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ABSTRACT

SOLUTIONS OF THE EQUATIONS OF CHANGE BY
THE AVERAGING TECHNIQUE

DALGIÇ, Meriç

M.S., Department of Chemical Engineering

Supervisor: Prof. Dr. ·Ismail TOSUN

May 2008, 77 pages

Area averaging is one of the techniques used to solve problems encountered in

the transport of momentum, heat, and mass. The application of this technique

simpli…es the mathematical solution of the problem. However, it necessitates

expressing the local value of the dependent variable and/or its derivative(s)

on the system boundaries in terms of the averaged variable. In this study,

these expressions are obtained by the two -point Hermite expansion and this

approximate method is applied to some speci…c problems, such as, unsteady ‡ow

in a concentric annulus, unequal cooling of a long slab, unsteady conduction in a

cylindrical rod with internal heat generation, di¤usion of a solute into a slab from

limited volume of a well-mixed solution, convective mass transport between two

parallel plates with a wall reaction, convective mass transport in a cylindrical

tube with a wall reaction, and unsteady conduction in a two -layer composite

slab. Comparison of the analytical and approximate solutions is shown to be

in good agreement for a wide range of dimensionless parameters characterizing

each system.

Keywords: Transport phenomena, area averaging, two -point Hermite expansion.
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ÖZ

HAL DE¼G·IŞ·IM DENKLEMLER·IN·IN ORTALAMA YÖNTEM·I
·ILE ÇÖZÜMÜ

DALGIÇ, Meriç

Yüksek Lisans, Kimya Mühendisli¼gi Bölümü

Tez Yöneticisi: Prof. Dr. ·Ismail TOSUN

May¬s 2008, 77 sayfa

Momentum, ¬s¬ ve madde taş¬n¬mlar¬nda kaŗs¬laş¬lan problemlerin çözümünde

kullan¬lan tekniklerden biri alan ortalamas¬d¬r. Bu yöntemin uygulanmas¬ prob-

lemin matematiksel çözümünü kolaylaşt¬r¬r. Ancak bu durumda, ba¼g¬ml¬ de¼gi̧ske-

nin ve/veya türevinin s¬n¬r de¼gerlerinin ortalamas¬ al¬nan de¼gi̧sken cinsinden

ifadesi gerekir. Söz konusu s¬n¬r de¼gerleri, iki noktal¬ Hermite aç¬l¬m¬ ile elde

edilmi̧s ve taş¬n¬m olaylar¬yla ilgili problemlerin yaklaş¬k yöntemle çözümü sis-

tematik olarak gösterilmi̧stir. Bu çal¬̧smada ele al¬nan problemler şunlard¬r:

eşmerkezli iki boru aras¬nda yat¬̧sk¬n olmayan ak¬̧s, uzun bir levhan¬n asimetrik

olarak so¼gutulmas¬, içsel ¬s¬ üretimli silindirik bir çubukta yat¬̧sk¬n olmayan ¬s¬

iletimi, bir kap içerisindeki s¬v¬dan uzun bir levhaya difüzyon; iki geni̧s levha

aras¬nda konveksiyon ile madde taş¬n¬m¬, silindirik bir boruda konveksiyon ile

madde taş¬n¬m¬; iki tabakal¬ kompozit bir levhada yat¬̧s¬k olmayan ¬s¬ iletimi.

Analitik ve yakla̧s¬k çözümler, sistemi karakterize eden boyutsuz parametreler

cinsinden kaŗs¬laşt¬r¬lm¬̧s ve sonuçlar¬n uyumlu oldu¼gu gözlenmi̧stir.

Anahtar Kelimeler: Taş¬n¬m olaylar¬, alan ortalamas¬, iki noktal¬ Hermite aç¬l¬m¬.
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CHAPTER 1

INTRODUCTION

Relationship between the volumetric ‡ow rate and the pressure drop, as well as

the amount of heat and/or mass transferred from one phase to another across

the phase interface, are of great importance in transport phenomena. For this

purpose, it is necessary to solve the equations of change at the microscopic level

to determine velocity, temperature, and concentration pro…les as a function of

position and time. Since these equations appear as partial di¤erential equations

most of the time, the solutions usually require tedious and complex analytical

and/or numerical techniques.

In experimental studies, in general, the average values of velocity, temperature,

and concentration are measured rather than the local values. Once the theo-

retical distributions of velocity, temperature, and concentration are obtained, it

is necessary to get their average values by integrating these distributions either

over the area or the volume of the system to compare the experimental results

with the theoretical ones. The practical question to be asked at this stage is

"Is it possible to get these average values from the governing equations with

appropriate initial and boundary conditions without solving them?"

Integration of the equations of change over the area (or volume) of the system

reduces the order of the governing di¤erential equation. However, the resulting

simpli…ed equation not only contains the average value of the dependent variable,

but also the local value of the dependent variable and/or its gradient(s), both

evaluated on the system boundaries. To proceed further, local values of the

dependent variable and their gradients must be related to the average values.

This task can be accomplished by the use of the Hermite polynomials.

The aim of this study is to develop a systematic procedure for the applica-

tion of the averaging technique by employing the two -point Hermite expansion

to di¤erent problems. These cases are unsteady ‡ow in a concentric annulus,

1



unequal cooling of a long slab, unsteady conduction in a cylindrical rod with

internal heat generation, di¤usion of a solute into a slab from limited volume

of a well-mixed solution, convective mass transport between two parallel plates

with a wall reaction, convective mass transport in a cylindrical tube with a wall

reaction, and unsteady conduction in a two-layer composite slab. The exact

and approximate results are compared for various values of the dimensionless

parameter(s) characterizing each system.
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CHAPTER 2

TWO-POINT HERMITE EXPANSION

Mennig et al. [1] used two -point Hermite interpolation formula in order to solve

linear initial and boundary value problems. They derived Hermite expansion in

two di¤erent forms. The …rst one is in integro-di¤erential form represented by

Z 



 ()  =
X

=0

 ( ) (¡ )+1
 ()



¯̄
¯̄
=

+

X

=0

 ( ) (¡ 1) (¡ )+1
 ()



¯̄
¯̄
=

(2.1)

which expresses the integral
R 

 ()  as a linear combination of  (), (), and

their derivatives. The second formula is in purely di¤erential form represented

by

 ()j= ¡  ()j= =
X

=0

 ( ) (¡ )+1
+1 ()

+1

¯̄
¯̄
=

+

X

=0

 ( ) (¡ 1) (¡ )+1
+1 ()

+1

¯̄
¯̄
=

(2.2)

The coe¢cients  ( ) appear in Eqs. (21) and (22) are called Hermite

coe¢cients and some values of  ( ) given by Mennig et al. [1] are listed in

Table 2.1.

Using the coe¢cients  ( ), approximate expressions representing

 =
1

¡ 

Z 



()  (2.3)

can be obtained by combining Eqs. (21) and (22). The results are given in

Tables 22¡ 25.
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Table 2.1. List of Hermite coe¢cients [1].

  0 ( ) 1 () 2 ( ) 3 ( ) 4 ( )

0 0 12

0 1 13

0 2 14

0 3 15

0 4 16

1 0 23 16

1 1 24 112

1 2 25 120

1 3 26 130

1 4 27 142

2 0 34 312 124

2 1 35 320 160

2 2 36 330 1120

2 3 37 342 1210

2 4 38 356 1336

3 0 45 620 460 1120

3 1 46 630 4120 1360

3 2 47 642 4210 1840

3 3 48 656 4336 11680

3 4 49 672 4504 11024

4 0 56 1030 10120 5360 1720

4 1 57 1042 10210 5840 12520

4 2 58 1056 10336 51680 16720

4 3 59 1072 10504 53024 115120

4 4 510 1090 10720 55040 130240
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Table 2.2. Two -point Hermite expansions for  = 0 and  = 0.

 =
1

2

£
()j= + ()j=

¤
(A)

 = ()j= +
(¡ )

4

µ




¯̄
¯̄
=

+




¯̄
¯̄
=

¶
(B)

 = ()j= ¡ (¡ )

4

µ




¯̄
¯̄
=

+




¯̄
¯̄
=

¶
(C)

Table 2.3. Two -point Hermite expansions for  = 1 and  = 0.

 =
2

3
()j= +

1

3
 ()j= +

(¡ )

6





¯̄
¯̄
=

(A)

 =
5

12
 ()j= +

7

12
 ()j= ¡ (¡ )

12





¯̄
¯̄
=

¡ (¡ )2

24

2

2

¯̄
¯̄
=

(B)

 = ()j= +
7(¡ )

18





¯̄
¯̄
=

+
(¡ )

9





¯̄
¯̄
=

+
(¡ )2

18

2

2

¯̄
¯̄
=

(C)

 = ()j= ¡ 5(¡ )

18





¯̄
¯̄
=

¡ 2(¡ )

9





¯̄
¯̄
=

¡ (¡ )2

9

2

2

¯̄
¯̄
=

(D)

Table 2.4. Two -point Hermite expansions for  = 0 and  = 1.

 =
1

3
()j= +

2

3
 ()j= ¡ (¡ )

6





¯̄
¯̄
=

(A)

 =
7

12
()j= +

5

12
()j= +

(¡ )

12





¯̄
¯̄
=

¡ (¡ )2

24

2

2

¯̄
¯̄
=

(B)

 = ()j= +
2(¡ )

9





¯̄
¯̄
=

+
5(¡ )

18





¯̄
¯̄
=

¡ (¡ )2

9

2

2

¯̄
¯̄
=

(C)

 = ()j= ¡ (¡ )

9





¯̄
¯̄
=

¡ 7(¡ )

18





¯̄
¯̄
=

+
(¡ )2

18

2

2

¯̄
¯̄
=

(D)
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Table 2.5. Two -point Hermite expansions for  = 1 and  = 1.

 =
1

2
()j= +

1

2
()j= +

(¡ )

12





¯̄
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=

¡ (¡ )

12





¯̄
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=

(A)

 =
1
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+
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µ
2

2

¯̄
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=

¡ 2

2

¯̄
¯̄
=

¶
(B)
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2

3
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1

3
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+
(¡ )2
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µ
2

2
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=
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2
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+
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+
(¡ )2

24
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2
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=

+
(¡ )2

24

µ
2

2

¯̄
¯̄
=

¡ 2

2

¯̄
¯̄
=

¶
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Table 2.6. Combination of  = 1,  = 0 and  = 0,  = 1 Hermite expansions

 ()j= = 2 ¡ ()j= ¡ (¡ )

6





¯̄
¯̄
=

+
(¡ )

6





¯̄
¯̄
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(A)

 ()j= = 2 ¡ ()j= ¡ (¡ )

6
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=

+
(¡ )
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¯̄
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¯̄
=

=
12

(¡ )
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¯̄
=
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¯̄
¯̄
=

= ¡ 12

(¡ )
 +

6

(¡ )
()j= +

6

(¡ )
 ()j= +





¯̄
¯̄
=

(D)
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Table 2.6 contains the equations derived from the combination of  = 1,  = 0

and  = 0,  = 1 Hermite expansions. These equations are employed in most

of the problems analyzed in this study.

Özy¬lmaz [2] applied Hermite expansion in area averaging technique to di¤erent

engineering problems. He used single Hermite expansion that gave the necessary

relationship between the local quantity and the average quantity. In the present

case, depending on the problem, combination of more than one Hermite expan-

sion is used. This makes it possible to use higher degree Hermite expansion

which increases the accuracy of the averaging technique.
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CHAPTER 3

APPLICATIONS

In this section, application of the area averaging technique and Hermite

expansion to various problems encountered in transport phenomena is presented.

The problems analyzed for this purpose are unsteady ‡ow in a concentric annu-

lus, unequal cooling of a long slab, unsteady conduction in a cylindrical rod with

internal heat generation, di¤usion of a solute into a slab from limited volume

of a well-mixed solution, convective mass transport between two parallel plates

with a wall reaction, convective mass transport in a cylindrical tube with a wall

reaction, and unsteady conduction in a two-layer composite slab. The analytical

solutions of these problems are also provided. The analytical and approximate

solutions are compared for various dimensionless parameters characterizing each

problem.

3.1. Unsteady Flow in a Concentric Annulus

A concentric annulus with inner and outer radii of  and  respectively, is

…lled with a stationary incompressible Newtonian ‡uid as shown in Figure 3.1.

At time  = 0, a constant pressure gradient is imposed and the ‡uid inside the

annulus starts to ‡ow. It is required to determine the volumetric ‡ow rate as a

function of time.

 

 
R 

r 

z 

κR 

Figure 3.1. Unsteady ‡ow of a Newtonian ‡uid in a concentric annulus.
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Postulating  =  = 0 and  =  ( )  the -component of the equation of

motion takes the form





=
P ¡ P


+








µ




¶
(3.1.1)

where P is the modi…ed pressure de…ned by

P =  ¡  (3.1.2)

The initial and boundary conditions associated with Eq. (311) are

at  = 0  = 0 (3.1.3)

at  =   = 0 (3.1.4)

at  =   = 0 (3.1.5)

Introduction of the following dimensionless variables

 =


(P ¡ P)2
4

 =



 =



2
(3.1.6)

reduces Eqs. (311) and (313)¡ (315) to the form




= 4 +

1







µ





¶
(3.1.7)

at  = 0  = 0 (3.1.8)

at  =   = 0 (3.1.9)

at  = 1  = 0 (3.1.10)

3.1.1. Analytical Solution

Since Eq. (317) is nonhomogeneous, the solution is proposed in the form

 (  ) = 1 ()¡  (  ) (3.1.11)
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so that Eq. (317) is split into two di¤erential equations: 1 () and  ( )

being the steady-state and transient solutions, respectively. The governing

equation and the boundary conditions for 1 () are

0 = 4 +
1







µ

1


¶
(3.1.12)

at  =  1 = 0 (3.1.13)

at  = 1 1 = 0 (3.1.14)

The solution of Eq. (3.1.12) is

1 () = 1¡ 2 ¡ 1¡ 2

ln 
ln  (3.1.15)

On the other hand, the governing equation for the transient contribution is given

by



=
1







µ




¶
(3.1.16)

with the following initial and boundary conditions

at  = 0  = 1 (3.1.17)

at  =   = 0 (3.1.18)

at  = 1  = 0 (3.1.19)

The solution of Eq. (3.1.16) is given by

 = 8

1X

=1

1

3
exp

¡
¡2

¢ 
¡


¢

1 () + 1
¡


¢ (3.1.20)

where the eigenvalues, , are the roots of

 () () =  ()  () (3.1.21)

and  () is de…ned by

 () =


¡


¢
 ()¡ 

¡


¢
 ()

 ()  ()
(3.1.22)
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The …rst ten eigenvalues for various values of radius ratio,  are given in

Table 3.1.

The complete solution is obtained by the substitution of Eqs. (3.1.15) and

(3.1.20) into Eq. (3.1.11). The result is [3]

 (  ) = 1¡2¡1¡ 2

ln
ln ¡8

1X

=1

1

3
exp

¡
¡2

¢  ()

1 () + 1 ()
(3.1.23)

The average velocity is de…ned by

hi =

Z 



  

Z 



 

(3.1.24)

In terms of the dimensionless quantities, Eq. (3124) takes the form

hi = hi
(P ¡ P)2

4

=
2

1¡ 2

Z 1



   (3.1.25)

Multiplication of the average velocity with the cross-sectional area,  (1¡ 2)2

gives the volumetric ‡ow rate. Thus, the dimensionless volumetric ‡ow rate, £

is given by

£ = hi
¡
1¡ 2

¢
= 2

Z 1



   (3.1.26)

where

£ =
Q

4 (P ¡ P) 4
(3.1.27)

Substitution of Eq. (3123) into Eq. (3126) and integration give

£ =
1

2

"
1¡ 4 +

(1¡ 2)
2

ln

#
¡ 16

1X

=1

1

4

·
 ()¡  ()

 () +  ()

¸
exp

¡
¡2

¢

(3.1.28)
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Table 3.1. The roots of Eq. (3121) for di¤erent values of 



 01 02 03 04 05 06 07 08

1 3314 3816 4412 5183 6246 7828 10455 15698

2 6858 7786 8933 10443 12547 15695 20936 31411

3 10377 11732 13434 15688 18836 23553 31410 47121

4 13886 15670 17929 20929 25123 31409 41884 62829

5 17390 19604 22422 26168 31408 39265 52357 78538

6 20889 23536 26913 31406 37706 47119 62829 94246

7 24387 27467 31403 36643 43977 54974 73301 109954

8 27883 31396 35892 41881 50961 62829 83774 125662

9 31378 35326 40382 47117 56544 70683 94246 141371

10 34872 39254 44871 52354 62828 78537 104718 157079
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3.1.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.1.7) over the cross-sectional

‡ow area, i.e., multiplying Eq. (317) by   and integrating from  =  to

 = 1. The result is

Z 1






  = 4

Z 1



  +

Z 1







µ





¶
 (3.1.29)

or,




Z 1



   = 2
¡
1¡ 2

¢
+





¯̄
¯̄
=1

¡ 




¯̄
¯̄
=

(3.1.30)

Substitution of Eq. (3125) into the left-hand side of Eq. (3130) gives

µ
1¡ 2

2

¶
 hi


= 2
¡
1¡ 2

¢
+





¯̄
¯̄
=1

¡ 




¯̄
¯̄
=

(3.1.31)

To proceed further, it is necessary to express j=1 and j= in terms

of the dimensionless average velocity, hi. Hermite expansion for  = 1  = 0,

Eq. (A) in Table 2.3, gives

1

1¡ 

Z 1



  =

µ
1 + 

2

¶
hi = 2

3
()= +

1

3
()=1 +

µ
1¡ 

6

¶
 ()



¯̄
¯̄
=

(3.1.32)

On the other hand, Hermite expansion for  = 0  = 1, Eq. (A) in Table 2.4,

yields

1

1¡ 

Z 1



  =

µ
1 + 

2

¶
hi = 1

3
()=+

2

3
()=1 ¡

µ
1¡ 

6

¶
 ()



¯̄
¯̄
=1

(3.1.33)

Substitution of the boundary conditions de…ned by Eqs. (319) and (3110)

into Eqs. (3132) and (3133) results in





¯̄
¯̄
=

=
3 (1 + )

(1¡ )
hi (3.1.34)





¯̄
¯̄
=1

= ¡ 3 (1 + )

1¡ 
hi (3.1.35)
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The use of Eqs. (3134) and (3135) in Eq. (3131) gives

 hi


+
12

(1¡ )2
hi = 4 (3.1.36)

The initial condition associated with Eq. (3.1.36) is

at  = 0 hi = 0 (3.1.37)

The solution of Eq. (3136) gives the average dimensionless velocity as

hi = (1¡ )2

3

½
1¡ exp

·
¡ 12

(1¡ )2

¸¾
(3.1.38)

Therefore, the dimensionless volumetric ‡ow rate becomes

£ =
(1¡ 2) (1¡ )2

3

½
1¡ exp

·
¡ 12 

(1¡ )2

¸¾
(3.1.39)

3.1.3. Comparison of Results

A comparison of the analytical solution, Eq. (3128), with the approximate

one, Eq. (3139), is presented in Figures 3.2 and 3.3 as a function of radius

ratio,  Numerical values are given in Tables A1¡A4 in Appendix A. In

the calculation of dimensionless volumetric ‡ow rate using Eq. (3.1.28), the

…rst two terms of the series solution are su¢cient for convergence of £ when

 ¸ 004. For smaller  values, the third term of the series must also be taken

into consideration.

The exact and approximate values almost coincide with each other when

 ¸ 05 When   05 and  · 04, approximate results overestimate the

exact ones with the largest deviation of about 13%.

The system reaches steady-state when  ! 1. Under these conditions, Eqs.

(3.1.28) and (3.1.39) reduce to

£1=
1

2

"
1¡ 4 +

(1¡ 2)
2

ln

#
(3.1.40)

£1=
(1¡ 2) (1¡ )2

3
(3.1.41)
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Exact 

τ

0.00 0.05 0.10 0.15 0.20

Θ

0.00

0.05

0.10
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0.25

0.30

κ=0.1 κ=0.4κ=0.2 κ=0.3

Approximate

Figure 3.2. Comparison of the analytical and approximate results when

01 ·  · 04.

Exact

τ

0.00 0.05 0.10 0.15 0.20

Θ

0.00

0.02

0.04
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0.08

0.10
κ=0.5 κ=0.7 κ=0.8

Approximate

κ=0.6

Figure 3.3. Comparison of the analytical and approximate results when

05 ·  · 08.
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From the values given in Table 3.2, the exact and approximate values of the

dimensionless volumetric ‡ow rate are almost equal to each other when the

radius ratio is greater than 03.

Table 3.2. £1 and £1 values under steady conditions.

 £1 £1

01 0287 0267

02 0213 0205

03 0152 0149

04 0102 0101

05 0063 0063

06 0034 0034

07 0015 0015

08 00048 00048

3.2. Unequal Cooling of a Long Slab

A long slab of thickness  length  , and width  is initially at a uniform

temperature of . At  = 0, while the surface at  = 0 is exposed to ‡uid  at

a temperature of , the surface at  =  is exposed to ‡uid  at a temperature

of  (    ). The average heat transfer coe¢cients between the ‡uids

and the surfaces located at  = 0 and  =  are hi and hi, respectively. The

schematic representation of the system is shown in Figure 3.4. It is required to

determine the variation of average temperature with time as a result of unequal

cooling conditions applied at the surfaces.

 

z 

L 

TB, < hB> TA, < hA > 

Figure 3.4. A long slab cooled by convection.
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When  ¿ 1 and  ¿ 1 the conduction equation takes the form




= 

2

2
(3.2.1)

with the following initial and boundary conditions

at  = 0  =  (3.2.2)

at  = 0 



= hi ( ¡ ) (3.2.3)

at  =  ¡ 



= hi ( ¡ ) (3.2.4)

Introduction of the dimensionless variables

 =
 ¡ 
 ¡ 

 =



 =



2
BiA =

hi


BiB =
hi


 = BiB

µ
 ¡ 
 ¡ 

¶ (3.2.5)

reduces Eqs. (321)¡ (324) to the form




=
2

2
(3.2.6)

at  = 0  = 1 (3.2.7)

at  = 0



= BiA  (3.2.8)

at  = 1 ¡ 


= BiB  +  (3.2.9)

3.2.1. Analytical Solution

Since the boundary condition in Eq. (329) is nonhomogeneous, the dimension-

less temperature distribution is proposed in the form

 (  ) = 1 ()¡  (  ) (3.2.10)

so that Eq. (326) is split into two di¤erential equations: 1 () and  ( )

being the steady-state and transient solutions, respectively.
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The governing equation and the boundary conditions for 1 () are

0 =
21
2

(3.2.11)

at  = 0
1


= BiA 1 (3.2.12)

at  = 1 ¡ 1


= BiB 1 +  (3.2.13)

The solution of Eq. (3.2.11) is

1 () = ¡  (BiA  + 1)

BiB (1 + BiA) + BiA
(3.2.14)

On the other hand, the governing equation for the transient contribution is given

by



=
2

2
(3.2.15)

with the following initial and boundary conditions

at  = 0  = 1 ¡ 1 (3.2.16)

at  = 0



= BiA  (3.2.17)

at  = 1 ¡ 


= BiB  (3.2.18)

The solution of Eq. (3215) by the method of separation of variables is

 =
1X

=1



·
cos () +

BiA


sin ()

¸
exp

¡
¡2

¢
(3.2.19)

where the eigenvalues, , are the roots of

tan =
 (BiA +BiB)

2 ¡BiA BiB
(3.2.20)

The …rst ten eigenvalues for di¤erent Biot numbers are given in Table 3.3.
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Table 3.3. The roots of Eq. (3220) as a function of Biot numbers.

BiA = 10 BiA = 50 BiA = 100

 BiB = 01 BiB = 10 BiB = 10

1 09293 17523 18753

2 34523 42406 45073

3 64532 70417 73549

4 95396 99888 102923

5 126528 130100 132869

6 157771 160716 163189

7 189071 191570 193775

8 220404 222570 224546

9 251757 253667 255445

10 283124 284831 286450

The coe¢cients  are given by

 =
2
¡
Bi2B +

2


¢



£
BiA (cos ¡ 1)¡  sin  + 

¤
(3.2.21)

where

 = BiA +BiB +BiA BiB (3.2.22)

 = BiA BiB  +
¡
BiA+BiB +Bi

2
A +Bi

2
B

¢
2 + 4 (3.2.23)

 =
Bi2A  cos  ¡ sin 

¡
2 BiA +

2
 + BiA

¢

 
(3.2.24)

The use of Eqs. (3.2.14) and (3.2.19) in Eq. (3.2.10) gives the complete solution

as

 = ¡  (BiA  + 1)


¡

1X

=1



·
cos () +

BiA


sin ()

¸
exp

¡
¡2

¢
(3.2.25)

The average temperature, h i, is de…ned by

h i = 1



Z 

0

  (3.2.26)
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In terms of the dimensionless quantities, Eq. (3226) takes the form

hi = h i ¡ 
 ¡ 

=

Z 1

0

  (3.2.27)

Substitution of Eq. (3225) into Eq. (3227) and integration lead to

hi = ¡  (2 + BiA)

2
¡

1X

=1




·
sin  ¡ BiA


(cos ¡ 1)

¸
exp

¡
¡ 2

¢

(3.2.28)

3.2.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (326) in the direction of heat

‡ow, i.e., -direction. For this purpose Eq. (3.2.6) is multiplied with  and

integrated from  = 0 to  = 1 The result is

Z 1

0




 =

Z 1

0

2

2
 (3.2.29)

or,




Z 1

0

  =




¯̄
¯̄
=1

¡ 



¯̄
¯̄
=0

(3.2.30)

Substitution of Eq. (3227) into the left-hand side, and the boundary conditions

de…ned by Eqs. (328) and (329) into the right-hand side of Eq. (3230) give

 hi


= ¡
³
BiB j=1 + BiA j=0 + 

´
(3.2.31)

To proceed further, it is necessary to express j=1 and j=0 in terms of the

average temperature, hi. Hermite expansion for  = 1  = 0, Eq. (A) in

Table 2.3, gives

Z 1

0

  = hi = 2

3
j=0 +

1

3
j=1 +

1

6





¯̄
¯̄
=0

(3.2.32)

On the other hand, Hermite expansion for  = 0,  = 1, Eq. (A) in Table 2.4,

yields Z 1

0

  = hi = 1

3
j=0 +

2

3
j=1 ¡ 1

6





¯̄
¯̄
=1

(3.2.33)
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Substitution of the boundary conditions de…ned by Eqs. (328) and (329) into

Eqs. (3232) and (3233), respectively, and the simultaneous solution of the

resulting equations yield

j=0=
6 (2 + BiB)


hi + 2


(3.2.34)

j=1 =
6 (2 + BiA)


hi ¡  (4 + BiA)


(3.2.35)

where

 = (4 + BiA) (4 + BiB)¡ 4 (3.2.36)

Substitution of Eqs. (3234) and (3235) into Eq. (3231) gives

 hi


+
12


hi = ¡ 6 (2 + BiA)


(3.2.37)

The initial condition associated with Eq. (3237) is

at  = 0 hi = 1 (3.2.38)

Thus, the solution of Eq. (3237) gives the average dimensionless temperature

as

hi = ¡  (2 + BiA)

2
+

·
1 +

 (2 + BiA)

2

¸
exp

µ
¡ 12




¶
(3.2.39)

3.2.3. Comparison of Results

A comparison of the analytical solution, Eq. (3228), with the approximate

one, Eq. (3239), for  = 10 and di¤erent Biot numbers is presented in

Figures 3.5 - 3.7. Numerical values are given in Tables A5 in Appendix A.

The Biot number is the ratio of the heat transfer resistance in the solid phase

to the heat transfer resistance in the ‡uid phase. Thus, when the Biot number

is small, temperature variation within the slab is almost uniform. As the Biot

number increases, temperature distribution within the slab starts to develop.
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BiA=1.0, BiB=0.1, Ω=1.0

τ

0.0 0.5 1.0 1.5 2.0

<θ>

-1.0

-0.5

0.0

0.5

1.0

Exact
Approximate

Figure 3.5. Comparison of the analytical and approximate solutions when

 = 10 BiA = 10, BiB = 01

BiA=5.0, BiB=1.0, Ω=1.0

τ

0.0 0.5 1.0 1.5 2.0

<θ>

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Exact
Approximate

Figure 3.6. Comparison of the analytical and approximate solutions when

 = 10 BiA = 50, BiB = 10
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BiA=10.0, BiB=1.0, Ω=1.0

τ

0.0 0.5 1.0 1.5 2.0

<θ>

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Exact
Approximate

Figure 3.7. Comparison of the analytical and approximate solutions when

 = 10 BiA = 100, BiB = 10

The term  takes into account the di¤erence between the ‡uid temperatures,

 and   In the calculation of average temperature using Eq. (3.2.28), the

…rst three terms of the series solution are taken when   02 When  ¸ 02,

convergence is obtained by considering the …rst two terms.

Approximate results almost coincide with the exact ones for di¤erent values of

the Biot numbers, the largest deviation being approximately 8% when  = 03,

BiA = 100, and BiB = 10. An inspection of Figures 3.5 - 3.7 indicates that the

dimensionless average temperature, hi, becomes negative as  increases. These

negative values result from the de…nition of hi given by

hi = h i ¡ 
 ¡ 

(3.2.40)

Thus, hi takes negative values when h i  . On the other hand, rearrange-

ment of the  term de…ned by Eq. (3.2.5) yields



Bi
=
 ¡ 
 ¡ 

(3.2.41)
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As the temperature di¤erence between the cooling ‡uids A and B increases,

while the numerator of Eq. (3.2.40) becomes more negative, the denominator

decreases. As a result, hi values converges to more negative values. Since the

values BiB in Figures 3.5 and 3.6 are 10 and 1, respectively, hi values in

Figure 3.5 are more negative than the ones in Figure 3.6.

When  ! 1 both Eqs. (3.2.28) and (3.2.39) reduce to

hi1 = ¡  (2 + BiA)

2
(3.2.42)

In other words, the analytical and approximate solutions become identical when

the system reaches steady-state. This limiting condition may be used to check

the consistency of the approximate solution. The dimensionless time needed

to reach steady-state, 1, and the dimensionless average temperature under

steady conditions, hi1  are given in Table 3.4. As the Biot number increases,

the external (‡uid) resistance to heat transfer decreases. As a result, the system

reaches steady conditions in a shorter period of time.

Table 3.4. 1 and hi1 values as a function of Biot numbers.

BiA BiB 1 hi1
10 01 123 ¡ 1250
50 10 29 ¡ 0318
100 10 26 ¡ 0286

3.2.4. Investigation of the Limiting Case for  = 

When the ‡uid temperatures are the same, the term  becomes equal to zero.

In this case, Eq. (3.2.28) reduces to

hi = ¡
1X

=1

¤


·
sin  ¡ BiA


(cos ¡ 1)

¸
exp

¡
¡2

¢
(3.2.43)

where

¤ =
2
¡
Bi2B +

2


¢



£
BiA (cos  ¡ 1)¡  sin

¤
(3.2.44)

24



On the other hand, the approximate solution given by Eq. (3.2.39) reduces to

hi = exp
µ

¡ 12




¶
(3.2.45)

A comparison of the analytical solution, Eq. (3.2.43), with the approximate one,

Eq. (3.2.45), for di¤erent Biot numbers is given in Figures 3.8 and 3.9. The exact

and approximate dimensionless average temperature values almost coincide with

each other for all values of the Biot numbers. In this case, hi cannot take

negative values since cooling ‡uid temperatures on both sides of the slab are

equal to each other. Su [4] also obtained Eq. (3.2.45) using Hermite expansions

for  = 0  = 0 and  = 1  = 1. However, he compared the approximate

results with the ones obtained numerically using the …nite di¤erence method.

τ

0.0 0.5 1.0 1.5 2.0

<θ>

0.0

0.2

0.4

0.6

0.8

1.0

Exact
Approximate

BiA=5.0,  BiB  =1.0

BiA=1.0,  BiB  =0.1

Figure 3.8. Comparison of the analytical and approximate solutions when

 = 0 with BiAand BiB as parameters.
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BiA=10.0,  BiB  =1.0

τ
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Figure 3.9. Comparison of the analytical and approximate solutions when

 = 0 BiA = 100, BiB = 10

3.3. Unsteady Heat Conduction in a Cylindrical Rod with

Internal Heat Generation

A cylindrical rod of radius  and length , shown in Figure 3.10, is initially at

a uniform temperature of . An internal heat generation starts within the rod

at  = 0 with a volumetric rate of

R = R
2 (3.3.1)

where R is a known constant. The outer surface of the rod is exposed to a

cooling ‡uid at a temperature of 1 (1  ) with an average heat transfer

coe¢cient hi. It is required to …nd average temperature within the rod as a

function of time.

When  ¿ 1, -component of the equation of energy takes the form

 b



= 





µ





¶
+R (3.3.2)
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   z 

r 

T∞ ,<h> 

L 

R R 

Figure 3.10. Unsteady conduction in a cylindrical rod with internal heat

generation.

The initial and boundary conditions associated with Eq. (3.3.2) are

at  = 0  =  (3.3.3)

at  = 0



= 0 (3.3.4)

at  =  ¡ 



= hi ( ¡ 1) (3.3.5)

Introduction of the dimensionless variables

 =
 ¡ 1
 ¡ 1

 =



 =



2
Bi =

hi


¤ =

·
R4

 ( ¡ 1)

¸
(3.3.6)

reduces Eqs. (332)¡ (335) to the form




=
1







µ





¶
+ ¤ 2 (3.3.7)

at  = 0  = 1 (3.3.8)

at  = 0



= 0 (3.3.9)

at  = 1 ¡ 


= Bi  (3.3.10)

3.3.1. Analytical Solution

Since Eq. (337) is nonhomogeneous, the solution is proposed in the form

 (  ) = 1 ()¡  (  ) (3.3.11)
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so that Eq. (337) is split into two di¤erential equations: 1 () and  ( )

being the steady-state and transient solutions, respectively. The governing

equation and the boundary conditions for 1 () are

0 =
1







µ

1


¶
+ ¤ 2 (3.3.12)

at  = 0
1


= 0 (3.3.13)

at  = 1 ¡ 1


= Bi 1 (3.3.14)

The solution of Eq. (3.3.12) is

1 =
¤

16

¡
1¡ 4

¢
+

¤

4Bi
(3.3.15)

On the other hand, the governing equation for the transient contribution is given

by



=
1







µ




¶
(3.3.16)

with the following initial and boundary conditions

at  = 0  = 1 ¡ 1 (3.3.17)

at  = 0



= 0 (3.3.18)

at  = 1 ¡


= Bi  (3.3.19)

The solution of Eq. (3316) by employing the method of separation of variables

is [5]

 =
1X

=1

 0 () exp
¡
¡ 2

¢
(3.3.20)

where the eigenvalues,  are the roots of

 1 () = Bi 0 () (3.3.21)

The …rst ten eigenvalues for di¤erent Biot numbers are given in Table 3.5.
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Table 3.5. The roots of Eq. (3321) as a function of Biot number.

 Bi = 01 Bi = 10 Bi = 50

1 04417 12558 19898

2 38577 40795 47131

3 70298 71558 76177

4 101833 102710 106223

5 133312 133984 136786

6 164767 165312 167630

7 196210 196667 198640

8 227645 228040 229754

9 259075 259422 260937

10 290503 290812 292168

The coe¢cients  are given by

 =

2



·
¤

2

µ
1 +

2

Bi
¡ 4

2

¶
¡ 1

¸

Ã
2
Bi2

+ 1

!
1 ()

(3.3.22)

The use of Eqs. (3.3.15) and (3.3.20) in Eq. (3.3.11) gives the complete solution

as

 =
¤

16

¡
1¡ 4

¢
+

¤

4Bi
¡

1X

=1

 0 () exp
¡
¡ 2

¢
(3.3.23)

The average temperature, h i, is de…ned by

h i =

Z 

0

 

Z 

0

 

(3.3.24)

In terms of the dimensionless quantities, Eq. (3324) takes the form

hi = h i ¡ 1
 ¡ 1

=

Z 1

0

 

Z 1

0

 

= 2

Z 1

0

  (3.3.25)
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Substitution of Eq. (3323) into Eq. (3325) and integration lead to

hi =
¤(Bi+6)

24Bi
¡ 2

1X

=1




1 () exp
¡
¡2

¢
(3.3.26)

3.3.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (337) over the cross-sectional

area of cylinder. For this purpose Eq. (3.3.7) is multiplied by   and integrated

from  = 0 to  = 1 The result is

Z 1

0





 =

Z 1

0





µ





¶
 +

Z 1

0

¤3  (3.3.27)

or,




Z 1

0

  =

µ





¶

=1

¡
µ





¶

=0

+
¤

4
(3.3.28)

Substitution of Eq. (3325) into the left-hand side, and the boundary conditions

de…ned by Eqs. (339) and (3310) into the right-hand side of Eq. (3328) give

 hi


= ¡2Bi j=1 +
¤

2
(3.3.29)

To proceed further, it is necessary to express j=1 in terms of the average

temperature, hi. Hermite expansion for  = 1 and = 0, Eq. (B) in Table 2.3,

yields

Z 1

0

  =
1

2
hi = 5

12
()=0 +

7

12
()=1 ¡ 1

12

 ()



¯̄
¯̄
=1

¡ 1

24

2 ()

2

¯̄
¯̄
=0

(3.3.30)

The use of the boundary conditions de…ned by Eqs. (339) and (3310) into

Eq. (3330), and the solution of the resulting equation yield

j=1 =
µ

6

6 + Bi

¶
hi (3.3.31)

Substitution of Eq. (3331) into Eq. (3329) gives

 hi


+

µ
12Bi

6 + Bi

¶
hi = ¤

2
(3.3.32)
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The initial condition associated with Eq. (3332) is

at  = 0 hi = 1 (3.3.33)

Thus, the solution of Eq. (3332) gives the average dimensionless temperature

as

hi =
¤(Bi+6)

24Bi
+

·
(24¡ ¤)Bi¡ 6¤

24Bi

¸
exp

µ
¡ 12Bi

6 + Bi


¶
(3.3.34)

3.3.3. Comparison of Results

A comparison of the analytical solution, Eq. (3326), with the approximate

one, Eq. (3334), for di¤erent Biot numbers and the dimensionless generation

term, ¤ is presented in Figures 3.11 - 3.13. Numerical values are given in Tables

A6¡A8 in Appendix A.

In the calculation of hi using Eq. (3.3.26) the …rst three terms of the series

solution are taken when   008. For the greater values of  , even the …rst two

terms of the series are su¢cient in order to calculate the average temperature.

Even though the rod is exposed to a cooling ‡uid, the average rod temperature

increases with time since the generation term, ¤, dominates the heat loss by

convection in all cases. As the Biot number increases, the external resistance to

heat transfer decreases, i.e., temperature di¤erence between the rod surface and

the cooling ‡uid decreases. In this case, the temperature di¤erence between the

interior and surface temperatures of rod increases with a concomitant increase

in heat loss.

The approximate solution gives satisfactory estimates of the dimensionless

average temperature for relatively small values of Biot number, i.e. Bi = 01

and Bi = 10 The di¤erence between the analytical and approximate solutions

increases as the values of Bi and ¤ increase. The largest deviation is about 18%

when Bi = 50, ¤ = 300, and  = 02.

When  ! 1 both Eqs. (3.3.26) and (3.3.34) reduce to

hi1 =
¤ (Bi+6)

24Bi
(3.3.35)
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In other words, analytical and approximate solutions become identical when the

system reaches steady-state. The dimensionless time needed to reach steady-

state, 1 and the dimensionless average temperature under steady conditions,

hi1  for di¤erent Biot numbers are given in Table 3.6.

Table 3.6. 1 and hi1 values as a function of Biot number.

Bi = 01 Bi = 10 Bi = 50

¤ 50 10 1 100 50 10 300 100 50

hi1 1271 254 25 292 146 29 275 92 46

1 84 76 62 10 9 8 4 35 33

In expressing the physical quantities and/or their derivatives on the system

boundaries in terms of the average values, one can use di¤erent Hermite expan-

sions. For example, Eq. (3.3.34) is obtained by using Hermite expansion for

 = 1  = 0. On the other hand, the use of the Hermite expansion for  = 0

 = 1, Eq. (B) in Table 2.4, leads to

hi =
¤(Bi+3)

12Bi
+

·
(12¡ ¤)Bi¡ 3¤

12Bi

¸
exp

µ
¡ 6Bi

3 + Bi


¶
(3.3.36)

In this case, the steady-state solution is given by

hi1 =
¤ (Bi+3)

12Bi
(3.3.37)

which is di¤erent from Eq. (3.3.35). Obtaining identical expressions for the

analytical and approximate solutions under steady conditions does not neces-

sarily mean that the Hermite expansion used in the approximate solution is the

correct choice; however, the chance of it being correct is fairly high.
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Bi=0.1

τ

0.00 0.05 0.10 0.15 0.20 0.25

<θ>

0

2

4

6

Exact
Approximate

Λ=10.0

Λ=1.0

Λ=50.0

Figure 3.11. Comparison of the analytical and approximate solutions when

Bi = 01 with ¤ as a parameter.

Bi=1.0

τ

0.00 0.05 0.10 0.15 0.20 0.25

<θ>

0

2

4

6

8

10

12

Exact
Approximate

Λ=10.0

Λ=50.0

Λ=100.0

Figure 3.12. Comparison of the analytical and approximate solutions when

Bi = 10 with ¤ as a parameter.
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Bi=5.0

τ

0.00 0.05 0.10 0.15 0.20 0.25

<θ>

0
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Exact
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Λ=100.0

Λ=300.0

Λ=50.0

Figure 3.13. Comparison of the analytical and approximate solutions when

Bi = 50 with ¤ as a parameter.

3.4. Di¤usion of a Solute Into a Long Slab From Limited

Volume of a Well-Mixed Solution

A long slab of thickness 2 is suspended in a well-mixed ‡uid with a limited

volume of  as shown in Figure 3.14. While the slab is initially solute-free, the

solute concentration in the solution is  . It is required to obtain an expression

relating solute uptake of the slab as a function of time.

 

H 

z 

x 

2L 

Figure 3.14. Di¤usion into a long slab from a limite volume.
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Let  and  be the solute concentrations in the slab and the solution, respec-

tively. When  ¿ 1 the governing equations for the slab and the solution

take the form



= D 2

2
slab (3.4.1)

µ
¡D 



¯̄
¯̄
=

¶
2 = 




solution (3.4.2)

where  is the cross-sectional area of the slab. The initial and boundary condi-

tions are

at  = 0  = 0 and  =  (3.4.3)

at  = 0



= 0 (3.4.4)

at  =   = H  (3.4.5)

where H is the partition coe¢cient. Introduction of the following dimensionless

variables

 =


H
 =




 =



 =

D
2

ª =


2H (3.4.6)

reduces Eqs. (341)¡ (345) to the form




=
2

2
slab (3.4.7)

¡ 



¯̄
¯̄
=1

= ª



solution (3.4.8)

at  = 0  = 0 and  = 1 (3.4.9)

at  = 0



= 0 (3.4.10)

at  = 1  =  (3.4.11)

Once the solute concentration within the slab is determined as a function of

position and time, then the solute uptake,  , is determined from

 = 2

Z 

0

  (3.4.12)
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On the other hand, the solute concentration within the slab under steady con-

ditions, 1, can be determined from a simple macroscopic balance as

  =  1 + 2H1 (3.4.13)

or,

1 =

µ
ª

1 + ª

¶
 (3.4.14)

Therefore, the fractional uptake of the solute,  , is given by

 =


1
=

2

Z 

0

 

2H1
=

µ
1 + ª

ª

¶Z 1

0

  (3.4.15)

where 1 is the maximum amount of solute transferred into the slab.

Note that Eq. (3415) is also expressed as

 =

µ
1 + ª

ª

¶
hi (3.4.16)

where hi represents the average dimensionless concentration de…ned by

hi = hi
H

=

Z 1

0

  (3.4.17)

3.4.1. Analytical Solution

The analytical solution is given by Carslaw and Jaeger [6] as

 = 1¡ 2ª (1 + ª)
1X

=1

1

1 + ª + (ª)
2 exp

¡
¡2

¢
(3.4.18)

where the eigenvalues,  are the roots of

tan = ¡ª (3.4.19)

The …rst ten eigenvalues for various values of ª are given in Table 3.7.

36



Table 3.7. The roots of Eq. (3419) as a function of ª

 ª = 500 ª = 100 ª = 10

1 15834 16320 20288

2 47166 47335 49132

3 78565 78667 79787

4 109974 110047 110855

5 141386 141442 142074

6 172799 172845 173364

7 204213 204252 204692

8 235628 235662 236043

9 267043 267073 267409

10 298458 298485 298786

3.4.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (347) in the direction of mass

transfer, i.e., -direction. For this purpose Eq. (3.4.7) is multiplied by  and

integrated from  = 0 to  = 1 The result is

Z 1

0




 =

Z 1

0

2

2
 (3.4.20)

or,




Z 1

0

  =




¯̄
¯̄
=1

¡ 



¯̄
¯̄
=0

(3.4.21)

Substitution of Eq. (3417) into the left-hand side, and the boundary condition

de…ned by Eq. (3410) into the right-hand side of Eq. (3421) give

 hi


=




¯̄
¯̄
=1

(3.4.22)

Combination of Eqs. (348) and (3422) gives

¡  hi


= ª



(3.4.23)
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The solution of Eq. (3423) using the initial condition of

at  = 0 hi = 0 and  = 1 (3.4.24)

leads to

hi = ª(1¡ ) (3.4.25)

To proceed one step further, it is necessary to express j=1 in terms of the

dimensionless average concentration, hi. Hermite expansion for  = 1  = 0,

Eq. (A) in Table 2.3, gives

Z 1

0

  = hi = 2

3
j=0 +

1

3
j=1 +

1

6





¯̄
¯̄
=0

(3.4.26)

On the other hand, Hermite expansion for  = 0  = 1, Eq. (A) in Table 2.4,

yields Z 1

0

  = hi = 1

3
j=0 +

2

3
j=1 ¡ 1

6





¯̄
¯̄
=1

(3.4.27)

Substitution of the boundary conditions de…ned by Eqs. (3410) and (3411)

into Eqs. (3426) and (3427), and the simultaneous solutions of the resulting

equations yield




¯̄
¯̄
=1

= 3 ( ¡ hi) (3.4.28)

Elimination of  between Eqs. (3.4.25) and (3.4.28) results in





¯̄
¯̄
=1

= 3¡ 3
µ
1 + ª

ª

¶
hi (3.4.29)

Therefore, the governing equation is obtained by the substitution of Eq. (3.4.29)

into Eq. (3.4.22) as
 hi


+ 3

µ
1 + ª

ª

¶
hi = 3 (3.4.30)

The solution of Eq. (3.4.30) is

hi = ª

1 + ª

½
1¡ exp

·
¡ 3

µ
1 + ª

ª

¶


¸¾
(3.4.31)
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The use of Eq. (3431) in Eq. (3416) gives the fractional solute uptake as

 = 1¡ exp
·
¡ 3

µ
1 + ª

ª

¶


¸
(3.4.32)

3.4.3. Comparison of Results

A comparison of the analytical solution, Eq. (3418), with the approximate one,

Eq. (3432), is presented in Figures 3.15 and 3.16 for various values of ª.

Numerical values are given in Table A9 in Appendix A.

The term ª represents the ratio of the solution volume to the product of the

slab volume and the partition coe¢cient, H, relating concentrations of species

at the solid-‡uid interface under equilibrium conditions [7]. In the calculation of

 using Eq. (3.4.18), the …rst three terms of the series solution are taken when

  02 For larger values of  , the …rst two terms are su¢cient for convergence.

τ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

F

0.0

0.2

0.4

0.6

0.8

1.0

Ψ=10.0

Exact

Ψ=1.0

Approximate

Figure 3.15. Comparison of the analytical and approximate solutions with ª

as a parameter.
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Ψ=50.0

τ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

F

0.0

0.2

0.4

0.6

0.8

1.0

Exact
Approximate

Figure 3.16. Comparison of the analytical and approximate solutions when

ª = 500.

When ª ¸ 10, the exact and approximate results are almost identical for

 ¸ 03. When  · 03, however, fractional uptake values obtained by the

approximate solution underestimates the analytical ones, the largest deviation

being 27%.

This problem was also analyzed by Özy¬lmaz [2] using the Hermite expansion

for  = 0 and  = 0 approximation. Approximate solution in that case is

 = 1¡ exp
·
¡ 4

µ
1 + ª

ª

¶


¸
(3.4.33)

A comparison of the analytical solution with the two approximate solutions given

by Eqs. (3.4.32) and (3.4.33) for various values of ª is presented in Figures

317¡ 319. The use of  = 0,  = 0 Hermite expansion gives better estimates

of the exact values only for very small values of  , i.e.,  · 02. When   02,

the combination of  = 1,  = 0 and  = 0,  = 1 Hermite expansions improves

the results of the approximate technique in a great extent.
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τ
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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This work
Özyılmaz

Ψ=1.0

Exact

Figure 3.17. Comparison of the analytical and two approximate solutions when

ª = 10.

Ψ=10.0

τ
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Figure 3.18. Comparison of the analytical and two approximate solutions when

ª = 100.
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Ψ=50.0

τ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

F
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0.2
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0.8

1.0

This work
Özyılmaz

Exact

Figure 3.19. Comparison of the analytical and two approximate solutions when

ª = 500.

3.5. Convective Mass Transport with a Wall Reaction

Between Two Parallel Plates

An incompressible Newtonian ‡uid ‡ows between two large parallel plates sepa-

rated by a distance B under the action of a constant pressure gradient as shown

in Figure 3.20. While a …rst-order irreversible chemical reaction takes place at

the upper plate, the lower plate is impermeable to mass transfer of species. The

system is isothermal and it is continuously fed at  = 0 with a dilute solution

of chemical reactant with a uniform concentration . It is required to deter-

mine the bulk concentration of species as a function of the axial direction under

steady conditions.

 

B 

   z 

x 

L 

Figure 3.20. Convective mass transport between two large parallel plates.
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The fully-developed velocity pro…le is given by

 =
(P¡P)

2

2

·



¡

³ 



´2¸
(3.5.1)

where P is the modi…ed pressure de…ned by

P =  +  (3.5.2)

For large values of Peclet number, the conservation of chemical species under

steady conditions takes the form

(P¡P)
2

2

·



¡

³ 


´2¸ 


= D 2

2
(3.5.3)

The boundary conditions associated with Eq. (353) are

at  = 0  =  (3.5.4)

at  = 0



= 0 (3.5.5)

at  =  ¡D 


= 

00
 (3.5.6)

Introduction of the following dimensionless variables

 =



 =




 =

2D 

(P¡P)4
¤ =


00


D (3.5.7)

reduces Eqs. (353)¡ (356) to the form

¡
 ¡ 2

¢ 


=
2

2
(3.5.8)

at  = 0  = 1 (3.5.9)

at  = 0



= 0 (3.5.10)

at  = 1 ¡ 


= ¤  (3.5.11)
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3.5.1. Analytical Solution

The method of separation of variables is employed in order to solve Eq. (358).

The solution is written in product form as

 ( ) =  ()  () (3.5.12)

so that Eq. (358) is split into two ordinary di¤erential equations:




+ 2 = 0 (3.5.13)

and
1

 ¡ 2
2

2
+ 2 = 0 (3.5.14)

The solution of Eq. (3513) is

 () = exp
¡
¡2

¢
(3.5.15)

The use of the following transformations

 =

4
(2 ¡ 1)2 (3.5.16)

 () =
p

exp

µ


2
¡ 
8

¶
(3.5.17)

reduces Eq. (3514) to


2

2
+

µ
3

2
¡

¶



¡

µ
12¡ 
16

¶
 = 0 (3.5.18)

An equation of the type


2

2
+ (¡ )




¡  = 0 (3.5.19)

is known as Kummer’s equation [8]. One of the solutions of Eq. (3.5.19) is given

by

1 =(  ) (3.5.20)
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The term (  ) is the Kummer’s function of the …rst kind de…ned by

(  ) = 1 +



+
()2 2

()2 2!
+ +

() 

() !
+  (3.5.21)

where () and () are Pochhammer symbols expressed as

() = ( + 1)( + 2)( + ¡ 1) with () = 1 (3.5.22)

Another independent solution of Eq. (3.5.19) is given by

2 = 1¡(1 + ¡  2¡  ) (3.5.23)

Therefore, the solution of Eq. (3.5.19) can be expressed as the sum of solutions,

i.e.,

 = ¤1 (  ) + ¤
2 

1¡(1 + ¡  2¡  ) (3.5.24)

where ¤
1 and ¤

2 are constants. Comparison of Eq. (3.5.18) with Eq. (3.5.19)

gives the solution of Eq. (3.5.18) as

 () = ¤
1

µ
12¡ 
16


3

2
 

¶
+

¤2p




µ
4¡ 
16


1

2
 

¶
(3.5.25)

Expressing  in terms of  by using Eq. (3.5.16) reduces Eq. (3.5.24) to the

form

 () = ¤1

"
12¡ 
16


3

2

 (2 ¡ 1)2

4

#
+

¤¤2
2  ¡ 1

"
4¡ 
16


1

2

 (2 ¡ 1)2

4

#

(3.5.26)

where ¤¤
2 is another constant. Finally, substitution of Eq. (3.5.26) into

Eq. (3.5.17) leads to the solution as

 () = exp

·
¡ 
2
( ¡ 1) 

¸(
1 (2 ¡ 1) 

"
12¡ 
16


3

2

 (2 ¡ 1)2

4

#

+2

"
4¡ 
16


1

2

 (2 ¡ 1)2

4

#9
=
; (3.5.27)

45



The use of the boundary condition

at  = 0



= 0 (3.5.28)

gives

 () = 1 exp

·
¡ 
2
( ¡ 1) 

¸(
(2 ¡ 1) 

"
12¡ 
16


3

2

 (2 ¡ 1)2

4

#

+

"
4¡ 
16


1

2

 (2 ¡ 1)2

4

#)
(3.5.29)

where

 =
12 ( ¡ 4) 

³
12¡
16

 3
2


4

´
+ ( ¡ 12) 

³
28¡
16

 5
2


4

´

3

h
4

³
4¡
16

 1
2


4

´
+ ( ¡ 4) 

³
20¡
16

 3
2


4

´i (3.5.30)

On the other hand, the use of the boundary condition

at  = 1 ¡ 


= ¤ (3.5.31)

gives the following transcendental equation for the eigenvalues 

12 ( ¡ 2¤) 
³
4¡
16

 1
2


4

´
+ 12

£
 ¡ 2 (2 + ¤)

¤


³
12¡
16

 3
2


4

´
=

¡ 3 ( ¡ 4) 
³
20¡
16

 3
2


4

´
¡  ( ¡ 12) 

³
28¡
16

 5
2


4

´
(3.5.32)

The …rst ten eigenvalues for various values of ¤ are given in Table 3.8. Thus,

the complete solution is given by

 ( ) =
1X

=1

 () exp
¡
¡2

¢
(3.5.33)

where the coe¢cients  are given as

 =

Z 1

0

 ()
¡
 ¡ 2

¢


Z 1

0

 2 ()
¡
 ¡ 2

¢


(3.5.34)
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Table 3.8. The roots of Eq. (3532) as a function of ¤.

 ¤ = 01 ¤ = 05 ¤ = 10

1 076055 15886 20837

2 91261 93925 96706

3 171960 173740 175723

4 252269 253650 255244

5 332448 333602 334952

6 412567 413568 414751

7 492653 493544 494604

8 572718 573525 574489

9 652770 653510 654398

10 732812 733497 734323

The bulk concentration, , is de…ned by

 =

Z 

0

Z 

0

 

Z 

0

Z 

0

 

(3.5.35)

where  is the width of the plate. In terms of the dimensionless quantities,

Eq. (3535) takes the form

 =


=

Z 1

0


¡
 ¡ 2

¢


Z 1

0

¡
 ¡ 2

¢


= 6

Z 1

0


¡
 ¡ 2

¢
 (3.5.36)

Substitution of Eq. (3533) into Eq. (3536) and integration give the dimen-

sionless bulk concentration as

 = 6
1X

=1

 exp
¡
¡2

¢ Z 1

0

 ()
¡
 ¡ 2

¢
 (3.5.37)

3.5.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (358) over the cross-sectional

area of the system. For this purpose Eq. (3.5.8) is multiplied by  and
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integrated from  = 0 to  = 1 The result is

Z 1

0

¡
 ¡ 2

¢ 


 =

Z 1

0

2

2
 (3.5.38)

or,




Z 1

0


¡
 ¡ 2

¢
 =





¯̄
¯̄
=1

¡ 



¯̄
¯̄
=0

(3.5.39)

Substitution of Eq. (3536) into the left-hand side, and the boundary conditions

de…ned by Eqs. (3510) and (3511) into the right-hand side of Eq. (3539)

give
1

6




= ¡¤ j=1 (3.5.40)

To proceed further, it is necessary to express j=1 in terms of . Hermite

expansion for  = 0  = 0, Eq. (B) in Table 2.2, gives

Z 1

0


¡
 ¡ 2

¢
 =


6
=
1

4


£

¡
 ¡ 2

¢¤



¯̄
¯̄
¯
=1

+
1

4


£

¡
 ¡ 2

¢¤



¯̄
¯̄
¯
=0

(3.5.41)

On the other hand, Hermite expansion for  = 1,  = 1, Eq. (B) in Table 2.5,

yields

Z 1

0


¡
 ¡ 2

¢
 =


6
=
1

3

¡
 ¡ 2

¢
=0
+
2

3

¡
 ¡ 2

¢
=1

¡1
6


£

¡
 ¡ 2

¢¤



¯̄
¯̄
¯
=1

+
1

72

8
<
:
2

£

¡
 ¡ 2

¢¤

2

¯̄
¯̄
¯
=1

¡ 2
£

¡
 ¡ 2

¢¤

2

¯̄
¯̄
¯
=0

9
=
; (3.5.42)

Substitution of the boundary conditions de…ned by Eqs. (3510) and (3511)

into Eqs. (3541) and (3542) and the simultaneous solution of the resulting

equations yield

j=1 =
·

16

3 (6 + ¤)

¸
 (3.5.43)

The use of Eq. (3543) in Eq. (3540) yields



+

µ
32¤

6 + ¤

¶
 = 0 (3.5.44)
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which is subject to the following boundary condition

at  = 0  = 1 (3.5.45)

The solution of Eq. (3544) is given by

 = exp

·
¡

µ
32¤

6 + ¤

¶


¸
(3.5.46)

3.5.3. Comparison of Results

A comparison of the analytical solution, Eq. (3537), with the approximate

one, Eq. (3546), is presented in Figure 3.21 for various values of the Thiele

modulus, ¤ which represents the ratio of the rate of surface reaction to the

rate of di¤usion. Numerical values are given in Table A10 in Appendix A. In

the calculation of  using Eq. (3.5.37), integration is performed numerically

by MATHEMATICA
R°

. Convergence is obtained by considering the …rst three

terms of the series.

Λ=0.1

η

0.00 0.05 0.10 0.15 0.20

θb

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Exact
Approximate

Λ=1.0

Λ=0.5

Figure 3.21. Comparison of the analytical and approximate solutions with ¤ as

a parameter.
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The exact and approximate results are almost identical, the largest deviation

being around 4% when ¤ = 10 and  = 02 As the Thiele modulus increases,

the rate of surface reaction becomes more dominant than the rate of di¤usion.

As a result, species are consumed faster with a concomitant decrease in the bulk

concentration, .

3.6. Convective Mass Transport with a Wall Reaction in

a Cylindrical Tube

In this section, the problem analyzed in the previous section is solved in cylindri-

cal coordinate system. An incompressible Newtonian ‡uid ‡ows in a cylindrical

tube with a radius of  under the action of constant pressure gradient as shown

in Figure 3.22. A …rst-order irreversible chemical reaction takes place on the wall

of the cylinder. The system is isothermal and it is continuously fed at  = 0

with a dilute solution of chemical reactant with a uniform concentration . It

is required to determine bulk concentration as a function of the axial direction

under steady conditions.

 L 

 2R    z 

r 

Figure 3.22. Convective mass transport in a cylindrical tube.

The fully-developed velocity pro…le is given by

 =
(P¡P)2

4

·
1¡

³ 



´2¸
(3.6.1)

For large values of Peclet number, the conservation of chemical species takes the

form
(P¡P)2

4

·
1¡

³ 



´2¸ 


=

D






µ





¶
(3.6.2)
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The boundary conditions associated with Eq. (362) are

at  = 0  =  (3.6.3)

at  = 0



= 0 (3.6.4)

at  =  ¡D 


= 

00
 (3.6.5)

Introduction of the following dimensionless variables

 =



 =




 =

4D 

(P¡P)4
¤ =


00


D (3.6.6)

reduces Eqs. (362)¡ (365) to the form

¡
1¡ 2

¢ 


=
1







µ





¶
(3.6.7)

at  = 0  = 1 (3.6.8)

at  = 0



= 0 (3.6.9)

at  = 1 ¡ 


= ¤  (3.6.10)

3.6.1. Analytical Solution

The method of separation of variables is employed in order to solve Eq. (367).

The solution is written in product form as

 ( ) =  ()  () (3.6.11)

so that Eq. (367) is split into two ordinary di¤erential equations which are




+ 2 = 0 (3.6.12)

and
1


¡
1¡ 2

¢ 



µ





¶
+ 2 = 0 (3.6.13)
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The solution of Eq.(3612) is

 () = exp
¡
¡2

¢
(3.6.14)

The use of the following transformations

 =  
2 (3.6.15)

 () = exp

µ


2

¶
 (3.6.16)

reduces Eq. (3613) to


2

2
+ (1¡)




¡

µ
2¡ 
4

¶
 = 0 (3.6.17)

Comparison of Eq. (3.6.17) with Eq. (3.5.19) reveals that Eq. (3.6.17) is the

Kummer’s equation. The general solution of Eq. (3.6.17) is given by

 () = 1

µ
2¡ 
4

 1

¶
+ 2 

µ
2¡ 
4

 1 

¶
(3.6.18)

where 
³
2¡
4
 1 

´
and 

³
2¡
4
 1 

´
are Kummer’s function of the …rst

kind and second kind, respectively [8]. Equation (3.5.21) de…nes Kummer func-

tion of the …rst kind,  . Kummer function of the second kind,  , is de…ned

by

 (  ) =
¡ (1¡ )

¡ (¡ + 1)
 (  ) +

¡ (¡ 1)
¡ ()

1¡ (¡ + 1 2¡  )

(3.6.19)

where ¡ () is the gamma function de…ned by

¡ () =

Z 1

0

¡1 e¡  (3.6.20)

Since  is unbounded when  = 1, i.e., ¡ (0) = 1, the general solution becomes

 () = 1

µ
2¡ 
4

 1 

¶
(3.6.21)
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The boundary condition de…ned by Eq. (3.6.10) takes the form

at  =  ¡ 


=

µ
¤

2
¡ 1

2

¶
 (3.6.22)

The use of Eq. (3.6.22) gives the following transcendental equation for the

eigenvalues 
µ
¤


¡ 1

¶


µ
2¡ 
4

 1 

¶
=

µ
2¡ 
2

¶


µ
6¡ 
4

 2 

¶
(3.6.23)

The …rst ten eigenvalues for various values of ¤ are given in Table 3.9.

Table 3.9. The roots of Eq. (3623) as a function of ¤

 ¤ = 01 ¤ = 05 ¤ = 10 ¤ = 20

1 06183 12716 16413 20000

2 51169 52951 54783 57439

3 91889 93063 94360 96451

4 132211 133119 134152 135903

5 172399 173153 174026 175548

6 212524 213177 213939 215295

7 252615 253194 253875 255105

8 292684 293207 293826 294955

9 332738 333217 333787 334834

10 372783 373225 373755 374733

The complete solution is given by

 ( ) =

1X

=1

  () exp
¡
¡2

¢
(3.6.24)

where

 () = exp

µ
¡ 

2

2

¶


µ
2¡ 
4

 1 
2

¶
(3.6.25)
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The coe¢cients  are given as

 =

Z 1

0

 ()
¡
1¡ 2

¢
 

Z 1

0

 2 ()
¡
1¡ 2

¢
 

(3.6.26)

The bulk concentration, , is de…ned by

 =

Z 2

0

Z 

0

  

Z 2

0

Z 

0

  

(3.6.27)

In terms of the dimensionless quantities, Eq. (3627) takes the form

 =


=

Z 1

0


¡
1¡ 2

¢
 

Z 1

0

¡
1¡ 2

¢
 

= 4

Z 1

0


¡
1¡ 2

¢
  (3.6.28)

Substitution of Eq. (3624) into Eq. (3628) and integration give the dimen-

sionless bulk concentration as

 = 4
1X

=1

 exp
¡
¡2

¢ Z 1

0

 ()
¡
1¡ 2

¢
  (3.6.29)

3.6.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (367) over the cross-sectional

area of the system. For this purpose Eq. (3.6.7) is multiplied by   and

integrated from  = 0 to  = 1 The result is

Z 1

0


¡
1¡ 2

¢ 


 =

Z 1

0





µ





¶
 (3.6.30)

or,




Z 1

0


¡
1¡ 2

¢
 = 





¯̄
¯̄
=1

¡ 




¯̄
¯̄
=0

(3.6.31)
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Substitution of Eq. (3628) into the left-hand side, and the boundary conditions

de…ned by Eqs. (369) and (3610) into the right-hand side of Eq. (3631) give

1

4




= ¡¤ j=1 (3.6.32)

To proceed further, it is necessary to express j=1 in terms of . Hermite

expansion for  = 0 and = 1, Eq. (A) in Table 2.4, gives

Z 1

0


¡
1¡ 2

¢
 =


4
=
1

3
()j=0 +

2

3
()j=1 ¡ 1

6


£

¡
1¡ 2

¢

¤



¯̄
¯̄
¯
=1

(3.6.33)

Substitution of the boundary conditions de…ned by Eqs. (369) and (3610)

into Eq. (3633) results in

j=1 =
3

4
 (3.6.34)

The use of Eq. (3634) in Eq. (3632) yields



+ 3¤ = 0 (3.6.35)

which is subject to the following boundary condition

at  = 0  = 1 (3.6.36)

The solution of Eq. (3635) is given by

 = exp (¡ 3¤ ) (3.6.37)

3.6.3. Comparison of Results

A comparison of the analytical solution, Eq. (3629), with the approximate

one, Eq. (3637), is presented in Figure 3.23 for various values of the Thiele

modulus, ¤, which represents the ratio of the rate of surface reaction to the rate

of di¤usion. Numerical values are given in Table A11 in Appendix A. In the

calculation of  using Eq. (3.6.29), integration is performed numerically using

MATHEMATICA
R°

. Convergence is obtained by considering the …rst three

terms when   008. For larger values of  , the …rst two terms of the series are

su¢cient.
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Figure 3.23. Comparison of the analytical and approximate solutions with ¤ as

a parameter.

The approximate solution gives fairly good estimates of the exact values in

all cases considered. Approximate solution overestimates the analytical solu-

tion when ¤ takes the values of 01 and 05. On the other hand, when ¤ is

increased to 10, the approximate method underestimates the analytical solu-

tion, the largest deviation being 37% when ¤ = 10 and  = 02 As the Thiele

modulus increases, the rate of surface reaction becomes more dominant than the

rate of di¤usion. As a result, species are consumed faster with a concomitant

decrease in the bulk concentration, .

3.7. Unsteady Conduction in a Two-Layer Composite Slab

A composite plane wall, composed of two di¤erent layers of thicknesses 1 and

2, is initially at a uniform temperature of . The schematic representation of

the system is shown in Figure 3.24. At  = 0, the surfaces at  = ¡ 1 and

 = 2 are exposed to ‡uids at temperature 1 (  1). The average heat

transfer coe¢cients between the surfaces and the ‡uids are di¤erent from each

other. It is required to …nd the variation of average temperatures within each

slab with time as a result of unequal cooling conditions.
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z 

L2 L1 

T∞, < hB > T∞, < hA > 

k1 k2 

Figure 3.24. Conduction in a two-layer composite slab.

For a one-dimensional unsteady-state conduction, the equation of energy for

each layer is given by



= 
2
2

 = 1 2 (3.7.1)

with the following initial and boundary conditions

at  = 0 1 = 2 =  (3.7.2)

at  = ¡1 ¡1
1


= hi (1 ¡ 1) (3.7.3)

at  = 0 1 = 2 (3.7.4)

at  = 0 1
1


= 2
2


(3.7.5)

at  = 2 2
2


= hi (1 ¡ 2) (3.7.6)

Introduction of the dimensionless variables

 =
1 ¡ 
1 ¡ 

 =


1
 =

1


2
1

BiA =
hi1
1

BiB =
hi2
2

 =
2
1

 =
2
1

 =
2
1

(3.7.7)

reduces Eqs. (371)¡ (376) to the form

1


=
21

2
(3.7.8)
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2


= 
22

2
(3.7.9)

at  = 0 1 = 2 = 1 (3.7.10)

at  = ¡ 1 1


= BiA 1 (3.7.11)

at  = 0 1 = 2 (3.7.12)

at  = 0
1


= 
2


(3.7.13)

at  =  ¡ 2


=
BiB


2 (3.7.14)

3.7.1. Analytical Solution

The solution of this problem is given by Monte [9] as

1 (  )=

1X

=1

 1 () exp
¡
¡2

¢
(3.7.15)

2 (  )=

p




1X

=1

 2 () exp
¡
¡2

¢
(3.7.16)

where

1 ()= sin () + ¦1 cos () (3.7.17)

2 ()= sin
³


p

´

¡ ¦2 cos
³


p

´

(3.7.18)

The eigenvalues,  are the roots of

¦1 = ¡
p



¦2 (3.7.19)

where

¦1=
 + BiA tan 
BiA ¡ tan

(3.7.20)

¦2=
 + (BiB ) tan 
(BiB )¡  tan

(3.7.21)

= 
p
 (3.7.22)
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The …rst ten eigenvalues for  = 08  = 25 and di¤erent Biot numbers are

tabulated in Table 3.10.

Table 3.10. The roots of Eq. (3719) for  = 08  = 25 and di¤erent Biot

numbers.

BiA = 05 BiA = 05 BiA = 10 BiA = 10

 BiB = 10 BiB = 50 BiB = 20 BiB = 50

1 09263 12188 12027 13611

2 24048 28394 26695 29276

3 44494 47803 46293 48472

4 64195 67792 65715 68219

5 83938 86496 85022 86861

6 105893 107884 106759 108201

7 125932 128155 126759 128388

8 146063 147646 146701 147872

9 168164 169522 168723 169726

10 188195 189753 188756 189912

On the other hand, the coe¢cients  are given as

 =
 (cos ¡ cos  +¦1 sin  ¡ ¦2 sin)


(3.7.23)

where

 =
 (1 + ¦

2

1)

2

µ
1 +

BiA

2 + Bi
2
A

¶
+
 (1 + ¦22)

2

µ
1 +

BiB

2
2 + Bi2B

¶
(3.7.24)

The average temperature, hi, for each layer is de…ned by

h1i =
1

1

Z 0

¡1
1  h2i =

1

2

Z 2

0

2  (3.7.25)
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In terms of the dimensionless quantities, Eq. (3725) takes the form

h1i =
1 ¡ h1i
1 ¡ 

=

Z 0

¡1
1  (3.7.26)

h2i =
1 ¡ h2i
1 ¡ 

=
1



Z 

0

2  (3.7.27)

Substitution of Eqs. (3715) and (3716) into Eqs. (3.7.26) and (3.7.27),

respectively, and integration give

h1i=
1X

=1

 e1 () exp
¡
¡2

¢
(3.7.28)

h2i=
p




1X

=1

 e2 () exp
¡
¡2

¢
(3.7.29)

where

e1 ()=
1


(cos +¦1 sin  ¡ 1) (3.7.30)

e2 ()=

p



(1¡ cos ¡ ¦2 sin) (3.7.31)

3.7.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eqs. (378) and (3.7.9) in the direc-

tion of heat ‡ow, i.e., -direction. For the …rst slab, Eq. (378) is multiplied by

 and integrated from  = ¡ 1 to  = 0 The result is

Z 0

¡1

1


 =

Z 0

¡1

21

2
 (3.7.32)

or,




Z 0

¡1
1  =

1


¯̄
¯̄
=0

¡ 1


¯̄
¯̄
=¡1

(3.7.33)

Substitution of Eq. (3728) into the left-hand side, and the boundary conditions

de…ned by Eqs. (3711) and (3713) into the right-hand side of Eq. (3733)

give
 h1i


= 
2


¯̄
¯̄
=0

¡ BiA 1j=¡1 (3.7.34)
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For the second slab, Eq. (379) is multiplied by  and integrated from  = 0

to  =  The result is

Z 

0

2


 = 

Z 

0

22

2
 (3.7.35)

or,




Z 

0

2  = 
2


¯̄
¯̄
=

¡ 
2


¯̄
¯̄
=0

(3.7.36)

Substitution of Eq. (3729) into the left-hand side, and the boundary conditions

de…ned by Eq. (3714) into the right-hand side of Eq. (3736) give

 h2i


= ¡ 

2
BiB 2j= ¡ 



2


¯̄
¯̄
=0

(3.7.37)

To proceed further, it is necessary to express 1j=¡1  2j=0  and 2j= in

Eqs. (3736) and (3737) in terms of the average temperatures, h1i and h2i.
Hermite expansion for  = 1  = 0, Eq. (A) in Table 2.3, for 1 and 2 gives

Z 0

¡1
1 = h1i =

2

3
1j=¡1 +

1

3
1j=0 +

1

6

1


¯̄
¯̄
=¡1

(3.7.38)

Z 

0

2 =  h2i =
2

3
2j=0 +

1

3
2j= +



6

2


¯̄
¯̄
=0

(3.7.39)

On the other hand, Hermite expansion for  = 0  = 1, Eq. (A) in Table 2.4,

for 1 and 2 yields

Z 0

¡1
1 = h1i =

1

3
1j=¡1 +

2

3
1j=0 ¡ 1

6

1


¯̄
¯̄
=0

(3.7.40)

Z 

0

2 =  h2i =
1

3
2j=0 +

2

3
2j= ¡ 

6

2


¯̄
¯̄
=

(3.7.41)

Substitution of the corresponding boundary conditions de…ned by Eqs. (3711)¡
(3714) into Eqs. (3738)¡ (3741) gives

h1i=
µ
4 + BiA
6

¶
1j=¡1 +

1

3
1j=0 (3.7.42)

h1i=
1

3
1j=¡1 +

2

3
1j=0 ¡ 

6

2


¯̄
¯̄
=0

(3.7.43)
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h2i=
2

3
1j=0 +

1

3
2j= +

1

6

2


¯̄
¯̄
=0

(3.7.44)

h2i=
1

3
1j=0 +

µ
4 + BiB
6

¶
2j= (3.7.45)

Simultaneous solutions of Eqs. (3742)¡ (3745) give the relationships between

average and local variables as

1j=¡1 =
3
£
2 (3 + BiB) +  (4 + BiB)

¤


h1i ¡ 3 (2 + BiB)


h2i (3.7.46)

2


¯̄
¯̄
=0

= ¡6 (2 + BiA) (3 + BiB)


h1i +
6 (3 + BiA) (2 + BiB)


h2i (3.7.47)

2j= = ¡ 3 (2 + BiA)


h1i +

3
£
 (4 + BiA) + 2 (3 + BiA)

¤


h2i (3.7.48)

where

 =  (4 + BiA) (3 + BiB) +  (3 + BiA) (4 + BiB) (3.7.49)

Substitution of Eqs. (3746) and (3747) into Eq. (3734) and substitution of

Eqs. (3747) and (3748) into Eq. (3737) result in

 h1i


=1 h1i + 2 h2i (3.7.50)

 h2i


=


2
2 h1i+ 3 h2i (3.7.51)

where

1=¡ 3



£
4 (1 + BiA) (3 + BiB) +  BiA (4 + BiB)

¤
(3.7.52)

2=
9 (2 + BiA) (2 + BiB)


(3.7.53)

3 = ¡ 3



·
BiB

 (4 + BiA) + 4 (3 + BiA) (1 + BiB)

¸
(3.7.54)

The initial conditions associated with Eqs. (3750) and (3751) are

  = 0 h1i = h2i = 1 (3.7.55)
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Simultaneous solutions of Eqs. (3750) and (3751) by the Laplace transform

give the average dimensionless temperature for each layer as

h1i =
·
cosh (¡ )+

µ
1 + 22 ¡ 3

2

¶
sinh (¡ )

¡

¸
exp

·µ
1 + 3
2

¶


¸

(3.7.56)

h2i =
·
cosh (¡ ) +

µ
3 ¡ 1 +

2
2

¶
sinh (¡)

¡

¸
exp

·µ
1 + 3
2

¶


¸

(3.7.57)

where

¡ =

q
4 2

2  + 2 (1 ¡ 3)
2

2
p


(3.7.58)

3.7.3. Comparison of Results

Comparisons of the analtical solutions, Eqs. (3728) and (3729) with the

approximate ones, Eqs. (3756) and (3757), are presented in Figures 325¡328
for  = 08  = 25 and di¤erent Biot numbers. Numerical values are given in

Tables A12¡A15 in Appendix A.

The terms  and  represent thickness and thermal di¤usivity ratios of the layers,

respectively. In the calculations of h1i and h2i using Eqs. (3.7.28) and (3.7.29),

the …rst seven terms of the series are used when   006. For larger  values,

convergence is achieved by taking the …rst four terms.

The approximate solutions give good estimates of the analytical solutions for

di¤erent Biot numbers. The approximate values slightly underestimate and

overestimate the exact ones in the …rst and second layers, respectively, with the

largest deviation being around 6%.
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Figure 3.25. Comparison of the analytical and approximate solutions when

BiA = 05 BiB = 10
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Figure 3.26. Comparison of the analytical and approximate solutions when

BiA = 05 BiB = 50
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Figure 3.27. Comparison of the analytical and approximate solutions when

BiA = 10 BiB = 50
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Figure 3.28. Comparison of the analytical and approximate solutions when

BiA = 20 BiB = 50
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CHAPTER 4

CONCLUSIONS

In transport phenomena problems, obtaining an analytical solution is tedious

if not impossible. In these cases, application of a numerical or an approxi-

mate technique is required. In this study, application of one of the approximate

techniques, i.e., area averaging technique using the two -point Hermite expan-

sion, is presented. By the application of the averaging procedure, the number of

the independent variables in the partial di¤erential equation de…ning the prob-

lems is reduced by one. This simpli…cation of the problem however, requires

expressing the local value of the dependent variable and/or its derivative(s) on

the system boundaries in terms of the averaged variable. In this study, such a

relationship is obtained by employing the two -point Hermite expansion.

Two -point Hermite expansion has two parameters,  and  There is no clear-

cut recipe to pick the right  and  values that will yield the best results.

Depending on the governing equation and the boundary conditions, one of the

methods to choose the appropriate  and  values is to check whether the

approximate solution converges to the analytical one under steady conditions.

Obtaining identical expression for the steady-state case does not necessarily

guarantee that the applied Hermite expansion is the best choice. However, the

chances of obtaining good results are high. Even though the application of single

 = 0,  = 0 Hermite expansion is simpler, it does not yield very satisfactory

estimates of the exact values. Combination of two Hermite expansions, such as

 = 1,  = 0 and  = 0,  = 1 yields better results than  = 0,  = 0 Hermite

expansion.

In the problems analyzed in this study, area averaging technique using Hermite

expansion generally gives better estimates of the exact values for the smaller

values of the independent variable, time or space, provided that the boundary

conditions associated with the eliminated independent variable are used in the

averaged equation.
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In some problems, even if an analytical solution exists, calculation of eigenvalues

and coe¢cients can be very tedious. In these cases, area averaging technique

using Hermite expansion is useful. Moreover, this approximate method can also

be utilized to obtain initial guesses for the numerical analysis. This decreases the

computational e¤ort and time for the convergence of the numerical techniques.

The problems analyzed in this study are unsteady ‡ow in a concentric annulus,

unequal cooling of a long slab, unsteady conduction in a cylindrical rod with

internal heat generation, di¤usion of a solute into a slab from limited volume

of a well-mixed solution, convective mass transport between two parallel plates

with a wall reaction, convective mass transport in a cylindrical tube with a wall

reaction, and unsteady conduction in a two -layer composite slab.

In unsteady ‡ow in a concentric annulus problem, the analytical and

approximate solutions are compared for di¤erent values of radius ratio. The

approximate results slightly overestimates the exact ones with the largest devi-

ation being 13%.

In unequal cooling of a long slab problem, the analytical and approximate so-

lutions are compared for di¤erent Biot numbers. Approximate results almost

coincide with the exact ones, the largest deviation being approximately 8%.

In unsteady conduction in a cylindrical rod with internal heat generation prob-

lem, the analytical and approximate solutions are compared for di¤erent Biot

numbers and the dimensionless generation term. The approximate solution gives

satisfactory estimates of the analytical one for relatively small values of the Biot

number. The deviation from the analytical solution increases as the values of

the Biot number and the dimensionless generation term increase. The largest

deviation is about 18%.

In di¤usion of a solute into a slab from limited volume of a well-mixed solution

problem, the analytical and approximate solutions are compared for various

values of the ratio of the solution volume to the product of the slab volume and

the partition coe¢cient. The exact and approximate results are almost identical

except for the small values of dimensionless time. The largest deviation is about

27% only when  = 01.
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In convective mass transport problems, either between two parallel plates, or in

a cylindrical tube with a wall reaction, the analytical and approximate solutions

are compared for di¤erent values of the Thiele modulus. The approximate solu-

tions give fairly good estimates of the exact values, the largest deviations being

around 4% in both of the cases.

In unsteady conduction in a two -layer composite slab problem, the analyti-

cal and approximate solutions are compared for di¤erent Biot numbers.The

approximate values slightly underestimate and overestimate the exact ones in

the …rst and second layers, respectively, with the largest deviation being around

6%.
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APPENDIX

NUMERICAL RESULTS OF THE SOLUTIONS

In this section, numerical results of the analytical and approximate solutions of

the problems given in Chapter 3 are tabulated in Tables A1¡A15.

Table A.1. Numerical results of Eqs. (3128) and (3139) with  as a

parameter.

 = 01

 Exact Hermite

000 0000 0000

001 00330 00368

002 00609 00685

004 0106 0120

006 0142 0157

008 0171 0186

010 0194 0207

012 0212 0222

014 0227 0234

016 0239 0242

018 0248 0249

020 0256 0253

 = 02

 Exact Hermite

000 0000 0000

001 00312 00350

002 00565 00640

004 00963 0108

006 0126 0138

008 0148 0159

010 0164 0173

012 0177 0183

014 0186 0190

016 0193 0195

018 0198 0198

020 0202 0200
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Table A.2. Numerical results of Eqs. (3128) and (3139) with  as a

parameter.

 = 03

 Exact Hermite

000 0000 0000

001 00286 00323

002 00508 00576

004 00835 00928

006 01057 01144

008 01206 01277

010 01307 01358

012 01376 01408

014 01423 01438

016 01454 01457

018 01476 01468

020 01490 01475

 = 04

 Exact Hermite

000 0000 0000

001 00253 00286

002 00435 00490

004 00679 00742

006 00821 00872

008 00900 00938

010 00950 00972

012 00980 00990

014 01000 00999

016 01010 01003

018 01010 01006

020 01020 01007

Table A.3. Numerical results of Eqs. (3.1.28) and (3.1.39) with  as a

parameter.

 = 05

 Exact Hermite

000 0000 0000

001 00210 00238

002 00346 00386

004 00500 00533

006 00570 00590

008 00603 00612

010 00617 00620

012 00624 00623

014 00627 00624

016 00629 00625

018 00629 00625

020 00630 00625

 = 06

 Exact Hermite

000 0000 0000

001 00160 00180

002 00244 00265

004 00314 00324

006 00334 00338

008 00340 00340

010 00342 00341

012 00343 00341

014 00343 00341

016 00343 00341

018 00343 00341

020 00343 00341
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Table A.4. Numerical results of Eqs. (3128) and (3139) with  as a

parameter.

 = 07

 Exact Hermite

000 0000 0000

001 00102 00113

002 00136 00142

004 00151 00152

006 00153 00153

008 00153 00153

010 00153 00153

012 00153 00153

014 00153 00153

016 00153 00153

018 00153 00153

020 00153 00153

 = 08

 Exact Hermite

000 0000 0000

001 000440 000456

002 000477 000479

004 000480 000480

006 000480 000480

008 000480 000480

010 000480 000480

012 000480 000480

014 000480 000480

016 000480 000480

018 000480 000480

020 000480 000480

Table A.5. Numerical results of Eqs. (3228) and (3239) with Biot numbers

as parameters 

Bi = 10 Bi = 0.1 Bi = 50 Bi = 10 Bi = 100 Bi = 10

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

001 09799 09804 001 09454 09582 001 09258 09518

010 08124 08120 010 06218 06371 010 05670 05919

020 06420 06396 020 03717 03742 020 03119 03134

030 04856 04817 030 01891 01836 030 01344 01232

050 02103 02044 050 ¡00437 ¡00546 050 ¡00778 ¡00952
070 ¡00213 ¡00286 070 ¡01697 ¡01798 070 ¡01828 ¡01969
100 ¡03018 ¡03099 100 ¡02591 ¡02655 100 ¡02499 ¡02575
125 ¡04859 ¡04942 125 ¡02907 ¡02946 125 ¡02708 ¡02748
150 ¡06343 ¡06424 150 ¡03054 ¡03076 150 ¡02795 ¡02815
200 ¡08502 ¡08572 200 ¡03154 ¡03161 200 ¡02847 ¡02851
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Table A.6. Numerical results of Eqs. (3326) and (3334) for Bi = 01 with ¤

as a parameter.

Bi = 0.1 ¤ = 10 Bi = 0.1 ¤ = 100 Bi = 0.1 ¤ = 500

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

002 1006 1009 002 1096 1099 002 1494 1499

004 1012 1019 004 1191 1199 004 1985 1996

006 1018 1029 006 1286 1298 006 2480 2490

008 1024 1038 008 1380 1396 008 2961 2983

010 1030 1048 010 1474 1493 010 3445 3474

012 1036 1056 012 1567 1590 012 3928 3962

014 1042 1065 014 1659 1687 014 4410 4448

016 1048 1073 016 1752 1783 016 4886 4933

018 1054 1082 018 1845 1878 018 5355 5415

020 1062 1090 020 1937 1973 020 5836 5895

Table A.7. Numerical results of Eqs. (3326) and (3334) for Bi = 1 with ¤ as

a parameter.

Bi = 1 ¤ = 10 Bi = 1 ¤ = 50 Bi = 1 ¤ = 100

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

002 1061 1098 002 1449 1491 002 1934 1982

004 1120 1191 004 1876 1964 004 2819 2930

006 1177 1279 006 2282 2419 006 3665 3845

008 1232 1363 008 2674 2858 008 4477 4727

010 1285 1442 010 3050 3280 010 5258 5578

012 1336 1518 012 3413 3687 012 6010 6399

014 1385 1589 014 3764 4079 014 6737 7190

016 1433 1657 016 4101 4455 016 7438 7954

018 1479 1720 018 4428 4818 018 8116 8690

020 1524 1780 020 4750 5167 020 8772 9400
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Table A.8. Numerical results of Eqs. (3326) and (3334) for Bi = 5 with ¤ as

a parameter.

Bi = 5 ¤ = 50 Bi = 5 ¤ = 100 Bi = 5 ¤ = 300

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

002 1315 1472 002 1758 1945 002 3526 3839

004 1596 1889 004 2405 2788 004 5642 6382

006 1842 2260 006 2972 3539 006 7486 8656

008 2070 2586 008 3476 4207 008 9122 10690

010 2265 2873 010 3931 4800 010 10593 12509

012 2445 3126 012 4341 5327 012 11925 14133

014 2611 3346 014 4718 5794 014 13140 15585

016 2764 3538 016 5062 6206 016 14252 16880

018 2903 3704 018 5377 6570 018 15273 18036

020 3032 3848 020 5668 6891 020 16211 19066

Table A.9. Numerical results of Eqs. (3418) and (3432) with ª as a

parameter.

ª = 500 ª = 100 ª = 10

 Exact Hermite  Exact Hermite  Exact Hermite

000 000 000 000 000 000 000 000 000

010 03619 02636 010 03818 02811 010 05528 04512

020 05101 04577 020 05332 04831 020 07116 06988

030 06195 06007 030 06431 06284 030 08096 08347

040 07039 07059 040 07266 07329 040 08739 09093

050 07696 07835 050 07906 08080 050 09165 09502

060 08207 08405 060 08395 08619 060 09447 09727

080 08914 09135 080 09058 09286 080 09757 09918

010 09342 09531 010 09447 09631 010 09893 09975

012 09602 09746 012 09675 09809 012 09953 09993
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Table A.10. Numerical results of Eqs. (3537) and (3546) with ¤ as a

parameter.

¤ = 01 ¤ = 05 ¤ = 10

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

002 09884 09896 002 09487 09520 002 09106 09126

004 09770 09792 004 09018 09062 004 08341 08329

006 09725 09690 006 08573 08627 006 07646 07601

008 09560 09589 008 08151 08213 008 07010 06937

010 09437 09489 010 07750 07818 010 06427 06331

012 09328 09390 012 07368 07442 012 05892 05778

014 09221 09292 014 07005 07085 014 05402 05273

016 09115 09195 016 06661 06745 016 04953 04812

018 09010 09099 018 06333 06421 018 04541 04392

020 08906 09004 020 06021 06112 020 04163 04008

Table A.11. Numerical results of Eqs. (3629) and (3637) with ¤ as a

parameter.

¤ = 01 ¤ = 05 ¤ = 10

 Exact Hermite  Exact Hermite  Exact Hermite

000 1000 1000 000 1000 1000 000 1000 1000

002 09921 09940 002 09651 09704 002 09380 09418

004 09846 09880 004 09331 09418 004 08852 08869

006 09771 09822 006 09026 09139 006 08368 08353

008 09696 09763 008 08735 08869 008 07919 07866

010 09622 09704 010 08454 08607 010 07498 07408

012 09548 09646 012 08184 08353 012 07101 06977

014 09476 09589 014 07923 08106 014 06727 06570

016 09403 09531 016 07671 07866 016 06373 06188

018 09332 09474 018 07426 07633 018 06039 05827

020 09261 09418 020 07190 07408 020 05721 05488
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Table A.12. Numerical results of Eqs. (3728)¡ (3756) and

(3729)¡ (3757) when Bi1=05 Bi2=10.

Bi1=05 Bi2=10 Exact Hermite

 h1i h2i h1i h2i
0 10000 10000 10000 10000

002 09905 09648 09830 09678

006 09696 09058 09481 09098

010 09451 08586 09129 08587

014 09188 08186 08776 08131

016 09054 08005 08602 07919

020 08782 07669 08257 07524

Table A.13. Numerical results of Eqs. (3728)¡ (3756) and

(3729)¡ (3757) when Bi1=05 Bi2=50.

Bi1=05 Bi2=50 Exact Hermite

 h1i h2i h1i h2i
0 10000 10000 10000 10000

002 09903 08743 09879 08959

006 09623 07192 09528 07406

010 09232 06208 09092 06333

014 08797 05502 08618 05561

016 08574 05214 08375 05252

020 08131 04726 07892 04741

Table A.14. Numerical results of Eqs. (3728)¡ (3756) and

(3729)¡ (3757) when Bi1=10 Bi2=50.

Bi1=10 Bi2=50 Exact Hermite

 h1i h2i h1i h2i
0 10000 10000 10000 10000

002 09817 08742 09789 09002

006 09393 07191 09278 07490

010 08876 06203 08707 06417

014 08334 05487 08119 05621

016 08063 05191 07828 05295

020 07534 04683 07260 04743
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Table A.15. Numerical results of Eqs. (3728)¡ (3756) and

(3729)¡ (3757) when Bi1=20 Bi2=50.

Bi1=20 Bi2=50 Exact Hermite

 h1i h2i h1i h2i
0 10000 10000 10000 10000

002 09669 08742 09659 09064

006 09030 07191 08928 07606

010 08349 06197 08183 06527

014 07676 05464 07461 05692

016 07351 05156 07114 05340

020 06732 04618 06456 04731
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