΓSMS

[(p − q)2 − M2
S]

2
+ (ΓSMS)2

}

[(ǫ·u)(q·p)−(ǫ·p)(q·u)] .

(F.2)

The absolute square of the amplitude then becomes

| MNS |2= |M′′
NS|2 + |M′

NS|2

where

|M′
NS|2 =

(

− e

Mφ

)2

(gφSγ)
2 (gSK+K−)2

{

(p − q)2 − M2
s

[(p − q)2 − M2
S]

2
+ (ΓsMs)

2

}2

× [pα uβ (qα ǫβ − qβ ǫα)]∗ [pα uβ (qα ǫβ − qβ ǫα)] .

(F.3)
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Using the result

[pα uβ (qα ǫβ − qβ ǫα)]∗ [pα uβ (qα ǫβ − qβ ǫα)] =
2

3
(p · q)2 (F.4)

we then obtain

|M′
NS|2 =

(

2

3

)

(

− e

Mφ

)2

(gφSγ)
2 (gSK+K−)2 (p · q)2

×
{

(p − q)2 − M2
S

[(p − q)2 − M2
S]

2
+ (ΓSMS)2

}2

(F.5)

|M′′
NS|2 =

(

e

Mφ

)2

(gφSγ)
2 (gSK+K−)2

{

ΓSMS

[(p − q)2 − M2
S]

2
+ (ΓSMS)2

}2

× [pα uβ (qα ǫβ − qβ ǫα)]∗ [pα uβ (qα ǫβ − qβ ǫα)]

=
(

2

3

)

(

e

Mφ

)2

(gφSγ)
2 (gSK+K−)2 (p · q)2

×
{

ΓSMS

[(p − q)2 − M2
S]

2
+ (ΓSMS)2

}2

(F.6)

with p · q = EγMφ and (p − q)2 = M2
φ − 2MφEγ .

The complex amplitudes are parameterized with

MNS =
[

M′′
f0

+ M′′
a0

]

+ i
[

M′
f0

+ M′
a0

]

. (F.7)

The absolute square of the invariant amplitude is now obtained as

|M|2 = |MBrem|2 + |MNS|2 + 2(M′∗
BremM′

NS) (F.8)

where | MNS |2=
[

M′′
f0

+ M′′
a0

]2
+
[

M′
f0

+ M′
a0

]2
.

Interference terms in no structure model become

Mint = 2(M′
BremM′

NS)
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= 2

{

4(egφK+K−)

[

(q2µ q1ν uµ ǫν)∗

(p − q1)2 − M2
K

+
(q1µ q2ν uµ ǫν)∗

(p − q2)2 − M2
K

]

+ 2(egφK+K−)(ǫµ uµ)∗
}

[pα uβ(qα ǫβ − qβ ǫα)]

×
{

(− e

Mφ

)(gφSγ)(gSK+K−)
[

(p − q)2 − M2
S

]

∆0
s(p − q)

}

. (F.9)

In the p · ǫ = 0 gauge we finally obtain

Mint = −8

3
(egφK+K−)

e

Mφ

(gφSγ gSK+K−)(p · q)∆0
s(p − q)

[

(p − q)2 − M2
S

]

×
[

(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)
(p − q2)2 − M2

K

+
(~q1 · ~q2) − (~q1 · q̂)(~q2 · q̂)

(p − q1)2 − M2
K

+ 1

]

.

(F.10)
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