

TESTING DISTRIBUTED REAL-TIME SYSTEMS WITH A DISTRIBUTED
TEST APPROACH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN ÖZTA�

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2008

Approval of the thesis:

TESTING DISTRIBUTED REAL-TIME SYSTEMS WITH A DISTRIBUTED
TEST APPROACH

submitted by GÖKHAN ÖZTA� in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan ÖZGEN
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. �smet ERKMEN
Head of Department, Electrical and Electronics Engineering

Asst. Prof. Dr. �enan Ece SCHMIDT
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members

Prof. Dr. Semih B�LGEN
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. �enan Ece SCHMIDT
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Gözde Bozda�ı AKAR
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Cüneyt BAZLAMAÇCI
Electrical and Electronics Engineering Dept., METU

Ali B�LG�N (M.Sc.)
Expert Engineer, ASELSAN

 Date: (08/05/2008)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : Gökhan ÖZTA�

 Signature :

iv

ABSTRACT

TESTING DISTRIBUTED REAL-TIME SYSTEMS WITH A
DISTRIBUTED TEST APPROACH

Özta�, Gökhan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. �enan Ece Schmidt

May 2008, 77 pages

Software testing is an important phase the of software development cycle which

reveals faults and ensures correctness of the developed software. Distributed real-

time systems are mostly safety critical systems for which the correctness and quality

of the software is much more significant. However, majority of the current testing

techniques have been developed for sequential (non real-time) software and there is

a limited amount of research on testing distributed real-time systems. In this thesis,

a proposed approach in the academic literature “testing distributed real-time

systems using a distributed test architecture” is implemented and compared to

existing software testing practices in a software development company on a case

study. Evaluation of the results show the benefits of using the considered distributed

test approach on distributed real-time systems in terms of software correctness.

v

Keywords: Software Testing, Distributed Real-Time Systems, Software Testing

Techniques

vi

ÖZ

GERÇEK ZAMANLI DA�ITIK S�STEMLER�N DA�ITIK
B�R YAKLA�IMLA TEST ED�LMES�

Özta�, Gökhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. �enan Ece Schmidt

Mayıs 2008, 77 Sayfa

Yazılım testi yazılım geli�tirme sürecinde hataların bulunmasını sa�layan ve

geli�tirilen yazılımın do�rulu�unu garantileyen önemli bir a�amasıdır. Gerçek

zamanlı da�ıtık sistemler genellikle yazılım güvenirli�inin ve kalitesinin çok önemli

oldu�u güvenlik kritik sistemlerdir. Fakat �u anki test tekniklerinin ço�u sıralı

(gerçek zamanlı olmayan) yazılımlar için geli�tirilmi�tir ve gerçek zamanlı da�ıtık

sistemlerin testi üzerine yapılmı� sınırlı miktarda çalı�ma bulunmaktadır. Bu tez

kapsamında akademik literatürde önerilen "Gerçek zamanlı da�ıtık sistemlerin

da�ıtık test mimarisi ile testi edilmesi" bir örnek çalı�ma üzerinde uygulanmı�tır ve

bir yazılım geli�tirme firmasında uygulanan yazılım test yöntemi ile

kar�ıla�tırılmı�tır. Sonuçların de�erlendirilmesi gerçek zamanlı da�ıtık sistemler

için da�ıtık test mimarisi kullanımının yazılım do�rulu�u açısından yararlarını

göstermektedir.

vii

Anahtar Kelimeler: Yazılım Testi, Gerçek Zamanlı Da�ıtık Sistemler, Yazılım Test

Teknikleri

viii

To my Family

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Asst. Prof. Dr. �enan

Ece Schmidt for her guidance, advice, criticism, encouragements, insight

throughout this thesis study and my whole graduate life.

I would like to thank my colleagues in ASELSAN Inc for their valuable support.

I would like to thank ASELSAN for providing tools and other facilities throughout

this study.

Thanks a lot to all my friends for their great encouragement and their valuable help

to accomplish this work.

I would also like to thank my family for giving me encouragement during this thesis

and all kind of supports during my whole education.

Finally, I would like to thank to my dear Duygu for her endless love and

encouragement throughout this entire journey.

x

TABLE OF CONTENTS

ABSTRACT .. iv�

ÖZ ... vi�

ACKNOWLEDGEMENTS ... ix�

TABLE OF CONTENTS .. x�

LIST OF TABLES ... xii�

LIST OF FIGURES .. xiii�

ABBREVIATIONS ... xiv�

CHAPTER

1. INTRODUCTION .. 1�

2. BACKGROUND .. 4�

2.1. Real-Time Concepts ... 4�

2.1.1. Hard Real-Time Systems ... 6�

2.1.2. Soft Real-Time Systems .. 6�

2.1.3. High-Performance I/O ... 6�

2.2. Distributed Real-Time Systems .. 7�

2.3. Software Testing .. 9�

3. TESTING DISTRIBUTED REAL-TIME SYSTEMS 17�

3.1. Related Work ... 17�

3.2. Current Approach Used in a Company for Testing Distributed Real-Time

Systems ... 23�

4. TESTING DISTRIBUTED REAL TIME SYSTEMS WITH DISTRIBUTED

TEST ARCHITECTURE .. 25�

4.1. Timed Automata with N Ports .. 28�

4.2. Fault Model .. 30�

4.3. Test Architecture .. 31�

xi

4.4. Defining Test Sequence .. 32�

4.5. Conformance of IUT to GTS .. 33�

4.6. Test Execution ... 34�

4.7. Coordination of Testers for Solving Controllability and Observability

Problem .. 34�

4.7.1. Coordination Method for Order Constraints ... 35�

4.7.2. Coordination Method for Timing Constraints 36�

4.8. Algorithm for Distributing Global Test Sequence on to Local Testers 38�

5. IMPLEMENTATION OF IEEE 1588 PRECISION TIME PROTOCOL ON A

DISTRIBUTED TEST SYSTEM .. 44�

5.1. IEEE 1588 PRECISION TIME PROTOCOL ... 44�

5.2. Implementation of PTP on a Distributed Test Architecture 47�

6. IMPLEMENTATION ... 49�

6.1. IUT Architecture and Target System .. 49�

6.1.1. PowerPC 7410 Daughtercard ... 50�

6.1.2. IUT Architecture ... 51�

6.2. 4P-Timed Automata Model of the IUT ... 53�

6.3. Developed Tool for Automatic Local Test Sequence Generation 56�

6.4. Global Test Sequence and Local Test Sequences .. 58�

6.5. Method for Analysis of Test Results ... 59�

6.6. Implementation of Local Testers .. 60�

6.7. Test Execution and Analysis of Test Results... 66�

6.8. Test Results for Different Global Test Sequences 70�

6.9. Evaluation of Test Results .. 70�

7. CONCLUSION ... 72�

REFERENCES ... 74�

APPENDIX A .. 76�

PowerPC 7410 Daughtercards Specifications .. 76�

xii

LIST OF TABLES

TABLES

Table 6-1 Test Results for First Version of IUT .. 66�

Table 6-2 Test Results for Second Version of IUT .. 68�

Table 6-3 Test Results for Third Version of IUT ... 69�

xiii

LIST OF FIGURES

FIGURES

Figure 2-1 Distributed Real Time System ... 8�

Figure 3-1 Real Time System Model for [1] .. 18�

Figure 3-2 CTIOA Model of Real-Time System .. 19�

Figure 3-3 Time Petri Net [12] .. 21�

Figure 3-4 Test Approach Used In the Company ... 23�

Figure 4-1 Distributed Test Architecture ... 26�

Figure 4-2 Distributed Real Time System with 2 Nodes .. 27�

Figure 4-3 2p-Timed Automata ... 29�

Figure 4-4 Distributed Test Architecture for 2p-Timed Automata 32�

Figure 4-5 2p-“Distribution of a GTS into Ns LTS” Algorithm Pseudocode 41�

Figure 5-1 Offset Calculation with IEEE 1588 PTP... 46�

Figure 5-2 2p Local Test Sequence Execution with PTP Implementation 48�

Figure 6-1 PowerPC 7410 Daughtercard ... 51�

Figure 6-2 IUT Architecture .. 53�

Figure 6-3 4p-Timed Automata Model of IUT .. 55�

Figure 6-4 Developed Tool for LTS Generation .. 57�

Figure 6-5 Pseudocode of Testera .. 62�

Figure 6-6 Pseudocode of Testerb .. 63�

Figure 6-7 Pseudocode of Testerc .. 64�

Figure 6-8 Pseudocode of Testerd .. 65�

xiv

ABBREVIATIONS

API : Application Programming Interface

CPU : Central Processing Unit

CTIOA : Communicating Timed Input Output Automata

EC : Enabling Condition

ECU : Electronic Control Unit

EOG : Execution Order Graph

FIFO : First Input First Output

GTS : Global Test Sequence

 I/O : Input/Output

IUT : Implementation Under Test

LTS : Local Test Specification

MC/OS : Multicomputer Operating System

np-TA : n Port Timed Automaton

PC : Personal Computer

PTP : Precision Time Protocol

TIOA : Timed Input Output Automata

TS : Test System

1

Equation Chapter (Next) Section 1

CHAPTER 1

INTRODUCTION

Real-Time systems are important parts of our daily lives. A real-time application is

an application where the correctness of the application depends on the timeliness

and predictability of the application as well as the results of computations [1].

Distributed real time systems are a special case of real time systems where multiple

computing nodes are connected on a network [3]. Each node is a self sufficient

computing element with CPU, memory, network access, a local clock and I/O units.

Applications of distributed real time systems include many critical systems such as

manufacturing, instrumentation, surveillance, multi-vehicle control, avionics

systems, automotive systems and scientific experiments.

Software testing is an indispensable part of software development projects and in

most cases can increase the development cost dramatically. Important performance

metrics of software testing include test coverage, controllability, observability,

reproducibility and determinism.

For safety-critical computer based systems, software testing is much more

important because of strict reliability and safety requirements. However, most

safety critical computer based systems are distributed real-time systems, and the

majority of current testing and debugging techniques have been developed for

sequential (non real-time) programs.

Achieving deterministic testing of sequential programs is easy because we need

only to control the sequence of inputs and the start conditions, in order to guarantee

2

reproducibility. That is, given the same initial state and inputs, the sequential

program will deterministically produce the same output on repeated executions.

Sequential software testing techniques cannot be applied to distributed-real time

systems because they neglect timing issues.

There is a lot of research on testing of sequential software but there is a limited

study in the literature for testing of distributed real time systems. Furthermore there

are limited implementations and outcomes reported for these techniques on

distributed real time systems.

In this thesis, first a selected systematic approach to software testing for distributed

embedded systems that is proposed in the academic literature is investigated. This

approach is then implemented on a real software project that has been developed

and previously tested in a software development company. In this company, testing

for real time disturbed systems is carried out at a system level without individual

testing of the software apart from the rest of the distributed system. A case study on

this software project is performed to demonstrate the benefit of applying the new

systematic approach by comparing the achieved testing results to that of previous

tests held for the same project in terms of the software testing performance metrics.

Evaluation of the results show the benefits of using distributed test approach on

distributed real-time systems in terms of software correctness.

An important problem for testing of distributed real-time systems is the clock

synchronization among different components of the system. This problem is solved

in this thesis by implementing IEEE 1588 Precision Time Protocol for the software

project under investigation. Designing tests for distributed systems involves

computing individual test sequences for each component from a global test

sequence. A software tool is developed in this thesis to perform this computation

automatically.

After this introductory chapter, the rest of the thesis is organized as follows. In the

second chapter, necessary background on real time concepts, distributed real time

3

systems and software testing are included. In the third chapter, academic literature

on testing of distributed real-time systems is investigated and current practice in a

software development company for testing of distributed real-time systems is

explained. In the fourth chapter, selected approach for testing of distributed real

time systems is explained. In the fifth chapter, proposed method, IEEE 1588

Precision Time Protocol, in this thesis for solving synchronization problem is

explained. In the sixth chapter, implementation details of the selected approach on a

case study are given and software developed for computing individual test

sequences is presented. Test execution results are presented and evaluation of test

results comparing with the current practice in a software company is given. Finally

in the seventh chapter, conclusions and further work for this study is given.

4

Equation Chapter 1 Section 1

CHAPTER 2

BACKGROUND

This chapter describes the real time concepts, distributed real time systems and

software testing.

2.1. Real-Time Concepts

The concept of real-time digital computing systems is an emergent concept

compared to most engineering theory and practice. When requested to complete a

task in real-time, the common understanding is that this task must be done upon

request and completed while the requester waits for the completion as an output

response. If the response to the request is too slow, the requestor may consider lack

of response as a failure. The concept of real-time computing is really no different.

Requests for real-time service on a digital computing platform are most often

indicated by asynchronous interrupts. More specifically, inputs that constitute a

real-time service request indicate a real world event sensed by the system for

example, a new video frame has been digitized and placed in memory for

processing. The computing platform must now process input related to the service

request and produce an output response prior to a deadline measured relative to an

event sensed earlier.

A real-time application is an application where the correctness of the application

depends on the timeliness and predictability of the application as well as the results

of computations [10]. Examples of real-time applications include process control,

factory automation robotics, vehicle simulation, scientific data acquisition, image

5

processing, built-in test equipment, music or voice synthesis, and analysis of high-

energy physics.

Real-time applications provide an answer or an action to an external event in a

timely and predictable manner [10]. While many real-time applications require

high-speed compute power, real-time applications cover a wide range of tasks with

differing time dependencies.

Timeliness has a different definition in each real-time application [10]. What may

be fast in one application may be slow or late in another. For example, a vehicle

engine control needs to collect data and control actuators with microseconds

accuracy, while a scientist monitoring the air pressure might need to collect data in

intervals of several minutes. However, the success of both applications depends on

well-defined time requirements.

The concept of predictability may vary from field of operation, but for real-time

applications it generally means that a task or set of tasks can always be completed

within a predetermined amount of time [10]. Depending on the situation, an

unpredictable real-time application can result in loss of data, loss of deadlines, or

loss of plant production.

Real-time applications are usually characterized by a blend of requirements. Some

portions of the application may consist of hard, critical tasks, all of which must

meet their deadlines. Other parts of the application may require heavy data

throughput. Many parts of a real-time application can easily run at a lower priority

and require no special real-time functionality. The key to a successful real-time

application is the developer's ability to accurately define application requirements at

every point in the program. Resource allocation and real-time priorities are used

only when necessary so that the application is not overdesigned.

Real time systems are generally developed on a host system but executed on a

target system [8]. Host system is a capable system with development tools and used

6

for software development. Target system is generally more resource constrained

system for the execution of the real time system. A PC can be used as a host system

whereas a single board computer can be used as a target system.

Real-time applications can be classified as either hard real-time or soft real-time

according to acceptability to of delays.

2.1.1. Hard Real-Time Systems

Hard real-time applications require a response to events within a predetermined

amount of time for the application to function properly [15]. If a hard real-time

application fails to meet specified deadlines, the application fails. While many hard

real-time applications require high-speed responses, the granularity of the timing is

not the central issue in a hard real-time application. An example of a hard real-time

application is a missile guidance control system where a late response to a needed

correction leads to disaster.

2.1.2. Soft Real-Time Systems

Soft real-time applications do not fail if a deadline is missed [15]. Some soft real-

time applications can process large amounts of data or require a very fast response

time, but the key issue is whether or not meeting timing constraints is a condition

for success. An example of a soft real-time application is an airline reservation

system where an occasional delay is tolerable, but unwanted.

2.1.3. High-Performance I/O

Many real-time applications require high I/O throughput and fast response time to

asynchronous external events [15]. The ability to process and store large amounts of

data is a key metric for data collection applications. Real-time applications that

require high I/O throughput rely on continuous processing of large amounts of data.

High data throughput requirements are typically found in signal-processing

applications such as:

7

• Telemetric applications

• Radar analysis applications

• Sonar

• Speech analysis

For some applications, the throughput requirements on a single channel are modest.

However, an application may need to handle multiple data channels simultaneously,

resulting in a high aggregate throughput. Real-time applications, such as medical

diagnosis systems, need a response time of about one second while simultaneously

handling data from, perhaps, ten external sources.

High I/O throughput may be important for some real-time control systems, but

another key metric is the speed at which the application responds to asynchronous

external events and its ability to schedule and provide communication among

multiple tasks. Real-time applications must capture input parameters, perform

decision-making operations, and compute updated output parameters within a given

timeframe.

Some real-time applications, such as flight simulation programs, require a response

time of microseconds while simultaneously handling data from a large number of

external sources. The application might acquire several hundred input parameters

from the cockpit controls, compute updated position, orientation, and speed

parameters, and then send several hundred output parameters to the cockpit console

and a visual display subsystem.

2.2. Distributed Real-Time Systems

We assume a distributed real-time system consisting of a set of nodes. Each node is

a self sufficient computing element with CPU, memory, network access, a local

clock and I/O units for sampling and actuation of an external process [10].

Typically, each computing node is connected to sensors, actuators. Set of connected

nodes is called cluster. Architecture of distributed real-time system can be easily

visualized with the help of Figure 2-1.

8

Figure 2-1 Distributed Real Time System

Communication between the nodes is achieved by messages passing and the

processes can use synchronization to maintain a precedence relation or mutual

exclusion between processes on different nodes. Processes on the same node also

use the communication service. A designer of real-time system often chose

distributed solutions because of increasing complexity and safety requirements. A

distributed solution makes it possible to achieve greater reliability through

redundancy. Also the inherited distribution of the system, for example, control

systems on a factory floor can be a cause to choose a distributed solution.

Applications include manufacturing, instrumentation, surveillance, multi-vehicle

control, avionics systems, automotive systems and scientific experiments. For

example, a modern car in the premium segment has 40 or more computers (ECUs).

Since each computer interacts with physical processes, the passage of time becomes

a central feature; it is this key constraint that distinguishes these systems from

distributed computing in general.

In addition to interacting over a communication network, the nodes in a distributed

embedded system interact through the physical world. Driving an actuator at one

node, for example, may affect the data sensed at another node. Moreover, actuation

may need to be orchestrated across nodes. The required precision of that

orchestration, of course, depends on the application. Robotic applications, e.g. in

manufacturing, may require precisions on the order of milliseconds. Instrumentation,

where stimuli are generated and responses are measured, may require precisions on

the order of nanoseconds or even higher.

9

2.3. Software Testing

There are several standards for the terminology used when discussing software

testing. Terminology that is used in this study is given below.

• Software Specification is a complete description of the behavior of the

software to be developed [9].

• Correctness means the behavior of the program execution conforms to the

behavior specified in the software specification [9].

• Test is an activity in which a system or component is executed under

specified conditions, the results are observed or recorded, and an evaluation

is made of some aspects of the system or component [9].

• Validation is the process of evaluating a system or a component during or at

the end of the development process to determine whether it satisfies

specified requirements [9], i.e., validation aims at answering the question are

we building the right system?

• Verification is the process of evaluating a system or component to

determine whether the products of a given development phase satisfy the

conditions imposed at the start of that phase [9], i.e., verification aims at

answering the question are we building the system right?

With the evolving technology we are getting more and more dependent on

computers and their software. In our daily life when we travel by airplane, use

robots at work, or even watch TV at home, we expect them not to fail or

malfunction. Therefore, it is important that the software does what the user expects

and that it does not fail. To establish the quality of the software Validation and

Verification are used [18]. Software testing is just one kind of verification. Software

testing is the process used to measure the quality of developed computer software

[18]. Usually, quality is constrained to such topics as correctness, completeness,

security, but can also include more technical requirements such as capability,

10

reliability, efficiency, portability, maintainability, compatibility, and usability.

Testing is a process of technical investigation, performed on behalf of stakeholders,

that is intended to reveal quality-related information about the product with respect

to the context in which it is intended to operate [16]. This includes, but is not

limited to, the process of executing a program or application with the intent of

finding errors. Quality is not an absolute; it is value to some person. With that in

mind, testing can never completely establish the correctness of arbitrary computer

software; testing furnishes a criticism or comparison that compares the state and

behavior of the product against a specification [16].

Software testing procedure consists of generating test cases and applying them to

Implementation Under Test (IUT) and testing consists of three steps [16]:

• Modeling software’s environment

• Extract test cases that are likely to reveal most failures

• Apply the test cases to the software in a test execution and evaluate results

Modeling Software’s environment: The task of testing starts by modeling the

software’s environment. Interaction between software and its environment must be

identified and simulated. Each interface and input that software uses must be

defined very well.

Test Case Generation: A test case is a software testing document, which consists

of event, action, input, output, expected result, and actual result. A test case is an

input and an expected result. Test cases can be generated from specification of the

IUT. Specification based test-case generation derives the test cases from the

specification; hence the software can be tested early in the development even before

the implementation is completed.

Infinite number of test cases can be generated from the specification of IUT but

only a subset can be applied to IUT for realistic software test process. Coverage that

includes code coverage (execution of each source line at least once) and input

11

coverage (applying all possible inputs to IUT) defines the completeness of software

testing process for selected subgroup of test cases [16]. If code and input coverage

is sufficient enough final product of IUT has fewer bugs. Typically it is aimed to

find a subgroup of test cases that leads to find the most bugs. To achieve this, test

cases that occur often in the field are selected.

Test Execution and Evaluation: Test execution includes running test cases on the

IUT and observing outputs. The correctness of a program can only be established

according to what have been observed during test executions. Hence, it is essential

that we can observe the produced output, intermediate results and the paths

traversed by the program. Observation of execution behaviors can be done by using

software probes, hardware instrumentation, or a combination of software and

hardware instrumentation. Evaluation of test results includes comparison of

observed outputs during test execution to expected outputs stated by software

specification. Deviations from software specification are considered as failures.

Software testing can be classified according to scope of modeling software’s

environment into three groups: unit, integration or system testing [16].

• Unit Testing ignores the rest of the system except the unit to be tested. Unit

testing mainly focuses on testing individual component of a system and

takes into account inputs and outputs of individual module.

• Integration Testing focuses on testing of multiple components that have

previously tested on unit testing level separately. Subset of overall system

domain that represents communication between these modules is tested for

conformance to requirements.

• System Testing takes into account entire system domain and tests collection

of components that constitutes a final product.

Test case generation step determines what type of testing is to be executed on IUT

and there are mainly two types of testing: Functional Testing and Structural Testing

[16].

12

• Functional Testing requires the selection of test cases without considering

the structure and source code of the implementation. For test case generation,

execution and evaluation; the specification of the required functionality at

defined interfaces must be used not the attributes of code or data structures.

Functional Testing is also named as specification-based testing, behavioral

testing and black-box testing.

• Structural Testing requires the selection of test cases considering the

structure and source code of the implementation. Test suite is generated

from the implemented structures and inputs are based on the structure of the

source code and data structures. Structural testing is also named as code-

based testing and white-box testing.

Typically, white-box testing is more predominant in early test phases where the

complexity of tested objects is still (relatively) low. Later test phases, on the other

hand, rely more heavily on black-box testing techniques

Software testing procedure finds bugs and these bugs are fixed at a newer version of

the software. Any specific fix can introduce new bugs or fail to remove the bug in

the newer version of the software. Regression Testing includes applying same test

cases to IUT to find whether new bugs are introduced or bugs are fixed. Testing

procedure progresses through software versions until a release version is reached

and for each version regression testing is applied.

Basic concepts of software testing which will be evaluated in this study are listed

below.

Observability: Observability is the ability to observe the state before and after an

operation [17]. Consequently, it must be possible to observe the input, output and

the internal state. Observing the input and output in sequential programs is

straightforward, that is if the program does not include any non-deterministic

statements. The inputs are observed to determine the behavior of the program’s

13

environment. By observing the internal state, the exact cause of the failure can be

located and internal state changes that have no effect on the output can be detected.

Determinism: Executions of sequential programs are repeatable and deterministic

[10]. That is, for an input we get the same output regardless of how many times we

run the program with that input. This is true if the program does not include any

statements that depend on the temporal behavior and/or random behavior. Examples

of such statements are random statements or dependencies of clock readings in

sequential programs.

Controllability: Controllability is the ability to force the program into a desired

state [17]. For sequential programs it is sufficient to give the input to the program to

achieve controllability.

Reproducibility: Reproducibility, test repeatability, is the ability to reproduce a

previous execution of a program [10]. In other words, for a given input the system

always computes the same output in repeated runs of the system. After errors have

been corrected the tester wants to assure that the errors have been removed and that

no new errors have been introduced. Therefore it is necessary to test the system

repeatedly. During repeated test runs with the same test cases, the same outputs

must be observed in order to determine if the software is correct. If test executions

are not reproducible re-testing cannot determine that corrections have removed the

errors. For real-time systems, in which temporal behavior have impact on the

execution path, the program is not usually reproducible. To reproduce the exact

execution behavior of a sequential program it is sufficient to run the program

repeatedly with the same input. In order to reproduce the execution behavior of real

time programs it is not sufficient to repeatedly feed the same input to guarantee the

same output.

Based on the execution behavior, computer software can be categorized into three

domains:

14

• Sequential programs, which are programs that runs from invocation to

termination without interruptions or interleaving.

• Concurrent programs, which are programs that execute within the same

time interval either by interleaved or simultaneous execution.

• Real-time systems, which are programs where the correctness depends on

the functional behavior as well as the temporal behavior.

For these domains, the objective of testing is to find deviations between the

specified requirements and the observed results during operation of the software.

A real-time computer system must provide the intended service in two dimensions:

the functional (value) dimension and the temporal dimension. The verification of a

real-time system implementation is thus necessarily more complex than the

verification of a non-real-time system which has to be checked in the value

dimension only. Deterministic and reproducible testing of sequential software (non-

real time) can be achieved by controlling the sequence of inputs to software. On the

other hand it is not so straightforward to test distributed real time systems. Contrary

to the non real-time systems, the behavior of real-time systems depends on both the

interactions with the environment and the timing for these interactions. The

behavior of distributed real time system depends on the order and timing of inputs.

Misbehaviors in real-time systems are generally due to the non respect of timing

requirements. On the other hand distributed real time systems include mostly safety

critical systems. Testing of these real-time safety critical systems before

deployment becomes mandatory to avoid critical failures.

The complexity of real-time systems can be expressed in terms of the number of

possible valid execution paths that are traversed during the operation of the system.

Complexity caused by the indeterminacy in the interaction between the environment

and the program makes exhaustive testing impossible. The complexity increases

even more when tasks in the system interact with each other, i.e. interprocess

15

communication. Hence, out of all generated test cases only a very small subset of

test cases is chosen.

An important aspect in the testing of an implementation of a system is the fault

model. The power of a test cases generation technique to detect faults in an

implementation is referred to as fault coverage. Test cases generation methods can

be compared based on their respective fault coverage. We can say that a method A

is more powerful than a method B, if A has a better fault coverage than B. In other

words, a method A is more powerful than a method B, if A detects more faults than

B. However, for a more accurate comparison between test cases generation

techniques, other parameters such as the length of test suites should be taken into

account.

Most of the real-time systems have state-based behavior and state-based modeling

is used to model these systems. System history determines the current state of the

system and each state is clearly distinguishable from other states for state-based

behavior. Some terms related with state-based modeling can be stated as:

• State: Abstract situation in the life cycle of a system entity

• Event: A particular input (for instance, a message or method call)

• Action: The result, output or operation that follows an event

• Transition: An allowable two-state sequence, that is, a change of state

(”firing”) caused by an event

• Guard: Predicate expression associated with an event, stating a Boolean

restriction for a transition to fire

Verification of systems that exhibit state-based behavior includes whether in

response to input events the correct actions are taken and correct final state is

reached. State based models can be used by state-based test design techniques to

derive test cases for these kinds of systems [21]. State-based test design techniques

aim to derive test cases that verify relationship between events, actions, states, and

state transitions. State-based behavior can be represented commonly by using

16

statecharts, and are often described using UML or automata models. Because test

cases are derived from models and not from source code, state-based testing is

usually seen as one form of black-box testing. State transition test technique

described in [21] is just one type of state-based test design techniques. The aim of

this technique is to derive all possible paths of transitions starting from initial state

and either ending up with final state or initial state.

Test design techniques vary for coverage criteria since each test design technique

can focus on covering paths or on the possible variations at each decision point.

They comprise different kinds of coverage. Widely known types of coverage that

can be related with state-based test design techniques are listed in [21] as:

• “Statement coverage: Each action is executed at least once”

• “Branch coverage or Decision Coverage: Each action is executed at least

once and every possible result (true or false) of a decision is completed at

least once – this implies statement coverage“

• “Path coverage: In the case of path coverage, the focus is on the number of

possible paths. The concept of “test depth level” is used to determine to

what extent the dependencies between consecutive decisions are tested. For

test depth level n, all combinations of n consecutive decisions are included

in test paths”

Existing software testing strategies for distributed real time systems are given in the

literature survey section.

17

CHAPTER 3

TESTING DISTRIBUTED REAL-TIME SYSTEMS

Testing is one of the most widely known and most widely applied verification

techniques, and is thus of large practical importance, but on the other hand it has not

been very thoroughly investigated in the context of real-time systems. Significant

studies in the literature on testing for distributed real-time systems are given in the

next section.

All of the studies that are explained use a modeling technique to model the real-time

system such as; Communicating Timed Automata and Timed Petri Net. Modeled

systems differ in each study since some of them model a single process and some of

them model all the system with more than one process interacting with each other.

3.1. Related Work

In [1] author propose a test architecture for real time systems which contains

component to be tested named as IUT and the rest of the system that interacts with

IUT named as context as shown in Figure 3-1. Real time system is modeled with

Communicating Timed Input Output automata (CTIOA). In this model, a Timed

Input Output Automaton (TIOA) is used to model a single network node and nodes

can communicate with each other via channels between different TIOAs [20]. One

CTIOA specifies the component to be tested and the remaining CTIOAs represent

the context.

18

Figure 3-1 Real Time System Model for [1]

CTIOA model used to describe real-time system can be summarized as follows:

CTIOA is formally defined as 7-tuple �� � ����� 	���
��� ���� � ���� ���� ��� and

• ��� is a finite set of input actions (each input begins with “?” symbol)

• 	�� is a finite set of output actions (each output begins with “!” symbol)

•
�� is a finite set of locations (states)

• ���� �
�� is the initial location

• ��� is a finite set of clocks that are initialized to zero in ����

• ��� is a finite set of transitions and each transition consists of 5-tuple

���� �� � ���� �� �� ���. Each transition is depicted as ��
����������
������ �� where �� is the

source location and �� is the target location, �� � ��� is either input or output

action, � is the set of clocks to be reset with the transition and � is the

guard condition (time constraint) of transition which is defined by the

clocks of ���.

• �� is a FIFO channel.

An example real-time system which is modeled with three CTIOAs can be seen in

Figure 3.2.

19

Figure 3-2 CTIOA Model of Real-Time System

It is proposed to test the IUT in context not in isolation. Testing in isolation mean

testing a component alone on the other hand testing in context means testing a

component with other components it is associated. Testing in context requires

components of the context to be tested in isolation and verified before used in tests.

Testing in context requires the effects of context to be considered. If the context is

faulty, some faults which can be found in isolated test cannot be found in context

test. Some transitions may not be executed since the context may not be capable of

producing the action of the transition in desired time duration. It is proposed to

generate test cases in three steps.

20

• To overcome state explosion problem that is caused by large system size and

can be defined as a system to have too much states to be managed, it is

proposed to avoid composing all machines of context and produce system’s

complete product, which is combination of all automata models into single

automata model, but to select context transitions that affect the execution of

the IUT. Since the context need not to be tested it is feasible to tailor context

specifications.

• A collection a CTIOAs describes a real time system and partial product of

these CTIOAs describes all possible executions of real time system. Partial

product of the complete system is constructed using IUT CTIOA and

context CTIOA that is generated by selecting transitions that effect the

execution of IUT. The resulting partial product is a Timed Input Output

Automata (TIOA).

• Timed WP-method [4] is used to generate test cases from partial product

TIOA.

Quality of the partial products is important for fault coverage. Criteria used for

selection of context actions determine the quality of the partial product and fault

coverage. This method is proposed for real time systems and it suggests a solution

for test case generation. Main drawback of this method is testing in context

approach. Testing in context is unreliable if the context is not tested and verified.

In [12] a white box testing approach is proposed for testing real time systems. A test

case is proposed to be not only the input data but a predetermined sequence of

transition firings. Real-time system is modeled using time Petri nets approach. A

Petri net is a graph as seen in Figure 3-3 containing places and transitions,

connected by oriented arcs and a set of tokens [12].

21

Figure 3-3 Time Petri Net [12]

Time Petri nets support expressing state transition and timing properties. Using a set

of rules to identify the graph segments a graph based model is constructed using

time Petri nets approach. Relationships of the graph model are converted into a

graph matrix which carries the relations between states and transitions. Graph

matrix is used to construct formal form of the system. An algorithm is used to

generate test cases from the formal form of the system. This method only solves the

test case generation problem but it does not propose a solution for test execution.

In [10] a test method is proposed for converting the nondeterministic distributed

real-time systems testing problem into a deterministic sequential programs testing

problems. With the same input to the tasks and the same execution ordering of the

tasks, a system produces the same output for repeated executions. The system is

modeled as a distributed real time system consisting of concurrent tasks. Tasks are

distributed over the nodes and more than one task execute on each node of the

22

distributed real time system. At each run orderings of these concurrent tasks can be

different. Using the predefined system and task model a method is proposed for

deterministic integration testing of distributed real time systems. Testing of single

tasks is not considered in this study. It is mainly focused on integration test of

distributed real time system tasks. According to this method test strategy is listed as;

1. All the possible orderings of task starts, preemptions and completions of

tasks are determined by the proposed execution order analysis on each node

of the distributed real time system.

2. The system is tested using any of the existing sequential software test

technique.

3. According to observation each test case and output is mapped onto correct

execution ordering.

4. Repeat 2-3 until required coverage is achieved.

In the first phase analysis of the software is performed by using an analysis tool. All

possible execution order is determined and an Execution Order Graph (EOG) [11] is

constructed. EOG displays the non deterministic behavior of the real-time software.

In the second phase the system is tested using any technique of choice. At each test

case execution ordering is observed and recorded. Testing tools for sequential

programs can be used at this phase. Each test case and output is mapped on to the

observed correct execution ordering which corresponds to a branch in the EOG.

Test coverage is directly related to percentage of the traced branches in the EOG.

Until the required coverage for EOG is reached, steps 2 and 3 are executed.

Deterministic and reproducible testing of distributed real time software is achieved

with the proposed technique.

23

3.2. Current Approach Used in a Company for Testing Distributed

Real-Time Systems

A distributed real-time system is generally a part of a system and it is not tested

alone for the projects held in a specific software development company. In the

current practice in the company, overall system is tested for a final system

validation that serves as system test. The objective of the System Test is to check

that the whole system functions according to specification. It is not possible to test

the distributed real-time system separate from the rest of the system. Inputs are

applied to overall system and outputs of overall system are analyzed against

expected outputs. System tests were performed for testing functional (value)

correctness of IUT and temporal behavior of IUT could not be tested.

Figure 3-4 Test Approach Used In the Company

Main drawbacks of this test method are

• It is not possible to test real time constraints of Distributed real-time system

Test

Input

Test

Output

Overall System

Distributed Real-Time

System

Rest of the Overall System

24

• It is not possible to test order constraints of Distributed real-time system

• Test repeatability is not possible for Distributed real-time system since we

cannot control the inputs of Distributed real-time system.

• It is not possible to control inputs of Distributed real-time system.

• It is not possible to observe outputs of Distributed real-time system.

In [6] a distributed test architecture is proposed for distributed real time systems.

Main contribution of this study to literature is that it considers both real time and

distributed aspects into same study. A complete test strategy is proposed for testing

of distributed real time systems. A model for specifying distributed real-time

systems and a practical test architecture for executing tests is proposed. In the next

section testing distributed real time systems with distributed test architecture will be

studied.

Equation Chapter 4 Section 1

25

CHAPTER 4

TESTING DISTRIBUTED REAL TIME SYSTEMS
WITH DISTRIBUTED TEST ARCHITECTURE

Khoumsi proposed a first distributed test approach for testing of distributed real

time systems. In [6] a test method using a distributed test architecture is proposed

for testing of distributed real-time systems. It is assumed that distributed IUT

contains several sites which are also called nodes and each site can communicate

with its environment through a port. The term port also denotes each connection of

distributed real time system with the rest of the system. Each site is a self sufficient

computing element with CPU, memory, network access and I/O. Each port that is

source for inputs and destination for outputs consists of an input queue and an

output queue [17]. A Test System (TS) is proposed such that for each port of the

distributed IUT there exist a local tester that runs on hardware apart from IUT. Each

tester communicates with the IUT through the port of corresponding site and each

tester communicates with the other testers. Communication medium of testers is

reliable and independent of the IUT. Test System architecture is depicted in Figure

4-1.

26

Figure 4-1 Distributed Test Architecture

Assume that we have a distributed real time system which is a part of another

system and it has two nodes that communicate with the rest of the system as seen in

the Figure 4-2.

IUT

 Port1 Port2

Portn

Tester1

Tester2

Testern

27

Figure 4-2 Distributed Real Time System with 2 Nodes

Each node of the real time system may have connection with other nodes. Each

node may have connection with the rest of the system on a reliable communication

medium. This reliable communication medium can be any kind of communication

medium but it must have no message loss. For each port of the distributed real time

system TS must have a corresponding local tester. For the distributed real time

system given in Figure 4-2 TS must have 2 local testers.

The remaining of this chapter is structured as follows. Sect. 4.1 describes the model

of timed automata with N ports that is used to model distributed real-time system.

Sect 4.2 describes the fault model considered and sect 4.3 introduces the distributed

test architecture. Sect 4.4 describes global test sequence that is used as a test case.

Sect 4.5 describes conformance of IUT and sect 4.5 describes test execution

procedure for local testers. Sect 4.7 describes coordination of local tester and finally

Overall System

Rest of the Overall System

Distributed Real Time System

Port1 Port2 Node1 Node2

28

sect 7.8 describes the algorithm for distributing global test sequence on to local test

sequences.

4.1. Timed Automata with N Ports

Timed Automata with N ports is generalized from Timed Automata [5]. A set of

clocks and Canonical Enabling Conditions are used to model the temporal behavior

of the real time system. In [6] Timed Automata with N ports is proposed to be used

to model the temporal behavior of the distributed real time system. Definitions

related to Timed Automata with N ports is given as follows;

Definiton 4.1.1. � � � !� " # � $%� is a set of clocks and each clock can be

viewed as a continuous time clock. Continuous time is a real variable that

evolves indefinitely and its derivative with respect to time is equal to 1.

Each clock’s value can be reset at any instant, e.g., with the occurrence of an

event.

Definiton 4.1.2. A canonical Enabling Condition (EC) is either constant True

or a formula in the form “ &'(”, where ' � �)�*�+�,��� and k is an

integer. EC can be a single canonical EC or conjunction of canonical ECs.

-� is the set of ECs depending of clocks on �, and . as being the set of

subsets of �. It is considered that /012� -� .

Definiton 4.1.3. Timed Automaton with n ports named as np-TA is defined by

�3� 4� 5� 6� 7� 89�. 3 is a finite set of locations, 89 is the initial location and 6

is a finite set of clocks. : is an n-tuple �:!� :;� "<:=� where :> is a finite set of

inputs of port > , :> ? :@ � A for > B @ and >� @ � !�" # � = and : � :! C :; C

"C :=. O is an n-tuple �D!<<� D;<"D=<� where D> is a finite set of outputs of

port >, D> ? D@ � A for > B @ and >� @ � !�" # � = and D � D! C D; C " #C D=.

7 E 3< F �: C D� F 3 F -6% F .% is a transition relation.

Definiton 4.1.4. A transition is defined by �G � �HI <JI GI K�I L�. H and G are

origin and destination locations, J is the reception of an input � in a port M

(figured as � ��) or sending of an output x in a port N (figured as � O�). �G is

29

executed if and only if K� � PGQR and the clocks in L are reset after

execution of �G. L is called reset of �G.

By using np-TA temporal behavior of the system can be modeled and np-TA allows

to model constraints on delays between events of the system. To specify that delay

between two transitions �GS and �GT must be between the range of [1,2], a clock US

is introduced. Reset of �GS is defined as �US� and EC of �GT is defined as �US ,

V� W �US + X� to model delay constraints between two transition.

A transition is called input transition if J is an input and a transition is called output

transition if J is an output. Input and output terms are used in the IUT viewpoint;

outputs are sent by the IUT and inputs are received by the IUT. For the rest of this

thesis input and output terms will be used from the IUT viewpoint.

Example 1 2p-TA model of distributed real time system given in Figure 4-2 is

given in Figure 4-3. Distributed real-time system is modeled as �S � �� �S� � OS�,

�T � �A� , 	S � �� YS� , 	T � �� ZT� and
 � ��[� �S� �T<� . In the graph absence of

clocks to reset and EC being True are implied by “\”.

 �� OS]<�US , X� UT) ^�]<\�

 �_`

 �<� �S] \] �US� UT�<� �<� ZT] US) V] �US�<�

 �_S �_T

 �� YS]<UT , ^]<\�

 �_a

Figure 4-3 2p-Timed Automata

l0 l1 l2

30

• The system is initially in location l0 and with the reception of � in port 1

�GS executes. US<bcd<UT are reset and the system propagates to location l1.

• In location l1 �GT executes, output Z is sent on port 2, USis reset and system

propagates to l2. Since K� � �US) V� the delay between � �S and � ZT must

be smaller than 1.

• In location l2 the system executes either �G̀ with the reception of O on port

1 or �Ga by sending y on port 1. The delay separating � YS and � �S for �Ga

must be equal or greater than 3. For �G̀ delay separating � OS and � ZT must

be equal or greater than 2 and delay separating � OS and <� �S must be

smaller than 3.

4.2. Fault Model

The fault model describes the effects of failures in a system implementation [2].

Fault model depends on the formal model used a basis for the system

specification. For Timed Automata with n-ports faults are classified in two

groups: (1) faults independent of timing constraints (2) timing faults [3]. First

group of faults include output faults, transfer faults and hybrid faults. Second

group of faults are caused by the non-respect by the IUT of timing constraints

associated to outputs. During a software testing process and for a determined

test sequence, the test system respects timing constraints of inputs and checks

whether timing constraints of outputs are respected. The system is faulty if

timing constraints are not respected during a testing process.

For the 2p-TA given in Figure 4-3, test system respects timing constraints of

�G̀ and checks whether�GS, �GT and �Ga respected the timing constraints. For

�G̀ test system sends x on port 1 at time instant when delay separating � OS and

� ZT is equal or greater than 2 and delay separating � OS and <� �S is smaller than

3. For �GT test system checks whether the delay separating � �S and � ZT is

smaller than 1. The 2p-TA is faulty if ECs of �GS, �GT and �Ga are not respected

during a testing process.

31

4.3. Test Architecture

Distributed real-time system is assumed to have several sites and each site has an

associated port. Proposed test architecture by [6] consists a local tester for each port

of the IUT. Each local Testerp communicates with the IUT, other testers and local

clock as seen in Figure 4-4. Test architecture proposed in [6] can be summarized as

follows;

• Testerp communicates with IUT through port p to send inputs to IUT and

receive outputs from IUT.

• Testerp communicates with other testers through a communication channel

which is different from the IUT communication channel. Messages are

exchanged between testers to guarantee order and timing constraints of

inputs and check order and timing constraints of outputs.

• Testerp communicates with its local clock ��eUfp to get current time. When

Testerp receives an output from the IUT it immediately gets current time

from the local clock and using this timing information and checks whether

the timing constraints associated with that output is respected. Testerp asks

its local clock ��eUfp to be notified when current time reaches a specified

value g. This notification from the local clock is used to guarantee timing

constraints of the input.

The following figure presents the test architecture for 2p-Timed Automata

system given in Figure 4-2.

32

Figure 4-4 Distributed Test Architecture for 2p-Timed Automata

4.4. Defining Test Sequence

Opposed to other testing techniques discussed in 3.1, test case generation is

straightforward for this technique. A global test sequence (GTS) is the test case for

this method and test system has to check whether the IUT conforms to this GTS.

Definiton 4.4.1. A GTS is a sequence of transitions of the np-TA IUT for

which the initial and the final locations of the transition are removed and

symbolized as PG�. Since the initial location is known there is no need to

emphasize initial and final locations in the GTS.

For the 2p-TA given in Figure 4-3 �<� �S] \] �US� UT�<� . <�<� ZT] US)

V] �US�<�.<�� OS]<�US , X� UT) ^�]<\� can be considered as a GTS. This GTS

PGS# PGT# PG̀ is equal to transitions of �_S# �_T# �_` of IUT given in Figure 4-3.

There are some formal techniques for generating test sequence that we will

not implement within the scope of this study. [22] proposes methodical

IUT Port1 Port2

Tester1 Tester2

Clock1 Clock2

input output input output

33

procedure for fault detection experiments of synchronous sequential

machines. This procedure includes

1. Finding an initial sequence which brings the machine into a specified

state (called the starting state) regardless of the initial state of the

machine

2. Defining a sequence to recognize all the states of machine

3. Defining a sequence to check all the individual transitions in the

state table of the machine.

This method assumes that the considered sequential machines must be

strongly connected, reduced and possessing a Distinguishing Sequence.

However, this assumption does not hold for all of the systems that we will

consider.

4.5. Conformance of IUT to GTS

Definiton 4.5.1. For PG� �Rh� � i�� g�� notation displays the basic information

about PG�. Rh� is the event related with that transition, i� is the site where the

event Rh� occurs and g� is the instant when the event Rh� occurs. For

example; for PGS of 2p-TA of Figure 4-3 Rh� ���S , i� � V and g� is the

instant when this event occurs.

Definiton 4.5.2. Consider a GTS defined as PGS# PGT "PGj, an execution of an

IUT is conform with GTS if

• Rh� occurs before Rh�kS for M � V�X"l \ V

• Timing constraints of PGm is respected for M � V�X"l

For the 2p-TA given in Figure 4-3 execution of IUT conforms to GTS:

�<� �S] \] �US� UT�<�.<�<� ZT] US) V] �US�<�.<�� OS]<�US , X� UT) ^�]<\�, if

• � �S# � ZT# � OS is executed with the same sequence

• Delay between � �S and � ZT is) V

34

• Delay between � �S and � OS is) ^

• Delay between � ZT and � OS is , X

4.6. Test Execution

During testing process a GTS is applied to IUT by testers and it is checked that

whether the IUT conforms to applied GTS or not. GTS contains transitions that are

not on the same site. These transitions must be distributed to each local tester

correctly and this will be discussed in 4.8. For each transition PG� in the GTS there is

an associated port k and corresponding local tester Testerk. As mentioned previously

there are two types of transitions: input transition and output transition. During test

execution process testers executes as;

• If PG� is an input transition PG� � �� �nI K�I L� then Testerk sends � through

port k to IUT if K� � PGQR and resets the clock in L. � is received by the

IUT through port k.

• If PG� is an output transition PG� � �� �nI K�I L� then IUT sends � through

port k and Testerk receives it and records the reception time. Testerk checks

whether K� � PGQR or not. If K� B PGQR then test fails and IUT does not

conform to GTS.

4.7. Coordination of Testers for Solving Controllability and

Observability Problem

As mentioned previously during a testing process each tester is responsible for

checking whether order and time constraints are satisfied. Since testers are

distributed and apart from each other, to verify that IUT conforms to GTS, testers

must be coordinated. If testers are not coordinated they cannot know the transition

order which yields the controllability and observability problem and GTS cannot be

applied properly.

Assume a GTS PGS# PGT"PGj, then the execution of IUT conforms to GTS if the

following conditions are satisfied for M� N � V�X"l \ V and N + M

• PG�kS is executed after PG� (Order Constraint)

35

• If PG�kS has an op<�U'O� and PG� is the last transition that resets U then delay

between execution times of PG�kS and PG� must satisfy the 'O . Delay

between execution times of PG�kS and PG� is measured by the clock U . It

measures the time between two transitions.

Controllability can be defined from Test System view as capability of a Test System

to force the IUT to receive inputs in the given order. Controllability problem arises

when TS cannot guarantee that IUT will receive event of PG� before event of PG�kS.

For distributed test architecture controllability problem arises when port of PG� is

different from port of PG�kS.

Observability can be defined from Test System view as capability of a Test System

to observe the outputs of the IUT and decide which input is the cause of each output.

For distributed test architecture where a transition contains at most single output for

each output, observability problem arises when two consecutive transitions PG� and

PG�kS occurs on the same port q but only one of the transitions has an output in port

q and the other one is an empty transition with no output. In this case TS cannot

decide whether PG� or PG�kS is the cause of output.

To solve both controllability and observability problem of distributed test

architecture, usage of order messages between local testers proposed by [6] is

described in the next section.

4.7.1. Coordination Method for Order Constraints

Assume transitions PG� and PG�kS for which sites i� B i�kS and M � V�X"l \ V .

(For i� � i�kS, there is no need to consider about order constraints since both events

occur at the same tester). Immediately after the execution of PG�, �RiPRGrs should

send an Order Message 	�M� g�� to tester �RiPRGrstu. Here<M denotes the transion ID

and g� denotes the execution time of this transition.

36

• If PG�kS is an input transition �RiPRGrstu must wait for reception of 	�M� g��

before sending input to IUT to respect order constraints of inputs where

�RiPRGrstu represents the local tester that PG�kS occurs.

• If PG�kS is an output transition �RiPRGrstu does not wait for the reception of

	�M� g��. After it receives output from IUT �RiPRGrstu records the transition

execution time g�kS . �RiPRGrstu checks whether the order constraint g�)

g�kS is respected or not.

4.7.2. Coordination Method for Timing Constraints

Consider PG�kS has an K�<�U'O� and PG� is the last transition that resets U for

M� N � V�X"l \ V and N + M . If PG�kS is an input transition �RiPRGrstu has to

guarantee that delay between g� and g�kS satisfies �g�kS \ g� <�<'O . If PG�kS is an

output transition �RiPRGrstu should check that whether the delay between g� and

g�kS satisfies �g�kS \ g� <�<'O or not.

To achieve this for i�� B i�kS , �RiPRGrv sends a Timing message ��N� g�� to

�RiPRGrstu immediately after execution of PG� . gw is the instant when �RiPRGrstu

receives ��N� g��.

1. For PG�kS is an input transition and ' � �*� ,� ; �RiPRGrstu gets g� from

��N� g�� and chooses an instant g�kS such that �g�kS \ g��'O and sends input

to IUT.

2. For PG�kS is an input transition and ' � ���;

• if �gw \ g�� * O �RiPRGrstu can not guarantee �g�kS \ g��'O .

�RiPRGrstu misses the deadline for g�kS.

• if �gw \ g�� + O< �RiPRGrstu gets g� from ��N� g�� and chooses an

instant g�kS such that �g�kS \ g��'O and sends input to IUT.

3. For PG�kS is an input transition and ' � �)�+�;

• if � ��gw \ g��'O� �RiPRGrstu can not guarantee �g�kS \ g��'O .

�RiPRGrstu misses the deadline for g�kS.

• if �gw \ g��'O< �RiPRGrstu gets g� from ��N� g�� and chooses an

instant g�kS such that �g�kS \ g��'O and sends input to IUT.

37

4. For PG�kS is an output transition; �RiPRGrstu knows g� after it receives

��N� g�� from �RiPRGrvand g�kS after it receives output from IUT. �RiPRGrstu

checks whether �g�kS \ g��'O is respected or not.

If i�� � i�kS then there is no need to send �xN� g�y.

For the IUT given in Figure 4-3 and distributed test architecture given in Figure 4-4

required coordination messages between local testers Tester1 and Tester2 for GTS:

�<� �S] \] �US� UT�<� . <�<� ZT] US) V] �US�<� . <�� OS]<�US , X� UT) ^�]<\� (PGS# PGT# PG̀)

can be listed as ;

• Since PGS executes on Port1 and PGT executes on Port2, Tester1 should send

an Order Message 	�V� gS� to Tester2 immediately after execution of PGS .

Since PGT is an output transition Tester2 should not wait for the reception of

	�V� gS�.

• Since PGT executes on Port2 and PG̀ executes on Port1, Tester2 should send

an Order Message 	�X� gT� to Tester1 immediately after execution of PGT .

Since PG̀ is an input transition Tester1 should wait for the reception of

	�X� gT� to guarantee order constraints of input.

• For PGT enabling condition uses US and PGS is the last transition that resets US.

Tester1 should send a Timing Message ��V� gS� to Tester2. Since PGT is an

output transition Tester2 should not wait for the reception of ��V� gS�.

• For PG̀ enabling condition uses US and PGT is the last transition that resets US.

Tester2 should send a Timing Message ��X� gT� to Tester1. Since PG̀ is an

input transition Tester1 should wait for the reception of ��X� gT�. For PG̀

enabling condition uses UT and PGS is the last transition that resets UT. Since

PG̀ and PGS are on the same port Port1, there is no need to send timing

message. Tester1 should choose an instant g` such that g` must satisfy both

of the following requirements;

� Since EC of PG̀ for US � �*�,� , Tester1 should choose an

instant g` such that g` \<gT <, X< to guarantee delay between

PG̀ and PGT.

� To guarantee EC of PG̀ for UT Tester1 should choose an

instant g` such that g` \<gS <) ^<.

38

4.8. Algorithm for Distributing Global Test Sequence on to Local

Testers

An algorithm is introduced in [6] to determine local test sequence (LTS) of local

testers from a given GTS. Coordination methods mentioned in 4.7.1 and 4.7.2 are

used in this algorithm to coordinate testers. Each tester must execute its local test

sequence correctly for overall test system to execute GTS correctly.

Definiton 4.8.1. zr is the number of testers in the test system and also the

number of ports on the IUT.

Definiton 4.8.2. {|}~� stands for | sent by Testerp is received by Testerq

Definiton 4.8.3. \|}~� stands for | is sent from Testerp to Testerq

Definiton 4.8.4. For � is an any kind of event and g is a time instant

• ����� means � occurs at instant g

• ����� means � occurs at an instant) g

• ����� means � occurs at an instant + g

• ����� means � occurs at an instant * g

• ����� means � occurs at an instant , g

By using these notations time constraints of an event can be displayed. For M �

V�"f, 'm � �)�*� +�,��� and g� as an instant; ��'s�s� denotes all time constraints

of transition for M � V�" f.

Definiton 4.8.5. For events � and R,

• ����� means � occurs after R

• ��<R means � occurs immediately after R

• � � R means � and R occur independent of each other.

Definiton 4.8.6. � is a sequence of events where each event can have different

sites. Projection of � on to �MPR<q means removing all other events from �

occurring on other sites. Projection of � contains transitions which occur on

�MPR<q.

39

Definiton 4.8.7.
eU�RU} is a specification for Testerp which specifies

coordination messages that must be received by Testerp. Coordination

messages in the
eU�RU} are independent of each other and there is no time

constraint between them. They can be received by Testerp in any order. An

execution of Testerp conforms with
eU�RU} if all of the coordination

messages are received by Testerp at the end of execution.

Definiton 4.8.8.
eU�RH} is in the form of �S# �T"�� and each �� is in the

form of ��'u�u��'u�u�"�'�����<hS<�<hT<�"�<hj<. Each � is an event either

output sent by IUT to Testerp or input sent by Testerp to IUT through port p.

Each event � has two kinds of constraints as discussed in 4.7: order

constraints and timing constraints. Q� is either an instant or coordination

message reception. If Q� is the reception of a coordination message then '�

is * which corresponds to order constraint. If Q� is an instant 'm � �)�*�+

�,��� which corresponds to timing constraint of event �. h� is the sending

of coordination message immediately after the execution of �.
eU�RH} �

�S# �T "�� represents execution of �S� �T�"�� in the same order.

Execution of �� denotes,

1. Execution of event � with the constraints defined by

�'SQS��'TQT�" �'nQn� . There are two type of constraints: If Q� is the

reception of a coordination message then '� is * which corresponds to order

constraint and If Q� is an instant 'm � �)�*�+�,��� which corresponds to

timing constraint of event �

2. h� executes immediately after � . Coordination messages are immediately

sent after execution of � . Coordination messages can include both order

messages and timing messages.

The following figure presents the “Distribution of a GTS into zr LTS” algorithm

given in [6] in the form of a pseudo code first and the detailed explanation of the

steps in the pseudo code follows next.

40

“Distribution of a GTS into �� LTS” Algorithm Pseudocode

Input: ��� � PGS# PGT"

Outputs:
eU�RUS�
eU�RUT"
eU�RU��

eU�RHS�
eU�RHT"
eU�RH��

1. �eeG�M��PMe�� Rii��Ri � �I (�eeG�M��PMe�� Rii��Ri is intially

empty)

2. ���� � PGS# PGT"PGj is derived from ��� by removing last transition

if last transition is empty transition.

3. ���<M � V�"l � < �UP� � Rh�<���<���

4. ���<M � V�"l \ V

5. ��<�i� B i�kS�<

6. �UP� � �UP� \ 	�M� g��rs~rstu
<

7. ��<Rh�kS is an input event

8. �UP�kS � �UP�kS��k¡����s��s~�stu�

9. 28�2

10. �UP�kS � �UP�kS���s�

11. 2¢£&�<�¤&¢2<¥�

12. �eeG�M��PMe�� Rii��Ri � �eeG�M��PMe�� Rii��Ri �

<<<<<<<<<<{	�M� g��rs~rstu <

13. 2¢£&�<�¤&¢2<¦�

14. �§0<2̈ ©<U�eUf<U<M�<L<eª<PG�

15. �§0<2̈ ©<PG�<�N * M�<«MP¬<K��U'�_vf�

<<<<<<<<<<<<���<PG�<ZRM��<P¬R<��iP<PG��iMPMe�<P¬�P<GRiRPi<U

16. ��<�i� B i��<

17. �UP� � �UP� \ ��M� g��rs~rv

18. ��<Rh� is an input event

19. �UP� � �UP���kw����s��s~�v��'®v��skn��

20. 28�2

41

21. �UP� � �UP��'®v��skn��

22. 2¢£&�<�¤&¢2<!¯�

23. �eeG�M��PMe�� Rii��Ri � �eeG�M��PMe�� Rii��Ri �

<<<<<<<<<<<<<<<<<<<<<<<<{��M� g��rs~rv <

24. <<<<<28�2

25. �UP� � �UP��'®v��skn��

26. 2¢£&�<�¤&¢2<!°�

27. 2¢£<�§02̈ ©<�¤&¢2<!¦�

28. 2¢£<�§02̈ ©<�¤&¢2<!±�

29. ���<���<�¤&¢2<±�

30. �K² � �UPS�UPT "�UPj

31. ���<M � V�"zr

32.
eU�RU� � ³GeNRUPMe�<eª<�eeG�M��PMe�� Rii��Ri<e�<Pe<�RiPRG�<

33.
eU�RH� � ³GeNRUPMe�<eª<�K²<e�<Pe<�RiPRG�

34. ���<���<�¤&¢2<´!�

35. &� last transition of ��� is empty transition.

36. ���<M � V�"zr

37.
eU�RH� �
eU�RH�# � �

38. ���<���<�¤&¢2<´°�

39. 2¢£&�<�¤&¢2<´¦�

Figure 4-5 2p-“Distribution of a GTS into Ns LTS” Algorithm Pseudocode

Explanation of the algorithm is as follows;

• ��� is global test sequence that will be executed by test system

•
eU�RU� is the record of coordination messages that must be received by

each tester in the test system

•
eU�RH� is the sequence of input and output actions on port i or the sending

of coordination messages.

42

• �eeG�M��PMe�� Rii��Ri is a set that holds the reception of all

coordination messages (Order and Timing messages) by testers in the test

system independent of tester.

• Line 1 - Initially �eeG�M��PMe�� Rii��Ri is empty.

• Line 2 - ���� � PGS# PGT" PGj is derived from ��� by removing last

transition if last transition of ��� is an empty transition. The last transition

of a GTS can be an empty transition like (� µI \I\). For IUT to conform

GTS, after correctly execution of PGS# PGT" PGj , �� must receive nothing

from the IUT.

• Line 3 - �UP� is an event list that holds sequence of input and output actions

and the sending of coordination messages for PG�. For PG�, Rh� is set to be the

first event in the event list �UP�.

• Line 5-13 - ���<M � V�"l \ V It is checked whether subsequent

transitions PG� and PG�kS occurs on different sites. If they occur on different

sites, coordination problem occurs and it is solved by sending an order

message from �RiPRGrs to �RiPRGrstu . If PG�kS is an input transition then

�RiPRGrstu is set to wait for order message before sending input to IUT to

guarantee that g�) g�kS. If PG�kS is an output transition then �RiPRGrstu is

set to check whether g�) g�kS after receiving output from IUT and

coordination message from �RiPRGrs.

• Line 14-28 - For each transition PG� , clocks to be reset are processed

iteratively. First transition in the global test sequence that uses clock as

guard condition is determined as PG� <�N * M�. If PG� and PG� occurs on different

sites timing message ��M� g��rs~rv is sent by �RiPRGrs to �RiPRGrv . If PG� is an

input transition then �RiPRGrv is set to wait both for reception of timing

message ��M� g��rs~rv and until the instant when EC �U'�_vf� becomes �GQR

before sending input to IUT. If PG� is an output transition then �RiPRGrv is set

to check whether EC �U'�_vf� at the instant when �RiPRGrv receives output

from IUT. If PG� and PG� occurs on same site then there is no need to use

timing messages. If PG� is an input transition then �RiPRGrs � �RiPRGrv is set

43

to send input to IUT at an instant when EC �U'�_vf� becomes �GQR. If PG� is

an output transition then �RiPRGrv is set to check whether EC �U'�_vf� at

the instant when �RiPRGrv receives output from IUT.

• Line 32 - �eeG�M��PMe�� Rii��Ri is projected on to local testers and

eU�RU� is created for each local tester.

• Line 33 - �K² is projected on to local testers and
eU�RH� is created for

each local tester.

• Line 35-39 - If last transition of ��� is empty transition then � µ is added to

each
eU�RH� . Termination of
eU�RH� with � µ means after execution of

eU�RH� , �RiPRG� must receive nothing from the IUT for conformance to

GTS. (If
eU�RH� does not terminate with � µ, �RiPRG� just ignores outputs

send by IUT after execution of
eU�RH�)

For the IUT given in Figure 4-3 and distributed test architecture given in Figure 4-4

distribution of GTS into 2 local testers Tester1 and Tester2 for GTS:

�<� �S] \] �US� UT�<� . <�<� ZT] US) V] �US�<� . <�� OS]<�US , X� UT) ^�]<\� (PGS# PGT# PG̀)

can be summarized as follows;

• zr � X and there are 2 local testers since there are 2 ports of the IUT.

• GTS: �<� �S] \] �US� UT�<� . <�<� ZT] US) V] �US�<� . <�� OS]<�US , X� UT) ^�]<\�

(PGS# PGT# PG̀)

•
eU�RUS � �{	�X� gT�T~S � {��X� gT�T~S�

•
eU�RHS �

�<� �S< \ 	�V� gS�S~T< <\��V� gS�S~T<�# �� OS��k¡�T��¶�¶~u���ak�u���Tk�¶�
�

•
eU�RUT � �{	�V� gS�S~T � {��V� gS�S~T�

•
eU�RHT � �<�<� ZT
���u���Sk�u�

� <\	�X� gT�T~S<�< <\��X� gT�T~S<�<

44

CHAPTER 5

IMPLEMENTATION OF IEEE 1588 PRECISION TIME
PROTOCOL ON A DISTRIBUTED TEST SYSTEM

5.1. IEEE 1588 PRECISION TIME PROTOCOL

In [6], the problem of having clocks on different sites in a distributed system is not

taken into consideration. Distributed testers’ clocks must be synchronized in order

to check timings of outputs correctly. If clocks are not synchronized timestamps are

not consistent with each other. In [6] the author does not discuss effects of

unsynchronized clocks on the analysis of the timing of the outputs. For example; to

check that the delay between two transitions �GS and �GT is between the range of

[0,2], each local tester records the transition time by using its local clock. Assume

that the local clocks of testers are not synchronized and
eU����eUfT �

eU����eUfS { ^ . Suppose that �GS executes at 50 for
eU����eUfS. At the same

time
eU����eUfT is 53. Then
eU����eUfT will be greater than 52 whether �GT

executes in required time delays and this requirement will fail although it is

satisfied by the IUT.

IEEE 1588 precision time protocol is a new synchronization standard with very

high accuracy that is particularly proposed for embedded industrial communication

systems. In this thesis, we implement the synchronization with the timing messages

similar to IEEE 1588 timing messages. Hence, rather than implementing the

standard completely, we have a partial implementation. The two primary

synchronization problems that must be overcome in a distributed test architecture

45

are oscillator drift and time transfer latency (offset) between testers. On different

sites, oscillators may (when running free) not have exactly the same

frequency and the frequency of each site’s oscillator may vary over time due to

environmental conditions causing oscillator drift. Offset problem occurs if there is

an offset between local clocks of different sites due to lack of global clock.

Oscillator drift can be solved by using higher quality oscillators [7]. The time

transfer latency (offset) problem is more difficult. IEEE 1588 Precision Time

Protocol provides a means for networked computer systems to agree on a master

clock reference time and a means for slave clocks to estimate their offset from

master clock time. PTP solves the synchronization problem of master and slaves by

precisely estimating send and receive times (time stamps) of messages exchanged

between master and slaves. Using specialized hardware interfaces in the physical

layer of the network increases the precision of the timestamps. Implementation of

PTP without using specialized hardware is called software-only implementation.

Software-only implementation of PTP introduces much more non-determinism on

time stamp latencies since time stamping operation is executed on higher layers of

the network. PTP can be described in brief as follows;

A. Masters and Slaves: The master provides the reference time for one or

more slave clocks by exchanging messages over network.

B. Sync Messages: Sync messages are sent by the master to the slaves. Master

time stamps the send time of Sync messages as P[and slaves time stamp the

receipt time of Sync message as PS. Difference between P[and PS is named

master to slave delay �jTr.

�jTr �< PS \ P[

C. Delay Request Messages: Delay Request Messages are sent by the slaves to

the master. A slave time stamps the send time of Delay Request messages as

PT and the master time stamps the receipt time of Sync message as Pa .

Difference between PT and Pa is named as slave to master delay �rTj.

�rTj �< Pa \ PT

46

D. TimeStamp Indication Message: TimeStamp Indication Messages are sent

by the master to the slaves. The master sends P[and Pa timestamps to the

slaves for slaves to be able to calculate �jTr and �rTj values.

E. One-Way Delay: Message propagation delay is estimated by PTP. Master-

to-slave and slave-to-master propagation delays are assumed to be

symmetric. Average of master-to-slave and slave-to-master delays cancels

the time offset between master and slave. Message propagation delay (�}_�})

that is also called one-way-delay is calculated as: �}_�} � ��jTr \ �rTj�·X.

F. Offset From Master: Time difference between master and slave clocks are

estimated by PTP and referred as offset from master.

	ªªiRP � �jTr \ �}_�}

Calculation of offset [7] using PTP is depicted in Figure 5-1.

Figure 5-1 Offset Calculation with IEEE 1588 PTP

Master Slave Clock

	ªªiRP � ��eUfr �̧¹� \ ��eUfº �r��_

P[

PS

PT

Pa

P P {Offset

�Y�U

»R��Y<�RHQRiP

�jTr � PS \ P[� �}_�} { 	ªªiRP

�rTj � Pa \ PT � �}_�} \ 	ªªiRP

	ªªiRP � ��jTr \ �rTj�·X

Measured values are P[� PS�PT�Pa

�MlR�P�lq<���MU�PMe�

47

5.2. Implementation of PTP on a Distributed Test Architecture

By applying PTP on a distributed test system synchronization of local tester clocks

can be achieved. In this thesis software-only implementation of PTP has been

considered since it was not possible to reach hardware interfaces in the physical

layer of the network and we have implemented PTP partially to solve our

synchronization problem. Oscillator drift will be ignored since high quality

oscillators can be used to overcome this problem.

Since there is no master slave relationship between local testers, one of the testers is

chosen as master and the rest as slaves. PTP is applied between master and each

slave before execution of LTSs. Each local tester adjusts its local clock using the

eªªiRP value that is calculated by PTP. Local testers synchronize their local clocks

with the master and begin to execution of LTSs. Local Test Sequence execution

with PTP implementation is depicted in Figure 5-2.

48

Figure 5-2 2p Local Test Sequence Execution with PTP Implementation

�RiPRGS<�� �iPRG� �RiPRGT<����hRS� �RiPRG�� <����hR��¼S�

�Y�US

�Y�U��¼S

»R��Y<�RHQRiPS

»R��Y<�RHQRiP��¼S

�MlR�P�lq<���MU�PMe�S

�MlR�P�lq<���MU�PMe���¼S

eU�RHS
eU�RHT
eU�RH��

49

CHAPTER 6

IMPLEMENTATION

To the best of our knowledge, there is no implementation of testing distributed real-

time systems using a distributed test approach in the literature prior to this study.

Unfortunately, much of the work done in industry is not in the public domain. This

study will contribute to the literature for applicability of this technique by

explaining how the approach was implemented on sample projects.

In this chapter, a distributed real-time system (IUT) is introduced first that will be

tested using distributed approach and nP-Timed Automata model of the IUT is

presented. Then the implementation details of developed TS for testing IUT and the

run time environment of the IUT and TS are explained, results of software test

execution are presented and comparison with the previous tests held in the company

is given to evaluate the performance of the technique.

6.1. IUT Architecture and Target System

IUT is a distributed real-time application with real time requirements that it has to

implement. IUT consist of four nodes that are connected to each other. IUT runs on

a target system that contains two PowerPC 7410 daughtercards and four 400 MHz

MPC7410 PowerPC microprocessor computing nodes. Each PowerPC 7410

daughtercard includes two 400 MHz MPC7410 PowerPC microprocessor

computing nodes. Computing nodes communicate with each other across the

RACEway [19], high-speed fabric interconnect. Distributed parts of IUT runs on

computing nodes and communicate with each other to perform overall IUT

requirements.

50

6.1.1. PowerPC 7410 Daughtercard

As stated in [14] the RACE (Real-time Asynchronous Compute Environment)

Series PowerPC daughtercard is the computational engine of RACE multicomputer

systems. Each PowerPC 7410 daughtercard contains two compute nodes that each

compute node consists of a 400 MHz MPC7410 PowerPC microprocessor, L2

cache, local SDRAM memory, and an ASIC that acts as both an advanced memory

controller and the interface to the RACE switch-fabric interconnect. Each compute

node on the 400-MHz PowerPC 7410 daughtercard has a dedicated fabric interface

at 267 MB/s and the maximum memory speed at 133 MHz.

Mercury’s RACE technology is a data link protocol that can be used to interconnect

large numbers of computers, input and output interfaces, and other hardware

devices into a communications fabric called a RACEway. RACE interconnect

enables increased communication speed, more richly connected topologies, and

augmented adaptive routing. These properties yield significantly higher bisection

bandwidth and lower latency suitable for the most challenging real-time problems

[19]. Figure 6-1 shows a photo of the PowerPC 7410 daughtercard on which two

distinct computing nodes can be seen.

51

Figure 6-1 PowerPC 7410 Daughtercard

Based on the specifications of the board, it can be said that The PowerPC 7410

daughtercard is suitable for real-time applications. A detailed description of the

board specifications can be found in Appendix A.

6.1.2.IUT Architecture

IUT is in brief a signal processing software that has an interface with other

applications. Main functionality of IUT is getting orders and parameters from other

applications, processing data accordingly and sending results to other applications.

IUT has real-time requirements like processing data in a determined time and

52

sending results to another application. Each node communicates with other

applications through a socket connection. Messages are predetermined data

structures used by applications to exchange information. Messages are sent through

socket connections between IUT and neighborhood applications that IUT

communicates. Messages are implemented both by IUT and interfacing applications

in order to exchange information correctly between them. Interfacing applications

also run on 400 MHz MPC7410 PowerPC microprocessor computing nodes that are

located on PowerPC 7410 daughtercards. IUT has totally four input/output

connections to communicate with other applications so it can be modeled as 4p-

Timed Automata. Architecture of IUT and the interaction with the neighborhood

applications is depicted in Figure 6-2.

53

�

Implementation Under Test

RACEway Interconnection

������

��� 	
����

�����

��� ������������
����������

������

��� 	
����

�����

������

��� 	
����

�����

��� ������������
����������

������

��� 	
����

�����

�		���������

��� 	
����

�����

��� ������������
����������

�		����������

��� 	
����

�����

�		���������

��� 	
����

�����

��� ������������
����������

�		����������

��� 	
����

�����

���������������

Figure 6-2 IUT Architecture

6.2. 4P-Timed Automata Model of the IUT

In this chapter, 4p-Timed Automata model of the IUT is explained as described in

4.1. Since IUT has 4 input/output interfaces it must be modeled as a four port

54

Timed Automata to be able to express all requirements in the model. IUT has 4

connections and each connection is with a separate application. Number of ports for

modeling IUT is determined by number of input/output channels we want observe

and model the system. Number of applications that IUT communicates is not

important since IUT can communicate with an application through more than one

channel.

While building the 4p-Timed Automata model of the IUT requirements of the IUT

are used. Main points that must be taken into account are listed below

• Internal structure of the IUT must not be modeled.

• IUT must be modeled with respect to its inputs and outputs.

• Each transition must have an input or output event.

• Locations must be defined such that there must be a single event at every

transition.

4p-Timed Automata model of IUT is given in Figure 6-3.

55

Figure 6-3 4p-Timed Automata Model of IUT

56

Explanation of the 4p-Timed Automata of IUT can be listed as;

• When IUT establishes communication it must send an output to each

application in the order of Applicationa, Applicationb, Applicationc and

Applicationd.

• Delay between communication establishments must not be larger than 30

second.

• Delay between input event � Rii��R^� send by Applicationa to IUT and

output event � Rii��R^�RiQ�P� send by IUT to Applicationa must not be

greater than ½�V second.

• Delay between input event »�P��R��Y¾ send by Applicationb to IUT and

output event »�P��R��Y¿ send by IUT to Applicationd must not be greater

than ½�½½5 second.

6.3. Developed Tool for Automatic Local Test Sequence Generation

It is time consuming to manually generate Local Test Sequences from a given

Global Test Sequence and it also leads to faulty Local Test Sequence. A tool is

developed for automatic generation of Local Test Sequences from a given Global

Test Sequence.

Tool was developed using Visual Studio .NET 2003 and C# language. It

implements the algorithm given in 4.8. It takes GTS transitions as input and

produces Local Test Sequences as an output. Transitions are specified by;

• Event Name

• Event Site

• Event Type

• Reset Clocks

• Enabling Conditions

57

Figure 6-4 Developed Tool for LTS Generation

Figure 6-4 shows the interface of the developed tool. To generate LTSs, GTS

transitions are specified using this tool. Each transition can have only one event.

Event Name, Event Type (input/output) and Event Site (on which site this event

occurs) fields are filled according to transition event. Enabling Conditions for each

transition are defined by entering the clock name, condition type and time value.

Each transition can have more than one enabling condition. After entering all

transitions of GTS in the GTS order LTS are generated in a text file. Generated LTS

are used when developing Local Testers.

58

6.4. Global Test Sequence and Local Test Sequences

As it can be seen from the figure 6.3, it is possible to construct more than one GTS.

�PGS# PGT# PGa# PG̀ �# �PGÀ# PGÁ�# �PGÂ# PGÃ�# �PGÄ# PGS[�# �PGSS�# �PGST# PGSa# PGS`# PGSÀ� shows

the transitions that occur consequently. Transitions in the same bracket must occur

after each other. �PGÀ# PGÁ�� �PGÂ# PGÃ�� �PGÄ# PGS[�� �PGSS�� �PGST# PGSa# PGS`# PGSÀ� can

follow each other in any sequence so it is possible to generate 5!=120 different GTS.

Following GTS sequences are possible,

���<V �PGS# PGT# PGa# PG̀ �# �PGÀ# PGÁ�# �PGÂ# PGÃ�# �PGÄ# PGS[�# �PGSS�# �PGST# PGSa# PGS`# PGSÀ�

���<X �PGS# PGT# PGa# PG̀ �# �PGÀ# PGÁ�# �PGÂ# PGÃ�# �PGÄ# PGS[�# �PGST# PGSa# PGS`# PGSÀ�# �PGSS�

���<^ �PGS# PGT# PGa# PG̀ �# �PGÀ# PGÁ�# �PGÂ# PGÃ�# �PGST# PGSa# PGS`# PGSÀ�# �PGÄ# PGS[�# �PGSS�

���<Å �PGS# PGT# PGa# PG̀ �# �PGÀ# PGÁ�# �PGST# PGSa# PGS`# PGSÀ�# �PGÂ# PGÃ�# �PGÄ# PGS[�# �PGSS�

"#

Following GTS is used to cover all transitions of 4p-Timed automata model given

in Figure 6-3.

��� � PGS# PGT# PGa# PG̀ # PGÀ# PGÁ# PGÂ# PGÃ# PGÄ# PGS[# PGSS# PGST# PGSa# PGS`# PGSÀ

Test system will check whether the IUT conforms to following transition sequence.

��� �

�� KiP�Z�Mi¬	Æ� � \� US�# �� KiP�Z�Mi¬	Æ¾ � US) ^½� UT�#

�� KiP�Z�Mi¬	Æ�� UT) ^½� Ua�# �� KiP�Z�Mi¬	Æ¿ � Ua) ^½�\�#

�� � Rii��R^� � \� U`�# �� � Rii��R^�RiQ�P� � U`) ½#V<� \�#

�� � Rii��RX� � \� \�# �� � Rii��RX�RiQ�P� � \� \�#

�� � Rii��RV� � \� \�# �� � Rii��RV�RiQ�P� � \� \�#

�� � Rii��RÅ� � \� \�# �� »�P��R��Y¾ � \� UÀ�#

�� M�Mi¬R��RURMhM��»�P�¾ � \�\�# �� »�P��R��Y� � \� \�#

�� »�P��R��Y¿ � UÀ) ½#½½Ç�\�

59

Test System will have 4 testers since there are 4 ports (a, b, c and d) of IUT. Local

testers will be named as �RiPRG�� �RiPRG¾ � �RiPRG�<���<�RiPRG¿. Specifications of

local testers must be derived from GTS to be able to implement local testers. Local

Test Sequences must guarantee that GTS is executed correctly if each tester

executes correctly. LTSs of local testers are derived from GTS by using the tool

introduced in 6.3 and LTS of each tester is listed below.

eU�RH� �

�<� KiP�Z�Mi¬	Æ� < \ 	�V� gS��~¾< <\��V� gS��~¾<�#

�� � Rii��R^���k¡�`��È�É~Ê�
�# �� � Rii��R^�RiQ�P����Ëk[#S��#

�� � Rii��RX��# �� � Rii��RX�RiQ�P��# �� � Rii��RV��# �� � Rii��RV�RiQ�P��#

�� � Rii��RÅ� < \ 	�VV� gSS��~¾�

eU�RH¾ �

x� KiP�Z�Mi¬	Æ¾
���u����uka[�<Ì <\ 	�X� gT�¾~� < <\��X� gT�¾~��#

�� »�P��R��Y¾
��k¡�SS��uu�Ê~Í�

< <<\��VX� gST�¾~¿�#

�� M�Mi¬R��RURMhM��»�P�¾< <\ 	�V^� gSa�¾~��

eU�RH� �

x� KiP�Z�Mi¬	Æ�
���¶����¶ka[�<Ì <\ 	�^� ga��~¿< <\��^� ga��~¿�#

�� »�P��R��Y�
���uÎ�

< <\ 	�VÅ� gS`��~¿�

eU�RH¿ �

x� KiP�Z�Mi¬	Æ¿
���Î����Îka[�<Ì <\ 	�Å� g`�¿~��<#

�� »�P��R��Y¿
���uÈ���u¶k[#[[À�

�

6.5. Method for Analysis of Test Results

As stated previously, for IUT to conform to GTS each local tester must execute its

LTS successfully. [6] does not discuss how to analyze test results. For conformance

60

of IUT to GTS, outputs of IUT must be analyzed. A method for analyzing test

results has been adopted within this study as follows;

• Each local tester must execute its local test sequence and it must not be

blocked for receiving output event from IUT eternally. Local testers are

blocked for receiving output from IUT which means no other operation is

performed by local testers until the expected output from IUT is received.

Output event must be received in definite time duration for LTS to continue

execution. If a tester is blocked eternally for receiving an output from IUT

this means there is a fault in the IUT.

• After execution of LTSs, timing constraints of output events must be

analyzed to see whether IUT has respected timing constraints specified by

Timed Automata model.

• After execution of LTSs, order constraints of output events must be

analyzed to see whether IUT has respected order constraints specified by

GTS.

6.6. Implementation of Local Testers

Local testers implement both IEEE 1588 PTP and Local Test Sequences. �RiPRG�

behaves as a master, �RiPRG¾, �RiPRG� and �RiPRG¿ behaves as a slave for PTP

implementation. Testers wait in a blocking state for the reception of output send by

IUT and record the reception time of that event. In order to respect order constraints

testers also wait in a blocking state for the reception of 	G�RG messages if the event

related with that transition is input transition. On the other hand, Testers are not

blocked for receiving 	G�RG message from other testers when the event related with

that transition is output transition. Order constraints related with outputs are

controlled at the end of local test sequences. �MlM�� messages from other testers

are not blocking, timing constraints are controlled at the end of local test sequences.

61

Figure 6-5, Figure 6-6, Figure 6-7 and Figure 6-8 introduces the pseudecode of each

local tester. Firstly, each tester establishes communication with other testers. After

establishing communication, Testera implements PTP as a master and rest of the

testers implement PTP as a slave. After implementing PTP protocol, each tester

establishes communication with IUT. Each tester implements its local test sequence

eU�RH�. After the occurrence of each event in the LTS, each tester checks whether

the order and timing constraints are satisfied.

/2�Ï20̈ Pseudocode

1. Initializations

2. Communication establishment with �RiPRG¾

3. Communication establishment with �RiPRG�

4. Communication establishment with �RiPRG¿

5. Send �Y�U¬¾ to �RiPRG¾ and record send time as P[

6. Wait For »R��Y<�RHQRiP¾ from �RiPRG¾ and record receipt time as Pa

7. Send �MlR<�P�lq<���MU�PMe�¾< to �RiPRG¾ with P[and Pa timestamp

values

8. Send �Y�U¬� to �RiPRG� and record send time as P[

9. Wait For »R��Y<�RHQRiP� from �RiPRG� and record receipt time as Pa

10. Send �MlR<�P�lq<���MU�PMe�� < to �RiPRG� with P[and Pa timestamp

values

11. Send �Y�U¬¿ to �RiPRG¿ and record send time as P[

12. Wait For »R��Y<�RHQRiP¿ from �RiPRG¿ and record receipt time as Pa

13. Send �MlR<�P�lq<���MU�PMe�¿ < to �RiPRG¿ with P[and Pa timestamp

values

14. Communication establishment with IUT through qeGP<�

15. Wait for reception of � KiP�Z�Mi¬	Æ� from IUT and record receipt

time as gS (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï!
¨

FAIL)

16. Send 	�V� gS��~¾ to �RiPRG¾

17. Send ��V� gS��~¾ to �RiPRG¾

62

18. Wait for reception of 	�Å� g`�¿~� from �RiPRG¿

19. Send � � Rii��R^� to IUT and record the send time as gÀ

20. Wait for reception of � � Rii��R^�RiQ�P� from IUT and record receipt

time as gÁ (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï;
¨

FAIL)

21. Send � � Rii��RX� to IUT and record the send time as gÂ

22. Wait for reception of � � Rii��RX�RiQ�P� from IUT and record receipt

time as gÃ (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ḯ
¨

FAIL)

23. Send � � Rii��RV� to IUT and record the send time as gÄ

24. Wait for reception of � � Rii��RV�RiQ�P� from IUT and record receipt

time as gS[(If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï±
¨

FAIL)

25. Send � � Rii��RÅ� to IUT and record the send time as gSS

26. Send 	�VV� gSS��~¾ to �RiPRG¾

27. IF (gÁ) gÀ { ½#V) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï¦
¨ FAIL

Figure 6-5 Pseudocode of Testera

/2�Ï20Ð Pseudocode

1. Initializations

2. Communication establishment with �RiPRG�

3. Communication establishment with �RiPRG�

4. Communication establishment with �RiPRG¿

5. Wait For �Y�U¬¾ from �RiPRG� and record receipt time as PS

6. Send »R��Y<�RHQRiP¾ to �RiPRG� and record send time as PT

7. Wait For �MlR<�P�lq<���MU�PMe�¾ from �RiPRG� and get the values

PS and PT

63

8. Using P[� PS� PT� Pa and equation <

	ªªiRP���jTr \ �rTj�·X given in 5.1, calculate offset between

�RiPRG� and �RiPRG¾. Adjust local clock of �RiPRG¾ by using <

��eUfr �̧¹� � 	ªªiRP { ��eUfº �r��_ .

9. Communication establishment with IUT through qeGP<Z

10. Wait for reception of � KiP�Z�Mi¬	Æ¾ from IUT and record receipt

time as gT (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï!
Ð

FAIL)

11. Send 	�X� gT�¾~� to �RiPRG�

12. Send ��X� gT�¾~� to �RiPRG�

13. Wait for reception of 	�VV� gSS��~¾ from �RiPRG�

14. Send � »�P��R��Y¾ to IUT and record the send time as gST

15. Send ��VX� gST�¾~¿ to �RiPRG¿

16. Wait for reception of � M�Mi¬R��RURMhM��»�P�¾ from IUT and

record receipt time as gSa (If not received for a specified time,

/2�Ï20�§¢�Ï0̈ &¢Ï;
Ð FAIL)

17. Send 	�V^� gSa�¾~� to �RiPRG�

18. IF (gS) gT) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ḯ
Ð FAIL (Get gS from

	�V� gS��~¾ sent by �RiPRG�)

19. IF (gT) gS { ^½) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï±
Ð FAIL (Get gS from

��V� gS��~¾ sent by �RiPRG�)

Figure 6-6 Pseudocode of Testerb

/2�Ï20 Pseudocode

1. Initializations

2. Communication Establishment With �RiPRG�

3. Communication Establishment With �RiPRG¾

64

4. Communication Establishment With �RiPRG¿

5. Wait For �Y�U¬� from �RiPRG� and record receipt time as PS

6. Send »R��Y<�RHQRiP� to �RiPRG� and record send time as PT

7. Wait For �MlR<�P�lq<���MU�PMe�� from �RiPRG� and get the values

PS and PT

8. Using P[� PS� PT� Pa and equation <

	ªªiRP���jTr \ �rTj�·X given in 5.1, calculate offset between

�RiPRG� and �RiPRG�. Adjust local clock of �RiPRG� by using

��eUfr �̧¹� � 	ªªiRP { ��eUfº �r��_.

9. Communication establishment with IUT through qeGP<U

10. Wait for reception of � KiP�Z�Mi¬	Æ� from IUT and record receipt

time as ga (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï!

FAIL)

11. Send 	�^� ga��~¿ to �RiPRG¿

12. Send ��^� ga��~¿ to �RiPRG¿

13. Wait for reception of � »�P��R��Y� from IUT and record receipt time

as gS` (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï;
 FAIL)

14. Send 	�VÅ� gS`��~¿ to �RiPRG¿

15. IF (gT) ga) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ḯ
 FAIL (Get gT from

	�X� gT�¾~� sent by �RiPRG¾)

16. IF (ga) gT { ^½) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï±
 FAIL (Get gT from

��X� gT�¾~� sent by �RiPRG¾)

17. IF (gSa) gS`) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï¦
 FAIL (Get gSa from

	�V^� gSa�¾~� sent by �RiPRG¾)

Figure 6-7 Pseudocode of Testerc

65

/2�Ï20£ Pseudocode

1. Initializations

2. Communication Establishment With �RiPRG�

3. Communication Establishment With �RiPRG¾

4. Communication Establishment With �RiPRG�

5. Wait For �Y�U¬¿ from �RiPRG� and record receipt time as PS

6. Send »R��Y<�RHQRiP¿ to �RiPRG� and record send time as PT

7. Wait For �MlR<�P�lq<���MU�PMe�¿ from �RiPRG� and get the values

PS and PT

8. Using P[� PS� PT� Pa and equation <

	ªªiRP���jTr \ �rTj�·X given in 5.1, calculate offset between

�RiPRG� and �RiPRG¿. Adjust local clock of �RiPRG¿ by using

��eUfr �̧¹� � 	ªªiRP { ��eUfº �r��_.

9. Communication establishment with IUT through qeGP<�

10. Wait for reception of � KiP�Z�Mi¬	Æ¿ from IUT and record receipt

time as g` (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï!
£

FAIL)

11. Send 	�Å� g`�¿~� to �RiPRG�

12. Wait for reception of � »�P��R��Y¿ from IUT and record receipt time

as gSÀ (If not received for a specified time, /2�Ï20�§¢�Ï0̈ &¢Ï;
£ FAIL)

13. IF (ga) g`) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ḯ
£ FAIL (Get ga from

	�^� ga��~¿ sent by �RiPRG�)

14. IF (g`) ga { ^½) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï±
£ FAIL (Get ga from

��^� ga��~¿ sent by �RiPRG�)

15. IF (gS`) gSÀ) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï¦
£ FAIL (Get gS` from

	�VÅ� gS`��~¿ sent by �RiPRG�)

16. IF (gSÀ) gST { ½#½½Ç) PASS ELSE /2�Ï20�§¢�Ï0̈ &¢Ï°
£ FAIL (Get

gST from ��VX� gST�¾~¿ sent by �RiPRG¾)

Figure 6-8 Pseudocode of Testerd

66

Each Local Tester was implemented using C language that is widely used for real

time applications using MC/OS APIs. The Multicomputer Operating System

(MC/OS) is a real-time operating system developed by Mercury for use on the

distributed, heterogeneous hardware of a RACE multicomputer system. Each local

tester runs on MC/OS. Mercury uses MC/OS rather than a standard operating

system because commercial operating systems such as UNIX and Windows are

designed for use in single-processor computers. Such operating systems have two

types of drawbacks relative to multicomputing:

• They lack capabilities that multicomputer applications typically require.

• They provide capabilities that multicomputer applications do not need.

Mercury developed MC/OS to avoid these drawbacks and to provide exactly those

capabilities that RACE multicomputer applications need. MC/OS is optimized to

give fast, predictable performance when used to perform multicomputing over the

RACEway.

6.7. Test Execution and Analysis of Test Results

Software tests were performed for 3 times for different versions of IUT using the

developed Test System. First version of IUT was tested previously for the

functional correctness with the method explained in 3.2. Local testers’ constraints

are regarded as constraints of IUT. As a result of test execution a verdict is

produced for each software constraint. Software test results for the first version of

IUT are given in the Table 6-1.

Table 6-1 Test Results for First Version of IUT

Software Constraint Software Test Result

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� FAIL

�RiPRGÑ��r�_����a
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����̀
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����À
� COULD NOT BE PERFORMED

67

Table 6-1 cont’d

�RiPRGÑ��r�_����S
¾ PASS

�RiPRGÑ��r�_����T
¾ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����a
¾ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����̀
¾ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����a
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����̀
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����À
� COULD NOT BE PERFORMED

�RiPRGÑ��r�_����S
¿ PASS

�RiPRGÑ��r�_����T
¿ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����a
¿ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����̀
¿ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����À
¿ COULD NOT BE PERFORMED

�RiPRGÑ��r�_����Á
¿ COULD NOT BE PERFORMED

As seen from the table �RiPRGÑ��r�_����S
� � �RiPRGÑ��r�_����S

¾ � �RiPRGÑ��r�_����S
� and

�RiPRGÑ��r�_����S
¿ constraints are satisfied which means outputs are received from

IUT. �RiPRGÑ��r�_����T
� failed because output � � Rii��R^�RiQ�P� could not be

received. Due to this fault, execution of LTSs terminated and remaining constraints

could not be tested. This fault could not be found by the method discussed in 3.2

since this output is not observable.

After fixing the fault found in the first version of IUT, second version of IUT was

developed. For the second version of the IUT software tests were held and the

results are given in the Table 6-2.

68

Table 6-2 Test Results for Second Version of IUT

Software Constraint Software Test Result

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� PASS

�RiPRGÑ��r�_����a
� PASS

�RiPRGÑ��r�_����̀
� PASS

�RiPRGÑ��r�_����À
� FAIL

�RiPRGÑ��r�_����S
¾ PASS

�RiPRGÑ��r�_����T
¾ PASS

�RiPRGÑ��r�_����a
¾ PASS

�RiPRGÑ��r�_����̀
¾ PASS

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� PASS

�RiPRGÑ��r�_����a
� PASS

�RiPRGÑ��r�_����̀
� PASS

�RiPRGÑ��r�_����À
� PASS

�RiPRGÑ��r�_����S
¿ PASS

�RiPRGÑ��r�_����T
¿ PASS

�RiPRGÑ��r�_����a
¿ PASS

�RiPRGÑ��r�_����̀
¿ PASS

�RiPRGÑ��r�_����À
¿ PASS

�RiPRGÑ��r�_����Á
¿ FAIL

As seen from the Table 6-2, �RiPRGÑ��r�_����À
� and �RiPRGÑ��r�_����Á

¿ failed. Both

of these constraints are timing constraints for IUT. These faults could not be found

by the method discussed in 3.2 since outputs are not observable, it is not possible to

control inputs of IUT and it is not possible to check temporal behavior of IUT.

69

After fixing the faults found for second version of IUT, third version of IUT was

developed. Test results of IUT for its third version are given in the Table 6-3. Since

TS enables us to reproduce GTS it is possible check whether these faults are

recovered or not by applying GTS to IUT.

Table 6-3 Test Results for Third Version of IUT

Software Constraint Software Test Result

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� PASS

�RiPRGÑ��r�_����a
� PASS

�RiPRGÑ��r�_����̀
� PASS

�RiPRGÑ��r�_����À
� PASS

�RiPRGÑ��r�_����S
¾ PASS

�RiPRGÑ��r�_����T
¾ PASS

�RiPRGÑ��r�_����a
¾ PASS

�RiPRGÑ��r�_����̀
¾ PASS

�RiPRGÑ��r�_����S
� PASS

�RiPRGÑ��r�_����T
� PASS

�RiPRGÑ��r�_����a
� PASS

�RiPRGÑ��r�_����̀
� PASS

�RiPRGÑ��r�_����À
� PASS

�RiPRGÑ��r�_����S
¿ PASS

�RiPRGÑ��r�_����T
¿ PASS

�RiPRGÑ��r�_����a
¿ PASS

�RiPRGÑ��r�_����̀
¿ PASS

�RiPRGÑ��r�_����À
¿ PASS

�RiPRGÑ��r�_����Á
¿ PASS

70

6.8. Test Results for Different Global Test Sequences

In addition to developing test architecture for

��� � PGS# PGT# PGa# PG̀ # PGÀ# PGÁ# PGÂ# PGÃ# PGÄ# PGS[# PGSS# PGST# PGSa# PGS`# PGSÀ some other

Global Test Sequences were also considered. Test architectures were developed and

test executions were performed for following Global Test Sequences.

���X � PGS# PGT# PGa# PG̀ # PGÂ# PGÃ# PGÄ# PGS[# PGSS# PGST# PGSa# PGS`# PGSÀ# PGÀ# PGÁ

���^ � PGS# PGT# PGa# PG̀ # PGST# PGSa# PGS`# PGSÀ# PGÀ# PGÁ# PGÄ# PGS[# PGÂ# PGÃ# PGSS

Complexity of test architecture and local test sequences differ for different Global

Test Sequences since number of coordination messages differ for different Global

Test Sequences. Same test results of ���V were obtained for ���X and ���^ .

Same faults were found for different Global Test Sequences. This proves that 4p-

Timed Automata Model of IUT is correct and there is no missing state or extra state

for the IUT since we have found the same faults for different global test sequences.

6.9. Evaluation of Test Results

Comparison of test approach used in the company and distributed test approach can

be listed as;

• In most cases it is not desirable to use real environment during testing. This

is due to safety and cost considerations since the confidence in correctness

of real time system is low. Sometimes it is not possible to use real

environment since it is not available. The approach discussed in 3.2 needs

real environment for testing but the proposed distributed test approach does

not need the real environment for testing.

• Rare event situations which occur only rarely in the real world cannot be

created easily with the approach discussed in 3.2. Often it is either difficult

or unsafe to obtain these situations from the real environment. By using the

proposed distributed test approach it is much easier to create rare event

situations. In our implementation � Rii��RV� is sent to IUT only when a

failure occurs in the hardware of the system. It is hard to create this failure

71

on real system but with distributed test approach we can easily feed this

input to IUT.

• It is not possible achieve test repeatability with the approach discussed in

3.2. Temporal behavior of distributed real-time system depends on the

timing of events and it is not possible to control timing of inputs with this

approach. However the proposed distributed test approach guarantees test

repeatability by controlling timing and order of inputs.

• Controllability of IUT is not possible with the approach used in the company

since inputs of IUT are not controlled. On the other hand, the proposed

distributed test approach achieves controllability by controlling the applied

inputs.

• It is not possible to observe input and output of IUT with the approach used

in the company since IUT has interfaces with the rest of the system that we

cannot observe. On the other hand observability is possible with the

proposed distributed test approach by observing ports of local testers.

It is not possible to test temporal behavior of IUT with the approach used in the

company due to observability problem. On the other hand it is possible to test

temporal behavior of IUT with the proposed distributed test approach since this

method achieves observability.

Equation Chapter (Next) Section 1

72

CHAPTER 7

CONCLUSION

Distributed real-time systems are mostly safety critical systems that are widely used

nowadays for many critical applications. Software testing of safety critical

distributed real-time systems is crucial since the failure of these systems result in

catastrophic consequences. Most of the available software testing techniques

support only software testing of sequential programs that do not have timing issues.

For testing of distributed real time systems distributed behavior and timing issues of

the application must be taken into account. There is a limited number of studies

available in the literature on testing distributed real time systems which propose a

complete method for test case generation, test architecture and test execution and

few studies report the implementation results of these techniques.

In this thesis study, following a literature search on available software testing

techniques for testing of distributed real time systems, the technique proposed in [6]

was considered since it proposes a complete method for test case generation, test

architecture and test execution. Software testing technique proposed in [6] has been

implemented on sample projects, test architecture was developed and results of this

study have been reported in this study. A software tool is developed for distributing

the Global Test Sequence to Local Testers during the course of implementation.

Synchronization of local testers’ clocks is a crucial issue of test architecture and test

execution for testing of timing issues related with distributed real time systems. In

[6] it is not discussed how to synchronize local testers within the test architecture

and test execution. In this study IEEE 1588 Precision Time Protocol is partially

implemented for synchronization of local testers’ clocks.

73

The implementation results show that distributed test architecture presents certain

advantages for testing of distributed real-time systems. Test repeatability,

controllability of IUT, observability of IUT and ability to test temporal behavior of

IUT are major benefits of distributed test architecture compared to method used in

the company previously. Fault coverage of distributed architecture increases for

finding timing faults and order faults when compared to previous method used in

the company.

For each different GTS, distributed test architecture requires development of

different local testers. Furthermore it is very costly to develop this test architecture

since it is very complex. In spite of complexity of distributed test architecture,

distributed test architecture can be used for testing critical systems for which failure

of system results in serious hazards.

During test execution Test System determines the timing of inputs sent by TS to

IUT. TS respects timing constraints at each execution of GTS but timing of inputs

can differ at each test execution. This issue has to be considered as a future study in

the implementation of test architecture.

Equation Chapter (Next) Section 1

74

REFERENCES

1. A. En-Nouaary, F. Khendek, and R. Dssouli, "Testing embedded real-time
systems," in seventh International Conference on Real-Time Computing Systems
and Applications, Dec. 2000, pp. 417 - 424.

2. A. En-Nouaary, F. Khendek, and R. Dssouli, "Fault coverage in testing real-
time systems," in Real-Time Computing Systems and Applications, 1999.
RTCSA '99. Sixth International Conference , Dec. 1999, pp. 150 - 157.

3. A. Khoumsi, "A temporal approach for testing distributed systems," IEEE

Transactions on Software Engineering, Vol. 28, No. 11, November 2002 .

4. A. En-Nouaary, F. Khendek, A. Elqortobi, and R. Dssouli, "Timed Test Cases

Generation Based on State Characterization Technique," in 19th IEEE Real-
Time Systems Symposium (RTSS'98), Dec. 1998.

5. A. Khoumsi, "A new method for testing real time systems," in Real-Time

Computing Systems and Applications, Dec. 2000, pp. 441 - 450.

6. A. Khoumsi, "Testing distributed real time systems using a distributed test

architecture," in Computers and Communications, 2001. Proceedings. Sixth
IEEE Symposium, July 2001, pp. 648 - 654.

7. K. Correll, N. Barendt, and M. Branicky, "Design Considerations for Software

Only Implementations of the IEEE 1588 Precision Time Protocol," In Proc.
Conf. on IEEE-1588 Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, October 2005.

8. W. Schütz, "A test strategy for the distributed real-time system mars," In

Proceedings of the 1990 IEEE International Conference on Computer Systems
and Software Engineering, pp. 20–27, 1990.

9. "IEEE Standard Glossary of Software Engineering Terminology," IEEE

standards collection, IEEE std 610.12, September 1990.

10. H. Thane, and H. Hansson, "Towards Systematic Testing of Distributed Real-

Time Systems," in Proceedings of the 1999 IEEE Real-Time Systems
Symposium.

75

11. H. Thane, and H. Hansson, "Handling Interrupts in Testing of Distributed Real-
Time Systems," in 6th International Conference on Real-Time Computing
Systems and Applications (RTCSA'99), Dec. 1999.

12. I. Ho, and J. Lin, "Generating Test Cases for Real-Time Software by Time Petri

Nets Model," In Proceedings of the 8th Asian Test Symposium.

13. IEEE Std 1588-2002 (http://ieee1588.nist.gov)

14. Mercury PowerPC 7410 Daughtercard Data Sheet. [Online]. Available:

http://www.mc.com/uploadedfiles/PPC7410_DS_4P_11.pdf, Last accesed date
April 2008

15. H. Thane, A. Pettersson, and D. Sundmark, "The asterix real-time kernel," In
Proceedings of the 13th Euromicro Conference on Real-Time Systems.

16. A. J. Whittaker, "What Is Software Testing? And Why Is It So Hard?," Journal
IEEE Software, January/February 2000.

17. H. Ural, and D. Whittier, "Distributed testing without encountering

controllability and observability problems," Information Processing Letters 88,
2003, pp. 133-141.

18. W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky, "Validation, Verification,

and Testing of Computer Software," Computing Surveys, Vol. 14, No. 2, June
1982.

19. "Raceway Interlink functional specification", from

http://www.mc.com/uploadedFiles/racewayintrlnk-spec.pdf, Last accesed date
April 2008

20. Z. Wang, J. Wu, and X. Yin, "Towards interoperability test generation of time

dependent protocols: a case study," in Proceedings of the Global
Telecommunications Conference, 2004.

21. B. Broekman, and E. Notenboom, "Testing Embedded Software," Addison-
Wesley, 2003, pp. 111-134.

22. G. Gönenç, "A Method for the Design of Fault Detection Experiments," IEEE

Transactions on Computers, June 1970, pp. 551-558.

76

APPENDIX A

POWERPC 7410 DAUGHTERCARDS
SPECIFICATIONS

P2J128J

RACEway ports: 2

Processor frequency: 400 MHz

Compute nodes: 2

Memory frequency: 133 MHz

SDRAM per CN: 128 MB

SDRAM per daughtercard: 256 MB

L2 cache frequency: 266 MHz

L2 cache per CN: 2 MB

Weight: 0.42 lb*

Dimensions: 5.0 in x 4.435 in

Power consumption**: 16.6W

Daughtercards per MCJ6***: 2

Daughtercards per MCJ9: 9

Q1P2J256J-Q1

RACEway ports: 2

Processor frequency: 400 MHz

Compute nodes: 2

Memory frequency: 133 MHz

SDRAM per CN: 256 MB

77

SDRAM per daughtercard: 512 MB

L2 cache frequency: 266 MHz

L2 cache per CN: 2 MB

Weight: 0.43 lb*

Dimensions: 5.0 in x 4.435 in

Power consumption**: 16.6W

Daughtercards per MCJ6***: 2

Daughtercards per MCJ9: 9

* Rugged version weighs an additional 0.01 lb.

** Maximum typical power consumption measured with concurrent FFTs and I/O.

*** Requires 5-row connectors on MCJ6 and VME backplane.

Commercial Environmental Specifications

Operating temperature: 0ºC to 40ºC up to an altitude of 10,000 ft

(inlet air temperature at motherboard's recommended minimum airflow)

Storage temperature: -40ºC to +85ºC

Relative humidity: 10% to 90% (non-condensing)

As altitude increases, air density decreases, hence the cooling effect of a

particular CFM rating decreases. Many manufacturers specify altitude and

temperature ranges that are not simultaneous. Notice that the above operating

temperature is specified simultaneously with an altitude. Different limits

can be achieved by trading among altitude, temperature, performance, and

airflow.

