
OPENMORE: A CONTENT-BASED MOVIE RECOMMENDATION SYSTEM 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

ÖZNUR KIRMEMİŞ 
 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

COMPUTER ENGINEERING 
 
 
 
 
 

MAY 2008 



Approval of the thesis: 
 
 

OPENMORE: A CONTENT-BASED MOVIE RECOMMENDATION 
SYSTEM 

 
 
 
submitted by ÖZNUR KIRMEMİŞ in partial fulfillment of the requirements for the 
degree of Master of Science in Computer Engineering Department, Middle East 
Technical University by, 
 
 
Prof. Dr. Canan Özgen                                                         _____________________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Volkan Atalay                                                       _____________________ 
Head of Department, Computer Engineering 
 
Dr. Ayşenur Birtürk                                                             _____________________ 
Supervisor, Computer Engineering Dept., METU                                
 
 
 
Examining Committee Members: 
 
Prof. Dr. Faruk Polat                                                _____________________ 
Computer Engineering Dept., METU 
 
Dr. Ayşenur Birtürk                                                     _____________________ 
Computer Engineering Dept., METU 
 
Assoc. Prof. Dr. Nihan Kesim Çiçekli                         _____________________ 
Computer Engineering Dept., METU 
 
Asst. Prof. Dr. Tolga Can                                     _____________________ 
Computer Engineering Dept., METU   
 
Asst. Prof. Dr. Reza Hassanpour    _____________________ 
Computer Engineering Dept., Çankaya University 
 
  
 
                                                                            
                                                                             Date:       _____________________ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 
 
 
      Name, Last name : Öznur KIRMEMİŞ 
 
 
      Signature      : 
 

 



 iii 

ABSTRACT 

 
 

OPENMORE: A CONTENT-BASED MOVIE RECOMMENDATION SYSTEM  
 
 
 

KIRMEMİŞ, Öznur 

M.Sc., Department of Computer Engineering 

Supervisor: Dr. Ayşenur BİRTÜRK 

 

May 2008, 103 pages 

 
 
 

The tremendous growth of Web has made information overload problem increasingly 

serious. Users are often confused by huge amount of information available on the 

internet and they are faced with the problem of finding the most relevant information 

that meets their needs. Recommender systems have proven to be an important 

solution approach to this problem. This thesis will present OPENMORE, a movie 

recommendation system, which is primarily based on content-based filtering 

technique. The distinctive point of this study lies in the methodology used to 

construct and update user and item profiles and the optimizations used to fine-tune 

the constructed user models. The proposed system arranges movie content data as 

features of a set of dimension slots, where each feature is assigned a stable feature 

weight regardless of individual movies. These feature weights and the explicit 

feedbacks provided by the user are then used to construct the user profile, which is 

fine-tuned through a set of optimization mechanisms. Users are enabled to view their 

profile, update them and create multiple contexts where they can provide negative 

and positive feedback for the movies on the feature level.   
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ÖZ 

 
 

OPENMORE: İÇERİK BAZLI FİLM TAVSİYE SİSTEMİ  

 
 
 

KIRMEMİŞ, Öznur 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Dr. Ayşenur BİRTÜRK 

 

Mayıs 2008, 103 sayfa 

 
 
 

Web ortamındaki hızlı büyüme, bilgi yükü problemini artan bir hızla ciddi bir sorun 

haline getirmektedir. Kullanıcılar genelde internetten erişebildikleri çok büyük 

miktarlardaki bilgi karşısında şaşırmakta ve kendi ihtiyaçlarını karşılayacak en uygun 

bilgiyi bulabilme sorunuyla karşı karşıya kalmaktadırlar. Tavsiye sistemlerinin, bu 

probleme önemli bir çözüm yaklaşımı olduğu kanıtlanmıştır. Bu tez çalışmasında, 

temeli içerik bazlı filtreleme tekniğine dayanan, OPENMORE film tavsiye sistemi 

sunulmaktadır.  Bu çalışmanın ayırt edici özellikleri, kullanıcı ve öğe profillerini 

oluşturmada ve değiştirmede kullanılan yöntem ve kullanıcı profillerinin 

iyileştirilmesinde kullanılan optimizasyon tekniklerinde yatmaktadır. Önerilen 

sistem, film içerik bilgilerini farklı boyut kümelerinin özellikleri olarak 

düzenlemekte, her özelliğe filmlerden bağımsız olarak sabit bir özellik ağırlığı 

atamaktadır. Bu özellik ağırlıkları ve kullanıcı geribildirimleri, kullanıcı profilini 

oluşturmakta kullanılmaktadır ve oluşturulan profiller kullanılan optimizasyonlarla 

iyileştirilmektedir. Kullanıcılar profillerini görebilmekte, güncelleyebilmekte ve 

pozitif ve negatif geribildirimlerini film özellikleri bazında birden fazla durum 

önceliği olarak düzenleyebilmektedirler. 
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CHAPTER 1 

1.  INTRODUCTION 

1.1 Background 

We are in the information society and the quantity of new information available 

every day exceeds our limited processing capabilities. When we want to choose 

something for a particular domain, we face far more choices than we can try. The 

problem here is the huge size of the search space of all the available alternatives in a 

particular domain. Therefore, we need some tool/mechanism that will be able to 

suggest us only the worthwhile information. By using recommendations, we can 

make the search space of available choices for any particular domain smaller, which 

will result in saving a lot of time. 

Recommender systems automate the facility of obtaining recommendations.  

Therefore these systems are a valuable solution for the information overload 

problem.  

Considering these; “a recommendation system is a specialized program which 

attempts to predict items that a user may be interested in, given some information 

about the user’s profile” [1]. The domain of a recommendation system can be 

anything on which it is worth taking recommendations on, like movies, music, 

books, news, web pages, and articles. 

The customers of electronic businesses are often overwhelmed by the multitude of 

the options available to them and depend on recommendation systems for a 

personalized set of product recommendations. Recommendation systems have been 

deployed within many e-commerce applications concerning different domains like; 
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Amazon [3] for books; IMDb [2], MovieLens [5], and MovieFinder [4] for movies; 

Pandora [6], and Last.fm [7] for music domains.  

1.2 Recommendation Systems: An Important Research 
Area 

Recommender systems have become an important and independent research area 

since the appearance of the first papers in mid - 1990s when researchers started to 

focus on recommendation problems that explicitly rely on the rating structure [15]. 

Recommendation systems’ roots go back to cognitive science, approximation theory, 

information retrieval, forecasting theories, and also have links to management 

science and to consumer choice modeling in marketing. Recommendation systems 

today are built using a synthesis of ideas from different areas including Artificial 

Intelligence, Natural Language Processing, Human-Computer Interaction, Sociology, 

Information Retrieval, and the technology of the WWW. There has been much work 

done both in the industry and academia for constructing new methodologies to 

recommender systems over the last decade. The interest in this research area still 

remains high because it needs solutions to many open-ended problems like trust in 

recommendation systems, explanation facility, etc. In addition, it needs 

improvements in better methods to represent user behavior and information about 

items, more advanced recommendation modeling techniques, adding context data, 

utilization of multi criteria ratings, etc. Many conferences and workshops were 

organized and have been planned about recommendation systems, including ACM 

Recommender Systems [28] and AAAI Workshop on Recommender Systems [27]. 

1.3 Problem Definition 

This thesis focuses on development and evaluation of a movie recommendation 

system, called OPENMORE. Several features are integrated in OPENMORE, in 

order to maximize user trust and satisfaction for the recommender. During the design 

and implementation of the system, we have considered the feedback given from the 

anonymous reviewers of several workshops and conferences on recommendation 
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systems (namely e-challenges [31], WEBIST [23], ACM [28] and AAAI [27])  to 

which we’ve made paper submissions throughout the study. 

1.4 Interpretation 

In this thesis study, we want to focus on the fact that, standard strategies are not 

always sufficient to reflect a person’s preferences. We have worked on the influence 

of negative feedback, open and editable user profiles and explanation facility on the 

accuracy of the produced recommendations and increased users’ trust and 

satisfaction towards the recommender.  

1.5 Outline 

This thesis consists of the following chapters: 

Chapter 2 - Recommendation Systems introduces the idea behind recommenders, 

and how they appear as a solution to information overload problem. 

Recommendation problem is introduced formally, and the methods currently used by 

the recommenders are explored in detail. 

Chapter 3 – Recommendation System Examples describes popular 

recommendation systems from different domains. Current popular movie 

recommenders are examined in detail, and their pluses and minuses are discussed. 

Chapter 4 – OPENMORE: A Content Based Movie Recommender presents our 

movie recommender, OPENMORE. The architecture of the system is given, the data 

representation scheme is explained, and the system components are described in 

detail. 

Chapter 5 – Evaluation of the system chapter presents the evaluation scheme 

designed to test OPENMORE. 
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Chapter 6 – Conclusions draws the conclusion of this thesis work and recommends 

possible feature work. 
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CHAPTER 2 

2.  RECOMMENDATION SYSTEMS 

The purpose of this chapter is to present the history of recommender systems, define 

what is a recommender system, how the recommendation problem can be formalized, 

and explore the research conducted on recommender systems. 

 

2.1 The Recommendation Problem 

Recommender systems (RS) are computer-based techniques that can be utilized to 

efficiently provide personalized services in many e-business domains. They do so by 

connecting users with information about the content of recommended items and the 

opinions of other users. Such systems have become powerful tools in domains such 

as electronic commerce, digital libraries, and knowledge management. 

Recommendation methods have been in use informally for years. For instance, even 

in prehistoric days, when people found a new berry, not everyone tried that berry 

right away; instead, most of them would wait to see if the others who had tried 

became sick or not after eating the food. If no one became sick, then this acted as a 

positive recommendation for eating the berry. If people did become sick, then it 

served as a negative recommendation for the berry in question [21]. This is a rather 

simplified but accurate view of recommender systems. Positive and negative 

recommendations help people to find out new things that they will like or avoid 

trying some bad alternatives which they will not like. This results in saving a lot of 

time and avoids facing difficulties regarding information overload, which is a serious 

problem nowadays. 
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The roots of RS can be traced back to works in different fields including; cognitive 

science [9], approximation theory [10], information retrieval [11], forecasting 

theories [12], and also have links to management science [13] and to consumer 

choice modeling in marketing [14]. Recommender systems emerged as an 

independent research area in the mid-1990s when researchers started focusing on 

recommendation problems that explicitly rely on the ratings structure [16] [17] [18]. 

Over the last decade, a lot of work has been done both in the industry and academia 

on developing new approaches to recommender systems and the interest in this area 

still remains. 

Informally, the recommendation problem can be reduced to the problem of 

estimating ratings for the items that have not been experienced by a user. Intuitively, 

this estimation is usually based on the ratings given by this user to other items and on 

some other information related to context. Once the ratings for the yet unrated items 

can be calculated, the items with the highest estimated ratings can be recommended 

to the user.  

Formally, the recommendation problem can be represented as follows [15]. The 

formal model of the recommendation system consists of three items, a set C  of all 

users, a set S  of all possible items that can be recommended, such as books, movies, 

or restaurants and a utility function named u .  The space S  of possible items can be 

very large, like all the movies or all the books that are going to be recommended. 

Similarly, the user space can also be very large, even millions in some cases. The key 

part of the formal model is the utility function, which measures the usefulness of an 

item s  for a user c , that is, RSCu →×: . Here, R  is a totally ordered set. It can 

contain nonnegative integers or real numbers within a certain range, which depends 

on the representation scheme used in the recommendation system.  

By using 〉〈 uSC ,, model, the recommendation problem is reduced to choosing an 

item Ss ∈' ,  for a user  Cc ∈ that maximizes the user’s utility. More formally: 

),(maxarg', scusCc Ssc ∈
=∈∀    (1) 
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In RSs, the utility of an item is usually represented by a rating, which indicates how a 

particular user liked a particular item.  

Each element of the user space C can be defined by using a profile.  This is called a 

user profile, which contains information about user’s likes and dislikes for the 

recommendation domain. Representation of the user profile depends on the approach 

and the domain, but, for instance, it can include various user characteristics, like age, 

gender, income, marital status, etc. In the simplest case, the user profile can contain 

only a single (unique) element, such as User ID.  

Similarly, each element of the item space S  can be defined with a set of 

characteristics, depending on the chosen representation scheme. For example, in a 

movie recommendation application S  may be a collection of movies. Each of the 

movies in S can be represented not only by its unique identifier, but also by its 

content information, like its title, genre, director, year of release, leading actors, etc, 

whichever is thought to have effect on the recommendation process. 

Table 1 – User-Item Ratings Matrix for Movie Recommendation 

 Matrix Memento Hannibal Cube 

Jack 3 5 4 ⊗  

Jane ⊗  2 ⊗  4 

Jim 5 2 3 2 

Bob ⊗  4 4 3 

 

The main concern of RS is that the utility function u  is usually not defined on the 

whole SC × space.  In RS, utility is typically represented by ratings and is initially 

defined only on the items previously rated by the users. For example, in a movie 

recommendation system, users initially rate some subset of movies that they have 

already seen. An example of a user-item rating matrix for a movie recommendation 

application is presented in Table 1, where ratings are specified on a scale of 1 to 5. 
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The “ ⊗ ” stands for, the users have not rated the corresponding movies. Therefore, 

the recommendation engine should be able to estimate or predict the ratings of these 

nonrated movie/user combinations and then it should issue appropriate 

recommendations based on these predictions. Therefore, if we consider SC × space 

as a matrix of ratings, many of the ratings are not provided initially, so the matrix is 

highly sparse. Therefore, the job of the recommendation system is to extrapolate u  

to the whole space SC ×  matrix. The way that is followed to issue extrapolations, 

actually defines the utility function. This extrapolation problem has been approached 

in a variety of ways, and mainly performed by [18] [19] [20]: 

1. Specifying heuristics that will define the utility function empirically 

validating its performance. 

2. Estimating the utility function through optimizing certain performance 

criterion, such as the mean square error [15]. 

2.2 Information Retrieval and Filtering 

Recommender systems can be understood as a kind of information retrieval systems 

[22]. In information retrieval systems, user queries are considered to be one-time 

episodic tasks ordered to the system to complete. However, in recommenders, 

besides the inherent retrieval activity, there is a continuing task, which is, deriving 

good estimates of ratings for items the user has not experienced yet. 

The rapidly expanding Internet has given the users the ability to choose among a vast 

variety of information, which results in information overload problem. This 

information overload problem is the reason why several techniques for information 

retrieval and information filtering have been developed. Although the goal of both 

information retrieval and information filtering is to deal with the information 

overload problem by examining and filtering big amounts of data, there is often a 

distinction made between them [22].  
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2.2.1 Information Retrieval 

Information retrieval (IR) is a data search technology which includes crawling, 

processing and indexing of content, and querying for content. Crawling is the act of 

accessing the database in order to fetch the information. The fetched information can 

be added, deleted or modified in order to produce the resulting document by the 

processor. Indexing is a process of examining the processed content, making a 

searchable data structure, called index, which contains references to the content. 

Queries can be seen as requests for information. IR systems let users input a query in 

the form of keywords which describes the information needed through a query 

interface. Then the query-processor will use the index to find requested information 

references based on the keywords and then it will display the references. The whole 

aim is to analyze the user’s request from the query, in order to return the most 

relevant set of results. 

In IR systems, information filtering is done by letting the user specify what 

information is needed by manually typing keywords describing the requested 

information. IR is very successful at supporting users who know how to describe 

exactly what they are looking for. This is the key difference between an IR and RS. 

In RS, users do not know what they want and what they are willing to get as a result.  

2.2.2 Information Filtering 

Information filtering (IF) systems focus on filtering information based on a user 

profile. User profile can be constructed explicitly from the user by letting the user 

specify and combine interests, or by letting the system implicitly monitor the user’s 

behavior. Filtering within an IF system is done when the user automatically receives 

the information needed based on his profile. The advantage of IF is its ability to 

adapt to the user’s long-term interest, and bring the information to the user.  
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The idea behind RS is closely related to IF in the sense that the aim is to construct a 

system that acts as a personalized decision guide for users, and aiding them in 

decision making about matters related to user preferences. 

2.3 Recommendation Techniques 

Recommendation techniques can be classified in a many different ways [24]. 

However, the interest of this thesis study is not the type of interface or the properties 

of the user’s interaction with the recommender, but rather the focus is on the sources 

of data on which recommendation is based and the use to which that data is put. 

Specifically, recommender systems have the following data and tools in order to do 

their work [25]: 

• background data; the information that the system has before the 

recommendation process begins 

• input data; the information that user must communicate to the system in 

order to generate a recommendation 

• algorithm; that combines background and input data to arrive at its 

suggestions.  

Considering data and algorithm used in a recommender, we can classify 

recommendation systems into five classes as shown in Table 2. Following the 

notation given in section 2.1, S denotes the set of items over which recommendations 

might be made, C  is the set of users whose preferences are known, c  is the user for 

whom recommendations need to be generated, and s  is some item for which we 

would like to predict c ’s preference. 
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Table 2 – Recommendation Techniques 

Technique Background Data Input Data Algorithm 

Collaborative Ratings provided 

for items in S  

from users in C . 

Ratings provided 

for items in S  
from c . 

Identify similar users of c from 

C and extrapolate from their 
ratings of s . 

Content-based Features of items 
in S . 

Ratings provided 
for items in S  
from c . 

Construct a classifier that fits c ’s 
rating behavior and use it on s . 

Demographic Demographic 
information about 

C  and their 
ratings of items in 

S  . 

Demographic 
information about 
c . 

Identify demographically similar 
users of c and extrapolate from 
their ratings of s . 

Utility-based Features of items 

in S . 

A utility function 

over items in  S  
that describes c ’s 
preferences. 

Apply the utility function to the 
items and determine s ’s rating. 

Knowledge-based Features of items 

in S together with 
knowledge of how 
these items meet 
user’s needs 

A description of 
c ’s needs or 
interests. 

Infer a match between s  and c ’s 
need. 

 

Although five types of recommendation systems are listed in the Table 2, there are 

even more techniques to solve recommendation problem. However, as Robin Burke 

shows in her 2002 work on hybrid recommender systems [25], collaborative filtering 

and content-based systems are the two main types currently relevant to any type of 

recommendation domain. Therefore, these two approaches would be discussed more, 

and the attention will be on content-based recommendation systems, since it is the 

approach used in this thesis study. In addition to this, examples of recommenders that 

applied these two main techniques can be found in Chapter 3. 
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2.3.1 Collaborative Recommendation 

Collaborative recommender systems (or collaborative filtering systems) try to predict 

the utility of items based on the items previously rated by other similar users. Here 

what is obvious is that, the recommendation system does not need to keep track of 

item features or any demographic information, since finding similarities between 

user preferences is enough to build a collaborative filtering recommendation system.  

In formal terms, collaborative recommenders estimate the utility ),( scu of an item s  

for a user c  based on the utilities ),( scu j
 assigned to item s  by those users Ccj ∈  

who are “similar” to user c [15]. For instance, in a movie recommendation system, in 

order to recommend movies to user c , the collaborative recommender will try to find 

the “peers” of user c , i.e., other users that have similar tastes in movies, or who rate 

the same movies similarly. Then, only the movies that are mostly liked by the 

“peers” of user c  would be recommended to him. 

Typically, user profiles are kept as a vector of items and their ratings in collaborative 

recommendation systems, and the vector is augmented continuously as the user 

interacts with the system over time. Some systems used time-based discounting of 

ratings to account for drift in user interests [26]. Ratings may be binary (like/dislike) 

or real-valued indicating degree of preference. Some of the most important systems 

using this technique are MovieLens [5], Amazon [3], GroupLens/NetPerceptions 

[17], Ringo/Firefly [18], and Recommender [29]. 

2.3.1.1 Flow of Action 

A basic algorithm for building a collaborative filtering recommendation system 

works as follows; first of all, the recommendation system maintains a database of 

many users’ ratings of a variety of items that are going to be recommended. For 

instance, for movie recommendation systems, there exist datasets on the web, which 

contain ratings of users.  Second, for a given user, other similar users, or peers whose 

ratings strongly correlate with the current user, are tried to be found. This can be 

performed by algorithms like k-nearest neighbor classifiers. Finally, items rated 
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highly by those peers, but not rated by the current user, are recommended. This is the 

basic structure of a collaborative filtering algorithm that is used by almost all existing 

commercial recommendation systems. 

For collaborative filtering approach, finding similar users constitutes the main part of 

the whole recommendation system. Many similarity methods or formulas are used to 

find similar users like the Cosine Similarity Measurement or Pearson Correlation 

Coefficient. According to [30], algorithms for collaborative recommendations can be 

grouped into two general classes: memory-based (or heuristic-based) and model-

based. Memory-based algorithms are essentially heuristics that make rating 

predictions based on the entire collection of previously rated items by the users. 

Memory-based collaborative recommenders compare users against each other using 

correlation or other measures. More formally, the value of the unknown rating 

),( scr for user c and item s  is usually computed as an aggregate of the ratings of 

some other (usually, the N most similar) users for the same item s . 

In contrast to memory-based methods, model-based algorithms use the collection of 

ratings to learn a model, which is then used to make rating predictions. Model-based 

recommenders derive a model from the historical rating data and use this model to 

make predictions [30]. Model-based recommenders have used a variety of learning 

techniques including neural networks, latent semantic indexing, and Bayesian 

networks. 

2.3.2 Content-Based Recommendation 

Main idea behind content based recommendation systems is that, they recommend 

items to users that are similar to the items users rated highly before. Content-based 

recommendation is actually an outgrowth and continuation of information filtering 

[22]. In a content-based system, the objects of interest are defined by their important 

features. For instance, NewsWeeder [33], which is a text recommendation system, 

uses the words of their texts as features. A content-based recommender learns a 

profile of the user’s interests based on the features present in objects the user has 
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rated before. Therefore, it constructs a user profile from the item profiles.  The type 

of the user profile derived by a content-based recommender depends on the learning 

method employed. Decision trees, neural nets, and vector-based representations have 

all been used. As in the collaborative case, content-based user profiles are long-term 

models and updated as more evidence about user preferences is observed. In formal 

terms, content-based recommenders estimate the utility ),( scu  of an item s  for a 

user c  based on the utilities ),( iscu  assigned by the user c to items Ssi ∈ that are 

“similar” to item s [15]. 

Content-based recommendation approach has its roots in information retrieval and 

information filtering research. However, the improvement of the content-based 

recommendations over traditional information retrieval approaches comes from the 

use of the user profiles that contain information about users’ tastes, preferences and 

needs. Therefore, while information is gathered for the user, user preferences are also 

taken into account. 

The user profile can be constructed from the users explicitly, for instance, through 

questionnaires. It can also be obtained implicitly by watching the user’s transactional 

behavior over time. In addition to these alternatives, the system can use some sort of 

a machine-learning algorithm to induce a profile of the user’s preferences from the 

examples based on a featural description of content. 

2.3.2.1 Flow of Action 

The basic flow of action of a content-based recommendation system, displayed in 

Figure 1, can be described as follows; first of all, the system gathers some sort of 

information from the user, about his/her preferences. For instance, for a movie 

recommendation system, user’s ratings may be gathered for some movies he has 

already seen. In addition to this information, the system may have information about 

the content of the movies in its database, through web mining that it will perform, to 

extract information about movies. Then using these items’ profile information, the 

system will build the user profile. The system has information about all the items that 
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it can recommend to the user, in advance, and it tries to find most related or similar 

items in its item space or item database with the user’s profile to produce its 

recommendations. 

 

 

 

 

 

Figure 1 – Content-Based Recommendation 

 

Therefore, there are three building blocks in a content-based recommendation 

system, namely; item profiles, user profiles, and prediction techniques to make 

valuable recommendations.  

For each item that can be recommended, an item profile will be created. More 

formally, let )(sContent be the profile of item s  [15]. This profile information can 

include a set of attributes characterizing item s , which will be used to determine the 

appropriateness of the item s  for the recommendation process. For instance, for a 

movie recommendation system, author, title, actor, director …etc can be possible 

attributes that characterize items in the item space. Attributes can be determined 

straightforwardly by just deciding on which attributes to concentrate on, for a 

recommendation process. Alternatively, attributes of items can be determined 

through examining some textual data, which can possibly contain a set of some 

“important” words for that domain. This is usually the case for textual data, like for 

instance, a web page recommendation system. The “importance” (or 

“informativeness”) of a word in a document can be determined with some weighting 
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measure that can be defined in several different ways. One of the best-known 

measures for specifying keyword weights in Information Retrieval is the term 

frequency/inverse document frequency TF-IDF [48] measure. 

The profiles of each user, which is shown by )(Pr cofileedContentBas , are obtained 

by analyzing the content of the items previously seen and constructed using keyword 

analysis techniques from information retrieval. For example, 

)(Pr cofileedContentBas can be defined as a vector of weights ),......2,1( wckwcwc , 

where each weight wci denotes the importance of keyword ki  to user c  and can be 

computed from individually rated content vectors using a variety of techniques. This 

is one way of representing user profiles, and it can be used in a web page 

recommendation system, for instance. In addition to this, user profiles can be 

represented by some properties of a person like age, gender, social status... etc which 

are usually thought as important factors in determining that person’s preferences and 

making accurate recommendations. Other than web page recommendation systems, a 

vector of features, which will simplify similarity measurement calculations, can be 

used to represent both user profile and item profile.  

For the prediction phase, the important part is the utility function. In content-based 

systems, the utility function ),( scu can be defined as follows: 

                ))(),(Pr(),( sContentcofileedContentBasscorescu =      (2) 

Here, as it is observed from the above formula, utility function is defined as a scoring 

function over item profile and user profile. In content based recommendation 

systems, both )(Pr cofileedContentBas  of user c  and )(sContent of document s  can 

be represented as TF-IDF vectors of keyword weights. Let’s call  

)(Pr cofileedContentBas  vector, as vector cw  and )(sContent  profile vector, as 

vector sw . Moreover, the utility function ),( scu  is usually represented in the 

information retrieval literature by some scoring heuristic defined in terms of the 
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vectors mentioned above, such as the Cosine Similarity Measure [39]. The formula 

of the utility function can then be represented as follows; 

22 ||||||||

.
),cos(),(

sc

sc
sc

ww

ww
wwscu

×
==      (3) 

As a result of these similarity measures, for example, if a user c  reads many online 

articles on the topic of bioinformatics, then content-based recommendation 

techniques will be able to recommend other bioinformatics articles to the user c . 

This is the case because these articles will have more bioinformatics-related terms 

than articles on other topics and, therefore, )(Pr cofileedContentBas , as defined by 

vector cw , will represent such terms with higher weights. Consequently, a 

recommender system using the cosine or a related similarity measure will assign 

higher utility ),( scu  to those articles that have high weighted bioinformatics terms in 

and lower utility to the ones where bioinformatics terms are weighted less. 

Besides the traditional heuristics that are based mostly on information retrieval 

methods, other techniques for content-based recommendation have also been used, 

such as Bayesian classifiers and various machine learning techniques, including 

clustering, decision trees, and artificial neural networks. These methods use models 

learned from the underlying data using statistical learning and machine learning 

techniques, rather than heuristics. 

2.3.3 Demographic Recommendation 

Demographic recommendation technique includes categorizing users based on their 

personal attributes and demographic categories. Grundy [38] was an early example 

of a demographic recommender which recommended books based on personal 

information gathered through an interactive dialogue. Data from these dialogues was 

processed and user responses were matched against a library of manually assembled 

user stereotypes. Some more recent recommender systems have also taken this 

approach like the system described in [38], which uses demographic groups from 
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marketing research to suggest a range of products and services. In order to gather the 

data for user categorization, a short survey is used.  

In addition, machine learning techniques can also be applied to arrive at a classifier 

based on demographic data in order to develop a demographic recommender.  The 

representation of demographic information in a user model can vary greatly. 

Demographic techniques are similar to the collaborative approach in the sense that, it 

forms “people-to-people” correlations, however it uses different data. The benefit of 

this approach is that, it may not require a history of user ratings of the type needed by 

collaborative and content-based techniques. 

2.3.4 Utility-Based Recommendation 

Both utility-based and knowledge-based recommendation systems base their 

recommendations on an evaluation of the match between a user’s need and the set of 

options available and they do not attempt to build long-term generalizations about 

their users. Utility-based recommenders produce recommendations based on a 

computation of the utility of each object for the user. Formally, ratings that are going 

to be suggested to a user c  are coded using a utility function which is applied to all 

the items Ssi ∈  for defining recommendations.  

Of course, the central problem is how to create a utility function for each user. 

Different techniques can be applied for arriving at a user-specific utility function and 

applying it to the objects under consideration [34]. For instance, PersonaLogic [25] 

helps consumers identify which products best meet their needs by guiding them 

through a large product feature space in the format of a deep interview. The system 

derives the utility function for the users based on the collection of questionnaires, 

and then employs constraint satisfaction techniques to locate the best match for the 

users, with the assistance of the function.  

The benefit of utility-based recommendation is that it can factor vendor reliability 

and product availability into the utility computation, which are non-product 
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attributes, and which will make it possible, for example, to trade off price against 

delivery schedule for a user who has an immediate need. However, this relies heavily 

on the information provided by the user. 

2.3.5 Knowledge-Based Recommendation 

Knowledge-based recommendation systems try to suggest objects based on the 

inferences about a user’s needs and preferences. Actually, all recommendation 

techniques do the same kind of inference. But what distinguishes knowledge-based 

approaches from other techniques is the fact that the knowledge-based 

recommenders have functional knowledge that is, they have knowledge about how a 

particular item meets a particular user’s needs, and can therefore reason about the 

relationship between a need and a possible recommendation. The user profile can be 

kept as any knowledge structure supporting this inference. In its simplest case, as in 

Google [36], user profile can be a query that the user has formulated. In others, it 

may be a more detailed representation of the user’s needs. Several knowledge-based 

systems employ techniques from case-based reasoning for knowledge-based 

recommendation.  

The knowledge used by a knowledge-based recommender can also take many forms. 

For instance, Google uses information about the links between web pages to infer 

popularity and authoritative value [36]. 

2.3.6 A Comparison of Recommendation Techniques 

All recommendation techniques have their own strengths and weaknesses. The 

possible weaknesses of the recommendation techniques are mentioned below: 

New User Problem: This problem refers to the fact that, in order to make accurate 

recommendations, the system must first learn the user’s preferences from the ratings 

that the user gives. So if a user rates few items, it becomes difficult to produce 

recommendations. In addition to this, in order to produce accurate recommendations, 
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an item should be rated by a sufficient number of users; otherwise the results may not 

be meaningful.  

New Item (Cold-Start) Problem: This problem refers to the fact that, new items are 

added regularly to recommender systems and if the recommender relies solely on the 

other users’ preferences to make recommendations, until a new item is rated by a 

substantial number of users, the recommender would not be able to recommend it. 

Similarly, a new item that does not have sufficient ratings cannot be easily 

recommended. This problem makes it necessary for recommender systems to provide 

other incentives to encourage users to provide ratings. 

Overspecialization Problem: This problem refers to the fact that, recommendation 

systems may recommend items that are too similar to the ones already observed by 

the user; therefore this will preclude users from discovering novel items. Diversity of 

the recommendations is a desirable feature for all recommenders. Because of this, it 

is good to recommend items that are outside the user’s profile. Introducing some sort 

of randomness by, for instance genetic algorithms, can solve this problem. As a 

result of this, users will be presented with a range of options and not with a 

homogeneous set of alternatives, which will result in more user satisfaction. 

Sparsity of ratings: This problem occurs in recommenders, which construct 

recommendations based on the ratings of the other users. It becomes a severe 

problem for such recommenders when few users have rated the same items, because 

the results may not be accurate in that case. Sparsity problem evolves with time as 

new users join the system and new items are added to the database. 

“Gray Sheep” Problem [40]: This problem occurs in approaches that base its 

recommendations on similar users’ tastes. Problem occurs if there are a small number 

of users who have similar tastes with the user at hand. In that case, results may not be 

very accurate, if the system cannot locate a sufficient number of peers for the user. 
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Considering the above problems, limitations of recommendation techniques are 

summarized in Table 3. 

 

Table 3 – Limitations of Recommendation Techniques 

Technique Disadvantage 

Collaborative • New User Problem 

• New Item Problem 

• “Gray Sheep” Problem 

• Sparsity of ratings 

• Overspecialization 

Content-based • New User Problem 

• Overspecialization 

• Limited Content Analysis 

Demographic • New User Problem 

• “Gray Sheep” Problem 

• Overspecialization 

• Must collect demographic information 

Utility-based • User must input utility function 

Knowledge-based • Knowledge engineering required 

 

Collaborative recommender systems can face new user, new item, “gray sheep” 

problems and its success depends on the overlap in ratings across users and can have 

difficulties in producing recommendations when there is a sparsity of ratings. If the 

dimensionality of the space is reduced, the sparsity problem will not be that 

significant. However, this depends on the domain of recommendation. For instance, 

for domains where many items are available, like news filtering, the commonality 

between the rated items of users and the user at hand will be less. Also, for the user 

whose tastes are unusual compared to the rest of the population, there will not be any 
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other users who are particularly similar, leading to poor recommendations, 

overspecialization and “gray sheep” problems. 

Pure collaborative techniques are most appropriate for cases where the degree of user 

interest is relatively high across a small and static set of items. If there is a rapid 

change in the set of items, old ratings will not be valuable for the new users who 

have similar items rated with others. If the set of items is large and user interest 

thinly spread, then the probability of overlap with other users will be small. It can be 

stated that collaborative recommenders work best for a user who fits into a group 

with many neighbors of similar taste. 

Content-based approach has also the new user and overspecialization problems. 

Finding the appropriate features in a particular domain can be difficult with content 

based recommendation. In addition to this, in order to have a reliable content-based 

recommender, users should rate a sufficient number of items. The degree of 

descriptiveness of items is highly important for content-based recommendation. 

Content-based recommenders’ success is limited with the features that are explicitly 

associated with the items.  However, collaborative approaches do not need any 

profile data of items, since they rely only on other users’ ratings. 

Utility-based and knowledge-based recommendations do not have new user, new 

item and sparsity problems since they base their approach on statistical evidence. 

Utility-based approach requires a complete utility function to be constructed over all 

features of objects under consideration. However, they are powerful in the sense that 

they can include different factors than just item-specific features into 

recommendation process. Demographic recommendation has new user, “gray sheep” 

and overspecialization problems. In addition, it needs enough demographic data to 

produce recommendations. 

Knowledge-based recommenders need knowledge acquisition systems, which is 

actually a drawback of all knowledge-based systems. Despite this drawback, 

knowledge-based recommendation has some beneficial characteristics like, 
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demanding less data from users and producing recommendations as wide-ranging as 

its knowledge base allows. 

2.3.7 Hybrid Recommender Systems 

Several recommendation systems use a hybrid approach by combining two or more 

recommendation techniques in order to gain better performance with fewer 

drawbacks of each individual method. Most frequently, content-based and 

collaborative recommendation approaches are combined. There exist different ways 

to combine recommendation methods into a hybrid recommendation system. Some 

examples of these combination approaches can be stated as follows: 

1. Collaborative and content-based methods can be implemented separately and 

their predictions can be combined, by using a weighting procedure. 

2. Some content-based characteristics can be incorporated into a collaborative 

approach. 

3. Some collaborative characteristics can be incorporated into a content-based 

approach. 

4. A general unifier model can be constructed that will incorporate both content-

based and collaborative characteristics. 

Details of these hybrid methods are described in the following subsections; 

2.3.7.1 Combining Separate Recommenders 

In this approach, content-based and collaborative recommendation systems are 

implemented separately. Here, there are two ways to combine these separate 

recommenders. First, the outputs or ratings of these recommenders can be combined 

to form a final recommendation using either a linear combination of ratings or a 

voting scheme. Alternatively, one of the individual recommenders can be chosen to 

be used at any given moment, especially the one that is “better” than others based on 
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some recommendation “quality” metric. For example, the recommender system can 

be selected that can give the recommendation with the higher level of confidence or 

whose recommendation is more consistent with the past ratings of the user. 

2.3.7.2 Adding Content-Based Characteristics to Collaborative Models 

In [47], the “collaboration via content” approach is used, where traditional 

collaborative techniques together with the content-based profiles are maintained for 

each user. These content-based profiles, and not the commonly rated items, are then 

used to calculate the similarity between two users. As a result, this allows 

overcoming some sparsity-related problems of a purely collaborative approach, 

since, not many pairs of users will have a significant number of commonly rated 

items. In addition, using this approach, users can be recommended an item not only 

when this item is rated highly by users with similar profiles, but also directly, i.e., 

when this item scores highly against the user’s profile.  

2.3.7.3 Adding Collaborative Characteristics to Content-Based Models 

In this method, some dimensionality reduction technique can be used on a group of 

content-based profiles. For example, a collaborative view of a collection of user 

profiles can be created, where these user profiles will be represented by some sort of 

vectors. This will result in a performance improvement compared to the pure 

content-based approach. 

2.3.7.4 Developing a Single Unifying Recommendation Model 

Many researchers have followed this approach in recent years. For instance, in [51], 

content-based and collaborative characteristics, like the age or gender of users or the 

genre of movies are employed in a single rule-based classifier. Therefore, the 

features of a content-based recommender and collaborative features are combined 

together in order to produce accurate recommendations. 
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CHAPTER 3 

3.  RECOMMENDATION SYSTEM EXAMPLES 

The best way of gaining knowledge of the recommendation problem is to investigate 

important recommendation systems that have been built so far, getting some ideas 

and learning how to solve common practical problems that are not usually reported in 

scientific literature. In this chapter, classifications of recommendation systems are 

presented. Recommendation systems can be classified according to the different 

technical features they possess including the kind of approach they conduct, and their 

working domains. In section 3.1, all the main technical issues, together with their 

detailed technical features, that a recommender should address are presented. Then 

based on this knowledge, examples of popular recommenders are examined. 

Examples are presented based on the taxonomy according to their working domain. 

3.1 Technological Features of a Recommender 

There are five main issues a recommender system must address, namely, “knowledge 

acquisition technique”, “shared information approach”, “profile representation”, 

“knowledge source”, and “recommendation technique”.  

First of all, some sort of knowledge acquisition technique must be employed in order 

to gather information about the user interests for the recommendation domain in 

order to construct a user profile. Knowledge acquisition can be done implicitly or 

explicitly. Implicit knowledge acquisition has little or no impact on the user’s normal 

work activity, since user is not bothered for this process. Implicitly gathering user 

preferences can be done by monitoring user’s behavior or by using some heuristics to 

infer information. Implicitly acquired knowledge requires some degree of 

interpretation to understand the user’s real goals; this is an inherently error prone 

process, reducing overall confidence in any resulting user profile. Explicit 



 26

knowledge acquisition requires the user to interrupt their normal work to provide 

feedback or conduct some sort of programming of the system. Explicit knowledge is 

generally more confident, since it is provided by the users themselves and not 

acquired from indirect inference.  

Second, recommender systems may allow information to be shared among users to 

enhance the overall recommendation performance; however, this shared information 

must be clearly defined. The type of knowledge that can be shared includes domain 

knowledge and user feedback. For instance, examples of interesting items can be 

shared between similar users or previous navigation patterns may also be shared, as 

they allow new users to receive the benefit from other people’s previous mistakes 

and successes. In addition, domain knowledge can be shared, since it is normally 

programmed in and hence available to the system from the start.  

Third of the main issues that a recommender should address is the representation 

scheme of the user profile in the system. The standard approach to profile 

representation is the vector-space model, where profiles are represented as feature 

vectors. This standard representation technique allows easy application of machine-

learning techniques when formulating recommendations. For instance, for content-

based recommenders, vectors can be formed from features of items in the domain, 

while for collaborative filtering, the features could be the keywords commonly used 

by users in their search queries. Navigation trails can also be used to represent time-

variant user behavior. If some initial knowledge engineering for the domain has been 

conducted, this may provide knowledge about the users available to a profile. 

Knowledge source of a recommender keeps all the data about the items in the 

domain. This knowledge can be kept in the system as an internal database of items, 

for instance, as crawled web pages, or the system may rely on some sort of external 

events, such as incoming emails, to provide items for recommendation. 

The final requirement of all recommenders is to rely on an appropriate 

recommendation technique to be employed. Five different approaches are explored in 
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Chapter 2; however the most common ones are the content-based and the 

collaborative filtering techniques.  

In the next section, examples of recommendation systems shown in Table 4 are 

presented according to the domain they are working on. During this classification, 

systems are described considering their technical features, and their approaches that 

have been conducted for the five main issues discussed above. Attention is on the 

movie recommenders, and popular movie recommenders are discussed in section 3.3.  

Table 4 – Categorization of Recommenders according to Domain 

Music E-commerce News 
Filtering 

Web Movie 

Pandora 

Last.fm 

CDNOW 

LIBRA 

Amazon 

GroupLens 
PHOAKS 

Fab MovieFinder 

MovieLens 

Recommendation 
Explorer 

Reel.com 

Netflix 

MovieCritic 

 

3.2 Classification by Domain  

In this section, a summary of recommender systems considering issues discussed in 

section 3.1, are presented. The recommender systems are listed by application 

domain, so that similar types can be compared together. When reviewing commercial 

systems the exact algorithms used are often not published. A more detailed review of 

commercial E-commerce recommender systems can be found in [24]. 

3.2.1 Music Domain 

3.2.1.1 CDNOW 

Technological Features: 
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• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit(rate as liked/not liked) and 

implicit(purchase history)user feedback 

• Shared Information Approach: Item feedback and navigation history shared 

• Knowledge Source:  Internal database of items 

CDNOW [42] is a commercial music CD shop/recommender system which is now 

integrated into the wider application of Amazon [3]. It uses collaborative filtering 

technology. At CDNOW, customers can use the Album Advisor to suggest additional 

albums in which they may be interested, based on their designation of their three 

favorite artists. The Album Advisor feature of CDNOW works in three different 

modes. The first two modes are as follows: Customers locate the information page 

for a given album or artist. The system then recommends ten other albums related to 

the album or artist in question. Results are presented as “Customers who bought X 

also bought set S” or “Customers who bought items by Y also bought set T.” The 

third mode works as a “gift advisor.” Customers type in the names of up to three 

artists, and the system returns a list of ten albums that CDNOW considers similar to 

the artists in question. 

Customers buy CD’s through a standard electronic shop web-based interface. As 

customers shop by navigating through the sites’ web pages, CDNOW presents 

opportunistic recommendations of items that the user might want. These 

recommendations are based on the previous navigation patterns and buying habits of 

the customer.  

With “My CDNOW” feature, customers are enabled to set up their own music store, 

based on the albums and the artists they like. Customers indicate which albums they 

own, and which artists are their favorites. Purchases from CDNOW are entered 

automatically into the “own it” list. Although “own it” ratings are initially treated as 

an indication of positive likes, customers can go back and distinguish between “own 

it and like it” and “own it but dislike it.” When customers request recommendations, 

the system predicts six albums the customer might like based on what is already 
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owned. Feedback is provided by customers selecting “own it,” “move to wish list” or 

“not for me” for any of the albums in this prediction list. The albums recommended 

change based on the feedback.  

3.2.1.2 PANDORA 

Technological Features: 

• Recommendation Technique:  Content-based filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

Most of the tools used today for music recommendation are collaborative filtering 

recommenders. Pandora [6], on the other hand, is a popular and most-noticeable 

commercial content-based recommender which uses trained musicians to build a 

model that is used to recommend music based on the content. Unlike collaborative 

filtering engines, Pandora understands each song in its database. Forty-five analysts, 

many with music degrees, rank 15,000 songs a month on 400 characteristics to gain a 

detailed grasp of each. This results in scalability problem since, all the music 

annotation process is done manually and an estimated cost of analyzing each song is 

nearly $10. It would become more difficult to keep up this approach as the amount of 

music generated every day continues to grow. A solution to this may be automating 

this process in a way which will enable machines to handle analyzing the music 

instead of humans.  

One of the most important features of Pandora is that, whenever the user types in the 

name of a band or song, he can immediately begin hearing similar tunes that the 

site’s recommender system has determined he’ll like. By rating songs and artists, 

user can get refined suggestions, which will allow Pandora to create a truly 

personalized system behind.  
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Mainly, Pandora recommender works as follows: The user first provides a song or an 

artist’s name and then the system replies with recommendations. The 

recommendations are songs that have music qualities similar to the ones that the user 

has rated. In order to determine similarity between songs, the system uses different 

features of the items. The descriptions are made using music features stored in the 

Music Genome Project database [44]. The features are sound qualities only, for 

instance; minor key tonality, electric guitar riffs, instrumental arrangement etc. Since 

genre of the music is not used as a feature, the system sometimes provides both 

successfully surprising recommendations and unexpected songs (i.e. songs that are of 

completely different musical genre from the one that is liked by the target user). 

Users are allowed to provide feedback to the system. Each recommended song can 

be evaluated in the following terms: “like”, “not like”. The feedback is used to 

improve the quality of the recommendations. 

3.2.1.3 Last.fm 

Technological Features: 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

Last.fm [7] is a commercial, collaborative-based Internet radio and recommender 

system. The users are able to create lists of their preferred songs and tag songs, 

albums or artists. Last.fm computes similar users based on their playlists and then 

provides the target user with a list of items which are not present in his list, but are 

present in similar users’ playlists.  

An interesting feature of this system is the formation of user groups between users 

with something in common (for example, membership of some Internet forum). 

These groups can have profiles similar to those of individual users, representing the 

aggregated musical taste of a small community. Members of this group can share 
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recommendations, post messages in a forum and listen to a group radio which is 

probably created based on the preferred tracks of the members. 

While listening to recommended tracks through the web interface, the user can 

provide a simple feedback to the system (express his love or dislike for a track). In 

addition to an internet radio music player which requires a download, users can 

“scrobble” music played from their computers or other devices. “Scrobbling”, a term 

unique to the AudioScrobbler system which powers Last.fm, also requires the 

download of a widget that records and then uploads what music has been listened to. 

Any music played on the player is automatically “scrobbled”. Users can add friends 

and the system compares musical tastes based on the “scrobbled” songs. In keeping 

with the social networking aspect, the system also displays user information about 

other users who have similar tastes and allows users to contact each other regardless 

of whether they have established themselves as friends. 

Last.fm has data on millions of users listening to thousands of bands. Given its 

system of ‘scrobbling’, it has more user data than other systems because it is able to 

use data generated from sources other than its player. With over 15 million active 

users acquired without the use of marketing and only word of mouth, Last.fm is a 

powerful collaborative filtering system. 

3.2.2 E Commerce Domain 

3.2.2.1 Amazon.com 

Technological Features: 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, navigation history, item 

categories shared 

• Knowledge Source:  Internal database of items 
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Amazon [3] uses recommendation feature to personalize the web site to each of the 

customer’s interest, which will as a result encourages more business actions. Amazon 

has millions of items in its catalogue and millions of users, so it creates its own item-

to-item collaborative filtering recommendation approach in order to construct high 

quality recommendations in real time under this challenging environment.  

Item-to-item collaborative filtering works as follows [41]: a table of similar-items is 

built through iterative computing procedure and this forms the basis of Amazon’s 

recommendation algorithm. The algorithm matches each of the user’s purchased and 

rated items to similar items and then it forms a recommendation list from these 

similar items. In item-to-item collaborative filtering, similar-items table is built 

offline and recommendations are done online from this table which results in quick 

answering facility.  

Amazon includes an information page about the details of the text and purchase 

information for each book. It has six main features namely, “Customers who 

Bought”, “Eyes”, “Your Recommendations”, “Bookstore Gift Ideas”, “Amazon.com 

Delivers”, and “Customer Comments”. “Customers who Bought” feature is found on 

the information page of each book in their site. This feature includes two distinct 

recommendation lists. First list recommends books that are frequently purchased by 

customers who had purchased the selected book. Second one recommends authors 

whose books are frequently purchased by customers who had purchased the books of 

the selected book’s author. “Eyes” feature allows customers to get notifications of the 

newly added books. Customers can specify notification queries based on several 

features of the books including author, title, and ISBN or publication date. “Your 

Recommendations” feature is actually the one that presents a recommendation list to 

the users based on their previous ratings. “Bookstore Gift Ideas” feature allows 

customers to get recommendations from editors based on the specific categories like 

Teens or Entrepreneur. This feature works online, that is, customers use this feature 

while they are using Amazon.com website. “Amazon.com Delivers” feature is an 

offline version of “Bookstore Gift Ideas” where users get recommendations from 
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editors via email. “Customer Comments” feature, on the other hand, enables 

customers to get text recommendations from the ideas of other users.  

3.2.2.2 LIBRA 

Technological Features: 

• Recommendation Technique:  Content-based filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Examples of items and item categories shared 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

LIBRA (Learning Intelligent Book Recommending Agent) [45] is a project on using 

machine learning to recommend books to readers by learning a profile of their 

interests. It is a content-based recommender for using information about titles 

extracted from Amazon. It does information extraction to organize the extracted data 

into author, title, editorial reviews, customer comments, subject terms, related 

authors, and related titles fields. LIBRA uses this extracted information to form “bag 

of words” for a set of slots including author, title, description (reviews and 

comments), subjects, related titles, and related authors. While using LIBRA, user 

rates selected titles on a 1 to 10 scale and LIBRA uses a naïve Bayesian text-

categorization algorithm to learn a user model of each user’s preferences relative to 

the content of the items from these rated examples where ratings lower than 6 are 

counted as negative, and greater than 5 as positive. This learned profile is used to 

rank all other books in the catalog to produce recommendations based on the 

computed posterior probability that they are positive. In addition to this, users can 

also provide explicit positive or negative keywords, which are used as priors to bias 

the role of these features in categorization. 
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3.2.3 News Filtering Domain 

3.2.3.1 GroupLens 

Technological Features: 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback and item categories shared 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

The GroupLens [49] recommender system is a classic recommender system which 

recommends Usenet newsgroup articles. It is a distributed system for gathering, 

disseminating, and using ratings from some users to predict other users’ interest in 

articles. It includes news reading clients for both Macintosh and UNIX computers, as 

well as “Better Bit Bureaus” servers that gather ratings and make predictions. Both 

the overall architecture and the particular components have evolved through iterative 

design and pilot testing to meet the following goals; openness, ease of use, 

compatibility, scalability, and privacy.  

A split screen interface presents some recommendations together with the ratings 

provided by other GroupLens users, as users browse their usenet news. The aim of 

the split screen interface is to blend into the normal usenet interface. This 

recommendation interface provides some way to identify what is worth reading and 

what is not along 50,000+ new messages posted each day. 

3.2.3.2 PHOAKS 

Technological Features: 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Examples of items and item categories shared 
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• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

PHOAKS (People Helping One Another Know Stuff) [50] is an experimental system 

that addresses the problem of finding relevant and high quality information on the 

World-Wide-Web through collaborative filtering approach. It works by automatically 

recognizing, tallying and redistributing recommendations of web resources mined 

from Usenet news messages.  A hand-crafted set of filter rules is used to classify web 

resources into categories. Web references are then given a rating based on the 

number of authors that recommend the reference. The idea behind this approach is 

that frequently referenced web pages are actually the good ones. Therefore, each 

news group has a set of ranked recommendations to web pages. 

3.2.4 Web Domain 

3.2.4.1 Fab 

Technological Features: 

• Recommendation Technique:  Hybrid Approach(Combining collaborative and 

content-based approaches) 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, item categories and domain 

knowledge shared 

• Profile Representation: Vector model 

• Knowledge Source:  Crawled web pages 

Fab [19] is designed to help users sift through the enormous amount of information 

available in the World Wide Web. This system combines the content-based and 

collaborative methods of recommendation in a way that exploits the advantages of 

the two approaches while avoiding their shortcomings. Fab’s hybrid structure allows 

for automatic recognition of emergent issues relevant to various groups of users. It 
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also enables two scaling problems, pertaining to the rising number of users and 

documents, to be addressed. 

Users’ profiles are constructed as a collection of keywords contained in those 

documents that each user rate highly. If the content of the document matches 

previous documents that were rated highly, or neighbouring users rate a document 

highly, then these documents are presented for rating to the users. User profiles are 

dynamic in the sense that whenever a favourable or unfavourable rating is received, 

the profile of the user is updated to reflect the new rating.  

Collection agents, each of which uses a different set of keywords, are sent out over 

the web to look for documents with specific content. After the documents are 

retrieved, they are passed to a central server. Here a selection agent matched to each 

user’s profile, scours through the documents looking for interesting material. 

Relevant documents are then presented to the user for rating. The resulting rating 

dynamically affects the selection agent’s behaviour and changes the user’s profile. 

The rating also affects the collection agent that retrieved the document. Unpopular 

collection agents are removed and replaced with more successful ones over time.  

As it is described above, the most important features of Fab recommender are; it 

successfully combines the best features of both content-based and collaborative 

filtering methods and also manages to keep the system dynamically updated to the 

current users’ tastes.  

3.3 Movie Recommender Systems Review 

3.3.1 MovieFinder.com 

3.3.1.1 Technological Features 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, and item categories are shared 
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• Knowledge Source:  Internal database of items 

3.3.1.2 Overview 

MovieFinder.com [4] is a movie site maintained by E! Online. There are three 

features of this recommender that are important to mention, namely, “User’s Grade”, 

“Our Grade”, and “Top 10” features.  

With the “User’s Grade” feature, customers can register to the site and give grades to 

the movies they have seen with a scale from A to F.  All users grades for each of the 

movies are averaged to compute a general “User’s Grade” for the movies. On the 

other hand, editors of E! Online give grades to movies which are presented through 

“Our Grade” feature. Similar to this feature, the “Top 10” feature of 

MovieFinder.com allows the customers to get recommendations from the editors in a 

category that they can select from a list of predefined categories. After they select the 

category, the top ten movies of that category are displayed, and customers can 

examine the descriptions of these movies. 

3.3.1.3 Discussion 

MovieFinder.com is a collaborative filtering movie recommendation system. The 

most obvious drawback of the system is the degree of personalization that it serves to 

the customers. First of all, “Top 10” feature of the recommender is totally non-

personalized, since; it provides identical recommendation lists to each customer, 

without considering customer’s interests. Customers are just provided with a list that 

is manually created by an editor, where the process does not use any computation at 

all. On the other hand, “User’s Grade” feature adds some personalization to the 

system; however this personalization is not persistent. This personalization is simply 

a short-lived one that only lives for an entire current browsing session. It does not 

store persistent profiles of users, which is not preferred by the recommendation 

system users, at all. 
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It is important to distinguish recommendation systems that try to get and serve 

personalization to each user based on the information about that user, from systems 

that deliver recommendations based on editorial judgment or overall popularity 

where the main idea is “one size fits all”. It’s the first class of recommenders that are 

exciting and much more satisfying according to user-centric paradigm — especially 

when these systems can push personally relevant content to each user without 

requiring exhausting customization. 

3.3.2 MovieLens 

3.3.2.1 Technological Features 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, and item categories are shared 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

3.3.2.2 Overview 

MovieLens [5] is a research site run by GroupLens Research [52] at the University of 

Minnesota.  GroupLens Research is part of the Department of Computer Science and 

Engineering at the University of Minnesota. The University of Minnesota has been 

doing work with collaborative recommenders for more than a decade now. Their 

original project, GroupLens (described in section 3.2.3.1), was a system for using 

collaborative filters for recommending Usenet messages. MovieLens is an academic 

tool, and users are frequently asked to participate in the research project. Many of the 

papers that have resulted from these experiments are posted at the GroupLens site 

[52]. GroupLens also makes datasets available to other researchers. 

MovieLens [5] uses collaborative filtering approach to make its suggestions. 

Initially, the system asks the user to rate movies. It searches for similar profiles and 

uses them to generate new suggestions. Each member of the system has a 

“neighbourhood” of other like-minded users. Ratings from these neighbors are used 
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to create personalized recommendations for the target user. The database of the 

system is not comprehensive but new movies are added regularly. The recommender 

frequently made recommendations using half-stars and users are now allowed to rate 

movies in half-stars. 

Features of MovieLens include “Your Movie Wishlist”, “Movie Buddies” and 

“Shortcuts”. With wishlist feature, users can identify movies that they might like and 

collect them as a list. This will allow them to keep track of the movies that they 

would like to see. For instance, users can print their wishlist and take it near them 

when they go to buy or rent a movie. With “Movie Buddies”, users can form buddy 

relationships and find a movie to watch with a group of people. This will allow them 

to have personalized group recommendations. “Shortcuts” to saved searches will 

allow users to create and save a search query and run it whenever they want. Finally, 

MovieLens allows users to see how many votes have been collected for a particular 

movie and whether the prediction made for the user differs from the average vote.  

3.3.2.3 Discussion 

One shortcoming of the system that most websites using collaborative filtering suffer 

from is that they do not have any facility to provide explanations of how 

recommendations are derived. However, explanations for recommenders provide an 

interface for users to understand better how it is that the recommender works, and 

why the recommender is suggesting a certain item. This is addressed in [53] which 

propose explanation facilities for recommender systems in order to increase users’ 

faith in the suggestions. 

In addition to this, in all collaborative filtering systems, there exists a confidence 

problem regarding the correctness of the ratings entered to the system, which affects 

the accuracy of the recommender highly. For example, advocates of particular movie 

genres or particular movie studios may frequently rate movies high on the 

MovieLens web site right before the movie is released to try and push others to go 

and see the movie. Additively, new information has a higher potential of being rated 
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more than old information, and old movies have less chance to get recommended by 

the users. 

3.3.3 Recommendation Explorer  

3.3.3.1 Technological Features 

• Recommendation Technique: Collaborative filtering (More specifically 

similarity matching is done which makes use of a similarity function to find 

items matching a content-based profile) 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Examples of items and item categories are 

shared 

• Profile Representation: Vector model 

• Knowledge Source:  Internal database of items 

3.3.3.2 Overview 

Recommendation Explorer [55] is an automatic recommender system being 

developed at the School of Information and Library Science at the University of 

North Carolina at Chapel Hill. The recommender uses knowledge discovery 

techniques to improve its representation of item-item relationships, and provides a 

graphical user interface that enables users to explore recommendations in the context 

of their information needs. Recommendation Explorer currently uses a database of 

12,726 records to recommend films, but is being designed as a generic system that 

can be readily adapted to a variety of resource collections. One important feature of 

the recommender is that, all interaction with the system takes place within a single 

screen. Rather than forcing the user to navigate to a separate page to view metadata 

for a recommended item, Recommendation Explorer presents all metadata for each 

item in a pop-up window. This helps users to maintain context when viewing item 

details. 
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3.3.3.3 Discussion 

It is mentioned in the web site of Recommendation Explorer [56] that, the aim of 

Recommendation Explorer is to minimize user effort while producing high quality, 

and personalized recommendations.  It uses knowledge discovery techniques to 

develop a recommendation engine that aims to minimize user input. One important 

advantage and success of the recommender is the easy usage of the system where 

users can explore, manipulate, and preview recommended resources. However, there 

is a potential defect of the system for the items that are weakly connected to other 

items in the database, because those items may never get recommended to the users 

where users may perhaps like those items otherwise. In addition to this, 

Recommendation Explorer lacks explanation facility for the produced suggestions, 

and it is not a very easy task to produce explanation facility when item-item 

relationship model is used. 

3.3.4 Reel.com 

3.3.4.1 Technological Features 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, and item categories are shared 

• Knowledge Source:  Internal database of items 

3.3.4.2 Overview 

Reel.com [57] is a commercial site that recommends movies based on customer 

reviews. The customers can enter their preferences for different dimensions of movie 

domain like, genre, viewing format, etc. and a set of recommendations are produced 

based on the preferences of other customers, like all other collaborative filtering 

systems.  

One feature of Reel.com is “Movie Matches” which provides recommendations on 

the information page of each move. Reel.com’s “Movie Matches” presents editors’ 
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picks for movies that will appeal to a customer using the movie a customer is 

currently browsing as an indication of interest. The picks are made by human editors, 

and come in two categories, namely, “Close Movie Matches” and “Creative Movie 

Matches”. “Close Movie Matches” provides safer recommendations, and “Creative 

Movie Matches”, provides more serendipity in the recommendation.  

3.3.4.3 Discussion 

Reel.com is a simple collaborative filtering movie recommender with no 

distinguished recommendation power. Actually, it works like a traditional search 

engine with a detailed movie database. It has the drawbacks of a pure collaborative 

filtering technique shown in Table 3. In addition, as in the case of MovieFinder.com 

described in section 3.3.1, system is not personalized.  

3.3.5 Netflix 

3.3.5.1 Technological Features 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Shared Information Approach: Item feedback, and item categories are shared 

• Knowledge Source:  Internal database of items 

3.3.5.2 Overview 

Netflix[59] is a DVD movie rental site which is one of the first commercial 

applications of movie recommendation, and it has proven to be very popular. Netflix 

will recommend a movie or movies based on popular rental lists, customers’ viewing 

habits and how customers rate movies. Netflix use collaborative filtering technology. 

It produces recommendations using a system called “CineMatch”. “CineMatch” is a 

database that uses information from three different sources in order to determine 

which movies to recommend to the customers. These sources are listed below: 

• The movies which are arranged as groups of common films. 
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• Customers’ ratings, rented movies and current queue. 

• Combined ratings of all Netflix users. 

The “CineMatch” database updates itself constantly. The recommender works like all 

other usual collaborative recommenders; it matches user’s viewing and rating history 

with people who have similar histories. It uses those similar profiles to predict which 

movies user is likely to enjoy. 

3.3.5.3 Discussion 

Netflix may have the largest user rating data, but this data alone is insufficient for 

creating an effective movie recommendation system. In order to create a successful 

recommendation system, many other user attributes must be considered. These 

include, but not limited to, user profiles, the usage and behavior pattern of a Netflix 

account. One problem of the recommender lies in the usage behavior of customers. 

Netflix’s user rating data assumes that the users’ ratings came from the same Netflix 

account and they were made by a single person. For most of the Netflix accounts, 

this may not be true. Many families only subscribe to a single Netflix account. The 

members of the family usually share the same account, and rate movies through this 

single account. It’s inappropriate to consider these combined ratings as the ratings of 

a single person. For instance, just because one member of the family likes action 

movies and other likes comedies, one cannot conclude with full confidence that they 

as a single Netflix account user like both action movies and comedies. In addition to 

this, another problem associated with this single account usage is that a user who 

rents all the movies may not be the same person who actually watches them. For 

example, parents may rent movies according to the behavior of their children.  

3.3.6 Movie Critic 

3.3.6.1 Technological Features 

• Recommendation Technique:  Collaborative filtering 

• Knowledge Acquisition Technique: Explicit user feedback 

• Profile Representation: Vector model 
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• Knowledge Source:  Internal database of items 

3.3.6.2 Overview 

Movie Critic [60] is a collaborative filtering recommender. It has a simple and fast 

interface, and it was also used on Cinemax’s website. Movie Critic generated 

preconfigured recommendation lists, as well as a prediction for almost any movie 

(along with a confidence score). It has common features of a collaborative filtering 

recommender. The discriminative features of Movie Critic include telling the user 

where his prediction stood in relation to all users’ average ratings, that is, it tells 

whether the user will like a movie better than most people. In addition to this, Movie 

Critic lets user do a sanity check before it shut down. This is useful when there is a 

large range of possible scores to give to an item. In this case, what Movie Critic does 

is generating a list of 13 movies, one for each possible score, and user could then 

correct them if necessary. 

3.3.6.3 Discussion 

Since Movie Critic uses collaborative filtering technology, it faces the minuses of 

this approach. In addition, a different problem occurred at MovieCritic is that, it 

offers detailed information about recommendation results to users but users had 

trouble finding it, due to poor navigation design. From the feedback of the Movie 

Critic users, it can be observed that MovieCritic was rated negatively on layout and 

navigation. This affected ease of use and subjective usefulness ratings. 

3.4 Conclusions 

After this review of recommendation systems, a clear picture of what is the “state of 

the art” with respect to recommendation systems and specifically film recommenders 

is acquired. In this picture we can identify that most of the systems use collaborative 

filtering as their recommendation technique. However, even with non-commercial 

systems, there seems to have been little innovation in the conducted method. 
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So far, the most common approach used for movie recommendation is the 

collaborative filtering approach. However such systems require a sufficiently large 

number of ratings in order to achieve an appropriate recommendation whereas if 

content-based approach is conducted, user models will be constructed that takes into 

account individual user preferences for dimensions and possible features of those 

dimensions without the need for other users’ preferences. Collaborative filtering 

technology is successful in many cases; however it requires a large dataset in order to 

make appropriate recommendations. In other words, systems using collaborative 

filtering are difficult to use for recommending newly released films or unknown 

films before sufficient ratings are assembled. 

In addition, explanations of the reasons behind produced suggestions are proven to 

be a very important facility considering trust in recommendation systems. It also 

plays an important correction mechanism for handling errors that comes with a 

recommendation. However, most of the systems lack this facility. Transparency of 

user profiles and handling context preferences of users are also other desirable 

features of the recommenders, however, as it can be seen from the descriptions of the 

example recommenders, most of the systems do not use these features. 

When movie domain is considered, the major approaches reported so far use 

collaborative filtering and content-based filtering techniques. The well-known film 

recommender, MovieLens [5] is provided by the GroupLens research project. It is 

based on collaborative filtering, which requires a sufficiently large number of ratings 

in order to achieve an appropriate recommendation. 

In recommender systems, many works related to hybrid recommendation techniques 

tried to integrate multiple approaches in the prediction generation process [25]. 

Hybrid recommenders usually combine two or more recommendation techniques, but 

they are not concerned with the conversion of user models between different 

techniques. In [51], the authors extract content-based user models from collaborative 

user models and use both of these models for generating predictions. However, our 

approach focuses on generation of pure content-based predictions, based solely on 
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the user models that are converted from collaborative user models with the efficient 

usage of domain knowledge. A content based user model generation is proposed in 

[61], which converts collaborative user models to content-based user models. 

However, they kept movie items as a set of features where all features’ weights are 

the same, 0 if not exists, 1 otherwise (in item profiles). In addition, we have used 

three main fine-tuning mechanisms, which results in higher precision than standard 

content based user models where movie item profiles are kept in binary.  
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CHAPTER 4 

4.  OPENMORE: A CONTENT BASED MOVIE 
RECOMMENDER 

 

This chapter presents our movie recommender, OPENMORE. First, an overview of 

the system is presented. Then the architecture of the system is explained, and the data 

representation scheme is described. Finally, each system component is discussed in 

detail, before proceeding to the evaluation of the proposed recommender. 

4.1 System Overview 

The task of OPENMORE is to recommend movies to a user considering the feedback 

taken from him. The basic features of OPENMORE include: 

• Automatic creation and update of user profiles 

• Open user profiles  

• Controlling recommendation process through “don’t care”s 

• Context filtering 

• Explanation 

Initially, user profile is formed from the ratings that the user has entered to the 

system. Every time he submits new ratings, the profile data is updated accordingly. 

System is designed such that, users can view their profile. They will observe which 

features are more important than others. In addition to open user profiles, users are 

enabled to supply feedback to their profile data in terms of “don’t care”s. If the user 

thinks a feature or a dimension is not important for him, he will set that 

feature/dimension as “don’t care” in his profile. For instance, consider the scenario, 

where the user rated five movies with high ratings. Accidentally, actor A took role in 
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all of these movies, however, the user does not appreciate that actor, that is, whether 

the actor A took part in these movies actually has no effect on his ratings. He does 

not want OPENMORE to consider actor A while producing recommendations to him. 

In that case, he will set the “don’t care” field of that feature to yes.  

In addition to setting specific features to “don’t care”, users can set a whole 

dimension to “don’t care”. For instance, if for a user, the runtime of a movie has no 

importance while he is choosing a movie to watch, he will set “don’t care” field of 

runtime dimension to yes, which will result in setting all the features of that 

dimension to “don’t care”.  

Two screens are designed for displaying user profile and allowing users to update 

their profile data. One of them is for displaying and updating dimensions, which is 

shown in Figure 2. In that screen, when the name of the dimension is clicked, all the 

features of that dimension, which have effect on the user profile, are displayed with 

their relative scores in the second screen (Figure 3).  However, the size of the set of 

the features for each dimension is important while displaying these features. For 

instance, as more movies are rated, the number of the actors in the user profile will 

increase a lot. However, a paging mechanism is implemented, and features are 

displayed according to their scores, with highest scored feature at top, so users will 

not get frustrated with long lists. 

Users can create context information for different context preferences. OPENMORE 

will use this data while it builds recommendations for the user. In addition, for every 

recommended movie, an explanation is provided, which explains the reasons the 

movie is recommended to him with the provided rating. Explanations are displayed 

in natural language together with feature scores that have effect in predicted rating. 

An example of explanation screen for the movie “Analog Days” is shown in Figure 

4. 
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Figure 2 – User Profile Screen for Dimension 

 

 

 

 

 

Figure 3 – User Profile Screen for features of “Director” dimension 

 
 
 
 
 
 
 
 

Figure 4 – Explanation Screen 

 



 50

4.2 System Architecture 

4.2.1 System Components 

System functionality is achieved by five main components. 

1. Web Crawler: Takes movie data from IMDb and inserts information about 

movies into database. 

2. Item Profile Constructor and Updater: Forms and updates item profiles  

3. User Profile Constructor and Updater: Forms and updates user profile data 

from the information provided by the user and the movie content data that 

already exists in the database.   

4. Recommender: Calculates the appropriate recommendations for the user 

using the movie content and the user profile information. 

5. Explanator: Constructs an explanation by giving details of why a movie is 

recommended with the calculated score. 

4.3 Design Issues 

4.3.1 General Description of the Proposed Approach 

OPENMORE uses content-based recommendation technique for producing movie 

recommendations. Movie domain can be seen as a set of dimensions where each 

dimension has a set of features. For instance, one dimension may describe the genre 

of a movie, and contain features like horror, musical, action, etc.   

The proposed approach can be seen as a combination of three distinct parts; item 

profile construction and update, user profile construction and update, and 

recommendation and explanation generation.  The system’s functionality is 

enhanced by providing users to view their profile and update them in a limited way 
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through providing feedback in terms of “don’t care” values. Both item and user 

profiles are kept in terms of movie dimensions and features. Therefore, user profiles 

are presented in terms of the dimension and feature values. In addition, users can 

create multiple context profiles of their own. Each context profile is a set of positive 

and negative feedback for the features of different dimensions. Users can direct 

OPENMORE to use any of these contexts while producing recommendations. 

In general, a content-based recommender tries to find best matches between the user 

profile and the item profiles. In the following subsections, first the user model 

concept is described in the collaborative filtering and content-based filtering 

approaches. Data representation schemes and the profile construction mechanisms 

are described next, which constitutes the base part of the proposed method. Finally, 

the recommendation algorithm is described, which makes use of these data to assign 

recommendation scores to movies that confirm with the context preferences. 

4.3.2 User Models 

Collaborative filtering is one of the most popular recommendation techniques which 

use cross-user correlations to generate predictions by weighing the opinions of 

similar users [53]. The input to a standard collaborative filtering system is a matrix of 

users’ ratings on a set of items, where each row represents ratings of a single user 

and each column represents ratings on a single item. Thus, collaborative filtering 

user models are represented as a vector of pair of ratings ki : kr , which  corresponds 

to a real rating kr  provided by the user on an item ki .  

Content-based filtering [62] builds personalized recommendations by taking the 

features of items that have been rated by the user, and the set C of available items, 

not yet rated by the user as input. The output of the system will be a subset of C, 

containing the items whose features match the features of the items that are liked by 

the user. Content-based recommenders generate predictions based on the set of 

features weighed according to a predefined scale. Therefore, the resulting user 

models can be represented as a vector of pair of ratings kf : kw  where kf  denotes one 
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of the domain features and kw  is the level of the user’s preference regarding this 

feature. 

In OPENMORE, item profiles are also kept in the system as a vector of pairs of 

if : iw , where if  denotes one of the features in a movie and iw  denotes its 

corresponding weight. The weights iw   is equal for all the features if  regardless of 

individual movies. In the following subsections, the details of the construction of 

these vectors are described in detail.  

4.3.3 Domain Description 

We have selected the movie domain for the application of a content-based 

recommendation system. Movies are appropriate items to be used in content-based 

recommendation systems, since much content information about them can be easily 

accessed through IMDb [2] and other resources available on the web.  

For each movie item, a set of features is kept in the database of OPENMORE. These 

features are extracted from IMDb pages by the web crawler module, which accesses 

movies through keys that are unique for each movie in IMDb. Details of these 

features and the extracted knowledge are given in section 4.3.5. 

4.3.4 Features and Dimensions 

Dimension and feature concepts are needed to be described in detail for the movie 

domain. Each movie has a set of features where each feature belongs to a dimension. 

Dimensions of movie domain that are used in the recommendation process in 

OPENMORE are; date of release, rating, color, country, language, runtime, genre, 

casting, directors, and writers. Each of these dimensions can have a set of possible 

values, where for some of them, the values are determined prior to data extraction 

from the web, and for some of them, values are determined at runtime, and can have 

new elements whenever new movie information is added to the database. In addition, 

for some dimensions, a movie can have a set of features whereas for some others, it 

can have a single value for that dimension. For instance, for the casting dimension, a 
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movie can have a set of actors and actresses that have took part in the movie. In 

addition, the set of all actresses and actors is not stable, since day by day, new actors 

and actresses appear.  However, every movie can have a single date of release, and 

single runtime value.  

Runtime and rating dimensions are the only dimensions whose features are 

determined prior to data extraction process. This is due to the reason that, these 

values are rounded up and kept as intervals in the system. For instance rating values 

between 6 and 6.4 are fall in to the feature category 6, whereas rating values between 

7.5 and 8 fall into the feature category of 8. Similarly, every movie of runtime 

smaller than 30 minutes fall into the feature category 30 minutes for runtime 

dimension and every movie of runtime greater than or equal to 180 minutes fall into 

the feature category 180 minutes for this dimension. 

Details of features of dimensions and each dimension’s properties are shown in 

Table 5. 
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Table 5 – Features and dimensions of movies (Dimension: name of dimension, Possible Values: 

possible values of dimension Predetermined: whether values of dimension are stable and 

determined prior to data extraction Single Value?: if a movie can have a single feature of that 

dimension, then value of this column is YES, otherwise NO.) 

 
 

Dimension Predetermined Possible Values Single Value? 

Date of release NO 1913,1914,…..2008,..etc. YES 

Rating YES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 YES 

Color NO Color (Technicolor), Black 
and White (Sepiatone), 
Color (Kodak), …etc. 

YES 

Country NO USA, Canada, UK, …etc. NO 

Language NO English, French, Japanese, 
…etc. 

NO 

Runtime YES 30, 60, 90, 120, 150, 180 YES 

Genre NO Action, Crime, Drama, 
Horror, Thriller, Comedy, 

Mystery,…etc. 

NO 

Casting NO Antony Hopkins, Julia 
Roberts, Jim Carrey, …etc 

NO 

Director NO Andrzej Sekula, Eric 
Bress, Alexandra Lipsitz, 

…etc. 

NO 

Writer NO Roman Polanski, Charles 
MacArthur, Mike Jittlov, 

…etc. 

NO 

 

4.3.5 Data Representation 

Information used in the recommendation process consists of content knowledge of 

the movies collected from the web. The system includes a web crawler module, 

which connects to IMDb for collecting the movie data. A set of features is extracted 

from the web pages of the movies and these features are stored in the system. The 
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features extracted from the web for each of the movies are shown in dimension 

column of Table 5.  

A database is created to store all the information needed for the recommendation 

process. Data extracted from the web for each movie is processed and inserted into 

the OPENMORE database. More details about the system tables are shown in Table 

6. 

Table 6 – OPENMORE Database 

Table Columns Explanation 

movie id, url, title Keeps movie information, extracted 
from the web 

featurebase id, name, description, 
dimension, 

stableScoreOfFeature 

Keeps information for all features of 
each dimension 

moviefeature id, movie, featureBaseRef Keeps features of movies 

dimension id, dimension, 
numberOfFeaturesInDimension 

Keeps dimension information 

filter id, userStatePreference, 
featureBaseRef, negative 

Keeps filters defined by users 

userstatepreference id, user, nameOfState Keeps context preferences of users 

ratedmovie id, movie, rating, userRef Keeps rated movies of users 

user id, name, password Keeps user data 

userdimension id, userRef, dimension, 
negative, dimensionScore 

Keeps user profile regarding each 
dimension 

userdimensionfeature id, 
featureScoreOfUser, userRef, 

negative, featureBaseRef, 
ishigh, negdegree, posdegree, 

negscore, posscore, totalcount, 
negcount, poscount 

Keeps user profile regarding each 
feature 
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Database tables kept in the system can be divided into two categories; movie tables 

that are related to the movie information and user tables that keep information about 

the user data and the user’s movie interests. movie, featurebase, moviefeature, 

dimension tables fall into the first category whereas the tables filter, 

userstatepreference, ratedmovie, user, userdimension, and userdimensionfeature fall 

into the second category. Details of these tables and how data is stored in them is 

further explained in the following sections. 

4.4 System Components 

4.4.1 WebCrawler 

As mentioned in the previous paragraph, a web crawler module is used to extract the 

movie information from the web. The web crawler connects to IMDb for each movie, 

and extracts the data contained in the html page of the movie into a buffer. Then the 

data extractor module extracts data from this buffer.  Details of this extraction 

scheme are described in the following paragraphs. 

Data extraction process runs in two modes; namely, the initial mode and the 

successor mode. The “Initial mode” refers to the initial run of the web crawler 

module before OPENMORE starts serving its users. The “Successor mode” of the 

web crawler module works for every movie that will be added to the OPENMORE 

database, after the system starts its recommendation process. For the time being, all 

the movie information for the testing process of OPENMORE is stored in the 

database. Whenever new movie data is added to the database through successor 

mode of the web crawler module, all effected tables are updated accordingly.  

All the dimensions’ values and the number of features of each dimension are kept in 

the dimension table. This table is formed prior to the data extraction process. The 

“numberOfFeaturesInDimension” field is updated after the initial run of the web 

crawler module, since the number of the features in dimensions where 

PREDETERMINED column is set to NO in Table 5 is not known until all the features 

are inserted into the database. Whenever new features are added for each dimension, 
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the related dimension’s “numberOfFeaturesInDimension” field is updated 

accordingly. The number of the rows of the dimension table is static for the time 

being; however, adding new dimensions does not need any modification for the 

whole recommendation process. 

For each dimension, the possible set of values is kept in featurebase table. Web 

crawler module runs for each movie one by one. It first inserts the basic movie data 

regarding its title and web address in the database. After that, it inserts every feature 

of all the dimensions into the database one by one.  A feature is inserted into the 

database if it does not already exist. Therefore not for all the features of a movie, a 

record in the featurebase table is created. But for all features of a movie, a record in 

the moviefeature table is created, together with the id of the related featurebase and 

movie record.  

The described database tables are the ones that keep movie information extracted 

from the web by the web crawler module. The other tables keep the user related data. 

One important thing to mention is that, the stableScoreOfFeature field of the 

featurebase table is related to the item profile creation process, and therefore filled 

and updated by the item profile constructor and updater module.  

Both the user and item profiles are kept in terms of the movie dimensions and 

features. Profiles include the features of the dimensions shown in Table 5. In the 

following subsections, details of item and user profile construction processes are 

described.  

4.4.2 Item Profile Constructor and Updater 

Item profiles are formed prior to the start of the recommendation process. 

OPENMORE gathers movie data from IMDb [2]. There are two phases in the item 

profile construction; the initial phase, and the successor phase. In the initial phase, 

all the intended movie data are collected before the system starts serving its users. 

New movie data is added in the successor phase afterwards, in which this new data is 

inserted and the other effected fields are updated accordingly. 
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We consider each movie as a combination of dimensions where each dimension has a 

set of features. We base our item profile construction algorithm on the idea that, the 

importance of each of the features in the domain should not be the same when we 

consider the degree of how well one discriminates a movie from the others; therefore 

we consider the following values for each feature in order to find out their 

discrimination degree; 

1. the ratio of the number of the movies that has feature if  to the total number 

of the movies in the database 

2. the number of the possible features in the dimension that feature if  belongs 

to.  

We propose that, a feature if  will be more discriminative if fewer movies in the 

whole movie domain have it. For instance, think about the following scenario; we 

have 10 ratings for a user, where in 5 of them actor a1 acts, and the remaining 5 have 

country c2. Moreover, the user ratings for these movies are all the same. In addition, 

we have totally 3500 movies in the domain and in 20 of them actor a1 acted. 

Furthermore, there are totally 600 films that have the country c2. In this scenario, a1 

gives more clues about the user model although both a1 and c2 exists in the same 

number of movies that has same ratings provided by the user. Although a1 is not a 

very common feature in the domain, our user has rated movies that a1 exists. 

However, nearly 17% of all the movies in the database have the feature c2 and it is 

more probable that the user may not have any consciousness or preference about c2 

since it is a very common feature in the whole movie domain.  

Our second hypothesis for the item profile construction process is; a feature will be 

more discriminative if the size of its dimension set is large. For instance, actually 

almost all the movies have values from the genre and the casting dimensions (except 

possibly animation movies). Therefore every movie has a set of features from each of 

these dimensions. If the size of the dimension set of a feature if  is smaller than 



 59

another feature’s dimension size (which is a different dimension); then the 

probability that if  exists in any movie is higher. Therefore  if  should be counted as 

a less descriptive feature. In our current database that we have built for evaluation, 

there are totally 23 genres and 8409 actors/actresses. Therefore if an actor/actress 

acted in most of the movies that the user rated highly, this information is more 

valuable for us than knowing that a genre exists in most of the movies that the user 

rated highly. 

In order to model our hypotheses, we have used Inverse Document Frequency [48] 

theory. We calculate the item feature weight (IFW) of each feature if  with the 

following formula (4): 

                              (4) 

Here, M is the size of the set of all the movies in the domain, 
ifM is the total 

number of the movies that has feature if , 
jD is the size of the dimension that if  

belongs to. As it can be observed from the formula, the first multiplicand represents 

our first hypotheses, and the second multiplicand represents our second hypotheses. 

In order to create user models, we use the collaborative user models and the domain 

specific knowledge for the movies that we gather from the IMDb movie database [2].  

IMDB provided information in several dimensions; however for the sake of the 

simplicity, we use 10 feature categories which we believe the most important ones 

for the user preferences in our work: genre, casting, language, year, country, rating, 

director, writer, runtime and color. After this data is collected, we calculated IFW 

values of all the features in the domain and store each movie as pairs of if : iw  for 

each of the features  if  in each movie, where iw  is the IFW value of feature if . 
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4.4.2.1 Item Profile Update Mechanism 

Whenever a new movie is added to the database in successor mode, IFW values are 

reevaluated. This is due to the fact that, all the factors that affect the weights of the 

features in movies are changed when a new movie item is added to the database. 

4.4.3 User Profile Constructor and Updater 

We form content-based user models by using the ratings provided by the user and the 

item profiles. We keep user profiles as a vector of weights of the features that exist in 

the item profiles of the rated movies.   

We keep three weights for each feature if : neg_weight , pos_weight , and 

total_weight.  

neg_weight corresponds to the weight of if  that is calculated from the negatively 

rated movies and pos_weight corresponds to the weight of if  that is calculated from 

the positively rated movies. (The reason behind keeping these weights separately is 

described in the Rating Estimation section 4.4.4.2). The total weight of a feature in 

the user model is kept in total_weight which is the sum of neg_weight and 

pos_weight .  

For each movie rating provided by the user, we have a list of a movie’s features and 

their corresponding IFW values. We form the weights of each if  in the user model 

by using the ratings of the movie that has if   in its profile and its corresponding IFW 

value.  

Ratings used in the OPENMORE are in [1-5] scale. The reason behind using this 

scale is that, the evaluation of the proposed content-based recommendation algorithm 

is done using the MovieLens dataset [52], which has already conducted [1-5] scale. 

Therefore, in order to be compatible with the evaluation dataset, [1-5] scale is used in 

the system.  
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Ratings greater than 3 are taken as positive, and less than 4 as negative in almost all 

of the studies reported so far that use the MovieLens dataset [63]. In order to 

highlight the negativity of the scores, we subtract 3 from each of the ratings. 

However, to stress the small negativity in rating 3, we do not take rating 3 as 3-3=0; 

we give -0.1 to highlight this effect and differentiate the features that occurred only 

in the movies that were rated with rating 3 from the ones, that do not exist in the user 

model (does not exist in any of the rated movies). 

The weights of the features in the user model are created and updated according to 

the rating of the movies, and the IFW values. In other words, the result of the 

multiplication of the rating of the movie with the corresponding IFW value was 

added to the positive weights of all the movie genres, actors and directors involved in 

the movie, and similarly for all the remaining dimensions if the rating for that movie 

is greater than 3. If the rating is smaller than 4, then the negative weights of the 

features are inserted/updated in the same manner. In addition to this, the numbers of 

the occurrences for each feature in negatively and positively rated movies having that 

feature are stored in the system (which will be used in the Rating Estimation). 

For example, consider a user who has the rating 4 for the movie “The Usual 

Suspects”. According to the IMDb, “Stephan Baldwin” and “Kevin Spacey” took 

role in this movie. The user rated this movie positively; therefore the pos_weight and 

total_weight of these features are increased by the result of the multiplication of 1 (4-

3 = 1) with IFW values of these features. The weights of other features that exist in 

this movie are updated accordingly. In addition to this, the number of occurrences in 

positively rated movies for these features is increased by 1.  

The steps of the content-based user model generation process are given below: 
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USER MODEL GENERATION PROCESS 

• User models are kept as a vector of if :( neg_weight , pos_weight , 

total_weight) values, where each fi exist in one of the rated movies of the 

user. 

• neg_weight of if  is calculated by the following formula, where )c_neg(f i is 

the number of occurrences of if  in negatively rated movies: 

)(_)IFW(f)(fneg_weight ii ifnegc×=       (5) 

• pos_weight  of if  is calculated by the following formula, where )c_pos(f i is 

the number of occurrences of if  in positively rated movies: 

)(_)IFW(f)(fpos_weight ii i
fposc×=       (6) 

• total_weight of if  the sum of )(fneg_weight i and )(fpos_weight i . 

)(_)(_)ht(ftotal_weig i ii
fweightnegfweightpos +=   (7) 

• For each if , we keep the number of occurrences of if  in positively rated 

movies and negatively rated movies, that is, )c_neg(f i  and )c_pos(fi  values 

are kept in the system, which will be used to optimize the constructed user 

models. 

• The calculated feature weights and count of occurrences are kept in the 

userdimensionfeature table’s columns, which are shown in Table 7.  
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Table 7 – Userdimensionfeature Table 

Field Calculated Weight/Count 

negscore )(fneg_weight i  

posscore )(fpos_weight i  

negcount )c_neg(f i  

poscount )c_pos(fi  

totalcount )c_neg(f i + )c_pos(fi  

 

Actually, user profiles are stored in “userdimension”, “userdimensionFeature”, 

“filter” and “userstatepreference” tables. “filter” and “userStatePreference” tables 

correspond to context filtering feature, which is described in section 4.4.5. 

“userdimensionfeature” table stores calculated feature scores for each user together 

with the information that tells whether that feature is a “don’t care” feature for the 

user (and some other information about the features which will be described in the 

next section). For every dimension and for each user, there is a record in 

“userdimension” table, which keeps the average of the total_weight of every feature 

in the user model and in the corresponding dimension. 

4.4.3.1 Optimizing Content-Based User Models 

Considering the movie domain, we use some mechanisms in order to fine_tune the 

constructed content-based user models, which are described in the following 

subsections. 

4.4.3.1.1 “Don’t Care” Features 

Content-based user models typically store features which the user is indifferent. For 

instance, consider the following scenario; we have a user who sees only American 

movies, that is, he never prefers watching movies that were produced by a different 
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country. Almost all of the movies he has rated has feature “American” for the 

country dimension. This shows us that, feature “American” has no effect on the 

preferences of the movies for that user, and the reason behind liking/not liking these 

movies that have “American” feature are the other features except this feature; 

therefore this feature is identified as a  “don’t care” feature for the target user.   

“Don’t care” features are identified by the number of occurrences of that feature in 

the rated movies and the total number of movies that user has been rated.  Identifying 

these features and removing them from the prediction generation step increases the 

accuracy of the results, because the recommender will base its decisions only on the 

differentiating features. 

To filter these  “don’t care” features, a threshold is defined: “TH_DONT_CARE”. 

Features that have the value 
moviesratedtotal __

 )c_neg(f )c_pos(f ii +
 greater than “TH_DONT_CARE” 

is set to “don’t care” and the prediction mechanism is designed and implemented 

such that only the features that are not “don’t care” are used in the generation of the 

recommendation scores. In addition, this optimization is applied to the user models 

of the users who have rated at least 50 movies. 

4.4.3.1.2 “Highly Positive” Features 

When movie domain is considered, there can be some features that the user prefers, 

and likes (has rated with high scores) all the movies that have that feature, regardless 

of other properties of those movies. For instance, consider a user who is a fan of 

“Stephen Spielberg” and likes all the movies directed by “Stephen Spielberg”, 

regardless of other features in those movies. Therefore, if there is a movie directed 

by “Stephen Spielberg” and the user has not seen yet, there is a high probability that 

the user will like that movie, regardless of the features in the casting, genre or other 

dimensions.  As a result of this, we can identify these features as “highly-positive” 

features and promote them in the prediction score generation. After such features are 

identified, the prediction generation step uses the pos_weights of the features that 

exist in any movie together with a “highly positive” feature, in order to be sure to 
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come up with a positive score for such movies. However, if there are two or more 

movies with a “highly positive” feature, the one with the highest cumulated 

pos_weights of its features beats the others.  

To identify “highly positive” features, two thresholds are defined: 

“TH_HIGH_RATIO”, “TH_HIGH_TOP_COUNT”. First the candidate “highly 

positive” features are found out, which are the ones that have 

))(_)(_(

)(_

ii

i

fnegcfposc

fposc

+
value greater than “TH_HIGH_RATIO”. This filtering 

aims to find out the features that have occurred in positively rated movies 

significantly more than the negatively rated movies. 

One more filtering is done in order to select the possible “highly positive” features. 

For every dimension, we set “TH_HIGH_TOP_COUNT” threshold in order to find 

out whether a candidate “highly positive” feature, which has been selected after the 

first filtering, have occurred in a necessary number of rated movies in order to really 

become a “highly positive” feature. This filtering is done for the following scenario; 

if a user has rated n movies positively and in all those movies actor a1 played, and 

there is no other rated movie that has a1 feature (a1 occurred only in the positively 

rated movies), then the 
))(_)(_(

)(_

ii

i

fnegcfposc

fposc

+
 value will be 1 for a1.  This will 

make a1 a candidate “highly positive” feature, because it will for sure pass the first 

filtering. This is due to the fact that, the highest value of “TH_HIGH_RATIO” can be 

1. However, if n is so small, like for instance 2, this does not show that a1 is a “highly 

positive” feature, because n is so small to make a1 “highly positive”. Conversely, if n 

is big enough, this will show that a1 is really “highly positive”.  

In order to identify these cases, we perform a second filtering. We promote features 

with “highly positive” value, only if they have been included in a sufficient number 

of the profiles of the rated movies. However, this threshold should differ from 

dimension to dimension, according to the possible number of occurrences of the 

features in the movies. For instance, for genres or languages, the number of possible 
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occurrences of the features in these dimensions is high. As a result, the 

“TH_HIGH_TOP_COUNT” threshold is relatively high. For the second, such as the 

casting, number of possible occurrences of the actors/actresses in movies is very low 

compared to genres or languages, and the “TH_HIGH_TOP_COUNT” threshold is 

low. One more thing necessary to mention is that, this optimization is applied to the 

user models of the users who have rated at least 50 movies like “don’t care” features. 

4.4.3.1.3 “Highly Negative” Features 

The idea behind “highly negative” features is the same as the idea behind “highly 

positive” features. With “highly negative” features, we try to identify which features 

result in always bad scores and use this valuable knowledge to fine-tune the 

constructed user models.  

For instance, a user may dislike “horror” movies and never likes them regardless of 

the other features that exist in a candidate movie that has genre “horror”.  We 

identify “highly negative” features by using the same thresholds with the “highly 

positive” case. However, for “highly negative” case, first elimination takes only the 

features that have 
))(_)(_(

)(_

ii

i

fnegcfposc

fnegc

+
 value greater than 

“TH_HIGH_RATIO”. Then these features are further filtered according to their 

number of occurrences in the rated movies, that is, only the features that 

has )c_neg(f i  value greater than TH_HIGH_TOP_COUNT are set to “highly 

negative”. 
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Table 8 – Thresholds Used To Fine-Tune Content-Based User Models 

Threshold Property Formula 

TH_DONT_CARE “Don’t Care”  

Features moviesratedtotal __

 )c_neg(f )c_pos(f ii +
> 

TH_DONT_CARE 

TH_HIGH_RATIO “Highly Positive”  

Features ))(_)(_(

)(_

ii

i

fnegcfposc

fposc

+
> 

TH_HIGH_RATIO 

TH_HIGH_RATIO “Highly Negative” 
Features 

))(_)(_(

)(_

ii

i

fnegcfposc

fnegc

+
> 

TH_HIGH_RATIO 

TH_HIGH_TOP_COUNT “Highly Positive”  

Features 

)c_pos(f i > 

TH_HIGH_TOP_COUNT 

TH_HIGH_TOP_COUNT “Highly Negative” 
Features 

)c_neg(f i > 

TH_HIGH_TOP_COUNT 

 

All the thresholds used for fine-tuning content-based models are summarized in 

Table 8. During the evaluation phase, the optimal values of these thresholds are 

determined, as it will be described in the evaluation section. 

We only permit the features of genre, casting and director dimensions to become a 

“highly” feature; since we believe these are the most discriminating dimensions when 

the movie domain is considered. After identification of “highly” features is 

completed, we have processed the features that occur with “highly” features. We 

assume that, if a feature fi exists in negatively rated movies, and all those negatively 

rated movies have a “highly negative” feature, than this feature has no effect on those 

negative ratings, since we propose that, the reason behind that negative ratings are 

“highly negative” features. Therefore, we reset the negative weight of feature fi. To 

do this, we set the )(fneg_weight i  of fi to 0, and we increase the total_weight 

accordingly (total_weight is set to )(fpos_weight i  and )c_neg(f i  is set to 0). The 
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idea behind this optimization is; we assume that, user did not like those negatively 

rated movies because of the “highly negative” features, not because of feature fi. 

Same process is done for features that exist in positively rated movies, and all those 

positively rated movies have a “highly positive” feature. This time, 

)(fpos_weight i and )c_pos(fi  is set to 0, and total_weight is set to )(fneg_weight i  of 

fi. If this optimization results in features that have total_weight equal to 0, these 

features are removed from the user-model.  

During optimization process, we first identify the “don’t care” features. Then the 

“highly positive” and the “highly negative” features are identified from the ones that 

have not already set to “don’t care”. Therefore, a feature can never be set to both 

“don’t care” and “highly positive” or “highly negative”.  

4.4.3.2 User Profile Update Mechanism 

The update of user profiles is accomplished by two different processes; the 

automated user profile update process, which works automatically whenever user 

provides ratings for the unrated movies and the explicit feedback processor which 

updates user profiles from the feedback provided by the user by the help of the open 

user profile facility.  

Whenever user rates new movies, _fipos_weight , _fineg_weight , and 

total_weight_fi values of all the features of the newly rated movies are added / 

updated according to the ideas presented in section 4.4.3. 

User profiles are presented in the form of importance values for the features and 

dimensions, as shown in Figures 2 and 3.  For every dimension, a score is calculated 

by averaging the total_weight_fi scores of the features of each dimension. User can 

also observe each score that was assigned to the features.  

Open user profile facility increases user’s trust to the recommender and it provides a 

mechanism for handling possible errors. From the user profile views, users can set 

the importance of a whole dimension, or specific features of each dimension to 
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“don’t care”. If a dimension is set to “don’t care”, this value is propagated to every 

feature of that dimension. As a result, recommender does not take into account these 

“don’t care” features in its rating estimation process. For instance, for a user, the 

runtime of a movie may have no effect on his movie preferences; therefore he may 

set that dimension to “don’t care” as a whole. For another user, whether the director 

of a movie is someone other than “Steven Spielberg” may not be important, that is, 

he may like “Steven Spielberg” however; he may not know other directors well, so 

he may not want the recommender to make any calculations considering these other 

directors. In that case, he may set all those other directors’ values to “don’t care”(an 

easy way is provided for the user for this process, first he checks “don’t care” field to 

“yes” for director dimension and unchecks “Steven Spielberg”s  “don’t care” value). 

4.4.4 Recommender 

4.4.4.1 Content Based Recommendation 

OPENMORE uses content-based recommendation approach. In general, a content-

based recommender tries to find best matches between user profile and item profiles. 

Details of recommendation construction process are described in section 4.4.4.2. 

4.4.4.2 Rating Estimation 

The prediction generation process takes a content-based user model um and a set of 

candidate movies MC. It generates a list of recommended movies that are sorted 

according to their calculated recommendation scores.  

The prediction generation process produces scores for the three distinct subsets of the 

MC where each one is ordered in itself according to the produced score: 

• List_Pos: For the candidate movies in MC which have a feature that exists in 

um and is “highly positive”. 

• List_N: For the candidate movies in MC which have no feature that exists in 

um and is “highly positive” or “highly negative”. 



 70

• List_Neg: For the candidate movies in MC which have a feature that exists in 

um and is “highly negative”. 

The resulting recommendation list has the candidates in List_Pos at the top. Then the 

candidates in List_N, and finally, the candidates in List_Neg exist in the 

recommendation list. The pseudo-codes of the algorithms for the generation of these 

lists are given below in Figures 5, 6, 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – List-Pos Generation Algorithm  

 
 
 
 
 
 
 
 
 
 
 

Gen_List_Pos(User-Model um, candidate_movie_set MC ) 
list_pos={} 

rec_score=0 

high_feature_exists=false 

for each mc∈MC 

{ 

fSet(mc)=get feature set of mc 

for each f ∈fSet(mc) 

{ 

if ( f ∈fSet(um) and is_dont_care(f,um)=false) 

{ 

if(is_highly-pos(f,um)=true) 

  high_feature_exists=true  

 rec_score=rec_score+pos_weight(f) 

   } 

} 

   if (high_feature_exists=true)  

add mc to list_pos together with rec_score   

rec_score=0  

} 
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Figure 6 – List-Neg Generation Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gen_List_Neg(User-Model um, candidate_movie_set MC ) 

list_neg={} 

rec_score=0 

high_feature_exists=false 

for each mc∈MC 

{ 

fSet(mc)=get feature set of mc 

for each f ∈fSet(mc) 

{ 

if ( f ∈fSet(um) and is_dont_care(f,um)=false) 

 { 

if(is_highly-neg(f,um)=true) 

  high_feature_exists=true  

 rec_score=rec_score+neg_weight(f) 

        } 

} 

if (high_feature_exists=true)  

add mc to list_neg together with rec_score   

rec_score=0  

} 

 



 72

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 7 – List-N Generation Algorithm 

 

4.4.5 Context Filtering 

The idea behind context filtering is to increase user satisfaction and propose more 

suitable recommendations considering user mood. Suppose a user establishes a rating 

profile that contains possible ratings for the movies Shakespeare and Die Hard. 

Whether he prefers Shakespeare or Die Hard may heavily depend on his context, 

that is, for instance, whether or not he is taking his girl friend to the movie. In order 

to handle this, system allows users to create multiple “contexts” to handle different 

moods. A context is defined as a set of filters, which includes information for 

eliminating or emphasing the features of each dimension. The Context filterer works 

Gen_List_N(User-Model um, candidate_movie_set MC ) 
list_N={} 

rec_score=0 

high_feature_exists=false 

for each mc∈MC 

{ 

fSet(mc)=get feature set of mc 

for each f ∈ fSet(mc) 

{ 

if ( f ∈fSet(um) and  

 is_dont_care(f,um)=false and 

  is_highly-neg(f,um)=false and 

is_highly-pos(f,um)=false) 

     {  

  rec_score=rec_score+total_weight(f) 

          } 

 else  

 { 

  high_feature_exists=true  

  exit for LOOP  

 } 

} 

if (high_feature_exists=false)  

add mc to list_N together with rec_score   

 rec_score=0  

} 
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on the feature level and it takes positive and negative feedback for the features. For 

instance, user can create a context for the cases when he will want to watch a movie 

with his children. He may create a context named “Family” and wants the comedy 

films and the movies released at year 2007 to be recommended to him, whereas no 

crime movies are advised to him. This case is illustrated in Figure 8, where there 

exist 3 features in context “Family”, two of which are positive, namely, feature 

“Comedy“ for genre dimension and feature “2007” for “year” dimension; and one of 

which is negative, namely, feature “Crime” for “genre” dimension.  

While user is taking recommendations, he can choose a context, and this will force 

the recommender to produce the recommendations that satisfy this context’s 

specifications. User may also create a default context for himself if he is sure about 

some features, which he wants to be counted as positive or negative all the time. If 

no context is chosen or set as default, OPENMORE proceeds as if there is no context 

preference.  

                          

 

 

 

 

 

   

 

    Figure 8 – Context Screen 

4.4.6 Explanation Module 

Explanations provide a mechanism for handling errors in a recommendation. For 

every movie recommended to the user, he is provided with an explanation 

considering why that movie is predicted with that rating to him, and which 

dimensions and features are effective on the results. Explanations are formed for 
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each movie, from the user models. This facility enables users to observe the reasons 

behind predictions, and update their profile data and context filters accordingly to get 

better recommendations. 

4.5 Implementation Details 

4.5.1 Implementation Environment 

The implementation environment includes a server running on the Windows XP 

operating system. Apache-Tomcat Application Server v6.0.10 [35] is used together 

with the open source database MySQL [46]. They provide a secure and reliable 

platform for our system, and are also easy to set up locally in order to preview and 

test code as it is being developed. 

MySQL is the most popular open source database which is frequently used together 

with Apache web server. The reasons of wide use of MySQL are its performance, 

reliability and easy administration. Furthermore, it is available for all major operating 

systems.  

OPENMORE was implemented in JDeveloper 10 [32] a free development 

environment by Oracle. JDeveloper was not released as open source but is provided 

at no charge and is being continuously developed.  

Java with its Servlet and JSP technologies is used in the implementation. The key 

factors supporting this decision are Java’s platform independence, multi-threading 

and higher security facilities. In addition, it has better performance than interpreted 

scripting languages, and more suitable for the development of large projects. 

Additively, the Apache Tomcat server and related technologies give Java developers 

a rich set of tools to quickly build more sophisticated Web applications. Tomcat 

version 5 supports the latest JSP and Servlet specifications, JSP 2.0, and Servlets 2.4.  

All communication between the client and the server application is done using HTTP 

where the client application initiates a request by establishing a TCP connection to a 
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particular port on the server host. The server application is listening on that port and 

waits for the client application to send a request. Upon receiving a request, the server 

application accepts the connection and takes action according to the request before 

sending a response to the client application. HTTP is chosen as application layer 

protocol because it suits our needs and works well with today’s Internet 

infrastructure.  
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CHAPTER 5 

5.  EVALUATION OF THE SYSTEM 

This chapter presents the experimental methodology used to test the proposed 

approach. First, the properties of the dataset and the metrics used during the 

experiments are described. Then, the results of the experiments are reported and 

discussed.  

5.1 Data Set 

Our experiments use the MovieLens million rating dataset [5], which is a 

collaborative filtering dataset storing ratings by 6040 users of 3952 movies. Ratings 

are provided on a scale of 1 to 5, 5 being excellent and 1 being terrible. Based on the 

rating guidelines presented to the users of MovieLens, we identified ratings of 4 and 

5 to signify “good” movies [63]. These are the movies that would make good 

recommendations.  

As it is mentioned in the readme file of the dataset, some movieIDs do not 

correspond to a movie due to some accidental duplicate entries or inconsistencies. As 

we are doing content-based filtering, we processed all the movies used in the dataset 

(in order to collect information from IMDb database) and these inconsistent movie 

entries and their corresponding rating data are removed from the OPENMORE 

database. Therefore, our resulting database has 3881 movie items, 6040 users and 

1000187 ratings. 

We applied 5-fold cross-validation to the dataset of ratings by splitting the set of 

ratings using 20%-80% ratio and doing such split 5 times for each user. For each of 

these 5 splits, we designated the 20% part of the initial dataset as evaluation dataset 

and the remaining 80% of the dataset was designated as training dataset. We repeat 
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our experiments with every training sets and test sets for each of the users selected 

for evaluation and after this phase completed, we average their results. We generated 

each training set and testing sets by taking a random sample [51] of the data as 

follows: 

• For every user, we separate and group his movie/rating pairs into intervals 

defined by the ratings. Therefore, for every user, there are at most 5 groups of 

ratings, one group for rating value 1, one group for rating value 2, and so on.  

• From each group of ratings for each user, we take the same number of 

movie/rating pairs to each training and testing datasets (when possible, since 

sometimes number of items is not divided evenly by 5), and we control to 

have 20% distribution of movie/rating pairs each time from each rating group 

to each training and testing datasets. 

As a result of this procedure, each of the testing sets will be more representative of 

the distribution of ratings for the entire dataset than it would have been if we have 

used a simple random sampling. 

In order to give an idea about the rating dataset, we provided Table 1 which shows 

the distribution of the number of rated movies among the users in the dataset. As it 

can be observed, 2909 users have rating data for more than 100 movies.  
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Table 9 – Distribution of the Ratings among the Users in the Data set 

Number of Rated 
Movies 

Number of Users 

0 to 25 492 

26 to 50 1301 

51 to 75 785 

76 to 100 553 

101 to 125 480 

126 to 150 345 

151 to 175 306 

176 to 200 200 

201 to 225 207 

226 to 250 148 

251 to 300 268 

301 to 400 354 

401 to 500 205 

over 500 396 

 

5.2 Evaluation Metrics 

There are several performance metrics that are traditionally used to evaluate 

performance of recommender systems, such as mean absolute error (MAE), mean 

squared error (MSE), correlation between predictions and actual ratings, precision, 

recall, F-measure, and the Receiver Operating Characteristic (ROC) [43]. Moreover, 

these metrics are classified into statistical accuracy and decision-support accuracy 

metrics. Statistical accuracy metrics compare the predicted ratings against the actual 

user ratings on the test data. For instance, the MAE measure [37] is a representative 

example of a statistical accuracy measure. On the other hand, the decision-support 
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accuracy metrics measure how well a recommender system can predict which of the 

unknown items will be highly rated. The F-measure is a representative example of 

the decision-support accuracy metric [8] which will be described in the following 

paragraphs. Moreover, although both types of measures are important, it has been 

argued in the literature [8] that the decision-support metrics are better suited for 

recommender systems because they focus on recommending high-quality items, 

which is the primary target of recommender systems. Therefore, in the evaluation 

phase, we have used the following decision-support metrics: accuracy, precision, 

recall, and F-measure. In order to describe these metrics, we will use  Table 10.   

Accuracy is defined as the fraction of correct recommendations to the total possible 

recommendations (Formula 8).  So it is the ratio of recommendations that are 

correctly classified as possible or negative when the total number of possible 

recommendations is considered. 

( )

N

NN
Accuracy inrs +

=         (8) 

Precision and recall are the most popular metrics for evaluating information retrieval 

systems. For the evaluation of recommender systems, they have been used by Billsus 

and Pazzani [54], Basu et al. [51], and Sarwar et al. [39].  

Precision is defined as the ratio of relevant items selected correctly to the number of 

items selected, or in other words, the fraction of positive examples that were 

correctly classified as positive, as shown in Equation 9. Precision represents the 

probability that a selected item is really relevant for the user.  

s

rs

N

N
ecision =Pr          (9) 

Recall, shown in Equation 10, is defined as the ratio of relevant items selected to the 

total number of relevant items available. Therefore, recall represents the probability 
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that a relevant item will be selected. It is calculated by taking the ratio of the items 

that are correctly classified as positive to the total number of the positively rated 

items. 

r

rs

N

N
call =Re           (10) 

Several approaches have been taken to combine precision and recall into a single 

metric. One approach is the F-measure which combines precision and recall into a 

single number by the formula presented in equation 11. 

callecision

callecision
measureF

RePr

RePr2

+

××
=−       (11) 

 

Table 10 – Table Showing the Categorization of Items in the Data Set with Respect to a Given 

Information Need 

 Predicted as 
Positive 

Predicted as Not 
Positive 

Total 

Actual 
Positive 

Nrs Nm Nr 

Actual 
Negative 

Nis Nin Ni 

Total Ns Nn N 

 

The movie data set and the produced recommendation results must be separated into 

two classes; “relevant” or “not relevant” in order to make metric calculations. That 

is, we need to transform all the ratings in the dataset into a binary scale in order to 

compute precision, recall and accuracy values. The MovieLens dataset has a rating 

scale of 1–5 and is commonly transformed into a binary scale by converting every 

rating of 4 or 5 to “relevant” and all ratings of 1–3 to “not relevant” [58]. In addition, 



 81

for the items whose recommendation scores are positive are counted as positive and 

others as negative in the produced recommendation lists. 

For each user, precision, recall, F-measure, and accuracy values are computed for 

every testing set (there are 5 testing sets for every user) and these values are averaged 

for each of the 5 testing sets for each user to come up with one precision, recall, F-

measure and accuracy value for every user. We averaged the results of every user to 

find out the general precision, recall, F-measure and accuracy values of the 

proposed system. 

5.3 Evaluation Details 

Experiments are accomplished using the MovieLens collaborative filtering dataset. 

The collaborative user models in the dataset are transformed to content-based user 

models and two groups of experiments were performed. The conducted experiments 

are shown in Table 11. In the first group, three sets of experiments are conducted and 

in the second experiment group, two experiments were done. For the second set of 

the first group, three sub sets of experiments are performed. For each of the tests, the 

reasons behind the experiments are displayed in the last column of Table 11. In the 

following sections, we refer to experiments with their experiment numbers given in 

the first column of Table 11. 

5.3.1 First Group of Experiments 

The first group of experiments is conducted to fine-tune the prediction generation 

mechanism by selecting the most appropriate values for the TH_DONT_CARE, 

TH_HIGH_TOP_COUNT and TH_HIGH_RATIO thresholds. To accomplish this, we 

have performed five experiments for finding out the best value of each of these three 

thresholds; Exp1.1, Exp1.2.1, Exp1.2.2, Exp1.2.3 and Exp1.3.  

Exp1.1 is conducted to find the best value for TH_DONT_CARE threshold. We 

tested the pure content-based recommender with only “don’t care” features, that is, 

without using any other optimization (without “highly positive” and “highly 
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negative” features). Exp1.2.1, Exp1.2.2, and Exp1.2.3 aim to find out the best 

TH_HIGH_TOP_COUNT values for genre, casting and director dimensions. In these 

experiments, we set TH_HIGH_RATIO to 0.8. We conducted totally three subsets of 

experiments in this second set in order find out the best TH_HIGH_TOP_COUNT 

values. 

When we completed the second set of experiments, we set the best 

TH_HIGH_TOP_COUNT values for each of the dimensions that we have found out 

in the second set of experiments and conducted the third experiment, Exp1.3, to find 

out the best value for TH_HIGH_RATIO.  “don’t care” features were excluded from 

both the second and third set of experiments of the first group; therefore these two 

tests were conducted with pure content-based recommender with only “highly 

positive” and “highly negative” features.  

The tests in the first group were completed using the rating data of the randomly 

selected 200 users. As the selections have been done randomly, the statistical 

properties of the original dataset have been preserved. Results of the predictions were 

evaluated and the best values for the thresholds were chosen using the precision 

metric mentioned in section 5.2. Experimental results of the first group of 

experiments are given in the following subsection. 
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Table 11 – Table Showing the Conducted Experiments 

Experiment Exp. 
Group 

Exp. Set Exp. 
Sub Set 

Testing What? 

Exp1.1 1 1 - TH_DONT_CARE 

Exp1.2.1 1 2 1 TH_HIGH_TOP_COUNT 
for casting dimension 

Exp1.2.2 1 2 2 TH_HIGH_TOP_COUNT 

for genre dimension 

Exp1.2.3 1 2 3 TH_HIGH_TOP_COUNT 

for director dimension 

Exp1.3 1 3 - TH_HIGH_RATIO 

Exp2.1 2 1 - Pure Content-Based Rec. 

Exp2.2 2 2 - Pure Content-Based Rec. 

with Optimizations 

 

5.3.1.1 Experimental Results 

To find the most appropriate value of TH_DONT_CARE, experiments were 

conducted on the pure content-based predictor with only the “don’t care” features’ 

optimization. During the experiments, the values of TH_DONT_CARE were 

increased from 0.50 to 0.90 by 0.5. Results of this experiment are illustrated in 

Figure 9. The horizontal axis shows the values of TH_DONT_CARE threshold and 

the vertical the precision value. As it can be seen, precision values initially increase 

with the TH_DONT_CARE, and then decrease. This is explained by the influence of 

“don’t care” features. If the TH_DONT_CARE threshold is low, and so many 

features are assigned to “don’t care”, this results in eliminating discriminative 

features from the prediction score generation. In other words, features are assigned to 

“don’t care” incorrectly which are in fact not “don’t care”. Therefore, precision is 

low with low values of TH_DONT_CARE, due to filtering out more features through 

setting them to “don’t care”, which are possibly the discriminative features for the 
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users. When the TH_DONT_CARE threshold is too high, precision is low due to not 

assigning neutral features to “don’t care” which are in fact “don’t care” features for 

the user.   Thus TH_DONT_CARE=0.60 is chosen as an optimal value where the 

precision is highest (over 0.65). 

TH_DONT_CARE

0,56
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0,59

0,6
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0,62

0,63

0,64

0,65
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Precision

 

Figure 9 – Precision vs. TH_DONT_CARE Threshold 

After determining the value of TH_DONT_CARE threshold in Exp1.1, second set of 

experiments started to find out the optimal values for TH_HIGH_TOP_COUNT for 

genre, casting and director dimensions. The dimensions in the testing procedure for 

TH_HIGH_TOP_COUNT were separated, and the same methodology was used to 

determine the optimal TH_HIGH_TOP_COUNT value for each of these three 

dimensions. We set TH_HIGH_RATIO to 0.80 for all the tests in this second set of 

experiments (The optimal value for TH_HIGH_RATIO is found at the third set). All 

the tests in this second group were completed distinctively, in order to find out the 

optimal TH_HIGH_TOP_COUNT values without the effect of any other 

optimization. Therefore, we have completed tests for different dimensions 

distinctively, that is, we first made tests to determine optimal 
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TH_HIGH_TOP_COUNT for casting category, and we only permit the features of 

this category to become “highly positive” or “highly negative”, that is, we only used 

this “highly” values’ optimization for casting dimension. Similarly, in Exp1.2.2, we 

make tests to determine optimal TH_HIGH_TOP_COUNT for genre, and only used 

this optimization for content-based user model generation. So for each genre, casting 

and director dimension, a separate experiment was conducted and the precision 

values were computed as a function of the TH_HIGH_TOP_COUNT threshold.  

Considering TH_HIGH_TOP_COUNT, we observed two different situations 

corresponding to three types of categories. For the first one, such as casting or 

directors, the number of possible features is very high, and the 

TH_HIGH_TOP_COUNT threshold is low. For the second, such as genre, the 

number of possible features is low. As a result, the TH_HIGH_TOP_COUNT 

threshold is relatively high.  

The experiment was conducted with the same 200 users, used in the previous 

experiment. Figures 10, 11, 12 illustrate the results of the experiments for 

TH_HIGH_TOP_COUNT for casting, genre and director categories respectively. In 

all these experiments, the horizontal axis shows the TH_HIGH_TOP_COUNT values 

and the vertical – the precision values. The results show that for the all the three 

dimensions, precision increases with TH_HIGH_TOP_COUNT and after a maximum 

precision value, it decreases and stabilizes. Thus, setting too many features of these 

dimensions through low TH_HIGH_TOP_COUNT value lowers the precision of the 

generated predictions. Conversely, high TH_HIGH_TOP_COUNT values disable the 

system from catching features that are in fact “highly”. Similar behaviors observed 

for all these categories. For genre category with a small number of possible features 

compared to casting and directors, the optimal TH_HIGH_TOP_COUNT threshold is 

TH_HIGH_TOP_COUNT = 50, which is much higher compared to the other two 

categories with a large number of features. The optimal TH_HIGH_TOP_COUNT 

threshold is TH_HIGH_TOP_COUNT = 6 for casting TH_HIGH_TOP_COUNT = 4 

for director dimensions.  
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These observed values also confirm with the statistics we collected from the data set. 

For instance, for the director dimension, we compute the maximum occurrence value 

of each of the directors in each user profile (considering all 6040 users). These values 

vary from 1 to 8. We averaged these maximum occurrence values (not including 

value 1) for all the users, which results in an average value of value 6 for directors. 

We also compute the average occurrence of every feature in the director dimension 

for each user (not including 1) and we average all these values for all the users, 

which we found as 2. Therefore, we tried TH_HIGH_TOP_COUNT values for 

director dimension starting from 2 at least up to 7, until we get a nearly stable 

decrease in precision. We completed this procedure for genre and casting dimensions 

also, and we determine which values to use for trying to find optimal values for 

TH_HIGH_TOP_COUNT in this way. The resulting values are meaningful 

considering these statistics. 
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Figure 10 –Precision vs. TH_HIGH_TOP_COUNT Threshold for Casting Dimension 
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TH_HIGH_TOP_COUNT for Genre
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Figure 11 – Precision vs. TH_HIGH_TOP_COUNT Threshold for Genre Dimension 
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 Figure 12 – Precision vs. TH_HIGH_TOP_COUNT Threshold for Director Dimension  
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After we have completed tests with TH_HIGH_TOP_COUNT, we have tested 

TH_HIGH_RATIO for values {0.60, 0.70, 0.75, 0.80, 0.85, and 0.90}. During this 

experiment, we have set TH_HIGH_TOP_COUNT for each of the three dimensions 

to their optimal values, and include the “highly positive” and “highly negative” 

features for all these three dimensions to be taken into account during the prediction 

generation process, since we tried to find the best value for TH_HIGH_RATIO 

considering all these three dimensions. The results of this experiment are shown in 

Figure 13. As it the case for other previous experiments, the horizontal axis shows 

the TH_HIGH_RATIO values and the vertical – the precision values. The figure is 

similar to other observations, as expected. Low values of TH_HIGH_RATIO leads to 

incorrect assignments of features of the three dimensions to “highly positive” and 

“highly negative”, and this decreases precision. However, higher values than 

TH_HIGH_RATIO = 0.75 prevents the system to assign features to “highly positive” 

and “highly negative” which again decreases precision. After TH_HIGH_RATIO = 

0.90, the precision value stabilizes since no features can be assigned to “highly 

positive” or “highly negative” at all. 
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   Figure 13 – Precision vs. TH_HIGH_RATIO Threshold 
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5.3.2 Second Set of Experiments 

The determined TH_DONT_CARE, TH_HIGH_TOP_COUNT and 

TH_HIGH_RATIO thresholds were applied in the second set of experiments, which 

are designed to compare the performance of the pure content-based predictor with 

the content-based predictor that uses optimizations. In Exp2.1 we get results for the 

pure content-based recommender, and in Exp2.2 we evaluate the effect of the “don’t 

care” features and “highly” features in order to get the effect of the optimizations on 

the predictions of our recommender. For these experiments, we used 5-fold cross 

validation as described in section 5.1. In addition, we conducted tests using all the 

users, that is, 6040 users that exist in the dataset. 

5.3.2.1 Experimental Results 

The results of the experiments are shown in Table 12, in terms of the precision, 

recall, F-measure and accuracy.  

Table 12 – Results of Second Group of Experiments 

Experiment Precision (%) Recall (%) F-Measure (%) Accuracy (%) 

Exp2.1 60.09 91.8 71.27 64.58 

Exp2.2 62.02 91.7 72.84 66.04 

As it can be seen from the results, optimizations increase the precision, F-measure 

and accuracy values; however, there is a very small decrease in the recall value, 

which can be explained by the effect of assigning features to “don’t care”, therefore 

cannot be producing scores for some of the movies.  The combined system performs 

3.21% better on the precision metric. When F1-measure is considered, there is 2.20% 

increase and accuracy increased by 2.26%. Recall rate is significantly high and this is 

an important benefit of the content-based recommender compared to collaborative 

recommenders. This is due to the fact that, collaborative recommenders can not make 

predictions unless a movie is rated by a sufficient number of users. However, our 

content-based recommender can generate a recommendation score for almost every 
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movie and the high recall rate shows that the system can capture most of the relevant 

movies of the users.  
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Figure 14 – Precision vs. Total Seen Films 

In Figure 14, we have provided the precision of the system as a function of the total 

number of the films seen. There is not a very significant variance in the precision 

when the total number of the rated movies is considered. However, the chart shows 

that, the precision falls as the user has evaluated movies more than 400, and this can 

be explained by the effect of the neutral features which can not be identified as 

“don’t care” features by the recommender. More specifically, as the user rates more 

movies, the number of features that exist in his profile increases a lot, which results 

in many neutral features. These features cannot be identified as “don’t care” features 

since they do not contained in the sufficient number of rated movies to pass the 

TH_DONT_CARE threshold. For instance, there can be many features from the 

casting dimension that have been involved in only three or four rated movies, which 

cannot be identified as “don’t care”, however, which are in fact neutral. When the 

user has rated a large number of movies, these neutral features’ side effect exists 
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more. Therefore this large number of neutral features hampers the accuracy of the 

generated predictions. However, one more thing to consider is that, only for below 

400 rated movies, the performance is below the average and according to Table 9, 

only 601 users have rated more than 400 movies, so systems performance is below 

the average only for 9,95% of the users. 

In addition, the performance of the system is high even with the small number of 

rated movies, which is an advantage over the collaborative filtering systems; since 

collaborative systems’ performance is relatively low when the total number of rated 

movies is low. This is due to the fact that, it becomes difficult for the collaborative 

recommenders to find nearest peers in that case [61]. 

5.3.2.2 Comparative Performance Results 

Many of the movie recommenders use collaborative filtering recommendation 

technique, and it is hard to find movie recommenders that conducted content-based 

filtering, and used the same metrics and dataset that were used to evaluate 

OPENMORE. In [64], the performance results for different recommenders are given 

in terms of precision metric; however, information regarding the dataset used in the 

evaluation and the evaluation procedures were not mentioned exactly. The results 

from [64] are displayed in Table 13 in order to compare the systems’ performance 

with the existing studies. MovieLens, a collaborative filtering recommender is 

mentioned in section 3.3.2. MovieMagician [64] is a hybrid recommender system 

that provides a rating prediction when requested.  
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Table 13 – Comparative Performance Results 

Methodology Precision (%) Recall (%) 

MovieLens 66 74 

MovieMagician Feature-Based 61 75 

MovieMagician Clique-Based 74 73 

MovieMagician Hybrid 73 56 

OPENMORE 62.02 91.7 

As it can be seen from the results, our system’s precision values are lower than 

MovieLens’ and MovieMagician’ except Feature-Based version. However, our 

system outperforms the systems mentioned in Table 13 on the recall metric. This is 

the main advantage of the content-based predictors, since most of the collaborative-

based methods, like MovieLens, cannot produce predictions for the movies that were 

not rated by any peer users which results in bad performance in terms of recall 

metric. 

In addition, the performance of OPENMORE will be different if the evaluation is 

done by using another dataset and if the randomly selected users from the dataset 

were used. In most of the studies, only a randomly selected users’ data is used in the 

evaluation, not the whole dataset. However, we have used the whole dataset without 

any randomness in the evaluation of our proposed system. In addition, the system’s 

performance is best for the users who rated at most 70 movies. It is mentioned in [61] 

that, 85.92% of the users in the commonly used EachMovie dataset 

(http://research.compaq.com/SRC/eachmovie/) rated up to 75 movies. Therefore, if 

that dataset were conducted, the performance results would be better, since 

OPENMORE may produce better results for these users who have rated a small 

number of movies and who comprises more than half of the whole dataset.  
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CHAPTER 6  

6.  CONCLUSIONS 

6.1 Summing Up 

In this thesis work, a content-based approach to movie recommendation is presented. 

The translation from collaborative to content-based user models through allowing a 

content-based recommender to generate recommendations for a new user, whose user 

model was imported from a collaborative recommender, is discussed. The proposed 

system, OPENMORE, first constructs item profiles from the information it collects 

from IMDb database. It uses this information to build movie profiles through 

assigning feature weights to each feature in the movie domain. Two hypotheses were 

discussed, which determine the discrimination degrees of the features and which are 

used in the calculation of feature weights. Then these item profiles are used together 

with collaborative user models, that is, the rating data of the users in order to build 

content-based user models. The content-based user models are fine-tuned through 

optimizations of “don't care” and “highly” features. In addition to these, the system is 

designed and implemented such that, it presents the user models to the users and it 

enables the users to edit them in a limited way through assigning the features to 

“don’t care”. Explanations of the recommendations are provided to the users and 

users can create multiple content preferences which enable them to create filters of 

their own. The editability of the open user models, positive and negative feedback 

facilities allow users to change the constructed user profiles and provide missing 

information or to correct errors, which increase the quality of the produced 

suggestions. This effectively provides a mechanism for the user model to be 

examined and edited and thus to tune the adaptation process.  
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The experimental study described in Chapter 5 first focused on determining the 

thresholds which are used in the optimization of the constructed user models. First 

the pure content-based recommender is evaluated and then the thresholds were 

applied and the accuracy of the generated content-based predictions of the 

recommender that uses the optimizations was measured, so as to find out the degree 

of improvement gained by the optimization strategies. In all these experiments, we 

have used the publicly available movie rating dataset MovieLens. In the first group 

of experiments that we have tried to find the optimal values of the thresholds, we 

used 200 randomly selected users and applied precision metric to evaluate the results. 

In the second group we included all 6040 users without selecting randomly and 

obtained the results. 

6.2 Discussion and Outlook 

The experiments showed that for more than 90 % percent of the users, the accuracy 

of the system is above the average. In addition, for users who have rated up to nearly 

60 movies, the accuracy is highest. This is an advantage of the content based 

recommender over the collaborative recommenders, since collaborative 

recommenders do not perform well on such user models. The discussed prediction 

mechanism can be enhanced in the future so that combined features can be taken into 

account as one more optimization that will increase the accuracy. For instance, when 

one feature occurs with some other, this will result in bad recommendation and if 

such cases can be captured, this will increase the prediction accuracy of the 

recommender.  

In addition, IMDb have plot keywords available for the movies, which give 

important clues about the movie synopsis, and therefore content. This information 

can be integrated into OPENMORE as a new dimension, which will not require a 

major change in the current version. Trust in content-based recommendation systems 

can be further studied and how the system can be enhanced to gather more trust from 

the users will be considered attentively. In addition, the system proposed in this 

thesis study mainly uses a content-based approach; however, a collaborative 
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recommendation engine can be integrated into this content-based recommendation 

system as a future line of work, in order to provide more accurate recommendations. 

This engine would be under the control of the users, so if the users want other 

peoples’ ideas to affect their recommendations, collaborative engine would come to 

work. 
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