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ABSTRACT

SOLUTIONS OF THE EQUATIONS OF CHANGE BY
THE AVERAGING TECHNIQUE

DALGIC, Merig
M.S., Department of Chemical Engineering
Supervisor: Prof. Dr. Ismail TOSUN

May 2008, 77 pages

Area averaging is one of the techniques used to solve problems encountered in
the transport of momentum, heat, and mass. The application of this technique
simplifies the mathematical solution of the problem. However, it necessitates
expressing the local value of the dependent variable and/or its derivative(s)
on the system boundaries in terms of the averaged variable. In this study,
these expressions are obtained by the two-point Hermite expansion and this
approximate method is applied to some specific problems, such as, unsteady flow
in a concentric annulus, unequal cooling of a long slab, unsteady conduction in a
cylindrical rod with internal heat generation, diffusion of a solute into a slab from
limited volume of a well-mixed solution, convective mass transport between two
parallel plates with a wall reaction, convective mass transport in a cylindrical
tube with a wall reaction, and unsteady conduction in a two-layer composite
slab. Comparison of the analytical and approximate solutions is shown to be
in good agreement for a wide range of dimensionless parameters characterizing

each system.

Keywords: Transport phenomena, area averaging, two -point Hermite expansion.
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0z

HAL DEGIiSIiM DENKLEMLERININ ORTALAMA YONTEMI
iLE ¢OZUMU

DALGIC, Merig
Yiiksek Lisans, Kimya Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Ismail TOSUN

May1s 2008, 77 sayfa

Momentum, 1s1 ve madde tagimimlarinda kargilagilan problemlerin ¢oziimiinde
kullanilan tekniklerden biri alan ortalamasidir. Bu yéntemin uygulanmasi prob-
lemin matematiksel ¢oziimiinii kolaylagtirir. Ancak bu durumda, bagimh degigke-
nin ve/veya tiirevinin simir degerlerinin ortalamasi alinan degisken cinsinden
ifadesi gerekir. Soz konusu sinir degerleri, iki noktali Hermite agilim ile elde
edilmis ve tasinim olaylariyla ilgili problemlerin yaklagik yontemle ¢oziimii sis-
tematik olarak gosterilmistir. Bu caligmada ele alinan problemler sunlardir:
esmerkezli iki boru arasinda yatigkin olmayan akig, uzun bir levhanin asimetrik
olarak sogutulmasi, icsel 1s1 iiretimli silindirik bir cubukta yatigkin olmayan 1s1
iletimi, bir kap igerisindeki sividan uzun bir levhaya difiizyon; iki genis levha
arasinda konveksiyon ile madde taginimi, silindirik bir boruda konveksiyon ile
madde tagimimi; iki tabakali kompozit bir levhada yatigik olmayan 1s1 iletimi.
Analitik ve yaklagik ¢oziimler, sistemi karakterize eden boyutsuz parametreler

cinsinden kargilagtirilmig ve sonuglarin uyumlu oldugu gozlenmistir.

Anahtar Kelimeler: Taginim olaylari, alan ortalamasi, iki noktali Hermite agilima.
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CHAPTER 1

INTRODUCTION

Relationship between the volumetric flow rate and the pressure drop, as well as
the amount of heat and/or mass transferred from one phase to another across
the phase interface, are of great importance in transport phenomena. For this
purpose, it is necessary to solve the equations of change at the microscopic level
to determine velocity, temperature, and concentration profiles as a function of
position and time. Since these equations appear as partial differential equations
most of the time, the solutions usually require tedious and complex analytical

and/or numerical techniques.

In experimental studies, in general, the average values of velocity, temperature,
and concentration are measured rather than the local values. Once the theo-
retical distributions of velocity, temperature, and concentration are obtained, it
is necessary to get their average values by integrating these distributions either
over the area or the volume of the system to compare the experimental results
with the theoretical ones. The practical question to be asked at this stage is
"Is it possible to get these average values from the governing equations with

appropriate initial and boundary conditions without solving them?"

Integration of the equations of change over the area (or volume) of the system
reduces the order of the governing differential equation. However, the resulting
simplified equation not only contains the average value of the dependent variable,
but also the local value of the dependent variable and/or its gradient(s), both
evaluated on the system boundaries. To proceed further, local values of the
dependent variable and their gradients must be related to the average values.

This task can be accomplished by the use of the Hermite polynomials.

The aim of this study is to develop a systematic procedure for the applica-
tion of the averaging technique by employing the two-point Hermite expansion

to different problems. These cases are unsteady flow in a concentric annulus,



unequal cooling of a long slab, unsteady conduction in a cylindrical rod with
internal heat generation, diffusion of a solute into a slab from limited volume
of a well-mixed solution, convective mass transport between two parallel plates
with a wall reaction, convective mass transport in a cylindrical tube with a wall
reaction, and unsteady conduction in a two-layer composite slab. The exact
and approximate results are compared for various values of the dimensionless

parameter(s) characterizing each system.



CHAPTER 2

TWO-POINT HERMITE EXPANSION

Mennig et al. [1] used two-point Hermite interpolation formula in order to solve
linear initial and boundary value problems. They derived Hermite expansion in

two different forms. The first one is in integro-differential form represented by

/ f(x) de = ZC” (@, B) (b — a)" %ix) )
B "f(x
I TR

which expresses the integral fab f(z) dx as a linear combination of f(a), f(b), and

their derivatives. The second formula is in purely differential form represented
by

F @l = £ @)y = 30 Col ) (b a1t T L)

B ntl £ (o
+) G (B,) (—1)”(19—@)”“% . (2.2)

n=0

The coefficients C,, («, 8) appear in Egs. (2.1) and (2.2) are called Hermite
coefficients and some values of C,, (c, ) given by Mennig et al. [1] are listed in
Table 2.1.

Using the coefficients C,, («, 3), approximate expressions representing

1 b
I= b—a/a f(x)dz (2.3)

can be obtained by combining Eqgs. (2.1) and (2.2). The results are given in
Tables 2.2 — 2.5.



Table 2.1. List of Hermite coefficients [1].

a B Co(a,p) Ci(a,B) Cy(a,p) Cs(a,B) Ci(a,p)
0 O 1/2

0 1 1/3

0 2 1/4

0 3 1/5

0 4 1/6

1 0 2/3 1/6

1 1 2/4 1/12

1 2 2/5 1/20

1 3 2/6 1/30

1 4 2/7 1/42

2 0 3/4 3/12 1/24

2 1 3/5 3/20 1/60

2 2 3/6 3/30 1/120

2 3 3/7 3/42 1/210

2 4 3/8 3/56 1/336

3 0 4/5 6/20 4/60 1/120

3 1 4/6 6/30 4/120 1/360

3 2 4/7 6/42 4/210 1/840

3 3 4/8 6/56 4/336 1/1680

3 4 4/9 6/72 4/504 1/1024

4 0 5/6 10/30 10/120 5/360 1/720
4 1 5/7 10/42 10/210 5/840 1/2520
4 2 5/8 10/56 10/336 5/1680 1/6720
4 3 5/9 10/72 10/504 5/3024  1/15120
4 4 5/10 10/90 10/720 5/5040  1/30240




Table 2.2. Two-point Hermite expansions for « =0 and 3 = 0.

I=5 [f@o+ f@)], ) (4
=i+ 2 (Y L)
1= ol -2 (E ) ©

Table 2.3. Two-point Hermite expansions for « =1 and 3 = 0.

1= S @t g S+ O
I = % fla)],_, + 1—72 f(@)],mp — (bl_za) % L - ;4a)2 % _
1= jel, - e E) Aoad) Lo dd)

Table 2.4. Two-point Hermite expansions for « =0 and g = 1.

I= é F(@)]pma +§ F@my - & B : % vt
1= f(@))y 9 2 % L 7(617;(1) % b - 18@2 % 2=b




Table 2.5. Two-point Hermite expansions for « =1 and g = 1.

1 1 (b—a) df (b=a) df
=5 f@lat 5 @+ =55 0 T W
1 (b—a) ﬁ
[_3f( )]J:aﬂ- f(@)],y — 6 dr|,
f d2
(d— L, da?|, ) "
2 1 b—a) d
I'=2f@)ma+ 3 fl@)ly ( 6a) %
(b—a)® (df @ f
+T (@ z=a - @ l’b) (C)
- (b—a) df (b—a) df
I= @l * 57 G| "% @l
(b—a)* (d®f >f
b (@ e b) (D)
B (b—a) df|  (b—a) df
1= f(x)],y — 6 dr|,_, 3 dr|,_,
(b—a)® (&*f d’f
+ 5 (@ L da? M) (E)

Table 2.6. Combination of « =1, =0 and a = 0, § = 1 Hermite expansions.

f(z

df

dx

df

F@lmy =20 — @)y~ D o e (4)
— (bl—za)f C > o T Ole=a = - o3 F@lemy + % . ©
L _(bl_za)u (bfa) @)y + (bf @)yt % o

dx




Table 2.6 contains the equations derived from the combination of « =1, =0
and a = 0, § = 1 Hermite expansions. These equations are employed in most

of the problems analyzed in this study.

Ozyilmaz [2] applied Hermite expansion in area averaging technique to different
engineering problems. He used single Hermite expansion that gave the necessary
relationship between the local quantity and the average quantity. In the present
case, depending on the problem, combination of more than one Hermite expan-
sion is used. This makes it possible to use higher degree Hermite expansion

which increases the accuracy of the averaging technique.



CHAPTER 3

APPLICATIONS

In this section, application of the area averaging technique and Hermite
expansion to various problems encountered in transport phenomena is presented.
The problems analyzed for this purpose are unsteady flow in a concentric annu-
lus, unequal cooling of a long slab, unsteady conduction in a cylindrical rod with
internal heat generation, diffusion of a solute into a slab from limited volume
of a well-mixed solution, convective mass transport between two parallel plates
with a wall reaction, convective mass transport in a cylindrical tube with a wall
reaction, and unsteady conduction in a two-layer composite slab. The analytical
solutions of these problems are also provided. The analytical and approximate
solutions are compared for various dimensionless parameters characterizing each

problem.

3.1. Unsteady Flow in a Concentric Annulus

A concentric annulus with inner and outer radii of KR and R, respectively, is
filled with a stationary incompressible Newtonian fluid as shown in Figure 3.1.
At time t = 0, a constant pressure gradient is imposed and the fluid inside the
annulus starts to flow. It is required to determine the volumetric flow rate as a

function of time.

Figure 3.1. Unsteady flow of a Newtonian fluid in a concentric annulus.

8



Postulating v, = vy9 = 0 and v, = v, (2,t), the z-component of the equation of

motion takes the form

ov, P,—Pr pn 0 ov,
= - — 1.1
T L +7’87’(T8r) (8.L1)
where P is the modified pressure defined by
P=P—pgz (3.1.2)

The initial and boundary conditions associated with Eq. (3.1.1) are

at t=0 v, =0 (3.1.3)
at r=krRR v, =0 (3.1.4)
at =R v, =0 (3.1.5)

Introduction of the following dimensionless variables

v, T ut
_z = — = 3.1.6
AT 3 T (3.1.6)
4ul

o=

reduces Egs. (3.1.1) and (3.1.3) — (3.1.5) to the form

at 1= $=0 (3.1.8)
at E=r  ¢=0 (3.1.9)
at &= ¢ =0 (3.1.10)

3.1.1. Analytical Solution

Since Eq. (3.1.7) is nonhomogeneous, the solution is proposed in the form

P(&7) = Poo (§) = B, (€, 7) (3.1.11)



so that Eq. (3.1.7) is split into two differential equations: ¢, (£) and ¢, (&, 7)

being the steady-state and transient solutions, respectively. The governing

equation and the boundary conditions for ¢ (£) are

g L d( doy
0_4+€d€( dé“)

at { =k Do =0
at =1 Do =0
The solution of Eq. (3.1.12) is

6@ =1-¢ =1 T

nK

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

On the other hand, the governing equation for the transient contribution is given

by
06 _10 (00,
87_686( 06)

with the following initial and boundary conditions

at 7=0 O, = Do

at £ =k ¢, =0
at £ =1 ¢, =0

The solution of Eq. (3.1.16) is given by

Zy (M)

1
=8) — — A
o nZ: 38 P AT S o)
where the eigenvalues, \,, are the roots of
Yo (Ank) Jo (An) = Yo (An) o (Ank)

and Z, (A\,§) is defined by

Yo (M) Ju (Aa8) = Y (An) Jo (Aaki)

Zn (Anf) = Y, (Ank) Jo (Ank)

10

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)



The first ten eigenvalues for various values of radius ratio, s, are given in
Table 3.1.

The complete solution is obtained by the substitution of Eqgs. (3.1.15) and
(3.1.20) into Eq. (3.1.11). The result is [3]

$(&T)=1- 5— 1n5 82 3eXp (—A27) Zo k) (3.1.23)

Z1 ()\n) -+ Zl ()\nHZ)

The average velocity is defined by

R
/vzr dr
kR
R
/rdr
kR

In terms of the dimensionless quantities, Eq. (3.1.24) takes the form

(v:) = (3.1.24)

(v2)
(¢) = PP /¢>5 dé (3.1.25)

4l

Multiplication of the average velocity with the cross-sectional area, 7 (1 — k?) R?,
gives the volumetric flow rate. Thus, the dimensionless volumetric flow rate, ©,

is given by X
O=(¢)(1—+r%) = 2/ pEdE (3.1.26)

where

B Q
~ TRY(P, — Pp) /4pL

(3.1.27)

Substitution of Eq. (3.1.23) into Eq. (3.1.26) and integration give

@e:ca,ct =

ll—ﬂ +(1T] ‘162 v{ TG0 e

N | —

11



Table 3.1. The roots of Eq. (3.1.21) for different values of x.

K

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1 3.314 3.816 4.412 5.183 6.246 7.828 | 10.455 | 15.698
2 6.858 7.786 8.933 | 10.443 | 12.547 | 15.695| 20.936 | 31.411
3 | 10377 | 11.732 | 13.434 | 15.688 | 18.836 | 23.553 | 31.410 | 47.121
4 | 13.886 | 15.670 | 17.929 | 20.929 | 25.123 | 31.409 | 41.884 | 62.829
5 | 17.390 | 19.604 | 22.422 | 26.168 | 31.408 | 39.265 | 52.357 | 78.538
6 | 20.889 | 23.536 | 26.913 | 31.406 | 37.706 | 47.119 | 62.829 | 94.246
7 | 24387 | 27.467 | 31.403 | 36.643 | 43.977 | 54.974 | 73.301 | 109.954
8 | 27.883 | 31.396 | 35.892 | 41.881 | 50.961 | 62.829 | 83.774 | 125.662
9 | 31.378 | 35.326 | 40.382 | 47.117 | 56.544 | 70.683 | 94.246 | 141.371
10 | 34.872 | 39.2564 | 44.871 | 52.354 | 62.828 | 78.537 | 104.718 | 157.079

12



3.1.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.1.7) over the cross-sectional
flow area, i.e., multiplying Eq. (3.1.7) by £ d€ and integrating from & = & to
¢ = 1. The result is

1
/ —Qsé’df 4/ §d€+/ % (ﬁa—?)df (3.1.29)
or,
0 0
—/ pEdé=2(1-r*)+ a? a? (3.1.30)
Substitution of Eq. (3.1.25) into the left-hand side of Eq. (3.1.30) gives
1—r2\ d{o) B 0p 8¢
( 5 ) =20~ )Jra—5 85 (3.1.31)

To proceed further, it is necessary to express 0¢/J¢] =1 and 0¢ JOE| ¢, i terms
of the dimensionless average velocity, (¢). Hermite expansion for « = 1, =0,
Eq. (A) in Table 2.3, gives

%ﬁ/ﬁ}gdg:(l;“y@ = (@0 + 3 (60 (1?) 85965@'“

(3.1.32)
On the other hand, Hermite expansion for a = 0, § = 1, Eq. (A) in Table 2.4,
yields

%ﬁ/’: o€ dE = (H;) (¢) :é (¢f)§n+§ ()¢ = (1;{) ag&@'gl

(3.1.33)
Substitution of the boundary conditions defined by Egs. (3.1.9) and (3.1.10)
into Egs. (3.1.32) and (3.1.33) results in

¢ 31 +k)
%l = G (8) (3.1.34)
ol 31 +k)
3¢ » == (®) (3.1.35)

13



The use of Egs. (3.1.34) and (3.1.35) in Eq. (3.1.31) gives

d{p) = 12
ar (1—k)”

(¢) =4 (3.1.36)

The initial condition associated with Eq. (3.1.36) is
at 7=0 (¢)=0 (3.1.37)

The solution of Eq. (3.1.36) gives the average dimensionless velocity as

() = O_TR)Q {1 — exp {— (1277] } (3.1.38)

1—k)?

Therefore, the dimensionless volumetric flow rate becomes

LTS .

1— k)

3.1.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.1.28), with the approximate
one, Eq. (3.1.39), is presented in Figures 3.2 and 3.3 as a function of radius
ratio, k. Numerical values are given in Tables A.1—A.4 in Appendix A. In
the calculation of dimensionless volumetric flow rate using Eq. (3.1.28), the
first two terms of the series solution are sufficient for convergence of © when
7 > 0.04. For smaller 7 values, the third term of the series must also be taken

into consideration.

The exact and approximate values almost coincide with each other when
k > 0.5. When « < 0.5 and 7 < 0.4, approximate results overestimate the

exact ones with the largest deviation of about 13%.

The system reaches steady-state when 7 — co. Under these conditions, Egs.
(3.1.28) and (3.1.39) reduce to

1 (1—k2)°
= [1-kt+=—"7 3.1.40
@ex’act,oo 2 [ K+ h’llﬂ} ( )
1—r2)(1—k)?
@a,ppro:c,oo = ( i )3( H,) (3.1.41)
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Figure 3.2. Comparison of the analytical and approximate results when
0.1 <k<04.

Exact
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Figure 3.3. Comparison of the analytical and approximate results when
0.5 <k <0.8.
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From the values given in Table 3.2, the exact and approximate values of the
dimensionless volumetric flow rate are almost equal to each other when the

radius ratio is greater than 0.3.

Table 3.2. Ozqct,00 a0d Oypproz.00 Values under steady conditions.

K @e:ca,ct,oo @approac,oo

0.1] 0.287 0.267
0.2 0.213 0.205
0.3 ] 0.152 0.149
0.41] 0.102 0.101
0.5] 0.063 0.063
06| 0.034 0.034
0.7 0.015 0.015
0.8 | 0.0048 0.0048

3.2. Unequal Cooling of a Long Slab

A long slab of thickness L, length H, and width W is initially at a uniform
temperature of T,. At t = 0, while the surface at z = 0 is exposed to fluid A at
a temperature of T4, the surface at z = L is exposed to fluid B at a temperature
of Ts (Tp < Ta < T,). The average heat transfer coefficients between the fluids
and the surfaces located at z = 0 and z = L are (h,) and (hp), respectively. The
schematic representation of the system is shown in Figure 3.4. It is required to
determine the variation of average temperature with time as a result of unequal

cooling conditions applied at the surfaces.

| if

Ta <hy> Tg, < hp>

>z

Figure 3.4. A long slab cooled by convection.
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When L/W <« 1 and L/H < 1, the conduction equation takes the form

aT 0T
— =0 2.1
o~ " o2 (3:2.1)
with the following initial and boundary conditions
at t=0 T=T, (3.2.2)
at z2=0 k% = (ha) (T —Ta) (3.2.3)
z
aT
at z=L — l{:% = (hp) (T —Tp) (3.2.4)
Introduction of the dimensionless variables
T — TA V4 ot . <hA> L
— _ — _ — B —
=T, T T BT
(3.2.5)
Bi, = LBl o gy (Laz T
B B\ 7 T,
reduces Eqs. (3.2.1) — (3.2.4) to the form
a0 9%
== 2.
or 9 (32.6)
at 7=0 =1 (3.2.7)
06 :
at £=0 9% Biy 0 (3.2.8)
at £=1 —g—zzBiBQ—i—Q (3.2.9)

3.2.1. Analytical Solution
Since the boundary condition in Eq. (3.2.9) is nonhomogeneous, the dimension-

less temperature distribution is proposed in the form

0§ 7) =0 (&) —0: (& 7) (3.2.10)

so that Eq. (3.2.6) is split into two differential equations: 0 (§) and 6; (&, 7)

being the steady-state and transient solutions, respectively.

17



The governing equation and the boundary conditions for 6, (&) are

2
0= % (3.2.11)

df )
df o :

The solution of Eq. (3.2.11) is

Q (Biy &+ 1)

oo () = — 51, (1+ Biy) + Biy

(3.2.14)

On the other hand, the governing equation for the transient contribution is given
by

% _ (22;; (3.2.15)
with the following initial and boundary conditions
at 7 =0 0, =0, —1 (3.2.16)
at £=0 g—? = Bi, 0, (3.2.17)
at £=1 — g_eg — Big 0, (3.2.18)

The solution of Eq. (3.2.15) by the method of separation of variables is

0, = Z A, {cos (Anf) + % sin (M) | exp (— A27) (3.2.19)
n=1

n

where the eigenvalues, \,, are the roots of

A (Bis + Big)

A2 — Bia Big

tan A, = (3.2.20)

The first ten eigenvalues for different Biot numbers are given in Table 3.3.
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Table 3.3. The roots of Eq. (3.2.20) as a function of Biot numbers.

Bip = 1.0 | Bip =5.0 | Biy =10.0
n | Big =0.1 | Big =1.0| Big =1.0
1 0.9293 1.7523 1.8753
2 3.4523 4.2406 4.5073
3 6.4532 7.0417 7.3549
4 9.5396 9.9888 10.2923
5 12.6528 13.0100 13.2869
6 15.7771 16.0716 16.3189
7 18.9071 19.1570 19.3775
8 22.0404 22.2570 22.4546
9 25.1757 25.3667 25.5445
10 | 28.3124 28.4831 28.6450

The coefficients A,, are given by

2 (Bif +X2)

A, = — [ Bia (cos A, — 1) = Ay sin A, + Q5] (3.2.21)

where
7 = Bi, + Big + Bi, Big (3.2.22)
X, = Bia Big Z + (Bia + Bip + Bi} +Bi3) A2 + A, (3.2.23)

B Bi% A\, cos \, —sin A, ()\i Bia —|—)\i + BjA)
B 7\,
The use of Egs. (3.2.14) and (3.2.19) in Eq. (3.2.10) gives the complete solution

as

S, (3.2.24)

0—_ % _ i A, {COS (M) + % sin ()\ng)] exp (— \27) (3.2.25)
n=1

The average temperature, (T'), is defined by

1

(1) =+ /O T (3.2.26)
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In terms of the dimensionless quantities, Eq. (3.2.26) takes the form

0-0Ta_ [ a2

Substitution of Eq. (3.2.25) into Eq. (3.2.27) and integration lead to

Q(2 —|— BIA = A, Bi
<9>ea’act == |: -

1 W in A\, — W (cos A\, — )} exp (— Ar7)

n=

(3.2.28)

3.2.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.2.6) in the direction of heat
flow, i.e., z-direction. For this purpose Eq. (3.2.6) is multiplied with d¢ and
integrated from & = 0 to & = 1. The result is

—_— d 3.2.29
O o0 e = / ¢ (3.2.20)
or,
d 00 00
dé = — - — 3.2.30
dr $= O lemy 08|y ( )

Substitution of Eq. (3.2.27) into the left-hand side, and the boundary conditions
defined by Egs. (3.2.8) and (3.2.9) into the right-hand side of Eq. (3.2.30) give

d40)

= (Bin 0]y + Bis 0] + ©) (3.2.31)

To proceed further, it is necessary to express 0| ¢—1 and 0| ¢—o in terms of the
average temperature, (f). Hermite expansion for « = 1, f =0, Eq. (A) in
Table 2.3, gives

! 2 1 1 06
0dé =(0)=-10 -0 - — .2.32
On the other hand, Hermite expansion for a = 0, § = 1, Eq. (A) in Table 2.4,

yields

! 1 2 1 06
/0 0 = (0) =5 leco+ 50— 5 | (3.2.33)
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Substitution of the boundary conditions defined by Egs. (3.2.8) and (3.2.9) into
Egs. (3.2.32) and (3.2.33), respectively, and the simultaneous solution of the

resulting equations yield

6 (2 + Big) 20
6 (2 + Bia) Q(4+ Bia)
0 =—=(0) — 3.2.35
o = 2B g SEE (3.2.35)
where
Substitution of Egs. (3.2.34) and (3.2.35) into Eq. (3.2.31) gives
) 127 6 (2+ Biy)Q
— Yt — ) =——— 3.2.37
dr * w () w ( )
The initial condition associated with Eq. (3.2.37) is
at =0 (§)=1 (3.2.38)

Thus, the solution of Eq. (3.2.37) gives the average dimensionless temperature

as

Q(2 + Biy) (2 + Bis) 127
<0>approz = (T + |:1 + T exXp | — T T (3239)

3.2.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.2.28), with the approximate
one, Eq. (3.2.39), for 2 = 1.0 and different Biot numbers is presented in
Figures 3.5 - 3.7. Numerical values are given in Tables A.5 in Appendix A.

The Biot number is the ratio of the heat transfer resistance in the solid phase
to the heat transfer resistance in the fluid phase. Thus, when the Biot number
is small, temperature variation within the slab is almost uniform. As the Biot

number increases, temperature distribution within the slab starts to develop.
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T

Figure 3.5. Comparison of the analytical and approximate solutions when
Q = 1.0, Biy = 1.0, Big = 0.1.
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Figure 3.6. Comparison of the analytical and approximate solutions when
Q = 1.0, Bi, = 5.0, Big = 1.0.
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1.0

Bi,=10.0, Biz=1.0, Q=1.0
0.8
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<9>02_
® Exact
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0.0 1

-0.2 1

-0.4 T T T
0.0 0.5 1.0 1.5 2.0

T

Figure 3.7. Comparison of the analytical and approximate solutions when
Q = 1.0, Bix = 10.0, Big = 1.0.

The term (2 takes into account the difference between the fluid temperatures,
T4 and Tg. In the calculation of average temperature using Eq. (3.2.28), the
first three terms of the series solution are taken when 7 < 0.2. When 7 > 0.2,

convergence is obtained by considering the first two terms.

Approximate results almost coincide with the exact ones for different values of
the Biot numbers, the largest deviation being approximately 8% when 7 = 0.3,
Biy = 10.0, and Big = 1.0. An inspection of Figures 3.5 - 3.7 indicates that the
dimensionless average temperature, (f), becomes negative as 7 increases. These

negative values result from the definition of (#) given by
(3.2.40)

Thus, (f) takes negative values when (T") < T4. On the other hand, rearrange-
ment of the Q term defined by Eq. (3.2.5) yields

Q  Ta-Tp
Big T,—T4

(3.2.41)
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As the temperature difference between the cooling fluids A and B increases,
while the numerator of Eq. (3.2.40) becomes more negative, the denominator
decreases. As a result, (f) values converges to more negative values. Since the
values 2/ Big in Figures 3.5 and 3.6 are 10 and 1, respectively, (f) values in

Figure 3.5 are more negative than the ones in Figure 3.6.
When 7 — 00, both Egs. (3.2.28) and (3.2.39) reduce to

Q(2+ Biy)

e =——757, (3.2.42)

In other words, the analytical and approximate solutions become identical when
the system reaches steady-state. This limiting condition may be used to check
the consistency of the approximate solution. The dimensionless time needed
to reach steady-state, 7., and the dimensionless average temperature under
steady conditions, (¢)__, are given in Table 3.4. As the Biot number increases,
the external (fluid) resistance to heat transfer decreases. As a result, the system

reaches steady conditions in a shorter period of time.

Table 3.4. 7, and ()_ values as a function of Biot numbers.

Bi, | Big | 7o (0)

1.0 | 0.1 | 12.3 | —1.250
5.0 | 1.0 | 2.9 | —0.318
10.0| 1.0 | 2.6 | —0.286

3.2.4. Investigation of the Limiting Case for Ty = 1Tp

When the fluid temperatures are the same, the term {2 becomes equal to zero.
In this case, Eq. (3.2.28) reduces to

AR Bia
(0) ract = — Z N {sm An — W (cos A, — 1) | exp (— A27) (3.2.43)

n=1

where - )
4 2 (BIB —i—)\n)

. 5 [ Bia (cos A, — 1) — Ay sin A, ] (3.2.44)
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On the other hand, the approximate solution given by Eq. (3.2.39) reduces to

127
= - 2.4
O =30 (=227 (3.2.05

A comparison of the analytical solution, Eq. (3.2.43), with the approximate one,
Eq. (3.2.45), for different Biot numbers is given in Figures 3.8 and 3.9. The exact
and approximate dimensionless average temperature values almost coincide with
each other for all values of the Biot numbers. In this case, (f) cannot take
negative values since cooling fluid temperatures on both sides of the slab are
equal to each other. Su [4] also obtained Eq. (3.2.45) using Hermite expansions
fora =0, =0and « =1, § = 1. However, he compared the approximate

results with the ones obtained numerically using the finite difference method.

1.0
08 | ® Exact .
—— Approximate
0.6
©he
’ Bi,=1.0, Big =0.1
0.2 1 9
Bi,=5.0, Big =1.0
0.0 A 1
0.0 0.5 1.0 15 2.0

Figure 3.8. Comparison of the analytical and approximate solutions when

) = 0 with Bijand Big as parameters.
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T

Figure 3.9. Comparison of the analytical and approximate solutions when
Q=0, Bi, =10.0, Bis = 1.0.

3.3. Unsteady Heat Conduction in a Cylindrical Rod with

Internal Heat Generation

A cylindrical rod of radius R, and length L, shown in Figure 3.10, is initially at
a uniform temperature of 7,. An internal heat generation starts within the rod

at ¢ = 0 with a volumetric rate of
R =R, (3.3.1)

where R, is a known constant. The outer surface of the rod is exposed to a
cooling fluid at a temperature of T, (T < T,) with an average heat transfer
coefficient (h). It is required to find average temperature within the rod as a

function of time.

When R/L < 1, r-component of the equation of energy takes the form

L OT 0 ([ OT
_p 9 (%L 3.2
G, k;ar(rar)—kfﬁ (3.3.2)
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v

Figure 3.10. Unsteady conduction in a cylindrical rod with internal heat

generation.

The initial and boundary conditions associated with Eq. (3.3.2) are

at t=0 T=T, (3.3.3)

at =20 or =0 (3.3.4)
or

at r=R —k aa—z = (h) (T — Tx) (3.3.5)

Introduction of the dimensionless variables

T-Te , r __at . (R . [ RR
V=g—g E=p 7= Bi="— A= {7k(TO—Tm)] (3.3.6)
reduces Eqs. (3.3.2) — (3.3.5) to the form

a0 10 ( 00 5
5= ¢ oe (c¢) A 350
at =0 =1 (3.3.8)

a0

at £€=0 7€ =0 (3.3.9)

a0 :
at (=1 — % Bid (3.3.10)

3.3.1. Analytical Solution

Since Eq. (3.3.7) is nonhomogeneous, the solution is proposed in the form

0(§,7) =00 (§) —0: (&, 7) (3.3.11)
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so that Eq. (3.3.7) is split into two differential equations: 0., (§) and 6, (&, 7)
being the steady-state and transient solutions, respectively. The governing

equation and the boundary conditions for 6, () are

1d db
O==-— (=) +AE 3.3.12
€ i (5 & ) ¢ (3312
db
Aoy .
The solution of Eq. (3.3.12) is
A A
O = — (1 &) + — (3.3.15)

16 4 Bi

On the other hand, the governing equation for the transient contribution is given

by
20, 108 (00,
or £ 0¢ ( 8—6) (33.16)

with the following initial and boundary conditions

at 7=0 0 =0y — 1 (3.3.17)
B 90,
at =0 % = 0 (3.3.18)
00 :
at £=1 —a—g — Bi#, (3.3.19)

The solution of Eq. (3.3.16) by employing the method of separation of variables
is [5]

0= AnJo (M) exp (— A27) (3.3.20)
n=1

where the eigenvalues, \,, are the roots of

The first ten eigenvalues for different Biot numbers are given in Table 3.5.
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Table 3.5. The roots of Eq. (3.3.21) as a function of Biot number.

n |Bi=0.1]Bi=1.0| Bi=5.0
1 0.4417 1.2558 1.9898
2 3.8577 4.0795 4.7131
3 7.0298 7.1558 7.6177
4 10.1833 | 10.2710 | 10.6223
5 13.3312 | 13.3984 | 13.6786
6 16.4767 | 16.5312 | 16.7630
7 | 19.6210 | 19.6667 | 19.8640
8 | 22.7645 | 22.8040 | 22.9754
9 | 259075 | 25.9422 | 26.0937
10 | 29.0503 | 29.0812 | 29.2168

The coefficients A,, are given by

A LA2 Bi A2
A, = . (3.3.22)
A
(B—;g + 1) J1 (A\n)

The use of Egs. (3.3.15) and (3.3.20) in Eq. (3.3.11) gives the complete solution

as

A 4 A = 9
0= 15 (1—¢4 + T nZ: A, Jo (An€) exp (— A27) (3.3.23)
The average temperature, (T'), is defined by
R
/ Trdr
0
(T) = —5— (3.3.24)
/ rdr
0
In terms of the dimensionless quantities, Eq. (3.3.24) takes the form
/1
0¢ dg .
(0) = () =T _ Jo =2 / 0¢ d¢ (3.3.25)
0

L=t /Olé“dé“
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Substitution of Eq. (3.3.23) into Eq. (3.3.25) and integration lead to

A (Bi+6) A,
i Z)\_

2
< >e;L’a,ct 24 Bl eXp ( )\nT) (3326)

3.3.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.3.7) over the cross-sectional
area of cylinder. For this purpose Eq. (3.3.7) is multiplied by ¢ d¢ and integrated
from £ =0 to £ = 1. The result is

1

AE3 3.
[ [ &) a [ren oo
d (! ol 00 A
i ], ree=(eg¢) - (e5e)_+5 (3:3:2%

Substitution of Eq. (3.3.25) into the left-hand side, and the boundary conditions
defined by Egs. (3.3.9) and (3.3.10) into the right-hand side of Eq. (3.3.28) give

or,

A
— - =-2Bifl_ +g (3.3.29)

To proceed further, it is necessary to express 9]5:1 in terms of the average
temperature, (#). Hermite expansion for « = 1 and § = 0, Eq. (B) in Table 2.3,
yields

1 9(0¢)

1, 5 7 1 92 (0¢)
[ vede=5 0= 2090+ 5 00, - 35 2

-

(3.3.30)
The use of the boundary conditions defined by Eqgs. (3.3.9) and (3.3.10) into
Eq. (3.3.30), and the solution of the resulting equation yield

6
Ole_y = (m) (0) (3.3.31)
Substitution of Eq. (3.3.31) into Eq. (3.3.29) gives
d(®) [ 12Bi A
0) = — 3.3.32
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The initial condition associated with Eq. (3.3.32) is
at =0 (§)=1 (3.3.33)

Thus, the solution of Eq. (3.3.32) gives the average dimensionless temperature

as

A(Bi+6) [(24—A)Bi—6A 12 Bi
_ _ 3.3.34
Oappror = —51m1 T 24 Bi AT BI T (3:3.34)

3.3.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.3.26), with the approximate
one, Eq. (3.3.34), for different Biot numbers and the dimensionless generation
term, A, is presented in Figures 3.11 - 3.13. Numerical values are given in Tables
A.6—A.8 in Appendix A.

In the calculation of (f) using Eq. (3.3.26) the first three terms of the series
solution are taken when 7 < 0.08. For the greater values of 7, even the first two

terms of the series are sufficient in order to calculate the average temperature.

Even though the rod is exposed to a cooling fluid, the average rod temperature
increases with time since the generation term, A, dominates the heat loss by
convection in all cases. As the Biot number increases, the external resistance to
heat transfer decreases, i.e., temperature difference between the rod surface and
the cooling fluid decreases. In this case, the temperature difference between the
interior and surface temperatures of rod increases with a concomitant increase

in heat loss.

The approximate solution gives satisfactory estimates of the dimensionless
average temperature for relatively small values of Biot number, i.e., Bi = 0.1,
and Bi = 1.0. The difference between the analytical and approximate solutions
increases as the values of Bi and A increase. The largest deviation is about 18%
when Bi = 5.0, A =300, and 7 = 0.2.

When 7 — 00, both Egs. (3.3.26) and (3.3.34) reduce to

A (Bi +6)

O = 515 (3.3.35)
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In other words, analytical and approximate solutions become identical when the
system reaches steady-state. The dimensionless time needed to reach steady-
state, 7o, and the dimensionless average temperature under steady conditions,

(0), , for different Biot numbers are given in Table 3.6.

Table 3.6. 7o, and (#)_, values as a function of Biot number.

Bi =0.1 Bi=1.0 Bi=5.0

A 50 10 1 | 100 | 50 | 10 | 300 | 100 | 50
(0)y | 127.1 | 25.4 |25 |29.2 | 146 | 29| 275| 9.2 | 4.6
Too 84 76 | 62 | 10 9 8 4 135133

In expressing the physical quantities and/or their derivatives on the system
boundaries in terms of the average values, one can use different Hermite expan-
sions. For example, Eq. (3.3.34) is obtained by using Hermite expansion for
a =1, § =0. On the other hand, the use of the Hermite expansion for a = 0,
g =1, Eq. (B) in Table 2.4, leads to

) _A(BI+3) | [(12-A)Bi-3A 6 Bi
approz — 19 Bj 12 Bi P\ 735 Bi

T) (3.3.36)

In this case, the steady-state solution is given by

A (Bi+3)
9y —=— 3.3.37
which is different from Eq. (3.3.35). Obtaining identical expressions for the
analytical and approximate solutions under steady conditions does not neces-
sarily mean that the Hermite expansion used in the approximate solution is the

correct choice; however, the chance of it being correct is fairly high.
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Bi=0.1
6 A=50.0
® Exact
—— Approximate

4 _
<0>

24 A=10.0

[ A=1.0
0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

T

Figure 3.11. Comparison of the analytical and approximate solutions when

Bi = 0.1 with A as a parameter.

12

Bi=1.0

101 A=100.0

® Exact
—— Approximate

6 .
<0>

4 4

0.00 0.05 0.10 0.15 0.20 0.25

Figure 3.12. Comparison of the analytical and approximate solutions when

Bi = 1.0 with A as a parameter.
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25
Bi=5.0
20 ~
® Exact A=300.0
—— Approximate
15 A
<6>
10
A=100.0
5 .
A=50.0
°
0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Figure 3.13. Comparison of the analytical and approximate solutions when

Bi = 5.0 with A as a parameter.

3.4. Diffusion of a Solute Into a Long Slab From Limited
Volume of a Well-Mixed Solution

A long slab of thickness 2L is suspended in a well-mixed fluid with a limited
volume of V; as shown in Figure 3.14. While the slab is initially solute-free, the
solute concentration in the solution is c,,. It is required to obtain an expression

relating solute uptake of the slab as a function of time.

|

X

L.

Figure 3.14. Diffusion into a long slab from a limite volume.

i
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Let ¢ and ¢, be the solute concentrations in the slab and the solution, respec-
tively. When L/H < 1, the governing equations for the slab and the solution
take the form

de dD*c
— =D — 4.1
o D 5.2 slab (3.4.1)
(— D oc ) 2A =V des solution (3.4.2)
0z|,_; dt

where A is the cross-sectional area of the slab. The initial and boundary condi-

tions are

at t=0 c=0 and Cs = Cs, (3.4.3)
0

at z=0 — =0 (3.4.4)
0z

at z=L c=Hcs (3.4.5)

where H is the partition coefficient. Introduction of the following dimensionless

variables
c Cs z Dt Vi
reduces Eqs. (3.4.1) — (3.4.5) to the form
o0 0%
— == 1 3.4.7
or ~ o O (347)
a0 df
- = =y luti 3.4.8
9|, e solution ( )
at T=0 60=0 and  f0,=1 (3.4.9)
a0
= - = 4.1
at £=0 5o =0 (3.4.10)
at =1 0=0, (3.4.11)

Once the solute concentration within the slab is determined as a function of

position and time, then the solute uptake, M, is determined from

L
M = 2A/ cdz (3.4.12)
0
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On the other hand, the solute concentration within the slab under steady con-

ditions, ¢, can be determined from a simple macroscopic balance as
Vics, = Vicoo +2ALHC (3.4.13)

or,

v
=(—=]cs 3.4.14

Therefore, the fractional uptake of the solute, F', is given by

(3.4.15)

L
\ QA/ cdz - .
0 +
F_MOO_QALHCOO_( v )/OQOE

where M, is the maximum amount of solute transferred into the slab.
Note that Eq. (3.4.15) is also expressed as

F= (%) (0) (3.4.16)

where () represents the average dimensionless concentration defined by

(0) = % = /O 1 0 d¢ (3.4.17)

3.4.1. Analytical Solution

The analytical solution is given by Carslaw and Jaeger [6] as

Frpaer =120 (1 + ) - X7 3.4.18
' ; T+ 0+ )2 P ( ) ( )
where the eigenvalues, \,, are the roots of

tan A, = — U\, (3.4.19)

The first ten eigenvalues for various values of ¥ are given in Table 3.7.

36



Table 3.7. The roots of Eq. (3.4.19) as a function of V.

n | V=500 |¥Y=100|¥Y=10
1 1.5834 1.6320 2.0288
2 4.7166 4.7335 4.9132
3 7.8565 7.8667 7.9787
4 | 10.9974 | 11.0047 | 11.0855
o | 14.1386 | 14.1442 | 14.2074
6 | 17.2799 | 17.2845 | 17.3364
7 | 20.4213 | 20.4252 | 20.4692
8 | 23.5628 | 23.5662 | 23.6043
9 | 26.7043 | 26.7073 | 26.7409
10| 29.8458 | 29.8485 | 29.8786

3.4.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.4.7) in the direction of mass
transfer, i.e., z-direction. For this purpose Eq. (3.4.7) is multiplied by d¢ and
integrated from & = 0 to & = 1. The result is

Lo L 920
—d€ = —d 3.4.20
[ /O g (3.4.20)
or,
d 1 00 89'
— dé = — e 3.4.21
dr J, ¢ O lemy 08|y ( )

Substitution of Eq. (3.4.17) into the left-hand side, and the boundary condition
defined by Eq. (3.4.10) into the right-hand side of Eq. (3.4.21) give

a{g) o0
— = = 4.22
dr 0& =1 (3 )
Combination of Eqgs. (3.4.8) and (3.4.22) gives
d () do
R A 3.4.23
dr dr ( )
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The solution of Eq. (3.4.23) using the initial condition of
at 7=0 ()=0 and 0,=1 (3.4.24)

leads to
0) =V (1 -0, (3.4.25)

To proceed one step further, it is necessary to express 06/9¢] ¢—1 in terms of the
dimensionless average concentration, (f). Hermite expansion for « =1, § =0,
Eq. (A) in Table 2.3, gives

! 2 1 1 06
uéeﬁ;wm_geko+§ekl+égggo (3.4.26)

On the other hand, Hermite expansion for a = 0, § = 1, Eq. (A) in Table 2.4,
yields
! 1 2 100
Odé =0) =0y + 501 — = == (3.4.27
/0 3 e=0 3’§1 6 ¢, )
Substitution of the boundary conditions defined by Eqgs. (3.4.10) and (3.4.11)
into Egs. (3.4.26) and (3.4.27), and the simultaneous solutions of the resulting

equations yield

a0
— =3(0s — (0 3.4.28
| =30~ ) (3.4.28)
Elimination of 6, between Eqs. (3.4.25) and (3.4.28) results in
90 1+ \I/)
— =3-3——) (0 3.4.29
%, =)@ (3.429)

Therefore, the governing equation is obtained by the substitution of Eq. (3.4.29)
into Eq. (3.4.22) as

% +3 (%) 0) =3 (3.4.30)
The solution of Eq. (3.4.30) is
R 2 S TPYEE T | BN
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The use of Eq. (3.4.31) in Eq. (3.4.16) gives the fractional solute uptake as

1+
Fapproac =1- €xXp |:_ 3 (—i_T) ’7_:| (3432)

3.4.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.4.18), with the approximate one,
Eq. (3.4.32), is presented in Figures 3.15 and 3.16 for various values of W.

Numerical values are given in Table A.9 in Appendix A.

The term ¥ represents the ratio of the solution volume to the product of the
slab volume and the partition coefficient, H, relating concentrations of species
at the solid-fluid interface under equilibrium conditions [7]. In the calculation of
F using Eq. (3.4.18), the first three terms of the series solution are taken when

7 < 0.2. For larger values of 7, the first two terms are sufficient for convergence.

1.0

0.8

0.6

F

0.4 -
Exact

02 - ® ¥=100 4 V¥=10
—— Approximate

00 T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T

Figure 3.15. Comparison of the analytical and approximate solutions with ¥

as a parameter.
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1.0

. ]
°
0.8 b
0.6
F .
0.4 -
¥=50.0
0.2 1 ® Exact
—— Approximate
00 T T T T T
0.0 0.2 04 0.6 0.8 1.0 1.2
T

Figure 3.16. Comparison of the analytical and approximate solutions when
¥ = 50.0.

When ¥ > 10, the exact and approximate results are almost identical for
7 > 0.3. When 7 < 0.3, however, fractional uptake values obtained by the
approximate solution underestimates the analytical ones, the largest deviation
being 27%.

This problem was also analyzed by Ozyilmaz [2] using the Hermite expansion

for « = 0 and = 0 approximation. Approximate solution in that case is

1+w
b 1o [ 1(5) ]

A comparison of the analytical solution with the two approximate solutions given

(3.4.33)

by Egs. (3.4.32) and (3.4.33) for various values of U is presented in Figures
3.17 — 3.19. The use of a = 0, § = 0 Hermite expansion gives better estimates
of the exact values only for very small values of 7, i.e., 7 < 0.2. When 7 > 0.2,
the combination of « =1, § = 0 and a = 0, § = 1 Hermite expansions improves

the results of the approximate technique in a great extent.
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/
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041/ W=1.0
// ® Exact
024
/ This work
——— Ozylmaz
00 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

T

Figure 3.17. Comparison of the analytical and two approximate solutions when

U = 1.0.
1wy _——
T . q
- °
// [
0.8 - -
0.6 1 //
F /e
/
04 o
// ¥=10.0
0.2 - // e Exact
y/ This work
/ ——— Ozyilmaz
O-O T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
T

Figure 3.18. Comparison of the analytical and two approximate solutions when

v = 10.0.

41



L e ——
—— - L4 '
- - ¢
4 - (]
0.8 o
/
/
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Figure 3.19. Comparison of the analytical and two approximate solutions when
¥ = 50.0.

3.5. Convective Mass Transport with a Wall Reaction

Between Two Parallel Plates

An incompressible Newtonian fluid flows between two large parallel plates sepa-
rated by a distance B under the action of a constant pressure gradient as shown
in Figure 3.20. While a first-order irreversible chemical reaction takes place at
the upper plate, the lower plate is impermeable to mass transfer of species. The
system is isothermal and it is continuously fed at z = 0 with a dilute solution
of chemical reactant with a uniform concentration c,. It is required to deter-
mine the bulk concentration of species as a function of the axial direction under

steady conditions.

L >

I
L] L}

|

i |

Figure 3.20. Convective mass transport between two large parallel plates.
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The fully-developed velocity profile is given by

v, = (730%532 {% = (%)2} (3.5.1)

where P is the modified pressure defined by

P =P+ pgx (3.5.2)

For large values of Peclet number, the conservation of chemical species under

steady conditions takes the form

(P,—Pr)B? [z xz\2] Oc dD%c
Z (= — =D — 0.
2uL B (B) 0z Ox? (3:5:3)
The boundary conditions associated with Eq. (3.5.3) are
at z2=0 c=c (3.5.4)
at © =0 e =0 (3.5.5)
Ox
at t=B —D 9 _ K'c (3.5.6)
Ox
Introduction of the following dimensionless variables
c T 2uLD z k"B
"= S8BT (P, P, B D (3:57)
reduces Egs. (3.5.3) — (3.5.6) to the form
o0 9%
—? L = T2 3.5.8
at n=0 0=1 (3.5.9)
06
pumm _ = . -10
at £€=0 5 =" (3.5.10)
a0
=1 ——=A .0.11
at & o€ 0 (3.5.11)
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3.5.1. Analytical Solution

The method of separation of variables is employed in order to solve Eq. (3.5.8).

The solution is written in product form as

0(&n) =F(&) G ) (3.5.12)

so that Eq. (3.5.8) is split into two ordinary differential equations:

| NG =0 (3.5.13)
dn
and L P
— A F =0 (3.5.14)
§— & dg
The solution of Eq. (3.5.13) is
G, (n) = exp (— X2n) (3.5.15)
The use of the following transformations
An, 9
X = T (26 —1) (3.5.16)
F, X A
X)=—= — - 5.1
W, () = Ze (3 - ) (35.17)
reduces Eq. (3.5.14) to
W, 3 aw, 12—\,
X e +(§—X) e —( 16 )Wn—O (3.5.18)
An equation of the type
d*y dy
ZJ —1) =2 —qy = 0.1
xdﬁ—i-(b x) 7 0 (3.5.19)

is known as Kummer’s equation [8]. One of the solutions of Eq. (3.5.19) is given
by
y1 = M(a,b,x) (3.5.20)
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The term M (a,b, x) is the Kummer’s function of the first kind defined by

ar  (a)yx? (a), "
=1+—
M (a,b, ) +ot )2 + ..+ ()

+ .. (3.5.21)

where (a),, and (b),, are Pochhammer symbols expressed as
(Wh =ww+1)(w+2)...(w+n—1) with (w), =1 (3.5.22)
Another independent solution of Eq. (3.5.19) is given by
Yo =1 M(1+a—0b, 2-0b, ) (3.5.23)

Therefore, the solution of Eq. (3.5.19) can be expressed as the sum of solutions,
ie.,
y = Cf M(a,b,x)+Cs 2" "M(1+a—b,2—0b, 1) (3.5.24)

where C} and C are constants. Comparison of Eq. (3.5.18) with Eq. (3.5.19)
gives the solution of Eq. (3.5.18) as

12 — iy
Wn(X):C;‘M(J 3 ) ¢

44—\, 1
2 n

M — X 3.5.25
6 2" )T Ux ( 16 2’ ) (3:5.25)
Expressing X in terms of £ by using Eq. (3.5.16) reduces Eq. (3.5.24) to the

form

w1120 3 A (2612 Oy 4—X, 1 A (26 1)
Wal€) = CiM 16 2’ 4 25—1M 16 2’ 4
(3.5.26)

where C3* is another constant. Finally, substitution of Eq. (3.5.26) into
Eq. (3.5.17) leads to the solution as

Fo (€) = exp —ﬁ(é’—l)é’ Cy(26—1) M 2= A 3 M (26-1)
2 16’2 4

— A 1N (26 -1)°

1
M _
+C 16 2 4

] (3.5.27)
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The use of the boundary condition

dF,
dg

at £ =0 =0 (3.5.28)

gives

RO = Crom |3 (6~ 1)¢ { (2 - 1) M[

2
+S, M [4 — A”,%, Ao (26— 1) ] } (3.5.29)

12-X, 3 X, (26-1)°
16 2 4

16 4
where
12—\, An 28—, An
12()\71_4)M( 16 ,%,T)‘i‘()\n_lz))\nM( 16 737?)
n = (3.5.30)
4-A An 20—, An
3)\n|:4M( 6 7%7?)—’_()‘71_4)]\4( 16 7%7T)i|
On the other hand, the use of the boundary condition
dF,
até=1  — e AF, (3.5.31)
gives the following transcendental equation for the eigenvalues A,
4=, 1 A 12-%, 3 A,
125, (O —28) M (52,3, %) +12 [n 22+ M) M (25,85 =

20—\, An 28—X, n
=30 O —4) S M (B2 33 ) = (A —12) M (B2, 5% ) (3532)

The first ten eigenvalues for various values of A are given in Table 3.8. Thus,

the complete solution is given by
0(&m) = AF, (€)exp (—A2n) (3.5.33)
n=1
where the coefficients A,, are given as

/0 F(6) (6 - &) de
/01 F2(€) (6 — &) de

A, = (3.5.34)
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Table 3.8. The roots of Eq. (3.5.32) as a function of A.

n| A=01 | A=05|A=10
1 0.76055 | 1.5886 | 2.0837
2 9.1261 | 9.3925| 9.6706
3 17.1960 | 17.3740 | 17.5723
4 25.2269 | 25.3650 | 25.5244
) 33.2448 | 33.3602 | 33.4952
6 41.2567 | 41.3568 | 41.4751
7 49.2653 | 49.3544 | 49.4604
8 D7.2718 | 57.3525 | 57.4489
9 65.2770 | 65.3510 | 65.4398
10| 73.2812 | 73.3497 | 73.4323

The bulk concentration, ¢, is defined by

W B
/ / cv, drdy
o Jo
% ="w B
/ / v, dxdy
o Jo

where W is the width of the plate. In terms of the dimensionless quantities,
Eq. (3.5.35) takes the form

(3.5.35)

[oe-eya
O = — = =6 / 0 (c—¢?) de (3.5.36)
/0(5—52) a7

Substitution of Eq. (3.5.33) into Eq. (3.5.36) and integration give the dimen-

sionless bulk concentration as

& 1
Op.eract = 6 Anexp (—A2n) /0 F, (&) (£— &) d¢ (3.5.37)
n=1

3.5.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.5.8) over the cross-sectional

area of the system. For this purpose Eq. (3.5.8) is multiplied by d¢ and
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integrated from £ = 0 to & = 1. The result is

/(5 &) dé’ / (3.5.38)

00
- (€—¢&) d¢ = - = 3.5.39
/ 05 %€ .o (3:5.39)
Substitution of Eq. (3.5.36) into the left-hand side, and the boundary conditions
defined by Egs. (3.5.10) and (3.5.11) into the right-hand side of Eq. (3.5.39)

give

or,

Lo,
6 dn

To proceed further, it is necessary to express 9]511 in terms of #,. Hermite

= —Ad,_, (3.5.40)

expansion for « =0, =0, Eq. (B) in Table 2.2, gives

[ eae=tt 12BN 1oB(E-C)

=1

(3.5.41)

e |

£=0

On the other hand, Hermite expansion for a = 1, f = 1, Eq. (B) in Table 2.5,
yields

' 2 _eb_1 2 2 2 18[9(5_52)}
[ ote=e) de =G =30 (6= )30 (- ) —g — g

+1{WW@ﬁ} &[0 (¢~ €]
72 o€?

Substitution of the boundary conditions defined by Eqgs. (3.5.10) and (3.5.11)
into Egs. (3.5.41) and (3.5.42) and the simultaneous solution of the resulting

=1

equations yield

16
= |— 5.4
The use of Eq. (3.5.43) in Eq. (3.5.40) yields
g, 32A
d—77 + (m) 0, =0 (3.5.44)
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which is subject to the following boundary condition
at n=0 60,=1 (3.5.45)

The solution of Eq. (3.5.44) is given by
32A
eb,approac = exp |:— (m) 77:| (3546)

3.5.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.5.37), with the approximate
one, Eq. (3.5.46), is presented in Figure 3.21 for various values of the Thiele
modulus, A, which represents the ratio of the rate of surface reaction to the
rate of diffusion. Numerical values are given in Table A.10 in Appendix A. In
the calculation of 6, using Eq. (3.5.37), integration is performed numerically
by MATHEMATICA™ . Convergence is obtained by considering the first three

terms of the series.

1.0
A=0.1
0.9 A [ )
0.8 A
0.7 1 A=0.5
eb
0.6 A b
®
054 ® Exact o A=1.0
—— Approximate °
0.4 ®
0.00 0.05 0.10 0.15 0.20

n

Figure 3.21. Comparison of the analytical and approximate solutions with A as

a parameter.
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The exact and approximate results are almost identical, the largest deviation
being around 4% when A = 1.0 and 7 = 0.2. As the Thiele modulus increases,
the rate of surface reaction becomes more dominant than the rate of diffusion.
As a result, species are consumed faster with a concomitant decrease in the bulk

concentration, 6.

3.6. Convective Mass Transport with a Wall Reaction in
a Cylindrical Tube

In this section, the problem analyzed in the previous section is solved in cylindri-
cal coordinate system. An incompressible Newtonian fluid flows in a cylindrical
tube with a radius of R under the action of constant pressure gradient as shown
in Figure 3.22. A first-order irreversible chemical reaction takes place on the wall
of the cylinder. The system is isothermal and it is continuously fed at z = 0
with a dilute solution of chemical reactant with a uniform concentration c¢,. It
is required to determine bulk concentration as a function of the axial direction

under steady conditions.

A
A

t-bz ) 2R
—>

Figure 3.22. Convective mass transport in a cylindrical tube.

The fully-developed velocity profile is given by

v, = (P"%LL)RQ {1 _ (%)Q] (3.6.1)

For large values of Peclet number, the conservation of chemical species takes the

(P=PL) R [ (r\*] 9c _D 9 ( be
4ul 1 (R) 92 r or\ or (362)

form
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The boundary conditions associated with Eq. (3.6.2) are

at z=10 c=c, (3.6.3)
st r—0  2_y (3.6.4)
or
at r=R =D e _ K'c (3.6.5)
or

Introduction of the following dimensionless variables

4pLD 2 k'R

,
9:6—0 SZE n:m A:T (366)
reduces Eqs. (3.6.2) — (3.6.5) to the form
a0 10 ( 00
1-&) —==— (¢4 3.6.7
0-€) 5= g (<3¢ 300
at n=0 =1 (3.6.8)
at £=0 g—z ~0 (3.6.9)
at £=1 —2—2:/\9 (3.6.10)

3.6.1. Analytical Solution

The method of separation of variables is employed in order to solve Eq. (3.6.7).

The solution is written in product form as

0(&n) =F(&) G ) (3.6.11)

so that Eq. (3.6.7) is split into two ordinary differential equations which are

G,
gy TG =0 (3.6.12)
and ) J
L P NI 3.6.13
( s)d&(%)* » (36.13)
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The solution of Eq.(3.6.12) is
G (n) = exp (= A2n) (3.6.14)

The use of the following transformations

X=X& (3.6.15)
X
W, (X) =exp (5) F, (3.6.16)
reduces Eq. (3.6.13) to
d*W, aw, 2— X\,
X+ (1= X) —( y )Wn_o (3.6.17)

Comparison of Eq. (3.6.17) with Eq. (3.5.19) reveals that Eq. (3.6.17) is the
Kummer’s equation. The general solution of Eq. (3.6.17) is given by
2—\,

2 _
W, (X)=C, M (TA” 1,X) + U (T’ 1,X) (3.6.18)

where M (2_4A”,1,X) and U (2_2”
kind and second kind, respectively [8]. Equation (3.5.21) defines Kummer func-
tion of the first kind, M. Kummer function of the second kind, U, is defined

by

1L, X ) are Kummer’s function of the first

I'(l1—0) ro-1 ,.,
=M —_— M (a — 1,2-10
U (a,b,x) Ta—bt1) (a,b,z) + I (@) x (a—b+1, , )
(3.6.19)
where I' () is the gamma function defined by
I (z)= / trle Tt dt (3.6.20)
0

Since U is unbounded when b = 1, i.e., I' (0) = oo, the general solution becomes

Wo(X)=C M (Q_TA” 1,X) (3.6.21)
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The boundary condition defined by Eq. (3.6.10) takes the form

A 1
“ (o)

(3.6.22) gives the following transcendental equation for the

AW,
dX

at X =\, (3.6.22)

The use of Eq.

eigenvalues A\,

A 2—-X\, 2—-\, 6— M\,
(1) o (25200) = (252) o (S ) oo

The first ten eigenvalues for various values of A are given in Table 3.9.

Table 3.9. The roots of Eq. (3.6.23) as a function of A.

n | A=01]A=05|A=10|A=20
1 0.6183 1.2716 1.6413 2.0000
2 5.1169 5.2951 5.4783 5.7439
3 9.1889 9.3063 9.4360 9.6451
4 | 13.2211 | 13.3119 | 13.4152 | 13.5903
5 | 17.2399 | 17.3153 | 17.4026 | 17.5548
6 | 21.2524 | 21.3177 | 21.3939 | 21.5295
7 | 25.2615 | 25.3194 | 25.3875 | 25.5105
8 | 29.2684 | 29.3207 | 29.3826 | 29.4955
9 | 33.2738 | 33.3217 | 33.3787 | 33.4834
10 | 37.2783 | 37.3225 | 37.3755 | 37.4733

The complete solution is given by

0(&m) =Y AnFy (&) exp (= Aon) (3.6.24)
n=1
where )
E, (&) =exp (— A”; ) M (2 ;A”, 1, A,gQ) (3.6.25)
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The coefficients A,, are given as

/O Fa(€) (1— &) ede

Ay =+ (3.6.26)
| Eoa-eea
0
The bulk concentration, ¢, is defined by
2w R
/ / cu, T drdd
=20 70 (3.6.27)

Co = 2w R
/ / v, drdf
o Jo

In terms of the dimensionless quantities, Eq. (3.6.27) takes the form

1
[oa-eea
g, = 2L =20 :4/ 0 (1—¢)¢dg (3.6.28)
0

Co 1 )
_ ) ¢ed
/0(1 € ¢ de

Substitution of Eq. (3.6.24) into Eq. (3.6.28) and integration give the dimen-

sionless bulk concentration as

00 1
eb,e;ra,ct =4 Z An €Xp (_ )\72177) /0 E, (5) (1 - 52) €d€ (3629)
n=1

3.6.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eq. (3.6.7) over the cross-sectional
area of the system. For this purpose Eq. (3.6.7) is multiplied by ¢ d¢ and
integrated from & = 0 to & = 1. The result is

! W00 [T [ 08
/05(1‘5)077055—/0 8_5(50_5) i (3.6.30)
or, 1
d o0 o0
— [ 06(1-)de=¢—| — &= 3.6.31
g [ - de=egg| gl (3631)
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Substitution of Eq. (3.6.28) into the left-hand side, and the boundary conditions
defined by Egs. (3.6.9) and (3.6.10) into the right-hand side of Eq. (3.6.31) give

1 dby
—— =—A40 3.6.32
4 d77 ’g:l ( )
To proceed further, it is necessary to express 9]5:1 in terms of #,. Hermite

expansion for « =0 and f = 1, Eq. (A) in Table 2.4, gives

: oo O 1 2 1 0[0(1-¢)¢]
[ o= de =% =5 0910+ 3 (-5 —— 3

=1

(3.6.33)
Substitution of the boundary conditions defined by Egs. (3.6.9) and (3.6.10)
into Eq. (3.6.33) results in

3
Oy =-0 .6.34
o1 =70 (3.6.34)
The use of Eq. (3.6.34) in Eq. (3.6.32) yields

df,
2 L3NG, = .6.
gy H A0 =0 (3.6.35)

which is subject to the following boundary condition
at =0 6,=1 (3.6.36)
The solution of Eq. (3.6.35) is given by

Ob.approz = €xp (—3An) (3.6.37)

3.6.3. Comparison of Results

A comparison of the analytical solution, Eq. (3.6.29), with the approximate
one, Eq. (3.6.37), is presented in Figure 3.23 for various values of the Thiele
modulus, A, which represents the ratio of the rate of surface reaction to the rate
of diffusion. Numerical values are given in Table A.11 in Appendix A. In the
calculation of 6, using Eq. (3.6.29), integration is performed numerically using
MATHEMATICA™~. Convergence is obtained by considering the first three
terms when 7 < 0.08. For larger values of 7, the first two terms of the series are

sufficient.
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0.00 0.05 0.10 0.15 0.20
n

Figure 3.23. Comparison of the analytical and approximate solutions with A as

a parameter.

The approximate solution gives fairly good estimates of the exact values in
all cases considered. Approximate solution overestimates the analytical solu-
tion when A takes the values of 0.1 and 0.5. On the other hand, when A is
increased to 1.0, the approximate method underestimates the analytical solu-
tion, the largest deviation being 3.7% when A = 1.0 and 1 = 0.2. As the Thiele
modulus increases, the rate of surface reaction becomes more dominant than the
rate of diffusion. As a result, species are consumed faster with a concomitant

decrease in the bulk concentration, 6,.

3.7. Unsteady Conduction in a Two-Layer Composite Slab

A composite plane wall, composed of two different layers of thicknesses L, and
Lo, is initially at a uniform temperature of 7,,. The schematic representation of
the system is shown in Figure 3.24. At ¢t = 0, the surfaces at = = — L; and
z = Lo are exposed to fluids at temperature T, (T, < T ). The average heat
transfer coefficients between the surfaces and the fluids are different from each
other. It is required to find the variation of average temperatures within each

slab with time as a result of unequal cooling conditions.
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Figure 3.24. Conduction in a two-layer composite slab.

For a one-dimensional unsteady-state conduction, the equation of energy for

each layer is given by
aT; 0?T;
ot 0722

with the following initial and boundary conditions

i=1,2 (3.7.1)

at t=20 T1 = T2 = To (372)
oT
at z=—L —k a—; = (ha) (Too — T1) (3.7.3)
at z2=0 T, =T, (3.7.4)
oT' oT.
at z=10 k?l 8—21 = k?z 8—22 (375)
oT:
Introduction of the dimensionless variables
T —T; z art . (ha) Ly . (hp) Lo
e A Pk
o k2 _ L s
N /{71 7= Ll N (071
(3.7.7)
reduces Eqs. (3.7.1) — (3.7.6) to the form
00, 0%,
kit 3.7.8
or &> ( )
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- (3.7.9)

at =0 0, =0, =1 (3.7.10)
at £=—1 %—i} — Bij 0, (3.7.11)
at £=0 0, = 0, (3.7.12)
at £€=0 (2_961 - n%—eg (3.7.13)
at E=v — 88—9; = % 05 (3.7.14)

3.7.1. Analytical Solution

The solution of this problem is given by Monte [9] as

0,(&,7)= i A, Xi (&) exp (= A27) (3.7.15)
=1
0y (6,7)= g i A, X5 (&) exp (= A27) (3.7.16)
where
X; (&) =sin (\,€) + IT; cos (A€) (3.7.17)
X, (€) =sin (A&V) — Ty cos (A,EV0) (3.7.18)
The eigenvalues, ), are the roots of
I, = — \/751'[2 (3.7.19)

where

An + Bia tan A,

I, = 3.7.20

! Biy — A\, tan A, ( )

1, — un‘—i— (Big /k) tan u,, (3.7.21)
(Big /Kk) — un tan u,

Up = YA/ VO (3.7.22)

o8



The first ten eigenvalues for v = 0.8, 6 = 2.5, and different Biot numbers are
tabulated in Table 3.10.

Table 3.10. The roots of Eq. (3.7.19) for v = 0.8, 6 = 2.5, and different Biot

numbers.

Bin =0.5 | Bixy =0.5 | Biy =1.0| Biy = 1.0
n | Big =1.0 | Big =5.0 | Big = 2.0 | Big =5.0
1 0.9263 1.2188 1.2027 1.3611
2 2.4048 2.8394 2.6695 2.9276
3 4.4494 4.7803 4.6293 4.8472
4 6.4195 6.7792 6.5715 6.8219
) 8.3938 8.6496 8.5022 8.6861
6 10.5893 10.7884 10.6759 10.8201
7 12.5932 12.8155 12.6759 12.8388
8 14.6063 14.7646 14.6701 14.7872
9 16.8164 16.9522 16.8723 16.9726
10 18.8195 18.9753 18.8756 18.9912

On the other hand, the coefficients A,, are given as

K (cos A, — cosu, + Iy sin A, — o sinw,)

A — 3.7.23
" N\, ( )
where
k(1 +10)) Bi, v (1+112) % Bip,
N,=— (14—t SN IR 3.7.24
2 ( +A2+Bii)+ 2 ( u%nQ—i—Bi%) ( )

The average temperature, (T;), for each layer is defined by

1 0 1 Lo
Ly Ly Jo

—I1

99



In terms of the dimensionless quantities, Eq. (3.7.25) takes the form

. 0

(61) = 7T7°f _<§1> = / 01 d€ (3.7.26)
[e’e) o —1

(02) = 7%3 __<§2> =% /O "9, de (3.7.27)

Substitution of Egs. (3.7.15) and (3.7.16) into Egs. (3.7.26) and (3.7.27),

respectively, and integration give

<91>ea’act = Z A” jzl ()\n) eXp (_)\7217_) (3728)

n=1
<02>e;ract = %j Z An XQ ()\n) €xXp (_)\7217_) (3729)

n=1
where

> 1
X1 (M) = " (cos A, + 1y sin A, — 1) (3.7.30)
Xy (\n) = ﬁ (1 — cosu, — Ilysinu,) (3.7.31)

3.7.2. Approximate Solution by Area Averaging

Area averaging is performed by integrating Eqgs. (3.7.8) and (3.7.9) in the direc-
tion of heat flow, i.e., z-direction. For the first slab, Eq. (3.7.8) is multiplied by
d¢ and integrated from £ = — 1 to & = 0. The result is

0 90, 0 9%,

e = d 3.7.32
. 87_ 5 . 852 5 ( )
or,
d /0 96, 96,
— | Opde= 7| - =2 3.7.33
dr |, $= % T ( )

Substitution of Eq. (3.7.28) into the left-hand side, and the boundary conditions
defined by Egs. (3.7.11) and (3.7.13) into the right-hand side of Eq. (3.7.33)
give

d (61) 00,

dr =K 8—5 o — BIA 91’5:_1 (3734)
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For the second slab, Eq. (3.7.9) is multiplied by d¢ and integrated from £ = 0
to & = . The result is

7 96, 7 920,
Zae=46 | Zd 3.7.35
0 87_ 5 0 852 5 ( )
or,
d [ 6, 6,
— | byde =062 -0 =2 3.7.36
dr Jo ° 3 0 o, 0|, ( )

Substitution of Eq. (3.7.29) into the left-hand side, and the boundary conditions
defined by Eq. (3.7.14) into the right-hand side of Eq. (3.7.36) give

d(0,) 5 5 90,
= —¥BIB 92’517 — ; 8—5

(3.7.37)

£=0

To proceed further, it is necessary to express 01|.__,, 902/0¢|._,, and 0s]._ in
Egs. (3.7.36) and (3.7.37) in terms of the average temperatures, (6;) and ().
Hermite expansion for « =1, 5 =0, Eq. (A) in Table 2.3, for 6, and 6, gives

1 060,

0 2 1
0,dé=(0) == 0 -0 - — ..
[ v =00 = S 0l g e g e R
g 2 1 v 90,
Ordl=v(0) == 0a|._y+ = Oa]o_, += == 3.7.39
[ orde=r 00 =S trl s+ g 0l + 3 G L BT

On the other hand, Hermite expansion for a = 0, § =1, Eq. (A) in Table 2.4,
for 6; and 6, yields

0 1 2 1 96,
/_1 01 d§=(0h) = 3 91’5:—1 + 3 91’5:0 6 8—5 o (3.7.40)

v 1 2 Y 892
OdéE=~v(03) == 05|, +=02|,_, — = — 3.7.41
/0 o d§ ="y (02) 3 2’5,0 3 2’54 6 ¢ - ( )

Substitution of the corresponding boundary conditions defined by Egs. (3.7.11)—
(3.7.14) into Egs. (3.7.38) — (3.7.41) gives

4+ Bi 1
(61) = (TA) Orlee s + 3 Orleo (3.7.42)
1 2 K 892
(01)= 3 Orle— 1 + 3 O1]¢—o — 6 ot o (3.7.43)
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2 1 1 00,
O) =20 — 0 - == 3.7.44
< 2> 37 1’5:0 + 37 2’5:7 + 6 85 o ( )
1 4 4+ Bi
(02) = 3y O1le—o + (TB) Oal,—., (3.7.45)

Simultaneous solutions of Eqs. (3.7.42) — (3.7.45) give the relationships between

average and local variables as

e, 32k (34 BiB)SO—i- 7 (4 + Big)] (0,) — w (62)  (3.7.46)
0> 6(2+Bix) (3 + Bip) 6 (3 + Bis) (2 + Bip)
0 |y - (On) + . (02) (3.7.47)
i k (4 + Biy Biy
Oole, = — @ (01) + i );_ 23+ Biv)] (02) (3.7.48)
where
¢ =+k(4+Bir)(3+ Big) +v(3+ Bia) (4 + Bip) (3.7.49)

Substitution of Eqgs. (3.7.46) and (3.7.47) into Eq. (3.7.34) and substitution of
Egs. (3.7.47) and (3.7.48) into Eq. (3.7.37) result in

d (6
0<g 1) =S (61) + Sy (05) (3.7.50)

=

d{fy) 6
i % Sy (0h) + Sz (02) (3.7.51)
where
3
Si=-2 [4% (1 + Bia) (3 + Big) + v Bis (4 + Bip)] (3.7.52)
2+ Biy) (2 + Bi
g, — 2762+ Bia) (2 + Bip) (3.7.53)
@

Sy = _3—5 B—;Bn(ll—i-BiA) +4(3 + Bia) (1 + Big) (3.7.54)

The initial conditions associated with Egs. (3.7.50) and (3.7.51) are
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Simultaneous solutions of Egs. (3.7.50) and (3.7.51) by the Laplace transform

give the average dimensionless temperature for each layer as

T {Cosh )+ (51 + 252 — 53) sinh F(FT)] exp Ksl -; 53) T]

(3.7.56)
952\ sinh (I'7) S1+ 53
<92>approz - {COSh (FT) T (53 — St ’}/2:‘41) I ] P {( 2 ) T}
(3.7.57)
where
4525 4 k2 (Sy — Ss)?
O \/ 2 (51— %) (3.7.58)

29V/k
3.7.3. Comparison of Results

Comparisons of the analtical solutions, Eqgs. (3.7.28) and (3.7.29) with the
approximate ones, Egs. (3.7.56) and (3.7.57), are presented in Figures 3.25—3.28

for v = 0.8, 6 = 2.5 and different Biot numbers. Numerical values are given in
Tables A.12—A.15 in Appendix A.

The terms v and ¢ represent thickness and thermal diffusivity ratios of the layers,
respectively. In the calculations of (A1) and (6,) using Eqgs. (3.7.28) and (3.7.29),
the first seven terms of the series are used when 7 < 0.06. For larger 7 values,

convergence is achieved by taking the first four terms.

The approximate solutions give good estimates of the analytical solutions for
different Biot numbers. The approximate values slightly underestimate and
overestimate the exact ones in the first and second layers, respectively, with the

largest deviation being around 6%.
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Bi,=0.5, Bi,=1.0
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<02> 06 1
Exact Approximate
o <0, <0,>
04 A <0, ——— <0,
0.2 T T T
0.00 0.05 0.10 0.15 0.20
T

Figure 3.25. Comparison of the analytical and approximate solutions when
Bis = 0.5, Bip = 1.0.

10 Bi,=0.5, Biz=5.0
0.8 - »
~
A~
=~ ~

0.6 e
<01> L
<6y> Tt

0.4 4 Exact Approximate

o <0,> <0,>
02 1 A <0, ——— <0,
0.0 T T T
0.00 0.05 0.10 0.15 0.20
T

Figure 3.26. Comparison of the analytical and approximate solutions when
Biy = 0.5, Big = 5.0.
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Bi,=1.0, Bi;=5.0
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Figure 3.27. Comparison of the analytical and approximate solutions when
Bis = 1.0, Big = 5.0.
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Figure 3.28. Comparison of the analytical and approximate solutions when
Biy = 2.0, Big = 5.0.
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CHAPTER 4

CONCLUSIONS

In transport phenomena problems, obtaining an analytical solution is tedious
if not impossible. In these cases, application of a numerical or an approxi-
mate technique is required. In this study, application of one of the approximate
techniques, i.e., area averaging technique using the two-point Hermite expan-
sion, is presented. By the application of the averaging procedure, the number of
the independent variables in the partial differential equation defining the prob-
lems is reduced by one. This simplification of the problem however, requires
expressing the local value of the dependent variable and/or its derivative(s) on
the system boundaries in terms of the averaged variable. In this study, such a

relationship is obtained by employing the two-point Hermite expansion.

Two-point Hermite expansion has two parameters, o and 3. There is no clear-
cut recipe to pick the right @ and 3 values that will yield the best results.
Depending on the governing equation and the boundary conditions, one of the
methods to choose the appropriate a and ( values is to check whether the
approximate solution converges to the analytical one under steady conditions.
Obtaining identical expression for the steady-state case does not necessarily
guarantee that the applied Hermite expansion is the best choice. However, the
chances of obtaining good results are high. Even though the application of single
a = 0, f = 0 Hermite expansion is simpler, it does not yield very satisfactory
estimates of the exact values. Combination of two Hermite expansions, such as
a=1,=0and a =0, § =1, yields better results than o = 0, § = 0 Hermite

expansion.

In the problems analyzed in this study, area averaging technique using Hermite
expansion generally gives better estimates of the exact values for the smaller
values of the independent variable, time or space, provided that the boundary
conditions associated with the eliminated independent variable are used in the

averaged equation.
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In some problems, even if an analytical solution exists, calculation of eigenvalues
and coefficients can be very tedious. In these cases, area averaging technique
using Hermite expansion is useful. Moreover, this approximate method can also
be utilized to obtain initial guesses for the numerical analysis. This decreases the

computational effort and time for the convergence of the numerical techniques.

The problems analyzed in this study are unsteady flow in a concentric annulus,
unequal cooling of a long slab, unsteady conduction in a cylindrical rod with
internal heat generation, diffusion of a solute into a slab from limited volume
of a well-mixed solution, convective mass transport between two parallel plates
with a wall reaction, convective mass transport in a cylindrical tube with a wall

reaction, and unsteady conduction in a two-layer composite slab.

In unsteady flow in a concentric annulus problem, the analytical and
approximate solutions are compared for different values of radius ratio. The
approximate results slightly overestimates the exact ones with the largest devi-

ation being 13%.

In unequal cooling of a long slab problem, the analytical and approximate so-
lutions are compared for different Biot numbers. Approximate results almost

coincide with the exact ones, the largest deviation being approximately 8%.

In unsteady conduction in a cylindrical rod with internal heat generation prob-
lem, the analytical and approximate solutions are compared for different Biot
numbers and the dimensionless generation term. The approximate solution gives
satisfactory estimates of the analytical one for relatively small values of the Biot
number. The deviation from the analytical solution increases as the values of
the Biot number and the dimensionless generation term increase. The largest

deviation is about 18%.

In diffusion of a solute into a slab from limited volume of a well-mixed solution
problem, the analytical and approximate solutions are compared for various
values of the ratio of the solution volume to the product of the slab volume and
the partition coefficient. The exact and approximate results are almost identical
except for the small values of dimensionless time. The largest deviation is about
27% only when 7 = 0.1.
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In convective mass transport problems, either between two parallel plates, or in
a cylindrical tube with a wall reaction, the analytical and approximate solutions
are compared for different values of the Thiele modulus. The approximate solu-
tions give fairly good estimates of the exact values, the largest deviations being

around 4% in both of the cases.

In unsteady conduction in a two-layer composite slab problem, the analyti-
cal and approximate solutions are compared for different Biot numbers. The
approximate values slightly underestimate and overestimate the exact ones in

the first and second layers, respectively, with the largest deviation being around

6%.
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APPENDIX

NUMERICAL RESULTS OF THE SOLUTIONS

In this section, numerical results of the analytical and approximate solutions of
the problems given in Chapter 3 are tabulated in Tables A.1—A.15.

Table A.1. Numerical results of Egs. (3.1.28) and (3.1.39) with ~ as a

parameter.
k=0.1 k=0.2
T Exact | Hermite T Exact | Hermite
0.00 | 0.000 0.000 0.00 | 0.000 0.000
0.01 | 0.0330 | 0.0368 0.01 | 0.0312 | 0.0350
0.02 | 0.0609 | 0.0685 0.02 | 0.0565 | 0.0640
0.04 | 0.106 0.120 0.04 | 0.0963 | 0.108
0.06 | 0.142 0.157 0.06 | 0.126 0.138
0.08 | 0.171 0.186 0.08 | 0.148 0.159
0.10 | 0.194 0.207 0.10 | 0.164 0.173
0.12 | 0.212 0.222 0.12 | 0.177 0.183
0.14 | 0.227 0.234 0.14 | 0.186 0.190
0.16 | 0.239 0.242 0.16 | 0.193 0.195
0.18 | 0.248 0.249 0.18 | 0.198 0.198
0.20 | 0.256 0.253 0.20 | 0.202 0.200
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Table A.2. Numerical results of Egs. (3.1.28) and (3.1.39) with ~ as a

parameter.

k=0.3 k=04

T Exact | Hermite T Exact | Hermite
0.00 | 0.000 0.000 0.00 | 0.000 0.000
0.01 | 0.0286 | 0.0323 0.01 | 0.0253 | 0.0286
0.02 | 0.0508 | 0.0576 0.02 | 0.0435 | 0.0490
0.04 | 0.0835 | 0.0928 0.04 | 0.0679 | 0.0742
0.06 | 0.1057 | 0.1144 0.06 | 0.0821 | 0.0872
0.08 | 0.1206 | 0.1277 0.08 | 0.0900 | 0.0938
0.10 | 0.1307 | 0.1358 0.10 | 0.0950 | 0.0972
0.12 | 0.1376 | 0.1408 0.12 | 0.0980 | 0.0990
0.14 | 0.1423 | 0.1438 0.14 | 0.1000 | 0.0999
0.16 | 0.1454 | 0.1457 0.16 | 0.1010 | 0.1003
0.18 | 0.1476 | 0.1468 0.18 | 0.1010 | 0.1006
0.20 | 0.1490 | 0.1475 0.20 | 0.1020 | 0.1007

Table A.3. Numerical results of Eqgs. (3.1.28) and (3.1.39) with ~ as a

parameter.

T Exact | Hermite T Exact | Hermite
0.00 | 0.000 0.000 0.00 | 0.000 0.000
0.01 | 0.0210 | 0.0238 0.01 | 0.0160 | 0.0180
0.02 | 0.0346 | 0.0386 0.02 | 0.0244 | 0.0265
0.04 | 0.0500 | 0.0533 0.04 | 0.0314 | 0.0324
0.06 | 0.0570 | 0.0590 0.06 | 0.0334 | 0.0338
0.08 | 0.0603 | 0.0612 0.08 | 0.0340 | 0.0340
0.10 | 0.0617 | 0.0620 0.10 | 0.0342 | 0.0341
0.12 | 0.0624 | 0.0623 0.12 | 0.0343 | 0.0341
0.14 | 0.0627 | 0.0624 0.14 | 0.0343 | 0.0341
0.16 | 0.0629 | 0.0625 0.16 | 0.0343 | 0.0341
0.18 | 0.0629 | 0.0625 0.18 | 0.0343 | 0.0341
0.20 | 0.0630 | 0.0625 0.20 | 0.0343 | 0.0341
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Table A.4. Numerical results of Egs. (3.1.28) and (3.1.39) with ~ as a

parameter.
k=0.7 k=0.8

T Exact | Hermite T Exact | Hermite
0.00 | 0.000 0.000 0.00 | 0.000 0.000
0.01 | 0.0102 | 0.0113 0.01 | 0.00440 | 0.00456
0.02 | 0.0136 | 0.0142 0.02 | 0.00477 | 0.00479
0.04 | 0.0151 | 0.0152 0.04 | 0.00480 | 0.00480
0.06 | 0.0153 | 0.0153 0.06 | 0.00480 | 0.00480
0.08 | 0.0153 | 0.0153 0.08 | 0.00480 | 0.00480
0.10 | 0.0153 | 0.0153 0.10 | 0.00480 | 0.00480
0.12 | 0.0153 | 0.0153 0.12 | 0.00480 | 0.00480
0.14 | 0.0153 | 0.0153 0.14 | 0.00480 | 0.00480
0.16 | 0.0153 | 0.0153 0.16 | 0.00480 | 0.00480
0.18 | 0.0153 | 0.0153 0.18 | 0.00480 | 0.00480
0.20 | 0.0153 | 0.0153 0.20 | 0.00480 | 0.00480

Table A.5. Numerical results of Eqgs. (3.2.28) and (3.2.39) with Biot numbers

as parameters .

Biy = 1.0, Big = 0.1 Biy =5.0, Big = 1.0 Biy =10.0, Big = 1.0

T Exact | Hermite T Exact | Hermite T Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.01 | 0.9799 0.9804 | 0.01 | 0.9454 0.9582 | 0.01 | 0.9258 0.9518
0.10 | 0.8124 0.8120 | 0.10 | 0.6218 0.6371 | 0.10 | 0.5670 0.5919
0.20 | 0.6420 0.6396 | 0.20 | 0.3717 | 0.3742 | 0.20 | 0.3119 0.3134
0.30 | 0.4856 0.4817 | 0.30 | 0.1891 0.1836 | 0.30 | 0.1344 0.1232
0.50 | 0.2103 0.2044 | 0.50 | —0.0437 | —0.0546 || 0.50 | —0.0778 | —0.0952
0.70 | —0.0213 | —0.0286 || 0.70 | —0.1697 | —0.1798 || 0.70 | —0.1828 | —0.1969
1.00 | —0.3018 | —0.3099 || 1.00 | —0.2591 | —0.2655 || 1.00 | —0.2499 | —0.2575
1.25 | —0.4859 | —0.4942 || 1.25 | —0.2907 | —0.2946 || 1.25 | —0.2708 | —0.2748
1.50 | —0.6343 | —0.6424 || 1.50 | —0.3054 | —0.3076 || 1.50 | —0.2795 | —0.2815
2.00 | —0.8502 | —0.8572 || 2.00 | —0.3154 | —0.3161 || 2.00 | —0.2847 | —0.2851
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Table A.6. Numerical results of Egs. (3.3.26) and (3.3.34) for Bi = 0.1 with A

as a parameter.

Bi=0.1, A = 1.0 Bi = 0.1, A = 10.0 Bi=0.1, A = 50.0

7 | Exact | Hermite 7 | Exact | Hermite 7 | Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.02 | 1.006 1.009 0.02 | 1.096 1.099 0.02 | 1.494 1.499
0.04 | 1.012 1.019 0.04 | 1.191 1.199 0.04 | 1.985 1.996
0.06 | 1.018 1.029 0.06 | 1.286 1.298 0.06 | 2.480 | 2.490
0.08 | 1.024 1.038 0.08 | 1.380 1.396 0.08 | 2.961 2.983
0.10 | 1.030 1.048 0.10 | 1.474 1.493 0.10 | 3.445 | 3.474
0.12 | 1.036 1.056 0.12 | 1.567 1.590 0.12] 3.928 | 3.962
0.14 | 1.042 1.065 0.14 | 1.659 1.687 || 0.14 | 4.410 | 4.448
0.16 | 1.048 1.073 0.16 | 1.752 1.783 0.16 | 4.886 | 4.933
0.18 | 1.054 1.082 0.18 | 1.845 1.878 0.18 | 5.355 | 5.415
0.20 | 1.062 1.090 0.20 | 1.937 1.973 0.20 | 5.836 | 5.895

Table A.7. Numerical results of Egs. (3.3.26) and (3.3.34) for Bi = 1 with A as

a parameter.

Bi=1, A =10 Bi=1, A =50 Bi=1, A = 100

7 | Exact | Hermite 7 | Exact | Hermite 7 | Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.02 | 1.061 1.098 0.02 | 1.449 1.491 0.02 | 1.934 1.982
0.04 | 1.120 1.191 0.04 | 1.876 1.964 0.04 | 2.819 | 2.930
0.06 | 1.177 | 1.279 0.06 | 2.282 2.419 0.06 | 3.665 | 3.845
0.08 | 1.232 1.363 0.08 | 2.674 | 2.858 0.08 | 4477 | 4.727
0.10 | 1.285 1.442 0.10 | 3.050 3.280 0.10 | 5.258 | 5.578
0.12 | 1.336 1.518 0.12 | 3.413 3.687 | 0.12| 6.010 | 6.399
0.14 | 1.385 1.589 0.14 | 3.764 | 4.079 0.14 | 6.737 | 7.190
0.16 | 1.433 1.657 || 0.16 | 4.101 4.455 0.16 | 7.438 7.954
0.18 | 1.479 1.720 0.18 | 4.428 | 4.818 0.18 | 8.116 | 8.690
0.20 | 1.524 1.780 0.20 | 4.750 5.167 | 0.20 | 8.772 | 9.400
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Table A.8. Numerical results of Eqs. (3.3.26) and (3.3.34) for Bi = 5 with A as

a parameter.

Bi=5, A =50 Bi=5, A =100 Bi=5, A =300

7 | Exact | Hermite 7 | Exact | Hermite T Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.02 | 1.315 1.472 0.02 | 1.758 1.945 0.02 | 3.526 3.839
0.04 | 1.596 1.889 0.04 | 2405 | 2.788 0.04 | 5.642 6.382
0.06 | 1.842 | 2.260 0.06 | 2972 | 3.539 0.06 | 7.486 8.656
0.08 | 2.070 | 2.586 0.08 | 3.476 | 4.207 | 0.08 | 9.122 | 10.690
0.10 | 2.265 | 2.873 0.10 | 3.931 | 4.800 0.10 | 10.593 | 12.509
0.12 | 2.445 | 3.126 0.12 | 4.341 5.327 | 0.12 ] 11.925 | 14.133
0.14 | 2.611 3.346 0.14 | 4.718 | 5.794 0.14 | 13.140 | 15.585
0.16 | 2.764 | 3.538 0.16 | 5.062 | 6.206 0.16 | 14.252 | 16.880
0.18 | 2903 | 3.704 0.18 | 5.377 | 6.570 0.18 | 15.273 | 18.036
0.20 | 3.032 3.848 0.20 | 5.668 | 6.891 0.20 | 16.211 | 19.066

Table A.9. Numerical results of Eqgs. (3.4.18) and (3.4.32) with ¥ as a

parameter.

v = 50.0 v =10.0 v =10

T Exact | Hermite T Exact | Hermite T Exact | Hermite
0.00 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.00
0.10 | 0.3619 | 0.2636 | 0.10 | 0.3818 | 0.2811 || 0.10 | 0.5528 | 0.4512
0.20 | 0.5101 | 0.4577 | 0.20 | 0.5332 | 0.4831 || 0.20 | 0.7116 | 0.6988
0.30 | 0.6195 | 0.6007 | 0.30 | 0.6431 | 0.6284 || 0.30 | 0.8096 | 0.8347
0.40 | 0.7039 | 0.7059 | 0.40 | 0.7266 | 0.7329 || 0.40 | 0.8739 | 0.9093
0.50 | 0.7696 | 0.7835 | 0.50 | 0.7906 | 0.8080 || 0.50 | 0.9165 | 0.9502
0.60 | 0.8207 | 0.8405 | 0.60 | 0.8395 | 0.8619 | 0.60 | 0.9447 | 0.9727
0.80 | 0.8914 | 0.9135 | 0.80 | 0.9058 | 0.9286 || 0.80 | 0.9757 | 0.9918
0.10 | 0.9342 | 0.9531 | 0.10 | 0.9447 | 0.9631 || 0.10 | 0.9893 | 0.9975
0.12 1 0.9602 | 0.9746 | 0.12 | 0.9675 | 0.9809 || 0.12 | 0.9953 | 0.9993

74



Table A.10. Numerical results of Eqgs. (3.5.37) and (3.5.46) with A as a

parameter.
A=01 A=05 A=1.0

T Exact | Hermite T Exact | Hermite T Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.02 | 0.9884 | 0.9896 || 0.02 | 0.9487 | 0.9520 | 0.02 | 0.9106 | 0.9126
0.04 | 0.9770 | 0.9792 || 0.04 | 0.9018 | 0.9062 | 0.04 | 0.8341 | 0.8329
0.06 | 0.9725 | 0.9690 || 0.06 | 0.8573 | 0.8627 | 0.06 | 0.7646 | 0.7601
0.08 | 0.9560 | 0.9589 || 0.08 | 0.8151 | 0.8213 | 0.08 | 0.7010 | 0.6937
0.10 | 0.9437 | 0.9489 || 0.10 | 0.7750 | 0.7818 | 0.10 | 0.6427 | 0.6331
0.12] 0.9328 | 0.9390 || 0.12 | 0.7368 | 0.7442 | 0.12 | 0.5892 | 0.5778
0.14 ] 0.9221 | 0.9292 || 0.14 | 0.7005 | 0.7085 | 0.14 | 0.5402 | 0.5273
0.16 | 0.9115 | 0.9195 || 0.16 | 0.6661 | 0.6745 | 0.16 | 0.4953 | 0.4812
0.18 | 0.9010 | 0.9099 || 0.18 | 0.6333 | 0.6421 | 0.18 | 0.4541 | 0.4392
0.20 | 0.8906 | 0.9004 || 0.20 | 0.6021 | 0.6112 | 0.20 | 0.4163 | 0.4008

Table A.11. Numerical results of Egs. (3.6.29) and (3.6.37) with A as a

parameter.
A=01 A=05 A=1.0

T Exact | Hermite T Exact | Hermite T Exact | Hermite
0.00 | 1.000 1.000 0.00 | 1.000 1.000 0.00 | 1.000 1.000
0.02 ] 0.9921 | 0.9940 || 0.02 | 0.9651 | 0.9704 | 0.02 | 0.9380 | 0.9418
0.04 | 0.9846 | 0.9880 || 0.04 | 0.9331 | 0.9418 | 0.04 | 0.8852 | 0.8869
0.06 | 0.9771 | 0.9822 || 0.06 | 0.9026 | 0.9139 | 0.06 | 0.8368 | 0.8353
0.08 | 0.9696 | 0.9763 || 0.08 | 0.8735 | 0.8869 | 0.08 | 0.7919 | 0.7866
0.10 | 0.9622 | 0.9704 || 0.10 | 0.8454 | 0.8607 | 0.10 | 0.7498 | 0.7408
0.12] 0.9548 | 0.9646 || 0.12 | 0.8184 | 0.8353 | 0.12 | 0.7101 | 0.6977
0.14 ] 0.9476 | 0.9589 || 0.14 | 0.7923 | 0.8106 | 0.14 | 0.6727 | 0.6570
0.16 | 0.9403 | 0.9531 || 0.16 | 0.7671 | 0.7866 | 0.16 | 0.6373 | 0.6188
0.18 |1 0.9332 | 0.9474 || 0.18 | 0.7426 | 0.7633 | 0.18 | 0.6039 | 0.5827
0.20 | 0.9261 | 0.9418 || 0.20 | 0.7190 | 0.7408 | 0.20 | 0.5721 | 0.5488
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Table A.12. Numerical results of Eqgs. (3.7.28) — (3.7.56) and
(3.7.29) — (3.7.57) when Bi;=0.5 Bi,=L.0.

Bi;=0.5 Bi;=1.0 Exact Hermite

T (1) | (02) | (b1) | (62)

0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.02 0.9905 | 0.9648 | 0.9830 | 0.9678
0.06 0.9696 | 0.9058 | 0.9481 | 0.9098
0.10 0.9451 | 0.8586 | 0.9129 | 0.8587
0.14 0.9188 | 0.8186 | 0.8776 | 0.8131
0.16 0.9054 | 0.8005 | 0.8602 | 0.7919
0.20 0.8782 | 0.7669 | 0.8257 | 0.7524

Table A.13. Numerical results of Eqgs. (3.7.28) — (3.7.56) and
(3.7.29) — (3.7.57) when Bi;=0.5 Bi,=5.0.

Bi;=0.5 Bi,=5.0 Exact Hermite

T (01) | (B2) | (01) | (02)

0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.02 0.9903 | 0.8743 | 0.9879 | 0.8959
0.06 0.9623 | 0.7192 | 0.9528 | 0.7406
0.10 0.9232 | 0.6208 | 0.9092 | 0.6333
0.14 0.8797 | 0.5502 | 0.8618 | 0.5561
0.16 0.8574 | 0.5214 | 0.8375 | 0.5252
0.20 0.8131 | 0.4726 | 0.7892 | 0.4741

Table A.14. Numerical results of Eqgs. (3.7.28) — (3.7.56) and
(3.7.29) — (3.7.57) when Bi;=1.0 Bi,=5.0.

Bi;=1.0 Bi;=5.0 Exact Hermite

T (01) | (B2) | (01) | (02)

0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.02 0.9817 | 0.8742 | 0.9789 | 0.9002
0.06 0.9393 | 0.7191 | 0.9278 | 0.7490
0.10 0.8876 | 0.6203 | 0.8707 | 0.6417
0.14 0.8334 | 0.5487 | 0.8119 | 0.5621
0.16 0.8063 | 0.5191 | 0.7828 | 0.5295
0.20 0.7534 | 0.4683 | 0.7260 | 0.4743
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Table A.15. Numerical results of Eqgs. (3.7.28) — (3.7.56) and
(3.7.29) — (3.7.57) when Bi;=2.0 Bi,=5.0.

Bi;=2.0 Bi;=5.0 Exact Hermite

T (1) | (02) | (61) | (62)

0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.02 0.9669 | 0.8742 | 0.9659 | 0.9064
0.06 0.9030 | 0.7191 | 0.8928 | 0.7606
0.10 0.8349 | 0.6197 | 0.8183 | 0.6527
0.14 0.7676 | 0.5464 | 0.7461 | 0.5692
0.16 0.7351 | 0.5156 | 0.7114 | 0.5340
0.20 0.6732 | 0.4618 | 0.6456 | 0.4731

7



