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ABSTRACT 

A TWO DIMENSIONAL EULER FLOW SOLVER ON ADAPTIVE CARTESIAN 
GRIDS 

 

Siyahhan, Bercan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk Aksel 

Co-Supervisor: Assist. Prof. Dr. Cüneyt Sert 

 

May 2008, 121 pages 

 

In the thesis work, a code to solve the two dimensional compressible Euler equations 

for external flows around arbitrary geometries have been developed. A Cartesian 

mesh generator is incorporated to the solver. Hence the pre-processing can be 

performed together with the solution within a single code. The code is written in the 

C++ programming language and its object oriented capabilities have been exploited 

to save memory in the data structure developed. 

The Cartesian mesh is formed by dividing squares successively into its four 

quadrants. The main advantage of using this type of a mesh is the ability to generate 

meshes around geometries of arbitrary complexity quickly and to adapt the mesh 

easily based on the solution. The main disadvantage of this method is that the 

treatment of the cells that are cut by the geometry. 

For the solution procedure Roe’s method as well as flux vector splitting methods are 

used for the flux evaluation. The flux vector splitting schemes used are van Leer, 

AUSM, AUSMD and AUSMV methods. Time discretization is performed using a 
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multi-stage method. To increase the accuracy least squares reconstruction is 

employed.  

The code is validated by performing calculations around a NACA0012 airfoil profile. 

The effect of reconstruction is demonstrated by plotting the pressure coefficient on 

the airfoil. The distribution obtained using reconstruction is very close to the 

experimental one while there is a considerable deviation for the case without 

reconstruction. Also the shock capturing capabilities of different methods have been 

investigated. In addition the performance of each method is analyzed for flow around 

an NLR 7301 airfoil with a flap. 

Keywords: Cartesian Mesh Generation, Approximate Riemann Solver of Roe, Euler 

Equations, Solution Refinement, Flux Vector Splitting 
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ÖZ 

UYARLAMALI KARTEZYEN AĞLARDA İKİ BOYUTLU EULER AKIŞ 
ÇÖZÜCÜSÜ 

 

Siyahhan, Bercan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk Aksel 

Ortak Tez Yöneticisi: Yard. Doç. Dr. Cüneyt Sert 

 

Mayıs 2008, 121 sayfa 

 

Bu tez çalışması kapsamında, herhangi bir geometri etrafındaki iki boyutlu 

sıkıştırılabilir dış akışları Euler denklemlerinin çözümüyle modellemek için bir kod 

yazılmıştır. Çözücüye bir Kartezyen ağ çözücüsü ilave edilmiştir. Böylece hem ağ 

oluşturma hem de çözüm işlemlerinin aynı kodla yapılması sağlanmıştır. Kod C++ 

dilinin nesneye yönelik programlama özellikleriyle veri yapısının kullandığı hafızayı 

azlatma amacı güdülerek yazılmıştır. 

Kartezyen hesaplama ağı karelerin art arda dörde bölünmesiyle oluşturulmaktadır. 

Kartezyen ağların temel artısı değişik karmaşıklıktaki geometriler etrafında hızla ağ 

oluşturulabilmesi ve çözüme göre ağın uyarlanabilmesidir. Temel eksisi ise geometri 

tarafından kesilen hücrelerin ele alınmasındaki zorluktur. 

Çözümde hücre akılarını bulmak için Roe’nun metodunun yanı sıra FVS metodları 

da kullanılmaktadır. FVS metodlarından van Leer, AUSM, AUSMD ve AUSMV 

kullanılmaktadır. Daha sonra zamanda integrasyon için çok aşamalı bir metod 

kullanılmaktadır. Yöntemin doğruluğunu artırmak için hücre içinde akış değişkenleri 

yeniden yapılandırılmaktadır.  
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Yöntemin geçerliliği NACA0012 kanat profili etrafındaki akış çözülerek sınanmıştır. 

Yeniden yapılandırmanın etkileri kanat üzerindeki basınç katsayılarının çizilmesiyle 

vurgulanmaktadır. Yeniden yapılandırmalı dağılım deneysel dağılıma yakındır ancak 

yeniden yapılandırma olmadan elde edilen sonuçlar deneyselden ciddi farklılıklar 

göstermektedir. Ayrıca farklı metodların şok yakalama özellikleri de sınanmıştır. 

Farklı metodların performansları NLR7301 profili etrafındaki akış çözülerek de 

kıyaslanmaktadır. 

Anahtar Kelimeler: Kartezyen Ağ Oluşturucusu, Roe’nun Yaklaşık Riemann 

Çözücüsü, Euler Denklemleri, Yeniden Yapılandırma, Çözüm Uyarlamalı Ağ 
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CHAPTER 1 

INTRODUCTION 

In this thesis, numerical methods are employed to resolve external flows around 

arbitrary geometries. The thesis work consists of generating a Cartesian mesh around 

the input geometry, solving the Euler equations numerically with the finite volume 

method for the desired flow quantities and obtaining the necessary aerodynamic 

forces to verify the solution. To understand the motivation for choosing the methods 

followed, a brief introduction must be made to mesh generation and solution 

techniques employed in the field of computational fluid dynamics (CFD). 

1.1 Overview of Computational Fluid Dynamics (CFD) 

Computational fluid dynamics is a branch of fluid dynamics which employs 

numerical methods for solving the equations of fluid flow which are impossible to 

solve analytically due to their complex nature. Hence CFD is the third approach for 

solving a flow problem alongside analytical and experimental methods.  

It can be said that emergence of CFD as a tool for solving flow problems has taken 

place only in the mid 1900s so it is a relatively new field of study compared to 

analytical and experimental methods. Since the publication of Isaac Newton’s 

Principia in 1687, theoretical and experimental methods, often combined, were the 

only tools for analyzing fluid flows of differing nature (1). With the development of 

digital computers, however, CFD has become an indispensible tool in the field of 

fluid dynamics, arguably with the pioneering work of Kopal who in 1947 formed 

tables for the supersonic flow over sharp cones after solving the governing equations 

numerically. In the 1950s and 1960s CFD, has been applied to re-entry problems and 
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has established its place among the three essential methods for analyzing a fluid flow 

problem (1). 

1.2 Main Elements of a CFD Program 

Any CFD program mainly consists of three parts; the pre-processor, the solver and 

the post-processor (2) .  

The pre-processor gathers the inputs to the problem being analyzed, the fluid 

properties, boundary conditions, geometry around which the fluid flow will be 

investigated. Also the grid is generated around the input geometry by the pre-

processor. 

The solver part of the program uses numerical techniques to resolve the flow around 

the input geometry. This is accomplished by converting the governing partial 

differential methods to algebraic set of equations in the three conventional finite 

difference, finite element and finite volume methods. 

The post-processor is the part where the solution obtained is visualized. Contours of 

desired scalars and the vector fields are displayed within the domain of interest. Also 

non-dimensional variables and physical quantities of interest are calculated so as to 

verify the solution and to judge whether the mesh generated and the schemes used 

are appropriate for the problem at hand. 

The program developed in the scope of the thesis work contains a pre-processor 

which gathers the inputs of the problem and generates a Cartesian mesh in the 

computational domain and a solver which uses the finite volume method for the 

solution of the compressible Euler equations in the conserved form. The mesh 

generation and different solution methods will be discussed in some detail below. For 

the post-processor a commercially available program Tecplot and a freely distributed 

program Mayavi have been used. 
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1.3 Mesh Generation 

Mesh generation is the most time consuming and the most crucial step in obtaining a 

solution to a fluid flow problem. The generated mesh should comply with 

requirements of the solution schemes to be used in order to get accurate results. 

In general, there are two types of meshes; the structured and the unstructured meshes. 

Each one of these two types of meshes can then be classified further according to the 

method used to construct them. 

1.3.1 Structured Meshes 

A mesh is considered to be structured if the organization of the grid points and the 

form of the grid cells depend on a general mathematical rule instead of their position 

(3). In other words, the grid points can be arranged as a regular array as (i, j, k) with 

the neighbouring point being known as (i, j, k+1) (4). Hence the connectivity of the 

grid points to form the cells is implicitly implied by the general mathematical rule.  

The structured grids can be classified further according to the technique used to 

generate them as algebraic, elliptic and hyperbolic grids. The algebraic grids are 

formed simply by transforming cells in a Cartesian computational domain to a 

physical domain to obtain a boundary conforming mesh, the elliptic grids are 

obtained as a result of solving an elliptic differential equation to obtain a mesh that 

satisfies the Laplace equations while for the hyperbolic grids are obtained by solving 

hyperbolic equations (4). 

The advantages of structured meshes are that they are boundary conforming so by 

adjusting the grid spacing, meshes for viscous solutions can be obtained. They 

require less data storage since the connectivity information is implicitly known. 

One disadvantage of the structured meshes is that they require more computation 

power, since the governing partial differential equations or the algebraic rules must 

be solved and computations must be performed for the transformations from the 
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computational to physical spaces. However the most important disadvantage of the 

structured meshes is that they cannot easily be applied to complex geometries that 

are formed by more than one body that have small clearances or are not well 

streamlined. 

1.3.2 Unstructured Meshes 

If the grid points cannot be arranged as a regular array and additional information is 

required for the connectivity of the grid points then the mesh is unstructured. The 

unstructured meshes, though they can comprise of elements of any shape, are formed 

of triangular or rectangular elements generally in the two-dimensional case. 

The advantages of the unstructured meshes are that they can be applied to geometries 

of arbitrary complexity with ease, they are more suitable to automatic meshing, and 

no transformation between a computational and a physical domain will be needed. 

While the disadvantage of these meshes is that they require more complex data 

structures for storing the connectivity of grid points and the neighbour cell 

information.  

1.3.2.1 Triangular Unstructured Meshes 

The most widely used methods for forming triangular unstructured meshes are the 

advancing front and the Delaunay triangulation methods. 

In the advancing front method, the points are added to the ones that represent the 

geometry as the mesh is created. The added points are connected to already existing 

points to form triangles. Then, the points that are available for triangle formation 

termed as the front are connected to newly added points to update the front until the 

whole domain is meshed (4). In this approach, extensive search algorithms must be 

employed when adding new grid points to ensure that the newly formed cells adjust 

to the existing ones. Also, the closing stage of this approach, where the front folds 
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over itself, introduces some difficulties (3). An example of the advancing front 

method is illustrated in Figure 1.1. 

 

 

Figure 1.1- The stages of the advancing front method 

 

The other and may be the most popular triangular meshing procedure, Delaunay 

triangulation, requires points to be created before the meshing process and is closely 

linked to the concept of Vornoї diagrams. The Vornoї diagram is obtained by 

tessellating the domain into Vornoї regions which are regions that are closer to one 

particular point within the domain than the others. This is illustrated in Figure 1.2. 

Hence they can be obtained by the perpendicular bisectors of the lines between 

neighbouring points. Once the diagram is formed, any points that have a Vornoї edge 

between them are connected to form the triangular mesh. The circum-circles of the 

triangular elements do not contain any other point in the domain and the resulting 

mesh is unique for the point distribution. This method is suitable for mesh adaptation 

since for a newly added point, the Vornoї diagram is updated locally and new 

triangles are formed. 
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Figure 1.2- Vornoї diagram for the grid points 

 

1.3.2.2 Cartesian Meshes 

The Cartesian mesh is obtained by using the quad-tree approach in two dimensions. 

In the quad-tree approach, a square containing the whole domain is divided into its 

four quadrants to form the mesh in a tree structure. Hence, the procedure followed is 

much simpler than the methods for generating triangular unstructured meshes. Also, 

in the computation stage, the flux vectors won’t have to be rotated for the greater 

portion of the cells. The method is very suitable for adaptation, since for the 

adaptation, the cell has to be simply divided into its four quadrants. 

If the quad-tree approach is followed strictly, then the surface of the geometry cannot 

be represented accurately hence the cut-cells are used to alleviate this problem which 

introduces some complexity to the approach. The orientation of the geometry may 

cause formation of very small cut-cells, which is generally undesirable. 

The code developed uses the quad-tree approach to form a Cartesian mesh for the 

solution. This approach was chosen to mesh arbitrary geometries of differing 

complexities in an automatic fashion. Also the approach is simpler than triangular 

mesh generation techniques and it will promote simpler calculations in the solution 

stage. 
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1.4 Solution Methods 

The partial differential equations governing the flow of a fluid must be discretised in 

order to convert them into algebraic equations and get a numerical solution. The 

most widely used methods for the discretisation of the governing equations are the 

finite difference, finite element and finite volume methods. 

1.4.1 Finite Difference Method 

The finite difference method is based on the differential form of the governing 

system of partial differential equations. The derivatives of the conserved quantities 

appearing in these equations are approximated by differences of these unknown 

quantities at neighbouring grid points. These differences are derived from the Taylor 

series and their order of accuracy is dependent on the number of points used in the 

difference equation. Once the difference equations are written in terms of unknown 

quantities, these algebraic equations can be solved numerically with the boundary 

conditions to obtain the value of the conserved quantities at each grid point. 

The major setback of this method is that it requires a regular structured mesh in order 

to express the derivatives accurately (5). Hence, the method is not very suitable for 

unstructured meshes or cases where the geometry is complex. 

1.4.2 Finite Element Method 

The finite element method which was initially developed for structural problems 

from 1940s through 1960s, divides the computational domain into triangular or 

rectangular sub-domains and represents the variation of the unknown quantities in 

terms of piecewise continuous functions. Then the unknown coefficients of these 

functions are found by establishing algebraic equations through satisfying the 

governing equations in a weighted residual form over each element (6). 
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The finite element method, with its mathematical background being functional 

analysis, has been investigated by mathematicians since its development for 

engineering purposes, and is a very rigorous method with specific conditions for 

existence and convergence criteria and exactly derived error bounds. 

Even though this method is very well established in structural mechanics, it is still in 

the stages of evolution for complex flow problems such as compressible flows 

governed by Euler or Navier-Stokes equations (1). 

1.4.3 Finite Volume Method 

The finite volume method which was first devised as a special form of the finite 

difference method in the 1970s uses the integral form of the governing equations of a 

fluid flow. There is a wide range of methods for discretising the convective and 

diffusive terms of the governing integral equations as well as the definition of the 

control volumes for which the governing equations are satisfied. More specifically it 

is possible to store the flow variables at the centroid of the cells for a cell centred 

approach, or at the vertices for a cell vertex formulation. Another possibility is to 

have a staggered grid where the scalar quantities and different vector quantities can 

be stored on overlaid cells as in the Semi-Implicit Method for Pressure-Linked 

Equations (SIMPLE) algorithm (2). Hence the method has a considerable inherent 

flexibility (5). Also, since the method is directly based on the governing integral 

equations, the basic concepts of the different schemes are more comprehensible than 

the finite element method (2). This property of the finite volume method promotes 

development of numerical schemes based on physics of the flow. Approximate 

Riemann methods, which are used for evaluating the convective terms is one 

example. One other advantage of the method is with the direct discretisation of the 

governing integral equations, conservation of mass, momentum and energy will be 

guaranteed at a discrete level (5). 
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In the code developed, cell centred finite volume method has been used with of 

Roe’s approximate Riemann method for the evaluation of the convective fluxes 

through the cell surfaces as well as the flux vector splitting schemes. 

1.5 Assessment of the Solution Methods 

Theoretically, a numerical solution will tend to the exact solution if infinite number 

of cells is used. Since this is not reasonable, a numerical scheme must possess the 

conservativeness, boundedness and transportiveness properties (2). The 

conservativeness property states that flux leaving through a certain face of a cell 

must enter the adjacent cell. The boundedness of a solution guarantees that numerical 

errors introduced by the discretisation of the governing equations will not prevent 

convergence. This property is related to the stability of the discretisation scheme 

used. The stability of a scheme can be analyzed by the discrete perturbation analysis 

or the von Neumann stability analysis (7). Finally, the transportiveness of numerical 

scheme deals with the directionality of the solution. For example, the solution of a 

flow dominated by convection will depend more on the upwind direction, hence 

upwind schemes will be more appropriate; whereas for a flow that is diffusive, a non-

directional central method will be more appropriate. 
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CHAPTER 2 

DATA STRUCTURE & MESH GENERATION 

2.1 Data Structure 

In the code developed, a Cartesian unstructured mesh is generated around the input 

geometry. Since an unstructured mesh is used, the first step in the mesh generation is 

to construct an appropriate data structure that will store the necessary data for each 

cell in the domain. However before describing each variable that is stored, the 

terminology adopted must be explained. 

2.1.1 Terminology for the Cartesian Cells 

The mesh is obtained by dividing squares successively, starting from a single large 

square, by connecting the midpoints of opposing edges until the desired resolution is 

obtained. This process results in a tree structure. The large square comprising the 

outer boundary of the domain is termed as the root cell. A cell (square) is called the 

parent of its four quadrant cells which form as a result of division and the four 

quadrant cells are called the children of the parent cell in turn. The children cells are 

numbered according to the quadrant they occupy. A cell without any children is 

called a leaf cell. The leaf cells can also be called the computational cells since the 

actual calculations for the field variables are performed for these cells. These 

concepts are illustrated below in Figure 2.1. 
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Figure 2.1- The relation between cells 

 

 Among the computational cells, some are cut by geometry lines and these are called 

cut-cells. The other cells mainly serve the purpose of traversing the tree. Also there is 

a level concept associated with each one of the cells. The level of the four children of 

a cell is one higher than that of their parent. The root cell is assigned a level of zero. 

The tree structure associated with the structure shown in Figure 2.1 is illustrated in 

Figure 2.2 to exemplify some of the concepts defined above. 

 

Figure 2.2- The tree structure 
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2.1.2 Neighbour Cell Procedures 

As was mentioned before for unstructured meshes the neighbours must also be stored 

since for the calculation of the fluxes through a face, the neighbour along that edge 

must be known. Also the neighbours will be used to determine the variation of the 

conserved variables within the cells. 

A cell will have four neighbours along its edges called the edge neighbours. These 

neighbours are named east, west, north and south according to the edge they are 

associated with. Also computational cells will have four neighbours through their 

vertices named as vertex neighbours; northeast, southeast, northwest, southwest. The 

general rule for the mesh is that a cell can have neighbours of levels that are one 

degree different than the cell. This ensures the grid smoothness and also simplifies 

flux calculations through the faces. If a neighbour is at the same level or one lower 

level, then it will be recognized as the neighbour along the corresponding edge, but if 

it is at one higher level the neighbour’s parent will be recognized instead of having 

two neighbours along the edge. Figure 2.3 illustrates the concepts related to 

neighbouring relations and also the possible configurations that might occur for a 

cell. 

 

Figure 2.3- Neighbours of a cell 
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In Figure 2.3 the east, west and southwest neighbours of the cell are at the same level 

while the north and northwest neighbours are at one lower level. These cells are 

recognized as the neighbours themselves meanwhile the parent of the cells marked as 

S1, S2 and SE are recognized as the south and southeast neighbours respectively. 

Since the north neighbour is at a lower level the north and northeast neighbours are 

identical in which case the cell is considered to have no northeast neighbour, hence a 

vertex neighbour of a cell should be distinct if it is to be stored. 

2.1.3 Information for Cut and Computational Cells 

As it is defined earlier there are three types of cells; the parent cells for traversing the 

tree, the computational leaf cells and the cut-cells, which are special types of 

computational cells. The amount of data stored for each cell depends on its type. The 

information stored for a parent cell is shared for all types of cells, while 

computational cells will have additional information and for cut-cells further 

additional information will be stored. 

For each cell in the domain, the x and y coordinates of the centre and the level of the 

cell are stored. Also there are a total of thirteen pointers pointing to other cells in the 

domain. Of these thirteen pointers four point to the children of the cell, if the cell is a 

leaf cell then these pointers are null pointers. Eight of the remaining nine pointers 

point to the neighbours of the cell. Of these eight pointers four point to edge 

neighbours, the remaining four point to the vertex neighbours and they are allocated 

only for computational cells. The remaining one of the thirteen pointers points to the 

parent of the cell. This pointer is null only for the root cell. 

Besides the thirteen pointers aforementioned there are nine more pointers which are 

allocated only for computational cells. Four of these pointers store the conserved 

field variables for the continuity, momentum and energy equations. Of the remaining 

five pointers two are storing the gradient and the curl of the velocity vector. One 

pointer stores information dictating the cell to be refined at a stage of mesh 

generation or solution adaptation. One stores coefficients that will be used in solution 
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reconstruction and the last one stores the type of the cell; whether the cell resides 

totally outside or inside the geometry or whether it is cut by it.  

Finally there is a set of seven pointers which are allocated for the cut-cells. Three of 

these seven pointers store the x and y coordinates of the centroid and area of the cell 

while two store the x and y coordinates of the end lines of the intersections of 

geometry lines with the cell edges. Of the remaining two pointers one stores which 

edges are cut by geometry lines while the last one stores information on which 

portion of the cell’s edges flux passes through. The table below shows a summary of 

the information stored for different types of cells. 
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Table 2. 1- Information stored for different types of cells 

xcent:
ycent:
level:

child1:
child2:
child3:
child4:
eneigh:
wneigh:
nneigh:
sneigh:
parent:

ro:
rouvel:
rovvel:

roen:
gradient:

curl:
recons:
refine:

celltype:
neneigh:
seneigh:

nwneigh:
swneigh:

centx:
centy:
area:
xcut:
ycut:

edgecut:
fluxcut:

pointer to first quadrant child
pointer to second quadrant child
pointer to third quadrant child

pointer to southeast neighbour

density associated to the cell
product of density and velocity in the x direction associated to the cell

ALL CELLS

product of density and velocity in the y direction associated to the cell
product of density and total energy associated to the cell
pointer to gradient of velocity

pointer to fourth quadrant child
pointer to east neighbour
pointer to west neighbour
pointer to north neighbour
pointer to south neighbour
pointer to parent

x coordinate of center of square containing the cell
y coordinate of center of square containing the cell
level of the cell

pointer to the y coordinate of cut location on edge
pointer to edges cut byb the geometry
pointer to the information regarding flux

COMPUTATIONAL CELLS

CUT-CELLS

pointer to northwest neighbour
pointer to southwest neighbour

pointer to x coordinate of the centroid of the cell
pointer to y coordinate of the centroid of the cell
pointer to the area of the cell
pointer to the x coordinate of cut location on edge

pointer to curl of velocity
pointer toarray containing geometry based reconstruction coefficients
pointer to flag for refinement
pointer to the cell type (inside, outside, cut-cell)
pointer to northeast neighbour
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2.2 Clipping Procedure 

Before describing the mesh generation process in detail, the procedure for 

determining the location of the points cut by the input geometry for the cut-cells 

must be explained. 

Clipping is the process of determining the portion of a geometrical shape that resides 

within a given clipping window. For the code developed, the input geometry, which 

is a polygon comprising of connected line segments, is to be clipped and the clipping 

windows are the computational cells within the domain. The two options for the 

clipping procedure are the polygon clipping, if the input geometry is conceived as a 

polygon, line clipping if the input geometry is conceived as a collection of individual 

line segments. 

2.2.1 Comparison of Polygon and Line Clipping Algorithms 

When the polygon and line clipping algorithms are compared, in general, it is seen 

that the simplest polygon clipping algorithm, Sutherland-Hodgeman (8), is not 

capable of handling concave geometries effectively. However there are other 

polygon clipping algorithms that can handle arbitrary geometries such as self 

intersecting geometries and geometries with internal holes. Since these cases are not 

in the scope of the current study, the application of these algorithms would bring 

unnecessary complications. Hence, the line clipping algorithms are preferred to 

polygon clipping algorithms. 

After this general comparison, a few of the line clipping algorithms were compared 

amongst themselves. First the Liang-Barsky (9) line clipping algorithm is compared 

with the most classical algorithm, Sutherland-Cohen (10) algorithm. In the work of 

Liang and Barsky (9), the performance of their algorithm was tested along with the 

Sutherland-Cohen line clipping algorithm with 4 sets of data containing 1000 

randomly generated line segments. To reduce the effects of random variation, each 

line segment was clipped 1000 times resulting in a total of 4 million clippings. It was 
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reported that an improvement of about 36 percent in the execution time was 

obtained. 

Even though Liang and Barsky claim that their algorithm is more efficient than 

Sutherland Cohen, other researchers postulate that experimental analysis is 

inadequate to measure the performance of a clipping algorithm. Instead it is 

suggested that a measurement based on operation count should be used (11). A study 

conducted by J. D. Day (12) takes both the experimental and operations count view 

into consideration and reveals that Nicholl-Lee-Nicholl (11), Sobkow-Pospisil-Yang 

(13) algorithms are more efficient in both aspects compared to the Liang-Barsky 

algorithm. However the algorithms mentioned are considerably more complex, in 

fact the latter algorithm classifies lines into 81 different cases. 

Since the clipping procedure will be carried out once at the mesh generation step for 

all the computational cells and for the cells formed as a result of solution adaptation, 

its effect on overall computation time will not be very significant. Hence, the 

simplest algorithm that is the easiest to implement has been chosen. Thus the Liang-

Barsky line clipping algorithm has been employed to determine the location of the 

points that are cut by the input geometry lines. 

2.2.2 Liang-Barsky Line Clipping Algorithm 

The Liang-Barsky line clipping algorithm (9) tests the extensions of given line 

segments against each one of the four boundaries of a rectangular clipping window 

independently, to determine which if any portion of the line segment is inside the 

clipping window. A line segment with end points V0 and V1 which happens to reside 

wholly within a clipping window is shown in Figure 2.4. The line obtained from the 

segment and its extensions will be tested with each one of the lines comprising the 

boundary of the clipping window to determine which portion of the line is visible. 

After each test the invisible part of the line will be discarded. After all the boundaries 

are tested, the portion of the line segment that is inside the clipping window will be 

obtained.  
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Figure 2.4- The visible and invisible regions for a clipping window 

 

The algorithm makes use of the parametric form of the line segments with end points 

V0 (x0, y0) and V1 (x1, y1) as given in equations (2.1) to (2.4). 

 0x x x t= +∆ ⋅  (2.1) 

 0y y y t= +∆ ⋅  (2.2) 

 1 0x x x∆ = −  (2.3) 

 1 0y y y∆ = −  (2.4) 

Adopting this representation t=0 corresponds to the first end point V0 and t=1 

corresponds to the second end point V1. The orientation of the line is considered to 

be from point V0 to V1. 

Once the line is parameterised, the clipping window can be visualized as the 

combination of four boundary lines each having a visible and an invisible region as 

visible

visible invisible invisible

invisible
xrightxleft

ybottom

ytop 

line segment V0
V1

extension of  
line segment 
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in Figure 2.4. Ultimately, the intersection of all the visible sides of each boundary 

line would give visible region for the whole clipping window. 

The visible region for the clipping window can be represented in terms of four 

inequalities using the parametric relations (2.1) to (2.4). 

 0rightx t x x∆ ⋅ ≤ −  (2.5) 

 0 leftx t x x−∆ ⋅ ≤ −  (2.6) 

 0topy t y y∆ ⋅ ≤ −  (2.7) 

 0 bottomy t y y−∆ ⋅ ≤ −  (2.8) 

Finally these relationships can be generalized to determine the parametric values 

corresponding to the segment of the line that resides inside the clipping window.  

 i ip t q⋅ ≤      1,.., 4i =  (2.9) 

where 

1p x= ∆            1 0rightq x x= −  

2p x= −∆           2 0 leftq x x= −  

3p y= ∆             3 0topq y y= −  

4p y= −∆        4 0 bottomq y y= −  

It is observed that when pi is positive, the orientation of the extended line is from the 

visible side of a particular boundary line to its invisible side. This will result in an 

upper limit for the visible portion of the line. 
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 i

i

qt
p

≤  (2.10) 

When pi is negative, the orientation of the line is from the invisible side to the visible 

side, hence a lower bound for the extended line is expected. 

 i

i

qt
p

≥  (2.11) 

Since the portion of the line segment and not the extended line that resides in the 

clipping window is sought another condition that the bound obtained for t should be 

between 0 and 1 must also be implemented. Thus for the case when pi is different 

than zero; the problem of determining the values of t for which a certain portion of 

the line segment is within the clipping window becomes a min-max problem in the 

form as in 

 0t t≥  (2.12) 

 1t t≤  (2.13) 

where 

{ }

{ }

0

1

max | 0, 1,2,3,4 , 0

min | 0, 1,2,3,4 , 1

i
i

i

i
i

i

qt p i
p

qt p i
p

⎛ ⎞⎧ ⎫
= < =⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

⎛ ⎞⎧ ⎫
= > =⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

 

The t0 and t1 values obtained as a result of this min-max problem should satisfy the 

following equation 

 0 1 0 1t t t t t≤ ≤ ⇒ ≤  (2.14) 
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Finally, the case when pi is zero should be considered. The case pi equals to zero 

corresponds to a vertical or a horizontal line. For this case a relationship independent 

of t is obtained as 

 0 iq≤  (2.15) 

The validity of this statement is solely dependent on the value of qi. If qi is positive, 

the line segment is visible for that boundary line else it is invisible. This is referred to 

as the trivial reject case. 

2.3 Mesh Generation 

The mesh generation is performed in three main steps. The first one is the uniform 

mesh generation where a mesh of uniform sized elements of the desired level is 

obtained. The second one is the box adaptation in which cells around an imaginary 

box (rectangle) of given dimensions around the input bodies are refined till they 

reach a desired size. The type of the cells; cut-cell, inside, outside, are determined at 

this stage. The final step is to refine the cells around the places where there are large 

gradients on the bodies. The procedure followed is similar to the one outlined in (14). 

2.3.1 Uniform Mesh Generation 

An initial uniform mesh is formed in the solution domain which will be refined in the 

later stages to form the mesh on which the solution is to be performed. The reason 

for forming this initial mesh is to have a prescribed resolution in the outer boundaries 

of the domain. 

Uniform mesh generation is fairly straightforward; starting from the root cell, 

refinement is performed when the cell level is less than the desired level. If a cell is 

to be refined, first the level of the edge and vertex neighbours must be investigated. 

If a neighbour is at a lower level, then that neighbour must be refined prior to the 

refinement of the cell. In this way, the one level rule is preserved in the process of 
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mesh generation. The one level rule states that the difference in the levels of two 

neighbouring cells cannot exceed one. This rule enforces a smooth mesh and also 

eases the calculations for the fluxes. When a cell is to be refined, it is simply divided 

into its four quadrants which are its children. Then the level of the children can be set 

to be one more than that of their parent and their centres can be calculated from the 

centre coordinate of their parent’s, the overall size of the domain, and its level as  

(2.16)  to (2.19)   

 ( / 2) ( / 2)      ,        
2 2c parent c parentl l

d dx x y y= + = +  (2.16) 

 ( / 2) ( / 2)      ,        
2 2c parent c parentl l

d dx x y y= − = +  (2.17) 

 ( / 2) ( / 2)      ,        
2 2c parent c parentl l

d dx x y y= − = −  (2.18) 

 ( / 2) ( / 2)      ,        
2 2c parent c parentl l

d dx x y y= + = −  (2.19) 

for the 1st quadrant to 4th quadrant children, respectively. Where d is the domain size 

and l is the level of the cell. 

Once this information is obtained, the neighbours of each cell must also be 

determined. The procedure followed is similar to the one outlined by De Zeeuw (14). 

For any cell two edge neighbours and one vertex neighbour will be known 

automatically since they will be the children of the cell’s parent. The other two edge 

neighbours and one vertex neighbour will be associated with the parent’s edge 

neighbours while the last vertex neighbour will be related to a neighbour of a 

neighbour of the parent cell. Thus, similar operations will be performed for each 

group of cells. 

The neighbour search can be explained in detail for a first quadrant child 

exemplifying the process for the other quadrant children. For a first quadrant child, 
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the first group of neighbours, ones known automatically, will be the west, south and 

southwest neighbours. They are the second, fourth and the third quadrant children of 

the cell’s parent and they are at the same level. This can be depicted as in Figure 2.5. 

 

 

 

Figure 2.5- Automatically known neighbours of a cell 

 

For the second group of neighbours, associated with the parent’s neighbours, the 

children of the parent’s neighbours must be evaluated. For a first quadrant child these 

are the east and north neighbours of the parent specifically. Due to the one level rule 

there are three possibilities for these neighbours of the parent; they might be leaf 

cells hence they are at a lower level than the cell, they might have leaf cell children 

at the same level as the cell and they might have children with leaf cell children at 

one level more than the cell. These cases are illustrated in Figure 2.6 for the east 

neighbour of the parent. 

southwest
neighbour

west 
neighbour cell 

south 
neighbour
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Figure 2.6- Neighbours associated with the parent cell’s edge neighbours 

 

In Case 1, the east neighbour of the cell is directly the east neighbour of the parent 

and there is no southeast neighbour due to the fact that this cell does not have any 

children. In Case 2, the east neighbour is the second quadrant child of the parent’s 

east neighbour while the southeast neighbour is the third quadrant child of the 

parent’s east neighbour. In Case 3, there are two actual east neighbours; the second 

and third quadrant children of the parent’s east neighbour’s second quadrant child. 

Since it is not desirable to complicate the data structure by storing the east 

neighbours separately, their parent, the second quadrant child of the cell’s parent’s 

east neighbour, is stored as the east neighbour. During the calculations it is always 

checked to see if a neighbour has children to identify the cells that are marked as E1 

and E2 in Figure 2.6. Following the same convention, the third quadrant child of the 

cell’s parent’s east neighbour is stored as the southeast neighbour even though the 

second quadrant child of this cell stored is the only actual southeast neighbour. 

Hence, it can be said that, as a general rule, the cell stored as the neighbour will be 

either at a lower level than the cell or it will be at the same level. 

cell cell

cell

E
E 

SE 

E1

E2

SE

Case 1: East neighbour of parent is at a
lower level 

Case 2: East neighbour of parent  has
leaf children cells 

Case 3: East neighbour of parent  has
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With similar reasoning, the north neighbour of a first quadrant child will be its 

parent’s north neighbour when this cell is a leaf cell, in which case there will be no 

distinct northwest neighbour. When the cell’s parent’s north neighbour has children, 

the fourth and the third quadrant children of this cell will be stored as the north and 

the northwest neighbours of the cell regardless of them having children. 

The only remaining neighbour for the first quadrant child is the northeast neighbour. 

This neighbour is the north neighbour of the parent’s east neighbour if this cell has 

no children otherwise it is the third quadrant child of this cell. The same search is 

also performed through the north neighbour of the parent in case its east neighbour 

resides within an input geometry. In this case, this neighbour is the east neighbour of 

the parent’s north neighbour if this cell has no children; otherwise it is the third 

quadrant child of this cell. 

With the same line of reasoning, the rules for determining each neighbour of any 

quadrant child can be devised. 

2.3.2 Box Adaptation & Cell-types 

The next step in mesh generation is the box adaptation. Box adaptation will allow the 

mesh to have a desired resolution in regions around the input geometries. This step 

consists of two stages for input geometries that are comprised of more than one body. 

The first step is to refine cells that are in contact with an imaginary rectangular box 

around the collection of the bodies, while the second step is to refine the cells that are 

in contact with rectangular boxes around individual bodies until the input size 

criterion for each body is satisfied. The rectangular box around each one of the 

bodies spans from the minimum to maximum coordinate of a specific body in both of 

the Cartesian directions which will be used in the second stage of the box adaptation. 

Similarly a rectangular box around the collection of the bodies can be formed. This 

box is then stretched by an input proportion. The latter described imaginary boxes for 

a three element airfoil configuration can be depicted as in the figure below. 
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Figure 2.7- Imaginary boxes around a three element airfoil 

 

For the first stage of box adaptation, the outer box depicted in Figure 2.7 is used. 

Any cell that is in contact with the box is refined until the resulting leaf cells satisfy 

the largest one of the input refinement criterion for each body. The input refinement 

criteria for each body denote the maximum size of a cell as a proportion of the 

maximum dimension of that body. In the first stage of box adaptation, this largest 

criterion is taken to be the proportion of the maximum dimension of the collection of 

bodies. The maximum dimensions are the larger of the differences of the maximum 

and minimum x or y coordinates of a body or the collection of all bodies.  

In the second stage, the cells that are in contact with the boxes around each body is 

refined until the given refinement criterion for that body is satisfied. The second 

stage allows the mesh to have differing resolutions around each body. Figure 2.8 

illustrates how a mesh of different resolutions around the slat and the airfoil is 

obtained by applying the second stage of box adaptation. 
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Figure 2.8- Mesh around the slat and the airfoil 

 

After the box adaptation, the next step in mesh generation is curvature adaptation. 

But before the curvature adaptation, the cells that are cut by the geometry lines must 

be determined. All the cells in the mesh will be marked as one of the types outside, 

inside or cut-cell. For the cut-cells, information regarding the edges cut by the 

geometry and the portions of the edges through which fluxes pass must be stored. 

To determine the cell types, first the relative location of each cell with respect to the 

large box around the collection of the bodies used for box adaptation is employed. 

The cells that are in contact with this box have the possibility of being inside or 

outside the bodies or they might be cut by one of the bodies. Line clipping discussed 

earlier is performed to determine the exact configuration. Through line clipping, the 

line portions that cut the cell will be determined if the cell is cut. A cell that is cut by 

only one geometry line is a regular cut-cell and it can be handled easily. However a 

cell cut by more than one line must be converted to either a regular cut-cell, an 

outside or an inside cell by means of modifying the body. 
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2.3.2.1 Regular Cut-cells 

Regular cut-cells are the ones that are cut by only one geometry line portion. For 

these cells, the coordinates of the end points of the cutting geometry line will be 

known after the line clipping process. The only remaining thing is to determine on 

which edges these points lay and through which portion of each edge the flux passes 

through. In other words through which portion of the edge the cell exchanges 

information with another neighbour cell. Before going any further, the naming 

convention of the edges and the corners can be defined as in Figure 2.9. 

 
 

Figure 2.9- Naming convention of a cell 

 

The first step is to detect a special subgroup of regular cut-cells, the ones with the 

geometry line lying on one of the edges of the cell. If the x coordinates of both of the 

cutting end points are equal then there is a chance that the line comprising of these 

points lays on one of the east or the west edges. Hence if the x coordinate of one of 

the cutting end points is equal to the x coordinate of corner 0, then it means that the 

line lays on the east face, in which case the edge cut is stored as east and no 

information is stored for the flux. If the x coordinate of one of the cutting end points 

is equal to the x coordinate of corner 2 then it means that the line lays on the west 

face, in which case the edge cut is stored as west and no information is stored for the 

flux once again. A similar check is also performed on the y coordinates of the cutting 

east edge 

north edge 

west edge

south edge

corner 0corner 1

corner 2 corner 3
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edge; if they are equal to each other and to one of the y coordinates of corner 0 or 

corner 2, then the edge cut is stored as north or south respectively and no flux 

information is stored. Thus for the special subgroup of regular cut-cells only one 

edge is marked as cut while no information on the flux is stored. 

Once the subgroup of special cells is detected the information for the other regular 

cut-cells can be determined by edge based tests. Starting from the east edge and 

going counter-clockwise, it is checked whether any of the edges is cut by one of the 

end points of the geometry line or not. For the east face, it is checked whether the x 

coordinates of the end points of the line are equal to the x coordinate of corner 0. If 

one of them is equal then the east edge is marked as being cut, making corner 0, 

corner 3 and any point in between along the east edge a candidate for the location of 

the cutting end point. To determine the flux information, a point along the east edge 

whose location relative to the cutting end point is known must be tested to see if it is 

inside the body or outside it. The inside-outside test employed is based on the simple 

point location test described in (15). The two possible points are corner 0 and corner 

3. If the cutting end point is not on corner 0 this point is tested. If it is outside, the 

flux for the east edge is marked as larger indicating that the flux passes through the 

portion of the east edge with y coordinates greater than the one of the cutting end 

point. Otherwise smaller is stored for the east face flux indicating that the flux passes 

through the portion of the east edge with y coordinates less than the one of the 

cutting end point. If the cutting end point is on corner 0 then corner 3 is tested and if 

it is outside smaller is stored if it is inside larger is stored. If the east edge is not cut 

then the centre of the edge is put to the inside-outside test, and if this point is outside 

any of the bodies then the flux information is stored as all, indicating that the flux 

passes through the whole face and otherwise it is stored as none, indicating that no 

flux passes through the face. 

Once the configuration of the east face is determined it is checked whether any of the 

cutting end points lay on the north face. If a point is detected to be on the north face 

the possible locations for it are either corner 1 or anywhere along the north edge 

between corner 0 and corner 1. For the inside-outside test corner 0 is used since it is 

already known that the cutting edge cannot be on this point. If corner 0 is outside, 
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then the flux is stored as larger, meaning that it passes through the portion of the 

edge with x coordinates greater than the cutting edge otherwise smaller is stored 

indicating that flux passes through the portion with x coordinates less than that of the 

cutting edge. If the north edge is not cut then the centre of the edge is tested to see if 

the flux passes through the whole face or it doesn’t pass at all. 

After the north face the west face is examined. If this edge is cut, corner 1 is sent to 

the inside-outside test as the only point along west edge on which the cutting end 

point may not lay. The flux information is stored as larger if this point is outside 

otherwise it is stored as smaller. If the edge is not cut, the centre of the edge is tested 

to see if the flux passes through the face. 

Finally, if the south face is cut either one of the corner 2 and corner 3 can be tested to 

fill the flux information accordingly. If the edge is not cut, the centre of the edge is 

tested to see if the flux passes through the face. In Figure 2.10, exemplifying cases 

for regular cut-cells are illustrated. 

 

 

Figure 2.10- Examples of regular cut-cells 

 

In Figure 2.10, the scribbled parts represent the portion of the cell that is occupied by 

a body. Case 1 is an example of the special subgroup of regular cells. In this 

particular example the only cut edge is stored as the south edge and no flux 

information is stored. In Case 2 the cut edges are detected as the east and west edges. 

For the east face, the flux information is stored as larger even though no flux passes 

through the face. The north flux information is all while for the west face it is larger 

Case 1 Case 2 Case 3 
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and for the south face it is none. In Case 3, the edges cut are the north and west 

edges. The flux information for the east and the south faces are all, it is larger for the 

north face and smaller for the west face. 

2.3.2.2 Irregular Cut-cells 

The cut-cells that are cut by more than one geometry line are termed as irregular cut-

cells. To convert these cells into regular cut-cells, refinement is the first measure 

taken. The cells that are cut by more than two geometry lines and those that are cut 

by two lines that do not have a common end point are refined until their children are 

cells of acceptable types or until they are refined to the maximum allowable level in 

the mesh. It can safely be said that there will be no cells cut by more than two 

geometry lines as a result of this refinement process, since the maximum level a cell 

can reach will make it much smaller than the dimensions of the body. The cells that 

are cut by two lines that do not have a common end point will eventually become 

regular cut-cells if they are refined unconditionally. But sometimes they will require 

very extensive refinement reaching levels much higher than the maximum allowable 

one especially in the presence of very acute angles. These cases along with the cells 

that are cut by two lines that have a common end point are treated separately.  

In contrast to the other types, cells that are cut by two lines that have a common end 

point are not refined unconditionally until they reach the maximum allowable level. 

Instead they are refined, only when their distinct end points lay on the same face of 

the cell as in Case 2 and Case 5 of Figure 2.11. The reason for this is that since the 

bodies are represented as lines with specified end points, there would be a clustering 

of highly refined cells around each of the specified points if these cells were to be 

refined unconditionally. Those cells that are refined, the ones that have their distinct 

end points on the same edges, are tested to see if they are concave or convex. If they 

are convex, then they are simply converted to inside cells as in Case 2 of Figure 2.11. 

At the end of this refinement process, the cells that were not converted are classified 

into two groups; convex-united and concave-split and treated accordingly. The first 
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group is formed of cells that are cut by two lines without a common end point with a 

single convex area (Case 3 of Figure 2.11), and the cells that are cut by two lines 

with a common end point with the distinct end points on separate edges forming a 

single convex cell area (Case 4 of Figure 2.11). The second group of cells are the 

ones that are cut by two lines without a common end point with two separate convex 

cell areas (Case 5 of Figure 2.11), cells that are cut by two lines with a common end 

point forming a single concave area (Case 6 of Figure 2.11). The grouping and the 

treatment of the irregular cut-cells can be depicted as in Figure 2.11. 

 
Figure 2.11- Grouping and treatment of irregular cut-cells 

 

2.3.2.2.1 Concave-Split 

The concave-split cells are converted to regular cut-cells by making modifications on 

the body. The location of the end points on the edges and the direction towards 

which the lines converge is of essential importance in the conversion process. The 

basic idea is to trim the body towards the direction in which the cutting lines 

Case 1- Refine unconditionally 
till converted 

Case 2- Refine till maxlevel 
then convert to inside 

Case 3- Refine till maxlevel 
then treat as convex-united 

Case 4- Treat as convex-
united without refinement 

Case 5- Refine till maxlevel 
then treat as concave-split 

Case 6- Treat as convex-
united without refinement 
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converge. Hence the geometry line cutting the cell will be the connection of the end 

points in the diverging direction. The direction towards which the lines converge can 

be determined by placing one coordinate of the end points of a line to the equation of 

the other line to obtain the corresponding other coordinate. Then the line converges 

towards the direction in which the difference between the calculated coordinate and 

the coordinate of the end point is smaller. This can be represented more clearly 

graphically as in Figure 2.12. 

 
Figure 2.12- Conversion of an irregular cut-cell 

 

The criterion for the above conversion is expressed mathematically in the following 

equation. 

 2 0 2 1
0 3 2 2 1 3 2 2

2 3 2 3

( - ) ( - )-  ( -  ) -  ( -  )
( -  ) ( -  )

x x x xy y y y y y y y
x x x x

⎡ ⎤ ⎡ ⎤
+ > +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (2.20) 

This trimming process will result in obtaining a member of the special subgroup of 

regular cut-cells in some cases, while regular cut-cells are obtained in some cases. 

The special subgroup will be obtained for cells that are cut by lines with a common 

end point having their distinct end points on the same edge, cells having two pairs of 

end points on the same edge and cells that have one pair of end points on the same 

edge while converging towards the end points that are on different edges. These 

cases and their conversion are illustrated in Figure 2.13. 

 

x0,y0

x1,y1 
x2,y2

x3,y3 

x0,y0

x2,y2 
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Figure 2.13- Concave-split to special subgroup of regular cut-cells conversion 

 

In Case 1 of Figure 2.13, since there is a common end point, the remaining end 

points will be connected to obtain a cell that is cut on its east edge. In Case 2, there 

are two pairs of end points that are on the same edge. In this case since the lines 

diverge towards the north face, this face will be marked as being cut. In Case 3, there 

is one pair of end points on the same face. Since the lines diverge towards this face, 

the west face is marked as being cut. 

The cells that convert into regular cut-cells as in Figure 2.14 are the ones that have 

common cutting end points with the other end points on different edges, cells with all 

cutting end points on different edges, and the cells that have one pair of end points on 

different edges converging towards a pair of end points that are on the same edge. 

 

Case 1 Case 2 

Case 3
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Figure 2.14- Concave-split to regular cut-cells conversion 

 

In Case 1 of Figure 2.14, there is a common end point and the other end points are 

connected automatically to form a regular cut-cell. In Case 2, all the end points are 

on distinct edges. Since the distance between the ones on the west and the south 

edges is greater than the distance between the others the cut locations on these edges 

are connected to form a regular cut-cell. In Case 3, since the lines diverge towards 

the end points that are on different edges in contrast to Case 3 of Figure 2.13, a 

regular cut-cell is formed by the connection of the cut location on these edges.  

2.3.2.2.2 Convex-United 

The procedure followed for the convex-united cells are similar to the ones for 

concave-split cells. Once again the end points towards which the cutting lines 

diverge are connected to form the new cutting edge. In the case of the convex-united 

cells conversion is made to either an inside cell or to a regular cut-cell. The cells that 

have two pairs of cutting end points on the same faces, and the cells that have a pair 

of end points on the same edge with the lines converging towards the end points that 

are on different edges are converted to inside cells. These cases are illustrated in 

Figure 2.15. 

 

Case 1 Case 2

Case 3



36 
 

 

Figure 2.15- Convex-united to inside cells conversion 

 

Case 1 and Case 2 of Figure 2.15 are analogous to those presented in Figure 2.13. 

With the difference that they convert to inside cells, and there is no special sub-group 

of inside cells. 

The cells that are converted to regular cut-cells are the ones that have common 

cutting end points with the other end points on different edges, cells with all cutting 

end points on different edges, and the cells that have one pair of end points on 

different edges converging towards a pair of end points that are on the same edge. 

These cases are illustrated in Figure 2.16. 

 

Figure 2.16- Convex-united to regular cut-cells conversion 

 

Case 1 Case 2

Case 3

Case 1 Case 2 



37 
 

The Case 1, Case 2 and Case 3 of Figure 2.16 are analogous to those in Figure 2.14. 

The difference between them is the portions of the cells that are marked as inside and 

outside are opposite in these cases. 

Since each irregular cell is converted individually into a cut-cell, at the end of the 

process some cut-cells that are not part of any body will be obtained. Hence, at the 

end of the conversion process, the mesh has to be traversed to find these unconnected 

cells and convert them into either outside cells, if they were processed as concave-

split cells, or into inside cells if they were treated as convex-united cells. 

2.3.3 Curvature Adaptation 

The last step in the mesh generation process is the curvature adaptation. The purpose 

of the curvature adaptation is to ensure that regions of a body that have high 

curvatures are resolved enough to be represented accurately and also since these 

regions will be associated with high gradients. 

In curvature adaptation, the cutting edges of neighbouring cut-cells are evaluated to 

decide on whether to refine a cell or not. So firstly neighbouring cut-cells should be 

detected then curvature must be quantified to develop a criterion for refinement. In 

order to quantify the curvature, the angle between the normals of the cutting edges 

pointing towards the fluid domain is used. If this quantity exceeds a threshold value 

then the cell is refined. This can be illustrated as in Figure 2.17. 
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Figure 2.17- The normals of two neighbouring cut-cells 

 

The normal for a cutting edge of a cell can be determined through the flux 

information stored for a cut edge. 

 
Figure 2.18- Calculation of the normal 

 

In Case 1 of Figure 2.18, the first edge that is cut is the east edge and the flux 

information associated is larger. In this case, the normal is given by the following 

equation. 

 0 1 0 1- -( -  ) ( - )n yi xj y y i x x j= ∆ + ∆ = +
G G G GG  (2.21) 

∆x
∆y

∆x
∆y

x0,y0

x1,y1 

x0,y0 

x1,y1

n 

n 

Case 1 Case 2

θ: The angle between normals 
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In Case 2, the first edge cut is east as in the previous case but this time the associated 

flux information is smaller making the normal; 

 0 1 0 1- ( -  ) - ( - )n yi xj y y i x x j= ∆ ∆ =
G G G GG  (2.22) 

Hence, it is possible to express each normal pointing to the fluid domain using the 

first edge cut and the flux information associated with it for the neighbouring cells. 

Then, a relation for the angle between the normals can be obtained by their dot 

multiplication as 

 1 2 1 2
1 2 1 2 1 2 1 2

1 2

( )
| || | cos cos  

| || |
x x y y

x x y y

n n n n
n n n n n n n n

n n
θ θ

+
= + = ⇒ =

G G G Gi G G  (2.23) 

Then a cell is to be refined, if this θ value is greater than a threshold value. 

 1 2 1 2

1 2

( )
cos  cos

| || |
x x y y

th

n n n n
n n

θ θ
+

= <G G  (2.24) 
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CHAPTER 3 

NUMERICAL METHOD 

3.1 Governing Equations 

In the code developed, solution to the compressible Euler equations in the conserved 

form is sought. Hence, the governing equations can be represented as 

 0dV ndA
t
∂

+ =
∂ ∫∫∫ ∫∫U F Giw  (3.1) 

where, U and F are the vectors of conserved variables and the flux respectively, 

while nG is the normal to the differential area element dA . This equation can be 

descritised in 2-D as 

 1 0
edgescell

n s
t A

∂
+ ∆ =

∂ ∑U F Gi  (3.2) 

nG being the face normal, s∆ the edge length and cellA the cell area. The vector of 

conserved variables and the flux vector can be written as 

 
2

2

cos sin
cos sin cos

        
sin cos sin

cos sint t t

u v
u u uv p

n
v v uv p
e uh vh

ρ ρ θ ρ θ
ρ ρ θ ρ θ θ
ρ ρ θ ρ θ θ
ρ ρ θ ρ θ

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+ +
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U F Gi  (3.3) 

In this equation θ is the angle between the normal direction of the edge and the 

Cartesian x-direction. The variables ,  ,  ,  ,  tu v p eρ and th are the density, velocity in 
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the x and y direction, the pressure, the total energy and the total enthalpy 

respectively.  

In the solution method used, determination of the fluxes through the faces of the cells 

require a pseudo one dimensional form of the flux vector represented in Equation 

(3.3). This form will be equivalent to the Euler equations written in terms of the 

normal and tangential velocities. At this point, the rotational invariance of the Euler 

equations (16) can be employed as 

 1 1 ˆ ˆ( ) ( )n − −= =F T F TU T F UGi  (3.4) 

The transformation matrix and its inverse; T and -1T , appearing in Equation (3.4) 

can be written explicitly as 

 1

1 0 0 0 1 0 0 0
0 cos sin 0 0 cos sin 0

    
0 sin cos 0 0 sin cos 0
0 0 0 1 0 0 0 1

θ θ θ θ
θ θ θ θ

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

T T  (3.5) 

 Hence, the conserved quantities and the flux vector in terms of normal and 

tangential velocities can be given 

 
2

ˆ
ˆ ˆˆ ˆ ˆ       ( )
ˆ ˆ ˆ

ˆt t

u
u u p
v uv
e uh

ρ ρ
ρ ρ
ρ ρ
ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

U F U  (3.6) 

In Equation (3.6) û and v̂ are the normal and tangential velocities, while Û and F̂ are 

the vectors of conserved variables and the flux, in terms of the normal and tangential 

velocities. The normal and the tangential velocities can be expressed in terms of the 

Cartesian velocities as 

 ˆ ˆcos sin ,     sin cosu u v v u vθ θ θ θ= + = − +  (3.7) 
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Using this transformation, the governing equations can be expressed as 

 11 ˆ ˆ 0
edgescell

s
t A

−∂
+ ∆ =

∂ ∑U T F(U)  (3.8) 

The general solution strategy is to estimate the flux in terms of the normal and 

tangential directions, rotate them to Cartesian coordinates with the inverse 

transformation matrix for each face, and then use an appropriate method for time 

integration. 

3.2 One Dimensional Riemann Problem for Linear Systems 

Before discussing the solution algorithm for the Euler equations, the one dimensional 

Riemann problem for a linear system of equations should be discussed (17) (16). The 

model equation for the one dimensional linear system is represented by Equation 

(3.9). This equation is linear if the Jacobian of the flux vector is comprised of 

constant elements, that is 

 0
t x t x t x

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + = + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
U F U F U U UA

U
 (3.9) 

where A is the Jacobian matrix. The initial conditions for the model equation are 

given as 

 0

0

0
( ,0)

0
x

x
x
<⎧

= ⎨ >⎩
L

R

U
U

U
 (3.10) 

where subscripts L and R refer to the left and right states respectively. The first step 

in the solution process is to diagonalize the Jacobian matrix using the Q matrix 

appearing in the following equation. Each column of this matrix is a right 

eigenvector of the Jacobian matrix and the rows of its inverse are the left 

eigenvectors of the Jacobian matrix (18). The elements of the resulting diagonal 

matrix Λ are the eigenvalues of the Jacobian matrix. 
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 −1Q AQ = Λ  (3.11) 

Using this diagonalization and multiplying Equation (3.9) by Q-1, the linear set of 

equations can be converted to a set of independent equations in terms of the new 

characteristic variable vector V . 

 0
t x t x

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
-1 -1 -1U U V VQ Q AQQ Λ  (3.12) 

The relation between the characteristic variables and the conserved quantities in 

Equation (3.12) can be defined as 

 ∂ = ∂-1Q U V  (3.13) 

Since this is a linear system and the elements of Q-1 are constant, Equation (3.13) can 

be written in an alternative form as 

 = ⇒ ∆ = ∆-1 -1Q U V Q U V  (3.14) 

where; 

        ∆ = − ∆ = −R L R LV V V U U U  

After the diagonalization, the governing equations obtained in terms of the 

characteristic variables,λ ’s, in Equation (3.12) can be written explicitly as 

 

1 1 10 . . 0
. 0 . . .
. . . . . 0
. . . 0 .

0 . . 0n n nt x

v v

v v

λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.15) 
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The equations represented by Equation (3.15) are n independent equations for the n 

characteristic variables. In other words, n independent scalar equations are obtained 

for n characteristic variables, 'sv , (17) as 

       1,...,i i
i

v v i n
t x

λ∂ ∂
+ =

∂ ∂
 (3.16) 

For the solution of each one of the equations in Equation (3.16), the definition of the 

total derivative is employed as  

 d d
d d

i i iv v v x
t t x t

∂ ∂
= +
∂ ∂

 (3.17) 

Hence with the application of the condition presented in Equation (3.18), a straight 

line along which the characteristic variable remains constant and the governing 

equation is satisfied, is obtained. 

 0
dd 0 along line 

d d
i

i i
vx x x t

t t
λ λ= ⇒ = = +  (3.18) 

The solution obtained in terms of the characteristic lines can be represented 

graphically as in Figure 3.1.  

 

Figure 3.1- Solution of a 1-D Riemann problem for a set of linear equations 

 

x=λ1t x=λnt 
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In Figure 3.1, when one of the characteristic lines is crossed the respective value of 

the characteristic variable changes conforming to the given initial conditions. The 

form in which the solution is presented is of crucial importance in the development 

of numerical methods while it doesn’t make a difference in the analytical sense. 

Hence the solution can be presented in several formats (17). First representation is in 

terms of the characteristic variables as 

 

1

2 1 2

1

... / ...
... / ...

. .

. .

. .
... ... /

n

n

n

x t
x t

x
t

x t

λ λ
λ λ λ

λ λ

= −∆ − −∆ < < <⎧
⎪ + ∆ = −∆ − −∆ < < < <⎪
⎪⎪⎛ ⎞ = ⎨⎜ ⎟

⎝ ⎠ ⎪
⎪
⎪

+ ∆ + + ∆ = < < <⎪⎩

L R 1 n

L 1 R n

L 1 n R

V V v v
V v V v v

V

V v v V

 (3.19) 

The difference vectors appearing in Equation (3.19) can be written explicitly as 

 

1

1

00
.0 .
.. .

     ...   
..
0. .

0 0

n
i

n

v

v v
v

v

∆ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

∆ = ∆ = ∆ = ⇒ ∆ + + ∆ = ∆⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 i nv v v V  (3.20) 

It is possible to express the solution in terms of the conserved variables as well by 

employing the relation between the characteristic variables and the conserved 

variables given in Equation (3.14). Here it should be remembered that each column 

of matrix Q is an eigenvector of the Jacobian matrix. This will promote the relation 

presented in the following equation  

 iv∆ = ∆i iQ v r  (3.21) 

where ri is the ith eigenvector of the Jacobian matrix. 
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Hence by multiplying Equation (3.19) by the matrix Q, the solution in terms of the 

conserved variables is obtained as 

 

1 1

1 2 2 1 2

1 1

... / ...
... / ...

. .

. .

. .
... ... /

n n

n n

n n

v v x t
v v v x t

x
t

v v x t

λ λ
λ λ λ

λ λ

= − ∆ − − ∆ < < <⎧
⎪ + ∆ = − ∆ − − ∆ < < < <⎪
⎪⎪⎛ ⎞ = ⎨⎜ ⎟

⎝ ⎠ ⎪
⎪
⎪

+ ∆ + + ∆ = < < <⎪⎩

L R 1 n

L 1 R n

L 1 n R

U U r r
U r U r r

U

U r r U

 (3.22) 

At this point, it should be noted that for the numerical method that is used for the 

solution of the Euler equations, the flux at a face of a certain cell will be of interest 

rather than the value of the conserved variable. It should also be noted that the flux 

vector appearing in the differential model equation is equivalent to the flux term that 

would appear in its integral formulation. Also the fluxes of each face will be 

investigated separately so the ݐ/ݔ can be considered to be zero for the respective face 

of the cell. Taking these points into consideration one can derive expressions for the 

fluxes as a solution. 

 ( )

1 1 1

1 1 2 2 2 1 2

1 1 1

... 0 ...
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n n n
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λ λ λ λ λ λ

λ λ λ λ

= − ∆ − − ∆ < < <⎧
⎪ + ∆ = − ∆ − − ∆ < < < <⎪
⎪⎪= ⎨
⎪
⎪
⎪

+ ∆ + + ∆ = < < <⎪⎩

L R 1 n

L 1 R n

L 1 n R

AU AU r r
AU r AU r r

F

AU r r AU

(3.23) 

Equation (3.23) has been obtained by exploiting the fact that iλ=i iAr r . 

Even though Equation (3.23) is a perfectly valid representation of the solution, it is 

desirable to present the solution in a more compact form as in one of the following 

equivalent forms: 
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 1

1

(0)

(0)

n

i i
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n

i i
i
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v

λ

λ
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=

= + ∆
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∑
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R i

F AU r
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 (3.24) 

where; 

min(0, )

max(0, )
i i

i i

λ λ

λ λ

−

+

=

=
 

Since the representation is dependent on the sign of the eigenvalues in Equation 

(3.24), a final form for the solution can be obtained by averaging the equivalent 

solutions appearing in Equation (3.24). 
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 (3.25) 

3.3 The Approximate Riemann Solver of Roe 

The flux term in the governing Euler equations in the integral form (3.1) can be 

estimated by considering the x-split form of the two dimensional Euler equations in 

the differential form as 

 0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
U F G  (3.26) 

where; 

1 1 1
2

2 2 2
2

3 3 3

4 4 4

  

t t t

u vu f g
u u p uvu f g
v uv v pu f g
e uh vhu f g

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

U F G  
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As can be observed the flux vector in Equation (3.26) is identical to the one 

appearing in the transformed form of the governing equations given by Equation 

(3.6). The theory of the Riemann problem for one dimensional linear systems will be 

employed to estimate this flux. 

To obtain the Jacobian for the x-split Euler equations, the flux vector must be written 

in terms of the conserved variables as 

 

( )

( )

2

22 2
32 2

4
1 1 1

2 3

1

23
3 22 4 2 4 2

2 2
1 1 1 1

1
2 2

1
2 2

u

uu uu
u u u

u u
u

u uu u u u u
u u u u

γ

γ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥+ − − −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞

+ − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

F  (3.27) 

In Equation (3.27) γ is the specific heat ratio. Noting that the Jacobian matrix is 

specified in the following form 

 

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

/ / / /
/ / / /
/ / / /
/ / / /

f u f u f u f u
f u f u f u f u
f u f u f u f u
f u f u f u f u

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥= =
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

F A
U

 (3.28) 

it can be obtained by equations (3.27) and (3.28) in terms of the flow variables. 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

0 1 0 0
1 3 1 1

0

2 1 1

t

t t

h u a u v
uv v u

u h a h u uv u

γ γ γ γ

γ γ γ γ

⎡ ⎤
⎢ ⎥− − − − − −⎢ ⎥= ⎢ ⎥−
⎢ ⎥

⎡ ⎤− − − − − −⎢ ⎥⎣ ⎦⎣ ⎦

A  (3.29) 

In Equation (3.29) a is the speed of sound. As can be observed from Equation (3.29), 

the Jacobian matrix does not have constant elements hence the Euler equations are 
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not linear. For the approximate Riemann solvers this Jacobian matrix is replaced by 

one that has constant elements since for a non-linear system the characteristic lines of 

the same family will not be parallel introducing shock waves and expansion fans into 

the solution (17), (16). 

In Roe’s approximate Riemann solver (19), the Jacobian matrix is expressed in terms 

of an intermediate state defined from the right and left states. 

First, it is observed that both the flux vector F and the vector of conserved quantities 

U are quadratic in terms of a new vector W defined as 

 

1

2

3

4

1

t

w
uw
vw
hw

ρ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

W  (3.30) 

Another useful vector, W , is formed by taking the arithmetic mean of the W vector 

for the right and left states.  

 

1

2

3

4

2

2

2

2

L R

L L R R

L L R R

L tL R tR

w u u
w
w v v
w

h h

ρ ρ

ρ ρ

ρ ρ

ρ ρ

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ +
⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

W  (3.31) 

It is now possible to express the difference between the right and the left states for 

the conserved quantities in terms of the new vector defined as 

 ∆ = ∆U B W  (3.32) 

where; 
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1

2 1

3 1

4 1
2 3

2 0 0 0
0 0

0 0
1 1

w
w w
w w
w ww wγ γ
γ γ γ γ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

B  

It is also possible to express the differential flux vector in terms of the vector W in 

the same manner as 

 ∆ = ∆F C W  (3.33) 

where; 

2 1

4 2 3 1

3 2

4 2

0 0
1 1 1 1

0 0
0 0

w w

w w w w

w w
w w

γ γ γ γ
γ γ γ γ

⎡ ⎤
⎢ ⎥− + − −⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C  

Using Equations (3.32) and (3.33) it is possible to establish a direct relation between 

the difference in the flux vector and the vector of conserved quantities in the form 

 ∆ = ∆-1CB U F  (3.34) 

Using the homogeneity property of the Euler equations given by the following 

equation (16) one can recognize the product CB-1 as the Jacobian matrix. 

 
N

∂
=
∂

A

FF U
U

 (3.35) 

In order to find the eigenvalues of the Jacobian matrix, the following equation must 

be solved. 
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 ( ) ( )det 0 det 0λ λ− = ⇒ − =-1CB I C B  (3.36) 

Dividing Equation (3.36) by 1w , it is possible to find the eigenvalues of the Jacobian 

in terms of the new variables defined as 

 2

1

L L R R

L R

u uwu
w

ρ ρ
ρ ρ

+
= =

+
�  (3.37) 

 3

1

L L R R

L R

v vwv
w

ρ ρ
ρ ρ

+
= =

+
�  (3.38) 

 4

1

L tL R tR
t

L R

h hwh
w

ρ ρ
ρ ρ

+
= =

+
�  (3.39) 

 ( ) ( )2 21 11 1
2 2t ta h V e Vγ γ γ⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� � �� �  (3.40) 

 L Rρ ρ ρ=�  (3.41) 

 1 2 3 4      u a u u aλ λ λ λ= − = = = +� � � �� � � � �  (3.42) 

The corresponding right eigenvectors can also be expressed in terms of the new Roe 

averaged quantities as 

 2 3 4

2

11 10
0

         
1

1
2t t

uu a u a
vv v

vVh ua h ua

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥− +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

1r r r r
�� � � �
�� �

� �� �� � � �

 (3.43) 
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With the right eigenvectors defined as in Equation (3.43), it is possible to determine 

the characteristic variables which can also be termed as the wave strengths by using 

Equation (3.14). 

 

1 1

2 2

3 3
2

4 4

11 10
0
1

1
2t t

v u
uu a u a v u
vv v v u

v uvVh ua h ua

⎡ ⎤ ∆ ∆⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ∆ ∆⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∆ ∆− + ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

�� � � �
�� �

� �� �� � � �

 (3.44) 

Due to the proportionality between the coefficients of the first and third relations in 

Equation  (3.44), it is possible to eliminate the third equation by using the first one to 

obtain the following relation.  

 3 3 1v u v u∆ = ∆ − ∆�  (3.45) 

Then a set of three equations is obtained for three wave strengths as 

 
4 1

1 2
2

2 2 4 1 3

1 1 1

1
2t t

v u
u a u a u v u

v u v u v uh ua h ua V

⎡ ⎤
⎢ ⎥ ∆ ∆⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − ∆ = ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ ∆ + ∆ − ∆⎣ ⎦ ⎣ ⎦+ −⎢ ⎥
⎣ ⎦

� � � � �
� �� � �� � � �

 (3.46) 

It is possible to solve this system using Gauss elimination to obtain the wave 

strengths as 

 ( ) ( )2
2 1 2 4 3 12

1
tv u h u u u u v u v u

a
γ − ⎡ ⎤∆ = ∆ − + ∆ − ∆ + ∆ − ∆⎣ ⎦

� � � � �
�

 (3.47) 

 ( )1 1 2 2
1

2
v u a u u a v

a
∆ = + ∆ − ∆ − ∆⎡ ⎤⎣ ⎦� � �

�
 (3.48) 

 4 1 1 2( )v u v v∆ = ∆ − ∆ +∆  (3.49) 
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Defining an operator given by the following equation 

 ( )2( )pq p q q p O∆ = ∆ + ∆ + ∆� �  (3.50) 

neglecting higher order terms and placing the values of the conserved quantities, the 

wave strengths can be expressed in terms of the flow variables as 

 
( ) ( )

( )

2 2
2 2

2 2

1

1

t t t

t t t

v h u u u u e e v v v v
a

v h e u u v v e
a

γ ρ ρ ρ ρ ρ ρ ρ ρ

γ ρ ρ ρ ρ

− ⎡ ⎤∆ = ∆ − + ∆ + ∆ − ∆ − ∆ + ∆ + ∆ − ∆⎣ ⎦

− ⎡ ⎤⇒ ∆ = ∆ − + ∆ + ∆ − ∆⎣ ⎦

� � � �� � � � � � �
�

� � � �� � �
�

(3.51) 

The terms appearing in Equation (3.51) must be treated individually to simplify the 

expression. For the treatment of the first term in the brackets, Equation (3.40) can be 

employed as 

 ( ) ( )
2 2 2

2 21 1
1 2 1 2t t

a a ah e V Vρ ρ ρ
γ γ γ γ

⎛ ⎞
∆ − = ∆ + − − = ∆⎜ ⎟⎜ ⎟− −⎝ ⎠

� � �� � ��  (3.52) 

The last term in the brackets must also be treated individually with the aid of the 

relation 

 
21

1 2t
p Ve

γ ρ
= +

−
 (3.53) 

To obtain 

 ( ) ( )
2

2 21 1
1 2 1 1t

p p ae u v u u v vρρ ρ ρ ρ
γ ρ γ γ γ
⎡ ⎤⎛ ⎞ ∆ ∆

∆ = ∆ + ∆ + = − + ∆ + ∆⎢ ⎥⎜ ⎟− − −⎝ ⎠⎣ ⎦

�� � � �� �  (3.54) 

Substituting Equations (3.52) and (3.54) into Equation (3.51), a simplified equation 

for the wave strength can be obtained. Then applying the operator defined in 
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Equation (3.50) and substituting Equation (3.57) into Equations (3.48) and (3.49) all 

the wave strengths can be found as 

 ( )1 2

1
2

v p a u
a

ρ∆ = ∆ − ∆� �
�

 (3.55) 

 2 2

pv
a

ρ ∆
∆ = ∆ −

�
 (3.56) 

 3v vρ∆ = ∆�  (3.57) 

 ( )4 2

1
2

v p a u
a

ρ∆ = ∆ + ∆� �
�

 (3.58) 

In summary, for the approximate Riemann solver of Roe, first the Jacobian matrix 

for the Euler equations, which are non linear in their true essence, have been replaced 

by another matrix with constant elements to approximate the governing equations as 

a linear system. Thereafter the eigenvalues and eigenvectors of this approximate 

Jacobian matrix are found by following the procedure outlined in (19). Then these 

are used to find the wave strengths, characteristic variables, and fluxes through a face 

for which the right and left states are known according to Equation (3.25). 

3.3.1 Solution Algorithm 

The solution algorithm adopted is similar to the one outlined in (16). The algorithm 

discussed here is for the determination of the flux through a certain face of the cell 

under investigation. Once the fluxes through all the faces are determined, an 

appropriate method for time integration, to be discussed later, is employed to update 

the values of the conserved variables. 

(i) First the conserved variables of the left and right states are obtained by 

reconstruction which will be explained later on.  
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(ii) The primitive variables, [ ]Ttu v P hρ  for the right and left states are 

determined from the conserved variables [ ]Ttu v eρ ρ ρ ρ  

simultaneously with the transformation to normal and tangential coordinates. 

The flux which will be used in Equation (3.25), is calculated from the left and 

right state variables. 

 cos sinˆ u vu ρ θ ρ θ
ρ
+

=  (3.59) 

 sin cosˆ u vv ρ θ ρ θ
ρ

− +
=  (3.60) 

 ( )
2 2( ) ( )1 t

u vp e ρ ργ ρ
ρ ρ

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
 (3.61) 

 ( )1
t th e pρ

ρ
= +  (3.62) 

(iii) The Roe averaged quantities for the transformed primitive variables and the 

eigenvalues are calculated from Equations (3.37) through (3.42). 

(iv) The wave strengths are calculated from Equations (3.55) through (3.58). The 

differences are taken as the right minus the left state variables in contrast to 

Roe’s derivation in (19) to be consistent with Equation (3.25). 

(v) The right eigenvectors are calculated using the transformed Roe averaged 

quantities with the formulation provided in Equation (3.43). 

(vi) The flux is calculated from Equation (3.25). 

(vii) The flux obtained, which is normal to the face, is transformed back to the 

Cartesian coordinates using the inverse transformation matrix. 

 ˆ =-1T F F  (3.63) 

where T-1 is given in Equation (3.5). 
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3.4 Flux Vector Splitting 

In addition to using Roe’s approximate Riemann solver to evaluate the flux term 

appearing in Equation (3.8), the flux vector splitting methods such as van Leer (20), 

AUSM (21) and its derivatives AUSMD, AUSMV (22) have also been employed. 

Considering Equation (3.9) it is possible to split the flux vector as 

 ( ) ( ) ( )= ++ -F U F U F U  (3.64) 

The negative and positive components of the flux vector, +F and -F , can be defined 

by splitting the Jacobian matrix as follows 

 ( )     ,       ( )− −= =+ +F U A U F U A U  (3.65) 

      ,       − −= =+ + -1 -1A QΛ Q A QΛ Q  (3.66) 

The diagonal matrices +Λ and −Λ  can be defined as 

 

1 10 . . 0 0 . . 0
0 . . 0 . .

        ,         . . . . . .
. . 0 . . 0
0 . . 0 0 . . 0m m

λ λ

λ λ

+ −

−

+ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+Λ Λ  (3.67) 

where the positive and negative eigenvalues can be defined as in (23) presented as in 

the following equation. 

 ( ) ( )1 1     ,      
2 2

λ λ λ λ λ λ+ −= + = −  (3.68) 

When the Euler equations are written in normal and tangential coordinates as in 

Equation (3.8) the positive flux component will be due to the cell itself while the 
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negative component will be calculated from the neighbour as illustrated in Figure 

3.2. 

 

Figure 3.2- Graphical interpretation of flux vector splitting 

 

In Figure 3.2 the left state is the cell under investigation while the right state is the 

neighbour. The positive eigenvalues of the left state affects the face hence the 

positive component of the flux is calculated from the left state while the negative 

component of the flux is calculated from the right state since the negative 

eigenvalues of this state affects the face. Further details can be found in (16).   

3.4.1 Van Leer Flux Vector Splitting 

The van Leer flux vector splitting algorithm (20) makes use of the flux represented in 

terms of the density, tangential velocity, Mach number, M̂ , and the speed of sound 

as 
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2 2

2
2 2 2

ˆ

1ˆ
ˆˆ ˆ ˆ( )      ,    

ˆ ˆ

1ˆ ˆ ˆ
2 1

aM

a M
uM
aaMv

aaM a M v

ρ

ρ
γ

ρ

ρ
γ

⎡ ⎤
⎢ ⎥

⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= =
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥+ +⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

F U  (3.69) 
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n
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The flux can then be split into its positive and negative components as presented in 

the following equations. 

 ( )2

22
2

2

1
2 1 ˆ 1

21ˆ ˆ1 ˆ4

2 1 1ˆ ˆ1
1 2 2

a M
a M

v

a M v

γ
γ

ρ

γ
γ

⎡ ⎤
⎢ ⎥−⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎛ ⎞⎢ ⎥+ +⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

+F  (3.70) 

 ( )2

22
2

2

1
2 1 ˆ 1

21ˆ ˆ1 ˆ4

2 1 1ˆ ˆ1
1 2 2

a M
a M

v

a M v

γ
γ

ρ

γ
γ

−

⎡ ⎤
⎢ ⎥−⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠

= − − ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎛ ⎞⎢ ⎥− +⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

F  (3.71) 

3.4.2 AUSM (Liou-Steffen) Flux Vector Splitting 

The AUSM scheme (21) splits the pressure and the advection terms appearing in the 

normal momentum flux as 

 ( ) ( )1/ 2 1/ 2 1/ 2
1ˆ ˆ ˆ ˆ( )
2 L R R LM M⎡ ⎤= + − − +⎣ ⎦F U φ φ φ φ p  (3.72) 

In equation (3.72), 1/2M̂  is the interface Mach number, 1/ 2p  is the vector of interface 

pressure and φ  is the vector of flux defined through the following equations. 

 1/ 2
ˆ ˆ ˆ

L RM M M+ −= +  (3.73) 
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 1/ 2
1/ 2 1/ 2

0

   ,   
0
0

L R

p
p p p+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥= = +
⎢ ⎥
⎢ ⎥
⎣ ⎦

p  (3.74) 
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a
ua
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h a

ρ
ρ
ρ
ρ

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

φ  (3.75) 

The split Mach numbers and the split pressures can be defined as in the following 

equations to complete the algorithm. 

 
( )

( )

21 ˆ ˆ1 1
4ˆ

1 ˆ ˆ ˆ 1
2

M M
M

M M M

±

⎧± ± ≤⎪⎪= ⎨
⎪ ± >
⎪⎩

 (3.76) 

 

ˆ ˆ2 1
ˆ

1 ˆ 1ˆ

M M
p pM

M
M

± ±

⎧± − ≤
⎪

= ⋅⎨
>⎪

⎩

 (3.77) 

3.4.3 AUSMD Flux Vector Splitting 

AUSMD flux vector splitting (22) is a derivative of the original AUSM scheme. As 

in the AUSM scheme the advection and pressure terms are split separately with the 

difference that instead of estimating the normal velocity at the interface the mass flux 

is estimated. Also the velocity splitting is modified in the AUSMD method as in the 

equations to follow. 

 ( ) ( ) ( ) ( ) 1/ 21/ 2 1/ 2

1ˆ ˆ ˆ ˆ( )
2 L R R Lu uρ ρ⎡ ⎤= + − − +⎣ ⎦F U Γ Γ Γ Γ p  (3.78) 

 ( )1/ 2
ˆ ˆ ˆL L R Ru u uρ ρ ρ+ −= +  (3.79) 
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 (3.81) 
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2( / ) 2( / ),  , max( , )

( / ) ( / ) ( / ) ( / )
L R

L R L R
L R L R

p p a a a
p p p p

ρ ρκ κ
ρ ρ ρ ρ

= = =
+ +

 (3.82) 

Naturally the vector of flux is modified as well as the split pressure as 
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v
h

⎡ ⎤
⎢ ⎥
⎢ ⎥=
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Γ  (3.83) 

 1/ 2 L Rp p p+ −= +  (3.84) 
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3.4.4 AUSMV Flux Vector Splitting 

Another derivative of the AUSM scheme is the AUSMV flux vector splitting scheme 

(22). Similar to the AUSMD scheme the mass flux at the interface of two cells are 

estimated as in Equations (3.78) and (3.79) in the AUSMV scheme except for the 

normal momentum. The normal momentum is estimated at the interface wholly as 

 ( ) ( ) ( )2

1/ 2
ˆ ˆ ˆ ˆ ˆL RL R
u u u u uρ ρ ρ+ −= +  (3.87) 

The definitions of the split velocities and the pressures differs from the AUSMD 

scheme as can be observed from the following equations 
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 (3.88) 
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3.5 Boundary Conditions 

The boundary conditions encountered for the external flows considered in the scope 

of the thesis work are the solid wall and the far-field boundary conditions. For the 

numerical method adopted, the implementation of either type of the boundary 

conditions is equivalent to determining the correct right state variables since the left 

state variables will always be dictated by the cell under investigation. 

For the solid wall, the physical boundary condition is that there is no flux into the 

body.  In the inviscid case considered, this means that the velocity at the face can be 

in the tangential direction. 
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At this point, one of two methods can be adopted for the determination of the right 

state variables (14). One is to directly take the flux through the face as zero and to 

calculate a right flux solely based on pressure that is equal to the pressure calculated 

for the left state. The reason for this equality is that under steady-state conditions, the 

pressure force exerted by the fluid will be countered with an equal force. The second 

method is to construct a ghost right state for which the tangential velocity, pressure 

and total enthalpy are equal to the left state. The direction of the tangential velocity is 

the same as the left state as well as the magnitude. For the normal velocity, the 

magnitude is equal to that of the left state but the direction is opposite to it. The ghost 

right state is depicted for an example cut-cell in Figure 3.3. 

 

Figure 3.3- Ghost right state at the solid wall 

 

The second method ensures zero flux through the face as well but it also takes into 

cases where there is a normal velocity component in the presence of high curvatures 

as stated in (14). In the code developed, the second method has been adopted for the 

solid wall treatment. 

For the far-field boundary conditions the right state is calculated from the conditions 

received as input and it is irrespective of the left state.  

3.6 Reconstruction of the Flow Variables 

For the calculation of the fluxes through a face, primitive flow variables have to be 

estimated on both sides of that face, the right and left states. The simplest approach 

vR

uR

vL

uLhtL htR= htL
pL pR= pL 
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would be to take the values from the cell under investigation as the left state and to 

take the values from the respective neighbour as the right state. This approach being 

first order does not produce very accurate results. Hence it is desirable to reconstruct 

the flow variables within the cell to obtain a solution of second order. That is the 

variation of the flow variables within the cell must be taken into account even though 

in finite volume methods the flow variables representative of the whole cell is stored 

at the cell centroid for higher order accuracy. 

Three reconstruction schemes have been sighted in the literature. In two of these 

three schemes, the gradient of the flow variable is estimated at the centre of the cell 

while the other one makes use of finite differences to estimate the value of a flow 

variable at certain points within the cell. One of the reconstruction schemes based on 

the gradient at the centre of the cell is the Green-Gauss reconstruction, the other one 

is the Least Squares (Minimum Energy) reconstruction. The general design criteria 

for these reconstruction schemes are discussed in (24) and (25). The details of the 

linear reconstruction based on these schemes can be found in (26), (27) and (14) 

while the kth order exact schemes are discussed in (28). The third scheme based on 

the finite difference method can be found in (29). 

3.6.1 Gauss-Green Reconstruction 

The Gauss-Green reconstruction is based mainly on the gradient theorem. For a 

quantity u related to the cell this can be formulized as 

 1u und
AΩ Ω

∇ = ∫
G A  (3.90) 

This integral is evaluated for a region Ω which is bounded by the lines that connect 

the centroids of the edge and vertex neighbours (support set) of the cell. The integral 

can be evaluated numerically using the trapezoidal rule given as 

 
sup

1
0

1 1 ( )
2

N

i i i i
icell

u u u n
A +

=

∇ = +∑ G A  (3.91) 
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The boundary of the region Ω is shown for two representative cases for a Cartesian 

mesh in Figure 3.4. 

 

Figure 3.4- Region formed by the support set 

 

3.6.2 Least Squares (Minimum Energy) Reconstruction 

The Least Squares reconstruction is basically the inverse of the averaging function 

for a quantity related to a cell. The average of a quantity u within a cell can be 

defined with the averaging function presented as 

 ( ) cellA

cell

udA
Av u u

A
= =
∫

 (3.92) 

A kth order polynomial uk is constructed to represent the quantity u within the cell 

such that the average of the polynomial will be equal to that of the cell and the 

polynomial will represent quantity u exactly if u is a polynomial of order k or less. In 

general, the constructed polynomial can be obtained as 

 ( )k m n m n
mn

m n k
u u x y Av x yα

+ ≤

⎡ ⎤= + −⎣ ⎦∑  (3.93) 

where mnα are arbitrary coefficients. 
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The form given in Equation (3.93) will ensure that the average of the polynomial is 

equal to that of the cell. For a linear case, this reconstruction takes the form presented 

in the following equation 

 [ ] [ ]1
10 01( , ) c cu x y u x x y yα α= + − + −  (3.94) 

In Equation (3.94), the centroidal coordinates of the cell appear since by definition 

the averaging function applied to the polynomials x and y within the cell gives the 

centroid coordinates of the cell. 

The reconstruction problem simplifies once the cell average values are thought to be 

the values of the flow variables stored at the centroid of the cell (24). Then one could 

get the expression of the following form for the linear reconstruction. 

 [ ] [ ]1( , ) c xc c yc cu x y u u x x u y y= + − + −  (3.95) 

In Equation (3.95), the only unknowns are uxc and uyc, which are the components of 

the gradient of quantity u at the centroid of the cell.  

Once the linear polynomial is obtained for the quantity u, the sum of the squares of 

the averages of the difference between the value of u obtained from constructed 

polynomial and its actual value is minimized within the region made up of the cells 

that form the support set to find the unknowns uxc and uyc. The support set is defined 

in the same way as the Green-Gauss reconstruction shown in Figure 3.4. This 

constitutes the least squares problem for the reconstruction. 

 
sup 21

1
( )

N

i
i

S Av u u
=

⎡ ⎤= −⎣ ⎦∑  (3.96) 
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Once the differentiations given in Equation (3.97) are performed, the expressions 

given in the following equations are obtained. 
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Then the average term over the region constructed by the cells in the support set is 

evaluated. 

 1 1( ) ( ) ( )i c i i i xc c i yc c i
i i i i i

Av u u u dA u dA u x x dA u y y dA
A
⎡ ⎤

− = − + − + −⎢ ⎥
⎣ ⎦
∫ ∫ ∫ ∫  (3.100) 

Once the integrals in Equation (3.100) are evaluated and the expressions simplified, 

it is possible to arrive at the following equation  

 1( ) ( ) ( ) ( )i c ci xc ci c yc ci cAv u u u u u x x u y y− = − + − + −  (3.101) 

When the expression presented in Equation (3.101)  for each cell in the support set is 

placed in the summations given in Equations (3.98) and (3.99), two equations for the 

two unknowns can be obtained as 
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Equations (3.102) and (3.103) can be presented in a matrix form as 
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(3.104) 

This matrix can be solved to obtain the gradients at the centre of the cell from which 

the value of quantity u can be obtained at any location within the cell. The least 

squares method is employed for the reconstruction in the code developed. 

3.6.3 Gradient Limiting 

It is undesirable to introduce new maxima points within the region formed by the 

support cells and the cell for which the gradient of flow variables are being 

constructed. Hence, the gradients are multiplied by a limiter to avoid introduction of 

new maxima points. The linear reconstruction takes the following form with the 

application of this condition. 

 1 ( ) ( )c xc c yc cu u u x x u y y⎡ ⎤= +Φ − + −⎣ ⎦  (3.105) 

The value of the limiter Φ is between 0 and 1. To determine the exact value of the 

limiter, the maximum and the minimum of the values of quantity u are found at the 

cell centroids. 
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max( , )

min( , )           1,...,
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= =
 (3.106) 

 Then the values of the reconstructed polynomial are evaluated at the corners of the 

cell since these locations will have the maximum and minimum values within the cell 

for a linear reconstruction. The value of quantity u which deviates the most from the 

centroidal value will be marked as 1
coru  serving as a basis for determining the value 
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of the limiter with the implementation of the formulation given in the following  

equation 
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 (3.107) 

3.7 Temporal Discretization 

Once the flux terms in the governing Equation (3.8) is obtained, then the temporal 

discretization has to be performed to update the values of the conserved quantities. A 

multi-stage time stepping method is employed for temporal discretization. A detailed 

discussion of the multi-stage methods can be found in (30). 

3.7.1 Explicit Time Stepping Schemes 

To apply the multi-stage time stepping method, an alternative representation of the 

governing Equation (3.8) is employed as 

 1 0
cellt A

∂
+ =

∂
U R  (3.108) 

In Equation (3.108), the flux terms are presented in a more compact form as residual 

vector, R , and its value can be determined from the known values of the conserved 

quantities at a given stage. Hence, Equation (3.108) can be treated as an ordinary 

differential equation. This equation can be discretized in m-stages as described in 

(31) to obtain the following equation. 
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In Equation (3.109), β ’s are stage coefficients while t∆ is the time step. The 

residuals are evaluated from the values of the conserved variables from the previous 

stage. Hence, this is an explicit formulation. In contrast to classical Runge-Kutta 

methods only the values of the zeroth solution and the last residual have to be stored 

in this formulation (31). It is possible to tune the value of β for stability and to 

obtain larger time steps. 

 

Table 3.1- Stage coefficients and CFL numbers for the multi-stage method 

stages 3 4 5 3 4 5
σ 1.5 2.0 2.5 0.69 0.92 1.15
β1 0.1481 0.0833 0.0533 0.1918 0.1084 0.0695
β2 0.4000 0.2069 0.1263 0.4929 0.2602 0.1602
β3 1.0000 0.4265 0.2375 1.0000 0.5052 0.2898
β4 1.0000 0.4414 1.0000 0.5060
β5 1.0000 1.0000

first-order scheme second-order scheme

 

 

Table 3.1 taken from (31) shows the optimised values of the stage coefficients and 

CFL numbers for three, four and five stage methods of first and second order 

accuracy. The CFL number is a factor that governs how large the time step can be 

with respect to the cell area. In the code developed, three and four stage second order 

schemes are used. 
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3.7.2 Determination of the Time Step 

In Equation (3.109), the value of the time step is not determined. The value of the 

time step, if taken to be too large, will introduce stability problems. If this value is 

taken to be too small then the convergence will be very slow and unnecessary 

amount of computations will be performed. 

The mesh generated for an arbitrary geometry will contain cells that have different 

sizes and since the time step is dependent on the cell size, every cell will have a 

different maximum time step. As a result, a different time step will be used for each 

cell since a steady state solution is sought. 

The time step is calculated in terms of the area of the cell under investigation as in 

the following formulation given in (31). 

 x y
cell

t
A

σ∆
=
Ψ + Ψ

 (3.110) 

where σ is the CFL number and Ψ  is the spectral radius.  

The spectral radii Ψ that appear in Equation (3.110) can be calculated using the 

length of the edge projections of the cell in both x-y directions, xS and yS . 

 ( )1
2

x x

edges

u a SΨ = + ∑  (3.111) 

 ( )1
2

y y

edges
v a SΨ = + ∑  (3.112) 

The time step obtained thus is multiplied by a safety factor in some cases to promote 

stable solutions. If Equation (3.110) is investigated, this equation is in one sense a 

division of a characteristic length by a characteristic speed. The characteristic speed 

is the maximum speed with which information is carried for a cell. Hence, the time 
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step is obtained by constricting the distance information travels from a cell within the 

field. 

3.8 Solution Refinement 

Once a certain level of convergence is achieved, the cells are refined according to the 

gradient of the solution. The purpose of this refinement is to provide enough 

resolution at the places where there might be discontinuities due to shocks or there 

are large gradients in the solution (e.g. around the stagnation point). 

The solution refinement criterion used is based on the one outlined in (14). This 

method is based on both the curl of the velocity, for detecting shear layers, and the 

gradient of the velocity, for detecting shocks. The curl and gradient of the velocity is 

multiplied by some characteristic length of the cell as 

 ( ) ( )
3 3
2 2 , =cell cellA V A Vτ ζ= ∇⋅ ∇×

G G
 (3.113) 

The standard deviations of the quantities defined in Equation (3.113) are calculated 

and the cells exceeding the standard deviation are refined. 
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CHAPTER 4 

RESULTS &DISCUSSIONS 

To test the validity of the code developed, the flow around a NACA0012 airfoil and 

an NLR7301 with a flap has been solved for different conditions. Besides 

demonstrating the characteristic features of the flows, different methods for handling 

the flux terms in the governing equations have been compared.    

4.1 NACA0012 

The NACA0012 tests have been performed for a subsonic case and a transonic case. 

In the subsonic tests the aim is to show the importance of reconstruction to obtain 

second order solutions and to discuss the role of first order solution on the stability. 

The transonic tests have been performed to demonstrate the shock capturing 

capabilities of the various methods used to evaluate the flux terms. Also they are 

compared in terms of computational efficiency. 

4.1.1 Subsonic Tests  

The far-field boundary condition of the first case for the subsonic tests is a free 

stream Mach number of 0.6 and an angle of attack of 0˚. The experimental data for 

this case can be found in (32) which were extracted from (33). For this case a total of 

six runs have been performed. All the runs are performed using Roe’s method. The 

convergence criterion for all of the runs is that the standard deviation of the residual 

calculated for the continuity equation should drop five levels on a log scale. Two of 

the six runs are first order solutions. One of these solutions is with solution 

refinement while the other is not. Two runs are performed second order with and 
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without solution refinement, while the last two are run first order until the residuals 

drop four levels then they switch to second order. 

The pressure coefficient vs. the chord graph for the first order solutions are presented 

in Figure 4.1. 

 

Figure 4.1- Cp vs. chord for first order solution 

 

As can be seen from Figure 4.1, the first order solution without solution refinement 

performs poorly. It is not possible to catch the peak of the pressure coefficient with 

this solution. However, solution refinement introduces a considerable improvement 
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to the solution. But even with solution refinement the peak of the pressure coefficient 

graph is not captured accurately.   

The pressure coefficient vs. chord graph can also be illustrated for the second order 

solution as in Figure 4.2. 

 

Figure 4.2- Cp vs. chord for second order solution 

 

As can be seen from Figure 4.2, the second order solution provides a much more 

accurate solution than the first order method as expected. The peak of the pressure 

coefficient is captured accurately for both of the solutions with and without solution 
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refinement although the solution with solution refinement is slightly better on this 

aspect. 

The effect of solution refinement can be illustrated by examining the differences 

between a refined and non-refined mesh. 

 

Figure 4.3- A refined and non-refined mesh around stagnation point 

 

In Figure 4.3, the mesh on the right belonging to a solution with refinement has a 

considerably denser mesh around the stagnation point than the one without 

refinement. This is an expected result since there are large gradients around this 

region. 

Finally the results obtained with the solution where first order is used until some 

convergence is obtained and then it is switched to second order, can be compared 

with the fully second order solution. 
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Figure 4.4- Comparison of the second order solutions 

 

In Figure 4.4, it is almost impossible to distinguish between the two solutions. The 

same situation also prevails for a solution with refinement. Hence it can be said that 

in terms of accuracy there is no difference between the two solutions. 

The Mach contours for the second order solution can be depicted as in Figure 4.5. 
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Figure 4.5- Mach contours for NACA0012 subsonic flow 

 

After comparing the first and second order methods in terms of accuracy, their 

computational performances can also be compared as in Table 4.1. 
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Table 4.1- Comparison of first and second order solutions 

Method Number of Iterations Time
First order without refienement 1938 45sec

First order with refienement 2691 2min 37sec
Second order without refinement 4325 11min 23sec

Second order with refinement 7490 1hr 1min 36sec
Switch to second order without refinement 3236 6min 57sec

Switch to second order with refinement 4425 25min 24sec
  

Naturally the first order solution converges much faster than the second order 

methods, but it would not be reasonable to obtain a solution with this method due to 

poor accuracy. As observed from Table 4.1, starting the solutions first order then 

switching to second order after some level of convergence, decreases the 

computation time considerably compared to full second order solution. Also as 

illustrated in Figure 4.4, there is almost no difference between these solutions.  

The calculations for the second case of subsonic flow around the NACA0012 airfoil 

were performed with a Mach number of 0.4167. By changing the angle of attack 

values a lift coefficient vs. angle of attack graph was constructed. To obtain the 

solution Roe’s method was used and solution refinement wass not employed. 

 Since the pressure is the main factor determining the lift force at high speeds, it is 

expected to get a good agreement with the experimental data extracted from (34) 

until flow separation, a viscosity governed phenomena, is encountered. This 

expectation is realized as can be seen from Figure 4.6 within the region where there 

is no separation. 
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Figure 4.6- Lift coefficient vs. angle of attack graph 

 

To obtain the results presented in Figure 4.6, first order calculations are performed 

until some level of convergence is obtained then the solution is switched to second 

order. As discussed earlier this method decreases computation time while there is no 

loss in terms of accuracy. 

It was also attempted to use a fully second order solution to obtain the results. It was 

possible to get solutions within the range of angle of attacks from -6˚ to 8˚. However 

for larger angle of attack values than 8˚, divergence in the calculations was observed. 

Using the first order solution then switching to second order provided results for 

angle of attack values of 10˚, 12˚ and 16˚ also. The results obtained for 12˚ and 16˚ 
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are not presented in Figure 4.6 since they are related to a flow with separation and 

this case must be treated with a viscous solver. However this fact still indicates that 

the first order solution is more stable than the second order one. When the residual 

plots for first and second order solutions are investigated, an indication of this fact 

can be seen. In Figure 4.7, it is observed that the residuals decrease smoothly for the 

first order solution while for the second order one there are a lot of scattering and 

oscillations as the residuals decrease. 

 

Figure 4.7- Residual plot for first and second order solutions 

 

By employing the first order method until some level of convergence is obtained, a 

first order accurate initialization of the field variables is obtained which eases the 
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convergence of the second order solution. This procedure will be used by default for 

the rest of the calculations that will be presented. 

4.1.2 Transonic Tests 

The far-field conditions for the transonic flow tests around the NACA0012 profile 

are a free stream Mach number of 0.85 and an angle of attack of 1˚. For this flow 

shocks on the upper and lower surface of the airfoil is expected, the one on the upper 

surface being stronger. Each one of the five methods implemented for the evaluation 

of the flux terms in the governing equations has been employed in the solution to 

compare these methods. The most crucial point in the tests performed is the location 

of the shocks. The transonic flow is a more challenging case than the subsonic flow. 

Hence the performance of different methods to evaluate the flux terms is compared 

for this case. The calculations have been performed both with and without solution 

refinement. To verify the computational solution, AGARD data (35) has been 

extracted from (14). 

To compare the accuracy of the different methods for evaluating the fluxes, 

calculations with solution refinement have been performed. First the results obtained 

from the AUSM and its derivative methods are compared amongst themselves. The 

pressure coefficient vs. the chord graph for these methods is illustrated in Figure 4.8. 
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Figure 4.8- Pressure coefficient vs. chord graph for the AUSM methods 

 

It is observed from Figure 4.8 that the AUSMD and AUSMV methods capture the 

location of the weaker shock on the lower surface while the AUSM predicts this 

location slightly downstream. On the upper surface none of the methods were able to 

capture the shock location exactly. The AUSMD and the AUSMV methods provide a 

closer estimation of the shock location on this surface than the AUSM method. All of 

the methods exhibit oscillations around the shock location, the ones on the upper 

surface being more marked. This is due to the performance of the limiter in the 

calculation of the fluxes. 
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The Roe’s method and the van Leer method can be compared with one of the 

representative AUSM methods. The AUSMV method providing the most accurate 

results among the AUSM methods is chosen as the representative AUSM method 

and the pressure coefficient vs. chord graph for these methods is illustrated in Figure 

4.9. 

 

Figure 4.9- Pressure coefficient vs. chord graph for Roe, van Leer and AUSMV 

 

It is seen that both the Roe’s method and the van Leer’s method estimate the shock 

location at a slightly upstream position on the upper surface while there is good 

agreement on the lower surface. The oscillations around the shock locations are also 
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inherent in these methods. In terms of accuracy AUSMD, AUSMV and the van 

Leer’s methods provide the best results for this particular test case. 

Besides the accuracy of the methods, their convergence characteristics should also be 

examined. The convergence criterion is that the residual for the continuity equation 

calculated in the first step should drop five levels on a log scale. None of the methods 

were able to provide a five level drop in the residual for solution adaptive 

calculations. Hence to compare the convergence characteristics calculations without 

solution refinement have been performed. The calculations were performed with four 

different CFL safety coefficients; 1.0, 0.5, 0.2 and 0.1, four each one of the five 

methods. In Table 4.2, the results for the solution with the maximum CFL safety 

factor providing a convergent solution has been presented.  

 

Table 4.2- Computational characteristics of the methods for evaluating fluxes 

Method Convergence Number of Iterations Calculation Time CFL Safety Coefficient
AUSM converges 5555 9min 1sec 1.0

AUSMD oscillates 100000 3hr 35min 4sec 0.1
AUSMV converges 9646 16min 19sec 0.5

Roe converges 5207 9min 15sec 1.0
van Leer diverges - - -  

 

The AUSM and the Roe’s methods converged with a CFL safety coefficient of 1.0 

while the AUSMV method converged with a CFL safety factor of 0.5. For the 

AUSMD method with a CFL safety factor of 0.1, the residual of the continuity 

equation oscillates around 8x10-4 corresponding to a residual drop of about four 

levels after about 60000 steps till the maximum number of iterations of 100000. The 

van Leer method diverges when solution refinement is not applied implying a 

relation between the method and the mesh size. The residual plots for the convergent 

solutions can be depicted as in Figure 4.10. 
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Figure 4.10- Residual plot for transonic flow 

 

It is also possible to show the effect of solution adaptation on the mesh generated 

initially. The solution refinement has been performed every time the residuals 

dropped to one twentieth of the initial residual which is updated just before solution 

adaptation is performed. The effect of mesh generation in the critical regions around 

the airfoil is illustrated in Figure 4.11. 
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Figure 4.11- Effect of refinement at shock location 

 

As can be seen from Figure 4.11, the mesh is refined around the location of the shock 

since there are large gradients in the flow variables at this location. Another region 

where large gradients are observed is at the nose of the airfoil around the stagnation 

point. The effect of solution refinement in this region is illustrated in Figure 4.12. 

 

Figure 4.12- Effect of refinement around stagnation point 

 

The effect of solution adaptation can be illustrated by plotting the Mach contours for 

a refined and non-refined solution. 
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Figure 4.13- Mach contours for transonic flow around NACA0012 airfoil 

 

In Figure 4.13, the Mach contours obtained with the AUSMV method are displayed. 

As can be observed for the solution without refinement, the shocks are smeared. The 

pressure coefficient vs. chord graphs of these solutions can also be displayed. In 

Figure 4.14, it is seen that the solution obtained without refinement is able to capture 

both the pressure distribution on the airfoil and the shock locations with refinement 

introducing a slight improvement on both aspects. However in Figure 4.13, it is seen 

that the overall flow field is not represented accurately without solution refinement. 

Hence it can be said that if the main concern is obtaining the forces on the airfoil, the 

solution without refinement will provide a good estimation in a considerably shorter 

amount of time.   



88 
 

 

Figure 4.14- Pressure coefficient vs. chord for AUSMV with and without refinement 

 

4.2 NLR 7301 with Flap 

The NLR 7301 tests have been performed for a gap of 2.6% percent of chord length, 

an overlap of 5.3% of chord length and a flap angle of 20˚. The definition of these 

variables can be shown as in Figure 4.15. 
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Figure 4.15- Definition of geometry variables for NLR 7301 with flap 

 

Tests were performed at three different angle of attack values; 6˚, 10.1˚ and 13.1˚. 

The free stream Mach number for all the cases was 0.185. The five methods; Roe, 

van Leer, AUSM, AUSMD, AUSMV, have been employed in the calculations. To 

verify the results computed, data obtained from (36) has been used. 

The pressure coefficient vs. chord graph for angle of attack of 6˚ is presented for the 

AUSM methods in Figure 4.16. All of the AUSM methods are able to capture 

pressure distribution with good accuracy for the most part. But in terms of capturing 

the peak of the pressure coefficient on the upper surface of the main airfoil, AUSM 

method is superior to the others. The AUSMD method performs better than the 

AUSMV method on this aspect. 
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Figure 4.16- Pressure coefficient vs. chord graph (AUSM methods AoA 6˚) 

 

The pressure coefficient vs. chord graph can also be constructed for the Roe’s, van 

Leer’s and AUSM methods. In Figure 4.17, it is seen that the AUSM method 

provides better results than both the Roe’s and van Leer’s methods. The solution by 

Roe’s method is comparable to the other AUSM methods. In terms of capturing the 

peak of the pressure coefficient on the upper surface of the main element, Roe’s 

method performs similar to the other method while van Leer provides the poorest 

result in terms of accuracy. 
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Figure 4.17- Pressure coefficient vs. chord graph (AUSM, Roe, van Leer AoA 6˚) 

 

The computational performances of each method can be tabulated to obtain a 

comparison. 
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Table 4.3- Computational performance of the methods for NLR 7301 AoA 6˚ 

Method Convergence Number of Iterations Time Lift Coefficient
AUSM converges 7072 41min 47sec 2.51

AUSMD oscillates 100000 10hr 21min 49sec 2.46
AUSMV oscillates 100000 10hr 14min 0sec 2.45

Roe oscillates 100000 10hr 56min 15 sec 2.42
van Leer converges 4172 22min 53sec 2.35  

 

It is observed from Table 4.3 that the van Leer’s method converges faster than the 

AUSM method. The other methods; AUSMD, AUSMV and Roe, do not converge, 

that is the residuals in the continuity equation do not drop five levels but they 

fluctuate until the maximum number of iterations is reached. Also it can be seen that 

the highest lift coefficient is found with the AUSM method. This is an expected 

result as the AUSM method captures the peak of the pressure distribution on the 

upper surface of the main airfoil better than the other methods. The AUSMD, 

AUSMV and Roe’s methods provide a similar result on this aspect while van Leer’s 

method gives the smallest estimate as it was the worst in capturing the peak. 

The pressure coefficient vs. chord graph for the angle of attack value of 10.1 can be 

presented for the AUSM methods. From Figure 4.18, it is seen that the performance 

of the AUSM method is better than both the AUSMD and the AUSMV methods. The 

AUSMV method starts to deviate from the AGARD data which is especially 

apparent on the upper surface of the flap. The peak of the pressure coefficient is 

captured accurately with the AUSM method. 
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Figure 4.18- Pressure coefficient vs. chord graph (AUSM methods AoA 10.1˚) 

 

The pressure coefficient vs. the chord graph can be presented for the AUSM, Roe 

and van Leer methods as in Figure 4.19. 
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Figure 4.19- Pressure coefficient vs. chord graph (AUSM, Roe, van Leer AoA 10.1˚) 

 

As can be seen from Figure 4.19, AUSM method provides a better solution. It is also 

observed that the Roe’s method provides a better estimation of the peak in the 

pressure distribution on the upper surface of the main element than the AUSMD and 

AUSMV methods. 

The computational performance of the methods can also be compared from Table 

4.4. 
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Table 4.4- Computational performance of the methods for NLR 7301 AoA 10.1˚ 

Method Convergence Number of Iterations Time Lift Coefficient
AUSM converges 11567 1hr 10min 43sec 2.98

AUSMD oscillates 100000 10hr 21min 5sec 2.76
AUSMV oscillates 100000 10hr 13min 2sec 2.75

Roe converges 78924 8hr 15min 47 sec 2.86
van Leer converges 4175 22min 50sec 2.83  

 

It is observed from Table 4.4 that as the angle of attack is increased Roe’s method 

converges like the AUSM and the van Leer methods. The performances of the van 

Leer, AUSMD and AUSMV methods essentially remain the same computationally. 

The Roe’s method being able to capture the pressure peak better for this case, 

estimates a relatively higher lift coefficient than the previous case. The AUSM 

method still being the best one to capture the peak provides the highest estimate of 

the lift coefficient. 

The pressure coefficient vs. the chord graph can be constructed for the angle of 

attack of 13.1˚ for the AUSM methods. From Figure 4.20, it is seen that the AUSMV 

method fails at this angle of attack. Once again the AUSM method provides a 

considerably better estimate of the pressure peak on the upper surface of the main 

element. 
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Figure 4.20- Pressure coefficient vs. chord graph (AUSM methods AoA 13.1˚) 

 

In Figure 4.21 the pressure coefficient vs. chord graph for the AUSM, Roe and van 

Leer methods are depicted. The AUSM method providing the best of the solutions, 

the Roe’s method provides a better solution than van Leer’s method. As in the case 

of angle of attack of 10.1˚, the Roe’s method gives a better solution than the 

AUSMD and AUSMV method which fails.  
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Figure 4.21- Pressure coefficient vs. chord graph (AUSM, Roe, van Leer AoA 13.1˚) 

 

The computational performance of the methods for the case of angle of attack of 

13.1˚ can be compared with the aid of Table 4.5. 
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Table 4.5- Computational performance of the methods for NLR 7301 AoA 13.1˚ 

Method Convergence Number of Iterations Time Lift Coefficient
AUSM converges 12182 1hr 14min 5sec 3.29

AUSMD oscillates 100000 10hr 20min 30sec 3.08
AUSMV oscillates 100000 10hr 13min 5sec 3.03

Roe converges 87222 9hr 11min 9sec 3.17
van Leer converges 4396 24min 12sec 3.16  

 

The computational performance of the methods is pretty similar to the case of angle 

of attack of 10.1˚ with the exception that AUSMV method fails totally. It can be 

concluded that AUSM method provides the best results in all the cases considered. 

Roe’s and van Leer’s methods do improve as the angle of attack increases which 

may be due to the fact that as the angle of attack increases so does the velocities 

around the airfoil, which makes the problem shift closer to the compressible range. 

The performance of the AUSMD method remains constant while the AUSMV 

method fails as the angle of attack is increased. 

Solution adaptive calculations have also been performed for the van Leer method to 

improve the results. The effect of solution refinement on the mesh can be shown as 

in Figure 4.22 and Figure 4.23.  
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Figure 4.22- Effect of solution refinement around stagnation region of NLR 7301 

 

 

Figure 4.23- Effect of solution refinement around the flap 
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The pressure coefficient vs. the chord graphs for the solution with and without 

refinement can be constructed for a comparison at 6˚. 

 

Figure 4.24- Pressure coefficient vs. chord for van Leer AoA 6˚ 

 

In Figure 4.24, it is seen that the adapted solution performs better at capturing the 

peak of the pressure distribution on the upper surface of the main element. In fact the 

solution is improved around this region as a whole. The estimate of the lift 

coefficient increases from 2.35 to 2.49. This is much closer to the one predicted by 

the AUSM method. 
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The pressure coefficient vs. the chord graph for a solution with and without 

refinement for angle of attack of 10.1˚ is presented in Figure 4.25. 

 

Figure 4.25- Pressure coefficient vs. chord for van Leer AoA 10.1˚ 

 

There is an overall improvement of the solution with the introduction of refinement, 

but this time there is a considerable over estimation of the peak of the pressure 

coefficient on the upper surface of the main element. In fact the estimation for the lift 

coefficient becomes 3.05 which is greater than predicted by the AUSM method. 

Lastly, the pressure coefficient vs. the chord graph for a solution with and without 

refinement for angle of attack of 13.1˚ is presented in Figure 4.26. 
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Figure 4.26- Pressure coefficient vs. chord for van Leer AoA 13.1˚ 

 

Once again the overall solution does improve, but there is an over prediction of the 

pressure coefficient peak on the upper surface of the main element. 

Figure 4.27, Figure 4.28 and Figure 4.29 illustrate the flow fields obtained for angle 

of attack values of 6˚, 10.1˚, 13.1˚ respectively. 
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Figure 4.27- Flow field for NLR 7301 with flap AoA 6˚ 

 

Figure 4.28- Flow field for NLR 7301 with flap AoA 10.1˚ 
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Figure 4.29- Flow field for NLR 7301 with flap AoA 13.1˚ 

 

As the angle of attack increases, the acceleration of the flow on the upper surface of 

the main element increases also. This makes the streamlines more compact, and also 

the pressure drop on the upper surface of the main element increases. In addition, 

with the increasing angle of attack the region of high pressure on the lower surface of 

the main element becomes larger. This promotes higher lift forces, which is 

consistent with the computations. An important feature of the NLR 7301 airfoil is the 

region between its lower surface and the flap. There were no vortex formations in 

this region for the flows considered. If there were a vortex formation in this region, 

due to the pressure drop associated with it, there would be decrease in the lift force 

accompanied by an increase in the drag force since the orientation of the face normal 
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of the main element is towards increasing the lift and decreasing the drag in this 

region. Hence viscous calculations are of great importance in this region because of a 

possibility of separation. 
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CHAPTER 5 

CONCLUSIONS 

In the subsonic calculations, the difference between the accuracy of a first order and 

a second order formulation has been illustrated. The first order method is inadequate 

in capturing the flow characteristics such as the peak of the pressure distribution for 

the relatively simple problem of subsonic flow. There is however a considerable 

improvement of the solution with the introduction of solution refinement. This is due 

to the fact that with solution refinement, the mesh around the regions of high 

gradients, the stagnation region in case of NACA0012 subsonic flow, is refined and 

the accuracy in this region increases as the peak of the pressure distribution can be 

captured more accurately. 

Even though solution refinement did introduce an improvement on the first order 

solution, it still wasn’t accurate enough. The second order method performed much 

better than a first order solution with refinement. When solution refinement was 

performed for a second order formulation, there was little improvement in the 

solution for NACA0012 subsonic flow, since the non-adapted solution performed 

reasonably well, to capture the peak of the solution refinement. 

The second order method was superior to the first order one in terms of accuracy, but 

it did call for a much increased computation time. To resolve this issue, first order 

calculations would be performed until some level of convergence is obtained then the 

solution would switch to a second order formulation. This resulted in up to more than 

50% decrease in the computation time while there was no virtual loss in terms of 

accuracy. Also as the angle of attack was varied to construct a lift coefficient vs. 

chord graph it was seen that at certain angles it was not possible to get a solution 

with fully second order calculations. This and the fact that second order solutions 
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provided residual plots with considerable scattering and oscillations indicated that 

the first order formulation is more stable than the second order one. Hence by 

starting with first order calculations, the field is initialized more accurately which 

promotes the second order method to converge as it is sensitive to the initial 

conditions. 

The transonic flow around the NACA0012 profile was a more challenging case than 

the subsonic flow, providing grounds to test the performance of different methods for 

evaluating the flux terms. The main challenge was to catch the shock locations, 

especially the stronger one on the upper surface of the airfoil. The AUSMD, 

AUSMV and van Leer’s methods were the ones that showed the best performance on 

this aspect. 

For the transonic flow solution refinement is a must to get an accurate representation 

of the flow field since it is already known that there will be large gradients at shock 

locations in addition to the stagnation region. If solution refinement is not used 

smeared shocks are obtained. It was however possible to get an accurate pressure 

distribution on the airfoil as the mesh elements in this region are small in size. Hence 

just to analyze the forces on the airfoil a solution without refinement can be 

employed to get quick results.  

It was not possible to compare the computational performance of the methods with a 

solution with refinement, so calculations were also performed without refinement. 

For the solutions without refinement it was seen that, the Roe’s method and the 

AUSM method converged easily with a CFL safety coefficient of 1. The AUSMV 

method converged with a CFL safety coefficient of 0.5 while the van Leer’s method 

diverged. 

Another important feature of the solutions for the transonic flow was the oscillations 

seen at the shock locations, the one on the upper surface of the airfoil with the 

stronger shock being more apparent. This is due to the poor performance of the 

limiters used in the calculations. A limiter that won’t hamper the convergence while 

preventing oscillations should be implemented to improve the solution. 
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The NLR 7301 with a flap was also a challenging case to test the performance of the 

various methods implemented for evaluating the flux terms. The AUSM method was 

superior in terms accuracy and it was second to van Leer’s method in terms of 

computational performance. The van Leer’s method with the poorest performance for 

the case with an angle of attack of 6˚ did improve with the application of solution 

refinement. 

The performance of both the Roe’s and van Leer’s methods improved for the cases 

with higher angle of attacks. This might be due to the flow shifting closer to the 

compressible range with the increasing angle of attacks promoting higher velocities 

in the field. The performance of the AUSMD method was consistent throughout the 

calculations while the AUSMV method failed for large angle of attack values. 

From the pressure coefficient vs. chord graphs, it was observed that the estimation of 

the peak pressure on the upper surface of the main element was crucial in the 

prediction of the lift coefficient. van Leer’s method with solution refinement and 

AUSM method performed well on this aspect, while AUSMD, AUSMV, and Roe’s 

method performed worse with similar results at an angle of attack 6˚. For the angle of 

attack values of 10.1˚ and 13.1˚, AUSM was the superior method once again while 

the performance of Roe’s method improved considerably. The van Leer method with 

solution refinement provided over estimations of the pressure peak. 

 



109 
 

BIBLIOGRAPHY 

1. Wendt, John F, et al. Computational Fluid Dynamics An Introduction. Berlin : 

Springer_Verlag, 1996. 

2. Versteeg, H K and Malalasekera, W. An Itroduction to Computational Fluid 

Dynamics The Finite Volume Method. Malaysia : Prentice Hall, 1995. 

3. Liseikin, Vladimir D. Grid Generation Methods. Berlin : Springer-Verlag, 1999. 

4. Thompson, Joe F, Soni, Bharat K and Wheatherill, Nigel P. Handbook of Grid 

Generation : CRC Press, 1998. 

5. Hirsch, Charles. Numerical Computation of Internal and External Flows. New 

York : John Wiley & Sons, 1988. 

6. Reddy, J N. An Introduction to the Finite Element Method. Singapore : McGraw-

Hill, 1993. 

7. Hoffmann, Klaus A and Chiang, Steve T. Computational Fluid Dynamics for 

Engineers. Wichita : Enginnering Education System, 1995. 

8. Reentrant Polygon Clipping. Sutherland, I E and Hodgeman, G W. January 

1974, Communications of the ACM, pp. 32-42. 

9. A New Concept and Method for Line Clipping. Liang, Y D and Barsky, B A. 1, 

January 1984, ACM Transactions on Graphics, Vol. 3, pp. 1-22. 

10. Sproull, R F and Sutherland, I E. A Clipping Divider. Washington D. C. : 

Thompson Books, 1968. 



110 
 

11. An Efficent Algorithm for 2-D Line Clipping: Its Development and Analysis. 

Nicholl, Tina M, Lee, D T and Nicholl, Robin A. July 1987, Computer Graphics, 

pp. 253-262. 

12. A New Two Dimensional Line Clipping Algorithm for Small Windows. Day, J D. 

1992, Computer Graphic Forums, pp. 241-245. 

13. A Fast Two-Dimensional Line Clipping Algoritm via Line Encoding. Sobkow, M 

S, Pospisil, P and Yang, Y H. 1987, Computer Graphics, pp. 459-467. 

14. De Zeeuw, Darren L. A Quad-Tree Based Adaptively-Refined Cartesian-Grid 

Algorithm for the Solution of The Euler Equations. Michigan : The University of 

Michigan, 1993. PhD thesis. 

15. Preparata, P Franco and Shamos, Michael Ian. Computational Geometry an 

Introduction. New York : Springer-Verlag, 1985. 

16. Toro, E F. Riemann Solvers and Numerical Methods for Fluid Dynamics. 

Berlin : Springer-Verlag, 1999. 

17. Laney, Culbert B. Computational Gas Dynamics. Cambridge : Cambridge 

University Press, 1998. 

18. Greenberg, Michael D. Advanced Engineering Mathematics. New Jersey : 

Prentice Hall, 1998. 

19. Approximate Riemann Solvers, Parametrized Vectors, and Difference Schemes. 

Roe, P L. 1981, Journal of Computational Physics, Vol. 43, pp. 357-372. 

20. Flux Vector Splitting for the Euler Equations. van Leer, B. s.l. : Springer-Verlag, 

1982. Proceedings of the 8th International Conference on Numerical Methods in 

Fluid Dynamics. 



111 
 

21. A New Flux Splitting Scheme. Liou, M S and Steffen, C J. s.l. : Journal of 

Computational Physics, 1993, Vol. 107, pp. 23-39. 

22. An Accurate and Robust Vector Splitting Scheme for Shock and Contact 

Discontinuities. Wada, Yasuhiro and Liou, M S. 3, s.l. : Siam J. Sci. Comput., 

1997, Vol. 18, pp. 633-657. 

23. Flux Vector Splitting of the Inviscid Gasdynamic Equations with Applications to 

Finite Difference Methods. Steger, J L and Warming, R F. s.l. : Journal of 

Computational Physics, 1981, Vol. 40, pp. 263-293. 

24. Barth, Timothy J. Simplified Numarical Methods for Gasdynamic Systems on 

Triangulated Domains. Stanford : Stanford University, 1998. PhD thesis. 

25. Barth, Timothy J and Frederickson, Paul O. Higher Order Solution of the 

Euler Equations. Reno : AIAA paper AIAA-90-0013, 1990. 28th Aerospace 

Sciences Meeting. 

26. Barth, Timothy J and Jespersen, Dennis C. The Design and Application of 

Upwind Schemes on Unstructured Meshes. Reno : AIAA paper AIAA-89-0366, 

1989. 27th Aerospace Sciences Meeting. 

27. Coirier, William John. An Adaptively Refined, Cartesian, Cell-Based Scheme 

for the Euler and Navier Stokes Equations. Michigan : The University of Michigan, 

1994. PhD thesis. 

28. Barth, Timothy J. Recent Developments in High Order K-Exact Reconstruction 

on Unstructured Meshes. Reno : AIAA paper AIAA-93-0668, 1993. 31st Aerospace 

Sciences Meeting. 

29. Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in 

Complex Geometries. Popinet, Stéphane. 2003, Journal of Computational Physics, 

Vol. 190, pp. 572-600. 



112 
 

30. Lambert, J D. Computational Methods in Ordinary Differential Methods. 

London : Wiley, 1973. 

31. Blazek, J. Computational Fluid Dynamics: Principles and Applications. St 

Augustin : Elsevier, 2001. 

32. Amick, J L. Comparison of the Experimental Pressure Distribution on an 

NACA0012 Profile at High Speeds with that Calculated by the Relaxation Method. 

s.l. : National Advisory Committee for Aeronautics, 1950. Technical note. 

33. Özdemir, Enver Doruk. Implementation of Rotation into a 2-D Euler Solver. 

Ankara : METU, 2005. Masters thesis. 

34. Abbott, Ira H and von Doenhoff, Albert E. Theory of Wing Sections,Including 

a Summary of Airfoil Data. New York : Dover Publications, 1959. 

35. AGARD Subcommittee C. Test Cases for Inviscid Flow Field Methods. 1986 : 

AGARD Advisory Report 211. 

36. Advisory Group for Aerospace Research& Development. A Selection of 

Experimental Test Cases for the Validation of CFD Codes . s.l. : AGARD Advisory 

Report No 303, 1994. 

 



113 
 

APPENDIX A 

COORDINATES OF NACA0012 

Table A.1- Coordinates of NACA0012 Profile 

x y
0.999753 0.001295
0.999013 0.001398
0.997781 0.001571
0.996057 0.001812
0.993844 0.002120
0.991144 0.002496
0.987958 0.002937
0.984292 0.003443
0.980147 0.004012
0.975528 0.004642
0.970440 0.005333
0.964888 0.006082
0.958877 0.006887
0.952414 0.007746
0.945503 0.008658
0.938153 0.009619
0.930371 0.010628
0.922164 0.011681
0.913540 0.012778
0.904508 0.013914
0.895078 0.015088
0.885257 0.016297
0.875056 0.017539
0.864484 0.018809
0.853553 0.020107
0.842274 0.021429
0.830656 0.022773
0.818712 0.024135  
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Table A.1- Coordinates of NACA0012 Profile (continued)  

0.806454 0.025514
0.793893 0.026905
0.781042 0.028307
0.767913 0.029717
0.754521 0.031131
0.740877 0.032547
0.726995 0.033962
0.712890 0.035374
0.698574 0.036778
0.684062 0.038172
0.669369 0.039553
0.654508 0.040917
0.639496 0.042263
0.624345 0.043585
0.609072 0.044882
0.593691 0.046149
0.578217 0.047383
0.562667 0.048581
0.547054 0.049739
0.531395 0.050854
0.515705 0.051923
0.500000 0.052940
0.484295 0.053904
0.468605 0.054810
0.452946 0.055655
0.437333 0.056436
0.421783 0.057148
0.406309 0.057789
0.390928 0.058355
0.375655 0.058844
0.360504 0.059251
0.345492 0.059575
0.330631 0.059812
0.315938 0.059960
0.301426 0.060017
0.287110 0.059980
0.273005 0.059848
0.259123 0.059619
0.245479 0.059292
0.232087 0.058866  
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Table A.1- Coordinates of NACA0012 Profile (continued) 

0.218958 0.058340
0.206107 0.057714
0.193546 0.056987
0.181288 0.056160
0.169344 0.055233
0.157726 0.054207
0.146447 0.053083
0.135516 0.051863
0.124944 0.050547
0.114743 0.049138
0.104922 0.047638
0.095492 0.046049
0.086460 0.044374
0.077836 0.042615
0.069629 0.040776
0.061847 0.038859
0.054497 0.036867
0.047586 0.034803
0.041123 0.032671
0.035112 0.030473
0.029560 0.028213
0.024472 0.025893
0.019853 0.023517
0.015708 0.021088
0.012042 0.018607
0.008856 0.016078
0.006156 0.013503
0.003943 0.010884
0.002219 0.008223
0.000987 0.005521
0.000000 0.000000  
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APPENDIX B 

COORDINATES OF NLR 7301 & FLAP 

Table B.1- The coordinates of NLR 7301 

x y
0.94360 0.01499
0.94267 0.01519
0.93988 0.01580
0.93524 0.01690
0.92878 0.01830
0.92051 0.02008
0.91047 0.02241
0.89870 0.02512
0.88524 0.02819
0.87015 0.03162
0.85349 0.03536
0.83532 0.03941
0.81572 0.04368
0.79476 0.04814
0.77253 0.05273
0.74911 0.05735
0.72459 0.06191
0.69908 0.06628
0.67267 0.07038
0.64547 0.07410
0.61758 0.07737
0.58912 0.08015
0.56019 0.08248
0.53092 0.08438
0.50141 0.08590
0.47178 0.08704
0.44216 0.08781
0.41265 0.08826
0.38337 0.08838
0.35444 0.08818
0.32598 0.08768  
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Table B.1- The coordinates of NLR 7301 (continued) 

0.29809 0.08687
0.27098 0.08577
0.24448 0.08440
0.21897 0.08276
0.19445 0.08087
0.17103 0.07874
0.14880 0.07638
0.12784 0.07381
0.11786 0.07245
0.10824 0.07103
0.09897 0.06958
0.09007 0.06807
0.08155 0.06650
0.07341 0.06488
0.06567 0.06317
0.05832 0.06137
0.05139 0.05943
0.04487 0.05731
0.03877 0.05506
0.03309 0.05268
0.02786 0.05009
0.02305 0.04717
0.01870 0.04373
0.01479 0.03978
0.01133 0.03544
0.00832 0.03076
0.00577 0.02582
0.00368 0.02064
0.00206 0.01516
0.00089 0.00959
0.00019 0.00422
-0.00004 -0.00080
0.00019 -0.00552
0.00089 -0.00992
0.00206 -0.01417
0.00368 -0.01804
0.00577 -0.02173
0.00832 -0.02521
0.01133 -0.02851
0.01479 -0.03158
0.01870 -0.03445  
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Table B.1- The coordinates of NLR 7301 (continued) 

0.02305 -0.03717
0.02786 -0.03972
0.03310 -0.04215
0.03877 -0.04443
0.04487 -0.04661
0.05139 -0.04873
0.05832 -0.05073
0.06567 -0.05263
0.07341 -0.05446
0.08155 -0.05622
0.09007 -0.05791
0.09897 -0.05954
0.10824 -0.06109
0.11786 -0.06259
0.12784 -0.06402
0.14880 -0.06672
0.17103 -0.06917
0.19445 -0.07132
0.21897 -0.07317
0.24448 -0.07470
0.27089 -0.07585
0.29809 -0.07666
0.32598 -0.07704
0.35444 -0.07701
0.38337 -0.07652
0.41265 -0.07550
0.44216 -0.07385
0.47178 -0.07144
0.50141 -0.06819
0.53092 -0.06417
0.56019 -0.05959
0.58912 -0.05459
0.61758 -0.04921
0.64547 -0.04355
0.67267 -0.03750
0.69908 -0.03080
0.72459 -0.02362
0.74911 -0.01597
0.77253 -0.00824
0.79476 -0.00080
0.81572 0.00585  
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Table B.1- The coordinates of NLR 7301 (continued) 

0.83532 0.01115
0.85349 0.01472
0.87015 0.01702
0.88524 0.01818
0.89870 0.01843
0.91047 0.01807
0.92051 0.01733
0.92878 0.01645
0.93524 0.01530
0.93988 0.01460
0.94267 0.01423
0.94360 0.01410  

 

Table B.2- The coordinates of flap 

x y
1.205092 -0.102133
1.204014 -0.101411
1.200754 -0.099373
1.195420 -0.095931
1.188106 -0.091056
1.178790 -0.085249
1.167564 -0.078726
1.154588 -0.071662
1.140013 -0.064282
1.124077 -0.056694
1.106992 -0.049135
1.098093 -0.045428
1.088996 -0.041798
1.079729 -0.038286
1.070330 -0.034929
1.060832 -0.031728
1.051260 -0.028701
1.041673 -0.025861
1.032094 -0.023205
1.022570 -0.020749  
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Table B.2- The coordinates of flap (continued) 

1.013137 -0.018508
1.003821 -0.016532
0.994643 -0.014820
0.985653 -0.013410
0.976874 -0.012269
0.968366 -0.011407
0.960148 -0.010799
0.952264 -0.010473
0.944743 -0.010407
0.937624 -0.010583
0.930955 -0.010922
0.924783 -0.011390
0.919139 -0.011985
0.914029 -0.012722
0.909442 -0.013659
0.905415 -0.014812
0.901946 -0.016156
0.899047 -0.017719
0.896720 -0.019522
0.895009 -0.021474
0.893925 -0.023517
0.893589 -0.025374
0.893925 -0.027199
0.894976 -0.028901
0.896887 -0.030054
0.899614 -0.030749
0.903046 -0.031232
0.907107 -0.031741
0.911738 -0.032320
0.916920 -0.032993
0.922644 -0.033757
0.928889 -0.034582
0.935621 -0.035469
0.942821 -0.036418
0.950452 -0.037440
0.958495 -0.038526
0.966901 -0.039670
0.975646 -0.040906
0.984677 -0.042203
0.993974 -0.043586  
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Table B.2- The coordinates of flap (continued) 

1.003479 -0.045045
1.013157 -0.046609
1.022976 -0.048257
1.032883 -0.050011
1.042829 -0.051865
1.052791 -0.053820
1.062706 -0.055875
1.072539 -0.058038
1.082262 -0.060300
1.091824 -0.062652
1.101185 -0.065091
1.119166 -0.070188
1.135943 -0.075465
1.151267 -0.080787
1.164948 -0.085915
1.176820 -0.090662
1.186673 -0.094993
1.194459 -0.098572
1.200104 -0.101159
1.203556 -0.102670
1.204699 -0.103214  


