
DATA PARALLELISM FOR RAY CASTING LARGE SCENES ON A CPU-GPU
CLUSTER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TÜMER TOPCU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER SCIENCE
IN

COMPUTER ENGINEERING

MAY 2008

Approval of the thesis:

DATA PARALLELISM FOR RAY CASTING LARGE SCENES ON A
CPU-GPU CLUSTER

submitted by TÜMER TOPCU in partial full�llment of the requirements for the
degree of Master Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department,Computer Engineering

Assoc. Prof. Dr. Veysi �³ler
Supervisor,Computer Engineering Dept., METU

Assist. Prof. Dr. Cevat �ener
Co-supervisor,Computer Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Tolga Can
Computer Engineering Dept., METU

Assoc. Prof. Dr. Veysi �³ler
Computer Engineering Dept., METU

Assist. Prof. Dr. Tolga Çap�n
Computer Engineering Dept., Bilkent University

Assist. Prof. Dr. Tu§ba Ta³kaya Temizel
Information Systems Dept., METU

Dr. Onur Tolga �ehito§lu
Computer Engineering Dept., METU

Date: 05.05.2008

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Tümer Topcu

Signature :

iii

ABSTRACT

DATA PARALLELISM FOR RAY CASTING LARGE SCENES ON A CPU-GPU
CLUSTER

Topcu, Tümer

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Veysi �³ler

Co-Supervisor: Assist. Prof. Dr. Cevat �ener

May 2008, 58 pages

In the last decade, computational power, memory bandwidth and programmability capabil-

ities of graphics processing units (GPU) have rapidly evolved. Therefore, many researches

have been performed to use GPUs in advanced graphics rendering. Because of its high de-

gree of it parallelism, ray tracing has been one of the �rst algorithms studied on GPUs.

However, the rendering of large scenes with ray tracing can easily exceed the GPU's memory

capacity. The algorithm proposed in this work uses a data parallel approach where the scene

is partitioned and assigned to CPU-GPU couples in a cluster to overcome this problem.

Our algorithm focuses on ray casting which is a special case of ray tracing mainly used in

visualization of volumetric data. CPUs are pretty e�cient in �ow control and branching

while GPUs are very fast performing intense �oating point operations. Using these facts,

the GPUs in the cluster are assigned the task of performing ray casting while the CPUs

are responsible for traversing the rays. In the end, we were able to visualize large scenes

successfully by utilizing CPU-GPU couples e�ectively and observed that the performance is

highly dependent on the viewing angle as a result of load imbalance.

Keywords: CPU-GPU Cluster, Ray Tracing, Ray Casting, Large Scene Rendering, Data

Parallelism

iv

ÖZ

ANA ��LEM B�R�M�-Ç�ZGE ��LEM B�R�M� KÜMES� ÜZER�NDE BÜYÜK
SAHNELER� I�IN HESAPLAMA �Ç�N VER� KO�UTLU�U

Topcu, Tümer

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Doç. Dr. Veysi �³ler

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cevat �ener

May�s 2008, 58 sayfa

Son birkaç y�lda çizge i³lem birimlerinin (GPU) i³lem gücü, bellek bant geni³li§i ve pro-

gramlanabilme yetenekleri h�zl� bir ³ekilde geli³ti. Bu gerçekler göz önüne al�narak GPUlar�

ileri çizge sentezleme alanlar�nda kullanmak için pek çok ara³t�rma yap�ld�. I³�n izleme,

yüksek derecedeki ko³utlu§u sebebiyle GPUlar üzerinde çal�³�lan ilk konulardan birisi oldu.

Ancak büyük sahnelerin �³�n izleme ile gerçeklenmesi GPUnun bellek kapasitesini kolayl�kla

a³abilir. Bu çal�³mada ortaya konan algoritma, sahnenin parçalara ayr�larak ortaya ç�kan

her bir parçan�n bir kümede bulunan CPU-GPU çiftlerine atand�§� veri ko³ut bir yakla³�m

kullanmaktad�r. Algoritmam�z daha çok hacimsel verilerin görsellenmesinde kullan�lan ve

�³�n izlemenin özel bir durumu olan �³�n hesaplama üzerine yo§unla³maktad�r. CPUlar ak�³

denetimi ve dallanmada oldukça verimliyken GPUlar yüksek miktarda kayan nokta i³lemi

gerektiren uygulamalarda oldukça h�zl�d�r. Bu gerçeklere dayanarak kümedeki GPUlar �³�n

hesaplama görevine, CPUlar ise �³�nlar� hareket ettirme görevine atanm�³t�r. Sonuç olarak

CPU ve GPUlar� verimli bir ³ekilde kullanarak büyük sahneleri görsellemeyi ba³ard�k ve

performans�n yük dengesizli§i sebebiyle bak�³ aç�s�na oldukça ba§l� oldu§unu gözlemledik.

Anahtar Kelimeler: CPU-GPUKümesi, I³�n �zleme, I³�n Hesaplama, Büyük Sahne Görselleme,

Veri Paralelli§i

v

ACKNOWLEDGMENTS

I would like to express my inmost gratitude to my supervisor Assoc. Prof. Dr. Veysi

�³ler. His patience, vision, sweet communication and friendly approach is the key reason to

vitalize this work. It is an honour for me to share his knowledge, wisdom and humanity.

I am grateful to Alphan �. Es, one of the most brilliant Ph.D. students of my supervisor.

Without his support and guidance, this work would have been much harder to �nish. I

can't imagine myself dealing with those OpenGL and Cg errors without him. It was a great

opportunity to work with him. I hope, I will be as wise as him one day.

We have been friends with Ça§lar Ünlü since I started undergraduate school. Having him

by my side during this thesis work was a big chance. Everyone would love to have someone

who will make them laugh in desperate times.

Last but not least, I would like to thank my mother Prof. Dr. Saniye Topcu, my father

Abdurrahman Topcu and my sister Dr. P�nar Topcu Y�lmaz. They have always been by my

side in my entire life and it was no di�erent during my graduate program.

vi

To everyone who have positively in�uenced my life. . .

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vi

DEDICATION . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF ALGORITHMS . xii

LIST OF SYMBOLS . xiii

CHAPTER

1 INTRODUCTION 1

1.1 Global Illumination . 2

1.2 Ray Tracing . 3

1.2.1 Acceleration Structures . 4

1.3 Graphics Processing Unit . 8

1.3.1 The Rendering Pipeline . 8

1.3.2 Parallel Stream Processors and GPU 10

1.3.3 GPU Programming Languages . 12

1.4 Goals . 12

1.5 Outline . 13

2 RELATED WORK 14

2.1 Parallel Ray Tracing . 14

2.1.1 Demand Driven Ray Tracing . 14

2.1.2 Data Parallel Ray Tracing . 15

2.1.3 Hybrid methods . 16

2.2 Ray Tracing on GPUs . 16

viii

3 RAY CASTING ON A CPU-GPU CLUSTER 19

3.1 Single GPU Implementation . 19

3.2 CPU-GPU Cluster Implementation . 24

4 EXPERIMENTS 33

4.1 Experimental Setup . 33

4.2 Results . 35

5 CONCLUSION 51

REFERENCES . 53

ix

LIST OF FIGURES

FIGURES

Figure 1.1 Ray Tracing Algorithm . 3

Figure 1.2 De�ciencies of Ray Tracing . 6

Figure 1.3 Traditional graphics pipeline . 9

Figure 1.4 GPU graphics pipeline . 10

Figure 1.5 (a) Stream Processing (b) GPU as a stream processor 11

Figure 3.1 Organization of the scene database in the GPU memory 20

Figure 3.2 Rays are represented by two textures 21

Figure 3.3 Ray tracing kernels and ray state transition 22

Figure 3.4 CPU-GPU Cluster implementation . 24

Figure 3.5 Master Process . 25

Figure 3.6 CPU-GPU Cluster Ray Caster . 28

Figure 3.7 Slave Process . 30

Figure 4.1 Ray Casted Models . 34

Figure 4.2 Bunny: Angle vs Time results . 38

Figure 4.3 Lattice: Angle vs Time results . 39

Figure 4.4 Sphere: Angle vs Time results . 40

Figure 4.5 Buddha: Angle vs Time results . 41

Figure 4.6 Turbine Blade: Angle vs Time results 42

Figure 4.7 Manuscript: Angle vs Time results . 43

Figure 4.8 Bunny: Speedup against 2 Slaves . 44

Figure 4.9 Lattice: Speedup against 2 Slaves . 45

Figure 4.10 Sphere: Speedup against 2 Slaves . 46

Figure 4.11 Buddha: Speedup against single GPU implementation 47

Figure 4.12 Overhead Analysis for Bunny Scene . 48

x

Figure 4.13 CPU-GPU Cluster vs GPU Cluster Part I 49

Figure 4.14 CPU-GPU Cluster vs GPU Cluster Part II 50

xi

LIST OF ALGORITHMS

ALGORITHMS

1 Whitted-Style Ray Tracing . 5

2 A single ray in GPU ray tracer . 23

3 BSP Tree Creation . 26

4 Master Process . 27

5 Slave Process . 31

6 Process rays sent from a slave . 32

xii

LIST OF SYMBOLS

BVH Bounding Volume Hierar-
chy

CPU Central Processing Unit

GFLOPS Billions of Floating Point
Operations Per Second

GPGPU General Purpose Comput-
ing on GPU

GPU Graphics Processing Unit

POV Persistence of Vision Ray-
tracer

PLY Polygon File Format

FBO Frame Bu�er Object

BSP Binary Space Partitioning
Tree

xiii

CHAPTER 1

INTRODUCTION

In computer graphics, photorealistic rendering methods are used to create images which

imitate scenes from real life as much as possible. Achieving this goal is not easy as it requires

simulating the interaction of light with all of the objects in the scene. This simulation

process is called global illumination and its complexity increases enormously when there are

transparent or re�ective objects and particulate matters such as smoke or water vapor in

the scene. There are several global illumination algorithms devised and the most popular

ones are ray tracing [60], radiosity [15], Monte Carlo path tracing [25], photon mapping [24],

beam tracing [19]. The internal of these algorithms may di�er but all of them su�er from

requiring a high number of �oating point operations to be performed, making them hard to

use in real time applications.

The everlasting evolution of computer technology gives hope to researchers for using

global illumination algorithms in real time applications. Especially the recent advancements

in graphics processing units (GPU) attracted too much attention making them a hot research

area. Although GPUs were �rst designed for speci�c graphics computations like lighting,

modeling, texturing, the state of the art GPUs are started to be used in other areas by

developers and researchers. The e�orts to use GPUs in these other areas are generalized

under one name, general purpose computation on GPUs (GPGPU) which is now possible

because GPUs no longer lack programmability.

Implementing widely used global illumination algorithm ray tracing on GPUs is one of the

most popular subjects of GPGPU based researches. The main idea behind using GPUs for

ray tracing is to exploit its enormous computation power. GeForce 8800 Ultra, the �agship

of GeForce 8 Series, has a theoretical computation power of 345.6 GFLOPS [61] which is far

beyond the computation power of today's CPUs. Unfortunately, using this raw power to its

full potential is not an easy task since the architecture and programming model of a GPU

1

is completely di�erent from a CPU's.

Even if a GPU is e�ectively used, it is still not possible to perform ray tracing at high

frame rates. The picture gets worse when we are talking about rendering a large scene

because of the fact that today the memory available on most of the GPUs is limited to

256MB and ray tracing requires a large amount of memory. Based on these observations,

the motivation and the goals of this thesis is given in the next section.

1.1 Global Illumination

Everything that we see in real life are rays of light (photon streams) cast by the sun or

any other light source, bouncing around the detailed scenery of nature and �nally hitting our

eyes. The journey of light rays in nature includes absorbtion, re�ection and refraction. Global

illumination algorithms are used in computer science to imitate this process in the virtual

world. This type of algorithms takes into account not only the light rays coming directly

from the light source (direct illumination) but also the indirect illumination (re�ection and

refraction) to approximate the rendering equation (1.1) presented in [20] and [25] as close as

possible.

Lo(x, %) = Le(x, %) +
∫

$
fr(x, %, φ)L(x′,−φ)(φ.η)dδ (1.1)

• Lo(x, %) is the light outgoing in the direction % at position x.

• Le(x, %) is the light emitted in the direction % at position x.

•
∫
$...dδ is an integral over the hemisphere around position x of inward directions.

• x′ is the position of the �rst surface hit by the ray leaving x in the direction of φ.

• fr(x, %, φ)L(x′,−φ) is the light coming from direction φ that hits position x and is

re�ected in the direction %. The name for this function is Bidirectional Re�ectance

Distribution Function [36].

• L(x′,−φ) is the light from the position x′ in direction −φ.

• (φ.η) is the attenuation of inward light where η is the surface normal at position x.

Basically rendering equation takes the law of conversation of energy as a basis and states

that the outgoing light at position x in the direction of % is the light that the surface emits

plus the sum of all the incoming light that is re�ected in the direction of %.

2

1.2 Ray Tracing

Ray tracing is one of the most famous algorithms used to simulate the interaction of light

with the environment. It is �rst introduced by Turner Whitted [60]. Basically ray tracing

reverses what happens in the nature. In real life light rays are emitted whether we see them

or not. However, in virtual environment imitating the same behavior would be a waste of it

is not possible to generate and track in�nite number of light rays. To overcome this problem,

ray tracing uses the fact that the path taken by a light ray is reversible and starts generating

lights having the eye as origin and than traces them. This way only the light rays arriving

to the eye are taken into account.

Given the position of eye and an image plane, ray tracing starts with spawning rays,

called primary rays, to each pixel on the image plane having the eye position as origin.

After this process the nearest intersection in the clipped space is searched. If an intersection

is found, a shadow ray is spawned to probe the light source and if the shadow ray is not

obstructed by some other object, a direct illumination is added to the pixel's color. Also,

depending on the type of the material, re�ecting and/or refracting rays are spawned from

this intersection point and these secondary rays are also traced. This recursive process is

repeated for each ray until it hits a di�use surface or misses all surfaces or recursion depth

is greater than a threshold.

Figure 1.1: Ray Tracing Algorithm

3

To better explain the ray tracing algorithm, the execution �ow is summarized in �gure

Figure 1.1. A primary ray (P) is spawned at the eye point and traced into the scene. The

ray hits a specular object resulting in generation of a shadow ray (S), a re�ected ray (R) and

a refracting ray (Rr). The shadow ray reaches to the light therefore a direct illumination

factor is added to the pixel's color value at which the intersection has occurred. The re�ected

ray hits an opaque object so no secondary rays are generated and also the shadow ray at

this point is obstructed, therefore no color value is added to the �nal result. The refracting

ray intersects with another object and the result of probing the light source is successful so

the contribution of this intersection is also included in the �nal result. The process taking

place in �gure Figure 1.1 is also explained in Algorithm 1.

Ray tracing is considered to be a global illumination algorithm because it takes into

account not only the direct illumination from the light sources but also the interaction of

light between the objects, namely re�ection and refraction. However, there are some other

types of indirect illumination that ray tracing cannot handle. Caustics is one of these missing

parts. It can be formally de�ned as envelope of light rays that has been re�ected or refracted

by specular surfaces previously, before hitting an opaque material. For example caustics can

be formed by placing a glass of wine on the table. In this case the light rays that are passing

through the glass will be refracted and focused to the table forming caustics as a result. You

can also see caustics when you look at the bottom of a swimming pool. An example to the

caustics generated by using POV [49] can be seen in Figure 1.2(c).

Another de�ciency of ray tracing is di�use re�ection. Ray tracing focuses only on the

specular re�ections. However, what happens in real life is not limited to specular re�ections.

Even opaque/di�use materials do re�ect the light to the objects near them. For example

when you put your hand close to the wall the wall's color will be e�ected by your hand's color.

In Figure 1.2(a) there is no di�use re�ection from the surface. It can clearly be seen what

happens when the surface's di�use re�ection is also included in the process in Figure 1.2(b).

Ray casting is a special case of ray tracing. The only di�erence is that ray casting takes

into consideration only the primary rays. Ray casting is generally used as a hidden surface

removal method or a volume rendering method. In this work, we focus on performing ray

casting on a CPU-GPU cluster.

1.2.1 Acceleration Structures

The original ray tracing algorithm suggests that a ray must be tested against each object

in the scene for an intersection. To avoid this high computation cost, there are several

4

Algorithm 1 Whitted-Style Ray Tracing

function render()

for each pixel in the viewing place do

spawn a ray from the eye point through the current pixel

current pixel's color ← trace(ray)

end for

function trace(ray)

�nd nearest intersection

compute intersection position and normal

color ← shade(intersection position, normal)

return color

function shade(position, normal)

color ← 0

for each light source in the scene do

trace spawned shadow to light source

if shadow ray intersects light source then

color ← color + direct illumination

end if

end for

if surface is re�ective then

spawn a new re�ection ray

color ← color + trace(new ray)

end if

if surface is transparent then

spawn a new refraction ray

color ← color + trace(new ray)

end if

return color

5

(a) Rendering Without Di�use Re�ection (b) Rendering With Di�use Re�ection

(c) A Caustics Example

Figure 1.2: De�ciencies of Ray Tracing

6

acceleration structures proposed. Their ultimate goal is to signi�cantly reduce the number

of intersection tests.

Uniform grid is one of the �rst acceleration structures to be proposed. In this acceleration

structure, the bounding box of the scene is divided into equally sized volumes called voxels.

Each voxel is assigned to a list of triangles. Once the construction of the grid is �nished,

this grid structure is traversed. There are various approaches on how the grid is traversed.

The most popular ones are 3D - Digital Di�erential Analyzer [1], Proximity Clouds [6] and

Anisotropic Chessboard Distance [57].

In Bounding Volume Hierarchy (BVH), objects in the scene are partitioned instead of

partitioning the space. BVH starts by construction of the BVH tree. The root of the

BVH tree is the bounding volume of the whole scene, the intermediate nodes are bounding

volumes of the assigned triangles and leaves are the triangles themselves. There are two

known methods used for construction of the tree. One is a top-down approach proposed

by Kay and Kajiya [26]. The other one is a bottom-up approach introduced by Goldsmith

and Salmon [14]. Once the construction of the tree is �nished, the traversal of the tree

is straightforward. If a ray doesn't intersect the bounding box of a node, it is guaranteed

that the ray cannot hit the children. So the traversal continues from the next node, which

depends on the traversal method used. The traversal method chosen is usually depth-�rst.

KD-tree is another spatial subdivision technique. The construction of the KD-tree re-

quires a top-down approach. Given a bounding box and a list of triangles, a splitting plane

perpendicular to the one of the axes which splits the box into two pieces. The splitting plane

is chosen based on a cost function. MacDonald and Booth [31] have proposed a cost function

which assumes that a ray is more likely to hit the child with the bigger surface area. Haines

[17] and Pharr [45] has proposed derivations to this cost function also. Once the splitting

plane is set, each primitive contained by the parents are assigned to children according to

the splitting plane. This process is recursively repeated on the children until desired depth

is reached or the triangles assigned to a node drops below a speci�ed threshold. During

traversal, both children's bounding box are tested against the ray. The children that are

�rst hit is traversed recursively. If an intersection is not found than the traversal continues

from the other child.

Havran [18] has made a comparison of the acceleration structures we have discussed in

order to discover the fastest acceleration structure. In his work, Havran concludes that KD-

tree is the one showing best performance and BVH is the one with the worst performance.

7

1.3 Graphics Processing Unit

The idea of using GPUs for general purpose computation is not new. There have been

computers like Ikonas [9], The Pixel Machine [47] and Pixel Planes-5 [53], which have been

used in GPGPU researches. With the recent advancements in GPU technology, the graphics

card used by normal users became much more sophisticated. Consequently, the research done

on GPGPU area has become a very hot research area in the last few years. The researches

performed are not limited to computer graphics discipline. Lengyel [30] using GPU for robot

motion planning, Ho� [27] taking advantage of z-bu�er techniques for the computation of

Voronoi diagrams and Bohn [3] using it in the computation of arti�cial neural networks are

just a few examples to such researches.

While the early generations of GPUs were only limited to process simple primitives, now

they are much more �exible and faster. Current GPUs can be thought as highly parallel

processors. They are especially good at arithmetically expensive operations. While Moore's

law states that the speed of CPUs are doubled every eighteen months, the speed of GPUs

are doubled every six to twelve months. Unfortunately, there are some restrictions imposed

by the architecture of GPU. In [7], the restrictions of GPGPU are summarized as follows:

• Limited input/output registers.

• Ine�cient random memory access.

• Inability to write dynamic memory locations.

• Lack of a sophisticated branch prediction units.

• Limited recursion capability.

• High communication cost between CPU and GPU.

All these restrictions must be thoroughly considered in GPGPU to avoid under utilization

of GPU which can severely a�ect the overall performance of the implementation.

1.3.1 The Rendering Pipeline

The virtual environment in a computer consists of objects, camera information and light

information. The method chosen to describe objects is usually triangle meshes. Vertex

data and connectivity information are included in mesh data. Besides the position infor-

mation, each vertex usually have additional information like color and normal. What the

8

graphics pipeline does is simply to take this virtual environment information as an input

and after a chain of operations, produce the two dimensional �nal image. The traditional

pipeline mechanism that usually takes place every time we use our computers can be seen

in Figure 1.3.

Figure 1.3: Traditional graphics pipeline (Courtesy of Alphan Es [7])

Figure 1.3 shows how a �xed function pipeline works. Once the input is given the �xed

set of functions are called one after another. The only thing that can be done to change

the course of pipeline execution is to set some states before feeding the input. For example

lighting can be enabled or disabled by changing the corresponding states. But it is not

possible to change the shading function from Gouraud shading to another shading method.

In order to be able to change the �xed functions in a graphics pipeline, the idea of

using programmable processors is introduced. Today, this idea is the basis for modern GPU

arhitecture. Figure 1.4 depicts the new GPU pipeline . With this new architecture, the user

has the freedom to program everything listed in a green box in the �gure to behave di�erent.

For example, user is no longer limited to use the shading technique that the pipeline forces

to.

The programmable processors of a modern GPU are vertex processors, geometry pro-

cessors and fragment processors. Vertex processors are responsible for processing vertex

information and forwarding the generated output. Geometry processors are almost like the

vertex processors except the fact that they can create or discard geometry primitives. Fi-

nally the fragment processors are responsible for modifying each fragment (pixel candidate)

9

Figure 1.4: GPU graphics pipeline (Courtesy of Alphan Es [7]

depending on the program loaded on them.

1.3.2 Parallel Stream Processors and GPU

Before starting to program a GPU, one must completely understand the parallel stream

processing paradigm. Traditional CPUs are based on the Single Instruction Single Data

(SISD) architecture. This means that a CPU handles one operation at a time. Unlike the

CPU, a parallel stream processor works on multiple data at the same time. It takes a set

of data, which is called a stream, as input. Each element in the stream is processed by a

function which is called a kernel. Kernels can accept a number of streams and they can

produce a number of streams in return. The characteristics of an application which runs

e�ectively on a stream processor are as follows [43]

• Compute Intensity : The number of arithmetic operations performed per I/O is very

high.

• Data Parallelism: Each element in the stream can be processed while the other ele-

ments in the stream are being processed by another kernel. Also a kernel doesn't have

to wait for the result from a previous element to process the current element.

10

• Data Locality : Any intermediate stream is accessed a couple of times immediately after

its production and never needed again.

Image, audio, video and digital signal processing applications exhibit these characteristics

making them good candidates for stream processing.

Figure 1.5: (a) Stream Processing (b) GPU as a stream processor (Courtesy of Alphan Es

[7]

In Figure 1.5, parallel stream processing and GPU pipeline are visualized. The green

boxes in Figure 1.5 represent the stream processors in a GPU. Vertex, geometry and frag-

ment programs are actually what is being called as a kernel in stream processing. Each of

these kernels can work on multiple input streams and output multiple streams. The biggest

di�erence between a parallel stream processor and a GPU is the fact that if a number of

di�erent kernels are needed to be executed by a speci�c processor, the whole pipeline must

be repeated after loading the next kernel on the corresponding processor. For example if we

were to use two di�erent kernels on fragment processors, we would have to complete the �rst

pass with the �rst kernel loaded on the fragment processor, than feed the output acquired

to the start of the pipeline and start the whole process again after loading the second kernel

on the fragment processor. Another limitation comes from the fact that unlike the vertex

11

processor, fragment processor can only output to a speci�c memory location (pixel) de�ned

by the geometry. This makes it hard to implement scattering operation on a GPU.

One of the most important details in the GPU pipeline is early fragment culling. Not

all of the fragments feeded to fragment processor need processing. To avoid processing

the unnecessary fragments, early fragment culling must be used. This is done by utilizing

depth or stencil bu�ers. The fragments that don't need processing any more are masked

in the depth bu�er. This way, they are going to be discarded before reaching the fragment

processor.

1.3.3 GPU Programming Languages

The straightforward way to program GPUs is to use the graphics API which is usually

either DirectX [33] or OpenGL [39]. When GPUs were �rst introduced the programmers were

limited to use low level assembly like languages to program vertex and pixel shaders. Today

both DirecX and OpenGL have their own high level shading languages High Level Shading

Language (HLSL) [34] and OpenGL Shading Language (GLSL) [40]. The advantages of

using a high level shading language are as follows:

• It is easier to understand, change and program.

• The code written is not platform dependent.

• The compiler takes care of low level optimizations automatically.

Cg (C for Graphics) is another high level programming language that was introduced

by NVIDIA. We have preferred to use Cg in our implementation as it was very similar to

the C programming language that we are already used to. Reader is strongly encouraged

to read [12] and [44] as they were a great source for us in trying to learn Cg. Other GPU

programming languages that are widely used are Brook for GPU [28] and Sh [22].

CUDA [37] by NVIDIA and Close To the Metal (CTM) [2] by AMD are both focused on

trying to minimize the overhead introduced by the graphics API used while providing more

direct access to the GPU. Unfortunately, they are both in early stages of their lifetime at

the moment and they still need time for further development.

1.4 Goals

Our �rst goal is to implement ray casting on a single GPU. To achieve reasonable com-

putation times we will make use of Extended Anisotropic Chessboard Distance [11].

12

When large scenes are to be ray casted, memory limitation becomes a serious issue. Our

second goal is to overcome this problem and use ray casting on the GPU cluster to render

large scenes in a data parallel manner.

When computation is taking place on the GPU, the CPU is almost idle waiting for GPU

to �nish its work. Considering this fact, as a last goal we are going to extend the work we

have accomplished on the GPU cluster to the CPUs in the cluster. For accomplishing this

goal we will make use of the CPUs to traverse the rays that have been identi�ed to be outside

of the scene assigned to the CPU-GPU couple. This way we will transform the GPU cluster

into a CPU-GPU cluster which will make better use of the available hardware.

We believe that in the end, this work will further advance the previous ray tracing on

GPU researches and set a good example of how it is possible to use a CPU-GPU cluster

e�ectively for general purpose computing.

1.5 Outline

Chapter 2 is dedicated to background discussion of parallel ray tracing approaches and

GPU based ray tracers.

Our implementation details are revealed in Chapter 3. We explain the data structures we

have used in depth in this chapter. We also share the details of how ray tracing is mapped

onto the CPU-GPU cluster in the third chapter.

In Chapter 4, we give the results we have achieved and discuss them thoroughly. The

results achieved in single GPU and CPU-GPU cluster are compared with each other. We

will also present the results we achieved with large scenes that is not possible to ray trace

on a single GPU.

Finally we conclude our work and suggest future research areas in Chapter 5.

13

CHAPTER 2

RELATED WORK

In this section we will focus on giving background information about parallel ray tracing

and GPU based ray tracers. Both of these topics are interconnected with each other and

included in our work. Therefore a good understanding of these concepts is a must.

2.1 Parallel Ray Tracing

When ray tracing was �rst introduced, it was known for its high computation cost.

Acceleration structures are developed to decrease this high cost. But they are not enough

for a good speed up by themselves. Also there is the high space cost problem of ray tracing

which makes it impossible to render large scenes that cannot �t in the memory of a single

processor. To remedy these costs as much as possible, the idea of parallelizing the ray tracing

is proposed. The key idea in parallel ray tracing is to render an image using multiple ray

tracers at the same time. Each of these ray tracers are assigned a part of the image and each

of them solves a part of the �nal image.

There are three di�erent methods to create a parallel ray tracer. Each of these methods

have their own advantages and disadvantages which we will explain in the next sections.

2.1.1 Demand Driven Ray Tracing

Since all the rays in a ray tracer are independent from each other, the obvious way

to go is to replicate all the scene data on each processor and assign the rays to be traced

respectively to all of the processors [42, 16, 48, 32, 51]. Once processors �nish their tasks,

the results are combined and the �nal image is displayed.

The tasks can be distributed before the computation begins. However, since the com-

plexity of each part of the scene can di�er signi�cantly, load imbalances can easily occur. To

14

overcome this problem, processors can be assigned new tasks as they become idle. This way

it is ensured that the idle time for a processor is minimal.

The biggest advantage of task driven approaches is that the communication is minimal

since all the processors work independent of each other. This also means that the control

of parallel computation is really simple. It is all about sending the rays and receiving the

results, nothing more. Another advantage is that there is no need for a modi�cation to the

original algorithm. The only thing that changes is the number of rays being processed. Last

but not least, the speed up expected to be achieved by using this type of parallelization is

linear.

The biggest disadvantage introduced by demand driven approaches is the fact that the

whole scene data must be replicated on each processor. If the scene is too large to �t in the

memory of a single processor, this approach cannot be used. This draw back makes the use

of demand driven approaches limited.

2.1.2 Data Parallel Ray Tracing

Data parallel ray tracing makes it possible to use ray tracing on arbitrarily large scenes.

In data parallel ray tracing, the scene itself is partitioned instead of partitioning the tasks.

Each processor is assigned a volume in the scene and each processor trace the rays going

through its volume assigned [8, 52, 5, 23, 51].

Once each processor receives the sub volume it needs to handle, the processor must �rst

control if the ray it is currently processing is passing through the volume assigned to the

process. If it is, than ray tracing process is applied to the ray. Otherwise, the ray is simply

skipped.

The advantage of data parallel approach is that it is not limited by the size of the scene

as long as there are enough processors. In other words, the disadvantage of demand driven

approach is remedied by this approach. Unfortunately, load balancing becomes a severe

problem in this method. The e�ciency of the implementation is heavily dependent on the

way the scene is partitioned. If a processor is assigned a volume which is not visible it means

that this processor will be idle throughout the whole process.

In order to solve the load imbalance problem, Salmon and Goldsmith [54] proposes to

subdivide the scene based on some cost criterion. These criteria are as follows:

• The data must be distributed such that each processor's load will roughly be the same.

• The memory consumed by each processor must be roughly the same

15

• The communication cost introduced by the fact that some rays will pass through

multiple processors must be minimized

Unfortunately, there is still no algorithm to satisfy all of these requirements yet. Therefore,

load imbalance remains as the major issue of data parallel ray tracing approaches.

2.1.3 Hybrid methods

As the name already suggests, hybrid methods are a mix of both data parallel and

demand driven approaches. The goal for this kind of methods is to avoid disadvantages of

the previous two approaches explained while trying to keep the advantages of them.

Reinhard and Jansen [52] �rst try to change the demand driven part so that it is possible

to apply data parallel techniques. To achieve this goal, they group together coherent rays.

This way the rays that are most likely to pass through the same objects are grouped which in

return reduces the number of calculations required. In [52], rays are enclosed into a bounding

cone and the objects intersecting the cone are found. The individual rays in the cone are ray

traced using only these objects found. In the parallel case, the only thing to be done is to

send the ray bundle and the objects intersected to a processor. After this point, rendering

is done just as it was in a demand driven ray tracing technique.

2.2 Ray Tracing on GPUs

Carr et al. have tried to exploit the idea that CPU and GPU can work at the same time in

their work [4]. They have performed experiments to reveal the advantages and disadvantages

of these two di�erent architectures. As a result, they found out that GPU is better at

handling intersection tests compared to CPU. Using this fact, they have implemented a

system which is called The Ray Engine. The pixel shaders are utilized for ray-triangle

intersection tests. Vertex shaders are used to ignore triangles that are not related to the ray

bucket sent. The CPU part uses octree as an acceleration structure and rays are bundled

as batches for the GPU to perform intersection tests. Although they were able to reach a

speedup of 33% compared to pure CPU implementation, the images produced had artifacts

because of the 24-bit precision limit of the GPU they have used at that time. The reported

speed is 120 million ray-triangle intersection tests per second on a Radeon 8500.

Purcell has implemented a complete ray tracer on the GPU [50]. Purcell's work is very

similar to our single GPU implementation. The GPU is visualized as a stream processor and

16

four kernels are implemented for ray tracing which are ray generator, traverser, intersector

and shader kernels. Once the required data structures are transferred to the GPU memory,

everything is handled by these kernels running on the GPU. The biggest di�erence with our

and his implementation is the fact that while he has used geometric primitives to describe the

scene, we are using triangle meshes which is harder to ray trace. For example, a ray-sphere

intersection test is much faster than a ray-triangle intersection test. Although Purcell has

not reported any artifacts on the �nal image, he was using a GPU with 24-bit precision just

like Carr et al. [4].

While Purcell's work was making use of uniform grid acceleration structur, Ernst et al.

[10] implemented a GPU ray tracer based on kD-acceleration structure which is claimed to

be the best performer on a CPU among the other acceleration structures [18]. Unfortunately,

their kD-Tree traversal implementation on the GPU have a high space cost proportional to

the maximum depth of the stack which is a requirement enforced by the original kD-Tree

implementation. It also requires multiple passes to be performed for pushing into the stack.

Another work following Purcell's organization is Foley et al.'s work [13] which is also

based on kD-Tree. To alleviate the disadvantages of using a stack that Ernst et al. have

experienced, Foley et al. have proposed two di�erent traversal kernels. Both of these kernels

have the same goal, eliminate the requirement for a stack. The �rst kernel is called kd-restart.

When no intersection is found in a leaf node, the search is simply restarted from the root of

the tree in this kernel. The other traverser kernel is called kd-backtrack. A modi�ed kd-tree

is constructed for this kernel to be utilized. Each node in the tree stores both the bounding

box information and a pointer to the parent. This way, when a hit is not found in a node,

the search is restarted from the parent, instead of restarting from the root. Naturally, kd-

backtrack has a bigger space requirement for the tree. After the experiments, they found out

that for the scenes that have objects uniformly distributed uniform grid performed better

while their implementation performed better on scenes with non-uniform distribution. Also

they have observed that the performance of the traverser kernels proposed were similar which

was due to the fact that in the average case both kernels terminates after visiting only a few

nodes.

Thrane and Simonsen [58] were the �rst ones to introduce the BVH acceleration structure

on a GPU ray tracer. They have eliminated the requirement for a stack in their implemen-

tation and compared their implementation's performance to [13] and a uniform grid based

GPU ray tracer that they have implemented again. After the experiments, they concluded

that BVH is superior to other acceleration structures when it is implemented on a GPU

17

which is a bit surprising as BVH is the worst performer on a CPU according to [18].

Es [7] has also implemented a GPU ray tracer based on the the uniform grid acceleration

structure. In his work, four di�erent traverser kernels are implemented which are 3D - Digital

Di�erential Analyzer [1], Proximity Clouds [6], Anisotropic Chessboard Distance [57] and

Extended Anisotropic Chessboard Distance which is introduced by Es himself again [11]. In

his work, Es concludes that EACD traverser is superior to other traver kernels especially

when a smaller voxel size is chosen. He also compares the performance observed to the

performance seen in other researches indirectly by looking at the specs of the computers

used and shows that his implementation is a better performer for even at scenes with large

empty spaces and moderately even triangle density in non-empty voxels.

Unlu has implemented a demand driven ray tracer on a GPU cluster recently [59]. For

the single GPU implementation, Unlu used the BVH based GPU ray tracer proposed by

Thrane and Simonsen [58]. As expected, he observed that when the implementation is run

on simple scenes, the total frame time is dominated by API and network costs causing non-

linear speedups. The implementation performs best when it is used on complex scenes and

number of tiles is chosen carefully.

18

CHAPTER 3

RAY CASTING ON A CPU-GPU

CLUSTER

In this chapter, we will �rst explain how we implemented our single GPU Ray tracer. In

next part, we will reveal the details of our CPU-Cluster algorithm and explain how we make

use of CPU and GPU couple.

3.1 Single GPU Implementation

For our GPU ray tracer implementation, we have used the ray tracer proposed by Alphan

Es [7]. We have used the GPU programming code written in Cg [38] shader language without

making any signi�cant changes. The CPU interface is developed using OpenGL graphics

library.

One of the most popular methods for modeling virtual environments is using triangle

meshes. We have used the same method for description of the scene in our GPU ray tracer

implementation. The �le format we have chosen for representing triangle meshes is Polygon

File Format (PLY) which is also known as Stanford File Format. Each PLY �le contains

information about vertices, normals and connectivity. All of the PLY �les we have used are

in ASCII �le format.

The scene database and the acceleration structure are stored as 1D, 2D and 3D textures

in our GPU ray tracer. The organization we have used for representing the scene is illustrated

in Figure 3.1. The 3D grid texture represents our uniform grid acceleration structure and it

is created by the CPU in the preprocessing phase. Each element in this texture is an index to

the start of a triangle list which is located in the triangle list texture. If the voxel is empty,

the index is simply (-1,-1). Since there are two values required for indexing the 2D triangle

list texture, the color format chosen is Red-Green with 16-bit integer components (RG16).

19

Each element in the triangle list texture contains the index required to �nd the vertex and

normal values for a triangle. For the triangle list texture again RG16 format is chosen which

enables us to index 22x16 vertices. The vertex and normal textures are in Red-Green-Blue

format with single precision �oating point components. For each triangle there is also the

material information. This information is represented by the material index and material

textures.

Figure 3.1: Organization of the scene database in the GPU memory (Courtesy of Alphan Es

[7])

A ray is de�ned by its origin and direction. Therefore, we created one texture for the

origins of rays and another for the directions of rays in our GPU implementation. Figure 3.2

illustrates the fact that in a ray tracer, each screen pixel corresponds to a ray passing through

that pixel. Therefore, for creation and processing of rays in the GPU, a screen sized quad

is drawn on the screen. This way once a fragment program is loaded to the GPU and draw

operation is started, one fragment is generated for each pixel. Ultimately, the fragment

program loaded is executed for each of these fragments generated.

Our GPU implementation is the same as Es's implementation except the fact that he

20

Figure 3.2: Rays are represented by two textures (Courtesy of Alphan Es [7])

uses Pbu�ers [41] which are now obsolete. Instead, we are using state of the art Frame

Bu�er Objects (FBO) [55] for kernel I/O. The main advantage of FBO over pbu�er is that

it does not require a context switch. Therefore, switching between di�erent objects is faster.

A comparison of both architectures is made by Simon Green from NVIDIA [56].

In our implementation, z-culling with the help of depth bounds test is used to avoid

execution of fragment programs on unnecessary fragments which increases the overall per-

formance in the end. During the process, each ray is given a state which is speci�ed by the

corresponding depth bu�er value. The possible states for a ray includes creating, travers-

ing, intersecting, intersected, shaded and out. The original GPU ray tracer proposed by Es

utilizes �ve main kernels in the course of ray tracing. These kernels and ray state transition

are depicted in Figure 3.3.

The �rst kernel we use is named ray generator. This kernel generates the ray origins and

directions using the camera position and the position that the camera is looking at. The ray

origins are all clipped against the bounding box of the scene. In this kernel, the depth bu�er

is modi�ed so that the rays that are not hitting bounding box of the scene are set to state

out. This is achieved by setting the corresponding depth bu�er value to 0. All the other rays

are considered as in traversing state and therefore, the corresponding depth bu�er value is

set to 1.

Traverser kernel is the kernel activated after ray generator. When the traverser kernel

is �rst invoked, it checks if the ray is in an empty voxel. If it is in such a voxel, it loops

until it �nds a non-empty voxel. The output generated by this kernel is either used by the

intersector kernel or resent to the traverser kernel for further traversal. Once the traverser

21

Figure 3.3: Ray tracing kernels and ray state transition (Courtesy of Alphan Es [7])

kernel �nishes its execution, it sets the state of the ray to either out or intersecting. Es

has proposed GPU implementation of four di�erent traverser kernels which include 3D -

Digital Di�erential Analyzer [1], Proximity Clouds [6], Anisotropic Chessboard Distance

[57] and Extended Anisotropic Chessboard Distance [11]. We have included all of these

traverser kernels in our implementation. The reader is strongly encouraged to read the GPU

implementation details of these accelerated traversal kernels from Es's work [7] as they are

implemented slightly di�erent from their CPU versions.

The rays in the intersecting state are processed by the intersector kernel. If this kernel

�nds an intersection for the ray, the ray's state is set to intersected by modifying the depth

bu�er value to 0.2. Otherwise the state value is set to traversing again so that the ray can

be traversed by the traverser kernel again. When a hit is found, the barycentric coordinates

of the hit are written to the output texture.

After the execution of the intersector kernel, the pixels in traversing state are counted.

If there is none, it means that all the rays are either in intersected state or out state. At

this point, the intersection position and normals are calculated and forwarded to the shader

kernel as input. The �nal color value for the ray is computed by using the Phong shading

model [46]. The execution �ow for a single ray is summarized in Algorithm 2.

The �fth kernel is the re�ector kernel. Although we didn't include this kernel in our

implementation, it is straightforward to add this kernel. Since GPUs do not support recur-

22

Algorithm 2 A single ray in GPU ray tracer

function GPU Ray Tracing(ray)

Find origin and direction of ray

Clip origin of ray against the bounding box of the scene

if ray origin is out of the bounding box then

color ← (0, 0, 0)

return color

end if

while ray is in traversing state do

while ray is in an empty voxel and ray is not in out state do

traverse(ray)

end while

if ray state is out then

color ← (0, 0, 0)

return color

end if

Call intersector kernel

if an intersection is found then

Set ray state to intersected

else

Set ray state to traversing

end if

end while

return color = shade(ray)

23

sion, Es proposes to use bu�er stacks. The intermediate results are pushed to the stacks

before secondary rays are �red and popped from stacks when primary rays are terminated

and shaded.

3.2 CPU-GPU Cluster Implementation

The next step after completing the single GPU implementation was to parallelize it in a

data parallel manner so that we can use it on a CPU-GPU cluster. To achieve this goal we

preferred to use the so called master-slave paradigm with a slight modi�cation which we will

explain in the latter part. In this paradigm the master generates sub problems to be solved

by the slaves. After sending the subproblem the master starts to wait for results and upon

receiving the results it creates the �nal result. The organization for the CPU-GPU cluster

is depicted in Figure 3.4

Figure 3.4: CPU-GPU Cluster implementation

In our work, the master process �rst builds a Binary Space Partitioning (BSP) tree. The

construction of the BSP starts with choosing the splitting axis. In our case, we always choose

the longest axis. The next thing we do is to sort the triangles in the given list along the

splitting axis based on only one vertex. The sorting algorithm we have chosen is Combsort11

24

which is derived from Combsort Algorithm found by Stephen Lacey and Richard Box [29].

This sorting algorithm's average complexity is O(nlogn) and we mainly choose this one over

the others because of its performance and the fact that it doesn't require a stack. Once

the sorting is �nished, a splitting plane must be decided. If n is a positive integer and the

number of leaves needed for the current node being processed is 2n then a plane which splits

the triangles equally is chosen. If the number of leaves needed for the current node is 2n+ 1

then a plane which splits the triangles proportionally to values n+ 1 and n is chosen. Once

the splitting plane is decided, the triangle list of the children are created. Remember that

the triangle list of the node was sorted based on only one vertex. Therefore, we need to

make sure that we have added all the triangles whose two other vertices might fall inside the

boundary of the children to the children's triangle list. This algorithm is recursively called

on the children until the desired number of leaves reaches one. The creation of BSP tree is

summarized in Algorithm 3.

Figure 3.5: Master Process

Once the BSP tree is successfully created, we would have requested number of leaves

which have almost the same amount of triangles in their triangle list. Each of these leaves

are assigned to slaves simply by sending the bounding box information of the leaf. After

sending this information to slaves, the master sends the initial camera position to each slave

and then starts to wait for the partial results. Once the master receives the partial results

25

Algorithm 3 BSP Tree Creation

function CreateTree(number of leaves requested)

Create list of triangles

Find bounding box for triangle list

CreateNode(list of triangles, number of leaves requested, bounding box

function CreateNode(list of triangles, number of leaves requested, bounding box)

n ← number of leaves requested

if n is equal to 1 then

return

end if

splittingAxis ← longest axis of the bounding box

sort list of triangles based on one vertex

if n is even then

splitting plane ← the plane splitting sorted triangle list equally

leftLeafCount ← n/2

rightLeafCount ← n/2

else

splitting plane← the plane splitting sorted triangle list proportional to (n+1)/2

and n/2

leftLeafCount ← (n+ 1)/2

rightLeafCount ← n/2

end if

boundingBoxLeft ← compute bounding box of left child

boundingBoxRight → compute bounding box of right child

listLeftChild ← triangles to the left of splitting plane

listRightChild ← triangles to the right of splitting plane

scan listRightChild and add the ones falling inside boundingBoxLeft to listLeftChild

scan listLeftChild and add the ones falling inside boundingBoxRight to listRightChild

CreateNode(listLeftChild, leftLeafCount, boundingBoxLeft)

CreateNode(listRightChild, rightLeafCount, boundingBoxRight)

26

from all slaves, it combines these to create the �nal image. Finally, the image created is

displayed on the screen. After this point the master is responsible for user interaction,

sending the new camera information to slaves and receiving the results. The operations

performed by the master process is summarized in Algorithm 4 and Figure 3.5.

Algorithm 4 Master Process

function Master Ray Trace(number of slaves)

Create BSP Tree with number of slaves leaf count

Send corresponding bounding box to each slave

loop

Send camera information to all slaves

while There are slaves still busy with ray tracing do

WAIT

end while

Receive partial result from each slave

Display the �nal result

Wait for user input

if User input = QUIT then

Send exit signal to all slaves

Exit

else

Update camera information based on user input

end if

end loop

The slave process starts its execution by �rst receiving the bounding box that it is

responsible for. Upon receiving its bounding box, the triangles and their information are

read from the �le. The next thing for the slave process is to create the necessary textures

that we have discussed in the previous section. After these textures are ready, the slave starts

to wait for the camera details. With the camera coordinates received, the slave starts the

execution of ray tracing. Everything is the same as we have explained in section 3.1 except

one part which is the creation of ray origins. As you know in the original implementation

27

the ray origins are clipped against the bounding box of the scene. This time the rays are

�rst clipped against the bounding box of the whole scene. The acquired clipping result is

checked against the slave's bounding box. If the clipping result is inside slave's bounding

box than this ray is processed in the �rst ray tracing pass. Otherwise, it means that the ray

will be �rst processed by some other slave. In this case, the ray origin goes through another

clipping process but this time it is against the slave's bounding box. The result is written

in the origin texture but the state value for the ray is set out.

Figure 3.6: CPU-GPU Cluster Ray Caster

28

After the eye rays are created the GPU starts ray casting process. There are two points

that must be considered at this phase. The �rst one is that as the number of traversal passes

performed by the GPU increase, the number of rays that are in state out also increase.

The second one is that GPU and CPU can do di�erent things simultaneously. Based on

these two facts, we start a new thread in the CPU after the GPU �nishes a predetermined

number of traversal passes which is speci�c to our CPU-GPU cluster implementation. This

thread is responsible for �nding to which slave the rays that are in state out will be passed.

However, there can still be rays that are discovered to be in state out once GPU �nishes ray

casting. Therefore, the computation performed by the thread is repeated when ray casting is

�nished. Finally, the rays that still needs processing are sent to corresponding slaves and the

shading result is left untouched. Figure 3.6 shows how the single GPU ray caster depicted

in Figure 3.3 is modi�ed to �t our needs. The red boxes denote our modi�cations to the

original GPU ray caster.

After this initial ray tracing pass, the slave process starts to wait for further command

from either the master process or another slave process. Communication between slave

processes is our implementation's only di�erence from the classic master-slave paradigm. If

a command from another slave process is received, it means that further ray tracing will be

done and the steps above will be repeated for the rays that are received. However, if the

slave receives a command from the master process at this point, it means that the master

process is asking for the partial result to be sent. Once the transfer of the partial result

is complete, the slave process starts to wait new commands from the master process which

can either be new camera coordinates for a whole new ray tracing process or exit command.

Algorithms 5, 6 and Figure 3.7 demonstrates the work done in the slave process.

The biggest di�erence between our CPU-GPU cluster implementation and a regular

CPU implementation comes from the fact that in a CPU cluster implementation there is

no overhead introduced by the rays that do not intersect any of the objects assigned to

a slave. Since the rays are traversed on the CPU, ray tracing process and the process

of determination of which rays are going to be transferred to other slaves can be done

simultaneously. Also there is no CPU to GPU or GPU to CPU transfer overhead in a

CPU only cluster implementation. This is due to the fact that everything is handled in the

system's main memory.

29

Figure 3.7: Slave Process

30

Algorithm 5 Slave Process

function Slave Ray Trace()

Receive assigned bounding box from the master process

Read the scene information based on the bounding box received

Create and prepare the static textures needed by the GPU Ray tracer

loop

Wait for a command from any source

if Command = QUIT then

Exit

else if Command = New camera information then

Receive new camera information from the master

Raytrace the rays that �rst hits the slave's bounding box

if traversal step count is 4 then

Read the depth bu�er information from the GPU

Create a thread and compute the next slave information for the missed

rays speci�ed in the depth bu�er

end if

When intersection positions in barycentric coordinates is ready �nd out

which rays still needs processing

if There are rays still needing processing then

for each ray that still needs processing do

if Next slave information is not computed by the CPU thread then

Compute the next slave information for the ray

end if

end for

Send the rays in need of more processing to the responsible slaves

end if

Finish ray tracing

Keep the shading result

else if Command = Process more rays then

ProcessRaysSentFromASlave()

else if Command = Send partial result then

Send the partial result to the master process

end if

end loop

31

Algorithm 6 Process rays sent from a slave

function ProcessRaysSentFromASlave()

Receive the rays from the sending slave process

Set the received rays' state to traversing

Start ray tracing

if traversal step count is equal to thresholdvalue then

Read the depth bu�er information from the GPU

Create a thread and compute the next slave information for the missed rays

speci�ed in the depth bu�er

end if

When intersection positions in barycentric coordinates is ready �nd out which rays

still needs processing

if There are rays still needing processing then

for each ray that still needs processing do

if Next slave information is not computed by the CPU thread then

Compute the next slave information for the ray

end if

end for

Send the rays in need of more processing to the responsible slave

end if

Finish ray tracing

Keep the shading result

32

CHAPTER 4

EXPERIMENTS

In this chapter, we will �rst explain our testing methodology. After that, we are going

to share the performance results we have obtained from our CPU-GPU ray tracer explained

in the previous chapter. We will also provide our interpretations of these results.

4.1 Experimental Setup

We have performed our experiments on a cluster including �ve computers. Four of these

computers are identical and they are used by the slave processes. The speci�cations of these

four computers are as follows:

• Intel Pentium 4 3.20 GHz CPU

• 1GB DDR2 RAM

• NVIDIA GeForce 7800 GTX 256MB Graphics Card

The �fth computer is used by the master process and its speci�cations are as follows:

• Intel E4300 1.8Ghz CPU

• 2GB DDR2 RAM

• NVIDIA GeForce 7900 GS 256MB Graphics Card

The computers are interconnected using a gigabit ethernet switch. Development is done using

C++ and Cg 2.0. Intra-cluster communication library we have chosen is MPICH2 1.0.6 [35].

We have decided to use six di�erent models which include the well known stanford bunny

(1458471 triangles), happy buddha (1087716 triangles), lattice (626940 triangles), sphere

(1328430 triangles), turbine blade (1765388 triangles) and manuscript (4305679 triangles).

The �nal results achieved after ray casting these models can be seen in Figure 4.1.

33

(a) Bunny (b) Lattice

(c) Sphere (d) Buddha

(e) Turbine Blade (f) Manuscript

Figure 4.1: Ray Casted Models

34

In order to have a better understanding of the results, the camera is rotated around

the model used with intervals of 10 degrees for a total of 36 di�erent angles. This camera

rotation process is repeated 10 times to make sure that the best result for each angle is

stored.

4.2 Results

In our �rst group of tests we tried to determine the performance of our CPU-GPU cluster

implementation using di�erent camera angles and compared the results achieved with the

di�erent number of slaves. The only test scene that can be rendered using a single GPU

is the Buddha scene Figure 4.1(d). Bunny Figure 4.1(a), lattice Figure 4.1(b) and sphere

Figure 4.1(c) test scenes require at least two slaves while the turbine blade Figure 4.1(e) test

scene requires at least three slaves. The manuscript scene Figure 4.1(f) is the biggest scene

among the test scenes we have chosen and it requires four slaves to be used which is the

maximum number of slaves in our test setup.

Figure 4.2 shows the angle vs time results achieved on the bunny scene. These results

prove that our implementation's performance is highly dependent on the viewing angle. This

is due to the fact that our implementation do not consider load balancing. Our implemen-

tation partitions the scene to balance the memory load on each slave. Still, there is only one

case (Figure 4.2(c)) where there is a slowdown using a greater number of slaves.

In lattice Figure 4.3, sphere Figure 4.4 and turbine blade Figure 4.6 scenes the load

imbalance problem becomes more apparent. While in the bunny scene there was only one

case where there was a slowdown using a higher number of slaves, in these three test scenes

there are multiple examples of this slowdown problem.

The buddha model is a highly detailed model which makes it a complex scene to ray

cast in reasonable time periods. As it can also be seen in Figure 4.5, our CPU-GPU cluster

implementation is able to improve the performance of the single GPU implementation signif-

icantly. However, the results are again dependent on the viewing angle. Another important

point is that as the resolution used is increased the communication overhead gets more signif-

icant. As there is no communication overhead introduced when single GPU implementation

is used, the performance gap is decreased signi�cantly when the resolution is increased.

Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11 shows the speedups achieved using

bunny, lattice, sphere and buddha models based on the viewing angle. In these �gures, the

e�ect of using a higher resolution can be better seen. The resolution increase a�ects the

35

communication overhead in a negative way especially when there is higher number of slaves.

The speedup factors achieved using four slaves are decreased signi�cantly when the highest

resolution 1024x1024 is used. Another point is that in the bunny scene there seems to be

a super linear speed-up. Unfortunately, this is again due to the poor load imbalance when

two slaves are used in this scene.

Using the results we have achieved so far, we can say that it is not guaranteed that

increasing the number of slaves will also increase the performance. The performance is

dependent on the viewing angle unless there is some sort of load balancing mechanism

added.

In the second group of tests, we tried to identify the major overheads introduced by our

implementation. Figure 4.12 shows the overhead analysis results we have achieved using

the bunny test scene. There are six major overheads. One of the major overheads comes

from the nature of data parallel approach, load imbalance. The GPUs must be processing

same number of rays at the same time in the ideal case. Unfortunately, with a data parallel

approach this is very hard to achieve and depends on how you partition the scene. The idle

times for the slaves in Figure 4.12 shows the load imbalance problem.

Another major overhead is that the whole depth bu�er must be controlled once the ray

traversal is �nished in order to �nd out the rays that can still be processed by other slaves.

In Figure 4.12 this is shown as the CPU traverse time overhead. The higher the resolution

is, the higher the number of rays is. Therefore, CPU traverse time becomes more signi�cant

when the resolution is increased.

When a slave receives rays that are passed from another slave, it must transfer these rays

to the GPU. As there is no way of transferring rays directly from the network to a slave's

GPU memory, some time between CPU and GPU must be spent to transfer the passed rays.

CPU to GPU transfer time in Figure 4.12 depicts this overhead.

The time spent to transfer rays between slaves is insigni�cant compared to the overheads

we have mentioned so far. This is due to the fact that we are not transferring the origins

and directions of the rays. As all these information is already present on each slave from the

beginning, our implementation transfers only the ID numbers of the rays which are integers.

The �nal overhead is the time spent on combining the partial results received from the

slaves. This overhead is only linearly dependent on the resolution. Figure 4.12 shows that

the time spent to combine results is 5.43 milliseconds when the resolution is 256x256. When

the resolution is increased four times so that the resolution become 512x512, the time spent

to combine the results is increased to 22.5 milliseconds which is almost four times of the

36

previous timing.

In the �nal group of tests, we focused on trying to �nd the performance the di�erence

between our CPU-GPU and GPU cluster implementations. The results we achieved with

this group of tests can be found in Figure 4.13 and Figure 4.14. It is clear that our thread

modi�cation to our GPU cluster implementation had a positive e�ect in all of our test scenes.

37

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.2: Bunny: Angle vs Time results

38

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.3: Lattice: Angle vs Time results

39

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.4: Sphere: Angle vs Time results

40

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.5: Buddha: Angle vs Time results

41

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.6: Turbine Blade: Angle vs Time results

42

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.7: Manuscript: Angle vs Time results

43

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.8: Bunny: Speedup against 2 Slaves

44

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.9: Lattice: Speedup against 2 Slaves

45

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.10: Sphere: Speedup against 2 Slaves

46

(a) 256x256 Resolution

(b) 512x512 Resolution

(c) 1024x1024 Resolution

Figure 4.11: Buddha: Speedup against single GPU implementation

47

Figure 4.12: Overhead Analysis for Bunny Scene

48

(a) Bunny

(b) Lattice

(c) Sphere

Figure 4.13: CPU-GPU Cluster vs GPU Cluster Part I

49

(a) Buddha

(b) Turbine Blade

(c) Manuscript

Figure 4.14: CPU-GPU Cluster vs GPU Cluster Part II

50

CHAPTER 5

CONCLUSION

Ray tracing on a GPU is a relatively new research area compared to ray tracing itself.

De�nitely, there is still room for more progress. In this thesis, we have shown that large

scenes can be ray casted with the use of a CPU-GPU cluster. We have based our GPU

implementation on Es's work [7]. We have utilized a data parallel approach to alleviate the

memory constraint. We have also introduced the idea of using threads on CPU while GPU

is working on ray traversal and intersection in order to improve the performance.

One of our goals at the beginning was to render scenes that are impossible to render on

a single GPU. We have shown that we have achieved this goal by rendering stanford bunny

scene with 1458471 triangles, lattice scene with 626940 triangles, sphere scene with 1328430

triangles, turbine blade scene with 1765388 triangles and manuscript scene with 4305679

triangles.

We have performed extensive experiments on our test scenes to compare the performance

of our CPU-GPU implementation with using di�erent number of slaves. Although we were

able to balance the memory load on each of the computers by utilizing BSP tree partitioning

of the scene, the performances achieved were dependent on the viewing angle. This was due

to the load imbalance introduced by the nature of data parallel approach.

The biggest disadvantage introduced by using a CPU-GPU cluster is the fact that one

can never be sure if a ray is going to cross the borders of the bounding box or not until the

ray traversal is �nished. To alleviate this disadvantage, we have made use of the fact that

some of the rays that will be out of the bounding box is identi�ed in the �rst few traversal

passes. Based on this observation, we chose a threshold value for starting the status check

of rays in a CPU thread. If a ray that is in state out is discovered, the slave that the ray will

be passed is computed by this thread. Naturally, this threshold value is highly dependent

on the scene being processed. With this approach, we were able to utilize both the CPU

51

and GPU at the same time. Consequently, we observed a notable performance improvement

compared to the non-threaded approach where CPU is waiting for the GPU to �nish ray

tracing process. Unfortunately, there can be rays in out state in the end of the GPU traversal

which were still in traversing state when this thread was launched. The same process that

took place in the thread must be repeated for these rays too. Therefore, there is also the

overhead introduced by these rays.

Another problem we faced with using a GPU is the fact that the transfers between

the GPU and main memory must be minimized due to high performance penalty of such

transfers. Unfortunately, we had to utilize this type of communication for:

• Transferring rays to GPU memory that were sent by another slave.

• Checking rays' status by reading the depth bu�er content.

• Reading the partial result from GPU memory.

The �nal and the most obvious overhead is the communication overhead. This overhead

impacts the overall performance especially when the results from the slaves are gathered and

a high resolution is used.

We believe that our implementation's performance can be further improved by carefully

considering load balancing issues. Unfortunately, data migration approaches are not feasible

for a CPU-GPU cluster implementation as they require the static scene textures in the GPU

to be rebuilt. To overcome this limitation and provide more �exibility, the CPU can be used

for ray traversal while GPU is used only for intersection tests.

52

REFERENCES

[1] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing. In

Eurographics '87, pages 3�10. Elsevier Science Publishers, Amsterdam, North-Holland,

1987.

[2] AMD. AMD "Close to Metal" Technology Unleashes the Power of Stream Comput-

ing. http://www.amd.com/us-en/Corporate/VirtualPressRoom/0�51_104_543_544�11

4147,00.html, Last visited April 2008.

[3] Christian-A. Bohn. Kohonen feature mapping through graphics hardware. In Paul P.

Wang, editor, Proc. JCIS'98, volume II, pages 64�67. Association for Intelligent Ma-

chinery, Inc, 1998.

[4] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. Graphics Hardware

(2002), pages 1�10, 2002.

[5] John G. Cleary, Brian M. Wyvill, Graham M. Birtwistle, and Reddy Vatti. Multipro-

cessor ray tracing. 5(1):3�12, March 1986.

[6] Daniel Cohen and Zvi Shefer. Proximity clouds: An acceleration technique for 3d grid

traversal. The Visual Computer, 11:27�38, 1994.

[7] �. Alphan Es. Accelerated Ray Tracing Using Programmable Graphics Pipelines. Ph.d.

thesis, Middle East Technical University, January 2008.

[8] D. Demarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Distributed interactive

ray tracing for large volume visualization, 2003.

[9] J. N. England. A system for interactive modeling of physical curved surface objects.

SIGGRAPH Comput. Graph., 12(3):336�340, 1978.

53

[10] Manfred Ernst, Christian Vogelgsang, and Günther Greiner. Stack implementation on

programmable graphics hardware. In VMV, pages 255�262, 2004.

[11] Alphan Es and Veysi �³ler. Accelerated regular grid traversals using extended anisotropic

chessboard distance �elds on a parallel stream processor. J. Parallel Distrib. Comput.,

67(11):1201�1217, 2007.

[12] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The De�nitive Guide to

Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003.

[13] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer.

IEEE Computer Graphics and Applications, 7(5):14�20, 2005.

[14] Je�rey Goldsmith and John Salmon. Automatic creation of object hierarchies for ray

tracing. IEEE Computer Graphics and Applications, 7(5):14�20, 1987.

[15] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile.

Modelling the interaction of light between di�use surfaces. In Computer Graphics (Pro-

ceedings of SIGGRAPH 84), volume 18, pages 213�222, July 1984.

[16] S. A. Green and D. J. Paddon. Exploiting coherence for multiprocessor ray tracing.

IEEE Comput. Graph. Appl., 9(6):12�26, 1989.

[17] Eric Haines. Bsp plane cost function revisited. http://tog.acm.org/resources/RT

News/html/, Last visited May 2004.

[18] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical

University in Prague, November 2000.

[19] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Hank Chris-

tiansen, editor, Computer Graphics (SIGGRAPH '84 Proceedings), volume 18, pages

119�127, 1984.

[20] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for

non-di�use environments. In David C. Evans and Russell J. Athay, editors, Computer

Graphics (SIGGRAPH '86 Proceedings), volume 20, pages 133�142, August 1986.

54

[21] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method

for non-di�use environments. Computer Graphics (SIGGRAPH '86 Proceedings),

20(4):133�142, August 1986.

[22] RapidMind Inc. Sh: A high-level metaprogramming language for modern GPUs.

http://libsh.org/, Last visited April 2008.

[23] Veysi Isler, Cevdet Aykanat, and Bulent Özguç. An e�cient parallel spatial subdivision

algorithm for parallel ray tracing complex scenes. In First Bilkent Computer Graphics

Conference, ATARV-93, Ankara, Turkey, 1993.

[24] Henrik Wann Jensen. Global illumination using photon maps. Eurographics Rendering

Workshop, pages 21�30, 1996.

[25] James T. Kajiya. The rendering equation. In Computer Graphics (Proceedings of SIG-

GRAPH 86), volume 20, pages 143�150, August 1986.

[26] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. ACM Computer

Graphics, 20(4):269�278, 1998.

[27] III Kenneth E. Ho�, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast

computation of generalized voronoi diagrams using graphics hardware. In SIGGRAPH

'99: Proceedings of the 26th annual conference on Computer graphics and interactive

techniques, pages 277�286, New York, NY, USA, 1999. ACM Press/Addison-Wesley

Publishing Co.

[28] Stanford University Graphics Lab. BrookGPU. http://graphics.stanford.edu/projects/

brookgpu/index.html, Last visited April 2008.

[29] Stephen Lacey and Richard Box. A fast, easy sort. BYTE, 16(4):315��., 1991.

[30] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-time

robot motion planning using rasterizing computer graphics hardware. Computer Graph-

ics, 24(4):327�335, 1990.

[31] David J. MacDonald and Kellogg S. Booth. Heuristics for ray tracing using space

subdivision. Vis. Comput., 6(3):153�166, 1990.

[32] Kurt Menzel. Parallel Rendering Techniques for Multiprocessor Systems. In Proceedings

of the Spring School on Computer Graphics (SSCG '94), pages 91�103, Bratislava,

Slovakia, 1994. Comenius University Press.

55

[33] Microsoft. DirectX. http://www.gamesforwindows.com/en-US/AboutGFW/Pages/-

DirectX10.aspx, Last visited April 2008.

[34] Microsoft. HLSL Workshop. http://msdn2.microsoft.com/en-us/library/bb173495

(VS.85).aspx, Last visited April 2008.

[35] MPICH2. Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpich2/,

Last visited April 2008.

[36] Fred E. Nicodemus. Directional re�ectance and emissivity of an opaque surface. Applied

Optics, 4(7):767�, 1965.

[37] nVidia. CUDA. http://developer.nvidia.com/object/cuda.html, Last visited April 2008.

[38] nVidia. Cg. http://developer.nvidia.com/page/cg_main.html, Last visited May 2008.

[39] OpenGL. OpenGL - The Industry Standard for High Performance Graphics.

http://www.opengl.org/, Last visited April 2008.

[40] OpenGL. OpenGL Shading Language. http://www.opengl.org/documentation/glsl/,

Last visited April 2008.

[41] OpenGL. WGL_ARB_pbu�er. http://www.opengl.org/registry/specs/ARB/wgl_p-

bu�er.txt, Last visited December 2007.

[42] D. E. Orcutt. Implementation of ray tracing on the hypercube. In Proceedings of the

third conference on Hypercube concurrent computers and applications, pages 1207�1210,

New York, NY, USA, 1988. ACM.

[43] John Owens. Streaming architectures and technology trends. In SIGGRAPH '05: ACM

SIGGRAPH 2005 Courses, page 9, New York, NY, USA, 2005. ACM.

[44] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-Wesley

Professional, 2005.

[45] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Imple-

mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[46] Bui Tuong Phong. Illumination for computer-generated images. PhD thesis, 1973.

56

[47] Michael Potmesil and Eric M. Ho�ert. The pixel machine: a parallel image computer.

In SIGGRAPH '89: Proceedings of the 16th annual conference on Computer graphics

and interactive techniques, pages 69�78, New York, NY, USA, 1989. ACM.

[48] Michael Potmesil and Eric M. Ho�ert. The pixel machine: a parallel image computer.

In SIGGRAPH '89: Proceedings of the 16th annual conference on Computer graphics

and interactive techniques, pages 69�78, New York, NY, USA, 1989. ACM.

[49] POV-Ray. POV-Ray - The Persistence of Vision Raytracer. http://www.povray.org/,

Last visited May 2008.

[50] Timothy John Purcell. Ray tracing on a stream processor. PhD thesis, Stanford, CA,

USA, 2004. Adviser-Patrick M. Hanrahan.

[51] Erik Reinhard. Scheduling and data management for parallel ray tracing. Technical

Report CS-EXT-1999-223, 1, 1999.

[52] Erik Reinhard and Frederik W. Jansen. Rendering large scenes using parallel ray tracing.

Parallel Computing, 23(7):873�885, 1997.

[53] John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann, and Amitabh

Varshney. Real-time procedural textures. In SI3D '92: Proceedings of the 1992 sympo-

sium on Interactive 3D graphics, pages 95�100, New York, NY, USA, 1992. ACM.

[54] J. Salmon and J. Goldsmith. A hypercube ray-tracer. In Proceedings of the third

conference on Hypercube concurrent computers and applications, pages 1194�1206, New

York, NY, USA, 1988. ACM.

[55] SGI. EXT_framebu�er_object. http://oss.sgi.com/projects/ogl-sample/registry/E-

XT/framebu�er_object.txt, Last visited October 2007.

[56] Simon Green. The OpenGL Framebu�er Object Extension.

http://download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/Open-

GL_FrameBu�er_Object.pdf, Last visited October 2007.

[57] Milos Sramek and Arie Kaufman. Fast ray-tracing of rectilinear volume data using

distance transforms, 2000.

[58] Niels Thrane and Lars Ole Simonsen. A Comparison of Acceleration Structures for GPU

Assisted Ray Tracing. Master's thesis, University of Aarhus, August 2005.

57

[59] Caglar Unlu. Task Parallelism for Ray Tracing on a GPU Cluster. Master's thesis,

Middle East Technical University, February 2008.

[60] Turner Whitted. An improved illumination model for shaded display. Communications

of the ACM, 23(6):343�349, 1980.

[61] WikiPedia. GeForce 8 Series. http://en.wikipedia.org/wiki/GeForce_8_Series, Last

visited May 2008.

58

