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Assoc. Prof. Dr. Ali İhsan NESLİTÜRK
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Abstract

THE FINITE ELEMENT METHOD OVER A SIMPLE STABILIZING GRID

APPLIED TO FLUID FLOW PROBLEMS

Aydın Selçuk Han

Ph.D., Department of Scientific Computing

Institute of Applied Mathematics

Advisor: Prof. Dr. Münevver Tezer-Sezgin

Co-Advisor: Assoc. Prof. Dr. Ali İhsan Neslitürk

May 2008, 125 pages

We consider the stabilized finite element method for solving the incompressible Navier-Stokes

equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known

instabilities arising from the application of standard Galerkin finite element method are elimi-

nated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin

(SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized

into a set of regular triangular elements. In SSM, the finite-dimensional spaces employed con-

sist of piecewise continuous linear interpolants enriched with the residual-free bubble functions.

To find the bubble part of the solution, a two-level finite element method with a stabilizing

subgrid of a single node is described and its applications to the Navier-Stokes equations and

MHD equations are displayed. This constitutes the main original contribution of this thesis.

Numerical approximations employing the proposed algorithms are presented for some bench-

mark problems. The results show that the proper choice of the subgrid node is crucial to get

stable and accurate numerical approximations consistent with the physical configuration of the

problem at a cheap computational cost. The stabilized finite element method of SUPG type is

applied to the unsteady Navier-Stokes equations together with a finite element discretization in

the time domain. Thus, oscillations in the solution and the need of very small time increment

are avoided in obtaining stable solutions.
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Öz

STABİLİZE EDİLMİŞ GRİD ÜZERİNDE SONLU ELEMANLAR YÖNTEMİNİN

AKIŞKAN AKIM PROBLEMLERİNE UYGULAMASI

Aydın, Selçuk Han

Doktora, Bilimsel Hesaplamalar Bölümü

Uygulamalı Matematik Enstitüsü

Tez Danışmanı: Prof. Dr. Münevver Tezer-Sezgin

Ortak Danışman: Doç. Dr. Ali İhsan Neslitürk

Mayıs 2008, 125 sayfa

Bu tezde, iki boyutlu uzayda, Navier-Stokes denklemleri ve magnetohidrodinamik (MHD)

denklemlerinin stabilize edilmiş sonlu elemanlar yöntemleri ile çözümleri verilmektedir. Standart

Galerkin yönteminden kaynaklanan ve bilinen kararsızlıklar, stabilize edilmiş alt grid yöntemi

(SSM), streamline upwind Petrov-Galerkin (SUPG) yöntemi ve iki aşamalı sonlu elemanlar

yöntemleri (TLFEM) kullanılarak giderilmektedir. Problem tanım bölgesi, düzgün bir yapıda

üçgen elemanlara ayrıklaştırılır. SSM yönteminde, sonlu elemanlar uzayı, parçalı, sabit ve

doğrusal enterpolasyon fonksiyonlarının yanında kalansız ampul fonksiyonları kullanılarak genişle-

tilmektedir. Çözümün ampul fonksiyon kısmı, stabilize edilmiş tek noktalı alt grid üzerinde iki

aşamalı sonlu elemanlar yöntemi kullanılarak elde edilmekte ve Navier-Stokes denklemleri ile

MHD denklemlerine uygulamaları gerçekleştilmektedir. Bunlar, tezdeki en önemli yenilikler

olarak ön plana çıkmaktadır. Verilen algoritmaların sayısal çözüm uygulamaları örnek prob-

lemler üzerinde gerçekleştirilir. Elde edilen sonuçlara göre, alt grid noktasının uygun seçimi

problemin fiziksel konfügürasyonu ile uyumlu, kararlı ve verimli sayısal sonuçların ucuz olarak

elde edilmesinde önem göstermektedir. Zaman bağımlı Navier-Stokes denklemlerinin çözümü,

SUPG türü stabilize edilmiş sonlu elemanlar yöntemine ilave olarak zaman boyutunda da sonlu

elemanlar yöntemi kullanılarak elde edilmektedir. Böylelikle kararlı çözüm elde edilmesinde

görülen salınımlar ve küçük zaman aralığı kullanımı sorunları giderilmektedir.
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Öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Conservation of momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Magnetohydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Solution of the Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Stabilized Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 18

x



2.1.1 Convection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 SUPG formulation of the Navier-Stokes equations . . . . . . . . . . . . . 19

2.2 Stabilizing Subgrid Method (SSM) . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Two-Level Finite Element Method (TLFEM) . . . . . . . . . . . . . . . . . . . . 24

2.3.1 TLFEM for the convection-diffusion equation . . . . . . . . . . . . . . . . 24

2.3.2 TLFEM for the Navier-Stokes equations . . . . . . . . . . . . . . . . . . . 26

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 L-Shape flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Rotating flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Lid-Driven Cavity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.4 Backward facing step flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.5 Flow past a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Solution of the Unsteady Navier-Stokes Equations . . . . . . . . . . . . . . . . . . 61

3.1 Finite Element Method in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 Convection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.3 Unsteady Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Finite Difference Method in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Convection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Unsteady Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Convection-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Taylor vortex flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.4 Flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Solution of the Magnetohydrodynamic Equations . . . . . . . . . . . . . . . . . . . . 78

4.1 FEM formulation of the MHD equations . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 SUPG formulation for the MHD equations . . . . . . . . . . . . . . . . . . . . . . 81

xi



4.3 TLFEM for the MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 SSM for the MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Magnetic pressure in the MHD equations . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Test problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.2 MHD Cavity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.3 MHD flow over a step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.4 MHD Duct flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



List of Figures

1.1 Control volume and surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Types of inflow boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Submesh for rectangle and quadrangle elements . . . . . . . . . . . . . . . . . . . 29

2.3 Bubble functions for rectangular elements . . . . . . . . . . . . . . . . . . . . . . 30

2.4 3-D view of bubble function for rectangular elements . . . . . . . . . . . . . . . . 30

2.5 Two different types of submesh generations and corresponding bubble functions

for triangular elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Definition of L-shape flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Standard Galerkin FEM and SUPG solutions of L-Shape flow . . . . . . . . . . . 33

2.8 Stabilization effect in L-shape flow near boundary layers for ǫ = 5x10−4 . . . . . 34

2.9 Comparison of SUPG and TLFEM solutions of rotating flow field . . . . . . . . . 35

2.10 The problem statement of the lid-driven cavity flow . . . . . . . . . . . . . . . . 36

2.11 The problem meshes tested for the cavity flow: 800 and 3200 elements . . . . . . 37

2.12 Pressure elevation and streamlines for the cavity flow, Re = 100 . . . . . . . . . . 37

2.13 Solutions of the cavity flow with 3200 elements of Q2-Q1 type . . . . . . . . . . . 38

2.14 Comparison of Q2-Q1 elements with SUPG method for the cavity flow, Re = 400 40

2.15 Comparison of Q2-Q1 elements with SUPG method for the cavity flow, Re = 5200 41

2.16 Pressure contours and elevations for the cavity flow with SSM, TLFEM and Q2-

Q1, Re = 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.17 Pressure contours and elevations for the cavity flow with SSM, TLFEM and Q2-

Q1, Re = 5200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.18 Pressure contours and elevations for the cavity flow with SP, GP and TLFEM,

Re = 5200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



2.19 Adaptation of the subgrid points in SSM as the problem mesh is refined at Re =

5200: The problem meshes are e800 and e3200 . . . . . . . . . . . . . . . . . . . 45

2.20 Adaptation of the subgrid points in SSM as the problem becomes convection

dominated on a fixed mesh e800: Re = 400 and Re = 5200 . . . . . . . . . . . . . 46

2.21 Streamlines for the cavity flow with SSM, Re = 5200 . . . . . . . . . . . . . . . 46

2.22 Velocity profiles for the cavity flow with SSM, Re = 400 and Re = 5200 . . . . . 47

2.23 Randomly generated non-uniform mesh and pressure contours for the cavity flow 48

2.24 Modified non-uniform mesh and pressure contours for the cavity flow . . . . . . . 48

2.25 Unstructured, quadratically distributed mesh and streamlines for the cavity flow:

Re = 1000, 2500 and 5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.26 The statement of the backward facing step flow . . . . . . . . . . . . . . . . . . . 50

2.27 The problem meshes tested for the backward facing step flow . . . . . . . . . . . 51

2.28 Pressure contours for the backward facing step flow with SP, GP and TLFEM,

Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.29 Pressure elevations for the backward facing step flow with SP, GP and TLFEM,

Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.30 Streamline details for the backward facing step flow behind the step with SP, GP

and TLFEM, Re = 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.31 Changes in the flow as Reynolds number increases for the backward facing step

flow with SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.32 The statement of the flow past a cylinder . . . . . . . . . . . . . . . . . . . . . . 55

2.33 The problem meshes tested for the flow past a cylinder . . . . . . . . . . . . . . . 56

2.34 Pressure contours for the flow past a cylinder, Re = 26 . . . . . . . . . . . . . . . 57

2.35 Pressure detail behind the cylinder for Re = 26 . . . . . . . . . . . . . . . . . . . 58

2.36 Mesh detail around the cylinder for Re = 26 with e=1700 and e=6800 . . . . . . 59

2.37 Streamlines details behind the cylinder for Re = 26 . . . . . . . . . . . . . . . . . 60

3.1 A sample bilinear-linear element in the spatial-time domain . . . . . . . . . . . . 63

3.2 FEM, FDM and exact solutions of diffusion problem at t = 0.05 . . . . . . . . . . 70

3.3 Solution of convection-diffusion problem at t = 0, 0.25 and t = 2.0 . . . . . . . . . 71

3.4 Pressure and Streamlines for Taylor vortex flow(t = 1.0) . . . . . . . . . . . . . . 71

xiv



3.5 The velocity contours for Taylor vortex flow (t = 1.0) . . . . . . . . . . . . . . . . 72

3.6 The problem mesh tested for flow around a cylinder: 5404 triangular elements . . 72

3.7 Pressure contours for flow around a cylinder . . . . . . . . . . . . . . . . . . . . . 73

3.8 Streamlines for flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Pressure contours for unsteady flow around a cylinder using FDM in time at

t = 1, 2, 4, 6 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 Velocity (u) component for unsteady flow around a cylinder using FDM in time

at t = 1, 2, 4, 6 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.11 Flow vectors for unsteady flow around a cylinder using FDM in time at t =

1, 2, 4, 6 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Pressure contours and elevations obtained from standard Galerkin FEM and exact

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Standard Galerkin FEM and exact solutions for the velocity(u1, u2) . . . . . . . 93

4.3 Standard Galerkin FEM and exact solutions for the magnetic field(B1, B2) . . . 94

4.4 Pressure contours obtained from FEM with Babuska-Brezzi condition and exact

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Magnetic pressure contours and elevations obtained from standard Galerkin FEM

and Babuska-Brezzi condition (Q2-Q2-Q2-Q1 elements) . . . . . . . . . . . . . . 96

4.6 Pressure contours obtained from SUPG, SSM and exact solutions . . . . . . . . . 97

4.7 Zoom for the pressure contours obtained from SUPG, SSM . . . . . . . . . . . . 97

4.8 Velocity flow vectors and adaption of the position of the subgrid point . . . . . . 98

4.9 The problem statement and a uniform mesh with 3200 triangular elements for

MHD cavity flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Pressure contours obtained from SUPG, SSM and Babuska-Brezzi formulations

for Ha = 0, Ha = 10 and Ha = 100; applied magnetic field is through +x direction100

4.11 Pressure elevations obtained from SUPG, SSM and Babuska-Brezzi formulations

for Ha = 0, Ha = 10 and Ha = 100; applied magnetic field is through +x direction101

4.12 Velocity component (u1) contours for Ha = 0 and Ha = 100 with SSM; applied

magnetic field is through +x direction . . . . . . . . . . . . . . . . . . . . . . . . 102

4.13 Streamlines of the velocity for Ha = 0 and Ha = 100 with SSM; applied magnetic

field is through +x direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xv



4.14 Flow vectors of the magnetic field for Ha = 0 and Ha = 100 with SSM; applied

magnetic field is through +x direction . . . . . . . . . . . . . . . . . . . . . . . . 103

4.15 Pressure, first component of the velocity and magnetic field contours for Ha = 10

and Ha = 100 with SSM; applied magnetic field is through +y direction . . . . . 104

4.16 Streamlines of the velocity and flow vectors of the magnetic field for Ha = 100

with SSM; applied magnetic field is through +y direction . . . . . . . . . . . . . 105

4.17 The problem statement and a uniform mesh with 7168 triangular elements for

the MHD step flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.18 Pressure contours for Ha = 0, Ha = 5 and Ha = 10 . . . . . . . . . . . . . . . . 107

4.19 x-component (B1 contours) of the magnetic field for Ha = 5 and Ha = 10 . . . . 107

4.20 Velocity flow vectors and streamlines (zoom in behind the step) for Ha = 0,

Ha = 5 and Ha = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.21 Velocity and induced magnetic field contours at t = 0.01 and t = 0.03 for

M = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.22 Velocity and induced magnetic field contours at t = 0.001 and t = 0.003 for

M = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.23 Velocity and induced magnetic field contours at t = 0.001 for M = 10000 . . . . 113

xvi



List of Tables

2.1 Velocity values at some selected points through the geometric center of the cavity 47

xvii



Chapter 1

Introduction

Because of the applications in many different areas, fluid dynamics and solution of the fluid

flow problems gain importance among researchers. However, both the simulation with experi-

ments and finding the exact solution of the fluid flow problems are not easy. Therefore, finding

the numerical solutions of the fluid flow problems which is the most important computational

approach, is the popular branch of the applied mathematics.

Some of the important properties of the fluids are the density and viscosity. Also, depend-

ing on some other properties of the fluids, they are classified as compressible/incompressible,

Newtonian/non-Newtonian, laminar/turbulent, etc.

Fluid dynamics is dealing about the behaviour of fluids such as its motion, velocity and its

changes. Fluid flow is caused by the action of externally applied forces, compression or stress.

Analysis of the motion is concentrated on the velocity of the fluid, changes in the pressure, effect

of the applied magnetic field and some other changes.

1.1 Basic equations

An analysis of fluid flow problems is based on some laws. The mathematical modelling of

the fluid flow problems are derived from the following principles [57];

1. Conservation of mass

2. Newton’s second law of motion (conservation of momentum)

3. Conservation of energy.

Derivation of continuity equation which results from the conservation of mass, and equations

of motion resulting from the conservation of momentum are given in the next subsections over
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a control volume using integral approach [57]. These equations can also be obtained by using

derivative approach.

1.1.1 Conservation of mass

The most important property in Newtonian fluid dynamics is that mass is conserved. The

law of conservation of mass is stated as ”mass is not created nor destroyed”.

Consider a fluid element of a finite volume V (control volume) surrounded by surface area

S (control surface) (Figure 1.1).

Figure 1.1: Control volume and surface

Then, the mass balance is written as:
{

The rate of flow

of mass into V

}

=

{

The rate of increase

of mass in V

}

Let ρ be the density and u the velocity of the fluid and the normal vector on the surface S

is through out of V . Then, the net rate of flow of mass through the control surface S is

−
∫

S
ρu · dS (1.1)

and the net rate of increase of mass within the control volume V is
∫

V

∂ρ

∂t
dV. (1.2)

Using the divergence theorem
∫

V

{

∂ρ

∂t
+ ∇ · (ρu)

}

dV = 0 . (1.3)

Note that, this equality is valid for any volume V . Therefore, we will obtain the main equation

of the fluid flow problems called ”the continuity equation” as

∂ρ

∂t
+ ∇ · (ρu) = 0 . (1.4)
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For incompressible flows, ρ is constant. Therefore, whether the flow is steady or unsteady,

the continuity equation is written as

∇ · u = 0 . (1.5)

1.1.2 Conservation of momentum

The second governing equation for the fluid dynamics is based on the ”momentum balance”

property. The conservation of momentum for the fluid flows is derived similarly over a control

volume V as














The rate of increase

of momentum

inside volume V















=















The rate of

momentum inflow

through S















+

{

Total forces

acting inside V

}

+

{

Total forces

acting on S

}

.

Thus the equation of motion for the fluid inside S is

∂

∂t

∫

V
ρuidV = −

∫

S
ρuiu · dS +

∫

V
ρfidV +

∫

S
σijdSj (1.6)

where ui is the ith component of the velocity u, fi is the ith component of the body force f and

σij is the stress tensor. Using the divergence theorem and the identity

ρuiu · dS = ρuiuj dSj (1.7)

all the terms are collected under volume integral
∫

V

{

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) − ρfi −

∂

∂xj
σij

}

dV = 0 (1.8)

where xj is the jth component of the space coordinate. Finally, because V is arbitrary, ”the

equation of motion” is obtained as

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = ρfi +

∂

∂xj
σij . (1.9)

There are two types of forces to be included, body forces and surface forces. Body force is

due to the gravity. Surface forces arise from the pressure and viscous stresses. Therefore, the

stress σij includes the pressure p and the normal viscous stress τij . Since the pressure is acting

through inward direction, it appears with negative sign in the equation.

A full form for σij in terms of the constants µ and K is given as

σij = −Pδij + 2µ(eij −
1

3
ekk δij) (1.10)

where

eij =
1

2
(
∂ui

∂xj
+

∂uj

∂xi
) , ekk =

∂uk

∂xk
= ∇ · u and P = p − K ekk (1.11)
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with p and P as thermodynamic and mechanical pressures, respectively.

Substituting for σij in the equation of motion (1.9), we obtain the full Navier-Stokes equations

ρ
Dui

Dt
= ρfi −

∂p

∂xi
+

∂

∂xj

{

µ
∂ui

∂xj
+ µ

∂uj

∂xi

}

+
∂

∂xi

{

(K − 2

3
µ)

∂uk

∂xk

}

. (1.12)

We write the equation in vector form as

ρ

(

∂u

∂t
+ u · ∇u

)

= ρf −∇p + µ∇2u + (K − 2

3
µ)∇∇ · u (1.13)

where µ is the dynamic viscosity and K has a value near that of µ. For incompressible fluids

the Navier-Stokes equations take the form

ρ

(

∂u

∂t
+ u · ∇u

)

= ρf −∇p + µ∇2u (1.14)

where ∇2 is the Laplace operator

1.2 The Navier-Stokes equations

The Navier-Stokes equations, named after Claude-Louis Navier (1827) and George Gabriel

Stokes (1845), describe the motion of viscous fluid substances such as liquids and gases. The

Navier-Stokes equations for the incompressible fluids are obtained in the previous subsection as

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u + f

∇ · u = 0
(1.15)

where ν =
µ

ρ
is the kinematic viscosity. In non-dimensional form, it is written as

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u + f

∇ · u = 0
(1.16)

where Re =
ρU0L

µ
with U0 and L are characteristic velocity and length, respectively.

The nonlinear character makes difficult finding the exact solution of the Navier-Stokes equa-

tions. However, many researchers are interested in the solution of the equations with numerical

methods especially by the finite element method (FEM) which is one of the most valuable

numerical tool used in the solution of many engineering problems.

Applications of the Galerkin finite element method to incompressible Navier-Stokes equa-

tions in velocity-pressure form were carried out in the early 1970’s. It was soon recognized that

the use of equal-order interpolations for both the velocity and pressure variables, which is the

most desirable choice from the implementation point of view, generates numerical approximation
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that is inconsistent with the physical configuration of the problem. The difficulty is two-folded.

In the first layer, the finite element formulation of the problem is of mixed form and the appro-

priate pair of the function spaces satisfying the Babuška-Brezzi condition (the order of pressure

approximation is less than the order of velocity approximation) must be employed [1, 4, 59].

However, the problem may still exhibit numerical instabilities at high Reynolds numbers even

the appropriate pair of approximation spaces are employed. A considerable amount of scientific

work has been devoted to developing numerical algorithms that are able to cope with both of

these problems simultaneously.

One of the most popular of such numerical methods is referred to as the streamline upwind

Petrov-Galerkin (SUPG) method [13]. The finite element method of the SUPG type reduces the

oscillations in the standard Galerkin method of piecewise linears and achieves stability by adding

mesh-dependent perturbation terms to the formulation. These terms enhance the coercivity of

the formulation by acting like artificial diffusion in the direction of streamlines and enables the

usage of the equal order velocity-pressure pairs which are known to produce approximations not

consistent with the exact solution of the problem [43]. However, the amount of perturbation or

the value of the stability parameters which should be chosen by user is not known a priori and

needs to be adjusted by means of error analysis and/or experiments.

Later, it has been shown that the SUPG type stabilized methods for the equations modelling

the flow problems can be derived by adding the bubble functions (functions defined on the in-

terior of the finite element that vanish on the element boundary [19]) to the velocity space in

the standard Galerkin finite element formulation and then eliminating the bubbles by using the

static condensation approach [5, 6, 12, 23, 37, 60]. In this approach, the optimal choice of the

stabilization parameter in the SUPG method was simply translated into the problem of the op-

timal choice of the bubble space. Therefore the bubble functions should be chosen appropriately

to cope with the difficulties arising in the numerical simulation of the equations. In that context,

the residual-free bubble (RFB) functions whose description is based on a local boundary value

problem related to the strong form of the equation in each element were introduced in [12].

The numerical methods employing the RFB functions were investigated in different element

configurations mostly for convection-dominated flows. It can be verified that the RFB method

enhances the stability of the discrete problem and satisfies a priori error estimates similar to the

ones for the SUPG method [7, 8, 11, 28, 63].

Bubble functions are defined on element level for each element and vanish on the element

boundary. Although, the stabilization can be performed by using polynomial bubble functions,

they don’t change its shape and characteristics as problem getting convection-dominated. There-

fore, a special case of the bubble functions called residual-free bubble (RFB) functions give better

accuracy in convection-dominated case since they change both height and shape depending on

the flow direction. The RFB functions minimize the residual inside each element by satisfying
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the strong form of the problem locally. The RFB functions are first introduced by Brezzi and

Russo [12] and applied in many flow problems.

Since the residual-free bubble method is based on the classical solution of a local problem of

convection-diffusion type, finding its exact solution is usually difficult as much as the original

system of differential equations. Therefore, an accurate numerical algorithm to obtain the

approximate solution of the bubble problem inside each element has to be designed. This can

be done by the two-level finite element method (TLFEM). The two-level finite element method

was first introduced by Franca and Macedo in [26] for the Helmholtz equation. It was later

extended to the convection-diffusion equation by Franca et.al. [28] and to the incompressible

Navier-Stokes equations in [52, 27]. TLFEM consists of two parts: On the one at the global

mesh level, the problem will be in the Galerkin framework while the bubble part of the solution

is still unknown. Before solving the problem on the global mesh, we have to compute the bubble

functions which is accomplished in the second part of the method. To do this, we set another

layer of mesh (subgrid) inside each element on which we calculate the approximate solution of

bubble functions by using a non-standard finite element method. Then, these approximations

are used instead of the exact bubble functions in the global mesh level of the formulation.

However, the implementation of the TLFEM can be expensive from the computational point of

view and a cheap efficient algorithm that generates qualitatively the same bubble functions as

the TLFEM thus is sought.

Recently, some numerical algorithms were proposed in the context of convection-diffusion

equation to provide a cheap approximate solution to the bubble problem with the use of a

subgrid consisting of very few nodes [9, 10]. The method can be viewed as a variant of the

TLFEM where the subgrid is consisted of a single internal node plus three vertices induced by

the global mesh, per element. The internal node is taken over one of the medians of the triangle

and the precise location of the subgrid node is determined so that a residual value becomes

minimum in the sense of L1. With the use of suitably chosen internal subgrid node, it can

be proven that the resulting numerical method, called Stabilizing Subgrid Method (SSM), has

qualitatively similar stability features of the classical stabilized methods and satisfies the same

a priori error estimates as the SUPG or the RFB methods do. However, these results hold only

if the convection field is piecewise-constant inside each element.

Application of spatial discretization using the FEM to transient field problems governed

by convection-diffusion type partial differential equations yields a system of ordinary differential

equations of the first order. This initial value problem can be solved by a finite difference approx-

imation of the time derivative [16, 18, 41, 42, 48, 78], weighted residual methods in the context

of one time element representing the entire time domain [65, 79], least squares schemes [69, 70].

The space-time finite element formulation has been used for various problems by Hughes et al.

[39, 40]. The finite element interpolation functions are discontinuous in time so that the fully
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discrete equations are solved one space-time slab at a time. Mittal and Tezduyar [50] presented

numerical results for certain unsteady flows past oscillating cylinders and aerofoils with compu-

tations based on the stabilized space-time FE formulation. They have also used the deforming-

spatial-domain/space-time (DSD/ST) for computation of unsteady viscous incompressible flows

which involve moving boundaries and interfaces [71, 72]. Similarly, FE computations in the

space domain based on the standard Galerkin formulation of incompressible unsteady flows can

involve numerical instabilities due to the presence of dominating convection terms in the gov-

erning equations and due to the use of inappropriate combinations of interpolation functions to

represent velocities and the pressure. To stabilize the computations, the consistent Streamline

Upwind Petrov-Galerkin (SUPG) FEM should be used to handle the convective terms. Other

approaches are also in use as projection and fractional Q-scheme [48]. Codina et al. [16] have

implemented a stabilized FE formulation for the incompressible Navier-Stokes equations based

on a pressure gradient projection.

In our study, we apply the stabilizing subgrid method (SSM) to obtain approximate solution

of the incompressible Navier-Stokes equations on a triangular discretization of the domain. We

employ the space of continuous piecewise-linear interpolation functions plus bubbles for velocity

variable and the continuous piecewise-linear interpolation functions for pressure variable in a

framework of the mixed finite element method. The nonlinearity emanating from the nature

of the equation is treated through an iteration. We assume the convection field is uniform

(constant) inside each element by taking the average value of the velocity variable at the vertices

of the triangle. The resulting numerical scheme gives accurate and stable solutions. Furthermore,

it is computationally cheap and able to adapt itself for different flow regimes.

1.3 The Magnetohydrodynamic equations

Magnetohydrodynamics (MHD) is the theory of the macroscopic interaction of electrically

conducting fluid and electromagnetic fields. Applications arise in astronomy and geophysics

and as well as in connection with numerous engineering problems, such as liquid-metal cooling

of nuclear reactors, electromagnetic casting of metals, MHD power generation, and MHD ion

propulsion. In MHD problems we deal with a flow of viscous, incompressible fluid which has a

property of electric current conduction and interacting with electromagnetic fields. The conduct-

ing fluid flow can induce electric current and interact with the magnetic field. This interaction

in turn produces Lorentz force on the fluid and can greatly change the fluid behaviour. Thus,

MHD flow is governed by the Navier-Stokes and pre-Maxwell equations coupled via the Lorentz

force. The theory and the mathematical modelling of the equations can be found in [20, 67].

Analysis of electromagnetic in liquid metals involves solving the Maxwell equation for the

non-existence of a magnetic monopole, Faraday’s law, pre-Maxwell Ampere’s law and Gauss law
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as

∇ · B = 0 (1.17)

∇× E = −∂B

∂t
(1.18)

∇× B = µ0J (1.19)

∇× D = q (1.20)

where B is the magnetic induction, D is the electric displacement, E is the electric field, J is the

electric current density (J ≡ σE) and q is the electric charge density. Actually, the Ampere’s

law is given as ∇×H = J +
∂D

∂t
with the magnetic field density H. However, the displacement

current
∂D

∂t
is assumed to be negligibly small in comparison with other terms.

For a free-space (non-magnetizable or non-polarizable) electromagnetic medium, define H =

B/µ0 and E = D/ǫ0 with the free-space magnetic premeability µ0 = 4π × 10−7Hs/m and

free-space electric permitivity ǫ0 = 8.854 × 10−12F/m. Then, Ohm’s law is written as

J = σ(E + u × B) (1.21)

where σ is the electrical conductivity of the material and u is the velocity of the fluid in motion.

Notice that, Ohm’s law characterizes the ability of the investigated conducting fluid to transport

electric charges under the influence of applied electric field.

If we perform the curl operator on each term in the Ohm’s law

curl(J) = σcurl(E) + σcurl(u × B)

1

µ0
curl(∇× B) = −σ

∂B

∂t
+ σcurl(u × B)

1

µ0
∇(∇ · B) − 1

µ0
∇2B = −σ

∂B

∂t
+ σ∇× (u × B)

using the vector identity ∇× (∇× B) = ∇(∇ · B) −∇2B .

Final form of the magnetic induction which enlightens the coupling of hydrodynamics and

electromagnetic two fields, is written as

∂B

∂t
= ∇× (u × B) +

1

σµ0
∇2B. (1.22)

Also, under an applied magnetic field, the momentum equation is rewritten in non-dimensionalized

form with the fluid Reynolds number Re, the magnetic Reynolds number Rem and the Hart-

mann number Ha, and an additional Lorentz force [46, 61, 68] as

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u + f − Ha2

ReRem
(∇× B) × B (1.23)

where Re =
ρU0L

µ
, Rem = µ0σU0L, Ha =

√
ReRemS with the Coupling number S =

B2
0

µ0ρU0
,

a characteristic value U0 for the velocity field, a characteristic value B0 for the magnetic field

and a characteristic length L.

8



Several papers have been devoted to the analysis of numerical schemes for the simulation of

MHD flows by using finite difference method (FDM). A nine-node grid, FD approximation was

applied to solving MHD equations inside a channel with a rapidly expanded section in [44]. A

description is made using two vector potentials and the vorticity vector, which form a system of

three simultaneous, quasilinear equations of the elliptic type. Sekhar et al. [66] have obtained

FD solutions in terms of stream function-vorticity for solving the steady MHD flow past a

sphere with an applied magnetic field parallel to the main flow at low and moderate Reynolds

number. In the paper written by Shue and Lin [68], a primitive variable approach for solving the

magnetic field and hydrodynamic field equations has been given with the alternating direction

implicit (ADI) solution algorithm. An extension of the generalized Peaceman and Rachford

ADI scheme was presented in [51]. The discretized conservation equations are solved in stream

function-vorticity formulation for low magnetic Reynolds number. 3-D numerical calculations on

liquid-metal MHD flow through a rectangular channel in the inlet region, have been performed

by Kumamaru et al [46] using the FDM.

Most of the numerical solutions of the MHD equations are performed by using the finite ele-

ment method (FEM) because of its advantage in nonlinear equations. The existence of solutions

of both continuous and discrete MHD problems without any condition on the boundary data of

the velocity was derived in [77] and Gunzburger et al. [33] has shown that the existence and

uniqueness of the solution of a weak formulation of the MHD equations can be guaranteed. Meir

and Schmidt [49] and Schötzau [64] have carried out error analysis on their finite element solu-

tions of MHD problems and established optimal order error bounds. Mixed FE approximation

of incompressible MHD problems based on weighted regularization has been analyzed by Hasler

et al [34]. Well-posedness of this approach and existence and uniqueness results, quasi-optimal

error bounds were also provided. By using a two-level FEM for discretizing the stationary MHD

equations, Layton et al. [47] have proved well-posedness of their algorithm and gave optimal

error bounds. In their study, they have solved the nonlinear problem first on a coarse mesh and

then the linear one on a fine mesh.

The study of MHD duct flows has great relevance for nuclear reactor cooling systems, MHD

flowmeters, MHD micropumps. Such MHD flows have been studied under the assumption that

the flow is fully developed. Then the problem dimensionality reduces from three to two and

the application of the governing equations is allowed only in a transversal section of the duct.

Verardi et al. [75, 76], Krzeminski [45], Tezer-Sezgin and Köksal [74] have given FE solutions of

MHD equations in rectangular ducts. A stabilized FEM using the residual-free bubble (RFB)

functions has been proposed by Neslitürk and Tezer-Sezgin [54, 55] for solving steady MHD duct

flow problems. The FEM employing RFB functions was capable of solving the equations for

high values of Hartmann number.

It is known that the small hydrodynamic diffusion may induce some well-known numerical
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instabilities. It is therefore natural to use some stabilizing techniques for the Navier-Stokes

equations. It may be also useful to stabilize the magnetic equation in spite of the high values of

magnetic diffusivity. Several stabilized FEM studies are available for the full MHD equations.

Gerbeau [31] has carried out a stabilized FEM procedure in terms of velocity (u), the pressure (p)

in the fluid and the magnetic field (B), including a convergence proof. A stabilization technique

is used in order to allow equal order interpolation on tetrahedral elements of all variables. In the

papers by Salah et al. [61, 62], Codina and Silva [17], they have presented a stabilized FEM for

the full MHD equations by including a magnetic pressure as unknowns to enforce the divergence

free condition for the numerical approximation of the magnetic field.

As is done in the Navier-Stokes equations, numerical instabilities due to the coupled formu-

lation and the existence of the coefficients in the MHD equations (the fluid Reynolds number

Re, the magnetic Reynolds number Rem and the Hartmann number Ha), are eliminated by

considering stabilized finite element methods. The application of the stabilizing subgrid method

(SSM) to the solution of the MHD equations is given for the first time in this thesis. Obtained

results have shown the accuracy of the SSM compared to SUPG type stabilization.

1.4 Plan of the thesis

We organize the thesis as follows. In Chapter 2, we introduce the finite element method first

for the convection-diffusion type problems. Then, the numerical instabilities in the convection

dominated flow problems, in obtaining solutions by standard Galerkin FEM formulation, are

handled with stabilized finite element methods. These are Streamline Upwind Petrov Galerkin

(SUPG), Stabilizing Subgrid Method (SSM) and Two-Level Finite Element Method (TLFEM).

Then for the incompressible Navier-Stokes equations the same stabilization methods are applied.

Demonstration of the mentioned methods is performed on the numerical solution of some test

problems as L-shape flow, rotating flow field, cavity flow, backward facing step flow and flow

past a cylinder.

In Chapter 3, transient field problems containing convection-diffusion terms are solved by

using FEM in both space and time directions with a separation of variables idea and then FEM

in space - FDM in time direction in order to make comparison. The separation of variables idea

enables to express the temporal and space derivatives independently in terms of the derivatives

of corresponding shape functions which may be taken equal order since the SUPG stabilization

is performed. In this way, we take into account the deformation due to the convection terms

(spatial domain) and also protect the computations against numerical oscillations in the time do-

main. The resulting discretized equations are solved iteratively in the time domain without the

need of very small time increments. The application problems considered include diffusion and

convection-diffusion problems, unsteady incompressible flow governed by Navier-Stokes equa-
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tions.

Chapter 4 gives the FEM formulation of the incompressible MHD equations. The unknowns

in the equations are the primitive variables as the velocity (u), the magnetic field (B) and

the pressure in the fluid (p). Then, standard Galerkin, SUPG, TLFEM and SSM methods are

all implemented. Existence of the magnetic pressure case is also considered. Then, numerical

experiments are performed on a test problem having exact solution, MHD cavity flow problem

and MHD flow over a step problem. A simplified form of the unsteady MHD equations describing

the flow in a rectangular duct is also solved using the FEM formulation given in Chapter 3.

Finally, Chapter 5 contains the concluding remarks for the presented methods and obtained

numerical results.
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Chapter 2

Solution of the Navier-Stokes

Equations

In this Chapter, we describe stabilized finite element method, stabilizing subgrid method

and two-level finite element method for solving the Navier-Stokes equations. The methods are

explained first on convection-diffusion equations since the nonlinear terms in the Navier-Stokes

equations are in the form of convection-diffusion. Applications of each method are given in

Section (2.4).

The finite element method (FEM) is one of the most valuable numerical tool especially in

the solution of many engineering problems. For the case of analytical solution is difficult to find

or impossible, the finite element method gives a numerical solution of the problem in terms of

weighted residual formulation.

The principle ingredients of the finite element method for constructing approximate solutions

of problems are [58]

1. The formulation of the problem in a variational framework in which the appropriate space

V of admissible functions is identified.

2. The construction of a finite element mesh and piecewise polynomial basis functions defined

on the mesh, which generate a finite-dimensional subspace of V .

3. The construction of an approximation of the variational boundary-value problem on a

finite element subspace Vh of V . This entails the calculation of element matrices and the

generation of a sparse system of linear algebraic equations in the values of the approximate

solution at nodal points in the mesh.

4. The solution of the algebraic system.
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We first consider the second order boundary value problem


















−∇ · (ǫ∇u(x, y)) + b(x, y)u(x, y) = f(x, y) in Ω

u(s) = ū(s) on ∂Ω1

−ǫ
∂u(s)

∂n
= ℓ(s) [u(s) − ū(s)] on ∂Ω2

(2.1)

where Ω ⊂ R2 with boundary ∂Ω, u is the unknown scalar or vector valued function and f is a

given source function. Dirichlet and mixed type boundary conditions are specified on ∂Ω1 and

∂Ω2 respectively, where ∂Ω = ∂Ω1
⋃

∂Ω2, ℓ(s) and ū(s) are known functions on the boundary,

and ǫ is a constant, ∇ is the gradient operator.

The problem (2.1) can be transformed into a variational (weighted residual) form by multi-

plying the residual by a set of test functions from the space of admissible functions (that satisfy

the homogeneous Dirichlet boundary conditions and are smooth enough for the integrals ap-

pearing in the variational problem to be well defined) and integrating over the domain. The

resulting weighted average is set equal to zero,
∫

Ω
[−∇ · (ǫ∇u) + bu − f ]v dxdy = 0, ∀v ∈ V. (2.2)

Applying Green’s theorem one can obtain
∫

Ω
(ǫ∇u · ∇v + buv − fv) dxdy −

∫

∂Ω
ǫ
∂u

∂n
v ds = 0, ∀v ∈ V. (2.3)

Boundary conditions in (2.1) give
∫

Ω
(ǫ∇u · ∇v + buv − fv) dxdy +

∫

∂Ω2

ℓ(u − ū)v ds = 0, ∀v ∈ V. (2.4)

Hence, our problem becomes one of finding a function u ∈ V such that u = ū on ∂Ω1 and (2.4)

holds for all admissible test functions v.

The Galerkin finite element method enforces the weighted integral of the residual to be zero

over the domain of the problem. To specify a Galerkin FEM for (2.1) out of the variational

problem, we partition Ω as Ωh into elements K in a standard way (e.g. no overlapping, no

vertex on the edge of a neighboring elements, etc.) then we choose a finite-dimensional space

Vh which is related to the choice of partition and which satisfies Vh ⊂ V , where V is the

space of functions in which we seek a solution of the continuous variational problem. We define

h = maxK{diam(K)} as the mesh diameter. Then, the Galerkin finite element method reads,

[58]: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) + (g, vh) ∀vh ∈ Vh (2.5)

where (u,v) is the inner product of u and v as

∫

Ω
uv dΩ. Therefore, left hand side term in (2.5)

is given explicitly as

a(uh, vh) =

∫

Ωh

(ǫ∇uh · ∇vh + buhvh) dΩh
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and the right hand side terms are

(f, vh) =

∫

Ωh

fvh dΩh , (g, vh) =

∫

∂Ωh

ǫ
∂uh

∂n
vh ds .

Now, we concentrate on the finite element solution of Navier-Stokes equations and the ap-

plication of the finite element method is going to be given in details.

The steady, laminar flow of a viscous and incompressible fluid in an open bounded domain

Ω ⊂ IR2 with the boundary ∂Ω is defined by the Navier-Stokes equations (in dimensionless form)

with Dirichlet type boundary conditions as [57]














u · ∇u − ǫ∇2u + ∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = u0 on ∂Ω ,

(2.6)

where u is the unknown velocity field, p is the unknown scalar pressure function, f is a given

force vector, ǫ is the viscosity parameter related to the Reynolds number (Re = 1/ǫ), and ∇2 is

the Laplace operator.

Thus, in two-dimension (2-D), using u =

{

u

v

}

and f =

{

f1

f2

}

, Navier-Stokes equations

can be written componentwise as

u
∂u

∂x
+ v

∂u

∂y
− 1

Re
(
∂2u

∂x2
+

∂2v

∂y2
) +

∂p

∂x
= f1 (2.7)

u
∂v

∂x
+ v

∂v

∂y
− 1

Re
(
∂2v

∂x2
+

∂2v

∂y2
) +

∂p

∂y
= f2 (2.8)

∂u

∂x
+

∂v

∂y
= 0. (2.9)

We use standard notation for function spaces: C0(Ω̄) is the space of continuous functions on

the closure of Ω, L2(Ω) is the space of square integrable functions over the domain Ω, H1(Ω)

is the Sobolev space of L2(Ω) functions whose derivatives are square integrable functions in Ω,

and H1
0 (Ω) is the Sobolev subspace of H1(Ω) functions in Ω with zero value on the boundary

∂Ω. The weak formulation of the problem (2.6) is obtained by employing the pair of function

spaces V = (H1
0 (Ω))2 and P = L2

0(Ω), and it reads [52]: Find u ∈ V , p ∈ P such that

B(u;u, p;v, q) = F (v, q) for all v ∈ V, q ∈ P, (2.10)

where the forms are given by

B(u;u, p;v, q) = (u · ∇u,v) + ǫ(∇u,∇v) − (∇v, p) + (∇ · u, q),

F (v, q) = (f ,v).

A mixed finite element approximation of the problem (2.10) is determined by the choice of

finite dimensional subspaces Vh ⊂ V , P1 ⊂ P defined on a family of discretizations Ωh of the
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domain Ω. We assume that Ωh is made of triangles or quadrangles {K} and that Ωh is regular

as explained in [14](e.g. no overlapping, no vertex on the edge of a neighboring elements, etc.).

Denoting the space of piecewise linear functions on a typical element K by P1(K), we choose

the following finite dimensional subspaces on Ωh before we specify finite element method:

Vh = {v ∈ C0(Ω̄) ∩ (H1
0 (Ω))2 | v |K∈ P1(K)2 , K ∈ Ωh},

Ph = {p ∈ C0(Ω̄) ∩ L2
0(Ω) | p |K∈ P1(K) , K ∈ Ωh}.

Test and trail spaces consist of the continuous basis functions φi’s with the property that

φi = 1 at the node i and zero at the other nodes of an element. The standard Galerkin finite

element method is based on employing the same function space for both test and trial spaces

and it is equivalent to finding the pair {uh, ph} from Vh × Ph such that

B(uh;uh, ph;vh, qh) = (f ,vh) ∀{vh, qh} ∈ Vh × Ph , (2.11)

where

B(uh;uh, ph;vh, qh) = (uh · ∇uh,vh) + ǫ(∇uh,∇vh) − (∇vh, ph) + (∇ · uh, qh). (2.12)

If linear shape functions are used in the standard Galerkin FEM formulation, uh and vh are taken

as u1 and v1 respectively, which are approximated by using linear polynomial basis functions in

the finite element method.

To overcome the non-linearity in the equations, the unknowns can be written in iterative

form as
un+1

h = un
h + ûh

pn+1
h = pn

h + p̂h

where un
h and pn

h are the previous step known values and ûh and p̂h are the correction values.

Then, the nonlinear term is linearized as follows

uh
n+1 · ∇uh

n+1 ≈ uh
n · ∇uh

n + ûh · ∇uh
n + uh

n · ∇ûh.

Since the pressure is determined up to a constant through the formulation, we also append the

condition
∫

Ωh

ph = 0

to the formulation to fix the constant. For this purpose, we will normalize the continuity equation

as

κph −∇ · uh = 0

where κ is very small real number ≈ 10−5.
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Thus, using uh =

{

uh

vh

}

, explicit form of the Navier-Stokes equations can be written

iteratively in 2-D as

un
h

∂ûh

∂x
+ vn

h

∂ûh

∂y
+ ûh

∂un
h

∂x
+ v̂h

∂un
h

∂y
− ǫ(

∂2ûh

∂x2
+

∂2ûh

∂y2
) +

∂p̂h

∂x

= f1 − un
h

∂un
h

∂x
+ vn

h

∂un
h

∂y
+ ǫ(

∂2un
h

∂x2
+

∂2un
h

∂y2
) − ∂pn

h

∂x

un
h

∂v̂h

∂x
+ vn

h

∂v̂h

∂y
+ ûh

∂vn
h

∂x
+ v̂h

∂vn
h

∂y
− ǫ(

∂2v̂h

∂x2
+

∂2v̂h

∂y2
) +

∂p̂h

∂y

= f2 − un
h

∂vn
h

∂x
+ vn

h

∂vn
h

∂y
− ǫ(

∂2vn
h

∂x2
+

∂2vn
h

∂y2
) − ∂pn

h

∂y

κp̂h +
∂ûh

∂x
+

∂v̂h

∂y
= −κpn

h − ∂un
h

∂x
− ∂vn

h

∂y
.

(2.13)

Computational Remarks

The unknowns can be expressed in terms of the basis functions of Vh and Ph in a simplified

notation

uh =

ndofu
∑

i=1

uiφi vh =

ndofv
∑

i=1

viφi ph =

ndofp
∑

i=1

piΦi

where φi’s are the shape functions of the velocity components and Φi’s are the shape functions

for the pressure taken from the bases {φ1, φ2, ...} and {Φ1, Φ2, ...} of the space Vh and Ph,

respectively. The shape functions are polynomials defined over an element and ui, vi and pi’s

are the nodal values of uh, vh and ph respectively at the nodes of the element. ndof denotes the

degree of freedom for each approximation. We will also need the following two identities in the

variational formulation

Green’s Second Identity (for ∇2uh)

∫

Ω

(

∂2φi

∂x2
+

∂2φi

∂y2

)

φjdΩ =

∫

∂Ω

∂φi

∂n
φjdΩ −

∫

Ω

(

∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y

)

dΩ.

If the boundary conditions (BC) are given as Dirichlet type, the boundary integral becomes zero

since the shape functions vanish on ∂Ω.

Integration by parts (for ∇ph) (Divergence theorem)

Since the pressure shape functions Φi ∈ Ph ⊂ C0(Ω̄) ∩ L2
0(Ω), they are not differentiable.

Therefore we will carry the differentiation to the shape functions of the velocity components(φi)

by using the following equations:
∫

Ω

∂Φi

∂x
φjdΩ =

∫

∂Ω
Φiφj · nxdσ −

∫

Ω
Φi

∂φj

∂x
dΩ
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∫

Ω

∂Φi

∂y
φjdΩ =

∫

∂Ω
Φiφj · nydσ −

∫

Ω
Φi

∂φj

∂y
dΩ

where n is the outward unit surface normal to ∂Ω with n =

{

nx

ny

}

.

Also, the following notations are made use of

Su =
∑

uiφi Sux =
∑

ui
∂φi

∂x
Suy =

∑

ui
∂φi

∂y

Sv =
∑

viφi Svx =
∑

vi
∂φi

∂x
Svy =

∑

vi
∂φi

∂y

Sp =
∑

piΦi Spx =
∑

pi
∂Φi

∂x
Spy =

∑

pi
∂Φi

∂y

for writing the variational form of the equations(2.7)-(2.9) in the matrix-vector form








E1û E1v̂ E1p̂

E2û E2v̂ E2p̂

E3û E3v̂ E3p̂

















ûh

v̂h

p̂h









=









R1

R2

R3









(2.14)

where the entries are given as

E1û =

∫

Ω

{(

Suxφi + Su
∂φi

∂x
+ Sv

∂φi

∂y

)

φj + ǫ

(

∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y

)}

dΩ

E1v̂ =

∫

Ω
SuyφiφjdΩ E1p̂ =

∫

Ω
−Φi

∂φi

∂x
dΩ E2û =

∫

Ω
SvxφiφjdΩ

E2v̂ =

∫

Ω

{(

Svyφi + Su
∂φi

∂x
+ Sv

∂φi

∂y

)

φj + ǫ

(

∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y

)}

dΩ

E2p̂ =

∫

Ω
−Φi

∂φi

∂y
dΩ E3û =

∫

Ω

∂φi

∂x
ΦjdΩ E3v̂ =

∫

Ω

∂φi

∂y
ΦjdΩ E3p̂ =

∫

Ω
κΦiΦjdΩ

R1 =

∫

Ω

[

− (Su.Sux + Sv.Suy − f1)φj − ǫ

(

Sux
∂φj

∂x
+ Suy

∂φj

∂y

)

φj + Sp
∂φj

∂x

]

dΩ

R2 =

∫

Ω

[

− (Su.Svx + Sv.Svy − f2)φj − ǫ

(

Svx
∂φj

∂x
+ Svy

∂φj

∂y

)

φj + Sp
∂φj

∂y

]

dΩ

R3 =

∫

Ω
[−κSp − Sux − Svy] ΦjdΩ.

The insertion of the boundary conditions in the iteration process is employed such that if

Dirichlet type boundary conditions are given, un
h and vn

h are equal to given boundary values

and ûh and v̂h are equal to zero on the boundary points. Starting values of uh and vh for the

iteration process are specified as the given boundary values and zero at the other points. The

pressure is set to zero initially everywhere.

The solution process of the Galerkin finite element method is based on the ’best approxima-

tion’ property. That is, the difference between the exact solution and the finite element solution

is minimized with respect to certain norm. Therefore, Galerkin FEM generally gives successful

numerical solutions. However, solutions of the Navier-Stokes equations obtained from the stan-

dard Galerkin finite element method produce some spurious oscillations (see Figure (2.12)). The
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coupled form of the problem which limits the choice of the shape functions is the first reason of

these oscillations. The second one is the convective-diffusive character of the equations together

with the existence of the coefficient Reynolds number(Re) which makes the problem convection

dominated for high values of Re.

The special choice of the approximate functions satisfying inf-sup condition, which is defined

for uh ∈ Vh and ph ∈ Ph as

inf

ph 6= 0

sup

uh 6= 0

|a(uh, ph)|
||uh||||ph||

> 0

or Babuska-Brezzi condition which implies that the order of the pressure shape function is less

than the order of velocity shape function (e.g. Taylor-Hood elements or Q2 − Q1 elements are

the combination of quadratic shape functions for velocity and linear for pressure), will remove

the oscillations and produces stable solutions. However, selecting higher order shape functions

for velocity increases the size of the resulting matrix-vector system which is limited by computer

resources. Therefore, such a selection does not allow to obtain fine meshes for the domain of the

problem. In order to overcome this difficulty, stabilized methods which permit the use of equal

order shape functions are proposed.

2.1 Stabilized Finite Element Methods

Stabilized finite element methods are based on adding mesh dependent terms to the standard

Galerkin finite element formulation of the problem which stabilize the system. The first stabilized

method proposed by Hughes [13, 38] is called as Streamline Upwind Petrov-Galerkin (SUPG)

method . There are many studies with stabilized finite element methods for convection-diffusion

equations [22, 25, 29, 30, 40] and incompressible Navier-Stokes equations [24, 36]. Analysis and

more references can be found in the book [59].

Since the convection-diffusion terms exist in the Navier-Stokes equations, we first demon-

strate the stabilized methods for the convection-diffusion equation.

2.1.1 Convection-diffusion equation

Consider the convection-diffusion equation given with the Dirichlet type boundary conditions

as
{

−ǫ∇2u + a · ∇u = f in Ω

u = u0 on ∂Ω
(2.15)
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where ǫ is a small parameter and a =

{

ax

ay

}

is the flow vector. The Galerkin finite element

formulation of the problem (2.15) is as; find uh ∈ Vh such that

a(uh, vh) = (f, vh) , ∀vh ∈ Vh (2.16)

where

a(uh, vh) = ǫ

∫

Ωh

∇uh · ∇vhdΩh +

∫

Ωh

(a · ∇uh)vhdΩh .

Stabilized form of the convection-diffusion equation over the element K is defined in [31] as

a(uh, vh) +
∑

τK

∫

ΩK

(−ǫ∇2uh + a · ∇uh − f)(γǫ∇2vh + a · ∇vh)dΩK = (f, vh) (2.17)

where τK is the stabilization parameter depending on the local character of the discretization,

ΩK is the area of the Kth element, and a(uh, vh) corresponds to the standard Galerkin finite

element terms. The stabilization method changes with the value of γ as

• γ = −1 ⇒ Douglas-Wang method (DWG)

• γ = 0 ⇒ Streamline Upwind Petrov Galerkin (SUPG)

• γ = 1 ⇒ Galerkin Least Square (GLS) .

If linear elements are used, all three methods coincide since ∇2uh = ∇2vh = 0 .

The stabilization parameter τK is defined in [9] as

τK =























hK

2|a|K
if Pek ≥ 1

h2
K

12ǫ
if Pek < 1

(2.18)

where, hK is the diameter of the element, PeK is the Peclet number, PeK =
|a|KhK

6ǫ
and

|a|K =
√

a2
x + a2

y .

2.1.2 SUPG formulation of the Navier-Stokes equations

Streamline Upwind Petrov Galerkin (SUPG) formulation of the Navier-Stokes equations (2.6)

for linear elements is given in [24] as; find {uh, ph} from Vh × Ph

(uh · ∇uh,vh) + ǫ(∇uh,∇vh) − (∇vh, ph) − (∇ · uh, qh)

+
∑

τK

∫

ΩK
((uh · ∇uh + ∇ph − f) · (uh · ∇vh −∇qh))dΩK = (f ,vh)

(2.19)
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∀{vh, qh} ∈ Vh × Ph with the stabilization parameter τK such that

τK =
hK

2|uh
n|K

ε(PeK) (2.20)

where

ε(PeK) =

{

Pek if Pek < 1

1 if Pek ≥ 1

and

PeK =
|uh

n|KhK

6ǫ
.

Therefore the following terms will be added to the standard Galekin formulation respectively

∫

ΩK

τK

(

∂un
h

∂x
ûh +

∂un
h

∂y
v̂h + un

h

∂ûh

∂x
+ vn

h

∂ûh

∂y
+ un

h

∂un
h

∂x
+ vn

h

∂un
h

∂y
+

∂pn
h

∂x
+

∂p̂h

∂x
− f1

)

(

un
h

∂v1

∂x
+ vn

h

∂v1

∂y

)

dΩK

∫

ΩK

τK

(

∂vn
h

∂x
ûh +

∂vn
h

∂y
v̂h + un

h

∂v̂h

∂x
+ vn

h

∂v̂h

∂y
+ un

h

∂vn
h

∂x
+ vn

h

∂vn
h

∂y
+

∂pn
h

∂y
+

∂p̂h

∂y
− f2

)

(

un
h

∂v2

∂x
+ vn

h

∂v2

∂y

)

dΩK

∫

ΩK

−τK

{(

∂un
h

∂x
ûh +

∂un
h

∂y
v̂h + un

h

∂ûh

∂x
+ vn

h

∂ûh

∂y
+ un

h

∂un
h

∂x
+ vn

h

∂un
h

∂y
+

∂pn
h

∂x
+

∂p̂h

∂x
− f1

)

∂q

∂x

+

(

∂vn
h

∂x
ûh +

∂vn
h

∂y
v̂h + un

h

∂v̂h

∂x
+ vn

h

∂v̂h

∂y
+ un

h

∂vn
h

∂x
+ vn

h

∂vn
h

∂y
+

∂pn
h

∂y
+

∂p̂h

∂y
− f2

)

∂q

∂y

}

dΩK .

(2.21)

Then, the equation (2.19) becomes in the matrix-vector form

















E1û E1v̂ E1p̂

E2û E2v̂ E2p̂

E3û E3v̂ E3p̂









+ τK









e1û e1v̂ e1p̂

e2û e2v̂ e2p̂

e3û e3v̂ e3p̂

























û

v̂

p̂









=









R1

R2

R3









+ τK









r1

r2

r3









(2.22)

with the entries in stabilized terms

e1û =

∫

ΩK

(Suxφi + ct1)ct3dΩK e2û =

∫

ΩK

Svxφict3dΩK

e3û =

∫

ΩK

{

−(Suxφi + ct1)
∂φj

∂x
− Svxφi

∂φj

∂y

}

dΩK

e1v̂ =

∫

ΩK

Suyφict3dΩK e2v̂ =

∫

ΩK

(Svyφi + ct1)ct3dΩK

e3v̂ =

∫

ΩK

{

−Suyφi
∂φj

∂x
− (Svyφi + ct1)

∂φj

∂y

}

dΩK

e1p̂ =

∫

ΩK

∂φi

∂x
ct3dΩK e2p̂ =

∫

ΩK

∂φi

∂y
ct3dΩK e3p̂ =

∫

ΩK

−ct2dΩK
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r1 =

∫

ΩK

−(SuxSu + SuySv + Spx − f1)ct3dΩK

r2 =

∫

ΩK

−(SvxSu + SvySv + Spy − f2)ct3dΩK

r3 =

∫

ΩK

[

(SuxSu + SuySv + Spx − f1)
∂φj

∂x
+ (SvxSu + SvySv + Spy − f2)

∂φj

∂y

]

dΩK

where

ct1 = Su
∂φi

∂x
+ Sv

∂φi

∂y
ct2 =

∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y
ct3 = Su

∂φj

∂x
+ Sv

∂φj

∂y
.

2.2 Stabilizing Subgrid Method (SSM)

Another stabilization method called as stabilizing subgrid method(SSM) has been developed

for convection-diffusion type equations [10, 53] using triangular elements. SSM is related to

the combination of the methods SUPG and residual-free-bubble functions. The method is based

on the selection of a single subgrid point whose location has a role in the stabilization of the

convection dominated flows. The SSM on convection-diffusion equations will be extended to the

solution of the Navier-Stokes equations for the first time in this study [56].

The SSM and the SUPG formulations of the Navier-Stokes equations have identical struc-

ture except for the value of the stabilization parameter τK . In SSM, the stabilization parameter

τK is explicitly given by [56]

τK =
1

|K|

∫

K
bK dK (2.23)

where bK is the unique solution of the following boundary value problem in an element K

{

LbK = −ǫ∇2bK + un
1 · ∇bK = 1 inK

bK = 0 on ∂K.
(2.24)

Note that, finding the exact solution bK using (2.24) may not be an easy task in an arbitrary

triangular domain. Therefore a cheap efficient approximation to bK that generates qualitatively

the same behavior with the exact function bK is required.

Since the equation (2.24) can be viewed as a linear convection-diffusion equation, a stabilized

subgrid numerical algorithm can be employed to compute the approximate solution. Specify a

subgrid which consists of three vertices of the triangle plus a single additional node in the interior

of each element and approximate bK over the specified subgrid by choosing the location of the

additional node such that it gives the best approximation in L1 norm defined by

‖f‖1 =

∫

Ω
|f |dΩ

for f : Ω → R.
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Figure 2.1: Types of inflow boundary

To describe the algorithm of the stabilizing subgrid method (SSM) [10, 53]; take a fixed

element K and consider a subgrid that contains just one additional node N = φK in the interior

of each triangular element. We drop the subscript K since the argument is similar for other

elements. The node N is joined to the three vertices denoted by Vi splitting the triangle K into

three sub-triangles. We will choose the point N along one of the three medians of K. Let us

denote the approximate solution on K by bN which is defined as

bN (N) = 1, bN (Vi) = 0 i = 1, 2, 3. (2.25)

Thus the function bN attached to the point N has support contained in K. We further denote

the edge of K opposite to Vi by ei, the length of ei by |ei|, the outward unit normal to ei by ni

and νi = |ei|ni. The choice of the median on which the point N is located will depend on the

number of inflow edges in the triangle and the precise location of N will be chosen such that

the value of the residual in the sense of L1 is minimum. That is

J(N) =

∫

K
| − ǫ∇2b∗N + un

1 · ∇b∗N − 1| dK (2.26)

is minimum where b∗N (x) = α(N)bN (x) is the unique solution of

aK(b∗N , bN ) = (1, bN ) ∀ bN . (2.27)

Using the integration by parts, we observe that

α(N) =

∫

K bN dK

ǫ
∫

K |∇bN |2dK
. (2.28)

The set of points on the median V1M can be described as a function depending on a single

parameter t: N = (1− t)V1 + tM where 0 < t < 1. In order to choose the position of N , we have
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to distinguish among two cases with respect to the number of inflow edges. Define the average

velocity ũn
1 by arithmetic mean of the velocity components at the vertices of the triangle; i.e.,

ũn
1 = (un

1 (V1) + un
1 (V2) + un

1 (V3))/3. We use ũn
1 to characterize the type of the edges of the

triangle: If ũn
1 · ni > 0 then ei is an outflow edge, otherwise it is an inflow edge.

In the first case where the inflow boundary makes up of two edges, let e2 and e3 be two

inflow edges (Figure (2.1)). Then for the value of t, we take







t = 1 + ǫ(|e1|2)

ǫ(|e2−e3|2−
2

3
|K|(ũn

1
,ν1))

if ǫ ≤ 2|K|(ũn
1
,ν1)/3

3|e1|2+|e2−e3|2

t = 2/3 otherwise
(2.29)

where t lies in the interval [23 , 1). In the other case where the inflow boundary makes up of

a single edge, let e1 be the inflow edge (Figure (2.1)). We use again the condition (2.26) to

determine the location of N and the integral J(N) becomes minimum if t is taken as







t = ǫ(|e2|2+|e3|2)
ǫ(|e2−e3|2/2−|K|(ũn

1
,ν1)/3)

if ǫ ≤ −2 |K|(ũn
1
,ν1)/3

3( |e2|2+ |e3|2)−|e2−e3|2

t = 2/3 otherwise.
(2.30)

In this case, 0 < t ≤ 2/3. We refer to [9, 53] for the derivation of the values of t in (2.29) and

(2.30). Two articles use two different criteria for choosing the subgrid node, however they reach

the similar results.

Once the location of the point N is determined through the relation N = (1−t)V1 +tM with

the value of t given in (2.29) or (2.30) depending on the number of inflow edges, a reasonably

good approximation to the stabilization parameter τK can be obtained: The approximate value

of τK is given by

τ̃K =
1

|K|

∫

K
b∗NdΩK =

1

|K|

(

∫

ΩK

bNdΩK)2

ǫ

∫

ΩK

|∇bN |2dΩK

=
4|K|

9ǫ
∑

i

|ei|2/|Ki|
(2.31)

where |Ki| is the area of ith sub-triangle. The values of τ̃Ks are then used in the global formu-

lation (2.19) in place of τK .

The SSM formulations of the convection-diffusion and the Navier-Stokes equations are ex-

actly the same with the formulations given in SUPG (Subsections 2.1.2 and 2.1.2). Here the

value of stabilization parameter is obtained in a different way.
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2.3 Two-Level Finite Element Method (TLFEM)

Another stabilized method which uses equal order shape functions for both the velocity and

the pressure is called a two level finite element method (TLFEM) [26]. TLFEM is based on to

enrich the finite element space appending bubble functions. Then, the finite element space V h

is decomposed as

Vh = V1 ⊕ VB

where V1 is the linear space, VB is the bubble space and ⊕ is the direct sum operator for the

finite element spaces.

We will decompose the approximate solution as uh = u1 + ub ∈ V1 ⊕ VB where u1 is the

linear part and ub is the bubble part of the solution. Bubble functions have a special property

being zero outside of the specific element.

For simplicity, TLFEM is introduced first for the convection-diffusion equation [7, 8, 9, 11,

28, 63].

2.3.1 TLFEM for the convection-diffusion equation

Residual-free bubble functions are used now in a two-level finite element method for convection-

diffusion equation [7]. The variational formulation of the convection-diffusion equation is already

defined in (2.16) as

a(uh, vh) = (f, vh).

If the approximate solution uh of the equation (2.15) is taken as uh = u1 + ub, the original

differential equation can be written as

L(uh) = L(u1 + ub) = f in K. (2.32)

Using the linear property of the operator L and the property of the bubble functions that they

vanish on the boundary ∂K of each element K, equation (2.32) can be written as

{

L(ub) = −L(u1) + f in K

ub = 0 on ∂K.
(2.33)

For the Galerkin finite element method that uses bubbles, each vh ∈ Vh is the sum of a

standard piecewise polynomial and a bubble function that is selected later to be residual-free.

Thus, we write

vh = v1 + vb ∀vh ∈ Vh (2.34)

where v1 is the polynomial component of vh and vb is the bubble component.
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We require the bubble functions to vanish on the boundary ∂K of each element K. For the

particular case of residual-free-bubbles, we further define the bubble components vb for each vh

to satisfy the original differential equation on the interior of each K, i.e,

Lvh = L(v1 + vb) = f in K.

For general bubble functions including the residual-free ones, the vanishing of the bubble

functions on each ∂K allows us to take vh = vb on K and vh = 0 elsewhere. Therefore,

variational formulation of the problem with TLFEM takes the form

a(u1, v1) + a(ub, v1) = (f, v1) ∀v1 ∈ V1.

In order to find the bubble part of the solution, we can write the two parts of the solution

in terms of shape functions as

u1 =

#nds
∑

i=1

uiφi, ub =

#nds
∑

i=1

uiϕ
u
i + ϕf

where #nds is the number of nodes over the boundary of the element, φi’s are linear shape

functions, ϕu
i , ϕf are bubble functions and ui’s are approximate solutions at the nodes. Then,

variational formulation becomes

∑

ui[a(φi, φj) + a(ϕu
i , φj)] = (f, φj) − a(ϕf , φj). (2.35)

Calculation of Bubble Functions ϕu
i ’s and ϕf

Bubble functions will be obtained from the solutions of the following problems which are defined

on the sub-mesh level for each element K

{

Lϕu
i = −Lφi on K , Lϕf = f on K

ϕu
i = 0 on ∂K , ϕf = 0 on ∂K.

(2.36)

Since the sub-mesh level problems are in the same behaviour with the global problem, they

should be solved with a suitable non-standard method such as stabilized method (SUPG, GLS).

Stabilized form of these equations are















































∫

ΩK∗

{ǫ(∇φ∗
l · ∇φ∗

m) + (a · ∇φ∗
l )φ

∗
m + τK∗(a · ∇φ∗

l )(a · ∇φ∗
m)} dΩK∗ =

∫

ΩK∗

{−(a · ∇φi)φ
∗
m − τK∗(a · ∇φi)(a · ∇φ∗

m)} dΩK∗ , i = 1, ...,#nds
∫

ΩK∗

{ǫ(∇φ∗
l .∇φ∗

m) + (a · ∇φ∗
l )φ

∗
m + τK∗(a · ∇φ∗

l )(a · ∇φ∗
m)} dΩK∗ = l, m = 1, ...,#nds

∫

ΩK∗

{fφ∗
m + τK∗f(a · ∇φ∗

m)} dΩK∗

(2.37)
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where the stabilization parameter τK∗ is already defined in (2.18) and φ∗ are the basis functions

defined on the submesh.

Equations (2.37) can be written in matrix-vector form as [A]{ϕu
i } = {F u

i } and [A]{ϕf} =

{F f}. Since the left hand side stiffness matrix is common in all the problems and the boundary

conditions are homogeneous Dirichlet type, it is calculated and assembled once and used in all

the problems.

Computational Algorithm

Equation (2.35) is calculated in two parts. Linear part terms a(φi, φj) and (f, φj) are calculated

on each element in global mesh directly. However, bubble functions ϕu
i and ϕf are defined on a

sub-mesh in a discrete way by

ϕu
i =

#nds
∑

l

cui

l φ∗
l , ϕf =

#nds
∑

l

cf
l φ∗

l ,

where cui

l and cf
l are the discrete values of the bubble functions ϕu

i and ϕf , respectively and

φ∗
l ’s are the basis functions on the submesh. Therefore, the bubble part terms a(ϕu

i , φj) and

a(ϕf , φj) must be calculated as summation of sub-integrals


























∫

ΩK

a(ϕu
i , φj)dΩK =

#K∗

∑

l

∫

ΩK∗

cui

l a(φ∗
l , φj)dΩK∗

∫

ΩK

a(ϕf , φj)dΩK =

#K∗

∑

l

∫

ΩK∗

cf
l a(φ∗

l , φj)dΩK∗

where K∗ is an element in the submesh and #K∗ indicates the number of elements on the

submesh. This process will be repeated for each global element separately.

2.3.2 TLFEM for the Navier-Stokes equations

Two-level finite element method is going to be used now for approximating residual-free

bubble functions for the Navier-Stokes equations. The variational formulation of the Navier-

Stokes equations has already been given in (2.12) as; find uh ∈ Vh and ph ∈ Ph such that

(uh · ∇uh,vh) + ǫ(∇uh,∇vh) − (∇vh, ph) − (∇ · uh, qh) = (f,vh) ∀vh ∈ Vh, qh ∈ Ph.

If we set uh = u1 + ub, vh = v1, ph = p1 and qh = q1 we will get the equation

(u1 · ∇(u1 + ub),v1) + ǫ(∇(u1 + ub),∇v1) − (∇v1, p1) − (∇ · (u1 + ub), q1) = (f,v1) (2.38)

For the Navier-Stokes equations, bubble part of the solution ub can be obtained from the

solution of the following equation [52]

un
1 · ∇un+1

b − ǫ∇2un+1
b = f − un

1 · ∇un+1
1 + ǫ∇2un+1

1 −∇pn+1
1 in K

ub = 0 on ∂K.
(2.39)
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In 2-D, explicit form of the bubble functions are

ub =

#nds
∑

i=1

uiϕ
u
i +

#nds
∑

i=1

piϕ
p1

i + ϕf1

vb =

#nds
∑

i=1

viϕ
u
i +

#nds
∑

i=1

piϕ
p2

i + ϕf2

(2.40)

where ϕu
i ; ϕp1

i , ϕp2

i ; ϕf1 and ϕf2 are the basis functions for the bubble components of the velocity

bubble, pressure bubble and external force bubble, respectively.

Therefore, sub-mesh problems are written separately. For the velocity components u and v,

the same sub-mesh problem will be solved






Lϕu
i = −(un

1

∂φi

∂x
+ vn

1

∂φi

∂y
) in K

ϕu
i = 0 on ∂K

(2.41)

where un
1 and vn

1 are the known values of the velocity component from the previous iteration.

For the pressure part of the bubble functions there are two different sub-mesh problems






Lϕp1

i = −∂φi

∂x
in K , Lϕp2

i = −∂φi

∂y
in K

ϕp1

i = 0 on ∂K , ϕp2

i = 0 on ∂K.
(2.42)

Finally, for the body force part of the bubbles, we have the following sub-mesh problems
{

Lϕf1 = f1 in K , Lϕf2 = f2 in K

ϕf1 = 0 on ∂K , ϕf2 = 0 on ∂K.
(2.43)

Equations (2.41)-(2.43) again should be solved on a sub-mesh with a non-standard method

(such as SUPG). In all of the sub-mesh level problems, left hand side is common for each element.

Therefore, it can be calculated only once and used for all the problems on element level. Explicit

form of the left hand side of the sub-mesh problems is given as
∫

ΩK∗

{

ǫ(∇φ∗
l .∇φ∗

m) + (un
1

∂φ∗
l

∂x
+ vn

1

∂φ∗
l

∂y
)φ∗

m + τK∗(un
1

∂φ∗
l

∂x
+ vn

1

∂φ∗
l

∂y
)(un

1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗

(2.44)

where l, m = 1, ...,#nds.

Right hand sides of the equations (2.41)-(2.43) are respectively

velocity bubble:
∫

ΩK∗

{

−(un
1

∂φi

∂x
+ vn

1

∂φi

∂y
)φ∗

m − τK∗(un
1

∂φi

∂x
+ vn

1

∂φi

∂y
)(un

1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗ (2.45)

pressure bubble:
∫

ΩK∗

{

−∂φi

∂x
φ∗

m − τK∗

∂φi

∂x
(un

1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗ (2.46)
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∫

ΩK∗

{

−∂φi

∂y
φ∗

m − τK∗

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗ (2.47)

body force bubble:
∫

ΩK∗

{

f1φ
∗
m + τK∗f1(u

n
1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗ (2.48)

∫

ΩK∗

{

f2φ
∗
m + τK∗f2(u

n
1

∂φ∗
m

∂x
+ vn

1

∂φ∗
m

∂y
)

}

dΩK∗ (2.49)

with previously defined stabilization parameter τK∗ .

Once all the bubble parts of the solutions are calculated, they will be substituted in the

equation (2.38) which is solved over global mesh.

2.4 Numerical Results

In this section, we present some numerical results with the stabilizing methods presented

above and compare these methods. We work on two test problems for the convection-diffusion

equations: (1) L-Shape flow problem, (2) Rotating flow field, and on three test problems for the

steady incompressible Navier-Stokes equations: (1) 2D laminar flow inside a lid-driven cavity, (2)

Backward facing step flow and (3) 2D flow past a cylinder. We use the tool VIGIE (Visualization

Generale Interactive d’Ecoulements) to visualize the numerical results. The iteration cycle that

resolve the nonlinearity of the problems stops when the maximum norm of the error is less than

10−6.

Before we present numerical results we briefly mention our convention in labels. The upper

case letters at the beginning of each label refers to the method we employ at : BB refers

to the method which uses Q2-Q1 elements (the combination of quadratic shape functions for

velocity and linear shape functions for pressure approximations) and satisfies the inf-sup or

Babuska-Brezzi condition, SSM refers to the stabilizing subgrid method, GP refers to the

method selecting subgrid point at the gravity center of each element, BE refers to the TLFEM

in which subgrid is generated using equally spaced s points on each side of the element and,

BG refers to the TLFEM in which subgrid is the finest and generated by repeating the subgrid

strategy in GP to subtriangles s times. Numerical experiments show that the optimum value

for s is 5. So, we keep the value of s fixed and take s = 5 throughout the calculations. What

follows the part of the label referring to the method employed is Reynolds number tag which

we denote it by re. The number of elements on the global mesh follows e. Thus, for example,

the label SSMre26e6800 means that, for the problem of interest, we test the SSM at Reynolds

number 26 over a global mesh with 6800 elements. We remark that all three methods use the

same formulation at the global scale.

First, we will concentrate on the details of the TLFEM. The TLFEM was applied to the
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solution of the convection-diffusion equations [28] and Navier-Stokes equations [27] by using

quadrangle elements. In the solution of the submesh level problem, submesh should be generated

for each element. As mentioned before, bubble functions are defined for each element separately

and they vanish on the boundary of the element. In Figure (2.2) submesh for rectangular and

quadrangle elements are displayed. Figures (2.3) and (2.4) show the 2-D and 3-D behaviour of

the bubble functions on rectangular elements.

Rectangle 4 Quadrangle 4

Figure 2.2: Submesh for rectangle and quadrangle elements

For a triangular element, two different types of submesh generation are tested. First one,

labeled BE, generates the submesh from equally spaced points on the edges of the triangle. The

second one, labeled BG, generates the submesh using the point on the body center of each newly

obtained triangle sequentially. In Figure (2.5) these two types of submeshes for two different

levels and corresponding bubble functions are displayed. From the experiments, it is seen that

5 times repeated BG submesh captures all the behaviour of the flow for the Navier-Stokes

equations.
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Bubble function

b1,  min = 0,  max = 1.05733 b1

-0.0105733

0.0972743

0.205122

0.312969

0.420817

0.528665

0.636512

0.74436

0.852207

0.960055

1.0679

Bubble function

b2,  min = -0.217098,  max = 0 b2

-0.219269

-0.197125

-0.174981

-0.152837

-0.130693

-0.108549

-0.0864048

-0.0642609

-0.0421169

-0.019973

0.002171

Figure 2.3: Bubble functions for rectangular elements

Bubble function

b,  min = 0,  max = 1.05733

Bubble function

b,  min = -0.217098,  max = 0

Figure 2.4: 3-D view of bubble function for rectangular elements
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BEs4 BEs8

BGs2 BGs4

BEs4 BEs8

BGs2 BGs4

Figure 2.5: Two different types of submesh generations and corresponding bubble functions for

triangular elements
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2.4.1 L-Shape flow

The stabilization effect on the finite element method is shown first on the convection-diffusion

problem (2.15) which is convection dominated. The SUPG method is tested on L-Shape flow

problem [9] with the domain and boundary conditions described in Figure (2.6).

Figure 2.6: Definition of L-shape flow problem

For the convection dominated case (ǫ = 5x10−4, a(x, y) = (−y, x)), boundary layers oc-

cur close to the upper left corner and L-shaped corner. Solution with standard Galerkin fi-

nite element method(τK = 0) exhibits deformations as ǫ gets smaller in these parts whereas

the stabilized FEM eliminates these disturbances. Figure (2.7) presents solution contours of

convection-diffusion problem for ǫ = 5 × 10−2, ǫ = 5 × 10−3, ǫ = 5 × 10−4 respectively.

In Figure (2.8), the disturbances close to the L-shape corner and upper left corner can be

seen clearly when the standard FEM is used especially for small values of ǫ.
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Galerkin SUPG

ǫ = 5 × 10−2

Galerkin SUPG

ǫ = 5 × 10−3

Galerkin SUPG

ǫ = 5 × 10−4

Figure 2.7: Standard Galerkin FEM and SUPG solutions of L-Shape flow
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Galerkin SUPG

(a) Zoom: corner at x = 0.5,y = 0.5

Galerkin SUPG

(b) Zoom: left upper boundary at x = 0, y = 1

Figure 2.8: Stabilization effect in L-shape flow near boundary layers for ǫ = 5x10−4
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2.4.2 Rotating flow field

The TLFEM method is tested on a rotating flow field problem which is defined by the

convection-diffusion equation (2.15). The same problem is also solved with SUPG method

which is more faster then TLFEM in the sense of computational time.

The problem is defined on a unit square 0 ≤ x, y ≤ 1 with the parameters ǫ = 10−6,

a = (0.5 − y, x − 0.5). The boundary conditions are; u = 0 along the external boundary and in

the internal boundary on x = 0.5 and 0 ≤ y ≤ 0.5, u = 1
2(cos(4πy − π) + 1), [28].

The problem is solved by using both SUPG and TLFEM methods with almost the same

accuracy. In the solution 30x30 global mesh elements and for each element 7x7 subelements are

used. Solutions are compared in Figure (2.9).

SUPG

u,  min = -0.0048073,  max = 0.999295

TLFEM

u,  min = -0.0015818,  max = 0.997674

Figure 2.9: Comparison of SUPG and TLFEM solutions of rotating flow field
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2.4.3 Lid-Driven Cavity flow

This is a standard benchmark problem defined by the Navier-Stokes equations (2.6) [52]. The

problem specifications are given in Figure (2.10). We impose continuous boundary conditions

by means of a linear transition from the level y = 0.9 to y = 1.0 on the upper corners of the

boundary, and this is used in all the meshes. The Reynolds number is based on the characteristic

velocity U0 and the characteristic length L and given by

Re =
U0 Lρ

µ
.

For problems having high Reynolds number, the convergence of the iteration is only attained

under a good initial guess. For higher Reynolds number we use the converged results obtained

with smaller Re as starting values for the iteration.

Figure 2.10: The problem statement of the lid-driven cavity flow

We present the numerical results for Re = 400 and Re = 5200 on a pair of successively

refined uniform meshes (see Figure (2.11)).

Solution of the Navier-Stokes equations with equal order shape functions

Cavity flow problem has been solved first, by using linear shape functions for both the

velocity components and the pressure of the Navier-Stokes equations. Results obtained from this

selection show periodic behaviour in pressure(Figure (2.12)) even for small Reynolds numbers.

Although velocity components are suitable, there are some oscillations in the streamlines which

are seen more clearly especially at the right bottom vortex. As mentioned before, convective-

diffusive character of the Navier-Stokes equations and mixed formulation (u-v-p form) cause
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e800 e3200

Figure 2.11: The problem meshes tested for the cavity flow: 800 and 3200 elements

these oscillations for the choice of equal order shape functions.

Galerkin

p,  min = -0.456155,  max = 1.18918

Galerkin

Figure 2.12: Pressure elevation and streamlines for the cavity flow, Re = 100

Solution of the Navier-Stokes equations with Babuska-Brezzi condition

Babuska-Brezzi condition (Q2-Q1 elements) implies the use of linear shape functions for pres-

sure and quadratic shape functions for the velocity components. With this solution technique,

oscillations in the pressure values which occurred in the use of equal order shape functions have

disappeared.

The cavity flow problem has been solved for Reynolds numbers 400 and 5200 using Q2−Q1

elements. As Reynolds number increases new vortices will occur. The disadvantage of the
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method is the need of the fine mesh for high Reynolds numbers. Since the quadratic shape

functions already require extra points in an element, it is difficult to make the mesh very fine.

Figure (2.13) presents pressure values and streamlines for Re = 400 and Re = 5200 in terms of

contours and elevations for the flow.

BBre400e3200

p,  min = -0.0410512,  max = 0.183114

(a) Pressure contours for Re = 400

BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

(b) Pressure contours for Re = 5200

BBre400e3200

p,  min = -0.0410512,  max = 0.183114

(c) Pressure elevations for Re = 400

BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

(d) Pressure elevations for Re = 5200

BBre400e3200

(e) Streamlines for Re = 400

BBre5200e3200

(f) Streamlines for Re = 5200

Figure 2.13: Solutions of the cavity flow with 3200 elements of Q2-Q1 type
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Solutions of the Navier-Stokes equations with stabilized methods(SUPG, SSM,

TLFEM)

We have compared the solutions obtained from SUPG method with the solutions obtained

by using Q2-Q1 elements on cavity flow problem for Reynolds number Re = 400 and Re = 5200

with 3200 elements . From the Figures (2.14) and (2.15), it is seen that although the behaviour

of the flow is captured by SUPG method, maximum and minimum values are not predicted

successfully compared to BB method. This can be seen more clearly as Reynolds number

increases. However, streamlines of the flow are almost indistinguishable in the comparison of

both methods.

Solutions obtained with SSM, TLFEM and Q2-Q1 elements for Reynolds number 400 and

5200 are compared in the Figures (2.16) and (2.17) from left to right, respectively. They show

the characteristic features of the real solution and comparable with the results that are present

in the literature [52, 73]. Unlike SUPG method, both SSM and TLFEM give accurate results

even for the rough meshes.

SSM, GP and Q2-Q1 element type solutions are compared for high Reynolds numbers. Fig-

ure (2.18) shows pressure contours and pressure elevations at Reynolds number Re = 5200.

Assuming the results obtained through the TLFEM are the most accurate, we may conclude

that SSM predicts the real solution better than GP at both levels of the problem meshes. This

shows that the proper choice of the subgrid node may play a significant role in obtaining more

accurate approximations. As the mesh gets finer, the problem becomes locally diffusive dom-

inated in a larger portion of the domain and the need for stabilization is diminished (Figure

(2.19)). The situation is apparent as the location of the subgrid point suggested by SSM moves

to the gravity center of the element and all three solutions get closer to each other. However,

SSM is slightly better than GP as SSM suggests a more correct location for the subgrid node

over a smaller portion of the domain (Figure (2.19)).

On the other hand, Figures (2.20) shows the configuration of subgrid points in the mesh e800

for Re = 400 and Re = 5200, respectively. For Re = 400, the flow regime of the real solution is

diffusive dominated in the most part of the domain and the role of stabilization components is

not so significant. As the Reynolds number increases the problem becomes convection dominated

and therefore the adaptation of the position of the subgrid point is strongly pronounced. The

stabilization is now effective on a larger portion of the entire domain. Streamlines presented

in Figure (2.21) for Re = 5200 with SSM method are also in agreement with the results in

the literature(see [52]). As given in the reference [32], velocity values through the geometric

center of the cavity are presented in terms of table and figure in Table (2.1) and Figure (2.22),

respectively.

We have also tested different type of global meshes. Randomly generated non-uniform mesh

39



BBre400e3200

p,  min = -0.0410512,  max = 0.183114

SUPGre400e3200

p,  min = -0.0217894,  max = 0.156272

(a) Pressure contours for Re = 400

BBre400e3200

p,  min = -0.0410512,  max = 0.183114

SUPGre400e3200

p,  min = -0.0217894,  max = 0.156272

(b) Pressure elevations for Re = 400

BBre400e3200 SUPGre400e3200

(c) Streamlines for Re = 400

Figure 2.14: Comparison of Q2-Q1 elements with SUPG method for the cavity flow, Re = 400

does not provide accurate results (Figure (2.23)). Since the critical changes exist at the upper

lid of the cavity, a modification on the upper lid mesh produces accurate results for the pressure

(Figure (2.24)). For high values of Reynolds number, vortices in the streamline graphics occur

near the boundaries. Therefore selecting a refined mesh with quadratic distribution through the
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BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

SUPGre5200e3200

p,  min = -0.0028482,  max = 0.0224186

(a) Pressure contours for Re = 5200

BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

SUPGre5200e3200

p,  min = -0.0028482,  max = 0.0224186

(b) Pressure elevations for Re = 5200

BBre5200e3200 SUPGre5200e3200

(c) Streamlines for Re = 5200

Figure 2.15: Comparison of Q2-Q1 elements with SUPG method for the cavity flow, Re = 5200

boundaries will capture the behaviour of the flow in terms of streamlines more clearly (Figure

(2.25)).
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SPre400e800

p,  min = -0.0306604,  max = 0.18622

BGre400e800s4

p,  min = -0.0290301,  max = 0.180463

BBre400e800

p,  min = -0.0307906,  max = 0.176069

SPre400e3200

p,  min = -0.0450854,  max = 0.197298

BGre400e3200s4

p,  min = -0.0427205,  max = 0.1924

BBre400e3200

p,  min = -0.0410512,  max = 0.183114

SPre400e800

p,  min = -0.0306604,  max = 0.18622

BGre400e800s4

p,  min = -0.0290301,  max = 0.180463

BBre400e800

p,  min = -0.0307906,  max = 0.176069

SPre400e3200

p,  min = -0.0450854,  max = 0.197298

BGre400e3200s4

p,  min = -0.0427205,  max = 0.1924

BBre400e3200

p,  min = -0.0410512,  max = 0.183114

Figure 2.16: Pressure contours and elevations for the cavity flow with SSM, TLFEM and Q2-Q1,

Re = 400
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SPre5200e800

p,  min = -0.0031362,  max = 0.0308315

BGre5200e800s5

p,  min = -0.003057,  max = 0.0326571

BBre5200e800

p,  min = -0.0033432,  max = 0.0351571

SPre5200e3200

p,  min = -0.0033577,  max = 0.0366252

BGre5200e3200s5

p,  min = -0.0033879,  max = 0.0362616

BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

SPre5200e800

p,  min = -0.0031362,  max = 0.0308315

BGre5200e800s5

p,  min = -0.003057,  max = 0.0326571

BBre5200e800

p,  min = -0.0033432,  max = 0.0351571

SPre5200e3200

p,  min = -0.0033577,  max = 0.0366252

BGre5200e3200s5

p,  min = -0.0033879,  max = 0.0362616

BBre5200e3200

p,  min = -0.0033723,  max = 0.0354568

Figure 2.17: Pressure contours and elevations for the cavity flow with SSM, TLFEM and Q2-Q1,

Re = 5200
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SPre5200e800

p,  min = -0.0031362,  max = 0.0308315

GPre5200e800

p,  min = -0.0026765,  max = 0.027608

BGre5200e800s5

p,  min = -0.003057,  max = 0.0326571

SPre5200e3200

p,  min = -0.0033577,  max = 0.0366252

GPre5200e3200

p,  min = -0.0033455,  max = 0.0368186

BGre5200e3200s5

p,  min = -0.0033879,  max = 0.0362616

SPre5200e800

p,  min = -0.0031362,  max = 0.0308315

GPre5200e800

p,  min = -0.0026765,  max = 0.027608

BGre5200e800s5

p,  min = -0.003057,  max = 0.0326571

SPre5200e3200

p,  min = -0.0033577,  max = 0.0366252

GPre5200e3200

p,  min = -0.0033455,  max = 0.0368186

BGre5200e3200s5

p,  min = -0.0033879,  max = 0.0362616

Figure 2.18: Pressure contours and elevations for the cavity flow with SP, GP and TLFEM,

Re = 5200
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SSMre5200e800

SSMre5200e3200

Figure 2.19: Adaptation of the subgrid points in SSM as the problem mesh is refined at Re =

5200: The problem meshes are e800 and e3200
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SSMre400e800 SSMre5200e800

Figure 2.20: Adaptation of the subgrid points in SSM as the problem becomes convection

dominated on a fixed mesh e800: Re = 400 and Re = 5200

Figure 2.21: Streamlines for the cavity flow with SSM, Re = 5200
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Figure 2.22: Velocity profiles for the cavity flow with SSM, Re = 400 and Re = 5200

Table 2.1: Velocity values at some selected points through the geometric center of the cavity

u-velocity along vertical line v-velocity along horizontal line

y Re=400 Re=5200 x Re=400 Re=5200

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.0750000 -0.0350700 -0.0648715 0.0750000 0.0530557 0.0506292

0.1250000 -0.0548183 -0.0819039 0.1250000 0.0734340 0.0669750

0.2500000 -0.0977078 -0.0588283 0.2500000 0.0969054 0.0650425

0.3750000 -0.1107317 -0.0293358 0.3750000 0.0939595 0.0359474

0.5000000 -0.0645859 -0.0002669 0.5000000 0.0571612 0.0097147

0.6250000 0.0137531 0.0308169 0.6250000 -0.0158838 -0.0171241

0.7500000 0.0858983 0.0664360 0.7500000 -0.1208616 -0.0467028

0.8500000 0.1736514 0.0834718 0.8500000 -0.1819628 -0.0721858

0.9000000 0.3088252 0.1397576 0.9000000 -0.1584394 -0.1042040

0.9500000 0.5886718 0.5006183 0.9500000 -0.0880898 -0.1083465

0.9750000 0.7852072 0.7521335 0.9750000 -0.0438278 -0.0614507

1.0000000 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000
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Randomly generated non-uniform mesh Pressure Re=400

Figure 2.23: Randomly generated non-uniform mesh and pressure contours for the cavity flow

Modified non-uniform mesh Pressure Re=5200

Figure 2.24: Modified non-uniform mesh and pressure contours for the cavity flow
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Nonuniform mesh Re1000

Re2500 Re5000

Figure 2.25: Unstructured, quadratically distributed mesh and streamlines for the cavity flow:

Re = 1000, 2500 and 5000
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2.4.4 Backward facing step flow

This problem is known to have a corner singularity. The geometry and the boundary condi-

tions are shown in Figure (2.26) [52]. We choose the Reynolds number based on the maximum

velocity Umax ( Umax = 1) at the inlet boundary and the height of the step l (l = 0.5):

Re =
Umax l

ν
.

Figure 2.26: The statement of the backward facing step flow

A fully developed parabolic velocity profile is prescribed at the inlet boundary. A successively

refined uniform meshes of 448, 1792 and 7168 elements, were employed (see Figure (2.27)). The

Reynolds number selected is 150.

In Figures (2.28) and (2.29), pressure contours and elevations are presented for stabilizing

subgrid method(SSM), GP and TLFEM (BE type) solutions. It is seen that, all the methods

bring out almost similar results and as the mesh gets thinner SSM and GP solutions become

the same. We give the streamline details behind the step in Figure (2.30) and note that all the

results are comparable with the solutions in [52]. We have also tested the changes in the flow in

terms of pressure contours and streamlines as Reynolds number increases. Figure (2.31) shows

this behavior for Re = 150, Re = 300, Re = 600 and Re = 900 with the solutions obtained by

SSM.
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e448

e1792

e7168

Figure 2.27: The problem meshes tested for the backward facing step flow

SPre150e448

p,  min = -0.100898,  max = 0.158531

GPre150e448

p,  min = -0.10086,  max = 0.158711

BEre150e448s4

p,  min = -0.106184,  max = 0.159405

SPre150e1792

p,  min = -0.131976,  max = 0.152842

GPre150e1792

p,  min = -0.131976,  max = 0.152842

BEre150e1792s4

p,  min = -0.1337,  max = 0.152609

SPre150e7168

p,  min = -0.153097,  max = 0.151242

GPre150e7168

p,  min = -0.153097,  max = 0.151242

BEre150e7168s4

p,  min = -0.153875,  max = 0.151157

Figure 2.28: Pressure contours for the backward facing step flow with SP, GP and TLFEM,

Re = 150
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SPre150e448

p,  min = -0.100898,  max = 0.158531

GPre150e448

p,  min = -0.10086,  max = 0.158711

BEre150e448s4

p,  min = -0.106184,  max = 0.159405

SPre150e1792

p,  min = -0.131976,  max = 0.152842

GPre150e1792

p,  min = -0.131976,  max = 0.152842

BEre150e1792s4

p,  min = -0.1337,  max = 0.152609

SPre150e7168

p,  min = -0.153097,  max = 0.151242

GPre150e7168

p,  min = -0.153097,  max = 0.151242

BEre150e7168s4

p,  min = -0.153875,  max = 0.151157

Figure 2.29: Pressure elevations for the backward facing step flow with SP, GP and TLFEM,

Re = 150
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SPre150e448 GPre150e448 BEre150e448s4

SPre150e1792 GPre150e1792 BEre150e1792s4

SPre150e7168 GPre150e7168 BEre150e7168s4

Figure 2.30: Streamline details for the backward facing step flow behind the step with SP, GP

and TLFEM, Re = 150
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SSM_Re150

p,  min = -0.153097,  max = 0.151242

SSM_Re300

p,  min = -0.131435,  max = 0.0161514

SSM_Re600

p,  min = -0.0916621,  max = 0.0067145

SSM_Re900

p,  min = -0.0748686,  max = 0.0074976

(a) Pressure contours

SSM_Re150 SSM_Re300

SSM_Re600 SSM_Re900

(b) Streamlines

Figure 2.31: Changes in the flow as Reynolds number increases for the backward facing step

flow with SSM
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2.4.5 Flow past a cylinder

The geometry and the boundary conditions for the flow past a cylinder are shown in Figure

(2.32) [52]. At the upper and lower computational boundaries and at the inflow section, a uniform

free-stream velocity boundary condition is imposed. The traction-free condition is given at the

outflow boundary. The steady flow past a cylinder is studied at Re = 26. See [21] for a historical

overview of this problem.

We are interested in the performance of the SSM over a series of successively refined meshes

(Figure (2.33)). Around the cylinder, we employ a uniform distribution of 40,80,160 nodes in

angular direction and a quadratic distribution of 21,41,81 nodes in radial direction, respectively.

We present the pressure contours for Re=26 in Figure (2.34). Although the method captures

the main features of the exact solution, even at the very coarse level of the global mesh, the

increase in the number of elements improves the approximation. A detailed plot of pressure

contours around the cylinder in Figure (2.35) confirms this observation.

We note that the stabilizing subgrid method is more effective over coarser meshes. This

can be observed in Figure (2.36), as SSM adapts the location of the subgrid node over a larger

portion of the region. This adaptation is crucial in obtaining stabilized approximations. We

note that the streamlines in Figure (2.37) are in good agreement with the results in [52].

Figure 2.32: The statement of the flow past a cylinder
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e1700 e6800

e27200

Figure 2.33: The problem meshes tested for the flow past a cylinder
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SSMre26e1700

p,  min = -0.485221,  max = 0.650241

SSMre26e6800

p,  min = -0.476723,  max = 0.639374

SSMre26e27200

p,  min = -0.471644,  max = 0.637113

Figure 2.34: Pressure contours for the flow past a cylinder, Re = 26
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SSMre26e1700 SSMre26e6800

SSMre26e27200

Figure 2.35: Pressure detail behind the cylinder for Re = 26
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Figure 2.36: Mesh detail around the cylinder for Re = 26 with e=1700 and e=6800
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Figure 2.37: Streamlines details behind the cylinder for Re = 26
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Chapter 3

Solution of the Unsteady

Navier-Stokes Equations

In this chapter, we describe the stabilized FEM in space-FEM in time domain procedure

first on the diffusion and convection-diffusion equations and then on the unsteady incompress-

ible flows governed by Navier-Stokes equations. In order to compare the methods, the finite

difference method (FDM) in time domain for the unsteady convection-diffusion and Navier-

Stokes equations is also given at the end of the chapter.

3.1 Finite Element Method in Time

It is already stated in Chapter 1 that, there are different solution approaches (finite difference,

least squares, Runge-Kutta methods, etc.) for the transient field problems. In this study,

transient field problems containing convection-diffusion terms are solved by using FEM in both

space and time directions with a separation of variables idea. Thus, the temporal and space

derivatives can be expressed independently in terms of the derivatives of corresponding shape

functions which may be taken equal order since the SUPG stabilization is performed. In this

way, we take into account the deformation due to the convection terms (spatial domain) and

also protect the computations against numerical oscillations in the time domain. The resulting

discretized equations are solved iteratively in the time domain without the need of very small

time increments.
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3.1.1 Diffusion equation

We consider first the time dependent linear diffusion equation in an open, bounded and

polyhedral domain Ω ⊂ R2 with given initial and boundary conditions



















∂u

∂t
− ǫ∇2u = f, in Ω × [0, T ]

u(x, 0) = u0 at t = 0

u(x, t) = u(x, t) on ∂Ω

(3.1)

where u = u(x, t) is the solution and f is a given source term, u0, u are given functions and ǫ is

the diffusivity coefficient, ∂Ω is the boundary of Ω and [0, T ] is the time interval of analysis.

In order to use finite element method both in space and time domains we introduce the space

V = V1 × Q1

for the transient problem where V1 = L2(0, T ; H1
0 (Ω)) and Q1 = L2(0, T ; Q). H1

0 (Ω) is the

subspace of H1(Ω) of functions with zero trace on ∂Ω, H1(Ω) being the Sobolev space of functions

whose first derivatives belong to L2(Ω) where L2 is the space of scalar product (·, ·) on the square

integrable functions and Q = {q ∈ L2(Ω)|
∫

Ω q = 0} . Let Vh = V h
1 ×Qh

1 be the discretized space

with linear or bilinear finite elements for V1 and linear elements for Q1.

If the solution u of diffusion equation is defined as u = u(x, y, t), then it can be approximated

by uh (uh ∈ V h
1 ) as

u ≈ uh =
2

∑

k=1

ndof
∑

i=1

φi(x, y)τk(t)uik (3.2)

where φi’s are the linear or bilinear shape functions in the space domain, τk’s are the linear

shape functions in the time direction and ndof is the degree of freedom for a space element.

The time interval [0, T ] is partitioned into subintervals Is = [ts, ts+1] where ts and ts+1 are

selected from the set 0 = t0 < t1 < ... < tS = T and S is the number of subintervals in the time

direction. Linear shape functions in the time direction can be defined on an interval [ts, ts+1]

with the following property

τ1 =

{

1 at ts

0 at ts+1

τ2 =

{

0 at ts

1 at ts+1

.

Thus, τ1 and τ2 can be selected as τ1 =
t − ts+1

ts − ts+1
and τ2 =

t − ts
ts+1 − ts

.

The weak form of problem (3.1) consists of finding u ∈ V1 such that [58]

∫ ts+1

ts

∫

Ω
[u̇v + ǫ(∇u · ∇v)] dxdt =

∫ ts+1

ts

∫

Ω
fv dxdt (3.3)
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Figure 3.1: A sample bilinear-linear element in the spatial-time domain

for all v ∈ H1
0 (Ω) and satisfying the initial condition in a weak sense. f is assumed to be square

integrable. The superimposed ’dot’ implies the time derivative.

Let Ωh denote a finite element partition of the domain Ω and construct finite element spaces

V h = V h
1 ×Qh

1 as subspaces of V , V1 and Q1, respectively. Then the discrete version of problem

(3.1) can be defined as: Find finite element approximation uh ∈ V h
1 such that

∫ ts+1

ts

∫

Ωh

[u̇hvh + ǫ(∇uh · ∇vh)] dxdt =

∫ ts+1

ts

∫

Ωh

fvh dxdt (3.4)

for all vh ∈ V h
1 . u̇h corresponds to the discrete values of the derivative of u with respect to time

and ∇uh is the gradient of uh. Equation (3.4) is written in a discrete form as

∫ ts+1

ts

[(

∂τ1

∂t
M + ǫKτ1

)

τ1Us +

(

∂τ2

∂t
M + ǫKτ2

)

τ1Us+1

]

dt =

∫ ts+1

ts

τ1Fdt (3.5)

∫ ts+1

ts

[(

∂τ1

∂t
M + ǫKτ1

)

τ2Us +

(

∂τ2

∂t
M + ǫKτ2

)

τ2Us+1

]

dt =

∫ ts+1

ts

τ2Fdt (3.6)

where the matrices M and K are the mass and stiffness matrices given by entrywise

Mij =

∫

Ωh

φiφj dx (3.7)

Kij =

∫

Ωh

(∇φi · ∇φj) dx (3.8)

and Fj ’s are the force vectors

Fj =

∫

Ωh

fφj dx. (3.9)

Thus, the system (3.5)-(3.6) can be solved iteratively for Us+1 values with Us+1 = uh(x, y, ts+1)

by using the previously known Us = uh(x, y, ts) values.
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3.1.2 Convection-diffusion equation

The unsteady linear convection-diffusion problem with initial and Dirichlet boundary condi-

tions is written as


















∂u

∂t
− ǫ∇2u + a · ∇u = f, in Ω × [0, T ]

u(x, 0) = u0 at t = 0

u(x, t) = u(x, t) on ∂Ω

(3.10)

where a · ∇u = a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
and a(x, y), b(x, y), u0(x), u(x, t) are given functions.

Thus, the standard Galerkin finite element formulation reads [58]; find uh ∈ V h
1 such that

∫ ts+1

ts

∫

Ωh

[u̇hvh + ǫ(∇uh · ∇vh) + (a · ∇uh)vh] dxdt =

∫ ts+1

ts

∫

Ωh

fvh dxdt, ∀vh ∈ V h
1 .

(3.11)

For convection dominated flows, one of the stabilized finite element method must be used in the

spatial domain in order to obtain stable solutions.

Stabilized form of the unsteady convection-diffusion equation can be similarly written as in

[31]

∫ ts+1

ts

a(uh, vh)dt +

∫ ts+1

ts

∑

K

τK

∫

Ωh

[u̇h + (a · ∇uh) − f ] [a · ∇vh] dxdt

∫ ts+1

ts

∫

Ωh

fvh dxdt

(3.12)

where a(uh, vh) is the bilinear operator given by

a(uh, vh) =

∫

Ωh

[u̇hvh + ǫ(∇uh · ∇vh) + (a · ∇uh)vh] dx

and τK is the stabilization parameter given in (2.18).

3.1.3 Unsteady Navier-Stokes equations

The transient flow of an incompressible, viscous fluid is given in terms of the velocity u and

the pressure p as











































∂u

∂t
+ u · ∇u − ǫ∇2u + ∇p = f in [0, T ] × Ω

∇ · u = 0 in [0, T ] × Ω

u = g on [0, T ] × ∂Ω

u(0,x) = u0 in Ω
∫

Ω
p dx = 0 in [0, T ] × Ω

(3.13)

where u0 is the initial velocity, f represents the body force, g is the given Dirichlet boundary

condition, [0, T ] is a given time interval and Ω ⊂ R2 is the domain where the problem is defined.
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The standard Galerkin finite element method in discrete form can be obtained for one time

interval [ts, ts+1] by employing the function space Vh = V h
1 × Qh

1 for both test and trial spaces

with uh ∈ V h
1 , ph ∈ Qh

1 as

B(uh;uh, ph;vh, qh) =

∫ ts+1

ts

∫

Ωh

(f · vh) dxdt ∀vh ∈ V h
1 , qh ∈ Qh

1 , (3.14)

where

B(uh;uh, ph;vh, qh) =

∫ ts+1

ts

∫

Ωh

[(u̇h · vh) + ((uh · ∇uh) · vh) + ǫ(∇uh · ∇vh) −∇vhph + (∇ · uh)qh] dxdt

for all vh ∈ V h
1 and qh ∈ Qh

1 .

The problem (3.14) is nonlinear due to the presence of the convection terms which will be

resolved by employing an iteration process: Let us decompose the approximate solutions uh and

ph as

us+1
h = us

h + ûh (3.15)

ps+1
h = ps

h + p̂h (3.16)

where us+1
h and ps+1

h are the approximations at the current iteration step, us
h and ps

h are the

approximations at the previous iteration step and ûh and p̂h are the corrections to the approx-

imations at the previous iteration step. Therefore, the nonlinear convection term is replaced

by

us+1
h · ∇us+1

h ≈ us
h · ∇ûh + ûh · ∇us

h + us
h∇us

h.

Similar to the formulation of the linear diffusion equation, the unknowns are approximated

as

u ≈ uh =

ndof
∑

i=1

φi(x, y)τ1(t)ui,s +

ndof
∑

i=1

φi(x, y)τ2(t)ui,(s+1), (3.17)

p ≈ ph =

ndof
∑

i=1

φi(x, y)τ1(t)pi,s +

ndof
∑

i=1

φi(x, y)τ2(t)pi,(s+1) (3.18)

where ui,s = uh(xi, yi, ts) and ui,(s+1) = uh(xi, yi, ts+1), pi,s = ph(xi, yi, ts) and pi,(s+1) = ph(xi, yi, ts+1)

and ndof is the number of degrees of freedom in the space direction.

Substituting (3.17), (3.18) in (3.15), (3.16) and rewriting the equation (3.14) with the new

approximations give the following representative equations in terms of shape functions

S(φi, τ1; φj , τ1)

{

Us

Ps

}

+ S(φi, τ2; φj , τ2)

{

Us+1

Ps+1

}

=

∫ ts+1

ts

∫

Ω
(f · φjτ1) dxdt (3.19)

S(φi, τ1; φj , τ2)

{

Us

Ps

}

+ S(φi, τ2; φj , τ2)

{

Us+1

Ps+1

}

=

∫ ts+1

ts

∫

Ω
(f · φjτ2) dxdt (3.20)
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with

S(φi, τk; φj , τl) =

∫ ts+1

ts

∫

Ωh

[

φiφj
∂τk

∂t
τl + {∇φiφj + ǫ(∇φi · ∇φj) −∇φjφi + ∇φiφj}τkτl

]

dxdt

where i, j = 1...ndof , φi’s are the shape functions for the approximation of unknowns and φj ’s

are the shape functions for the approximation of test functions.

Since

{

Us

Ps

}

values are known previously, the unknown values

{

Us+1

Ps+1

}

can be obtained

iteratively from the solution of the system equation (3.19)-(3.20).

Selection of the finite element spaces Vh and Qh has some restrictions for obtaining stable

solutions. Either inf-sup or Babuska-Brezzi condition should be satisfied or one of the stabilized

methods (SUPG, GLS, etc.) should be used in the space dimension. We use SUPG method for

the stabilization.

SUPG formulation of the unsteady Navier-Stokes equations can be obtained from [24] as;

Find {uh, ph} in Vh × P1 such that

B(uh;uh, ph;vh, qh)+

∫ ts+1

ts

∑

K

τK

∫

ΩK

((u̇h + uh · ∇uh + ∇ph − f) · (uh · ∇vh + ∇qh)) dxdt

=

∫ ts+1

ts

∫

Ω
(f · vh) dxdt , ∀{vh, qh} ∈ V1 × P1

(3.21)

with the stabilization parameter τK given in (2.20).

3.2 Finite Difference Method in Time

In this section, approximation of the time derivative term by using the finite difference

method (FDM) in the unsteady flow problems is presented for the convection-diffusion and

Navier-Stokes equations.
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3.2.1 Convection-diffusion equation

The unsteady linear convection-diffusion equation with initial and Dirichlet boundary con-

ditions is already given in (3.10) as



















∂u

∂t
− ǫ∇2u + a · ∇u = f, in Ω × [0, T ]

u(x, 0) = u0 at t = 0

u(x, t) = u(x, t) on ∂Ω.

(3.22)

We approximate the time derivative terms by using the finite difference method (FDM) as

[58]

us+1 − us = ∆t
[

αu̇s+1 + (1 − α)u̇s
]

(3.23)

where u̇ =
∂u

∂t
, α is the relaxation parameter with α ∈ [0, 1] and ∆t = ts+1 − ts, the length of

the time interval in a typical slab [ts, ts+1] × Ω. For special values of α, the method turns into

one of the following well-known time-stepping procedures:

• α = 1 : Implicit type

• α =
1

2
: Crank-Nicolson type

• α = 0 : Explicit type .

Stabilized form of the unsteady convection-diffusion equation is written as; Find us+1
1 ∈ V1

such that

(us+1
1 , v1) + ∆tα

[

(a · ∇us+1
1 , v1) + ǫ(∇us+1

1 ,∇v1) − (f, v1)
]

+∆tα





∑

K∈Th

τK

∫

K
[u̇s+1

1 + a · ∇us+1
1 − f ] [a · ∇v1] dx





−(us
1, v1) + ∆t(1 − α) [(a · ∇us

1, v1) + ǫ(∇us
1,∇v1) − (f, v1)]

+∆t(1 − α)





∑

K∈Th

τK

∫

K
[u̇s

1 + a · ∇us
1 − f ] [a · ∇v1] dx



 = 0 , ∀v1 ∈ V1

(3.24)

where τK is the previously introduced stabilization parameter given in (2.18) and the values us
1

are known from the previous time step.
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3.2.2 Unsteady Navier-Stokes equation

The time dependent Navier-Stokes equations which are given in (3.13) together with initial

and boundary conditions are written as










































∂u

∂t
+ u · ∇u − ǫ∇2u + ∇p = f in Ω × (0, T )

∇ · u = 0 in Ω × (0, T )

u = g on ∂Ω × (0, T )

u(0,x) = u0 in Ω
∫

Ω
p dx = 0 in Ω × (0, T )

(3.25)

where u is the velocity, u0 is the initial velocity, p is the pressure, f represents the body force,

and g is a given function defined on the boundary.

The spatial discretization of the weak form of (3.25) leads to the following equation: Find

{uh, p1} in Vh × P1 such that

B(uh;uh, p1;vh, q1) = (f ,vh) ∀{vh, q1} ∈ Vh × P1 , (3.26)

where

B(uh;uh, p1;vh, q1) = (u̇h,vh) + (uh · ∇uh,vh) + ǫ(∇uh,∇vh)

−(∇vh, p1) + (∇ · uh, q1).

If the velocity field uh is decomposed to the linear and bubble parts as

uh(x, t) = u1(x, t) + ub(x) (3.27)

in which we assume the bubble part depends on space variables only, then the RFB method

applied to the time-dependent problem leaves behind a stabilized finite element formulation of

the SUPG type. With a temporal discretization of type (3.23), it reads: Find {us+1
1 , ps+1

1 } ∈
V1 × P1 such that

(us+1
1 ,v1) + ∆tα

[

(us+1
1 · ∇us+1

1 ,vh) + ǫ(∇us+1
1 ,∇v1) − (∇v1, p

s+1
1 ) − (f ,v1)

]

+∆tα





∑

K∈Th

τK

∫

K
([u̇s+1

1 + us+1
1 · ∇us+1

1 + ∇ps+1
1 − f ] · [us+1

1 · ∇v1 −∇q1]) dx





−(us
1,v1) + ∆t(1 − α) [(us

1 · ∇us
1,v1) + ǫ(∇us

1,∇v1) − (∇v1, p
s
1) − (f ,v1)]

+∆t(1 − α)





∑

K∈Th

τK

∫

K
([u̇s

1 + us
1 · ∇us

1 + ∇ps
1 − f ] · [us

1 · ∇v1 −∇q1]) dx





−α(∇ · us+1
1 , q1) − (1 − α)(∇ · us

1, q1) = 0 ∀{v1, q1} ∈ V1 × P1

(3.28)
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where the values us
1 and ps

1 are known from the previous time step. The time-derivatives in mesh-

dependent terms are approximated by backward and forward difference operators, accordingly.

The non-linearity in the equation can be eliminated by a similar argument described in previous

chapter.

3.3 Numerical Results

The performance of the numerical procedure proposed above which is the stabilized FEM in

space - FEM in time domain is tested with four problems. The comparisons are held with the

solutions obtained by using FDM time integration scheme.

3.3.1 Diffusion equation

Transient diffusion in a domain Ω = [0, 1]× [0, 1] with constant material properties and unit

diffusivity is governed by the parabolic equation [15],

∂u

∂t
= ∇2u in (x, y) ∈ Ω and t ∈ [0, T ] (3.29)

with initial condition

u(x, y, 0) = sin(πx) sin(2πy)

and boundary conditions

u = 0 on ∂Ω × [0, T ].

The exact solution is given as

uexact = e−5π2t sin(πx) sin(2πy).

The discretization for both the space and the time directions by using linear finite elements is

obtained with the increments ∆x = ∆y = 0.0625 and time step ∆t = 0.01. We have used linear

finite elements with three nodes at the vertices in space domain. The problem is also solved

using the same discretization by using the finite difference method for approximating the time

derivative term.

From Figure (3.2), it is seen that, even using rough mesh in the spatial domain and large

time increments in the time direction, the numerical results obtained by FEM and FDM agree

well with the exact solution at t = 0.05. This shows the accuracy of the proposed methods. In

this problem there was no need for the stabilization of the FEM in space domain since there is

no convection term.
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Figure 3.2: FEM, FDM and exact solutions of diffusion problem at t = 0.05

3.3.2 Convection-diffusion equation

Consider the rotating cylinder problem [35], which is governed by unsteady convection-

diffusion equation in Ω = [0, 1]×[0, 1] with ǫ = 10−5, a = −2π(2y−1, 1−2x), f = 0, homogeneous

boundary condition u(x, t) = 0 and initial condition

u(x, y, 0) =

{

1 for r ≤ 1/4

0 otherwise

where r =
√

(2x − 1/2)2 + (2y − 1)2.

Numerical calculations are performed on 80 × 80 grid in space discretization with 6400

rectangular elements and the time step ∆t = 0.01. Since the flow is convection dominated,

SUPG stabilized finite element method is carried out through the calculations. As time increases,

the unknown function rotates around a circle in a periodic way. This behavior is displayed at

starting position (t = 0.0) and the time levels t = 0.25 and t = 2.0 in Figure (3.3)

3.3.3 Taylor vortex flow

The governing equations are the homogeneous unsteady Navier-Stokes equations defined in

the domain [−π, π] × [−π, π] on the time interval [0, T ] [2],

∂u

∂t
+ u · ∇u − ǫ∇2u + ∇p = 0

∇ · u = 0
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t = 0

U,  min = 0,  max = 1

t = 0.25

U,  min = -0.0217848,  max = 0.791921

t = 2.0

U,  min = -0.0083975,  max = 0.336709

Figure 3.3: Solution of convection-diffusion problem at t = 0, 0.25 and t = 2.0

The exact solution is

u = e−2tǫ

{

− cos x sin y

sinx cos y

}

, p = −1

4
e−4tǫ(cos 2x + cos 2y). (3.30)

Initial and boundary conditions are derived from the exact solution for u and v. We have

used ∆t = 0.1 as a time step and results obtained at t = 1.0 in terms of pressure-streamlines

and the velocity contours are given in Figures (3.4) and (3.5).

Pressure Streamlines

Figure 3.4: Pressure and Streamlines for Taylor vortex flow(t = 1.0)

3.3.4 Flow around a cylinder

The problem of flow around a cylinder [41] is governed by the unsteady Navier-Stokes equa-

tions with Re = 100 and f = 0. The problem is given with homogeneous initial condition,

u(x, y, 0) = 0, and boundary conditions at inflow (x = 0) and outflow (x = 2.2) boundaries are

u(0, y, t) = u(2.2, y, t) = 0.41−2 sin(πt/8)

{

6y(0.41 − y)

0

}

, 0 ≤ y ≤ 0.41. (3.31)
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Velocity U Velocity V

Figure 3.5: The velocity contours for Taylor vortex flow (t = 1.0)

No-slip boundary conditions are described at the other boundaries (y = 0, 0.41 and around

the cylinder). It is seen from the given boundary conditions that the problem has periodic

behaviour at T = 8. Therefore, problem is solved in the time domain for t ∈ [0, 8] with a time

step ∆t = 0.1. In space dimension, the problem domain is discretized by 5404 triangular linear

elements (Figure (3.6)). Pressure contours at the time levels t = 1, 2, 4, 6, 8 are displayed in

Figure (3.7) and streamlines of the flow in Figure (3.8). Results show the development of the

flow as time increases. Vortices start to develop behind the cylinder and around t = 4.0 and

later, vortices start to separate from the cylinder. At the final time t = 8.0 the flow settles back

to the original form.

Figure 3.6: The problem mesh tested for flow around a cylinder: 5404 triangular elements

The same problem is also solved by using finite difference method for the time derivative term.

Similar results are obtained and displayed for the pressure in Figure (3.9), velocity component

u in Figure (3.10) and flow vectors in Figure (3.11) at t = 1, 2, 4, 6 and 8, respectively.
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t=1.0

t=2.0

t=4.0

t=6.0

t=8.0

Figure 3.7: Pressure contours for flow around a cylinder
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Figure 3.8: Streamlines for flow around a cylinder
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t=1.0

t=2.0

t=4.0

t=6.0

t=8.0

Figure 3.9: Pressure contours for unsteady flow around a cylinder using FDM in time at t =

1, 2, 4, 6 and 8
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t=1.0

t=2.0

t=4.0

t=6.0

t=8.0

Figure 3.10: Velocity (u) component for unsteady flow around a cylinder using FDM in time at

t = 1, 2, 4, 6 and 8
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t=1.0

t=2.0

t=4.0

t=6.0

t=8.0

Figure 3.11: Flow vectors for unsteady flow around a cylinder using FDM in time at t = 1, 2, 4, 6

and 8
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Chapter 4

Solution of the

Magnetohydrodynamic Equations

The two-dimensional (2-D) magnetohydrodynamic (MHD) equations are defined in terms of

momentum equations (Navier-Stokes equations), Maxwell’s equation with Ohm’s Law and the

continuity equation. In terms of the unknowns which are the velocity field u, the pressure of

the fluid p and the magnetic field B, MHD equations are written as [31],































ρu · ∇u − µ∇2u + ∇p +
1

µ0
B × curl B = ρf

div u = 0
1

µ0σ
curl ( curl B) − curl (u × B) = 0

div B = 0

(4.1)

where f denotes the external force, ρ is the density of the fluid, µ is the dynamic viscosity, σ is

the electrical conductivity and µ0 is the magnetic permeability. In order to nondimensionalize

the MHD equations, we introduce a characteristic value U0 for the velocity field, a characteristic

value B0 for the magnetic field and a characteristic length L [31, 46, 68]. Then Re is the fluid

Reynolds number, Rem is the magnetic Reynolds number, Ha is the Hartmann number and S

is the Coupling number as

Re =
ρU0L

µ
Rem = µ0σU0L

S =
B2

0

µ0ρU0

Ha =
√

ReRemS.

Also, u = ũ/U0, B = B̃/B0, p = p̃/ρU2
0 and f = f̃L/U2

0 are made use of for the physical

quantities ũ, B̃, p̃ and f̃ in the nondimensionalizing [31, 68]. Then the MHD equations are

expressed in non-dimensional form as;
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u · ∇u − 1

Re
∇2u + ∇p − Ha2

Re.Rem
(∇× B) × B = f (4.2)

∇ · u = 0 (4.3)

−∇× (u × B) +
1

Rem
∇× (∇× B) = 0 (4.4)

∇ · B = 0. (4.5)

In 2-D, if we define u =

{

u1

u2

}

, B =

{

B1

B2

}

and f =

{

f1

f2

}

,

∇× B =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y 0

B1 B2 0

∣

∣

∣

∣

∣

∣

∣

∣

= k(
∂B2

∂x
− ∂B1

∂y
) , u × B =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

u1 u2 0

B1 B2 0

∣

∣

∣

∣

∣

∣

∣

∣

= k(u1B2 − u2B1)

then

(∇× B) × B =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

0 0 ∂B2

∂x − ∂B1

∂y

B1 B2 0

∣

∣

∣

∣

∣

∣

∣

∣

= i(B2
∂B1

∂y
− B2

∂B2

∂x
) + j(B1

∂B2

∂x
− B1

∂B1

∂y
)

and

−∇× (u × B) = −

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y 0

0 0 u1B2 − u2B1

∣

∣

∣

∣

∣

∣

∣

∣

=

i(−u1
∂B2

∂y
+ u2

∂B1

∂y
− B2

∂u1

∂y
+ B1

∂u2

∂y
)

+j(u1
∂B2

∂x
− u2

∂B1

∂x
+ B2

∂u1

∂x
− B1

∂u2

∂y
).

We will also make us of the following properties

∇× (∇× B) = −∇2B + ∇(∇ · B)

∇ · B = 0 ⇒ ∂B1

∂x
= −∂B2

∂y
.

The 2-D MHD equations (4.2) - (4.5) are written in open form as

u1
∂u1

∂x
+ u2

∂u1

∂y
− 1

Re
(
∂2u1

∂x2
+

∂2u1

∂y2
) +

∂p

∂x
− SB2(

∂B1

∂y
− ∂B2

∂x
) = f1 (4.6)

u1
∂u2

∂x
+ u2

∂u2

∂y
− 1

Re
(
∂2u2

∂x2
+

∂2u2

∂y2
) +

∂p

∂y
+ SB1(

∂B1

∂y
− ∂B2

∂x
) = f2 (4.7)

u1
∂B1

∂x
+ u2

∂B1

∂y
+

∂u2

∂y
B1 −

∂u1

∂y
B2 −

1

Rem
(
∂2B1

∂x2
+

∂2B1

∂y2
) = 0 (4.8)

u1
∂B2

∂x
+ u2

∂B2

∂y
+

∂u1

∂x
B2 −

∂u2

∂x
B1 −

1

Rem
(
∂2B2

∂x2
+

∂2B2

∂y2
) = 0 (4.9)

∂u1

∂x
+

∂u2

∂y
= 0. (4.10)

79



4.1 FEM formulation of the MHD equations

Consider the incompressible MHD problem (4.2)-(4.5) in the domain Ω ∈ IR2











































u · ∇u − 1

Re
∇2u + ∇p − Ha2

Re.Rem
(∇× B) × B = f

−∇× (u × B) − 1

Rem
∇2B = 0

∇ · u = 0

(4.11)

with the given essential or natural boundary conditions. Then the weak formulation of the

problem (4.11) can be stated as: Find u ∈ V = H1
0 (Ω)2, B ∈ M = H1(Ω)2 and p ∈ W = L2

0(Ω)

such that

B(u,B, p;v,C, q) = L(f) , ∀(v,C, q) ∈ (V, M, W ) (4.12)

where

B(u,B, p;v,C, q) = (u · ∇u,v) +
1

Re
(∇u,∇v) − (p,∇v) − S((∇× B) × B,v)

−(∇× (u × B),C) +
1

Rem
(∇B,∇C) + (q,∇ · u)

and

L(f) = (f ,v).

To introduce a finite element application, we begin by partitioning the domain into elements

(triangles or quadrangles) in a standard way (e.g. no overlapping, no vertex on the edge of a

neighboring elements, etc.). And the following finite element spaces are defined over an element

K as follows [31]:

Xk
h =

{

vh ∈ C0(Ω), vh|K ∈ (Pk(K) or Qk(K)),∀K ∈ Ωh

}

where, Pk(K) and Qk(K) correspond to the spaces for triangular and rectangular elements,

respectively. Then, for the velocity component u; Vh = (Xk
h

⋂

H1
0 (Ω))2, for the magnetic field

B; Mh = (X l
h)2

⋂

H1(Ω)2 and for the pressure p; Wh = Xm
k

⋂

L2
0(Ω) finite element spaces are

selected. Galerkin finite element variational formulation of the problem reads; find (uh,Bh, ph) ∈
(Vh, Mh, Wh) such that

B(uh,Bh, ph;vh,Ch, qh) = L(f) , ∀(vh,Ch, qh) ∈ (Vh, Wh, Mh) (4.13)

where

B(uh,Bh, ph;vh,Ch, qh) = (uh · ∇uh,vh) +
1

Re
(∇uh,∇vh) − (ph,∇vh) − S((∇× Bh) × Bh,vh)

−(∇× (uh × Bh),Ch) +
1

Rem
(∇Bh,∇Ch) + (qh,∇ · uh)
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and

L(f) = (f ,vh) .

We impose an iterative procedure as is done for the Navier-Stokes equations in Chapters 2

and 3

un+1 = un + û and Bn+1 = Bn + B̂

where un, Bn and û, B̂ are the previous iteration and correction values of the velocity and the

magnetic field, respectively. Then, the nonlinearity in the equations can be eliminated as

un+1 · ∇un+1 ≈ un · ∇un + û · ∇un + un · ∇û

(∇× Bn+1) × Bn+1 ≈ (∇× Bn) × Bn + (∇× Bn) × B̂ + (∇× B̂) × Bn

∇× (un+1 × Bn+1) ≈ ∇× (un × Bn) + ∇× (un × B̂) + ∇× (û × Bn).

4.2 SUPG formulation for the MHD equations

It is known that, the existence of the pressure term in the MHD equations, brings some

oscillations in the solution when the standard Galerkin finite element method is used. In order

to eliminate these numerical difficulties, either some restricted finite element spaces must be

used satisfying certain conditions (Babuska-Brezzi condition, which implies the use of quadratic

shape functions for both the velocity and the magnetic field, and linear for the pressure) or some

stabilized finite element methods should be used in the solution procedure which allows to use

equal order shape functions.

SUPG type stabilized finite element formulation for of the MHD equations using linear

elements is given in [31] as; find (uh,Bh, ph) ∈ (Vh, Mh, Wh) such that

B(uh,Bh, ph;vh,Ch, qh)+

τu((uh · ∇uh + ∇ph − S(∇× Bh) × Bh − f), (uh · ∇vh + ∇qh + SBh × (∇× Ch)))

+τB((−∇× (uh × Bh)), (−∇× (vh × Bh))) = L(f) , ∀(vh,Ch, qh) ∈ (Vh, Mh, Wh)

(4.14)

with the stabilization parameters

τu =























hK

2|un
h|K

if Pek ≥ 1

h2
K

12ǫ
if Pek < 1

and τB =
h2

K

12β
(4.15)

where hK is the diameter of the element K, PeK is the Peclet number, PeK =
|un

h|KhK

6ǫ
and

ǫ =
1

Re
, β =

1

Rem
.
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In 2-D, the stabilized terms can be written explicitly as

τu(







u1
∂u1

∂x + u2
∂u1

∂y + ∂p
∂x − SB2

(

∂B1

∂y − ∂B2

∂x

)

− f1

u1
∂u2

∂x + u2
∂u2

∂y + ∂p
∂y + SB1

(

∂B1

∂y − ∂B2

∂x

)

− f2







,







un
1

∂v1

∂x + un
2

∂v1

∂y + ∂q
∂x − SBn

2

(

∂C1

∂y − ∂C2

∂x

)

un
1

∂v2

∂x + un
2

∂v2

∂y + ∂q
∂y + SBn

1

(

∂C1

∂y − ∂C2

∂x

)







)

+τB(

{

− ∂
∂y (u1B2 − u2B1)
∂
∂x (u1B2 − u2B1)

}

,

{

− ∂
∂y (v1B

n
2 − v2B

n
1 )

∂
∂x (v1B

n
2 − v2B

n
1 )

}

) .

In order to obtain the stabilized terms for each component of the equation (4.14), the follow-

ing procedure is used. For the first component, the inner products given above are performed by

using only the terms containing v1 in the second terms of the inner products. Similarly, for the

second component v2, for the third one C1, for the fourth one C2 and for the last component q

is used. Therefore, for each component we will obtain the following stabilized terms additional

to the standard Galerkin finite element formulation
∫

Ω

{

τuT11

(

un
1

∂v1

∂x
+ un

2

∂v1

∂y

)

+ τB

[

−T21
∂

∂y
(v1B

n
2 ) + T22

∂

∂x
(v1B

n
2 )

]}

dΩ

∫

Ω

{

τuT12

(

un
1

∂v2

∂x
+ un

2

∂v2

∂y

)

+ τB

[

+T21
∂

∂y
(v2B

n
1 ) − T22

∂

∂x
(v2B

n
1 )

]}

dΩ

∫

Ω
τu

[

−T11SBn
2

∂C1

∂y
+ T12SBn

1

∂C1

∂y

]

dΩ

∫

Ω
τu

[

T11SBn
2

∂C2

∂x
− T12SBn

1

∂C2

∂x

]

dΩ

∫

Ω
τu

[

T11
∂q

∂x
+ T12

∂q

∂y

]

dΩ

where

T11 = u1
∂u1

∂x
+ u2

∂u1

∂y
+

∂p

∂x
− SB2

(

∂B1

∂y
− ∂B2

∂x

)

− f1

T12 = u1
∂u2

∂x
+ u2

∂u2

∂y
+

∂p

∂y
+ SB1

(

∂B1

∂y
− ∂B2

∂x

)

− f2

T21 = − ∂

∂y
(u1B2 − u2B1)

T22 =
∂

∂x
(u1B2 − u2B1) .

4.3 TLFEM for the MHD equations

The finite element approximation spaces for the velocity and the magnetic field are enriched

by using bubble functions

Vh = V1 ⊕ VB and Mh = M1 ⊕ MB
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∀uh ∈ Vh and Bh ∈ Mh where V1 and M1 are the linear spaces, VB and MB are the bubble

spaces. Therefore, approximate solutions are decomposed as uh = u1 + ub ∈ V1 ⊕ VB and

Bh = B1 + Bb ∈ M1 ⊕ MB. Then, the MHD equations are rewritten as

u1 · ∇(u1 + ub) − ǫ∇2(u1 + ub) + ∇p − S(∇× B1) × B1 = f (4.16)

∇ · (u1 + ub) = 0 (4.17)

−∇× (u1 × B1) − β∇2(B1 + Bb) = 0 (4.18)

and in variational form; find {uh,Bh, p1} ∈ Vh × Mh × Wh as uh = u1 + ub and Bh = B1 + Bb

such that

(u1 · ∇(u1 + ub),v1) + ǫ(∇(u1 + ub),∇v1) − (p1,∇v1) − S((∇× B1) × B1,v1)

−(∇× (u1 × B1),C1) + β(∇(B1 + Bb),∇C1) + (q1,∇ · (u1 + ub)) = (f ,v1)
(4.19)

∀{v1,C1, q1} ∈ Vh × Mh × Wh where ǫ =
1

Re
, β =

1

Rem
.

Bubble part of the solutions ub and Bb can be obtained from the solution of the following

equations [52]

un
1 · ∇un+1

b − ǫ∇2un+1
b = f − un

1 · ∇un+1
1 + ǫ∇2un+1

1 −∇pn+1
1 + S(∇× Bn+1

1 ) × Bn
1 in K

ub = 0 on ∂K.

(4.20)

and
−β∇2Bn+1

b = β∇2Bn+1
1 + ∇× (un

1 × Bn+1
1 ) in K

Bb = 0 on ∂K.
(4.21)

In 2-D, explicit form of the bubble functions are

u1b
=

#nds
∑

i=1

u1i
ϕu1

i +

#nds
∑

i=1

B1i
ϕ

B1
1

i +

#nds
∑

i=1

B2i
ϕ

B1
2

i +

#nds
∑

i=1

piϕ
p1

i + ϕf1

u2b
=

#nds
∑

i=1

u2i
ϕu1

i +

#nds
∑

i=1

B1i
ϕ

B2
1

i +

#nds
∑

i=1

B2i
ϕ

B2
2

i +

#nds
∑

i=1

piϕ
p2

i + ϕf2

B1b
=

#nds
∑

i=1

B1i
ϕ

B3
1

i +

#nds
∑

i=1

B2i
ϕ

B3
2

i

B2b
=

#nds
∑

i=1

B1i
ϕ

B4
1

i +

#nds
∑

i=1

B2i
ϕ

B4
2

i

(4.22)

where u1i
, u2i

, B1i
, B2i

, pi denote the discrete values of the velocity, the magnetic field and the

pressure, respectively. ϕu
i is the velocity part, ϕ

B1
1

i , ϕ
B1

2

i ϕ
B2

1

i and ϕ
B2

2

i are the magnetic field
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parts, ϕp1

i and ϕp2

i are the pressure parts, and ϕf1 and ϕf2 are external force parts of the bubble

functions u1b
and u2b

. Similarly, ϕ
B3

1

i , ϕ
B3

2

i , ϕ
B4

1

i and ϕ
B4

2

i are the first and second components

of the magnetic field parts of the bubble functions B1b
and B2b

.

Therefore, sub-mesh problems can be written using the operators L1 = −ǫ∇2 + un
1 and

L2 = −β∇2 as follows;

Computation of ub :

It is seen from the equation (4.22) that ub consists of velocity parts, magnetic field parts,

pressure part and body force part. Each part of the bubble functions are derived from the

equation (4.20).

For the velocity parts u1b
and u2b

, the same sub-mesh problem will be solved






L1ϕ
u1

i = −(un
1

∂φi

∂x
+ un

2

∂φi

∂y
) in K

ϕu1

i = 0 on ∂K.
(4.23)

For the magnetic filed parts, there are four different sub-mesh problems










































L1ϕ
B1

1

i = SBn
2

∂φi

∂y
in K , L1ϕ

B1
2

i = −SBn
2

∂φi

∂y
in K

ϕ
B1

1

i = 0 on ∂K , ϕ
B1

2

i = 0 on ∂K

L1ϕ
B2

1

i = −SBn
1

∂φi

∂y
in K , L1ϕ

B2
2

i = SBn
1

∂φi

∂y
in K

ϕ
B2

1

i = 0 on ∂K , ϕ
B2

2

i = 0 on ∂K.

(4.24)

For the pressure part, there are two different sub-mesh problems






L1ϕ
p1

i = −∂φi

∂x
in K , L1ϕ

p2

i = −∂φi

∂y
in K

ϕp1

i = 0 on ∂K , ϕp2

i = 0 on ∂K.
(4.25)

For the body force part of the bubbles, we have the following sub-mesh problems
{

L1ϕ
f1 = f1 in K , L1ϕ

f2 = f2 in K

ϕf1 = 0 on ∂K , ϕf2 = 0 on ∂K.
(4.26)

Equations (4.23)-(4.26) should be solved on a sub-mesh with a non-standard method (such

as SUPG). In all of the sub-mesh level problems for ub, left hand sides are common for each

element. Therefore, it can be calculated only once and used for all the problems on an element

level. Explicit form of the left hand side of the sub-mesh problems is given as
∫

ΩK∗

{

ǫ(∇φ∗
l .∇φ∗

m) + (un
1

∂φ∗
l

∂x
+ un

2

∂φ∗
l

∂y
)φ∗

m + τK∗(un
1

∂φ∗
l

∂x
+ un

2

∂φ∗
l

∂y
)(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗

(4.27)

where φ∗ denotes the basis function on the submesh.
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Right hand sides of the equations (4.23)-(4.26) are respectively

velocity part

∫

ΩK∗

{

−(un
1

∂φi

∂x
+ un

2

∂φi

∂y
)φ∗

m − τK∗(un
1

∂φi

∂x
+ un

2

∂φi

∂y
)(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.28)

magnetic field part

∫

ΩK∗

{

SBn
2

∂φi

∂y
φ∗

m + τK∗SBn
2

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.29)

∫

ΩK∗

{

−SBn
2

∂φi

∂y
φ∗

m − τK∗SBn
2

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.30)

∫

ΩK∗

{

−SBn
1

∂φi

∂y
φ∗

m − τK∗SBn
1

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.31)

∫

ΩK∗

{

SBn
1

∂φi

∂y
φ∗

m + τK∗SBn
1

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.32)

pressure part

∫

ΩK∗

{

−∂φi

∂x
φ∗

m − τK∗

∂φi

∂x
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.33)

∫

ΩK∗

{

−∂φi

∂y
φ∗

m − τK∗

∂φi

∂y
(un

1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.34)

body force part

∫

ΩK∗

{

f1φ
∗
m + τK∗f1(u

n
1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.35)

∫

ΩK∗

{

f2φ
∗
m + τK∗f2(u

n
1

∂φ∗
m

∂x
+ un

2

∂φ∗
m

∂y
)

}

dΩK∗ (4.36)

with the stabilization parameter τK∗ such that

τK∗ =
hK∗

2|u1
n|K

ε(PeK) (4.37)

where

ε(PeK) =

{

Pek if Pek < 1

1 if Pek ≥ 1

and

PeK =
|u1

n|KhK∗

6ǫ
.
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Computation of Bb :

Similar to ub, the following four sub-mesh problems are obtained from the equation (4.21)

for Bb






















































































































L2ϕ
B3

1

i = −(un
1

∂φi

∂x
+ un

2

∂φi

∂y
+

∂un
2

∂y
φi) in K

ϕ
B3

1

i = 0 on ∂K

L2ϕ
B3

2

i =
∂un

1

∂y
φi in K

ϕ
B3

2

i = 0 on ∂K

L2ϕ
B4

1

i =
∂un

2

∂x
φi in K

ϕ
B4

1

i = 0 on ∂K

L2ϕ
B4

2

i = −(un
1

∂φi

∂x
+ un

2

∂φi

∂y
+

∂un
1

∂x
φi) in K

ϕ
B4

2

i = 0 on ∂K.

(4.38)

Notice that, there is no need for the stabilization of the operator L2. Therefore, the solutions

of the equations (4.38) are obtained from standard Galerkin finite element method with the

common left hand side
∫

ΩK∗

β(∇φ∗
l .∇φ∗

m)dΩK∗ (4.39)

and the following corresponding right hand sides

∫

ΩK∗

{

−(un
1

∂φi

∂x
+ un

2

∂φi

∂y
+

∂un
2

∂y
φi)φ

∗
m

}

dΩK∗ (4.40)

∫

ΩK∗

∂un
1

∂y
φiφ

∗
mdΩK∗ (4.41)

∫

ΩK∗

∂un
2

∂x
φiφ

∗
mdΩK∗ (4.42)

∫

ΩK∗

{

−(un
1

∂φi

∂x
+ un

2

∂φi

∂y
+

∂un
1

∂x
φi)φ

∗
m

}

dΩK∗ (4.43)

respectively.

Once all the bubble parts of the solutions are calculated, they will be substituted in the

equations (4.16)-(4.18) and solved over the global mesh.
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4.4 SSM for the MHD equations

The solution of the MHD equations with SSM is presented for the first time in this study. It

is previously stated that SSM is related to the combination of the methods SUPG and residual-

free-bubble functions.

The bubble parts of the MHD equations given in (4.20) and (4.21)

{

un
1 · ∇un+1

b − ǫ∇2un+1
b = f − un

1 · ∇un+1
1 + ǫ∇2un+1

1 −∇pn+1
1 + S(∇× Bn+1

1 ) × Bn
1 in K

ub = 0 on ∂K

and
{

−β∇2Bn+1
b = β∇2Bn+1

1 + ∇× (un
1 × Bn+1

1 ) in K

Bb = 0 on ∂K

are written by specifying the right hand sides as D1 and D2















un
1 · ∇un+1

b − ǫ∇2un+1
b = D1

−β∇2Bn+1
b = D2

where

D1(u1,B1, p1, f) = f − un
1 · ∇un+1

1 + ǫ∇2un+1
1 −∇pn+1

1 + S(∇× Bn+1
1 ) × Bn

1

and

D2(u1,B1) = β∇2Bn+1
1 + ∇× (un

1 × Bn+1
1 ).

The SSM and the SUPG formulations of the MHD equations have the identical struc-

ture except for the value of the stabilization parameters τu and τB. In SSM, the stabilization

parameters τu and τB are explicitly given by

τu =
1

|K|

∫

K
bu
K dK and τB =

1

|K|

∫

K
bB
K dK (4.44)

where bu
K are bB

K are the unique solution of the following boundary value problems in an element

K,
{

−ǫ∇2bu
K + un

1 · ∇bu
K = 1 inK

bu
K = 0 on ∂K

(4.45)

and
{

−β∇2bB
K = 1 inK

bB
K = 0 on ∂K.

(4.46)

Using the integration by parts, observe that

ub = D1

∫

K bu
K dK

ǫ
∫

K |∇bu
K |2dK

and Bb = D2

∫

K bB
K dK

β
∫

K |∇bB
K |2dK

. (4.47)
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Note that, finding the exact solutions bu
K using (4.45) and bB

K using (4.46) may not be an

easy task in an arbitrary triangular domain. Therefore, a cheap and efficient approximation to

bu
K and bB

K that generates qualitatively the same behavior with the exact function bu
K and bB

K is

required.

For this, we specify a subgrid which consists of three vertices of the triangle plus a single

additional node in the interior of each element and approximate the bubble function over the

specified subgrid by choosing the location of the additional node such that it gives the best

approximation in L1 norm.

Note that, the problem (4.45) is convective-diffusive type. Therefore, similar to the case

in Navier-Stokes equations, the location of the subgrid point for ub is determined using the

following two cases [10, 53].

In the first case where the inflow boundary makes up of two edges, let e2 and e3 be two

inflow edges (Figure (2.1)). Then the value for t, we take






t = 1 + ǫ(|e1|2)

ǫ(|e2−e3|2−
2

3
|K|(ũn

1
,ν1))

if ǫ ≤ 2|K|(ũn
1
,ν1)/3

3|e1|2+|e2−e3|2

t = 2/3 otherwise.
(4.48)

In the other case where the inflow boundary makes up of a single edge, let e1 be the inflow

edge (Figure (2.1)). Then t is taken as






t = ǫ(|e2|2+|e3|2)
ǫ(|e2−e3|2/2−|K|(ũn

1
,ν1)/3)

if ǫ ≤ −2 |K|(ũn
1
,ν1)/3

3( |e2|2+ |e3|2)−|e2−e3|2

t = 2/3 otherwise.
(4.49)

Once the location of the subgrid point is determined, a reasonably good approximation to

the stabilization parameter τu can be obtained: The approximate value of τu is given by τ̃u as

τ̃u =
1

|K|

∫

K
bu
K

∗ =
1

|K|
(
∫

K bu
K)2

ǫ
∫

K |∇bu
K |2 =

4|K|
9ǫ

∑

i |ei|2/|Ki|
(4.50)

where Ki is the area of the ith sub-triangle.

For the solution of the problem (4.46), a subgrid point is selected on the body center of the

triangle. Then, approximate value of the stabilization parameter τB is calculated as

τ̃B =
1

|K|

∫

K
bB
K

∗
=

1

|K|
(
∫

K bB
K)2

β
∫

K |∇bB
K |2 =

4|K|
9β

∑

i |ei|2/|Ki|
. (4.51)

After finding the values of τu and τB, similar to SUPG method, SSM formulation of the

MHD equations is written as; find (uh,Bh, ph) ∈ (Vh, Mh, Wh) such that

B(uh,Bh, ph;vh,Ch, qh)+

τu((uh · ∇uh + ∇ph − S(∇× Bh) × Bh − f), (uh · ∇vh + ∇qh − S(∇× Ch) × Bh))

+τB((∇× (uh × Bh)), (∇× (vh × Bh))) = L(f) , ∀(vh,Ch, qh) ∈ (Vh, Mh, Wh).

(4.52)
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4.5 Magnetic pressure in the MHD equations

It is possible to extend the two-dimensional MHD equations to the more general form by

introducing a magnetic pressure r and a related external force g as in [17, 34]

u · ∇u − 1

Re
∇2u + ∇p − Ha2

Re.Rem
(∇× B) × B = f (4.53)

∇ · u = 0 (4.54)

−∇× (u × B) +
1

Rem
∇× (∇× B) + ∇r = g (4.55)

∇ · B = 0. (4.56)

In 2-D, if we define g =

{

g1

g2

}

, the following explicit equations will be obtained for the

equations (4.53) - (4.56)

u1
∂u1

∂x
+ u2

∂u1

∂y
+

∂p

∂x
− 1

Re
(
∂2u1

∂x2
+

∂2u1

∂y2
) − SB2(

∂B1

∂y
− ∂B2

∂x
) = f1 (4.57)

u1
∂u2

∂x
+ u2

∂u2

∂y
+

∂p

∂y
− 1

Re
(
∂2u2

∂x2
+

∂2u2

∂y2
) + SB1(

∂B1

∂y
− ∂B2

∂x
) = f2 (4.58)

∂u1

∂x
+

∂u2

∂y
= 0 (4.59)

u1
∂B1

∂x
+ u2

∂B1

∂y
+

∂u2

∂y
B1 −

∂u1

∂y
B2 +

1

Rem

∂

∂y
(
∂B2

∂x
− ∂B1

∂y
) +

∂r

∂x
= g1 (4.60)

u1
∂B2

∂x
+ u2

∂B2

∂y
+

∂u1

∂x
B2 −

∂u2

∂x
B1 −

1

Rem

∂

∂x
(
∂B2

∂x
− ∂B1

∂y
) +

∂r

∂y
= g2 (4.61)

∂B1

∂x
+

∂B2

∂y
= 0. (4.62)

Variational Formulation

Before writing the variational formulation of MHD equations, we will define some finite

element spaces over an element K as follows: L2(Ω) is the space of square integrable functions,

H1(Ω) the space of functions such that they and their derivatives are in L2(Ω), L2
0(Ω) the

subspace of functions in L2(Ω) with zero mean, H1
0 (Ω) the subspace of functions in H1(Ω) with

zero trace on ∂Ω, H(curl, Ω) the space of vector functions such that they and their curl are in

the space L2(Ω) and H0(curl, Ω) the subspace of functions in the space H(curl, Ω) with zero

tangential component on ∂Ω. Then, define the functional space W as [17]

W := (H1
0 (Ω)2 × L2

0(Ω) × H0(curl, Ω) × H1
0 (Ω)

and

Wh = C0(Ω̄) ∩ W.

Also f ∈ (H−1(Ω))2, the dual of (H1
0 (Ω))2 and g ∈ (L2(Ω))2 with ∇·g = 0 in L2(Ω) are assumed

for both f and g.
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Importing a Dirichlet type boundary condition r = 0 on ∂Ω yields r = 0 as exact solution

by taking the divergence of the equation (4.55)

∇2r = 0 in Ω.

Therefore, magnetic pressure (r) seems to be a dummy variable (in theory should be null).

However, it satisfies the consistency of the system when the divergence free condition for the

magnetic field (4.56) is used as an additional equation. Then, Galerkin FEM formulation of the

problems reads [17]; find approximation for the unknowns U := (uh, ph,Bh, rh) ∈ Wh such that

B(uh, ph,Bh, rh;vh, qh,Ch, sh) = L(f ,g) (4.63)

for all corresponding test functions V := (vh, qh,Ch, sh) ∈ Wh where

B(uh, ph,Bh, rh;vh, qh,Ch, sh) =

(uh · ∇uh,vh) +
1

Re
(∇uh,∇vh) − (ph,∇ · vh) + S(Bh,∇× (vh × Bh)) + (qh,∇ · uh)

−S(Ch,∇× (uh × Bh)) +
S

Rem
(∇× Bh,∇× Ch) + S(∇rh,Ch) − S(Bh,∇sh)

and

L(f ,g) = (f ,vh) + S(g,Ch).

Explicitly, in 2-D;
∫

Ω

{(

u1
∂u1

∂x
+ u2

∂u1

∂y

)

v1 +
1

Re

(

∂u1

∂x

∂v1

∂x
+

∂u1

∂y

∂v1

∂y

)

− p
∂v1

∂x

+S

[

B1
∂

∂y
(v1B2) − B2

∂

∂x
(v1B2)

]}

dΩ =

∫

Ω
f1v1dΩ

∫

Ω

{(

u1
∂u2

∂x
+ u2

∂u2

∂y

)

v2 +
1

Re

(

∂u2

∂x

∂v2

∂x
+

∂u2

∂y

∂v2

∂y

)

− p
∂v2

∂x

−S

[

B1
∂

∂y
(v2B1) − B2

∂

∂x
(v2B1)

]}

dΩ =
∫

Ω f2v2dΩ

∫

Ω

(

∂u1

∂x
+

∂u2

∂y

)

qdΩ = 0

∫

Ω

{

S

(

u1
∂B1

∂x
+ u2

∂B1

∂y
− ∂u1

∂y
B2 +

∂u2

∂y
B1

)

C1 −
S

Rem

(

∂B2

∂x
− ∂B1

∂y

)

∂C1

∂y

+S
∂r

∂x
C1

}

dΩ =

∫

Ω
Sg1C1dΩ

∫

Ω

{

S

(

u1
∂B2

∂x
+ u2

∂B2

∂y
+

∂u1

∂x
B2 −

∂u2

∂x
B1

)

C2 +
S

Rem

(

∂B2

∂x
− ∂B1

∂y

)

∂C2

∂x

+S
∂r

∂y
C2

}

dΩ =

∫

Ω
Sg2C2dΩ

∫

Ω
−S

(

B1
∂s

∂x
+ B2

∂s

∂y

)

dΩ = 0.
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It is known that, the existence of the fluid pressure and magnetic pressure terms with first

order derivatives in the MHD equations and convection dominated characteristic of the equations

bring some oscillations in the solution using standard Galerkin finite element method. In order

to eliminate these numerical difficulties some restricted finite element spaces must be used to

satisfy certain conditions (Babuska-Brezzi condition, (Q2, Q2, Q2, Q1) elements for (u,B, r, p)

respectively).

4.6 Numerical Results

In this section, we present some numerical results obtained by the stabilizing subgrid method

(SSM) presented above and compare it with the exact one if exists, with SUPG type stabilized

finite element method solution and with the solution obtained by Babuska-Brezzi condition

which implies the use of Q2-Q2-Q1 elements for the velocity-magnetic field-pressure combina-

tions respectively. We work on three problems: (1) test problem on a unit square with exact

solution, (2) MHD flow inside a cavity and (3) MHD flow over a step. We use the tool VIGIE

(Visualization Generale Interactive d’Ecoulements) to visualize the numerical results. The iter-

ation cycle that resolve the nonlinearity of the problem stops when the maximum norm of the

error is less than 10−6.

4.6.1 Test problem

We have solved the MHD equations on the following test problem. Boundary conditions are

obtained from the exact solution values of u1, u2, B1, B2 and p which satisfy the equations

(4.6)-(4.10) with Re = 100, Rem = 10 and Ha = 10 on the 2-D domain [0, 1] × [0, 1] given in

[68] as,


































u1 = 1 − exp(x) cos(2πy)

u2 = exp(x) sin(2πy)/(2π)

B1 = cos(πx) cos(πy)

B2 = sin(πx) sin(πy)

p = (1 − exp(2x))/2 + C

(4.64)

where C is any constant value. We have already noted that pressure is determined up to a

constant. Therefore to satisfy the condition

∫

Ω
p = 0 for the pressure, the value of C is selected

as C = 1.0972640247327.

Solution of the MHD equations with equal order shape functions

The test problem is first solved by using linear shape functions for all unknowns. From

the Figures (4.1),(4.2) and (4.3) it is seen that, there are oscillations in the pressure solutions,
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although the velocity and the magnetic field components agree well with the exact solutions.

Galerkin

p,  min = -19.6073,  max = 7.21989

Exact

p,  min = -2.09726,  max = 1.09726

Galerkin

p,  min = -19.6073,  max = 7.21989

Exact

p,  min = -2.09726,  max = 1.09726

Figure 4.1: Pressure contours and elevations obtained from standard Galerkin FEM and exact

solutions

Solution of the MHD equations with Babuska-Brezzi condition

We have solved the same test problem by using Q2-Q2-Q1 elements for the velocity-magnetic

field-pressure combinations respectively with the Babuska-Brezzi condition. From the Figure

(4.4) it seen that oscillations in the pressure solution disappeared.

Magnetic pressure in the MHD equations

Magnetic pressure also shows oscillations when the solution is obtain from the standard

Galerkin finite element method. Although magnetic pressure plays similar role as the fluid pres-
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Galerkin

u1,  min = -1.71828,  max = 3.71828

Exact

u1,  min = -1.71828,  max = 3.71828

Galerkin

u_2,  min = -0.432628,  max = 0.432628

Exact

u2,  min = -0.432628,  max = 0.432628

Figure 4.2: Standard Galerkin FEM and exact solutions for the velocity(u1, u2)

sure in the equations, the function spaces and conditions imposed are more stronger. Therefore,

in order to obtain stable solutions from the magnetic pressure formulation of the MHD equations

((4.57) - (4.62)), quadratic elements should also be used for the magnetic pressure as used for

the velocity and the magnetic field components. It is already stated that, magnetic pressure is

a dummy variable. Therefore, in theory, it is null (i.e. zero value). Standard Galerkin FEM so-

lutions and solutions obtained by using the stability condition (Babuska-Brezzi condition) using

Q2-Q2-Q2-Q1 elements are displayed in the Figure (4.5). It is seen that, oscillations disappeared

and the solution is almost zero.
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Galerkin

B1,  min = -1,  max = 1

Exact

B1,  min = -1,  max = 1

Galerkin

B2,  min = 0,  max = 1.0007

Exact

B2,  min = 0,  max = 1

Figure 4.3: Standard Galerkin FEM and exact solutions for the magnetic field(B1, B2)

Solution of the MHD equations with stabilized finite element methods (SUPG,

SSM)

Another alternative for obtaining stable solutions for the MHD equations is to use stabilized

finite element methods. The same test problem is solved by using SUPG and SSM methods

and obtained solutions are compared with the exact one. We will concentrate on the pressure

solutions in which the stabilization is more effective.

It is seen from the Figure (4.6) that, SSM gets more accurate solutions compared to SUPG

method although the stabilization is pronounced in both of the methods. The SSM is more

effective in the elimination of the disturbances and oscillations in the pressure solution. This

can be observed clearly from the Figure (4.7). Notice that, pressure contours obtained from

SSM is more accurate compared to solutions obtained from SUPG.
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BabuskaBrezzi

p,  min = -2.09649,  max = 1.09735

Exact

p,  min = -2.09726,  max = 1.09726

Figure 4.4: Pressure contours obtained from FEM with Babuska-Brezzi condition and exact

solutions

As stated in the solution of the Navier-Stokes equations, the location of the subgrid point is

effective in the stabilization. The position of the subgrid point is determined by the direction

and magnitude of the velocity flow vector during the iteration process. In Figure (4.8), the

resulting velocity flow vector and the location of the subgrid point which plays the main role

in the stabilization, for each element are displayed over the global mesh. It is seen that in the

regions where the magnitude of the velocity is effective, the subgrid point is located through the

flow direction.
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Galerkin

r,  min = -0.0216584,  max = 0.0216584

BabuskaBrezzi

r,  min = -0.0034481,  max = 0.0034481

Galerkin

r,  min = -0.0216584,  max = 0.0216584

BabuskaBrezzi

r,  min = -0.0034481,  max = 0.0034481

Figure 4.5: Magnetic pressure contours and elevations obtained from standard Galerkin FEM

and Babuska-Brezzi condition (Q2-Q2-Q2-Q1 elements)
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SUPG

p,  min = -2.11672,  max = 1.105

SSM

p,  min = -2.10967,  max = 1.10301

Exact

p,  min = -2.09726,  max = 1.09726

Figure 4.6: Pressure contours obtained from SUPG, SSM and exact solutions

SUPG SSM

Figure 4.7: Zoom for the pressure contours obtained from SUPG, SSM
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Figure 4.8: Velocity flow vectors and adaption of the position of the subgrid point
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4.6.2 MHD Cavity flow

MHD equations (4.6)-(4.10) are solved in a square cavity (Figure (4.9)). Fluid Reynolds

number and the magnetic Reynolds numbers are fixed as Re = 400, Rem = 40 in the calcula-

tions. The effect of the different values in the Hartmann number (Ha = 0, 10, 100) is observed

in the flow under applied magnetic field through +x-direction.

Figure 4.9: The problem statement and a uniform mesh with 3200 triangular elements for MHD

cavity flow

In Figures (4.10) and (4.11), changes in the flow for different values of the Hartmann number

are displayed in terms of pressure contours and elevations with the solutions obtained by SUPG,

SSM and Babuska-Brezzi formulations. It is seen that, SSM again predicts the solution more

accurately comparing to SUPG method in the sense of maximum and minimum values and

captures the characteristic behavior of the pressure at the peak points which are located at right

and left upper sides of the cavity. The existence of the boundary layer formation which is the

well-known behaviour of the MHD flows, is displayed in the Figure (4.12) in terms of the first

component of the velocity as Hartmann number increases . Also streamlines for the velocity and

flow vectors for the magnetic field are displayed in the Figures (4.13) and (4.14), respectively.

Obtained solutions which are compatible with the solutions in the literature, show the validity

of the proposed method.

The cavity flow problem is also solved with SSM when the magnetic field is applied through

+y-direction for the same fluid Reynolds number, magnetic Reynolds number and Hartmann
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numbers 10 and 100. In the Figure (4.15), it is seen that as Hartmann number increases, pressure

contours are getting perpendicular to the y− axis and boundary layer formation in the velocity

and in the magnetic field is pronounced more clearly. The same behaviour is observed from

the streamlines of the velocity and flow vectors of the magnetic field in Figure (4.16). The

square cavity problem was solved with a finite element method of a biharmonic mathematical

model with stream function / magnetic potential form in [45], using stream function-vorticity

approach for the unsteady case in [51], and for the 3-D case in [61]. Our solutions show the

similar behaviour with these solutions.

SUPG Ha0

p,  min = -0.0590911,  max = 0.493543

SSM Ha0

p,  min = -0.115918,  max = 0.716923

BabuskaBrezzi Ha0

p,  min = -0.311059,  max = 1.17124

SUPG Ha10

p,  min = -0.0671373,  max = 0.473249

SSM Ha10

p,  min = -0.12463,  max = 0.695679

BabuskaBrezzi Ha10

p,  min = -0.322675,  max = 1.14661

SUPG Ha100

p,  min = -0.148306,  max = 0.471691

SSM Ha100

p,  min = -0.220125,  max = 0.670419

BabuskaBrezzi Ha100

p,  min = -0.460975,  max = 1.13513

Figure 4.10: Pressure contours obtained from SUPG, SSM and Babuska-Brezzi formulations for

Ha = 0, Ha = 10 and Ha = 100; applied magnetic field is through +x direction
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SUPG Ha0

p,  min = -0.0590911,  max = 0.493543

SSM Ha0

p,  min = -0.115918,  max = 0.716923

BabuskaBrezzi Ha0

p,  min = -0.311059,  max = 1.17124

SUPG Ha10

p,  min = -0.0671373,  max = 0.473249

SSM Ha10

p,  min = -0.12463,  max = 0.695679

BabuskaBrezzi Ha10

p,  min = -0.322675,  max = 1.14661

SUPG Ha100

p,  min = -0.148306,  max = 0.471691

SSM Ha100

p,  min = -0.220125,  max = 0.670419

BabuskaBrezzi Ha100

p,  min = -0.460975,  max = 1.13513

Figure 4.11: Pressure elevations obtained from SUPG, SSM and Babuska-Brezzi formulations

for Ha = 0, Ha = 10 and Ha = 100; applied magnetic field is through +x direction
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Ha0

u1,  min = -0.267119,  max = 1

Ha100

u1,  min = -0.156689,  max = 1

Figure 4.12: Velocity component (u1) contours for Ha = 0 and Ha = 100 with SSM; applied

magnetic field is through +x direction

Ha0 Ha100

Figure 4.13: Streamlines of the velocity for Ha = 0 and Ha = 100 with SSM; applied magnetic

field is through +x direction
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Ha0 Ha100

Figure 4.14: Flow vectors of the magnetic field for Ha = 0 and Ha = 100 with SSM; applied

magnetic field is through +x direction
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Ha10

p,  min = -0.126982,  max = 0.684394

Ha100

p,  min = -0.280725,  max = 0.200934

Ha10

u1,  min = -0.225696,  max = 1

Ha100

u1,  min = -0.0864218,  max = 1

Ha10

B1,  min = -0.191294,  max = 1.01707

Ha100

B1,  min = 0,  max = 0.418229

Figure 4.15: Pressure, first component of the velocity and magnetic field contours for Ha = 10

and Ha = 100 with SSM; applied magnetic field is through +y direction
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Ha100 Ha100

Figure 4.16: Streamlines of the velocity and flow vectors of the magnetic field for Ha = 100

with SSM; applied magnetic field is through +y direction
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4.6.3 MHD flow over a step

This is another standard benchmark problem. The statement of the problem and the mesh

is given in Figure (4.17). The flow of the fluid is through +x-direction and applied magnetic

field is through +y direction. The walls of the pipe are considered as perfect conductors. The

velocity is prescribed at the inlet and outlet to a Poiseuille profile such that uout = 1
2uin. The

problem is solved with SSM for Re = 100, Rem = 1 and Hartmann numbers 0, 5 and 10.

Figures (4.18) and (4.19) show the magnetic field effect in the pressure and in the x-

component of the magnetic field as Hartmann number changes, respectively. It is displayed

in terms of streamlines in the Figure (4.20) that, the recirculation after the step decreases as

Hartmann number increases. Obtained solutions are in good agreement with the other solutions

in the literature [17, 31].

Figure 4.17: The problem statement and a uniform mesh with 7168 triangular elements for the

MHD step flow
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Ha0

Ha5

Ha10

Figure 4.18: Pressure contours for Ha = 0, Ha = 5 and Ha = 10

Ha5

Ha10

Figure 4.19: x-component (B1 contours) of the magnetic field for Ha = 5 and Ha = 10
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Ha0 Ha5

Ha10

Figure 4.20: Velocity flow vectors and streamlines (zoom in behind the step) for Ha = 0, Ha = 5

and Ha = 10
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4.6.4 MHD Duct flow

In this example, we consider the simplified form of the unsteady magnetohydrodynamic

equations when the flow is considered in a rectangular duct with a cross-section in the xy-plane.

The flow is in the direction of the duct axis which is the z-axis.

The governing equations of MHD flow are obtained from Maxwell equations of electromag-

netism and the basic equations of fluid mechanics. The unsteady, laminar, fully developed flow

of viscous, incompressible and electrically conducting fluid in a rectangular duct, subject to

a constant and uniform applied magnetic field B0 which is parallel to x-axis are expressed in

non-dimensional form with the equations [20]



















∇2V + M
∂B

∂x
= −1 +

∂V

∂t

∇2B + M
∂V

∂x
=

∂B

∂t

(4.65)

in Ω × [0,∞) with the boundary conditions and the initial condition

{

V (x, y, t) = 0 B(x, y, t) = 0 (x, y) ∈ ∂Ω

V (x, y, 0) = 0 B(x, y, 0) = 0 (x, y) ∈ Ω
(4.66)

where the boundaries are assumed to be insulating, M is the Hartmann number and V (x, y, t)

and B(x, y, t) are the velocity and the induced magnetic field respectively. Here, there are only

z-components of the velocity and the induced magnetic field.

Equations (4.65) are first decoupled using the following transformation

U1 = V + B U2 = V − B. (4.67)

Addition and substraction of equations (4.65) and substituting the new variables defined in

Equation (4.67) yield



















∇2U1 + M
∂U1

∂x
= −1 +

∂U1

∂t
in Ω × [0,∞)

∇2U2 − M
∂U2

∂x
= −1 +

∂U2

∂t

(4.68)

and homogeneous boundary and initial conditions

{

U1(x, y, t) = 0 U2(x, y, t) = 0 (x, y) ∈ ∂Ω

U1(x, y, 0) = 0 U2(x, y, 0) = 0 (x, y) ∈ Ω.
(4.69)

Notice that, the resulting equations are convection-diffusion type with the only difference

between them is +M and −M , and for high values of Hartmann number, it takes the convection
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dominated form. Therefore, in order to obtain accurate result, equations (4.68) should be solved

using a stabilized finite element method in spatial domain.

The time dependent MHD equations defining viscous, laminar flow of an incompressible

electrically conducting fluid in a square duct [3] −1 ≤ x, y ≤ 1 for the time domain [0, T ] are

solved for moderate (M = 100) and high values(1000, 10000) of Hartmann number. The space

discretization is performed using 1600 uniformly distributed rectangular elements for moderate

values of Hartmann number and 6400 elements for high values of Hartmann number. The

combination of the shape functions are bilinear in spatial domain and linear in time direction.

Increasing the number of elements is not sufficient for obtaining stable results. Therefore, SUPG

stabilized finite element method is made use of in space dimensions throughout the computations

especially for high Hartmann number. It is also well known that, as time increases, the flow

behaves as in steady MHD flow. Therefore, it is possible to compare the results in steady-state

with the Shercliff’s [67] exact solution. The unsteady MHD flow problem has been solved by

Tezer and Bozkaya [3] using the combination of DQM time-DRBEM in space formulations for

moderate Hartmann number. Here the combination of stabilized FEM in space-FEM in time

formulation made it possible to increase M up to 10000.

In Figures (4.21), velocity(V ) and induced magnetic field(B) lines(contours) are displayed

for moderate(M = 100) value of Hartmann number at the time levels t = 0.01 and t = 0.03.

The selected time step through the iterations is ∆t = 0.01. It is seen that, in the third iteration,

steady-state case is reached. Results are compared with the exact solutions and the agreement is

observed. Also, existence of boundary layer formation as M increases and time increases which

is the well-known behavior of MHD duct flow is also seen from the figures.

As the Hartmann number increases, small time steps should be used in order to capture the

behavior of the flow. Therefore for Hartmann number 1000, ∆t is selected as 0.001. Obtained

results at the time level t = 0.001 and t = 0.003 at which flow reaches steady-state, are displayed

in Figure (4.22). Also, boundary layer formation is shown more clearly.

For Hartmann number 10000, stable results are obtained and displayed in Figure (4.23).

Although, small time step (∆t = 0.001) is used, steady-state results are obtained just in the

first iteration. Results agree very well with the previously obtained results and exact solution

of steady MHD duct flow problem, [54, 67].
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mhdV.desc

VB0.010,  min = 0,  max = 0.0077194

mhdB.desc

VB0.010,  min = -0.0044519,  max = 0.0044519

mhdV.desc

VB0.030,  min = 0,  max = 0.010181

mhdB.desc

VB0.030,  min = -0.0096082,  max = 0.0096082

Figure 4.21: Velocity and induced magnetic field contours at t = 0.01 and t = 0.03 for M =

100
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mhdV.desc

VB0.001,  min = 0,  max = 0.0007703

mhdB.desc

VB0.001,  min = -0.0004397,  max = 0.0004397

mhdV.desc

VB0.003,  min = 0,  max = 0.0010171

mhdB.desc

VB0.003,  min = -0.0009505,  max = 0.0009505

Figure 4.22: Velocity and induced magnetic field contours at t = 0.001 and t = 0.003 for

M = 1000
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mhdV.desc

VB0.001,  min = 0,  max = 0.0001413

mhdB.desc

VB0.001,  min = -0.000127,  max = 0.000127

Figure 4.23: Velocity and induced magnetic field contours at t = 0.001 for M = 10000
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Chapter 5

Conclusion

In this thesis, a stabilizing subgrid method, in the framework of a two-level finite

element method with a stabilizing subgrid of a single node, is described for solving the incom-

pressible Navier-Stokes equations as well as the magnetohydrodynamic equations. The domain

is planar and the discretization is triangular. The presentation above shows that the TLFEM

with the stabilizing subgrid produces stable and accurate approximations in a variety of problem

configurations. Applications include convection dominated L-Shape flow and rotating flow field

problems defined by convection-diffusion equation. The Navier-Stokes equations are solved for

lid-driven cavity flow, backward facing step flow and flow past a cylinder. It is observed that the

oscillations in the pressure disappeared when the stabilized FEM methods are used. The SSM

is preferred in the sense of computational cost and accuracy. Numerical experiments further

indicate that the proper choice of the subgrid node may play a significant role in obtaining more

accurate approximations, especially for high values of Reynolds number.

The stabilized FEM methods (SUPG, TLFEM and SSM) are applied for solving the incom-

pressible MHD equations in terms of the velocity, the induced magnetic field and the pressure.

Applications on the test problems as MHD cavity flow and MHD flow over a step verified that

SSM predicts the solution more accurately comparing to SUPG and captures the characteristic

behaviour of the pressure. All these stabilized methods exhibit the well known behaviour of the

velocity and the induced magnetic field in the MHD flow.

The stabilized FEM of SUPG type in space - the FEM in the time domain formulation is used

in solving transient flow governed by incompressible Navier-Stokes equations. The approxima-

tion is based on the idea of separation of variables in terms of the shape functions corresponding

to the space and time. The proposed stabilized FEM in space - FEM in time domain procedure

enables one to circumvent the oscillations in the solution and eliminates the need of using very

small time steps concerning stability. Applications include vortex flow and flow around a cylin-

der problems. The unsteady MHD equations which are simplified for the case of fully developed

flow are also solved in a rectangular duct with insulated walls by using FEM in time - stabilized
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FEM in space procedure. The velocity and the induced magnetic field values are obtained for

high values of Hartmann number.

Further studies should be concentrated on obtaining solutions to the Navier-Stokes and MHD

equations by combining the stabilized subgrid and adaptive grid ideas in the finite element

method. Extensions of these stabilized FEMs to 3-dimensional Navier-Stokes and magnetohy-

drodynamic equations are still continuing research problems.
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