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ABSTRACT 
 
 

A SIMULATION STUDY ON MARGINALIZED TRANSITION RANDOM 

EFFECTS MODELS FOR MULTIVARIATE LONGITUDINAL BINARY DATA 

 

YALÇINÖZ, Zerrin 

M.S., Department of Statistics 

Supervisor: Dr. Özlem İLK 

 

May 2008, 45 Pages 

 

In this thesis, a simulation study is held and a statistical model is fitted to the 

simulated data. This data is assumed to be the satisfaction of the customers who 

withdraw their salary from a particular bank. It is a longitudinal data which has 

bivariate and binary response. It is assumed to be collected from 200 individuals at 

four different time points. In such data sets, two types of dependence -the 

dependence within subject measurements and the dependence between responses- are 

important and these are considered in the model. The model is Marginalized 

Transition Random Effects Models, which has three levels. The first level measures 

the effect of covariates on responses, the second level accounts for temporal changes, 

and the third level measures the difference between individuals. Markov Chain 

Monte Carlo methods are used for the model fit. In the simulation study, the changes 

between the estimated values and true parameters are searched under two conditions, 

when the model is correctly specified or not. Results suggest that the better 

convergence is obtained with the full model. The third level which observes the 

individual changes is more sensitive to the model misspecification than the other 

levels of the model.  

 
 
 

Keywords: Binary response, Bivariate response, Gibbs sampling, Hybrid markov 

chain steps, Model specification, Panel data, Simulation. 
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ÖZ 
 
 

ÇOK DEĞİŞKENLİ VE İKİ SONUÇLU PANEL VERİSİ İÇİN MARJİNAL 
GEÇİŞLİ RASTGELE ETKİLER MODELLERİ ÜZERİNE BİR BENZETİM 

ÇALIŞMASI   
 

YALÇINÖZ, Zerrin 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Dr. Özlem İLK 

 

Mayıs 2008, 45 sayfa 

 

Bu araştırmada, bir benzetim çalışması yapılmış ve bu çalışmadan elde edilen veriye 

istatistiksel bir model uydurulmuştur. Benzetim çalışmasından elde edilen verinin, 

maaşını belirli bir bankadan çeken müşterilerin müşteri memnuniyeti olduğu 

varsayılmıştır. Verimiz, iki sonuçlu ve iki bağımlı değişkenli panel veridir. Verinin 

200 bireyden dört değişik zaman dilimi için toplandığı varsayılmıştır. Bu şekildeki 

veri kümelerinde iki tür bağımlılık –birey içi ölçümleri arası bağımlılık, bağımlı 

değişkenler arası bağımlılık- önemlidir ve önerilen modelle bu tür bağımlılıklar 

gözönüne alınmıştır. Model, üç düzeyli Marjinal Geçişli Rastgele Etkiler 

Modelleridir. Bu modelin birinci düzeyinde bağımsız değişkenlerin bağımlı 

değişkenler üzerindeki etkisi ölçülürken, ikinci düzeyinde zamana bağlı değişimler 

dikkate alınır; üçüncü düzeyinde  ise bireyler arasındaki değişiklikler ölçülür. Model 

uyumu için Markov Zinciri Monte Carlo yöntemi kullanılmıştır. Bu benzetim 

çalışmasında, beklenen değerler ve gerçek değerler arasındaki farklar, model doğru 

şekilde belirlendiğinde ve belirlenmediğinde araştırılmıştır.  Araştırma sonuçlarına 

dayanarak, doğru model ile daha iyi bir yakınsama sağlandığı söylenebilir. Diğer 

düzeylere kıyasla, modelin bireyler arası farkları ölçen üçüncü düzeyinde modelin 

yanlış belirlenmesi olayına daha duyarlı tepkiler alınmıştır.   

Anahtar Kelimeler: İki sonuçlu bağımlı değişken, İki değişkenli bağımlı değişken, 

Gibbs örneklemesi, Karışık markov zinciri adımları, Model belirleme, Panel veri, 

Benzetim. 
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CHAPTER 1 

 

INTRODUCTION 

 

Panel data, also known as longitudinal data, is the collection of the repeated 

measurements from the same subject observed over time (Diggle et al., 2002). It is 

used for observing the changes over time within individuals. It occurs frequently in 

fields such as social and medical sciences. For instance, the change in CD4+, a 

marker for HIV, is used for detecting infected people. As another example, 

following-up the same people over years, one can observe the human aging process. 

Many examples of longitudinal data are available in Chapter 2 of Verbeke and 

Molenberghs (2000) and Ilk (2004).  

 

This type of data is usually complex to deal with. In longitudinal data, the 

measurements are not independent; on the contrary, they are collected from the same 

individuals at different time periods. Therefore, the change over time is observed. 

Moreover, if more than one response is measured, then the correlation between 

responses may occur. In this thesis, a simulation study is held on a statistical model 

which takes these two types of dependencies -the dependence within subject 

measurements and the dependence between responses- into account. The aim of this 

thesis is to assess the performance of the estimation procedure against model 

misspecification via a simulation study. Model misspecification is investigated by 

ignoring the effects of some independent variables, which have the highest effects on 

the model.   

 

There is a wealth of literature on modeling longitudinal data. A comprehensive 

discussion of the linear models for longitudinal data can be found in Verbeke and 

Molenberghs (2000) and Diggle et al. (2002). Due to flexibility of normal 

distribution assumption, models for continuous responses are frequently proposed. 

However, modeling longitudinal data with binary response is usually more 

challenging. Ribaudo and Thompson (2002) built a three level model for multivariate 



 2 

longitudinal binary data in the context of quality of life data. They introduced 

dependence by random effects and directly modeled conditional covariate effects. In 

addition, Reboussin and Anthony (2001) studied on marginal models for multivariate 

longitudinal binary data.  

 

In this thesis, Marginalized Transition Random Effects Models (MTREM) for 

multivariate longitudinal binary data is used to model the simulated data. This model 

is introduced by Ilk and Daniels (2007). MTREM is an extension of the two models 

that is developed by Heagerty (1999, 2002). Both of these models, introduced for 

univariate binary data, have two levels. On the first level, a marginal logistic 

regression model is used to explain the average response. The second level consists 

of a random effects model in 1999 paper and transition model in 2002 model. 

MTREM has three levels. The first level of the model is marginal mean model that 

explains the mean response, the second level of the model is transition model that 

explains within-subject time dependence for each response, and the third level of the 

model is random effects model for the multivariate response structure at each time.  

 

In line with the aim of this study, Markov Chain Monte Carlo (MCMC) method is 

used for estimation. MCMC is a general method based on drawing random values 

from approximate distribution, and then, correcting these values to better 

approximate the target posterior distribution. This method enables the statistician to 

examine data using complex but realistic statistical models such as MTREM 

(Martinez and Martinez, 2002). Bayesians and sometimes also frequentists need to 

integrate over possibly high dimensional probability distributions to make inference 

about model parameters or to make predictions. Bayesians need to integrate over the 

posterior distribution of model parameters given the data, and frequentists may need 

to integrate over the distribution of observables given parameter values. The 

dependence within subject measurements and high dimensional integrations during 

calculations are not problem with the use of MCMC approaches. Hope (1968) 

showed that results from a Monte Carlo simulation are unbiased, under the 

assumption that the programming is correct. In this study, Gibbs sampling with 

Hybrid steps are used to sample from the posterior distributions of the parameters in 

MCMC. Gibbs sampling was developed by Geman and Geman (1984) and it is used 



 3 

to generate the sample from desired distribution. It is one of the most popular 

MCMC techniques (Ross, 2002). In Gibbs Sampling method, first of all a starting 

point is selected. Each component of the parameter vector, then, is updated by 

sampling from the full conditional distribution of each parameter. Unlike Gibbs 

Sampling, in Hybrid Markov Chain (Neal, 1996), full conditionals do not have to be 

in a known parametric form.  Therefore, when they are in a hard form to sample, 

Hybrid Markov Chain can be used within a Gibbs sampler. Hybrid Markov Chain 

makes use of gradient information, which facilitates the convergence. In this method, 

acceptance probability is suggested to be around 90%. The tuning parameters are 

selected to attain this probability.    

 

Within this context, Bayesian inference is used to fit the mentioned model to the 

simulated data and to make conclusions about this method, with the help of the 

distribution and the parameters of the model used. One advantage of Bayesian 

inference is that it does not require large sample theory. Nevertheless, one should be 

careful about the choice of the prior distribution (Diggle et al., 2002). As it is stated 

earlier, MCMC method is used in this study, which has an intensive effect on 

Bayesian statistics. For complex problems like in this study, Bayesian MCMC 

approach provides computational advantages over the other approaches. Readers 

who are interested in the details of MCMC may refer to Gelman et al. (2004).   

  

To sum up, in this thesis, a simulated bivariate longitudinal binary data is modeled 

by MTREM to investigate the properties of this complex model. An application of 

this model on a real life dataset can be found in Ilk and Daniels (2007). Although in 

this paper, the model fit for the second and the third level of MTREM is assessed via 

Deviance Information Criterian (DIC) (Spiegelhalter et al., 2002), and posterior 

predictive checks (Gelman et al., 2004), model fit related to first level has not been 

investigated previously. The effect of any misspecification on this first level is 

studied throughout this thesis.   

 

The rest of the chapters are introduced as follows: In Chapter 2, Section 2.1, the 

statistical model is introduced.  In this model, three levels are used to account for 

three different effects. Marginalized mean model, transition model and random 
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effects model. In Section 2.2, data description and generation process are introduced. 

Our data is assumed to be about the satisfaction of the customers who withdraw their 

salary from a particular bank. There are 15 covariates to explain the responses. It is 

assumed that, data are collected at four different time points for each individual. In 

Section 2.3, there is some information about MCMC, Newton-Raphson Method and 

Gibbs Sampling. The implementation of our simulation study and the details about 

program used in simulation are explained in Section 2.4. The results are presented in 

Chapter 3.  
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CHAPTER 2 

 

METHODOLOGY 

 

 

This thesis aims at studying the properties of a statistical model developed for a 

complex structured data set through a simulation study. In this chapter, statistical 

model, description of simulated data, generation process of the data and estimation 

techniques are discussed. 

 

2.1 STATISTICAL MODEL 

 

The data sets which consist of repeated measurements in time on a collection of 

individuals, that is longitudinal data, require special methods for handling the 

correlations between the observations on a given individual (Gelman et al., 2004). 

Marginalized Transition Random Effects Models (MTREM), which is the collection 

of three models, is developed to handle such complex data sets. By these three 

models, the dependence of the response on the explanatory variables; the 

autocorrelations among the responses; and the correlations among responses at a 

fixed time point are modeled. 

 

The first level of the model is Marginal Mean Model, which is used to explain the 

mean response. Repeated measurements are collected from same individuals, so that, 

the values collected from them are not independent. This correlation should be taken 

care of in analysis step. With the marginal models approach, the mean and 

covariance is modeled separately (Diggle et al., 2002). 

 

Suppose Yitj denote the jth response type on the ith individual at the time point t. In 

this study, j=1,2 ; i= 1,2,...,200 and t=1,2,3,4.  The first level of the model is given in 

equation (2.1.1). 

 



 6 

Logit P(Yitj=1 | Xitj ) = Xitj * β .                (2.1.1) 

 

Here, Xitj denotes the covariates and β denotes the coefficients corresponding to the 

covariates.  

 

The second level is the Transition Model, which captures the longitudinal 

dependence within each of the j responses by a transition model of order p. It takes 

the past outcomes into consideration. In this type of model, the conditional 

expectation E(Yitj|Yi,t-1,j, ..., Yi1j, Xitj) is dealed with and also the dependence of Y on 

X and of repeated Y’s within themselves are accepted (Diggle et al., 2002). The 

second level of the model is illustrated in equation (2.1.2). 

 

Logit P(Yitj=1| yi,t-1,j; ….; yi,t-p,j; Xitj) = ∆itj+ ∑p
m=1 γitj,m yi,t-m,j  .  (2.1.2) 

 

Here, ∆itj is the intercept in the logistic regression on the conditional probabilities and 

γitj,m is the log odds ratio measuring the association between any pair of successive 

observations. Since the model which is used in this thesis is the first order model, the 

lag is one, i.e. p=1. At the same time, the transition parameters, γitj, is written as 

γitj=αt*Citj , where Citj is a vector of subset of covariates. By this specification, the 

transition parameter is allowed to differ by subject-specific covariates and also by 

responses and time (Ilk, 2004). 

 

The third level is Random Effects Model, which models the correlation among the j 

responses at each time, conditional on the covariates and the previous responses. 

This method is generally used when inferences are to be made about individuals. The 

random effects model for a binary data is illustrated in equation (2.1.3): 

 

      Logit P(Yitj=1| yi,t-1,j ; ...; yi,t-p,j ; Xitj ; bit) = ∆*
itj+ λjbit  .                (2.1.3) 

 

Here, ∆*
itj is the intercept and bit is the random effects coefficient specific to subject i 

at time t. It is assumed that bit ~ N(0, σt
2). The parameter λj is related to the 

correlations between responses at a given time. If λj=1 for all j, then equal correlation 
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among responses is assumed, conditional on the previous time responses. For 

identifiability, λ1 is taken as 1. 

 

These three levels of the model are connected to each other through the following 

two equations.  

 

P(Y itj  =1 | Xitj ) = ∑
− jtiy ,1,

 P(Y itj =1|y jti ,1, − ,X itj ) P(Y jti ,1, − ) which can be rewritten as 
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and 

 

P(Y itj  =1 |y jti ,1, − ,X itj )= ∫ P(Y itj =1|y jti ,1, − ,X itj ,b it  )dF(b it )  which can be rewritten as 
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where φ  corresponds to standard normal density. To approximate the 1-dimensional 

integral above, Gauss–Hermite quadrature is used and to solve the equations 

Newton–Raphson methods are used (Ilk, 2005). 

 
There is no history data available for the initial time point. Therefore, the second 

level of the model which regresses on the responses at the previous time can not be 

used. The specified simpler model for t=1 is as below in equations (2.1.6) and 

(2.1.7): 

 

                    LogitP(Y ji1 =1 | Xi1j)=X ji1  *β   ,                                                     (2.1.6) 

                   LogitP(Y ji1 =1| X ji1 ,b 1i )= ∆ *
ji1 + j

*λ  b 1i   ,                                    (2.1.7) 

 

where b 1i ~ N(0, 2
1σ ), and 1

*λ =1. Note that, different marginal covariate 

parameters, *β , are used in these equations instead of the original model 

parameters, β . In longitudinal data, more variability is expected at baseline, and 
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marginal covariate effects are usually different from the effects at the other time 

points (Ilk and Daniels, 2007). 

 
The details about the estimation methods are given in Section 2.3 and details about 

the model, such as likelihood function and the computational algorithm, can be found 

in Ilk (2004) and Ilk (2005).  
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2.2 DATA GENERATION PROCESS 

 

This chapter aims at describing the data used in this study. To begin with, for the 

simulation study, it is assumed that the satisfaction of the customers who withdraw 

their salary from a particular bank is investigated. This assumption satisfies this 

study become more realistic and interesting. Suppose the binary and bivariate 

responses are to be, Y1, the satisfaction of the customers from employees/staff of the 

bank (satisfaction=1, no satisfaction=0); and Y2, the satisfaction of the customers 

from the substructure of the bank (like internet service, ATM, phone service) 

(satisfaction=1, no satisfaction=0). The covariates that are thought to be related to 

these responses, together with their descriptions are illustrated in Table 2.2.1. 

Moreover, it is assumed that the data are collected from individuals at four different 

time points, and that, it is collected for every six months. These time points are 

required to be equally spacing, because the second level of the model is an 

autoregressive model.  

 

Note that, some variables such as X3 and X10 are time dependent; whereas variables 

such as X1 are time independent. The variable X2, age, takes the same value for the 

first and the second time. Age at the third and fourth time is calculated by adding one 

to the age at the first time point.   

 

Besides that, for this simulation study, X1, X4, X5, X6, X8, X9 and X11 are 

generated from binomial distributions with different p values. These p values are 

chosen depending on the assumed occurrence proportions. For example, the p value 

is chosen to be 0.5 for the “X1=gender of the customer”. This means that the 

assumption is to have approximately equal number of male and female customers in 

our study. However, it is decided to choose 0.3 for “X8= Do the customers use other 

services like phone and internet (yes=1, no=0)”, which means that the expectation is 

to observe more customers to answer “no”. On the other hand, X2 is generated from 

normal distribution with minimum value 18; X3 from normal distribution with mean 

one and standard deviation 12; X7 from a normal distribution conditional on X3. 
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Similarly, X10 is generated from normal distribution with mean 95 and standard 

deviation 35. In addition, some restrictions are put during generation, because of 

several reasons: The age of the customers and average age of employees are expected 

to be greater than or equal to 18; the average waiting time and average procedure 

number to be nonnegative; the number of the active account number to be a 

nonnegative integer. Moreover, positive relationship between X3 and X7, and no 

change in X1 over the years are expected. Additionally, the interaction effects of 

X8*X2 and X8*X9 are added to the model. 200 observations are made at each four 

time periods. The R codes of the generation of the covariates for the first time point 

is shown in Appendix A. An example code for the covariates which are time 

dependent is also shown in Appendix A.  

 

 

Table 2.2.1  Description of the Variables 

 

X1 Gender of the customer (male=0, female=1) 

X2 Age of the customer  

X3 Average waiting time during the last six months (time to wait for the 

transition to be accomplished on phone or on branch/minute) 

X4 The transition done in bank (credit card) (yes=1, no=0) 

X5 The transition done in bank (investment procedure) (yes=1, no=0) 

X6 The procedure which is done in bank (billing procedure) (yes=1, no=0) 

X7 Average age of the employees/staff 

X8 Do the customers use other services like phone or internet (yes=1, no=0) 

X9 During the procedure  

-the customer have a problem related to the bank or employee=0 

-the transition is done accurately=1 

X10 Average number of transition done on the branch in a day 

X11 Number of active accounts for the customer  

X12 Response type (=1 for the satisfaction from the employees/staff, =0 for the 

satisfaction from the substructure of the bank) 
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On the other hand, dependent variables Yi1j and Yitj are generated from Bernoulli 

distribution. The probability functions of the dependent variables are seen in the 

equations (2.2.1) and (2.2.2). 

 

 P(Y ji1 =1) = 
)exp(1

)exp(

1
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for i=1, ... ,200; j=1,2; t=2,3,4.  

 

Here, the parameter *∆ itj , is the intercept term.  In the simulation of dependent 

variables, the parameters on the first and second levels of our model are taken into 

account. Therefore, it is provided that the responses of consecutive time points being 

dependent. Moreover, it is considered that b it = tσ z i , where zi ~ N(0,1) and the 

standard deviation is taken into consideration in simulation. The detailed information 

about the parameters is illustrated in Section 2.4.   

 

The data generation process is repeated for 20 times, and each of them constitutes 

one sample. The model fit is done for all of these 20 samples. Before fitting the 

model, summary statistics such as the serial correlations between responses at 

consecutive time points and correlations between different response types at a fixed 

time points are checked for all 20 samples to verify that the simulated data sets are 

realistic. These serial correlation values are shown in Table 2.2.2 and Table 2.2.3. 

Here, Yitj denotes the jth response type on the ith individual at the time point t. For 

instance, Cor(Yi1j,Yi2j) column provides the correlation coefficients between 

responses at the first and the second time points. Note that, temporal correlations in 

the simulated data range between 0.016 and 0.305. Larger correlations ranging 

between 0.404 and 0.740 due to multiple responses are observed. In general, these 

values are expected to be nonnegative and moderate in size; and this is what is 

achieved by obtaining nonnegative and moderate values.  
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As it is known, many digits in the variables should be used in calculations in order to 

prevent round off errors. Assuming it will be enough, simulated data is rounded to 

three digits. Besides, standardized values of covariates are used, because the 

variables have substantially different magnitudes ranging from 1 to 1000 units. With 

the help of this standardization, it is possible to compare the variables with each 

other without the issue of unit difference. This step is also beneficial for 

computational issues. The estimation procedure requires the calculation of 

exponential functions of linear combinations of covariates. When covariates take 

large values, use of raw data may lead to overflow problems. Standardization of 

covariates enables us to overcome such problems.   

 

 

Table2.2.2 Correlations between Responses at Consecutive Time Points  

 

 Cor(Yi1j,Yi2j) Cor(Yi2j,Yi3j) Cor(Yi3j,Yi4j) 
sample1 0.140 0.075 0.067 
sample2 0.171 0.147 0.185 
sample3 0.107 0.204 0.305 
sample4 0.113 0.181 0.195 
sample5 0.050 0.133 0.278 
sample6 0.084 0.225 0.190 
sample7 0.078 0.225 0.247 
sample8 0.155 0.186 0.135 
sample9 0.039 0.217 0.107 
sample10 0.085 0.152 0.212 
sample11 0.140 0.242 0.211 
sample12 0.216 0.202 0.173 
sample13 0.151 0.211 0.141 
sample14 0.116 0.194 0.187 
sample15 0.076 0.141 0.205 
sample16 0.052 0.169 0.163 
sample17 0.167 0.247 0.166 
sample18 0.098 0.186 0.243 
sample19 0.107 0.179 0.217 
sample20 0.016 0.173 0.202 
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Table2.2.3 Correlations between Different Response Types at a Fixed Time 

Point 
 

  Cor(Yi11,Yi12) Cor(Yi21,Yi22) Cor(Yi31,Yi32) Cor(Yi41,Yi42) 
sample1 0.579 0.531 0.555 0.481 
sample2 0.625 0.569 0.526 0.526 
sample3 0.649 0.514 0.584 0.529 
sample4 0.729 0.553 0.483 0.477 
sample5 0.631 0.552 0.461 0.430 
sample6 0.558 0.530 0.509 0.524 
sample7 0.620 0.509 0.433 0.503 
sample8 0.740 0.478 0.435 0.509 
sample9 0.721 0.509 0.428 0.486 
sample10 0.640 0.472 0.485 0.466 
sample11 0.665 0.520 0.539 0.416 
sample12 0.680 0.449 0.450 0.452 
sample13 0.610 0.435 0.434 0.475 
sample14 0.724 0.510 0.491 0.470 
sample15 0.690 0.558 0.517 0.457 
sample16 0.665 0.471 0.506 0.483 
sample17 0.648 0.503 0.516 0.448 
sample18 0.650 0.533 0.515 0.404 
sample19 0.652 0.576 0.441 0.420 
sample20 0.721 0.511 0.516 0.476 
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2.3 ESTIMATION USING MCMC METHOD 

 

In this section the basic information about priors, Markov Chain Monte Carlo 

Method (MCMC), Bayesian Statistics, Gibbs Sampling and Newton-Raphson 

Method are provided. 

 

The prior distributions for the parameters β, β* and α are specified from multivariate 

normal distributions with means of zero and large variances, σ2
βI, σ

2
β*I and σ2

αI, 

respectively. In this thesis, all these variances are taken to be 100. Note that, β values 

are assumed to be independent with each other and this is a realistic assumption. This 

is going to be seen from the scatter plots in the results section. Moreover, the prior 

distributions for the parameters λ and λ* are specified from normal distributions with 

mean one and variance two. This means that, the parameters centered at the value 

one corresponding to equal correlation among the responses at a given time. The 

variance of two reflects the weakness of the correlation among the j responses; 

however, the results are not very sensitive to the specification of the variance. The 

prior distributions for parameters σ2
t are proportional to 1/(1+σ2

t)
2 , which is the 

indication of positive probability at σ2
t = 0, no multivariate dependence, and is on a 

similar scale to λj. 

 

Estimation is handled by MCMC methods (Brooks, 1998). The MCMC methods 

could handle complex problems, such as allowing inference from a multi-level model 

like MTREM. MCMC methods are a class of algorithms for sampling from 

probability distributions based on constructing a Markov chain that has the desired 

distribution as its equilibrium distribution. The state of the chain after a large number 

of steps is then used as a sample from the desired distribution. The quality of the 

sample improves as a function of the number of steps. 

 

In this thesis, performing the integration of the parameters in equation (2.1.5) has 

some difficulties, and simpler method is used in such a complex situation to make the 

analysis feasible. Monte Carlo integration using MCMC is a solution to solve this 
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complex problem. To explain the method, let think x as a vector of random variables, 

with distribution denoted by Π(x). Now, the goal is to obtain the expectation  

E[f(x)]= 
∫

∫
Π

  )(Π

dxx

dxx

)(

 f(x)
 .                (2.3.1) 

With MCMC method the distribution of x have to be known. The denominator of the 

equation 2.3.1 can be unknown. The fundamental part of the MCMC methodology is 

that the problem can be reduced to find integrals. Monte Carlo integration estimates 

the integral in equation (2.3.1) by obtaining samples xt , t=1, 2, …, n from the 

distribution Π(x). Here, the important point is that, the samples are not independent. 

That does not limit MCMC methods’ use in finding integrals using approximations 

(Martinez and Martinez, 2002). 

With Hybrid Markov Chain in Gibbs Sampling, the first derivatives of full 

conditionals are calculated without integrating out bit in likelihood, unlike in classical 

approach. Gibbs Sampling is an algorithm to generate samples from the joint 

probability distributions of two or more random variables. The purpose is to 

approximate the joint distribution, or to compute an integral such as an expected 

value. Gibbs sampling is a special case of the Metropolis-Hastings algorithm, and 

thus an example of a MCMC algorithm.  

 

Gibbs sampling is applicable when the joint distribution is not known explicitly, but 

the conditional distribution of each parameter is known. The goal of the Gibbs 

sampling algorithm is to generate a value from the distribution of each parameter in 

turn, conditional on the current values of the other parameters (Gelman, 1996).  

 

Hybrid Monte Carlo (HMC) tries to avoid random walk behavior by introducing a 

vector and implementing Hamiltonian dynamics where the potential function is the 

target density. Some samples are discarded after sampling. The end result of Hybrid 

MCMC is that moves across the sample space are in larger steps and are therefore 

less correlated and converge to the target distribution more rapidly.  
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To find a root of a complicated function algebraically is usually difficult. Using some 

basic concepts of calculus and Newton-Raphson method, it can be easier to evaluate 

the roots of complicated functions numerically. In numerical analysis, Newton's 

method is perhaps the best known method for finding successively better 

approximations to the roots of a real-valued function. With this iterative process it is 

approximated to one root, considering the function, its derivative, and an initial x-

value. In this thesis, Newton's method is used to solve the equations 2.1.4 and 2.1.5. 

Newton's method can often converge quickly, especially if the iteration begins 

sufficiently near the desired root. Just how near sufficiently near needs to be, and just 

how remarkably quickly can be, depends on the problem.  
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2.4 SIMULATION STUDY 
 

For data generation and checking the results, R is used, which is a language similar 

to S. R provides a wide variety of statistical and graphical techniques, and is highly 

extensible. It is available as Free Software which can be downloaded from the web 

page http://www.r-project.org. The readers who are interested in the R codes which 

are studied on, can have a look at Appendices A, B and C. On the other hand, for 

model fit, Fortran is used, which is a programming language especially suited for 

numeric computation and scientific computing. Fortran codes are available upon 

request.  

 

It is known that in general, the number of cases, N, should be at least six to ten times 

bigger than the number of independent variables (Neter et al., 1996). In the model we 

have 15 variables, including the intercept and interactions. The number of 

observations, 200, is selected so that the general rule that is mentioned above is 

satisfied. Measurements are assumed to be taken at four time points.  After the 

simulation of data, MCMC methods are applied to obtain the posterior distribution of 

the parameters. Chain is run for 5100 iterations; the first 100 iterations are thought as 

burn-in period and discarded. This is done because, although the simulation reaches 

to the approximate convergence eventually, the early iterations are influenced by 

starting values (Gelman et al., 2004). It is suggested that the size of burn-in period 

should be between 1% and 2% of iteration number (Martinez and Martinez, 2002).  

The use of Hybrid Markov Chain facilitates the convergence. Therefore, 100 

iterations of burn-in period are satisfactory. The number of the burn-in period can 

also be decided by starting from different points and then drawing the trace plots on 

the same graph. When plotted lines first match with each other, this point can be 

taken as the end of the burn-in period. This means that, in the case of using different 

starting values, after some iteration the chain rapidly finds its way.  Starting values 

have no effect on the chain if the model is true. As an example, the trace plot of the 

parameter beta0 using different starting values can be seen in Figure 2.4.1. Three 

different starting values 1.680, 1.880 and 2.680 are used for the parameter beta0 for 
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which the true value is 0.68. Note that, although starting values for these three chains 

are quite different from each other, they take values very close to 0.68 even at 

iteration one. This quick convergence is due to the use of Hybrid Markov Chain. 

After 100 iterations the three lines are inseparable. Therefore, the first 100 iteration is 

decided to be used as burn-in period.  

 

Figure 2.4.1 The Convergence Plot of the Parameter beta0 with Three Different 

Starting Values 

 

On the first level of the model, 30 parameters, β and β*’s, are estimated for this 

particular data set. On the second level, three α’s are estimated and 200*3*2=1200 ∆ 

intercepts (one for each 200 individuals, 3 time points, and 2 response types) are 

calculated. On the third level, 200*4=800 random effects coefficients are estimated 
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together with the calculation of 200*4*2=1600 intercepts (∆*). Each of these 

intercepts correspond to one of the n=200 individuals at time t (t=1,2,3,4) for the jth 

response type (j=1,2). Note that, smaller number of intercept terms is calculated for 

the second level of the model compared to the third level. That is because the second 

level is not applicable for the first time point. These calculations are repeated for 

5100 iterations. Therefore, the process is quite computationally intensive and takes a 

long time. 

 

In this thesis, the simulation study is made under two different conditions. In the first 

one, the three levels of the models are fitted to the data with 15 variables, which 

constitutes our full model. In the second condition, two variables which have 

important effects on the model are removed from the model. These two variables are 

the ones whose coefficient have the highest true value for the main model 

(beta11=0.832, beta12=1). The results are compared under these two conditions in 

terms of parameter estimations for all the levels of the model. These results are 

shown in Chapter 3.    

 

To interpret the MCMC outputs, both visual and exact tests were applied using the 

Bayesian Output Analysis (BOA). BOA is a program running under R/S-PLUS for 

carrying out convergence diagnostics and for statistical and graphical analysis of 

Monte Carlo sampling output. Autocorrelation, Density, Running Mean and Trace 

graphs helped us visually for checking convergence. On the other hand, Heidelberger 

and Welch Test (1983) as well as Raftery and Lewis Test (1992b) helped us on the 

convergence checking with the exact results.  

 

The Heidelberger and Welch convergence diagnostic is appropriate for the analysis 

of individual chains. If there is evidence of non-stationarity, the test is repeated after 

discarding the first 10% of the iterations. This process continues until the resulting 

chain passes the test or more than 50% of the iterations have been discarded. BOA 

reports the number of iterations that were kept, the number of iterations that were 

discarded. Failure of the chain to pass this test indicates that a longer run of the 

MCMC sampler is needed in order to achieve convergence (Smith, 2003). 
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The Raftery and Lewis convergence diagnostic is also appropriate for the analysis of 

individual chains. This diagnostic test for convergence to the stationary distribution 

and estimates the run-lengths needed to accurately estimate quartiles of functions of 

the parameters. The user may specify the quartile of interest, the desired degree of 

accuracy in estimating this quartile, and the probability of attaining the indicated 

degree of accuracy. BOA computes the “lower bound” – the number of iterations 

needed to estimate the specified quartile to the desired accuracy using independent 

samples. If sufficient MCMC iterations are available, BOA lists the lower bound, the 

total number of iterations needed for each parameter, the number of initial iterations 

to discard as the burn-in set. The dependence factor measures the multiplicative 

increase in the number of iterations needed to reach convergence due to within-chain 

correlation. Dependence factors greater than 5.0 often indicate convergence failure 

and a need to reparameterize the model (Raftery and Lewis, 1992a). The detailed 

information about these tests is available in Cowles and Carlin (1996, pp.885-890). 

The code for BOA can be seen in Appendix D. 
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CHAPTER 3 

 

RESULTS 

 

 

The simulation results can be seen in Table 3.1. In this table, true parameter values, 

the mean values, bias and Mean Square Error (MSE) values of the parameters are 

shown. Here, betas0, betas1, ..., betas14, lambda2s, log.sigma2.1 are the parameters 

which are used for the first time point of the model. The parameter alpha2.1 connects 

the data at the second time point to the first time point. The other parameters are used 

for the other three time points of the data.  

 

As can be seen from Table 3.1, the mean values of the parameters obtained from the 

full model are very close to the true values. This result shows us that the estimation 

technique used (MCMC) performs well in terms of estimation. After discarding two 

parameters from the model the new mean values are obtained. As expected, the mean 

values which are observed with the full model are closer to the true values compared 

with the mean values obtained by the reduced model. The bias, that is the difference 

between the true parameter and obtained mean value, is usually bigger for the 

misspecified model. 

 

Together with the mean values, MSE values are also calculated. These values are the 

aspect of the good-fitting model, a kind of proof. In the calculation of MSE values, 

differences of all 20 sample mean values of all parameters to the actual values are 

used. The formula for calculating MSE is shown in equation (3.1). In the formula, 

kθ  represents the sample mean of parameter k which is sampled from the posterior 

distribution with 5100 iterations. However, in the calculation of MSE values, the first 

100 iterations are discarded as well as in the calculation of the mean values of the 

parameters. 
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                                                          20 

                                MSE=  Σ ( kθ - θtrue)
2/20                                 (3.1) 

                                                          k=1 
 

Generally small MSE values are observed. There are some bigger values among the 

MSE values, e.g. lambda2 and lambda2s under full model. For other parameters, 

MSE values are in general smaller for the full model than the misspecified one as it 

is expected.  

 

In Table 3.1, the parameters of the three levels of the model are illustrated. The 

parameters betas0, betas1, …, betas14 and , beta0, beta1, …, beta14 are the 

parameters that are used in the first level of the model; alpha2.1, alpha3.1, alpha4.1 

are the parameters that are used in the second level; and lambda2, lambda2s, 

log.sigma2.1, …, log.sigma2.4 are the parameters that are used in the third level of 

the model. As stated earlier, the first level of the model observes the changes in 

subgroups; the second level of the model observes the change in observations 

compared to previous time observations; and the third level of the model observes 

individual changes.  

 

According to the values that are introduced in Table 3.1, there is not much change in 

MSE values for the parameters in the first level between the full model and the 

misspecified model. Nevertheless, the parameters in the second level of the model, 

alpha2.1, alpha3.1, and alpha4.1, have increase in the MSE values in the case of 

misspecification. The parameters in the second level of the model are more sensitive 

to misspecification compared to the parameters in the first level of the model. 

Another finding is that, the third level of the model is more sensitive to the 

misspecification than the first and the second levels of the model. As can be seen in 

Table 3.1, the close mean values are obtained with full model for parameters of the 

third level of model, such as log.sigma2.1, log.sigma2.2, log.sigma2.3 and 

log.sigma2.4.  However, after misspecification, negative mean values are observed 

for the positive true values for these parameters, which mean very different values 

are obtained. Also, the MSE values for these parameters increase very much with the 

misspecification. Therefore, the interpretations about the individuals are more 

sensitive to the model misspecification.  
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It is important to note that smaller differences are seen between full and misspecified 

models in parameters related to first time point (betas0, …, betas14, alpha2.1, 

lambda2s, log.sigma2.1) compared to the parameters related to the later time points. 

This situation is because of the parameters’ effect that is discarded. The discarded 

parameter, betas12, has no effect on the model. The true value of this parameter is 

‘0’ as seen in Table 3.1. Therefore, not much change is observed in MSE values of 

full model and reduced model.  This result is even more fascinating considering 

smaller number of observations is used for estimating parameters at the first time 

point. This implies that, unless the number of parameters ignored is severe, the 

misspecification on the first level does not have a crucial impact on estimation 

procedure.  
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Table 3.1 Comparison of Estimated Values with the True Values 

(Mean Values and MSE Values) 
 

                             
5000 iter true values 

Mean         
(for full 
model) 

 
Bias 
(for full 
model) 

 
MSE         
(for full 
model) 

Mean        
(for 
reduced 
model) 

Bias 
(for 
reduced 
model) 

MSE        
(for 
reduced 
model) 

alpha2.1 0.74 0.746 -0.006 0.152 0.460 0.28 0.176 

alpha3.1 1.03 1.161 -0.131 0.115 1.508 -0.478 0.314 

alpha4.1 1.14 1.065 0.075 0.130 1.517 -0.377 0.248 

beta0 0.68 0.817 -0.137 0.024 0.611 0.069 0.008 

beta1 0.0505 0.079 -0.0285 0.022 0.032 0.0185 0.007 

beta2 -0.627 -0.610 -0.017 0.043 -0.495 -0.132 0.027 

beta3 -0.805 -0.738 -0.067 0.163 -0.652 -0.153 0.033 

beta4 0.572 0.627 -0.055 0.018 0.452 0.12 0.018 

beta5 0.789 0.775 0.014 0.147 0.660 0.129 0.029 

beta6 0.351 0.353 -0.002 0.006 0.257 0.094 0.012 

beta7 -0.495 -0.529 0.034 0.028 -0.402 -0.093 0.019 

beta8 0.535 0.524 0.011 0.141 0.465 0.07 0.080 

beta9 0.632 0.626 0.006 0.119 0.521 0.111 0.019 

beta10 0.387 0.437 -0.05 0.009 0.325 0.062 0.010 

beta11 0.832 0.868 -0.036 0.013    

beta12 1 1.005 -0.005 0.030    

beta13 -0.675 -0.716 0.041 0.083 -0.550 -0.125 0.080 

beta14 0.478 0.461 0.017 0.036 0.363 0.115 0.040 

betas0 0.041 0.117 -0.076 0.015 0.097 -0.056 0.008 

betas1 -0.0765 0.001 -0.0775 0.064 -0.038 -0.0385 0.026 

betas2 -0.83 -0.769 -0.061 0.204 -0.769 -0.061 0.048 

betas3 -0.58 -0.593 0.013 0.163 -0.596 0.016 0.063 

betas4 0.83 0.714 0.116 0.176 0.757 0.073 0.025 

betas5 0.799 0.788 0.011 0.143 0.763 0.036 0.033 

betas6 0.38 0.352 0.028 0.040 0.319 0.061 0.030 

betas7 -0.093 0.028 -0.121 0.053 0.003 -0.096 0.043 

betas8 0.637 0.603 0.034 0.772 0.752 -0.115 0.568 

betas9 0.74 0.740 0 0.156 0.685 0.055 0.039 

betas10 0.215 0.261 -0.046 0.045 0.208 0.007 0.021 

betas11 0.872 1.004 -0.132 0.079    

betas12 0 -0.055 0.055 0.017    

betas13 -0.675 -0.773 0.098 0.702 -0.800 0.125 0.550 

betas14 0.455 0.549 -0.094 0.086 0.483 -0.028 0.083 

lambda2 1.22 2.306 -1.086 1.193 1.479 -0.259 0.122 

lambda2s 1.07 2.082 -1.012 1.025 2.026 -0.956 1.038 

log.sigma2.1 1.474 1.314 0.16 0.147 1.734 -0.26 0.259 

log.sigma2.2 1.386 0.843 0.543 0.505 -0.507 1.893 3.836 

log.sigma2.3 1.209 0.216 0.993 1.110 -0.399 1.608 2.752 

log.sigma2.4 0.889 0.427 0.462 0.351 -0.276 1.165 1.573 
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Figures 3.1 and 3.2 are the scatter plots that show the correlations between some of 

the parameters in the full model and the misspecified model respectively. These 

graphs illustrate that the correlations between the parameters are low. It is a good 

result, since it provides the computational time to be small. These low correlations 

are satisfied by the standardization of the covariates.  
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Figure 3.1  Scatter Plots of Some Parameters for a Randomly Chosen Sample 
with Full Model After Burn-in Period is Discarded 
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Figure 3.2  Scatter Plots of Some Parameters for a Randomly Chosen Sample 
After Burn-in Period is Discarded in the Case of Model Misspecification 
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In the autocorrelation graphs in Figures 3.3 and 3.4 for most parameters, there are no 

significant lags. For some parameters, such as ‘lambda2’, ‘lambda2s’ and 

‘log.sigma2.2’, there seems to be large autocorrelations. Here, the important point is 

that, every fifth iterations are taken into account during all analysis. If wider lag 

intervals are taken, the decrease of autocorrelation can be observed more 

significantly. However, to avoid the loss of more information, this is not applied. 

Also, when the autocorrelation graphs of the full model and the misspecified model 

are compared, it is obvious that, there seems to be larger correlations with the 

misspecified model.  

 
Figure 3.3  Autocorrelation Graph for a Randomly Chosen Sample with Full 

Model After Burn-in Period is Discarded 
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Figure 3.4  Autocorrelation Graph for a Randomly Chosen Sample After Burn-
in Period is Discarded in the case of Model Misspecification 

 
 
 

Starting values different from the actual values are used for parameters in the 

simulation. The aim is to see whether the convergence is provided in such a situation. 

If the model is true, the starting values do not affect the convergence. A rapid chain 

quickly finds its way even from extreme starting values (Geman and Geman, 1984). 

The convergence is satisfied in following iterations. It is obvious from Figure 3.5 

that, approximately after the first 100 iterations, the values converge to the true 
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values. However, by omitting two parameters and obtaining the misspecified model, 

convergence to the actual values is slower. The convergence is better for the full 

model. For instance, in Figure 3.5, the parameter ‘log.sigma2.2’ converges to the true 

value 1.39. Better convergence is obtained for the parameter ‘log.sigma2.2’ 

compared to the graph in Figure 3.6.  

 

 

Figure 3.5  Running Mean Graph for a Randomly Chosen Sample with Full 
Model After Burn-in Period is Discarded 
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Figure 3.6  Running Mean Graph for a Randomly Chosen Sample After Burn-
in Period is Discarded in the Case of Model Misspecification 

 
 
Besides, the trace graph, which is shown in Figure 3.7, is quite stable. That means 

there is good convergence. For instance, in the trace graph of variable ‘alpha2.1’, the 

plotted values fluctuate around the actual value, 0.74 (true values are shown in Table 

3.1). The same thing is valid for the other parameters. However, when the graphs in 

Figure 3.7 (the full model) are compared with the graphs in Figure 3.8 (the 

misspecified model), the convergence seems to be better in the full model. As it is 

expected, better convergence and results are obtained with the full model.   
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 Figure 3.7  Trace Graph for a Randomly Chosen Sample with Full 
Model After Burn-in Period is Discarded 
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Figure 3.8  Trace Graph for a Randomly Chosen Sample  After Burn-in Period 
is Discarded in the Case of Model Misspecification 

 

 

The Heidelberger & Welch Test and Raftery & Lewis Test results for the full model 

and misspecified model can be seen in the Table 3.2 and Table 3.3. As it can be seen 

from these tables, all parameters pass the stationarity test and all iterations are kept in 

the analysis. Note that, since only one out of every five iterations is saved to avoid 

autocorrelation between iterations, 1000 iterations in this table correspond to the 

previously mentioned 5000 iterations. In addition, reasonable numbers are obtained 
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for the Raftery & Lewis Test for both full and misspecified model. As stated earlier, 

obtaining smaller values than five is a requirement for Raftery & Lewis Test.   

 
Table 3.2 Convergence Test Results for the Full Model 

 

 
Heidelberger and Welch Test 

Raftery and Lewis 
Convergence Diagnostic 

parameters StationarityTest Keep Discard Dependence Factor 

alpha2.1 Passed 1000 0 1.184 

alpha3.1 Passed 1000 0 1.184 

alpha4.1 Passed 1000 0 1.079 

beta0 Passed 1000 0 1.184 

beta1 Passed 1000 0 1.079 

beta2 Passed 1000 0 1.079 

beta3 Passed 1000 0 1.079 

beta4 Passed 1000 0 1.000 

beta5 Passed 1000 0 1.184 

beta6 Passed 1000 0 1.000 

beta7 Passed 1000 0 1.079 

beta8 Passed 1000 0 2.789 

beta9 Passed 1000 0 1.079 

beta10 Passed 1000 0 1.079 

beta11 Passed 1000 0 1.184 

beta12 Passed 1000 0 1.079 

beta13 Passed 1000 0 3.053 

beta14 Passed 1000 0 1.000 

betas0 Passed 1000 0 1.079 

betas1 Passed 1000 0 1.079 

betas2 Passed 1000 0 1.079 

betas3 Passed 1000 0 1.079 

betas4 Passed 1000 0 1.184 

betas5 Passed 1000 0 1.000 

betas6 Passed 1000 0 1.079 

betas7 Passed 1000 0 1.000 

betas8 Passed 1000 0 1.421 

betas9 Passed 1000 0 1.184 

betas10 Passed 1000 0 1.184 

betas11 Passed 1000 0 1.079 

betas12 Passed 1000 0 1.079 

betas13 Passed 1000 0 4.158 

betas14 Passed 1000 0 1.079 

lambda2 Passed 1000 0 2.474 

lambda2s Passed 1000 0 3.237 

log.sigma2.1 Passed 1000 0 2.579 

log.sigma2.2 Passed 1000 0 3.895 

log.sigma2.3 Passed 1000 0 3.263 

log.sigma2.4 Passed 1000 0 3.421 
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Table 3.3 Convergence Test Results for the Misspecified Model 
 

 
Heidelberger and Welch Test 

Raftery and Lewis 
Convergence Diagnostic 

parameters StationarityTest Keep Discard Dependence Factor 

alpha2.1 Passed 1000 0 1.184 

alpha3.1 Passed 1000 0 1.184 

alpha4.1 Passed 1000 0 1.079 

beta0 Passed 1000 0 1.158 

beta1 Passed 1000 0 1.000 

beta2 Passed 1000 0 1.079 

beta3 Passed 1000 0 1.184 

beta4 Passed 1000 0 1.079 

beta5 Passed 1000 0 1.184 

beta6 Passed 1000 0 1.184 

beta7 Passed 1000 0 1.079 

beta8 Passed 1000 0 3.421 

beta9 Passed 1000 0 1.079 

beta10 Passed 1000 0 1.079 

beta11     

beta12     

beta13 Passed 1000 0 1.289 

beta14 Passed 1000 0 1.079 

betas0 Passed 1000 0 1.079 

betas1 Passed 1000 0 1.184 

betas2 Passed 1000 0 1.184 

betas3 Passed 1000 0 1.289 

betas4 Passed 1000 0 1.079 

betas5 Passed 1000 0 1.079 

betas6 Passed 1000 0 1.079 

betas7 Passed 1000 0 1.289 

betas8 Passed 1000 0 1.184 

betas9 Passed 1000 0 1.211 

betas10 Passed 1000 0 1.079 

betas11     

betas12     

betas13 Passed 1000 0 3.316 

betas14 Passed 1000 0 1.184 

lambda2 Passed 1000 0 2.684 

lambda2s Passed 1000 0 4.211 

log.sigma2.1 Passed 1000 0 2.684 

log.sigma2.2 Passed 1000 0 4.895 

log.sigma2.3 Passed 1000 0 3.553 

log.sigma2.4 Passed 1000 0 1.421 

 
 
The average computation time over 20 samples for model fit with 15 variables is 

28899.636 seconds, which is approximately 8.03 hours. This time is 26555.619 

seconds, which is 7.38 hours, for the samples with 13 variables (misspecified model). 
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      CHAPTER 4 

 

CONCLUSION 

 
 
  
In this thesis a simulation study is held with the aim of assessing the sensitivity of the 

estimation procedure against model misspecification via a simulation study. The 

simulation study is done to model the response, satisfaction of the customers who 

withdraw their salary from a particular bank. To model the data, the three level 

Marginalized Transition Random Effects Model introduced by Ilk and Daniels 

(2007) is used. The estimation and convergence with full model and reduced model 

is investigated. The differences between true parameter values and estimated ones 

are observed with the full and misspecified model.  

 

Exploratory and confirmatory analyses are held with the help of Bayesian Output 

Analysis. Autocorrelation graphs are used to see the correlation of the parameters on 

different iterations. In this study, there is not such a correlation problem. On the other 

hand, running mean and trace graphs are used to decide about convergence. The 

convergence is satisfied as seen in these graphs and also in the convergence tests 

(Heidelberger & Welch Test and also Raftery & Lewis Test).  

 

The parameters which are used in the first level of the model have better 

convergence than the parameters which are used in the other levels of the model in 

both of the simulation studies. Again, as expected, the better convergence is obtained 

with the full model. The calculated mean values of the parameters are very close to 

the actual values in the full model case. On the other hand, in the misspecified 

model, these values go away from the actual values.  

 

The smaller MSE values are obtained with full model, especially for some 

parameters rather than the misspecified model. Also, the parameters of the second 

level of the model are more sensitive to the misspecification than the parameters of 
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the first level of the model. The changes in MSE values with misspecification are 

much more in the parameters of the second level of the model. The parameters of the 

third level of the model are more sensitive to the misspecification than the other 

levels of the model.  

 

We should emphasize that model misspecification is not a preferred situation in the 

analysis of the data. However, since in real life the true model is unknown, in most 

situations it is not possible to attain it. The misspecification in the first level slightly 

affects the results of first and second level of the model. On the other hand, if it is 

crucial to measure the individual differences it is suggested to be extra careful about 

possible misspecification.   

 

The expected convergence is satisfied even in the case of using different starting 

values from actual parameter values. With this simulation trick, the truth of the 

computational algorithm is ensured. The starting values converge to the actual values 

in the further paths of the simulation. 

 

To run the simulation study, considerably much time is spent. Time factor is 

important in choosing the number of simulation repetitions. More repetitions or more 

observation number in each sample satisfies more realistic results. Therefore, 

increasing the number of repetition or the number of observation can be attempted. 

Also, the iteration number in each sample can be increased to have more realistic 

results.   

 

Some limitations are used for the covariates, in their numbers or in their 

distributions. These limitations can also be changed in future studies or the time 

period can also be changed. For instance, the data can be calculated for more times 

than it is done in this thesis. Besides, observing the changes in the results according 

to the pattern in missing cases, that is, sensitivity analysis, can be investigated in 

future studies.  
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APPENDIX A 
 

R CODES FOR GENERATION OF COVARIATES 

 

 
x0<-rep(1,400)  
 
x1<-rep(rbinom(200,1,0.5),2)  #to generate 200 numbers from binomial distribution  
                                                   with equal  probability(0.5) 
 
#to generate 200 numbers from uniform distribution 
d=0 
u1=runif(220) 
u2=runif(220) 
y=-log(u1+d) 
epart=exp(-(y-1)^2/2+(d-1)^2/2) 
z=NULL 
z=ifelse(u2<=epart,y,NA) 
x2.na= 18+z*12    #to obtain the values with mean 18 and standard deviation 12 
x2=x2.na[!is.na(x2.na)] 
x2=x2[1:200] 
x2<-ifelse(x2<18,18,x2)  #to omit the values which are less than 18 
x2<-round(x2,0) 
x2<-rep(x2,2) 
 
d=0 
set.seed(1233)  #seed number satisfies generating the same number in each time 
u1=runif(220) 
set.seed(1233) 
u2=runif(220) 
y=-log(u1+d) 
epart=exp(-(y-1)^2/2+(d-1)^2/2) 
z=NULL 
z=ifelse(u2<=epart,y,NA) 
x3.na=1+z*12   #to obtain the values with mean 1 and standard deviation 12 
x3=x3.na[!is.na(x3.na)] 
x3=x3[1:200] 
x3<-ifelse(x3<0,1,x3)   #to omit the values which are less than 0 
x3<-rep(x3,2) 
 
x4<- rep(rbinom(200,1,0.6),2)   #to generate 200 numbers from binomial distribution   
                                                     with  probabilities 0.6 and 0.4 
x5<-rep(rbinom(200,1,0.4),2) 
x6<-rep(rbinom(200,1,0.6),2) 
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set.seed(1233) 
x7=rnorm(200,35+0.5*(sqrt(36)/sqrt(var(x3)))*(x3-mean(x3)),sqrt(36*(1-0.5^2))) 
x7<-ifelse(x7<18,18,x7) 
x7=rep(x7,2) 
 
x8<-rep(rbinom(200,1,0.3),2) 
x9<-rep(rbinom(200,1,0.7),2) 
 
d=0 
u1=runif(220) 
u2=runif(220) 
y=-log(u1+d) 
epart=exp(-(y-1)^2/2+(d-1)^2/2) 
z=NULL 
z=ifelse(u2<=epart,y,NA) 
x10.na= 95+z*35 
x10=x10.na[!is.na(x10.na)] 
x10=x10[1:200] 
x10<-rep(x10,2) 
 
x11<-rbinom(200,3,0.5) 
x11<-ifelse(x11==0,1,x11) 
x11<-rep(x11,2) 
 
x12<-c(rep(0,200),rep(1,200)) 
 
xc<-cbind(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x2*x8,x8*x9) #introduce the           
                                                                                                                  matrix 
xst<-xc 
for(i in 2:dim(xc)[2]){xst[,i]<-(xc[,i]-mean(xc[,i]))/sqrt(var(xc[,i]))} #to standardize  
                                                                                                                the data 
write.table(round(xst,3),"F:/tez/generate x/sample1/sim-x-t1.txt",sep="\t",  
row.names=F, col.names=F)        
 
#to generate X3 values for time 2 
d=0 
set.seed(124)  #the seed is changed for obtaining different values than in time 1 
u1=runif(220) 
set.seed(124) 
u2=runif(220) 
y=-log(u1+d) 
epart=exp(-(y-1)^2/2+(d-1)^2/2) 
z=NULL 
z=ifelse(u2<=epart,y,NA) 
x3t2.na= 1+z*12  #to obtain the values with mean 1 and standard deviation 12 
x3t2=x3t2.na[!is.na(x3t2.na)]  
x3t2=x3t2[1:200] 
x3t2<-ifelse(x3t2<0,1,x3t2)  #to omit the values which are less than 0 
x3t2<-rep(x3t2,2) 
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APPENDIX B 

 

R CODES FOR CALCULATING SERIAL CORRELATIONS 

 

  
# location of data 
setwd("C:/Documents and Settings/Administrator/Desktop/tez/sample1") 
 
# to introduce the columns of the matrix 
y=matrix(scan("y"),ncol=1) 
i<-rep(rep(1:200,2),4) 
t<-c(rep(1,400),rep(2,400),rep(3,400),rep(4,400)) 
j<-rep(c(rep(1,200),rep(2,200)),4) 
yc<-cbind(i,t,j,y) 
 
# calculation of correlation between responses at different time points 
cor(yc[yc[,2]==2,4],yc[yc[,2]==1,4],method=”spearman”) 
cor(yc[yc[,2]==3,4],yc[yc[,2]==2,4],method=”spearman”) 
cor(yc[yc[,2]==4,4],yc[yc[,2]==3,4],method=”spearman”) 
  
# calculation of correlation between different response types at a fixed time point 
cor(yc[yc[,2]==1&yc[,3]==1,4],yc[yc[,2]==1&yc[,3]==2,4],method="spearman") 
cor(yc[yc[,2]==2&yc[,3]==1,4],yc[yc[,2]==2&yc[,3]==2,4],method="spearman") 
cor(yc[yc[,2]==3&yc[,3]==1,4],yc[yc[,2]==3&yc[,3]==2,4],method="spearman") 
cor(yc[yc[,2]==4&yc[,3]==1,4],yc[yc[,2]==4&yc[,3]==2,4],method="spearman") 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 43 

 
 

APPENDIX C 

 
R CODES FOR CALCULATING ACCEPTANCE 

PROBABILITIES 
 
 
# location of data 
setwd("C:/Documents and Settings/Administrator/Desktop/tez/sample1") 
 
b<-matrix(scan("bp1j2.out"),ncol=26,byrow=TRUE) 
b<-b[-c(1:20),] 
 
sum(b[,2]>b[,3])/nrow(b)   #acceptance probability of random effect term in the     
                                              3.level of the model at time 1 
sum(b[,10]>b[,11])/nrow(b)  #acceptance probability of random effect term in the  
                                                 3.level of the  model at times 2,3 and 4. 
 
rest2<-matrix(scan("tp1j2.out"),ncol=54,byrow=TRUE) 
rest2<-rest2[-c(1:20),] 
 
sum(rest2[,2]>rest2[,3])/nrow(rest2)       #acceptance probability of beta 
sum(rest2[,19]>rest2[,20])/nrow(rest2)   #acceptance probability of betas 
sum(rest2[,36]>rest2[,37])/nrow(rest2)   #acceptance probability of alpha 
sum(rest2[,45]>rest2[,46])/nrow(rest2)   #acceptance probability of lambda 
sum(rest2[,48]>rest2[,49])/nrow(rest2)   #acceptance probability of lambdas 
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APPENDIX D 
 

BOA CODES 

 
 
#the location of the data 
setwd("C:/Documents and Settings/Administrator/Desktop/tez/sample1")  
 
#to read the files and required columns of the files 
b<-matrix(scan("bp1j2.out"),ncol=26,byrow=TRUE)  #to read random effects                            
                                                                                         coefficients   
b<-b[-c(1:20),]   #to discard the first 20*5=100 iterations as burn-in 
rest2<-matrix(scan("tp1j2.out"),ncol=54,byrow=TRUE)   #to read the coefficients  
                                                                                              for other  parameters 
rest2<-rest2[-c(1:20),] 
 
#to omit the columns that that is only used for calculating acceptance probabilities  
rest2<-rest2[,-c(2:3,19,20,36,37,45,46,48,49,51:54)] 
colnames(rest2)<c("iter","b1","b2","b3","b4","b5","b6","b7","b8","b9","b10","b11",
"b12","b13","b14","b15","bs1","bs2","bs3","bs4","bs5","bs6","bs7","bs8","bs9","bs1
0","bs11","bs12","bs13","bs14","bs15","alpha2;1","alpha3;1","alpha4;1","log.sigma
2.1","log.sigma2.2","log.sigma2.3","log.sigma2.4","lambda2","lambda2s") 
write.table(rest2,"tp1j2.txt",sep="\t",row.names=F) 
 
install.packages("boa")    # only on the first time to install the package automatically  
library(boa)                      #to attach the necessary library 
boa.menu() 
1 # to choose File 
3 # to import data 
7 # options 
1 #  to set working directory 
C:/Documents and Settings/Administrator/Desktop/tez/sample1 
4 # flat ASCII file 
tp1j2 
1 # back 
1 # back 
 
#### graphics 
4 # plot 
3 # descriptive 
3 # autocorrelations 
4 # density 
5 # running mean 
6  # trace 
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#### confirmatory analysis 
3 # analysis 
3 # descriptive 
6 # Summary statistics (gives the mean, SD, CI, and median values)  
1 # back 
5 # options 
7 # accuracy 
0.05 
4 # convergence 
4 # geweke (there is evidence against convergence when p-value is less than 0.05) 
5 # Heidelberger and welch (if the stationary test fails, chain needs to be run longer            
   # for convergence purposes. If the halfwidth test fails, chain might be run longer to       
      increase the accuracy in estimating posterior estimate) 
6 # Raftery and lewis (dependence factor greater than 5 implies convergence     
      problem) 
 
### if the menu unexpectedly terminates, type: 
boa.menu(recover = TRUE) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


