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ABSTRACT 
 
 

INVESTIGATION OF THE SIGNIFICANCE OF PERIODICITY 

INFORMATION IN SPEAKER IDENTIFICATION 

 
 

Gürsoy, Seçil 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor:  Assoc. Prof. Dr. Tolga Çiloğlu 

 

 

April 2008, 83 pages 
 
 

 
In this thesis; general feature selection methods and especially the use of 

periodicity and aperiodicity information in speaker verification task is 

searched. A software system is constructed to obtain periodicity and 

aperiodicity information from speech. Periodicity and aperiodicity information 

is obtained by using a 16 channel filterbank and analyzing channel outputs 

frame by frame according to the pitch of that frame. Pitch value of a frame is 

also found by using periodicity algorithms. Parzen window (kernel density 

estimation) is used to represent each person’s selected phoneme. 

Constructed method is tested for different phonemes in order to find out its 

usability in different phonemes. Periodicity features are also used with MFCC 

features to find out their contribution to speaker identification problem. 

 
 
Keywords: Pitch detection, Periodicity, Aperiodicity, Speech Processing, 

Average Magnitude Difference Function (AMDF), Speaker Identification  
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ÖZ 
 

 

KONUŞMACI TANIMLAMADA PERİYODİKLİK BİLGİSİNİN ÖNEMİNİN 

ARAŞTIRILMASI 

 
 

GÜRSOY, Seçil 

Yüksek Lisans Tezi, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç.Dr. Tolga ÇİLOĞLU 

 

 

Nisan 2008, 83 sayfa 
 

 
 
Bu tez çalışmasında konuşmacı doğrulama amacıyla kullanılan öznitelikler, 

özellikle de periyodiklik ve aperiyodiklik bilgisinin kullanımı araştırılmıştır.  

Ses sinyalinden periyodiklik ve aperiyodiklik bilgisinin elde edilmesi amacıyla 

bir yazılım sistemi oluşturulmuştur. Periyodiklik ve aperiyodiklik bilgisi 16 

kanallı bir filtre kullanılarak, kanal çıktılarının ilgili çerçeve içerisinde o 

çerçeveye ait pitch bilgisine göre analiz edilmesiyle elde edilmiştir. Her bir 

çerçevenin pitch bilgisi yine periyodiklik algoritmaları ile hesaplanmıştır. 

Seçilen kişilerin analiz edilen harfleri, Parzen Window tekniği kullanılarak 

modellenmiştir. Oluşturulan metod, farklı sesler için kullanılabilirliğinin 

anlaşılması amacıyla farklı seslerde test edilmiştir. Periyodiklik bilgisi ayrıca 

MFCC bilgisi ile birlikte kullanılarak, konuşmacı tanıma problemine yaptığı 

katkı araştırılmıştır. 

 

 

Anahtar kelimeler: Pitch Bulma, Periodiklik, Aperiodiklik, Ses İşleme, AMDF, 

Konuşmacı Tanıma 
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CHAPTER 1 
 

 

1INTRODUCTION 
 

 
 

1.1 Speech Production 

 

In humans, pushing out air from the lungs through vocal chords and mouth 

produces speech. Lungs act as a source of producing sound and vocal tract 

acts as a filter. Articulators are soft palate, tongue, lips and jaw.  

 

From the technical point of view, the production of speech is widely described 

as a two-level process. In the first stage, the sound is initiated and in the 

second stage it is filtered. The basic assumption of the model is that the 

source signal is produced at the glottal level and it is linearly filtered through 

the vocal tract [1] (See Figure 1-1). 

 

1.2 Speaker Recognition 

 

Overview: 

 The speech signal contains many levels of information. First of all, it conveys 

a message via words to the listener. On the other hand, the speech conveys 

information about the gender, language being spoken, emotion and 

generally, the identity of the speaker.  One branch of the speech processing 

is speaker recognition. 

 

 

 



 

Figure 1

Speaker recognition encompasses two main tasks: Speaker Recognition and 

Speaker Verification. Speaker verification is the task of determining whether 

a person is who he/she claims to be

terms for speaker verification, including voice verification, speaker 

authentication, voice authentication, talker authentication, and talker 

verification. Speaker identification is the task of determining who is talking 

from a set of known voices or speakers. In speaker identification there is no a 

priori identity claim, and the system decides who the person is, what group 

the person is a member of, or (in the open

unknown. Generally it is assume

set of known speakers, thus the task is often referred as closed

identification. 
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Figure 1-1: The source filter model of speech [

 

 

 

Speaker recognition encompasses two main tasks: Speaker Recognition and 

Speaker Verification. Speaker verification is the task of determining whether 

a person is who he/she claims to be. The literature abounds with different 

terms for speaker verification, including voice verification, speaker 

authentication, voice authentication, talker authentication, and talker 

verification. Speaker identification is the task of determining who is talking 

m a set of known voices or speakers. In speaker identification there is no a 

priori identity claim, and the system decides who the person is, what group 

the person is a member of, or (in the open-set case) that the person is 

unknown. Generally it is assumed that the unknown voice come

set of known speakers, thus the task is often referred as closed

 

1: The source filter model of speech [1] 

Speaker recognition encompasses two main tasks: Speaker Recognition and 

Speaker Verification. Speaker verification is the task of determining whether 

terature abounds with different 

terms for speaker verification, including voice verification, speaker 

authentication, voice authentication, talker authentication, and talker 

verification. Speaker identification is the task of determining who is talking 

m a set of known voices or speakers. In speaker identification there is no a 

priori identity claim, and the system decides who the person is, what group 

set case) that the person is 

comes from a fixed 

set of known speakers, thus the task is often referred as closed-set 
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A speaker known to a speaker recognition system who is correctly claiming 

his/her identity is labeled as a claimant and a speaker unknown to the 

system who is posing as a known speaker is labeled an impostor.  

 

There are two types of errors in speaker recognition systems: false 

acceptances, where an imposter is accepted as a claimant, and false 

rejections, where claimants are rejected as impostors. 

 

Speaker recognition is of two types: 

 

Text-dependent: Text-dependent systems expect the speaker to say a pre-

determined phrase, password, or ID. By controlling the words that are 

spoken, the system can look for a close match with the stored voiceprint. 

Text-dependent recognition is employed in applications with strong control 

over user input. This type of recognition has an advantage of increasing the 

performance of the system because of the prior knowledge of the spoken 

text. 

 

Text-independent: This type of mechanism is used for recognizing any type 

of conversational speech or user selected phrase. Text-independent 

recognition system has no prior knowledge of the text spoken by the person. 

This is generally used in applications with less control over user input. 

 

General overviews of speaker recognition have been given in [2], [3], [4] and 

[5]. 

 

Speaker recognition applications: 

There are many applications to speaker recognition. In [6], these areas are 

grouped into three categories. These are authentication, surveillance and 

forensic speaker recognition.  
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Speaker Recognition for Authentication: 

Speaker recognition for authentication allows the users to identify themselves 

using their voices. This can be much more convenient than carrying a key 

with you or remembering a PIN. There are a few distinct concepts of using 

the human voice for authentication, i.e. there are different kinds of speaker 

recognition systems for authentication purposes:  

 

Single pass phrase system: A single pass phrase system lets the user 

choose a phrase that is uttered in enrollment as well as for authentication. 

Therefore, text dependent speaker recognition techniques can be used, 

which has the advantage that good recognition accuracy can be achieved 

with very little speech data in training as well as test.  

 

Text prompt system: A text prompt system requires the user to utter a 

specific text which is generated individually for each authentication. As an 

example, a series of digits from "zero" to "nine" may be used. But also the 

generation of arbitrary phrases which are to be spoken by the person to be 

authenticated is conceivable. Depending on the kind of prompt, the speaker 

recognition technique may be text dependent as well as text independent.  

The disadvantage of this system is that longer speech signals have to be 

collected during training as well as for the authentication process, making the 

system convenient. 

 

Speaker Recognition for Surveillance: 

Another usage of speaker recognition is to recognize speakers by telephone 

or radio conversations. Security agencies use this information to recognize 

target speakers that are of interest for the service. The difficulty in this usage 

is that, there are high quantities of data and filtering mechanisms must be 

applied in order to find the relevant information.  
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Forensic Speaker Recognition: 

Determining whether a given speech utterance has been produced by a 

particular person can help to convict a criminal or discharge an innocent in 

court. Semiautomatic and automatic speaker recognition technologies are 

present in forensic speaker recognition area and detailed information is given 

in [7].  

 

Further information about speaker recognition applications can be found in 

[3], [6] and [7]. 

 

1.3 Overview of the Speaker Verification Process 

 

A speaker verification system is composed of two distinct phases, a training 

phase and a test phase. Figure 1-2 shows a modular representation of the 

training phase of a speaker verification system.  

 

The first step consists of extracting parameters from the speech signal to 

obtain a representation suitable for statistical modeling. This step can be 

named as feature extraction which maps each interval of speech to a 

multidimensional feature space.  The second step consists of obtaining a 

statistical model for the speakers from the extracted parameters. 

 

 

 

                                                   Speech                                   Speaker 

                                                  Parameters                               Model 

 

 

Figure 1-2: Training phase of a speaker verification system  

 

 

Feature 
Extraction 

Speech data 
from a known 

spzeaker 

Statistical 
Modeling 
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Figure 1-3 shows a modular representation for the test phase of a speaker 

verification system. The entries of the system are the claimed identity and the 

speech samples pronounced by an unknown speaker. First, features are 

extracted from the speech signal using exactly the same feature extraction 

module as for the training phase. Then, the speaker model corresponding to 

the claimed identity and the training models are being compared to get a 

match score. The match score measures the similarity of the input speaker 

model to the model of the claimed speaker. Last, a decision is made to either 

accept or reject the claimant according to the match score. 

 

 

 

 

                                                                                      

                                                   

                                

 

 

 

 

Figure 1-3: Test phase of a speaker verification system 

 

 

 

In this thesis, we are especially interested in feature extraction step. Our aim 

is to study which kind of features could be used for speaker verification and 
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existing features in order to improve speaker verification task.  

 

Feature extraction is a common step for training and testing phases of the 

speaker verification systems. Feature extraction converts the speech signal 
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Matching 

Reference 
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into a sequence of feature vectors. The goal is to find a transformation to a 

relatively low-dimensional feature space that preserves useful information for 

speaker verification. Although it might be tempting at first to select all the 

extracted features to improve quality but the “curse of dimensionality” quickly 

becomes overwhelming. As more features are used, the feature dimensions 

increase, which imposes severe requirements on computation and storage in 

both training and testing. Also the demand for a large amount of training data 

to represent a speaker’s voice characteristics grows exponentially with the 

dimension of the feature space [2].    

 

The features extracted for the verification process must [2], [9] 

o possess high discriminative power: higher interspeaker 

(between-speaker) variability, low intraspeaker (within-speaker 

variation, due to emotion, health, state, and age) variability,  

o occur frequently and naturally in speech 

o be robust against noises and distortions 

o be stable over time 

o not be susceptible to mimicry by impostors 

 

It is unlikely that a single feature would fulfill all the listed requirements 

above. Fortunately, due to the complexity of speech signals, a large number 

of complementary features can be extracted and combined to improve the 

verification accuracy. Basically we can group speech features as two types: 

source based features and filter (vocal tract) based features. 

 

It is known that the speech spectrum shape encodes information about the 

speaker’s vocal tract shape via resonances (formants) and glottal source via 

pitch harmonics [3]. 

 

State-of-the-art automatic speaker recognition systems typically extract 

features carrying vocal tract characteristics, such as Mel Frequency Cepstral 



 

8 

Coefficients (MFCC) and Linear Predictive Cepstral Coefficients (LPCC). 

Recently, some experimental results have shown that features involving 

vocal cord characteristics, such as pitch, harmonics, etc., can work as 

supplementary features to those vocal tract ones and can improve speaker 

recognition performance [10], [11], [12]. Some examples of speaker 

recognition features and their performances are listed in Table 1-1 to give an 

idea. The details of the methods could be found in their references. For the 

listed papers in table; first column specifies the used feature(s); second 

column specifies the classification technique; third column tells whether text-

dependent or text-independent recognition is used; fourth and fifth columns 

give information about the used databases and speech for training and 

testing respectively; and last column summarizes the performances.  



 

 

Table 1-1 Examples for Speaker Recognition Algorithms 

  

FEATURE CLASS. TEXT TRAINING DATA  TEST DATA  PERFORMANCE 

MFCC [15] GMM Ind. • 16 Male (KING Database) 

• 60 sec (6000 25 dim mel 

cepstral vectors) 

• 5 sec 

 

Correct% = 87.3 

(Model order = 16 ) 

Cepstrum + 

Prosodic 

Variation [16] 

GMM  • 250 Male, 250 Female 

(NIST Database) 

• 2 min. 

• 10 sec 

• 5000 trials 

Male: 

 DCF1 (x103)= 65.5 ceps 

 DCF (x103)= 60.6 ceps 

+prosody 

Female: 

 DCF (x103)= 62 ceps 

 DCF (x103)= 59.6 ceps 

+prosody 

MFCC + 

MPEG7 [17] 

GMM Ind. • 150 person, NIST99  EER%: 

MFCC=8.58, MPEG=9.00 

MFCC+SpHr=7.78 (feature 

                                                 
1
 Detection Cost Function (DCF): DCF = Cfr P(true)P(fr\true) +CfaP(imposter)P(fa\imposter) 

(i.e., Bayes Risk with priors P(true) = 0.01= 1-P(imposter), and false rejection and false alarm costs Cfr = 10; Cfa =1).  
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Table 1-1 Examples for Speaker Recognition Algorithms 

  

FEATURE CLASS. TEXT TRAINING DATA  TEST DATA  PERFORMANCE 

comb) 

MFCC+Hr=7.78 (feature 

comb) 

MFCC+ MPEG+SpHr=6.99 

MFCC+MPEG=6.99 

MFCC+SpHr=7.19 

MFCC + 

Pitch [12] 

LVQ-

SLP, 

GMM 

Ind. • 18 Female (SPIDRE) 

• 3 conversation 

1 conversation 

(from different 

handset) 

Identification rate increase: 

Voiced (6%), with pitch (14%) 

Acoustic 

Parameters 

(AP) [18] 

 

GMM Ind. • 50 to 250 all male or all 

female (NIST 1998) 

• 1 min. after silence removal 

30-40 sec 

30 sec. after 

silence removal 

10-20 sec 

Identification Error Rate % for 

population size 100, avarage: 

29.44 for 8 APs, 

31.11 for 26 MFCCs, 

30.75 for 39 MFCCs 

LPCC  

HOCOR 

GMM  • Male subset of YOHO 

database 

2.5 sec EER: 

LPCC(24 dim.)=1.04, 

10 



 

 

Table 1-1 Examples for Speaker Recognition Algorithms 

  

FEATURE CLASS. TEXT TRAINING DATA  TEST DATA  PERFORMANCE 

LPCC+HOC

OR [10] 

 

HOCOR(24 dim.)=8.74 

LPCC+HOCOR(48 

dim.)=0.99 (future comb.)  

LPCC+HOCOR(48 

dim.)=0.89 (score comb.) 
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1.4 Voiced - Unvoiced Speech 

 

Depending on the type of excitation, two types of sounds are produced: 

voiced and unvoiced sounds. Voiced sounds are produced by forcing air 

through the glottis or an opening between the vocal folds. The vocal folds 

vibrate in this case. Examples of voiced sound are the vowel “e” in “ses”, 

or “a” in ‘”can”’ (see Figure 1-4). Unvoiced sounds are generated by 

forming a constriction at some point along the vocal tract and forcing air 

through the constriction to produce turbulence. Vocal folds do not vibrate 

in this case. An example of an unvoiced sound is “s” as in “ses” (see 

Figure 1-5). A sound can also be simultaneously voiced and unvoiced 

(mixed). An example of a mixed sound is “z” in “zil”. 

 

 

 

 
  

Figure 1-4: Voiced Speech 
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Figure 1-5: Unvoiced Speech 

 

 

 

When producing voiced sounds, vocal folds open and close in a periodic 

pattern. For that reason, voiced sounds are quasi-periodic and the 

frequency at which vocal folds open and close is called the fundamental 

frequency or pitch. Table 1-2 gives the pitch characteristics of men 

women and children. 

 

 

 

Table 1-2 General pitch characteristics 

 

Pitch (Hz) average Min. Max. 

Men 125 80 200 

Women 225 150 350 

Children 300 200 500 
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1.5 The Aim of the Thesis 

 

In this thesis, use of the periodicity and aperiodicity information of speech 

in speaker verification task is investigated.  

 

In the production of speech, there are a number of sources that generate 

acoustic energy in the vocal tract. Periodic sounds are produced by quasi-

periodic lateral movements of the vocal folds which are creating periodic 

energy at the glottis. Aperiodic sounds are mainly produced by creating 

turbulence in the flow of air through the vocal tract. Aperiodic sources 

include aspiration, generated at the glottis; frication, generated further 

forward in the vocal tract; and transient bursts produced by the rapid 

release of complete constrictions. All these sources are filtered by the 

vocal tract to generate an output signal, which will also be periodic or 

aperiodic depending on the source(s) [13].  

 

We could not find any implementation that uses periodicity and 

aperiodicity directly as a feature for speaker verification.  

 

Periodicity and aperiodicity information is obtained from 16 different 

frequency bands of speech and the obtained information is tested on 

selected phonemes for different persons. We compared the results for 

different phonemes in order to find out which phonemes are being more 

separated with periodicity and aperiodicity information. This is because to 

see if periodicity and aperiodicity information could be used lonely or 

supplementary with other features and which phonemes are appropriate 

to use these features in order to perform the speaker verification task. The 

constructed method is explained in chapter 2. 
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CHAPTER 2 

 

 

2THE METHOD 

  

 

 

The constructed system to find periodicity and aperiodicity information 

starts with silence detection and followed by some signal processing 

algorithms, as detailed in Figure 2-1. The system also gives an estimate of 

the pitch period of the periodic component. The details of the methods 

used in the system are explained in the following sections. 
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Figure 2-1: Block diagram of our system 
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2.1 Frame Silence Detection 

 

The analysis begins with segmenting the speech into frames.  We 

extracted frames of length 20 ms which overlap by 15 ms as shown in 

Figure 2-2.  

 

 

 

 

 

Figure 2-2 Frame blocks 

 

 

 

After obtaining frames, silence detection begins with comparing frame 

energies for voiced - unvoiced decision. Energy of the n-th frame of the 

speech signal is calculated by the following equation: 

 

                � � 20��	
� �����
��� ����                                           �2.1� 
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where  ���� is the j-th speech sample in the n-th frame and N is equal to 

320 because of 20 ms frame length with 16kHz sampling rate. Usually the 

energy of a voiced speech frame is larger than that of an unvoiced speech 

frame. 

 

Next step of the frame silence detection is to examine zero crossing rates. 

The zero-crossing rate is obtained by counting the sign changes (either 

from positive to negative or from negative to positive) in successive 

speech samples. The ZCR of the voiced sound is lower than the ZCR of 

the unvoiced sound.   

 

A frame is judged to be nonsilent if its total energy is no more than 35 dB 

(threshold) below the maximum total energy computed across all of the 

frames in the utterance or if ZCR of that frame is smaller than 50 samples.  

 

That is, a frame is judged to be silent if: 

 �� � ����  35 #$     �%     &'(� ) 50 

 �� : energy of  the frame ���� : maximum energy across all frames &'(� *   zero crossing rate of the frame 

 

The energy threshold (35 dB) is referenced from [13] and its suitability for 

our study is proven empirically. If a frame is classified as silent, then no 

further processing is done. The ZCR threshold is determined empirically 

also to improve our pitch estimation algorithm which will be discussed in 

section 2.4.  
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2.2 Filterbank 

 

A 16 channel filter bank is applied to the speech signal. In order to provide 

an accurate weighting of the frequency components, channel’s start and 

end frequencies are determined by a 16 channel Mel-scaled filter bank. 

 

The mel scale is a perceptual scale of pitches judged by listeners to be 

equal in distance from one another. Human ear tends to perceive the 

frequencies below 1000 Hz in a linear way and frequencies above 1000 

Hz in a non-linear manner. The reference point between this scale and 

normal frequency measurement is defined by equating a 1000 Hz tone, 40 

dB above the listener's threshold, with a pitch of 1000 mels. Above about 

500 Hz, larger and larger intervals are judged by listeners to produce 

equal pitch increments. The name mel comes from the word melody to 

indicate that the scale is based on pitch comparisons [14]. To convert f 

Hertz into m Mel use: 

                                  + � 1127.01048 ��	/ 01 1 �2��3                                    �2.2�                          
 

Or equivalently: 

 

                                 + � 2595 ��	 011 57003                                 �2.3�                      
 

Mel frequency filter bank is modeled by constructing the required number 

of triangular band-pass filters with 50% overlap. (see Figure 2-3) 
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Figure 2-3: Mel scaled filterbank 

 
 

 

In our filterbank, we used Mel scaled filterbank’s start and end frequencies 

which are listed in Table 2-1. But instead of triangular filters, we used 

rectangular FIR filters with different orders for different channels. Channel 

orders are determined by inspection of the filter characteristics. Channel 

orders are also listed in Table 2-1. 

 

 

 

Table 2-1 16 channels filter specifications 
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Mel Scaled 16 Channel Filterbank

Frequenct (Hz)

G
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n

Channel. F Start 
(Hz) 

F End 
(Hz) 

Filter 
Order 

1.  100 358.92 350 

2.  220.4 518.29 350 

3.  358.92 701.64 300 

4.  518.29 912.58 300 

5.  701.64 1155.3 300 

6.  912.58 1434.5 300 

7.  1155.3 1755.7 300 
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Table 2-1 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

First, fifth and sixteenth channel responses are given below as examples. 

 

 

 

 

 
Figure 2-4: First channel 
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8.  1434.4 2125.3 300 

9.  1755.7 2550.5 250 

10.  2125.3 3039.7 250 

11.  2550.5 3602.5 250 

12.  3039.7 4250.1 200 

13.  3602.5 4995.1 200 

14.  4250.1 5852.2 150 

15.  4995.1 6838.3 150 

16.  5852.2 7972.8 100 
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Figure 2-5: Fifth channel 

 

 

 

 

 
Figure 2-6: Sixteenth channel 
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After applying the 16 channel filter bank to our whole speech, each 

channel of each frame is analyzed according to its energy. For any 

nonsilent frame, a channel within that frame is judged to be nonsilent in 

case its energy is no more than 45 dB (threshold) below the maximum 

channel energy that has been computed up to present frame. If a channel 

of a frame is classified as silent, then no further processing is done with 

interested channel of that frame. 

 
2.3 Difference Function Computation 

 

Each nonsilent channel is analyzed for periodicity, aperiodicity and pitch. 

The raw pitch estimate of each frame is produced using Average 

Magnitude Difference Function (AMDF). There are several pitch finding 

algorithms especially autocorrelation function and difference function. The 

autocorrelation function consists of multiplication followed by addition 

which causes high computation cost. Detailed analysis of pitch estimation 

algorithms could be found in [19]. The average magnitude difference 

function is defined as: 

 

6789�:� �  1;  : � |��=�  ��=  :�|,   : � 0, 1,…;  1 ����@
��  

(2.4) 

 

The difference function is expected to have a strong local minimum if the 

lag : is equal to or very close to the fundamental frequency. For each 

frame, the lag for which the AMDF has a global minimum is a strong 

candidate for the pitch period of that frame. By using only this situation we 

tested AMDF pitch estimation algorithm by using PRAAT software [20]. In 

Figure 2-7, the speech signal (sketched at the upper side), its pitch values 
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estimations by PRAAT (red dotted at the lower side) and AMDF function 

(blue dotted at the lower side) are shown. 

 

Instead of calculating pitch estimations directly from speech signal’s 

AMDF, we use periodicity and aperiodicity information of channels as 

explained in section 2.4. If a signal is periodic, then its AMDF function 

attains local minima at lags roughly equivalent to the pitch period and its 

integer multiples. Figure 2-8 shows a normalized AMDF function of a 

periodic channel. 

 

 

 

 

 
Figure 2-7: AMDF and PRAAT pitch estimations 
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Figure 2-8: AMDF for a periodic channel 

 

 

 

If a signal is aperiodic, then the AMDF waveform will not show such 

evenly spaced minimum points. Aperiodic channel’s AMDF waveform has 

randomly distributed minimum points and its minimum points are higher 

than the periodic channel’s minimum points. Figure 2-9 shows a 

normalized AMDF function of an aperiodic channel. 

 

Hereafter the strength of the local minimum points will be referred as 

“dips” [13]. Dip strength values are found by subtracting the value of the 

minimum points from the maximum value of the AMDF. Because of the 

AMDF is normalized to 1, the strength of a dip can be 1 at the most. The 

decision regarding periodicity and aperiodicity is based on the location 

and strength of the dips occurring in the AMDF waveform. Dips of the 

channels in Figure 2-8 and Figure 2-9 are shown below respectively in 

Figure 2-10 and 2-11. 

 

 

0 50 100 150 200 250
0

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1



 

26 

 

 

 

 

Figure 2-9: AMDF for an aperiodic channel 

 

 

 

 

 

Figure 2-10: AMDF and dips for a periodic channel 
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Figure 2-11: AMDF and dips for an aperiodic channel 

 

 

 

Spacing and strength of the dips are indicators of periodicity. Note that 

periodic channel dips are evenly spaced and they have bigger strengths 

than aperiodic channel dips.   

 

2.4 Estimation of Pitch Period 

 

Pitch period estimation of a frame is based on the distribution of the 

AMDF dips across all channels within that frame. AMDF dip strengths are 

summed across all the channels within a frame.  For a strong periodic 

frame, the summation of AMDF dips will constitute clusters at the pitch 

value and its integer multiples. For a strong aperiodic frame, the 

summation of AMDF dips will scatter randomly. Summations of channel 

dips for a periodic frame and for an aperiodic frame are shown in Figure 2-

12 and 2-13 respectively.  
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Figure 2-12: Summation of channel dips for a periodic frame 

 

 

 

 

 

Figure 2-13: Summation of channel dips for an aperiodic frame 
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We estimate pitch frequency in two steps. First from the beginning of a 

frame, the maximum location between 45th to 93rd samples is chosen as 

the peak location (p) of that frame.  These values correspond to 172 Hz 

to 356 Hz and they have been chosen according to the women voice’s 

fundamental frequency in our database (Also see Table 1-2).  With that 

pitch value, periodicity is calculated as explained in section 2.5. This 

case works for strong periodic frames. However, especially for weak 

periodic frames, the maximum point within the 

 interval could be more determinative. As a 

second step we find the maximum point within 

 interval, halving it and assume that the 

founded value is the new pitch candidate. 

 We calculate periodicity value 

again and compare with periodicity found by .  The pitch value of the 

frame is chosen as the one which supports higher periodicity. 

 

For the frame in Figure 2-12, the location corresponding to the maximum 

of the first cluster is 63. So for Figure 2-12, the pitch estimate is: 

 

 =  =  

 

Frames belonging to strong periodic regions have very high summation 

values in clusters. Frames belonging to weak periodic regions have low 

summation values in clusters. The reason of that is, the dips of weak 

periodic frames are not very strong near pitch estimates or these frames 

have silent channels. 

 

 

 



 

30 

 

 

 

 
 

Figure 2-14: Summation of channel dips for a weak periodic frame 

 

 

 

Strengths of aperiodic frame dips and weak periodic frame dips are 

comparable as seen in Figures 2-13 and 2-14. In order to distinguish an 

aperiodic frame from a weak periodic frame, nonzero dips are 

investigated. Aperiodic frames have more nonzero dips than weak 

periodic frames, so aperiodic frames look noisier than the weak periodic 

frames.  

 

2.5 Computation of Periodicity and Aperiodicity 

 

The distribution and strength of the AMDF dips in channels relative to the 

location of the pitch value and its integer multiples are used to compute 

the periodicity and aperiodicity values for that channel.  
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Periodicity measurement:  

 

The most important indicator of the periodicity is the high strength dips 

which are at the pitch value and its integer multiples or very close to pitch 

value or its integer multiples. In order to reflect this situation on the 

periodicity algorithm, dips are weighted such that dips which are closer to 

the cluster peaks contribute more toward periodicity. This contribution 

decreases rapidly with the increasing distance from the cluster peaks. 

Consequently, dips are weighted using exponentially decaying weights 

according to their distance to the pitch and its integer multiples [13].  

 

Periodic signal’s AMDFs are expected to have equally spaced dips of 

similar strength. To take the contribution of each pitch multiple, we 

consider regions around each pitch multiple separately. That is, if the 

frame length includes C pitch multiples in its lag, then each of the regions 

from 

 Bj D p  F � *  j D p 1 F �G  �p � pitch value�            for    j � 1,2,…C     
is analyzed separately for periodicity as shown in Figure 2-15.  
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Figure 2-15: Cluster boundaries for a periodic channel to calculate 

periodicity  

 

 

 

The following equation shows the calculation of the cluster periodicity for 

the �th cluster: 

              TU%V�#VWVXY� � Z� 1 [1  Z�\ � #] D ]̂
]���_`_�
]���_�_�

                    �2.5� 
Where T : pitch value, Z� :  strength of the dip closest to the pitch or its integer multiple in the 

cluster. If the cluster has a dip at the pitch value or its integer multiples, 
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then  Z� will be equal to that dip’s strength. Otherwise Z� will be equal to 

the strength of the dip which is closest to the pitch value or its integer 
multiples #] : strength of the dip V locations away from the peak, 

]̂ : value of the exponential weight function at location V.  That is 

 

                                       ^]  � U� |�D_�]|2                                                  �2.6� 
 

If a dip is near the pitch value or one of its integer multiple, then it will 

conserve most of its value toward periodicity. When the dips get far away 

from the pitch value or one of its integer multiples, the contribution toward 

periodicity will decay exponentially. The “7” in the denominator of the 

formula (2.6) is found empirically. For example; Figures 2-16, 2-17 and 2-

18 show three different channel AMDFs. The periodicity values found with 

three different weight formulas for these three channels are given in Table 

2-2. 

 

 

 

Table 2-2 Periodicity values for different weight values 

 

Weight 
 

Ch. 

]̂ � U� |�D_�]|b       ]̂ � U� |�D_�]|c     ]̂ � U� |�D_�]|de    
 

Ch. 1 0.86742 0.98882 0.99111 

Ch. 2 0.81005 0.92248 0.9965 

Ch. 3 0.87393 0.87407 0.89339 
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It is expected that, Channel 1 have the maximum periodicity among these 

three channels.   

 

 

 

 

Figure 2-16: AMDF dips for Channel 1  

 

 

 

 

 

Figure 2-17: AMDF dips for Channel 2 
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Figure 2-18: AMDF dips for Channel 3    
]̂ � U� |fDghi|j         formulation produced maximum periodicity for Ch.3 and  

]̂ � U� |fDghi|kl         formulation produced maximum periodicity for Ch.2. So, 

 ]̂ � U� |fDghi|m        formulation is used to calculate periodicity. 

 

To find the overall channel periodicity, the average periodicity across all 
clusters within a channel is calculated by equation (2.7) 

 

            TU%V�#VWVXYno�/p � 1'�TU%V�#VWVXY�                              �2.7���q
���  
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Aperiodicity measurement:  

 

Important indicators of the aperiodicity are; dips are far from the pitch 

period and its integer multiples; dips are scattered along the frame length 

and they are small in amplitude. In order to reflect this situation on 

aperiodicity algorithm, dips are weighted such that dips far from the cluster 

peaks contribute more toward aperiodicity. This contribution decreases 

rapidly with decreasing distance from the cluster peaks. Consequently, 

dips are weighted according to their location and exponentially decaying 

weights are used [13]. Aperiodicity measurement is defined as the sum of 

these weighted dips instead of the mean across the clusters. That is 

because aperiodicity is directly related to number of spurious dips. 

 

Note that the dips which are minimum 10 samples far away from the pitch 

value or its multiple taken into account during aperiodicity measurement. 

 

                       rTU%V�#VWVXY ��#] D ]̂                                           ]��
]�� �2.8� 

 5�% sV XtrX ZrXVZ5VUZ min�|V  T D �|� ) 10  5�%  � �  1,2, . . '  
 

 #]  : strength of the dip at location V, C : total number of clusters 

 ]̂ : value of the exponential weight function at location V.  That is 

 

                                     ^]  � U� |_�w]xy�n/|��                                          �2.9�   
 #VZXr=WU:  minimum of the distances of V to T and its integer multiples,so    
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#VZXr=WU � min�V  T D ��     5�%  � � 1,2, . . '                          �2.10� 
 

The “10” in the denominator of (2.9) is found empirically like periodicity 
formulation which is explained with table 2-2. 

Some examples for the channel dip characteristics and their periodicity 
and aperiodicity values are shown in Figures 2-19 to 2-22 

 

 

 

 

 

Figure 2-19 Dips for a periodic channel 

Periodicity = 0.99153, Aperiodicity = 0 
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Figure 2-20 Dips for a periodic channel 

Periodicity = 0.99415, Aperiodicity = 0.25824 

 

 

 

 

 

Figure 2-21 Dips for a weak periodic channel 

Periodicity = 0.73139, Aperiodicity = 0 
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Figure 2-22 Dips for an aperiodic channel 

Periodicity = 0.69559, Aperiodicity = 0.85928 

 

 

If we compare the results, channel in Figure 2-19 is purely periodic, its 

dips are located on the pitch multiples or very close to pitch multiples. 

Channel in Figure 2-20 is another periodic channel. It has some 

aperiodicity value, because of the dips which are located far from pitch 

value. Figure 2-21 is a weak periodic channel. Its periodicity is lower than 

the previous channel’s periodicity and it has no aperiodicity value as 

expected. The maximum aperiodicity value belongs to the aperiodic 

channel as expected (Figure 2-22). We see that, periodicity value of the 

aperodic frame is very close to the periodicity of the weak periodic frame. 

This may seem interesting but actually that was another expected result 

because the number of nonzero dips in the aperiodic frame is more than 

the number of nonzero dips in the weak periodic frame. On the other hand 

the aperiodicity value is bigger than the periodicity value in the aperiodic 

frame and this situation occurred only for the aperiodic frame. 
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2.6 Database  

 

Sabancı University records are used for testing the constructed algorithm. 

This database contains total 70 speakers both male and female. Each 

speaker has approximately 120 sentences. Female speakers are selected 

and their speeches are processed in this thesis. 

 

2.7 Classification  

 

For selected phonemes, periodicity and aperiodicity values are 

investigated to decide the suitable model. For ten people, “m”, “a”, “yo” 

and “e” phonemes are extracted.  

 

Extraction of selected phonemes from sentences is done with Audacity 

1.3 Beta (Unicode) program [21]. For each person and selected phoneme, 

we have approximately 120 frames for training. Note that, each individual 

sample has approximately 5 to 10 frames for a selected phoneme. 

Therefore, 100 frames means approximately 700 - 800 ms with 20 ms 

frame length and 15 ms overlap. Extraction of selected phonemes is 

followed by finding the periodicity and aperiodicity values for that 

phonemes and then gathering these values. Periodicity and aperiodicity 

values of frames are collected in a matrix to obtain an overall periodicity 

and aperiodicity database for selected phoneme of a specific person. 

Obtained matrix has 16 columns for 16 channels and its rows indicate the 

frames. Histogram of each channel’s periodicity and aperiodicity values 

are inspected in order to understand their distributions. Normalized 

periodicity histograms for three people’s “a” phoneme is given in Figure 2-

23, 2-24 and 2-25 for different channels. Figure 2-23 shows three person’s 

1st and 4th channel’s periodicity histograms, Figure 2-24 shows 7th and 

10th, and last Figure 2-25 shows 13th and 16th  channel’s periodicity 

histograms.   



 

 

  

  

 

Figure 2-23 Normalized periodicity histograms of “a” for 3 different persons, channels 1 and 4 
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Figure 2-24 Normalized periodicity histograms of “a” for 3 different persons, channels 7 and 10 

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
7th channel of 123

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
7th channel of 124

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
7th channel of 64

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10th channel of 123

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10th channel of 124

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10th channel of 64

42 



 

 

   

  

 

Figure 2-25 Normalized periodicity histograms of “a” for 3 different person, channels 13 and 16 

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
13th channel of 123

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
13th channel of 124

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
13th channel of 64

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16th channel of 123

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16th channel of 124

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16th channel of 64

43 



 

44 

 

In order to find the appropriate distribution function, trial version of Easy Fit 

(ver.4.0) [23] program is used. Easy Fit is a data analysis and simulation 

application allowing to fit probability distributions to sample data and select 

the best model. For selected phonemes, each channel is analyzed with Easy 

Fit and it showed that Generalized Extreme Value Distribution is appropriate 

for all channels. 

 

Generalize Extreme Value (GEV) distribution formula and its characteristics 

are given below: 

 

Parameters 

 :- continuous shape parameter {- continuous scale parameter ({>0) |- continuous location parameter 

 

Domain 

 

1+: ���}�~ ) 0     for      : � 0  ∞ � � � 1∞    for       : � 0 

 

Probability Density Function 

 

5��� �
���
���~ exp[ �1 1 :���� @⁄ \ �1 1 :������ @⁄      : � 0     

                   �~ exp� �  exp � ���                          : � 0            
�            (2.11) 
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Cumulative Distribution Function 

 

9��� � ��
�  exp[ �1 1 :���� @⁄ \                                     : � 0

                     exp� exp � ���                                            : � 0              
�(2.12) 

 

Where   z � ��µ�  

 

 

 

Figure 2-26 Generalized Extreme Value Distribution 

 

 

 

Figure 2-27 shows a channel histogram of our data and the fitted GEV 

distribution. � : �   1.82827  { � 0.009688 r=# | � 0.99216 � 
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Figure 2-27 Generalized Extreme Value Function fitted a channel � : �   1.82827  { � 0.009688 r=# | � 0.99216 � 
 

 

 

The disadvantage of GEV is its values over unobserved values are not 

reasonable. An example of that situation is shown in the Figure 2-28. In order 

to get accurate distributions, we have to model each channel using its 

maximum point and equating the value of the unobserved data to 0. This is a 

very time consuming method, so we did not use it.   
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Figure 2-28 Generalized Extreme Value Function fitted a channel 

(unobserved values) � : �   1.82827  { � 0.009688 r=# | � 0.99216 � 
 

 

 

Another way of estimating the probability density function of a random 

variable is Kernel Density Estimation (Parzen Window). As an illustration, 

given some data about a sample of a population, kernel density estimation 

makes it possible to extrapolate the data to the entire population. Given an 

instance of the random sample x,  Parzen-windowing estimates the PDF  p�x� from which the sample was derived. Suppose that we want to estimate 

the value of the PDF at point  x. Then, we can place a window function at x 
and determine how many observations x� fall within our window or, rather, 

what is the contribution of each observation to this window. The PDF value is 

then the sum total of the contributions from the observations to this window. 

The Parzen-window estimate is defined as: 
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                                    T��� � 1=� 1t

]�� � ��  �]t �                              �2.13�  

 

Where ���� is the window function.  Gaussian window function is used, that 

is:                                                 ���� � �√�� U���/�                                      �2.14�                        
And  

 t: window width 

The multivariate kernel density estimator in the d-dimensional case is defined 

as [24] 

 

         T��� � 1=� 1t�…tw

]�� � ��]  �]kt� , … , �]  �]�tw �                     �2.15�  

 

A common approach to build multidimensional kernel functions is to use a 

product kernel [24] 

  

                       ����, … , �w� �  ����]�w
]��                                           �2.16�      

 

where � is a one-dimensional kernel function. 

 

Figures 2-29, 2-30 and 2-31 show our typical histogram and its kernel density 

estimate: 
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Figure 2-29 Histogram of a channel 

 
 
 

 
 

Figure 2-30 Parzen density estimate of the channel in Figure 2-29 
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Figure 2-31 Channel Histogram and its parzen density estimate (Fig. 2-

29 and Fig. 2-30 together)  

 

 

2.8 Testing 

 

For each person and for each phoneme, approximately 25 frames are 

extracted for testing. Words selected for testing are different from the words 

used for training. 

 

After obtaining periodicity and aperiodicity values for the test frames, 2 

different algorithms are used for comparing test model with training models. 

They are Kullback-Leibler Distance and Maximum Likelihood methods.  

 

2.8.1 Kullback-Leibler Distance 

 

The Kullback-Leibler distance (KL-distance) is a measure of the difference 

between two probability distributions. It is defined as   
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                         �� �T, �� ��T�V��= T�V���V� ]                                           �2.17� 
 

Where "T" represents data, observations, or a precise calculated probability 

distribution, and "�" represents a theory, a model, a description or an 

approximation of "T"  [22].  

 

It is clear that when p��� � q���; KL �p, q� � 0. So the KL distance 

between the same person’s test and training distributions is expected to be 

smaller than the KL distance between the different person’s test and training 

distributions. 

 

2.8.2 Maximum Likelihood 

 

The likelihood of a sample point given a model is the value of the probability 

density function for that point. 

 

                                             T�¡� ��T��]��
]��                                           �2.18� 

 

Computing the log-likelihood turns the product into a sum:  

 

                                      log  T�¡� ��log T��]��
]��                                    �2.19� 

 

For the multidimensional kernel density case, insert equation (2.15) and 
(2.16) in equation (2.19):  
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         T��� � 1=� 1t�…tw

]�� � 1√2£

w
��� U�T

¤¥
¦ ��]  �]ft� ��2 §̈

©
 

          (2.20) 

 

The training model, that produces the highest likelihood value for a test 

distribution is assumed to be the best fitting model for that test model.  This 

means that a person’s test distribution is expected to have the maximum 

likelihood with the same person’s training distribution. 

 

2.9 Mel Frequency Cepstrum Coefficients (MFCC) 

 

Periodicity features are used with MFCCs as supplementary features.  

Section 3.2 and 3.3 give the test results for contribution of the periodicity 

features to MFCCs. The test has been carried out with both selected 

phonemes and sentences.  

 

Block diagram of the MFCC processor is given in Figure 2-32. Extracting the 

MFFC features starts with segmenting the speech into frames. (See 2.1) The 

next step in the processing is to window each individual frame  to minimize 

the signal discontinuities at the beginning and at the end of each frame. 

Typically the Hamming window is used, which has the form: 

 ^�=� � 0.54  0.46 cos 0�����3 ,          0 « = « ;  1                     �2.21�   
 

The next processing step is the Fast Fourier Transform, which converts each 

frame of N samples from the time domain into the frequency domain. After 

obtaining the spectrum, signal is filtered using Mel-spaced filterbank. (See  

2.2) In the final step, mel spectrum is converted back to time using Discrete 



 

53 

 mel  
spectrum 

 mel  
cepstrum 

Cosine Transform. The result is called the mel frequency cepstrum 

coefficients (MFCC).  

 

 

 

 
continuous                          frame 
speech 

 

 

 

 

 

 

Figure 2-32 Block Diagram of the MFCC Processor 

 

 

 

MFCC features are obtained directly using the HTK Tool. HTK is developed 

by Cambridge University and it is a toolkit for building Hidden Markov Models 

(HMMs). HMMs can be used to model any time series and the core of the 

HTK is similarly general-purpose.  However, HTK is primarily designed for 

building HMM-based speech processing tools, in particular recognisers. 

Much of the functionality of HTK is built into the library modules. It has 4 main 

phases: data preparation, training, testing and analysis.  [25]  

 

Some important properties of HTK are listed below: 

• HTK functions are accessed from the command-line 

• Tools provided for estimating HMM parameters 

Frame  
Blocking 

Windowing FFT 

Mel-Frequency 

Wrapping 

DCT 

Frame  
Blocking 

Windowing FFT 
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• Testing can be done with Viterbi decoder  

• Requires transcriptions and audio files.  

• Performs Baum-Welch estimation of HMM parameters 

• Allows for various parameter tying schemes and mixture incrementing 

• Performs Viterbi-based recognition using the Token-passing  algorithm 

The details of the HTK Tool could be found in [25]. 
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CHAPTER 3 

 

 

3EXPERIMENTS 
 

 

 

3.1 Results for Periodicity & Aperiodicity of Phonemes 

 

Test results for 10 persons’ “m”, “a”, “yo” and “e” phonemes are given in the 

confusion matrices below. 10 persons are coded as: 07, 08, 10, 63, 64, 66, 

123, 124, 126 and 181 respectively.  

 

In order to get more test results, cross validation method is used. That is, test 

data has been shifted with small increments on the overall data and training 

has been repeated for each test. This method helped us to obtain confusion 

matrices. Values in the confusion matrices show the percentage of the 

results. It is expected that the diagonal elements have the largest values. 

“Bold” values are the largest values in the tables below and indicate the 

decided person (column) for the test data (row).  

 

Table 3-1 to 3-8 are periodicity feature results for “m”, “a”, “yo” and “e” 

phonemes respectively.  Tables 3-9 to 3-16 give the aperiodicity feature 

results. For each phoneme, test results found by using KL distance and 

Maximum Likelihood methods are also given in the tables. Tables 3-17 to 3-

20 give the total test results for periodicity and aperiodicity features for all 

phonemes using KL distance and ML testing methods. “Red” values indicate 

the unexpected results, errors (see 2.8) 
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Table 3-1 Confusion matrix for periodicity of “m” using KL distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 72.73 0 0 0 0 4.55 0 13.64 9.09 0 

08 0 92 0 0 0 4 0 4 0 0 

10 16 0 44 0 0 0 36 4 0 0 

63 0 10 0 50 0 5 0 0 35 0 

64 0 0 8.33 4.17 79.17 0 4.17 4.17 0 0 

66 19.23 0 0 0 0 69.23 0 3.85 7.69 0 

123 0 0 0 0 0 0 95.65 4.35 0 0 

124 0 0 3.45 0 0 0 3.45 82.76 10.35 0 

126 9.09 0 0 4.55 4.55 0 0 0 81.82 0 

181 0 0 0 0 0 0 0 0 0 100 

 
 

 

Table 3-2 Confusion matrix for periodicity of “m” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 22.73 0 13.6 54.55 0 0 0 0 9.09 0 

08 0 0 24 72 0 0 0 0 4 0 

10 0 0 36 20 12 4 4 0 0 24 

63 5 0 0 25 5 0 5 5 15 40 

64 4.17 0 0 8.33 62.5 0 0 0 0 25 

66 0 0 3.85 84.62 0 3.85 0 0 7.69 0 

123 0 0 0 21.74 39.13 21.74 13.04 4.35 0 0 

124 0 0 41.38 27.59 0 0 0 31.03 0 0 

126 0 9.09 0 50 0 4.55 0 0 27.27 9.09 

181 22.73 0 13.64 54.55 0 0 0 0 9.09 0 
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Table 3-1 shows that all of the 10 persons are recognized using “m” 

phoneme with KL distance method. Minimum performance is 44% and 

that is the result for person “10”. This means that for 44 of the total 100 

tests, test phonemes for “10” produced minimum KL distance with “10”’s 

training phonemes.  Test phonemes for person “181” produced minimum 

KL distance with her own training phonemes for all tests, so the result for 

“181” is 100% as shown in the Table 3-1.  

  

Recognition performance decreased with ML method. Most of the test 

phonemes couldn’t be recognized with this method.  

 

 

 

Table 3-3 Confusion matrix for periodicity of “a” using KL distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
50 0 4.17 0 0 20.83 0 25 0 0 

08 
0 63.33 0 0 0 10 20 3.33 3.33 0 

10 
0 0 79.3 0 0 20.69 0 0 0 0 

63 
0 3.33 0 53.33 0 0 0 0 13.33 0 

64 
0 9.76 0 0 41.46 7.32 21.95 0 19.52 0 

66 
0 3.33 0 0 0 93.33 3.33 0 0 0 

123 
3.45 0 0 0 10.35 44.83 10.35 0 31.03 0 

124 
23.33 0 0 0 0 0 0 76.67 0 0 

126 
0 0 0 0 0 0 4.17 25 70.83 0 

181 
14.29 28.57 3.57 0 0 35.71 0 14.29 0 3.57 
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Table 3-4 Confusion matrix for periodicity of “a” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
41.67 0 0 58.33 0 0 0 0 0 0 

08 
0 3.33 0 96.67 0 0 0 0 0 0 

10 
0 0 37.93 62.07 0 0 0 0 0 0 

63 
0 0 0 100 0 0 0 0 0 0 

64 
0 0 0 80.49 19.51 0 0 0 0 0 

66 
0 0 0 90 0 0 0 0 0 10 

123 
0 20.69 0 68.97 0 0 10.35 0 0 0 

124 
0 0 0 66.67 0 0 0 33.33 0 0 

126 
0 0 0 100 0 0 0 0 0 0 

181 
7.14 3.57 0 25 7.14 0 0 3.57 0 53.57 

 

 

 

Table 3-3 shows that, “a” phoneme could not be recognized only for “123” 

and “181” using KL distance. Test phonemes for both of them produced 

minimum KL distances with person “66”.  Recognition performance 

decreased using ML method. Table 3-4 shows that most of the test 

phonemes are recognized as person “63” and this is because of the wide 

distribution of the “63”’s “a” phonemes. In ML method, if the test data has 

small variance and its mean value is slightly different from the same 

person’s training data, another training data with larger variance may 

produce higher likelihood values.   
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Table 3-5 Confusion matrix for periodicity of “yo” using KL Distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
27.78 0 0 0 0 11.11 0 38.89 22.22 0 

08 
0 40 0 0 0 0 15 40 5 0 

10 
0 0 40.91 0 0 4.55 4.55 27.27 22.73 0 

63 
0 0 0 8.70 4.35 4.35 34.78 13.04 34.78 0 

64 
0 0 0 0 40.63 0 12.5 15.63 31.25 0 

66 
0 0 0 0 0 65.22 17.39 0 17.39 0 

123 
0 0 0 0 0 0 91.30 0 8.70 0 

124 
0 0 2.94 0 0 2.94 11.77 67.65 14.71 0 

126 
0 0 0 0 0 0 8.33 0 91.67 0 

181 
0 0 0 8.57 0 17.14 0 60 2.86 11.43 

 

 

 

Table 3-6 Confusion matrix for periodicity of “yo” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
38.89 11.11 0 0 0 16.67 5.56 16.67 0 11.11 

08 
0 90 0 0 0 0 0 0 0 10 

10 
4.55 9.09 22.73 0 22.73 9.09 0 27.27 4.55 0 

63 
26.09 13.04 0 21.74 4.35 0 8.70 0 0 26.09 

64 
0 43.75 0 0 50 0 0 0 6.25 0 

66 
13.04 0 43.48 0 0 13.04 0 4.35 0 26.09 

123 
26.09 0 8.70 26.09 30.44 0 0 0 0 8.70 

124 
20.59 23.53 0 0 17.65 0 0 0 0 38.24 

126 
37.5 0 0 0 20.83 0 0 0 0 41.67 

181 
5.71 48.57 0 0 0 11.43 0 0 0 34.29 
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Table 3-5 shows that, “yo” phonemes of person “07”, “63” and “181” could 

not be recognized using KL distance. Also KL distances for “08” test 

phonemes are equal to training phonemes of “08” and “124”.  

 

 

 

Table 3-7 Confusion matrix for periodicity of “e” using KL Distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
12.90 0 25.81 0 0 0 0 61.29 0 0 

08 
0 60.71 25 3.57 0 10.71 0 0 0 0 

10 
0 0 82.93 0 0 0 17.07 0 0 0 

63 
0 25.81 16.13 51.61 0 0 0 0 6.45 0 

64 
0 2.5 2.5 25 0 20 25 15 0 10 

66 
0 0 0 0 0 97.22 2.78 0 0 0 

123 
0 0 79.31 0 0 0 13.79 6.90 0 0 

124 
0 0 43.59 0 0 0 0 0 56.41 0 

126 
0 3.23 9.68 32.26 0 0 19.36 3.23 32.26 0 

181 
0 3.03 0 33.33 3.03 0 0 57.58 0 3.03 
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Table 3-8 Confusion matrix for periodicity of “e” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
35.48 0 12.90 16.13 12.90 6.45 6.46 9.68 0 0 

08 
14.29 14.29 0 3.57 42.86 0 0 17.86 3.57 3.57 

10 
26.83 0 0 12.20 60.98 0 0 0 0 0 

63 
0 9.68 0 12.90 58.07 0 0 0 19.36 0 

64 
0 0 0 0 87.5 12.5 0 0 0 0 

66 
0 0 0 63.89 33.33 0 0 0 2.78 0 

123 
20.69 0 0 6.90 41.38 3.45 3.45 6.90 17.24 0 

124 
58.97 0 0 0 23.08 0 0 5.13 12.82 0 

126 
0 22.58 0 29.03 29.03 3.23 0 16.13 0 0 

181 
0 9.09 0 0 0 18.18 9.09 0 9.09 54.55 

 

 

 

Table 3-7 shows that, half of the 10 persons are recognized with “e” 

phonemes’ periodicity features using KL distance method. Recognition 

performance decreased with ML method again. Table 3-8 shows that most 

of the test phonemes are recognized as person “64” and this is because 

the wide distribution of the “e” phonemes of the “64”. 

 

Recognition performance for the “m” phoneme’s periodicity features is 

better than other phonemes as shown in the tables above. “m” is a nasal 

phoneme which is  formed by blocking the oral passage and allowing the 

air to escape through the nose. Effect of nose on producing the “m” 

phoneme may increase the recognition performance. 

  

Recognition performances for “m”, “a”, “yo” and “e” phonemes’s 

aperiodicity features are shown in the Tables 3-9 to 3-18.  
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Table 3-9 Confusion matrix for aperiodicity of “m” using KL Distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
59.09 0 0 0 4.55 0 31.82 4.55 0 0 

08 
20 72 0 0 4 4 0 0 0 0 

10 
60 0 32 0 4 0 4 0 0 0 

63 
60 5 0 0 20 5 0 10 0 0 

64 
62.5 0 0 0 37.5 0 0 0 0 0 

66 
69.23 0 0 0 0 26.92 0 3.85 0 0 

123 
52.17 0 0 0 4.35 13.04 30.44 0 0 0 

124 
47.62 0 4.76 0 19.05 0 0 28.57 0 0 

126 
50 4.55 0 0 9.09 0 0 4.55 31.82 0 

181 
21.74 4.35 0 0 4.35 4.35 0 4.35 30.44 30.44 

 

 

 

Table 3-10 Confusion matrix for aperiodicity of “m” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
13.64 45.46 0 0 4.55 0 0 31.82 0 4.55 

08 
0 68 0 32 0 0 0 0 0 0 

10 
0 0 20 80 0 0 0 0 0 0 

63 
0 15 0 85 0 0 0 0 0 0 

64 
0 0 0 29.17 70.83 0 0 0 0 0 

66 
0 15.39 0 42.31 0 23.08 0 11.54 0 7.69 

123 
0 21.74 4.35 39.13 4.35 0 30.44 0 0 0 

124 
9.52 0 0 47.62 9.52 0 0 33.33 0 0 

126 
0 54.55 0 13.64 0 0 0 4.55 27.27 0 

181 
0 17.39 0 21.74 21.74 0 0 0 0 39.13 
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Table 3-11 Confusion matrix for aperiodicity of “a” using KL Distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
91.67 0 8.33 0 0 0 0 0 0 0 

08 
6.67 16.67 53.33 0 13.33 0 0 6.67 3.33 0 

10 
0 0 100 0 0 0 0 0 0 0 

63 
0 3.33 76.67 3.33 6.67 0 0 0 10 0 

64 
0 0 63.41 0 36.59 0 0 0 0 0 

66 
0 0 36.67 0 0 50 0 0 13.33 0 

123 
6.90 3.45 86.21 0 0 0 3.45 0 0 0 

124 
20 0 70 0 0 0 0 10 0 0 

126 
25 0 20.83 0 4.17 0 0 0 50 0 

181 
0 0 71.43 0 3.57 3.57 0 0 17.86 3.57 

 

 

 

Table 3-12 Confusion matrix for aperiodicity of “a” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
25 45.83 0 16.67 8.33 0 4.17 0 0 0 

08 
0 46.67 0 53.33 0 0 0 0 0 0 

10 
0 0 37.93 58.62 0 0 3.45 0 0 0 

63 
3.33 0 0 86.67 0 3.33 0 0 6.67 0 

64 
0 3.57 0 60.71 35.71 0 0 0 0 0 

66 
0 0 0 50 0 50 0 0 0 0 

123 
0 0 0 75 0 0 25 0 0 0 

124 
0 0 0 0 0 0 0 100 0 0 

126 
0 33.33 0 20.83 0 0 0 0 41.67 4.17 

181 
5.26 5.26 5.26 5.26 0 0 0 15.79 0 63.16 
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Table 3-13 Confusion matrix for aperiodicity of “yo” using KL Dist. 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
72.22 0 0 11.11 0 5.56 5.56 5.56 0 0 

08 
0 50 5 10 5 0 10 15 5 0 

10 
4.55 0 54.55 0 9.09 0 13.64 0 18.18 0 

63 
4.35 0 0 0 8.70 17.39 0 4.35 65.22 0 

64 
15.63 0 9.38 0 0 31.25 0 12.5 25 6.25 

66 
0 0 0 0 0 100 0 0 0 0 

123 
8.70 0 0 4.35 0 13.04 56.52 0 17.39 0 

124 
11.77 0 2.94 8.82 0 0 11.77 44.12 20.59 0 

126 
4.17 0 0 4.17 0 4.17 0 0 87.5 0 

181 
5.71 0 0 0 0 0 2.86 0 25.71 65.71 

 

 

 

Table 3-14 Confusion matrix for aperiodicity of “yo” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
0 50 0 44.44 0 0 0 5.56 0 0 

08 
0 80 0 5 0 0 0 0 0 15 

10 
0 0 59.09 22.73 4.55 0 0 13.64 0 0 

63 
0 52.17 0 26.09 0 0 0 0 0 21.74 

64 
0 53.13 0 46.88 0 0 0 0 0 0 

66 
0 0 0 73.91 0 26.09 0 0 0 0 

123 
0 56.52 0 4.35 4.35 0 34.78 0 0 0 

124 
0 52.94 0 35.29 0 0 0 11.77 0 0 

126 
0 50 0 16.67 0 0 12.5 12.5 8.33 0 

181 
0 42.86 0 42.86 0 0 0 2.86 0 11.43 
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Table 3-15 Confusion matrix for aperiodicity of “e” using KL Distance 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
83.87 0 9.68 0 0 6.45 0 0 0 0 

08 
3.57 0 0 21.43 14.29 35.71 0 14.29 0 10.71 

10 
29.27 0 39.02 0 4.88 26.83 0 0 0 0 

63 
0 0 6.45 77.42 12.90 0 3.23 0 0 0 

64 
5 0 45 15 2.5 10 12.5 0 0 10 

66 
11.11 13.89 5.56 2.78 2.78 61.11 0 2.78 0 0 

123 
10.35 0 13.79 6.90 0 3.45 62.07 3.45 0 0 

124 
43.59 0 5.13 0 0 0 0 51.28 0 0 

126 
0 3.23 6.45 41.94 19.36 29.03 0 0 0 0 

181 
0 3.03 0 9.09 0 3.03 0 0 0 84.85 

 

 

 

Table 3-16 Confusion matrix for aperiodicity of “e” using ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
19.36 41.94 0 32.26 0 0 3.23 0 3.23 0 

08 
0 46.43 0 32.14 3.57 0 0 7.14 0 10.71 

10 
0 0 36.59 17.07 0 0 46.34 0 0 0 

63 
0 0 0 0 100 0 0 0 0 0 

64 
0 0 0 25 0 50 2.5 10 12.5 0 

66 
0 0 0 100 0 0 0 0 0 0 

123 
0 17.24 0 41.38 0 0 41.38 0 0 0 

124 
0 0 0 17.95 0 12.82 0 69.23 0 0 

126 
0 22.58 0 6.45 0 0 0 0 71 0 

181 
0 18.18 27.27 0 6.06 0 0 0 0 48.48 
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Recognition performance for the “m” phoneme is decreased significantly 

by using aperiodicity features (see Table 3-1 and 3-9). On the other hand, 

recognition performance of the aperiodicity features for the “yo” phoneme 

is not worse than the periodicity features (see Table 3-5 and Table 3-13). 

But generally, Tables 3-9 to 3-18 show that, periodicity features provide 

better performance than aperiodicity features.  

 

Test results obtained for different phonemes are combined to have a 

general idea for the performance of periodicity and aperiodicity features. 

Overall results for “m”, “a”, “yo” and “e” phonemes are given in the below 

confusion matrices: 

 

 

 

Table 3-17 All phonemes periodicity with KL 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 40.85 0 7.49 0 0 9.12 0 34.70 7.83 0 

08 0 64.01 6.25 0.89 0 6.18 8.75 11.83 2.08 0 

10 4 0 61.78 0 0 6.31 14.41 7.82 5.68 0 

63 0 9.78 4.03 40.91 1.09 2.34 8.70 3.26 22.39 0 

64 0 3.06 2.71 7.29 40.31 6.83 15.90 8.70 12.69 2.50 

66 4.81 0.83 0 0 0 81.25 5.87 0.96 6.27 0 

123 0.86 0 19.83 0 2.59 35.12 28.86 2.81 9.93 0 

124 5.83 0 12.50 0 0 0.74 23.63 36.94 20.37 0 

126 2.27 0.81 2.42 9.20 1.14 0 7.96 27.51 48.69 0 

181 3.57 7.90 0.89 10.48 0.76 13.21 0 32.97 0.71 29.51 
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Table 3-18 All phonemes periodicity with ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 34.69 2.78 6.63 32.25 3.23 5.78 3.00 6.59 2.27 2.78 

08 3.57 26.91 6 43.06 10.71 0 0 4.46 1.89 3.39 

10 7.84 2.27 24.17 23.57 23.93 3.27 1 6.82 1.14 6 

63 7.77 5.68 0 39.91 16.85 0 3.42 1.25 8.59 16.52 

64 1.04 10.94 0 22.21 54.88 3.13 0 0 1.56 6.25 

66 3.26 0 11.83 59.63 8.33 4.22 0 1.09 2.62 9.02 

123 11.69 5.17 2.17 30.92 27.74 6.30 6.71 2.81 4.31 2.17 

124 19.89 5.88 10.35 23.56 10.18 0 0 17.37 3.21 9.56 

126 9.38 7.92 0 44.76 12.47 1.94 0 4.03 6.82 12.69 

181 15.17 15.31 0 6.25 1.79 7.40 2.27 0.89 2.27 48.64 

 

 

 

Table 3-17 and 3-18 show that, periodicity features recognized 8 persons 

for “m”, “a”, “yo” and “e” phonemes with KL Distance method and 5 

persons with ML method. For ML method, unrecognized 5 persons (“08”, 

“66”, “123”, “124” and “181“) are decided as person “63”. This is because 

of the wide distribution of the person “63”’s phonemes as mentioned 

before.  
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Table 3-19 All phonemes aperiodicity with KL 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 76.71 0 4.50 2.78 1.14 3.00 9.34 2.53 0 0 

08 7.56 34.67 14.58 7.86 9.15 9.93 2.50 8.99 2.08 2.68 

10 23.45 0 56.39 0 4.49 6.71 4.41 0 4.55 0 

63 16.09 2.08 20.78 20.19 12.07 5.60 0.81 3.59 18.80 0 

64 20.78 0 29.45 3.75 19.15 10.31 3.13 3.13 6.25 4.06 

66 20.09 3.47 10.56 0.69 0.69 59.51 0 1.66 3.33 0 

123 19.53 0.86 25 2.81 1.09 7.38 38.12 0.86 4.35 0 

124 30.74 0 20.71 2.21 4.76 0 2.94 33.49 5.15 0 

126 19.79 1.94 6.82 11.53 8.15 8.30 0 1.14 42.33 0 

181 6.86 1.84 17.86 2.27 1.98 2.74 0.71 1.09 18.50 46.14 

 
 
 

Table 3-20 All phonemes aperiodicity with ML 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 14.50 45.81 0 23.34 3.22 0 1.85 9.34 0.81 1.14 

08 0 60.28 0 30.62 0.89 0 0 1.79 0 6.43 

10 0 0 38.40 44.61 1.14 0 12.45 3.41 0 0 

63 0.83 16.79 0 49.44 25 0.83 0 0 1.67 5.43 

64 0 14.17 0 40.44 26.64 12.50 0.63 2.50 3.13 0 

66 0 3.85 0 66.56 0 24.79 0 2.88 0 1.92 

123 0 23.88 1.09 39.96 2.17 0 32.90 0 0 0 

124 2.38 13.24 0 25.22 2.38 3.21 0 53.58 0 0 

126 0 40.12 0 14.40 0 0 3.13 4.26 37.06 1.04 

181 1.32 20.92 8.13 17.47 6.95 0 0 4.66 0 40.55 
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Results for the overall phonemes’ aperiodicity features are similar to 

periodicity features with KL distance method. For ML method, 6 persons 

could not be recognized using aperiodicity features and most  of them 

(“07”, “10”, “64”, “66” and “123“) are decided as person “63” like the 

periodicity results in Table 3-18. 

 

3.2 Combination of Periodicity & MFCC for Specific 

Phonemes 

 

For selected phonemes, MFCC and periodicity features are combined and 

their performance is analyzed using the likelihood method. Combined 

features have 28 dimensions, 16 for periodicity features and 12 for 

MFCCs. Likelihood method is selected because it provides to examine 

joint characteristics of the combined features. Only “a” and “yo” 

phonemes’ results are shown below, because MFCC performances for “e” 

and “m” phonemes are 100%. Table 3-21 and Table 3-23 show the 

performance of MFCC features for “a” and “yo” phonemes respectively 

and Table 3-22 and Table 3-24 show the contribution of the periodicity 

features to MFCC for  “a” and “yo” phonemes. 
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Table 3-21 Performance of the MFCC Features for “a” phoneme 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
87.5 8.33 0 0 0 0 4.17 0 0 0 

08 
0 90 0 0 0 0 3.33 0 3.33 3.33 

10 
0 3.45 96.55 0 0 0 0 0 0 0 

63 
0 3.33 0 86.67 3.33 0 0 0 0 6.67 

64 
0 0 0 0 100 0 0 0 0 0 

66 
0 0 0 0 0 100 0 0 0 0 

123 
0 0 0 0 0 0 100 0 0 0 

124 
0 0 0 0 0 0 0 100 0 0 

126 
0 4.17 0 0 0 0 0 0 95.83 0 

181 
0 0 0 0 0 0 0 0 0 100 

 

 

 

Table 3-22 Performance of the Periodicity & MFCC Features for “a” 

phoneme 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
100 0 0 0 0 0 0 0 0 0 

08 
0 100 0 0 0 0 0 0 0 0 

10 
0 0 100 0 0 0 0 0 0 0 

63 
0 0 0 100 0 0 0 0 0 0 

64 
0 0 0 0 100 0 0 0 0 0 

66 
0 0 0 0 0 100 0 0 0 0 

123 
0 0 0 0 0 0 100 0 0 0 

124 
0 0 0 0 0 0 0 100 0 0 

126 
0 0 0 0 0 0 0 0 100 0 

181 
0 0 0 0 0 0 0 0 0 100 
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Table 3-21 shows that MFCC features recognized all of the 10 persons. 

“blue” values show the performance of the MFCC features that are 

smaller than 100%.  

 

Table 3-22 shows that the combination of periodicity and MFCC features 

increased the performance of the MFCC features alone. In this case all of 

the 10 persons are recognized with 100% 

 
 
 

Table 3-23 Performance of the MFCC Features for “yo” phoneme 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
100 0 0 0 0 0 0 0 0 0 

08 
0 100 0 0 0 0 0 0 0 0 

10 
0 0 100 0 0 0 0 0 0 0 

63 
0 0 0 100 0 0 0 0 0 0 

64 
0 0 0 0 100 0 0 0 0 0 

66 
0 0 0 0 0 100 0 0 0 0 

123 
0 0 0 0 0 0 100 0 0 0 

124 
0 0 0 0 0 0 0 100 0 0 

126 
0 0 4.17 0 0 0 0 0 95.83 0 

181 
0 0 0 0 0 0 0 0 0 100 
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Table 3-24 Performance of the Periodicity & MFCC Features for “yo” 

phoneme 

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
100 0 0 0 0 0 0 0 0 0 

08 
0 100 0 0 0 0 0 0 0 0 

10 
0 0 100 0 0 0 0 0 0 0 

63 
0 0 0 100 0 0 0 0 0 0 

64 
0 0 0 0 100 0 0 0 0 0 

66 
0 0 0 0 0 100 0 0 0 0 

123 
0 0 0 0 0 0 100 0 0 0 

124 
0 0 0 0 0 0 0 100 0 0 

126 
0 0 0 0 0 0 0 0 100 0 

181 
0 0 0 0 0 0 0 0 0 100 

 

 

 

Table 3-23 and Table 3-24 show the improvement of the combination of 

periodicity and MFCC features. Recognition performance for person “126” 

is 95.83% with MFCC features alone and this value increased to 100% by 

combining the periodicity features and MFCCs.  

 

3.3 Combination of Periodicity & MFCC for Text-

Independent Case 

 

Results in section 3.1 and 3.2 show the periodicity features’ speaker 

identification performance and their contribution to MFFCs for selected 

phonemes. These results encouraged us to investigate the effect of 

periodicity features on MFFCs in whole sentences. This situation is closer 

to the real life situations. Steps of this test are explained below.  
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3.3.1 Scenario 

 

As a first step, all periodicity and MFCC features are extracted and 

combined to get 28 dimensional feature vectors. MFCC features are 

extracted by HTK as explained in section 2.9. 

 

The database has 120 sentences for each speaker. 100 sentences of this 

database are used for training and 20 sentences are used for testing for 

each person (one sentence is approximately 2.5 seconds). 20 sentences 

for test are shifted 4 times and training has repeated 4 times for each 

person. 4 testing group, each has 20 sentences, provided to take 80 tests 

for each person.  In the training phase HTK is used. HTK uses Gaussian 

Mixture Models during training.  

 

3.3.2 Gaussian Mixture Models [15] 

 

Gaussian mixture model (GMM) is a sophisticated statistical model, which 

can be viewed as a universal estimator. GMM has been applied to 

speaker recognition to model speaker’s characteristics. 

 

Using a GMM model, for speaker identification, a group of ¬ *  1,2, . . . . . , ¬ 

speakers can be represented by their unique model parameters �, � , … x (see Figure 3-1). Identifier of each speaker’s  can be 

represented as a combination of three parameters: 

 

 T] : mixture weights for V � 1, . . 7  where 7 is the number of component 

densities,  

 |®̄ :  mean vector with 8 - dimensional normal distribution 

 Σ� * covariance matrix.  
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Collectively   is represented as  � ±T] , |®̄ , Σ� ² for V � 1, . .7.   

 

 

 

   

 

Figure 3-1 � Component Gaussian Mixture Density [15] 

 

 

 

GMM training is done by expectation-maximization (EM) algorithms. There 

are two critical points during training.  

 

First one is the Variance Limiting:  when training a nodal variance GMM 

(one covariance matrix per Gaussian component), it has been observed 

that variance elements can become quite small in magnitude. These small 

variances produce a singularity in the model’s likelihood function and can 

degrade identification performance.  
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Second critical point is the Model Order: determining the number of 

components "7" in a mixture to model a speaker is an important and 

difficult problem. There is no theoretical way to estimate the number of 

mixture components a priori. Choosing few mixture components can 

produce a speaker model which does not accurately model the 

distinguishing characteristics of a speaker’s distribution. Choosing many 

components can reduce the performance when there are a large number 

of model parameters relative to the available training data and too many 

parameters can also result excessive computational complexity both in 

training and classification. [15] 

 

Training GMMs has been done using HTK. Several options have been 

tried for different variables to get trustworthy results. Unvoiced parts of the 

speech signal are dismissed so training and testing is done only with 

voiced signal. Different mixture numbers are tried because of the reasons 

explained above. The best results obtained with 40 mixtures. Test results 

using only MFCC features is given in Table 3-25 and the results for 

periodicity and MFCC combined features are shown in Table 3-26. 
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Table 3-25 Performance of the MFCC Features  

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
53.75 1.25 0 1.25 6.25 0 11.25 26.25 0 0 

08 
2.5 61.25 0 0 0 2.5 0 32.5 0 1.25 

10 
5 0 27.5 0 16.25 2.5 3.75 45 0 0 

63 
0 0 0 51.25 8.75 2.5 3.75 33.75 0 0 

64 
0 0 0 0 95 0 1.25 3.75 0 0 

66 
0 0 0 1.25 1.25 76.25 7.5 12.5 0 1.25 

123 
0 0 0 0 17.5 0 56.25 26.25 0 0 

124 
0 0 0 0 2.5 2.5 11.25 83.75 0 0 

126 
1.25 20 0 2.5 12.5 0 16.25 26.25 20 1.25 

181 
2.5 2.5 0 3.75 0 0 2.5 33.75 1.25 53.75 

 

 

 

Table 3-26 Performance of the Periodicity & MFCC Features  

 

Train 

Test 07 08 10 63 64 66 123 124 126 181 

07 
66.25 0 0 0 2.5 18.75 2.5 8.75 0 1.25 

08 
0 78.75 0 0 0 5 1.25 15 0 0 

10 
5 0 41.25 0 30 12.5 0 11.25 0 0 

63 
0 0 0 55 8.75 18.75 2.5 15 0 0 

64 
0 0 0 0 78.75 12.5 6.25 2.5 0 0 

66 
0 0 0 0 1.25 90 2.5 3.75 0 2.5 

123 
0 0 0 0 3.75 8.75 77.5 10 0 0 

124 
0 0 0 0 0 10 3.75 86.25 0 0 

126 
0 11.25 0 1.25 10 8.75 10 8.75 50 0 

181 
0 0 0 1.25 0 8.75 6.25 6.25 0 77.5 
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Table 3-25 shows the performance of the MFCC features alone and it is 

obvious that person “10” and “126” could not be recognized using MFCC 

features with our test and training data.  

 

Combining periodicity and MFCC features provided recognition for each 

person and recognition performance increased except for “64” as shown 

in Table 3-26. Periodicity provided average of 12.25% improvement for 40 

Gaussian mixtures. 

 

Lower model orders decreased the performance of the system because of 

the inadequate modeling.  Higher model orders decreased the contribution 

of periodicity features because of the insufficient training data. Average 

improvement of periodicity features with 50 Gaussian mixtures is 5.59% 

which is lower than the 40 mixtures case.  
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CHAPTER 4 

 

 

4CONCLUSIONS  
 

 

 

In this thesis, significance of the periodicity and aperiodicity information of 

speech signal is analyzed in speaker identification problems. In Chapter 1, a 

brief introduction is given to the characteristics of speech and the steps of the 

speaker recognition algorithm are explained. We also gave some examples 

of the features used in the speaker recognition applications. In Chapter 2, the 

constructed system to obtain the periodicity and aperiodicity information from 

the speech signal is explained. Obtained periodicity and aperiodicity 

information is tested on the specific phonemes for 10 females. Parzen 

window density estimation method is used for modeling the test frames and 

the training frames. The shortcoming of the Parzen window density 

estimation is the computational difficulty of the estimation in higher 

dimensions. For the 16-dimensional periodicity and aperiodicity features, 

calculation of the joint density estimation could not be possible with parzen 

window estimate, so each channel’s periodicity and aperiodicity features are 

modeled independently. Finally, testing methods, Kullback-Leibler Distance 

method and Maximum Likelihood method are given in Chapter 2. In Chapter 

3, firstly the results of the experiments for the periodicity and aperiodicity 

features’ performance for 10 females on the specific phonemes are given. 

Results show that periodicity and aperiodicity information make contributions 

to the speaker identification problem. For the specific phonemes, periodicity 

features are also combined with the 12-dimensional MFCC features and the 

contribution of the periodicity features to the MFFC features are tested. A 
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significant improvement is observed by using periodicity features as 

supplementary features to MFCCs. Chapter 3 also explains the experiments 

for the text independent case. 

 

Training for the text independent case is performed by HTK Tool and HTK 

represents distributions by Gaussian Mixture Densities. As mentioned before, 

model order is a very critical variable during GMM training and it depends on 

the available training data set. One of the shortcomings of our experiments 

for text independent case is that the insufficiency of the training data set. Also 

we had to reduce the data set by excluding the silent frames because of the 

variance limiting problem. A larger training set supplies the increment of 

Gaussian mixture number and the models could represent the speakers 

better. More accurate test results for the contribution of the periodicity 

features to MFCCs could be taken with a larger training data set.  

 

Another shortcoming of our experiments for text independent case is that the 

variance limiting problem. Periodicity features have very small variances up 

to  10�³ which may produce a singularity in the model’s likelihood function 

and degrade the identification performance. To overcome this shortcoming, a 

floor variance can be assigned for the HTK algorithm. However, this situation 

may affect the structure of the periodicity features and may cause 

degradation on the identification performance. 

 

As mentioned in the thesis, a lower feature dimension is desirable in speaker 

recognition. The demand for a large amount of training data to represent a 

speaker’s voice characteristics grows exponentially with the dimension of the 

feature space.  We had 16 dimensional feature vectors for periodicity and 

aperiodicity information separately. As a future work, feature dimensions 

would be reduced by eliminating the features which are making less 

contribution to speaker identification.  
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As another future work, aperiodicity features can be used supplementary with 

other features. Performance of the combination of the periodicity and 

aperiodicity features, with a lower feature dimension, can also be 

investigated independently and this information could be used with different 

features. 
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