
SELF-ORGANIZED FLOCKING WITH A MOBILE ROBOT SWARM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

SELF-ORGANIZED FLOCKING WITH A MOBILE ROBOT SWARM

TURGUT, ALİ EMRE

Ph.D., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Buğra Koku

Co-Supervisor: Assist. Prof. Dr. Erol Şahin

March 2008, 111 pages

In this thesis, we study self-organized flocking using a swarm of mobile robots. We

first present a mobile robot platform having two novel sensing systems developed specifi-

cally for swarm robotic studies. We describe its infrared-based short-range sensing system,

capable of measuring the range to obstacles and detecting kin robots. In particular, we

describe a novel sensing system called the virtual heading sensor (VHS), which combines

a digital compass and a wireless communication module to form a scalable method for

sensing the relative headings of neighboring robots.

We propose a behavior based on heading alignment and proximal control and show

that it is capable of generating self-organized flocking in a group of seven robots. Then, we

propose a number of metrics to evaluate the quality of flocking and use them to evaluate

four main variants of this behavior. We characterize and model the sensing abilities of the

robots and develop a physics-based simulator that is verified against the physical robots for

flocking in open environments. After showing in simulation that we can achieve flocking

in a group of up to 1000 robots in an open environment, we perform experiments to deter-

mine the performance of flocking under different controller parameters and characteristics

of VHS using the predefined metrics. In the experiments, we vary the three main char-

acteristics of VHS, namely: (1) The amount and nature of noise in heading measurement,

(2) The number of neighboring robots that can be "heard", and (3) the range of wireless
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communication. Our results show that range of communication is the main factor that de-

termines the scale of flocking, and that the behavior is highly robust against the other two

characteristics.

We extend an existing particle-based model to determine the phase transition charac-

teristics of of flocking under different VHS characteristics. An analytical treatment of the

model is also presented and verified against the results obtained from experiments in a

physics-based simulator.

Keywords: Swarm robotics, Flocking, Self-organization, Phase Transition, Particle-based

Models
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ÖZ

BİR GEZER ROBOT OĞULUNUN KENDİ-KENDİNE SÜRÜ HALİNDE HAREKET

ETMESİ

TURGUT, ALİ EMRE

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Buğra Koku

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Erol Şahin

Mart 2008, 111 sayfa

Bu tezde, bir gezer robot oğulunun, sürü halinde hareket etmesi (ing. flocking) incelenecek-

tir. Başlangıçta, oğul robot sistemleri çalışmalarında kullanılmak üzere geliştirilmiş ve iki

yeni algılama sistemi bulunduran gezer robot sistemi anlatılacaktır. Bunlardan birincisi,

robotların yakın mesafedeki robotlar ile engelleri ayırmalarını sağlayan ve de bu cisimlerin

robota göre mesafelerini ölçebilen kızıl-berisi algılama sistemidir. İkincisi ise, robotların

diğer robotların yönünü sanal olarak ölçmesini sağlayan ve bir sayısal pusula ile iletişim

biriminden oluşan sanal yön algılayıcısıdır (SYA). SYA, birçok farklı oğul-robot sistem-

lerinde kullanılabilecek ölçeklenebilir bir algılama sistemi olarak ortaya çıkmaktadır.

Sürü halinde hareket davranışı, yön ayarlama ve mesafe koruma davranışları kullanıla-

rak oluşturulmuştur. Bu davranış ilk başta yedi robot üzerinde sınanmışır. Daha sonra

davranışın içerisindeki denetim parametreleri kullanılarak dört farklı davranış biçimi elde

edilmiş ve oluşturulan davranışlar tanımlanmış olan ölçütler kullanılarak değerlendiril-

miştir. Davranışı yüksek sayıda robot kullanarak sınamak için robotun ve algılama sistem-

inin modelleri fizik-tabanlı bir benzetimci üzerinde kullanılmak üzere çıkartılmış ve bu

benzetimci üzerinde engelsiz ortamda modellenmiştir. Benzetimcinin sonuçlarının robot-

lardan elde edilmiş olanlarla uyumu gösterildikten sonra benzetimci içinde 1000 robot
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kullanılarak deneyler yapılmış ve önerilen davranışın ölçeklenebilir olduğu gösterilmiştir.

Daha sonra denetim parameterlerin değerleri ve SYA’nın algılama özellikleri değişimine

karşı sürü halinde hareket davranışındaki değişimler önerilmiş olan ölçütler kullanılarak

araştırılmıştır. Bu deneylerden çıkan en önemli sonuçlardan bir tanesi akın davranışını

gerçekleştiren oğulun grup büyüklüğünün SYA’nın iletişim mesafesine bağlı olmasıdır.

Son olarak da sürü halinde hareket davranışında gözlemlenen faz değişimi, parçacık

bazlı bir model kullanılarak modellenmiş ve model başarı ile değişik SYA algılama özellik-

leri karşısında davranışın tepkisini tahmin edebilmiştir. Model, analitik olarak çözülmüş

ve modelin ön gördüğü sonuçlar fiziksel benzetimcide elde edilen sonuçlarla karşılaştırıl-

mıştır.

Anahtar Kelimeler: Oğul robot bilimi, Sürü halinde hareket, Kendi-kendine örgütlenme,

Parçacık-bazlı modeller, Faz değişimi
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CHAPTER 1

INTRODUCTION

Swarm robotics [7][8] is a new approach to the coordination of large numbers of robots

that takes its inspiration from the impressive coordination abilities of social insects such

as bees, ants and termites [9]. It studies how a large number of robots can interact to

create collectively intelligent systems without any centralized coordination and achieve

robustness, flexibility and scalability at the system level.

Robustness is the insensitivity of a system to disturbances, a desirable property required

in any engineering system. Robustness is a consequence of several attributes in swarm

robotics. First is the redundancy of the system, i.e., the loss of individuals up to a certain

level is compensated by the others, and system performance does not deteriorate consid-

erably. Second is the decentralized control of the system. In swarm robotics, control is

embodied in individuals, rather than having a centralized controller. Third is the simplic-

ity of the individuals. Individuals in a swarm robotic system are much simpler than in a

single robotic system, which makes the system more robust.

Flexibility is the ability of the system to generate different solutions to different tasks it

faces during its life-cycle. It can be argued that flexibility is the opposite of specialization,

meaning the utilization of an individual in various tasks rather than utilizing a specific

individual in a specific task. As can be observed in ant colonies, depending on the situa-

tion, an individual can take responsibilities in a wide span of tasks such as foraging, prey

retrieval or chain formation.

Scalability is the insensitivity of performance to changes in number of individuals. Scal-

ability in swarm robotics is facilitated by several factors. First, coordination strategies are

designed to be decentralized, so that an increase in the number of individuals in the system

does not increase its complexity, and hence, deteriorate the performance of a centralized

controller. Second, the sensing systems utilized in swarm robotics are decentralized, so
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that a centralized sensor, such as an overhead camera, does not exist in the system. Hence,

each individual has the same sensing capabilities, regardless of the size of the group.

Having these promising properties, it is desirable to utilize swarm robotics in real-

world applications. In this respect, the research spans two different directions. First is the

development of robots capable yet simple enough to be utilized in batches. Swarm robotic

platforms should facilitate study rather than interfering with it, and allow researchers to

concentrate on the problems of coordination. Second is the development of flexible and

scalable coordination methods to operate on swarm robotic systems.

We will develop a new robotics platform designed specifically for swarm robotics re-

search, having two novel sensing systems for kin-detection, having the longest operation

time in its class, and specifically designed for our intended coordination problem, yet flex-

ible enough to be utilized in other problems, too.

Many coordination problems are studied in swarm robotics: Pattern formation, aggrega-

tion, self-assembly, coordinated movement, foraging and self-deployment. Pattern formation is the

formation of certain desired patterns globally using only local interactions. Aggregation is

the gathering of randomly distributed robots to form the largest possible cluster via local

rules. Self-assembly denotes the connection of individual robots physically to solve complex

tasks which are impossible to accomplish as single entities. Coordinated movement denotes

the movement of robots coherently in confined environments, where the flocking of birds

and herds of quadrupeds are a few of the examples seen in nature. Foraging is a task

performed by natural swarms in which they retrieve prey back to their nests. Robots per-

forming foraging mimic this behavior. Self-deployment, also known as dispersion, denotes

the maximum coverage of an area by a swarm of robots [10].

In this thesis, we study flocking as a coordinated movement problem. Flocking is a

fundamental behavior that is desirable in most swarm robotic systems in real-world appli-

cations. When a swarm of mobile robots is to be utilized in a surveillance or rescue task

in a certain place, it should first move to that place and then perform its tasks. As noted

previously, the most efficient and advantageous way to move from one place to another in

animal societies is flocking, which is almost the same for robotics applications. Flocking

has been studied for almost a decade, and yet it remains as an "open" problem in swarm

robotics. It is a challenging task due to the sensing needs and inevitable interference prob-

lems caused by the operation of many robots in close proximity.
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1.1 Problem

In this thesis, we study the self-organized flocking of a swarm of mobile robots. By self-

organized flocking, we mean that a group of mobile robots, initially placed within local

proximity of each other but not necessarily aligned, being able to move in free space cohe-

sively, avoiding any obstacles in the environment, as if it were a "super-organism".

1.2 Contributions

Towards this end, we have developed a new mobile robotic platform designed from scratch

for swarm robotics applications, focusing mainly on the requirements of flocking. The

robotic platform consists of two novel sensing systems. First is the infrared (IR) short-range

sensing system, capable of kin-detection and proximity measurements at close distances

with minimal interference from the environment and other robots. Second is the virtual

heading sensor, which utilizes digital compass and wireless communication modules to

"virtually" sense the headings of the robots.

We also proposed a behavior for self-organized flocking in a constrained space. Our

approach is significant in several aspects. First, it is the first study in literature to achieve

self-organized flocking without any static or elected leader. Second, we performed ex-

tensive experiments with robots and a physics-based simulator to systematically analyze

the proposed flocking behavior against the controller parameters and the virtual heading

sensor characteristics. The results of these experiments are presented and analyzed using

the proposed metrics such as order and entropy. Third, a simple particle based-model is

introduced to model the steady-state characteristics of flocking against virtual heading sen-

sor characteristics. The model is also treated analytically, and its predictions are verified

against the simulation results.

In the next chapter, we present a literature survey regarding flocking in different fields.

Then, in chapter three, we review the existing robotic platforms against the requirements

of swarm robotic systems, focusing on flocking behavior. In the fourth chapter, the de-

sign of the robotic platform is described and the details of each sub-system are explained

throughly. In chapter five, we model the characteristics of the short-range and heading-

sensing systems of the robotic platform to utilize them in a physics-based simulator de-

veloped to achieve the flocking behavior using a large group of simulated robots. In the

sixth chapter, we develop a flocking behavior based on heading alignment and proximal
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control. In chapters seven and eight, we analyze flocking behavior against changes in

controller parameters and virtual heading sensor characteristics, respectively. In chapter

nine, we propose a simple particle-based model, called the stiff vectorial network model,

to model flocking behavior and predict conditions for stability against sensing noise. The

thesis ends with conclusions.
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CHAPTER 2

LITERATURE SURVEY ON FLOCKING

"They circle; now dense like a polished roof, now disseminated like the meshes

of some vast all-heaven-sweeping net wheeling, rending, darting a madness in

the sky."

— Edmund Selous

Flocking is a widely-observed phenomenon in nature in which a group of animals such

as fish or birds [11] move and maneuver as if they were a single creature. Flocks are ob-

served to be highly scalable, so that a group size of tens to several thousands are not un-

common in nature. Flocking is of vital importance for the survival of many species, be-

sides its other advantages [12][13]. The survival rate increases due to two factors. First, the

chance of being eaten while in a large group is less than the chance of being eaten while

alone [14]. Second, being together increases the overall size of the group and threatens

predators. A school of small fish is much larger and threatening than a humble predator,

which may well persuade the predator from attacking the school. Another advantage of

flocking is the emergence of "collective intelligence" due to the interaction of the individu-

als in the flock [15]. It can easily be argued that having many brains and eyes in charge of

searching for food is superior to having a single brain and a couple of eyes [16]. Flocking

enables energy efficiency in the movement of animals, birds being a good example. Birds

utilize the streamlines formed by their frontal neighbors for an up thrust which decreases

the energy consumption necessary to fly. This is especially beneficial in the case of long

journeys such as migration [16][12].

The subject of flocking did not attract much attention from fields other than biology

until Reynolds’ seminal work [17]. Reynolds, inspired by flocking in natural systems, per-

formed pioneering work and proposed for the first time that flocking in birds can be arti-

ficially generated utilizing a combination of simple behaviors based on local sensing rules.
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(a) (b) (c)

Figure 2.1: Three basic behaviors of Reynolds’ flocking model. (a) Separation behavior.

(b) Alignment behavior. (c) Cohesion behavior. Arrows indicate the steering direction of

the individual due to each behavior. Reproduced from [1]

He then successfully used this principle and achieved a realistic computer animation of

flocking.

In the study, a flock is formally defined as:

"... a group of objects that exhibits a general class of polarized, non-colliding,

aggregate motion."

He suggested that a realistic-looking simulation of flocking could be made possible

only through local interactions of the individuals rather than a centralized controller in

charge of calculating the paths of each individual. He proposed three simple behaviors

constituting the basic flocking model as:

• Separation: Individuals move so that they avoid collisions with their neighbors as

shown in Figure 2.1(a).

• Alignment: Individuals match their velocities to the average of their neighbors. Veloc-

ity is regarded as a vectorial quantity composed of heading and speed components

as shown in Figure 2.1(b).

• Cohesion: Individuals move towards the geometric center of their neighbors as shown

in Figure 2.1(c).

The neighbors of an individual are local as in case of fish and are determined by a

distance from the center of the individual and an angle in the direction of motion of the

individual. Obstacle-avoidance and goal-seeking behaviors are also included in the model

to enable realistic flocking behavior in the presence of obstacles.

Reynolds’ algorithm is both scalable and, most importantly depends on only three sim-

ple rules of motion to achieve coherent flocking action, which makes it a favorable solution
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to achieve flocking in any domain. However, there is a major leakage related to sensing

where real-world applications are concerned. In order to apply Reynolds’ algorithm to

the real world, one should ensure that each individual has a knowledge of the velocity

and position of its neighbors on an individual basis, free of any uncertainty or noise. This

assumption is quite unrealistic, and is hardly possible with the current state of technology.

Reynolds’ seminal work fostered studies in many different fields, statistical physics,

control, and robotics being the major ones. In the rest of this chapter, we will review them.

2.1 Statistical Physics

In statistical physics, the emergence of collective behavior observed in a wide range of

fields, from biological systems to fluid mechanics, is studied using simple particle-based

models. Particle-based models consist of interacting particles under the effect of actuation

or sensing noise. Tools of statistical physics are utilized to analyze the resulting dynamics.

Vicsek et al. [2] proposed a simple model, called self-driven particles (SDP), to study

the emergence of the self-aligned motion of particles due to local interactions observed in

biological systems [18]. The SDP model can be regarded as a subset of Reynolds’ algorithm,

and is able to model collective motion in different systems such as fish, birds, quadrupeds

and some bacteria [19]. In the SDP model, particles move at a constant speed in a square

region with periodic boundary conditions. The heading of each particle is updated to the

average of its neighbors’ at a local range with the inclusion of a noise term (scalar noise

model). It is observed that, the particles having random orientations initially as shown

in Figure 2.2(a), tend to move form small clusters moving in different random directions

at low density and noise values depicted in Figure 2.2(b). The particles move in random

directions with some correlation at high density and noise values as shown in Figure 2.2(c).

The particles move in a common random direction at high density and low noise values as

illustrated in Figure 2.2(d).

Systematic Monte-Carlo simulations of the model were conducted with periodic bound-

ary conditions, varying the noise and the density of particles. The results of these simu-

lations revealed that particles undergo a phase transition1 from an unaligned state to an

aligned state above a certain density value or below a certain noise value which are called

the critical noise density and critical noise, respectively [19]. The phase transition is ob-

served to be of second-order.
1http://en.wikipedia.org/wiki/Phase_transition. Last visited: April 2008.
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(a) (b)

(c) (d)

Figure 2.2: The velocities and trajectories of particles in Vicsek model using 300 particles

after a certain time. The velocities are indicated by an arrow and the trajectories by a

continuous curve. (a) Initial time. (b) Low density and noise. (c) High density and noise.

(d) High density and low noise. Reproduced from [2]

Systems possessing second-order phase transition characteristics have a continuous

phase diagram in which the system transforms continuously from one state to another.

Phase transition is said to occur at a special point called the critical point. In the analysis of

these systems, an order parameter is defined, representing the state of the system against

an independent variable. In the case of the SDP model, the average alignment of the parti-

cles is defined as the order and the independent variable is taken as the actuation noise or

density of the particles.

The conclusions of the SDP model contradict the Mermin-Wagner theorem [20], which

states that ordered phase (aligned state in the SDP model) cannot be observed in one or

two-dimensional systems having local interactions at non-zero temperatures (noise in the

SDP model) unless long-range interactions exist [20]. In order to justify the predictions of

the SDP model analytically, Czirok et al. [21] and [22] proposed a continuum model. In

their model, particles are allowed to move in 1-D, having their speed (speed is variable,

unlike in the SDP model) and headings set to the average of their neighbors’ within close

proximity, at each time-step. The predictions of the continuum model are in accordance

with the SDP model, indicating that a second-order phase transition from disordered to

ordered state exists in the presence of noise. This result clarifies the ambiguity between

the Mermin-Wagner theorem and the predictions of the SDP model. In the SDP model,

although the particles interact with their neighbors in close proximity, long-range inter-
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actions still exist due to diffusion and relative displacement of the particles among each

other [23]. It is this effect that causes aligned motion in the SDP model.

Huepe et al. [24] studied the intermittency characteristic of the SDP model which is de-

fined as the unintended random motion of particles observed in non-equilibrium systems.

It is observed that, although the particles have aligned motion, they frequently become

unaligned and move randomly in the case of high noise and low density conditions. The

intermittency condition continues until the noise level is decreased or the density is in-

creased.

Gregoire et al. [25] extended the SDP model by adding an attraction/repulsion term

based on the local bearing and range measurement of neighboring particles, which enables

cohesive motion in open-space. The heading of each particle is updated to the weighted

sum of the heading-adjustment and attraction/repulsion terms, having the noise added

vectorially (vectorial noise model) to each heading measurement. Simulations are per-

formed by changing the relative weights of the two terms, and unaligned-to-aligned transi-

tion is observed to be of first order. Coherently moving clusters in open space are achieved

by the proper selection of the two coefficients.

Huepe et al. [26] in a recent study investigated the underlying dynamics of the SDP and

Gregoire-Chate models [25]. They found that the SDP model creates high and unrealistic

local density values when compared to the Gregoire-Chate model during the unaligned-

to-aligned state phase transition. The unrealistic local density values make it hard for the

SDP model to be used in modeling natural or robotic swarms, since local density values

are quite low in both cases [12].

Gregoire et al. [27], in another study, claimed that the transition of unaligned to aligned

motion of particles is of first order, even for the SDP model, regardless of the model of

noise utilized, the second-order phase transition being a numerical consequence of the fi-

nite system-size in the simulations. In contrast, Nagry et al. [23] in a recent study showed

by simulation that in the small-velocity regime where displacement of particles is much

smaller than the measurement range -the regime where the SDP model is intended to be

used- the transition is still of second order with the SDP model [2]. In another study, Al-

dana et al. [28] reached a similar conclusion utilizing a simple particle-based model. They

showed that the type of transition depends only on the type of noise model utilized. When

the scalar-noise model is utilized, as in the case of the SDP model, the transition is of sec-

ond order, and when the vectorial-noise model is utilized, as in the Gregoire-Chate model,

the transition is of first order.
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Aldana et al. [6] proposed a simple model called the vectorial network model (VNM).

Unlike the SDP model, in the VNM, the particles are kept stationary while their headings

are updated to the average of their neighbors with an addition of a scalar noise term, as

in the SDP model. However, unlike the SDP model, the neighbors of a particle are not

only picked up randomly from the local neighborhood but also randomly from the entire

group. It is observed that the system undergoes a second-order phase transition from an

unaligned to an aligned state when there is at least one random neighbor in the neighboring

set of particles and the noise is also below the critical value. In the case of totally local

neighbors, the system stays in an unaligned state unless noise is set to zero. The reason

behind this is the lack of long-range interactions due to having only local neighbors, which

is in accordance with the predictions of the Mermin-Wagner theorem [20]. The predictions

of the VNM also help us to understand the existence of phase transition observed in the

SDP model. The VNM in the all-random neighbor case can be treated analytically to predict

the phase transition characteristics of the system and the critical noise value.

The common point of the particle-based models is the utilization of either actuation or

sensing noise in calculating the heading of particles. One of the major drawbacks of these

models is the lack of analytical treatment due to the non-equilibrium characteristics of the

models, the 1-D SDP model [22] and the VNM [6] being two exceptions that can be treated

analytically to predict the conditions of phase transition. Despite a few implementations

in biological systems [18][12], the particle-based models are yet to be implemented in other

fields, such as robotics.

2.2 Control Theory

In control theory, flocking algorithms are proposed based on local heading, bearing, and

range information on an agent basis. The stability of these algorithms is ensured analyti-

cally. Actuation and sensing noise are disregarded in all studies with the exception of [29].

Tanner et al. [30][31] proposed a stable control law for flocking in free space based on

range, bearing and velocity information of neighbors of a robot in close proximity. Two

cases are considered in their study. One is the fixed-topology [30] case, where neighbors

are assumed to be fixed regardless of the sensing range, resulting in smooth control laws;

and the other is the dynamic-topology [31] case, where neighbors are subject to change

with sensing range, resulting in non-smooth control laws. In the dynamic topology case,

10



it is assumed that the change of neighbors is such that a neighboring graph2 of the system

always remains connected. The proposed control law, in both cases, includes an attrac-

tion/repulsion term depending on local distance measurement, and an alignment term

depending on local velocity measurement. The attraction/repulsion force is implemented

using a continuous version of the potential function in [25]. Stability is proved for the

fixed-topology [30] and dynamic-topology [31] cases using Graph Theory and Lyapunov’s

stability theorem for non-smooth systems, respectively.

The fixed-topology case is successfully applied to the control of two complex robots

and a virtual leader [32]. The robots have high-resolution encoders for displacement and

velocity measurements, and an on-board computer with a high-speed communication fa-

cility which is used to broadcast its position and velocity to the other robot. In this way,

each robot has the exact absolute position and velocity information of the other robot and

the virtual leader. Although this study seems to be an implementation of flocking in real

robots, the robots are far from practical, and are too complex to be utilized in batches.

Jadbabaie et al. [33][34] investigated the stability conditions of the aligned motion of

particles in the SDP model [2], neglecting the effect of noise on the heading calculation.

They showed that stability is ensured when the neighboring graph remains connected

within a finite time interval, with time divided into infinitely many irregular intervals.

A more relaxed condition is also proposed, indicating stable motion even if none of the

neighboring graphs is connected but the union remains connected within a finite time in-

terval.

Olfati-Saber [35] considered the case of flocking without a leader in free space and en-

vironments with obstacles based on local-proximity and velocity measurements. The algo-

rithm consists of a gradient-based attraction/repulsion term and a velocity-matching term.

It was shown that the algorithm boils down to Reynolds’ flocking algorithm [17] and is not

stable for agent counts larger than ten. The addition of a group objective term is shown to

be essential for stable flocking behavior in obstacle-free environments. Environments with

obstacles are handled by introducing virtual agents to the algorithm, which are assumed

to move in the periphery of obstacles.

Cezayirli et al. [36] proposed an algorithm using a fixed leader to enable flocking in

free space. Each agent is assumed to have range and bearing information about its neigh-

2A neighboring graph is a simple and undirected graph whose vertices denote the agents. An edge exists

between two vertices if and only if the related agents are neighbors. The neighboring graph is said to be

connected if one can start from a node and reach any other node by passing through the edges of the graph.
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bors and moves to keep its proximity within a predefined range, while maintaining the

connectivity of the neighboring graph. The fixed leader has a priori knowledge about the

coordinates of the target points, and simulations have shown that initially connected agents

preserve their connectivity and move to the target points coherently.

Lindhe et al. [37] proposed a flocking algorithm based on Voronoi partitions. In their

algorithm, the obstacle-free Voronoi partition3 of each agent is calculated using the local

range and heading information of each agent at each time-step. The agents are then moved

toward the centroid of this region having guaranteed that the distance to the goal point is

decreasing, keeping the formation in a desired condition, if feasible. If these conditions are

not realizable, agents do not move at the current time-step. This algorithm ensures stable

and collision-free flocking in environments with complex obstacles.

Hanada et al. [38] introduced an algorithm for flocking in environments with obstacles.

In this algorithm, the agents are assumed to measure the range and bearing information

of their neighbors and the obstacles. It is also assumed that the goal direction is known

a priori by all of the agents. Based on this information, each agent selects two neighbors

and moves in such a way that an isosceles triangle is formed among the neighbors. Mean-

while, agents keep their heading toward the goal direction and avoid obstacles. With the

proposed algorithm, simulations have shown that the agents are able to split and rejoin in

the presence of obstacles, and that they form equilateral triangles in the long-run as well.

Moshtagh et al. [29] proposed an algorithm to align the headings of the agents without

explicit measurement of heading information. This algorithm relies on computer vision

techniques in which agents are assumed to measure relative bearing, optical flow of neigh-

boring agents and time-to-collision between the neighboring agents to deduce heading

information. Simulations revealed that the algorithm works successfully when the neigh-

boring graph is connected, even in the case of noisy measurements.

Gervasi et al. [39] proposed an algorithm which enables a group of agents to flock and

to keep their desired formation. Agents are assumed to measure the range and bearing of

the others and distinguish the leader, which is driven externally independent of the rest of

the flock. Agents, at each time-step, compare the current formation of the group, using the

leader as the common reference, with the desired formation and move to a target location

to transform the current formation into the desired one. Some variants of this algorithm

3The Voronoi partition of a point (p) in a set (S) of N points is a planar region in which any point

in the region has the smallest distance to the point p rather than to any other point in set S. http:

//en.wikipedia.org/wiki/Voronoi_partition. Last visited: April 2008.
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are also proposed to increase performance and stability.

In all of the proposed flocking algorithms, range and bearing information are utilized

on an agent basis to enable stable flocking in free space [30][31][34][35][36][39][29][37] and

in environments with obstacles [37][38]. In all of the studies except [29], measurement

noise is neglected and under this assumption, the stability of the algorithms is ensured

analytically, except [39]. The major flaw in control-centric approach is the difficulty in

realizing the algorithms in the real world since it is almost impossible to satisfy the sensing

requirements with the current state of technology.

2.3 Biology

Flocking and coordinated movement are widely-observed and -studied phenomena in bi-

ological systems. Studies in this perspective span different tracks. In one track, the moti-

vations of species to perform flocking are analyzed; in the other track, micro-models, i.e.,

behavioral models of individuals, are proposed to determine how flocking is achieved by

individuals. The final track consists of experimental and theoretical studies related to the

factors constituting flocking.

The determining factors in the flocking behavior of desert locusts are studied in [18].

It is proposed that there is a critical density above which locusts form clusters and move

in ordered fashion. Preventing locusts from reaching this critical density value will pre-

vent their devastating effect on agricultural goods. The critical noise is determined by

experiments using locusts. The process is also modeled using the 1-D SDP model, and the

predictions of the model are in agreement with the experiments [21][22].

In a recent study, Ballerini et al. [12] studied the neighboring characteristics of flocking

birds, and showed that birds have a fixed number of neighbors which are determined by

topological means rather than the metric distance between the birds. This makes the flock

robust to segmentation and predator attacks. The findings were also verified using the

SDP model [2], which revealed that individuals utilizing topological distance can easily

separate and rejoin under a predator attack, which is not observed in the case of metric

distance.

The motivations and factors constituting the marching behavior of cannibal crickets are

analyzed in [13]. It is indicated that cannibalism is the main motivation in this behavior.

Crickets try to move towards other crickets to eat them, while running away from others

in order not to be eaten, which together results in an aligned motion of crickets.
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A micro-model of the behavior of an army ant (Eciton burchelli) is developed in [40],

and includes obstacle-avoidance and pheromone-tracking terms. The results of the model

revealed that ants tend to move in a common direction to avoid collisions with other ants

while moving back and forth in the environment.

In biological studies, it is seen that flocking increases the probability of survival of a

species against environmental factors and predator attacks, though in some cases, flocking

might not be so attractive on an individual basis, such as where cannibalism exists [13].

Flocking in biological systems is also robust to noise [18] and changing sensing conditions,

as seen in birds [12].

2.4 Robotics

In most of the real-world tasks to be accomplished in distant places, robots should first

move to this place and then perform the required task. In the case of swarm robotic sys-

tems, a group of robots should move together as a group, which can be accomplished by

flocking. Therefore, flocking is of crucial importance and has been studied for more than a

decade in swarm robotics, but it still remains as an "open" problem.

In one of the earliest attempts towards obtaining flocking in a group of robots, Mataric

[41] combined a set of "basis behaviors": namely, safe-wandering, aggregation, dispersion

and homing. In this study, the robots were able to sense the obstacles in the environment,

localize themselves with respect to a set of stationary beacons and broadcast their position

information to the other robots in the group. The flocking behavior developed can be seen

as collective homing, where a homing direction is known and the robots try to stay within

the sensing range of each other while moving. Through the use of safe-wandering behav-

ior, the robots were also able to avoid obstacles in their path towards the home direction.

In [42], Kelly and Keating used a group of 10 robots which were able to sense the obsta-

cles around them through ultrasound sensors, and the relative range and bearing of neigh-

boring robots through the use of a custom-made active infrared (IR) system. The robots

used an off-the-shelf radio frequency (RF) system to elect one of them as leader when none

of them declares itself as leader. The leader would then wander in the environment, and the

others would follow. The IR system was used to generate attractive forces towards other

robots, whereas the ultrasound sensors acted as a repulsive force against other robots and

obstacles.

Hayes et al. [43][44] proposed a "leaderless distributed flocking algorithm that is more
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conducive to implementation on embodied agents" than the ones being used in computer

animation. The flocking behavior consisted of two simpler behaviors; namely collision

avoidance and velocity matching flock centering. It was assumed that the robots were able

to sense the range and bearing of their neighbors within a predefined sensing range. Us-

ing this information, each robot would compute the center-of-mass (CoM) based on the

relative placement of its neighbors and the heading towards a pre-defined goal area. The

CoM was then used to implement flock cohesion, whereas the change in CoM between

consequent sensory cycles was used to align the robot within the group. The authors im-

plemented the proposed algorithm on the Webots simulator and optimized the parameters

of the algorithm, which were then verified on a 10-robot group. In the experiments with

the physical robots, however, the authors had to "emulate the range and bearing sensor

signals" by tracking the robots using an overhead camera system and broadcasting these

readings to the robots.

Spears et al. [45] proposed a framework called artificial physics to enable lattice for-

mation in robots using attraction/repulsion and viscous forces based on local range and

bearing measurements. Two infrared sensing modules were utilized for range and bearing

measurement that were rotated by a motor to have a 360◦ field of view. Although lattice

formation was of main concern in this study, flocking was also considered as a potential ap-

plication. The experiments were performed using seven robots. In the experiments, robots

first formed a regular hexagonal lattice, then moved together towards a light source.

Holland et al. [46] proposed a flocking algorithm for unmanned ground vehicles (UAV)

similar to Reynolds’ algorithm, based on separation, cohesion and alignment behaviors.

Each UAV had a wireless communication module and an on-board camera system facing

the ground. A UAV captured an image of the ground and transmitted it to a host, which

extracted and transmitted the range, bearing and velocity information of the UAV’s neigh-

bors back to the UAV. This "emulated" sensing information was used to perform flocking.

Vaughan et al. [47] focused on controlling the behavior of a flock of ducks using a

robotic sheepdog. The requirement was to move the ducks to a predefined goal point with

the robotic sheepdog. A simple control algorithm was implemented on the robotic sheep-

dog based on the range and bearing information of the flock. In the algorithm, the robotic

sheepdog was attracted by the flock and repelled by the goal point. The range and bearing

measurement of the flock were "emulated" using an overhead camera which tracked the

position of the ducks and broadcasted it to the robotic sheepdog. Simulations and real-life

experiments were performed with 12 ducks and a robotic sheepdog. In the simulations,
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each duck was assumed to be attracted by the distant ducks and repelled by the nearby

ones. The ducks were also assumed to be repelled by the robotic sheepdog and the setup

walls.

The few experimental studies in robotics reviewed above used either a virtual or ex-

plicit leader [42] to lead a group of individuals, or assumed that a goal heading (or area)

was sensed by the whole group [41][43]. Moreover, in some of the studies [43][32], the

authors had to resort to using "emulated" sensors. Studies that propose to use vision to

control flocking [29], although promising, still remain to be implemented and evaluated

on physical robots. Hence, swarm robotic systems that can maneuver in an environment

as a super-organism and avoid obstacles in their path as a flock do not exist yet.

The main reason behind this non-existence, as partially discussed above, is that the

flocking behaviors proposed and studied in other domains, such as computer graphics,

statistical physics and control theory, assume that individuals can sense the range to the

center of their neighbors and that there is one range reading per neighbor. Such sensing

abilities still do not exist on most available robot platforms, with the exception of Kelly

and Keatings’ [42] custom active IR system. The proximity sensors on most mobile robots

(such as ultrasound and IR-based systems) can sense only the range to the closest point of a

neighboring robot, and multiple-range readings can be returned from a close neighboring

robot. Furthermore, the sensing of bearing, velocity and orientation of neighboring robots

is still difficult with the off-the-shelf sensors available on robots. Hence, there exists a major

gap between the studies that propose flocking behaviors and robotics.

16



CHAPTER 3

REVIEW OF ROBOTIC SYSTEMS IN

SWARM ROBOTICS RESEARCH

The requirements of a mobile robot used as part of a swarm robotic system differ from

these of a mobile robot used stand-alone. Creating a swarm robotic system takes more

than gathering a number of copies of any robot platform and making them work together,

since the operation of many robots in coordination and in close proximity poses additional

constraints.

In this chapter, we will first discuss the additional requirements needed by robots used

in swarm robotic systems. Then, we will introduce the existing robots in the literature and

discuss their capabilities in the scope of these requirements, focusing on their application

to flocking behavior, which is of primary concern in the thesis.

3.1 Requirements of Swarm Robotic Systems

In this section, we investigate in detail the extra requirements expected from the use of

robots in swarm robotic systems when compared to their usage as a stand-alone system.

These requirements can be categorized as:

• Sensing and Signaling: The main emphasis in swarm robotics is the interaction

among the robots as well as the interaction of the robots with their environment,

putting extra constraints on the robots to be used.

– Interference among robots: The interference among the sensing systems of the

robots should be minimal. In most stand-alone robotic systems, proximity sen-

sors are not designed to handle interference that may result from other robots

operating in the same environment.
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– Interference from environmental factors: The interference of environmental

factors with the sensing system of the robots should be minimal. In existing

stand-alone robotic systems, the effect of environmental factors, such as, day-

light on the infrared proximity sensors, is accepted as part of the world, and is

not dealt with. In swarm robotics research, however, the major emphasis lies

on the use of self-organizing coordination methods, and environmental non-

uniformities may bias the experiments unacceptably.

– Kin-detection: The robots should be able to distinguish other kin-robots. In

most stand-alone robotic systems, such an ability is usually regarded as high-

level and is usually handled through visual processing. In swarm robotics sys-

tems, however, such a sensing ability is vital to study the coordination mecha-

nisms involved in tasks such as flocking or pattern formation. Therefore, it is

preferred to make kin-detection as easy as proximity sensing.

– Stigmergic sensing and signaling: The robots should be able to leave "marks"

in the environment and be able to sense them. This is rather a difficult and

challenging task, even for stand-alone robotic systems. Although these abilities

can be considered as an extra for a stand-alone robotic system, they are actually

essential in swarm robotic systems, since stigmergic communication is known

to be heavily used by social insects for coordinating their behavior.

– Generic sensing: The robots should also provide some form of generic sens-

ing to allow the researcher to test novel sensing strategies which may not be

included in the existing sensing abilities implemented by the fixed hardware

design.

• Communication: Unlike stand-alone robotic systems, communication by plugging

cables into the robots is no longer feasible when working with a swarm robotic sys-

tem, and therefore, the robots must support some form of wireless communication.

– Wireless communication between the robots and a console: The robots should

support wireless communication with a console to allow easier monitoring and

the debugging of algorithms on individual robots.

– Wireless communication among robots: The robots should have inter-robot

wireless communication. Such an ability would allow the robots to be used in

the formation of ad-hoc networks.
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– Wireless programming: The robots should support wireless downloading of

control algorithms from a console.

– Parallel programming: The robots should be programmable in parallel. In

swarm robotics research, the robots usually share the same control algorithms,

and programming the swarm as a whole in one shot would be a big time-saver.

• Physical interaction: The robots should be able to physically interact with each other

and the environment. Self-assembly or self-organized building of objects into larger

structures remain interesting research topics in swarm robotics.

• Power: The robots should have a long battery-life. In swarm robotics research, the

swarm may need to remain mobile for a period that is long enough for the collective

behavior to emerge and the goal to be reached. Low battery-life would imply a sit-

uation where many robots run on batteries that need to be recharged and replaced

frequently, creating inconvenience during the experiments.

• Size: Size does matter in swarm robotic systems. The robots should be small enough

not to increase the size of test arena when experimenting with the system, yet big

enough not to limit the expandability of the robot or increase the cost of the swarm

robots due to miniaturization of components.

• Cost: The robots should be low-cost, since unlike stand-alone robots, they will be

used in groups of at least ten.

• Simulation: Swarm robotic systems require realistic simulators which are essential to

speed up the development of new control algorithms. Such simulators need to model

the interactions between the robots as well as the interactions of the robots with their

environment in a realistic way that can also be verified in the physical robots.

3.2 Review of Existing Mobile Robots

In this section, we review the existing mobile robot platforms that have been developed

for or are suitable for conducting swarm robotics research, and evaluate them according

to the requirements listed in the previous section, focusing mainly on the requirements of

flocking behavior.

e-puck [48] has a circular shape with a diameter of 70 mm and is made of plastic. Two

stepper motors are used for locomotion and there is a speaker for audible feedback. An
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accelerometer, eight IR sensors (for obstacle and ambient light detection), a camera, three

omni-directional microphones and a Bluetooth module are utilized in the robots, where

vision, color LED communication and ZigBee communication modules can be added on

demand. The robots can be programmed via the Bluetooth module. A three-hour of au-

tonomy is reported using a 5 Wh Li-Ion battery.

Alice [49] has a rectangular prism body, having dimensions of 21x21x21 mm and is

made of plastic and PCB. Two high-efficiency watch motors are used for locomotion. Alice

has many optional sensory modules, such as four IR proximity sensors for obstacle detec-

tion, a short-range robot-to-robot communication module, an IR receiving module, a linear

camera module, a wireless communication module and an ANT extension module. In ad-

dition, there is an optional gripper module and various locomotion modules to be utilized

on different terrains. Ten hours of autonomy is reported with two button batteries and

twenty hours of autonomy is achieved with an additional Li-Poly battery.

Jasmine [50] is another micro-robot platform which has a rectangular prism body, hav-

ing a 26x26x26 mm measurement and being made of aluminum and PCB. Two small gear-

head motors are used for locomotion. Jasmine has six IR sensors (LED+receiver) for prox-

imity measurement and communication over short ranges. There is one powerful IR LED

for detailed analysis of an object of interest, and a modulated IR module for communica-

tion with the host. Jasmine III has a modular design in which different sensing modules,

such as an ambient light sensor, a color sensor and different locomotion modules, can be

utilized. Two hours of autonomy is reported with Li-Poly batteries.

s-bot [51] has a circular shape, having a diameter of 116 mm and a height of 100 mm.

s-bots have a patented locomotion sub-system consisting of both wheels and tracks, which

are driven by two DC gear-head motors. s-bots have many sensors of different modalities.

These sensors are fifteen IR proximity sensors for obstacle detection, a torque sensor on the

wheels, a force sensor between the base and the wheels, a 3-axis accelerometer, an omni-

directional camera and eight RGB LEDs for messaging between each s-bot. There are two

grippers for holding/lifting other s-bots and objects. There is a Wi-Fi module for wireless

communication. Li-Ion batteries are utilized in the robots, but the operation time is not

mentioned in the study.

Swarmbot [52] is a square-shaped robot having dimensions of 130 mm. It has four

wheels on each side driven by two DC gear-head motors. There are bump sensors, light

sensors, drive wheel encoders and a patented IR robot-to-robot communication system in a

Swarmbot. Additional modules are a linear CCD, magnetic food and swarm-cam emitters
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which can be utilized on-demand. There is an RF communication unit for debugging and

programming purposes. Battery-life is not reported but automatic charging stations are

utilized to enable recharging by the robots themselves.

Pherobot [53] has a circular shape with a diameter of 110 mm. There are two DC motors

in the locomotion sub-system. There are eight modulated IR transmitters and receivers in

each robot for robot-to-robot communication. An interesting user interface is utilized in

the robots, in which users wear virtual-reality goggles to interact with the robots visually.

No information is available for the operation time of the robots.

Khepera II [54] has a circular shape with a diameter of 70 mm. It has two DC brushed

servo motors with incremental encoders and eight infra-red proximity and ambient light

sensors. There are extension modules such as different modules (b/w or color, directly

used or combined with an omni-directional mirror), a wireless video module, a linear vi-

sion module, a matrix vision module, a radio communication module, a gripper and a

general I/O module which can be utilized on demand. One hour of autonomy is reported

with Ni-MH batteries.

Flockbots [55] are circular-shaped robots with a diameter of 180 mm. Two modified

RC servomotors are used for locomotion. There are five IR range finders, one bump sensor

and a CMUCAM-2 vision module. A gripper is also designed to grip objects. Additional

wireless communication modules are planned to be added to the robots. A Bluetooth mod-

ule is used for debugging and downloading programs. Two hours of autonomy is reported

with NiMH batteries.
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Table 3.1: Comparison of mobile robots for swarm robotics research

e-puck Alice Jasmine s-bot Swarmbot Pherobot Khepera
II

Flockbot

Interference
robots

N/A YES YES N/A NO NO YES YES

Interference
environment

NO NO NO YES NO NO NO NO

Kin detection YES YES YES YES YES YES YES NO
Stigmergic
sensing

NO NO NO NO NO NO NO NO

Generic sens-
ing

vision vision NO vision vision NO vision vision

Wireless com-
munication

Bluetooth
802.15.4
ZigBee

RF mo-
dem

IR Wi-Fi RF mo-
dem

NO RF mo-
dem

Bluetooth

Wireless prog. YES NO NO YES YES NO YES YES
Parallel prog. NO NO NO NO NO NO NO NO
Wireless
robot-robot

YES YES YES YES YES YES YES YES

Physical Int. NO gripper gripper gripper NO NO gripper gripper
Battery-Life medium high medium N/A N/A N/A short medium
Size (cm) dia.=φ7 2.1×2.1×

2.1
2.6×2.6×
2.6

dia.=φ12
ht.=15

13 × 13 ×
13

dia.=φ11 dia.=φ7
ht.=3

dia.=φ18

Cost low low low N/A N/A N/A high medium
Simulator Webots Webots Breeve Swarmbot

3D
N/A N/A Webots MASON

and Breeve
Computation 30F6014A 16F877 ATMEGA

18
XScale 40 MHz

ARM
PALM V 25MHz

Motorola
68331

PXA255
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Satisfying all of these constraints in a single design is a difficult, if not impossible, chal-

lenge. Hence, we will mainly focus on the requirements related to flocking behavior in

evaluating the existing robotic platforms. In flocking, robots should perform two basic

behaviors. One is to assume a common heading, and the other is to avoid obstacles and

maintain a desired distance from other robots in close proximity. The former requires sens-

ing of heading, and the latter requires proximity measurement of nearby kin-robots and

obstacles. The measurements are to be performed in a short time and interference in the

measurements should be minimized.

None of the existing robotic platforms satisfy these requirements. The inconvenience

rises in the following issues: (1) Kin-robot detection is only available in a few robotic plat-

forms utilizing imaging systems. (2) Sensing systems are open to interference due to envi-

ronment and kin-robots, imaging systems being an exception. (3) Heading measurement is

not possible in the existing platforms. (4) Operation time of the robots is not long enough.

(5) Cost of the robots is too high to utilize them in batches. Therefore, we designed a novel

robotic platform from scratch to satisfy the aforementioned needs related to flocking and

be able to perform self-organized flocking without the need of "emulated" sensors or any

leaders. Yet, it had to be simple and cost-effective so as to be utilized in batches.
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CHAPTER 4

THE DESIGN OF THE KOBOT ROBOTIC

SYSTEM

"You start with wide nets. You gather a bunch of ideas. And you finally settle

on the elements that are most promising."

— David Hill

In this chapter, we present a novel mobile robot, called Kobot, that was designed from

scratch to meet most of the requirements of swarm robotic studies focusing mainly on

flocking behavior. Kobot was designed to be light, modular and power-efficient, yet rela-

tively cheap in order to be utilized in batches conveniently.

The most distinguishing properties of Kobots are their ability to measure range and

bearing of kin-robots in close proximity through the short-range sensing system and head-

ing measurement through the virtual heading sensor. These properties are the two distin-

guishing properties that enable Kobots to be utilized in flocking studies.

Kobot is composed of several sub-systems that can be listed as: sensory, control, lo-

comotion, structural and power sub-systems. The sensory sub-system can further be di-

vided into communication, heading sensing and short-range sensing sub-systems. The

short-range sensing sub-system senses the distance from kin-robots and obstacles in close

proximity and distinguishes robots from obstacles. The heading sensing sub-system vir-

tually measures the headings of neighboring robots in the group through digital compass

and XBee modules. Information from the sensors is fed to the control subsystem, which

controls the behavior of the robot through the control algorithm. The communication sub-

system is utilized to program Kobots wirelessly and to enable an ad-hoc communication

channel between Kobots. The power sub-system supplies the necessary operating voltage
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to all other sub-systems of the Kobot. The structural sub-system is the body of the Kobot.

It holds and protects all the other sub-systems while maintaining the aesthetics as well.

In this chapter, we will first present the evolution of these subsystems and then go into

the details of the design of each subsystem.

4.1 A Brief History

Prior to reaching the final design of Kobot, many iterations were performed. We will dis-

cuss these to demonstrate the development process of Kobot and the ideas behind it.

4.1.1 Version 1

The earliest version of Kobot was version 1, as shown in Figures 4.1 and 4.2. The body had

a layered structure where the bottom layer contained the locomotion, power and control

sub-systems. The middle layer had the short-range sensing sub-system and the third layer

had the imagining sub-system. The structural sub-system in this version was composed of

two concentric circular parts manufactured from Delrin, each having a diameter of 120mm.

The two circular layers were connected to each other via a circular Delrin rod at the center,

which together resulted in a height of 70mm. Two standard hacked RC servo-motors were

utilized with the wheels placed inside the robot body and directly coupled to the motors.

And in versions 1.1 to 1.3 as shown in Figures 4.1(b), 4.1(c) and 4.1(d), Sharp GP2D12

IR-sensors were utilized to detect kin-robots. These sensors were abandoned in versions

1.4 and 1.5 due to their low-speed operation. In these versions, an embedded camera board

(CMUcam-2) and a spherical mirror were utilized to detect the range and heading of kin-

robots. Four AA-size NiMH rechargeable batteries were utilized as the power source. The

weight of version 1 happened to be greater than expected. The placement of the controller

and the batteries were also inconvenient and not ergonomic to handle. Hence, the struc-

tural sub-system was redesigned from the ground up in the next version.

4.1.2 Version 2

In this version, there was a major leap ahead in the type of body material and the way it

was manufactured, as shown in Figure 4.3. The body was composed of top and bottom

parts which were casted from polyurethanes (PU)4.

4PU is an elastomer having favorable properties such as low density (specific gravity is 0.2), aesthetics, and

durability. It is widely utilized in many industries such as the automotive and construction industries.

25



(a) (b)

(c) (d)

Figure 4.1: (a) Kobot prototype version 1.0. (b) Kobot prototype version 1.1. (c) Kobot

prototype version 1.2 (d) Kobot prototype version 1.3.

(a) (b)

Figure 4.2: (a) Kobot prototype version 1.4. (b) Kobot prototype version 1.5.
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(a) (b)

Figure 4.3: (a) Kobot prototype version 2.0. (b) Kobot prototype version 2.0.

Two high-quality gearhead DC motors, the battery and the short-range sensors were

mounted on the bottom part. The camera and controller board were placed on the top part.

A linear mirror was placed on the top part via three carbon-fiber rods. The frontal side of

the two parts were left open for easy access to the battery and the electronics. Three of

these prototypes were manufactured. Their performance was tested by conducting simple

aggregation experiments, and found acceptable. Power consumption was the major flaw

in this version. The embedded camera board (CMUcam-2) consumed too much power

decreasing the operation time of the robot considerably. Therefore, we decided to replace

CMUcam-2 with a different sensing system in the next version of Kobot.

4.1.3 Version 3

The body and the electronics were redesigned. A low-power imaging system instead of

the CMUcam-2 was planned to be designed and utilized in this version, shown in Figures

4.4(a) and 4.4(b). However, due to time constraints, we had to give up this idea and leave

it as a future project. It remains an ongoing project and will be utilized in future studies.

4.1.4 Version 4

Version 4 had exactly the same mechanical and electronic design as version 3 except for the

utilization of a virtual heading sensor and the abandonment of the imaging sub-system.

The virtual heading sensor was designed to enable measurement of the headings of neigh-
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(a) (b)

Figure 4.4: (a) Kobot prototype 3.0 front view. (b) Kobot prototype 3.0 exploded view.

boring robots in the group. It is a combination of a digital compass and wireless com-

munication modules. A wireless communication module was also used in robot-console

communication for programming and debugging purposes. The short-range sensing sub-

system was redesigned to enable analog proximity measurement over short distances. It

was able to distinguish kin-robots from obstacles as well. Interference due to nearby robots

was also minimized through the utilization of a CSMA-CA (carrier sense multiple access

with collision avoidance) like algorithm. All the electronics and mechanics were reshaped

from the ground up.

The body was composed of top and bottom parts. All of the electronic cards were

mounted on the bottom part and the top part was only utilized to protect the cards and

for aesthetic purposes. The digital compass was mounted on top of the robot using a cir-

cular rod to decrease the effect of electromagnetic noise due to the electronic cards. In

Figure 4.4(b), the short-range sensing system is shown in between the bottom and top

parts. All the electronic cards (communication module, power module and main control

board) and components were stacked on the short-range sensing card using a small form

factor connector as shown in Figure 4.5. This design had several advantages: (1) The ca-

bling problem we faced in prototype 2.x was totally solved. (2) Cards were connected both

electrically and mechanically in a reliable fashion. (3) Modularity was facilitated in design.
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Figure 4.5: Close-up view of the short-range sensing sub-system.

(a) (b)

Figure 4.6: (a) Kobot version 4.0 with the virtual heading sensor. (b) Seven Kobots with the

virtual heading sensor.

A suitably designed card such as a camera board and a controller could be integrated into

the system conveniently. In Figure 4.5, a hypothetical camera card is placed on top of the

card stack. Removal of a card from the stack is also as easy as placing a new one.

Old batteries could easily be replaced with new ones by removing the battery case from

the front-opening of the bottom part. In order to prevent usage of cables in the top part,

three debug LEDs were also mounted on the short-range sensing card and the lights of

these LEDs were transmitted to the top part using acrylic light-guides. A photo of version

4 is shown in Figures 4.6(a) and 4.6(b). Ten of these prototypes were manufactured and

utilized in the study.
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Figure 4.7: Block Diagram of Kobot.

Specifications

The final version of Kobot is an extendable, power-efficient and relatively cheap robot plat-

form which weighs only 350 gr with batteries. It is differentially driven by two high qual-

ity gearhead motors. The robot has eight IR sensors for kin and obstacle detection and a

digital compass for heading measurement. An IEEE 802.15.4/ZigBee compliant wireless

communication module with a range of approximately 20 m indoors is utilized for com-

munication between robots as well as between the robots and a console. The robot hosts

a 20 MHz PIC184620A microcontroller, which can be programmed through the wireless

communication channel to control its behavior. The low-power design of its systems gives

the robot an operation time of 10 hours with a 2000 mAh Li-Poly battery.

The block diagram of Kobot is shown in Figure 4.7. At the heart of the Kobot is the

control sub-system. All of the information from the communication, short-range sensing

and heading sensing sub-systems is fed into the control sub-system, which runs the con-

trol algorithm on a PIC18F4620 microcontroller. The behaviors are controlled via driving

the motors, changing the control inputs to the motor drivers using pulse width modula-

tion (PWM) which together form the locomotion sub-system. The control sub-system also

controls the three debug LEDs and a buzzer to indicate the state of the Kobot.

A comparison of existing robot platforms and the final version of Kobot is shown in

Table 4.2.
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4.2 The Short-range Sensing Sub-system

The short-range sensing sub-system is designed to measure the range and bearing of kin-

robots and other objects in close proximity. The issues related to the short-range sensing

sub-system can be listed as: generic sensing, minimal interference from the environment,

minimal interference from other robots, analog proximity measurement and low-power.

The system should satisfy generic sensing principles, which enable change of the sens-

ing characteristics using software. The proximity measurement is required to be performed

in analog fashion with minimal power consumption. The most important of all is the elim-

ination of interference in the sensing system from other robots and the environment. In-

terference is inevitable due to the operating conditions of the robots in flocking. Many

approaches exist to eliminate environmental noise; however, elimination of interference

from other robots still remains an unsolved problem.

Design

A novel sensing system was designed to satisfy the short-range sensing requirements of the

robotic system. The early versions of the system operated in digital fashion and lacked kin-

detection ability. In the most recent design, however, kin-detection was enabled and the

sensing system operates in analog fashion where proximity measurements are performed

at eight discrete levels with a range of approximately 21 cm.

The short-range sensing sub-system is composed of eight IR sensors placed uniformly

at 45◦ intervals, as shown in Figures 4.8(a) and 4.8(b). The system is a low-power and

high-speed (18 Hz) object detection unit which has the ability to distinguish robots from ob-

stacles/walls in the surrounding area. The range of operation is approximately 21 cm (for

round objects), and the output of the sensor is presented at eight discrete levels having

equal spacing. 38kHz modulation is also utilized in IR LEDs to eliminate environmental

noise.

Each IR sensor is composed of an IR LED, an IR receiver, a PIC12F683 microcontroller

and an IR LED driving circuit with an op-amp, as shown in Figure 4.9. The PIC12F683

both controls the operation of the IR sensor and transmits the measurement result to the

main sensor controller, the PIC16F877A, when requested. The IR LED is driven to seven

predefined voltage levels by low-pass filtering the pulse width modulation (PWM) output

of the PIC12F683. The voltage value that the LED is driven to is measured using the analog-

to-digital (A/D) converter channel of the PIC12F683. When the desired value is attained,
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(a) (b)

Figure 4.8: (a) Schematic diagram of the sensor board. The arrow indicates the forward

direction of Kobot. (b) A photograph of the sensor board.

the IR LED is turned on and a 38kHz modulated IR signal is emitted. The IR signal is

reflected back if there is an object nearby, and detected by the IR receiver. The IR receiver

multiplies, filters and demodulates the detected signal and outputs the result to the digital

port of the PIC12F683.

The sensors operate in three states: kin-detection, proximity-sensing and data-transmission,

which are controlled by the main sensor microcontroller. The sensor starts in kin-detection

state initially. In this state, the IR receiver is active and the IR LED is off. The sensor "listens"

to the environment to detect any IR irradiation, which, when detected, is an indication of a

nearby kin-robot. The next state is the proximity-sensing state. In this state, the sensor first

looks for any incoming IR irradiation; if detected, it waits for approximately 6.7ms which

is the maximum possible time spent by a sensor to detect an object, for the nearby robot

to finish its measurement. After that, it performs proximity sensing by varying the power

of the IR LED to determine the minimum level at which the radiated signal reflects back

from the object. Proximity measurement result in one of eight discrete levels, which is then

transmitted to the main sensor microcontroller in the data-transmission state. The sensor

then returns back to the kin-detection state.

This process is illustrated in Figure 4.10. The sensor first entered the kin-detection state

upon receiving a C1 command from the main sensor controller. The sensor, in this state,

tried to detect any IR emission from neighboring robots. The sensor in the figure was not

able to detect any irradiation which means that there was no nearby kin-robot. The main

sensor controller then puts the sensor into the proximity-detection state by sending a C2 com-
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Figure 4.9: Block diagram of an individual sensor.

mand. The sensor, in this state, detected an IR signal, which means that a nearby sensor

was making a measurement, and the sensor waited for approximately 6.7 ms to guarantee

that the neighboring sensor had finished its measurement. The sensor then started mea-

surement from Level1 and detected an obstacle in Level3. The proximity reading was then

transmitted to the main sensor controller when the sensor was put into data-transmission

state by the C3 command.

The main sensor controller, PIC16F877A, coordinates the states of the sensors. First,

the even-numbered sensors (I0, I2, I4, and I6) are put into kin-detection state. Then, after

a predefined amount of time (2 ms), the odd-numbered sensors (I1, I3, I5, and I7) are

put into kin-detection state to prevent accidental reception of any reflected IR signal from a

neighboring sensor. The main sensor controller ensures that the sensors stay in kin-detection

state for a random period of time (11-15ms) to prevent synchronization of the sensors of

two neighboring robots. The sensors are eventually put into proximity-sensing and data-

transmission states.

The kth sensor returns an integer pair (dk, rk) to the main sensor controller via a

software-implemented serial port. dk ∈ {0, 1, · · · , 7} denotes the distance from the ob-

ject being sensed. dk = 1 and dk = 7 indicate a distant and a nearby object, respectively.

dk = 0 stands for no detection. rk ∈ {0, 1} shows whether the detected object is a kin-robot

or not. The main sensor controller having received the measurement results from the eight

sensors, transmit these to the main controller via I2C protocol.
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Figure 4.10: Timing diagram of a sensor detecting an obstacle.

4.3 The Heading Sensing Sub-system

Heading information is vital to achieve stable flocking in open space, and an off-the-shelf

sensor does not exist for this purpose. Therefore, we designed a heading sensor from the

ground up to measure the headings of the robots. The issues related to the design of the

heading sensing system are: generic sensing, indoor operation, minimal interference from

robots, minimal interference from the environment, low-weight and low-power.

The sensing system should be able to operate indoors since our main concern is indoor

operation. Noise and interference due to neighboring robots and the environment should

be eliminated or at least minimized in the design. If these are inevitable, they should be

handled by software through the generic sensing capability and kept at acceptable values.

The weight and power consumption of the system should also be kept at the minimum

possible values.

Design

It is almost impossible to design a simple sensing system that can be utilized to sense head-

ings. We therefore approached the problem in a different manner. We utilized the wireless

communication module available in each robot (Section 4.4) and added a digital compass

module to constitute a novel sensing system called the virtual heading sensor (VHS). Hon-

eywell’s small-sized, low-cost and low-power HMC-6352 digital compass module is used

as the compass and is shown in Figure 4.11(a). The HMC-6352 has two highly-sensitive

magneto-resistive sensors placed at 90◦ from each other as shown in Figure 4.11(b). It can

detect its orientation with respect to the North pole of the Earth with high accuracy and

repeatability when operated in outdoor environments.
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(a) (b)

Figure 4.11: (a) Photo of the HMC-6352 digital compass module. (b) Schematic of HMC-

6352 placed in a magnetic field. Reproduced from [3].

The VHS operates in two states. One is the active state and the other is the passive state.

In the active state, the VHS, through its digital compass, measures the heading of the robot

with respect to sensed North in degrees with a precision of ±0.5◦. The heading is then con-

verted to radians (θ) and broadcasted to the neighboring robots within the communication

range. The active state lasts for approximately 3 ms and is repeated at each control step

(110 ms). In the passive state, the VHS listens to the environment for heading messages from

robots for approximately 110 ms, and then the system returns back to the active state again.

This cycle continues throughout the operation of the robot.

The received heading value (θj) from the jth robot is then converted to the body-fixed

reference frame of the robot having a heading5 of θ shown in Figure 6.3 using the following

equation:

θ′j =
π

2
− (θj − θ) (4.1)

where θ′j is the heading of the jth VHS neighbor with respect to the body-fixed reference

frame of the robot.

The assumption behind the operation of the VHS is that the sensed North direction is

considered to be approximately the same within the communication range (R) of robots;

hence, the values conveyed by the heading messages are considered to be with respect to

the same reference, the sensed North, and Equation 4.1 holds. This situation is illustrated in

Figure 4.12. Three nearby robots on the left-hand side of the figure have approximately

the same sensed North direction (indicated by dashed arrows) (ns1, ns2 and ns3); hence, it is

logical to assume sensed North as the common reference among these robots.

The major flaw behind this assumption is the hard-iron effect of nearby ferrous met-

5The heading of the robot is the angle between the sensed North and the y-axis of its body-fixed reference

frame measured in clockwise direction.
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als in the environment, which may cause the sensed North direction deviate considerably

from the North pole. This is illustrated in Figure 4.12. The robot on the right-hand side is

close to a ferrous metal (shown as a U-magnet) and its sensed North direction (ns4) is greatly

deviated from the North pole (indicated by the bold arrow, N, in the y-axis) and different

from the other robots’ (ns1, ns2 and ns3). In this case, the common reference assumption

among the robots is not realistic. This is a fact, but since the average of the heading val-

ues are utilized in the flocking behavior, averaging acts as a low-pass filter and cancels the

counter-effects of noise. And in experiments related to the VHS characteristics given in Sec-

tion 8.1, we observed that this type of sensing is quite robust, even in indoor environments

where metal objects are abundant.

N

E

! "n#$
θ%! "n#&

θ' θ(! "n#) ! "n#*
θ+

Figure 4.12: Illustration of the hard-iron effect on the VHS.

4.4 The Communication Sub-system

The control algorithm or certain parameters are frequently changed during the develop-

ment of the robotic system. It is also necessary to debug the control algorithms during

run-time. It is almost impossible to accomplish these tasks utilizing a cable connection.

Hence, a means of wireless communication should be utilized in robots to enable both

debugging and programming during run-time. It is convenient to perform programming

in batches in order to decrease the programming time, especially when large groups are

concerned. The design issues related to the communication sub-system are: power con-

sumption, communication speed, scalability, real-time debugging support and cost.
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In the design of the communication sub-system, the minimization of power consump-

tion is the most important factor. There exists a compromise between power consumption

and rate of communication which directly affects the programming time. An appropriate

communication speed should be determined by keeping the programming time within ac-

ceptable limits. The sub-system should also enable a wireless link between the robots and

a console for real-time data acquisition from the robots, both for debugging and testing

purposes.

One of the drawbacks of using wireless communication is its adverse effect on scala-

bility, which is an important issue in swarm robotic systems as explained in Chapter 1.

In order to preserve scalability, range of communication should be limited or preferably

adjusted depending on the mode of operation. The range of communication can be max-

imized when the robots are being programmed and minimized when they are communi-

cating with each other. In this way, scalability and low-power operation can be facilitated

in the communication sub-system.

Related Work

Wireless programming is a common need in multi-agent systems including swarm robotics

and sensor networks. It should be power-efficient, transparent to the user and rapid. Al-

most all of the swarm robotic systems in the literature support wireless programming,

but none of them has a wireless parallel programming feature. Robots are programmed

one-by-one instead. Alice [49] and Jasmine [50] are micro-robot platforms equipped with

a frequency-modulated IR receiver module which is used for wireless programming. s-

bot [51] and Flockbot [55] are more advanced robotic platforms designed for swarm stud-

ies, and they both use the IEEE802.11 wireless standard for communication and wireless

programming. Swarmbot [52] is another swarm robotic platform which has an RF mo-

dem for wireless communication and programming. e-puck [48] is one of the most re-

cent robotic platforms, and has the ability of wireless programming using an on-board

IEEE802.15.4/ZigBee wireless adapter.

The constraints of wireless programming in swarm robotic systems are quite different

from those in sensor networks. The first difference is that the number of individuals, called

motes in a sensor network, is much greater than the number of robots in a swarm robotic

system, the former measured in thousands and the latter probably in tens. The other differ-

ence is in power-efficiency. Wireless programming should be extremely efficient in sensor
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networks to save battery-life since it is very hard, if not impossible, to recharge thousands

of batteries.

Several different wireless-programming algorithms are proposed for sensor networks.

Trickle [56] uses an algorithm called "polite gossip". In this algorithm, nodes broadcast a

code summary periodically, and stop broadcasting when they receive a summary identical

to their own. If an older version of the code is heard, each node continuously broadcasts its

own code summary to trigger its neighbors to broadcast the newer version. This algorithm

is power-efficient since only code summaries are broadcasted in normal operation and the

code itself is only broadcasted when needed. New code also propagates rapidly within the

network.

Another approach to wireless programming in sensor networks is to implement a vir-

tual machine in motes to decrease the code size to be programmed. Mate [57] is an example

of this approach. Mate is a byte code interpreter which works on the TinyOS [58] operating

system. It decreases the code size of very complex programs so that the amount of code to

be broadcasted wirelessly decreases considerably. Code is encapsulated into small pack-

ages and only updated packages are broadcasted. When a mote receives an updated code

segment, it updates itself and immediately forwards the new version to its neighbors. In

this way, the new code segment propagates through the network effectively.

Design

Hardware

A PIC 16F877A6 microcontroller (A PIC18F4620 is utilized in the current version) is uti-

lized in the main control board. The 16F877A is a widely-used microcontroller having the

ability to write to its own program memory; it has one hardware-implemented serial port.

Many examples of open-source wireless programming software are also available for the

PIC16F877A. Among these, Screamer7 by Sparkfun Inc. was selected as the most appropri-

ate alternative due to its extensive use and good support.

MaxStream’s wireless communication module, called XBee, supports the

IEEE802.15.4/ZigBee protocol and is utilized as the wireless communication module

in Kobots. The IEEE802.15.4/ZigBee provides low-power networking capability that can

support point-to-point, point-to-multipoint and peer-to-peer communication facilities.8

6http://www.microchip.com. Last visited: April 2008.
7http://www.sparkfun.com. Last visited: April 2008.
8http://www.maxstream.net. Last visited: April 2008.

38



This protocol was preferred to the IEEE802.11 because of its power efficiency, and to

Bluetooth due to its ability to address 65536 modules instead of seven as supported by

Bluetooth. Through this system, ad-hoc communication among the robots and communica-

tion with a console are supported. Also, using the broadcasting capability of this protocol,

we were able to implement wireless parallel programming of multiple robots. The XBee

modules from Maxstream, as shown in Figure 4.13(b), communicate with the host via a

serial interface at up to 115.2kbps and provide a 250kbps RF data transmission rate for

wireless communication. We have utilized XBee modules at a data rate of 57.6kbps.

(a) (b)

Figure 4.13: (a) XBee-PC interface card. (b) XBee placed on Kobot having an address of

10h.

Software

The wireless programming software is composed of two parts. One is the host program,

running on a console, and the other is the client, running on Kobots. The host takes care of

the user interface, communicates with the Kobots, and downloads and verifies the desired

program. The client consists of programmer software which programs and verifies the

program desired by the host, and a bootloader which either runs the programmer software

or the control algorithm, depending on the request of the host.

In a typical scenario (Algorithm 1), the user first stops the currently operating Kobots,

then marks the Kobots to be programmed and selects the application program to be down-

loaded. The selected program is divided into 4-to-8-word-long blocks. The blocks are then

fetched in sequence, and their lengths, starting memory addresses and checksums are de-

termined. These values, together with the program words, are broadcasted and verified on

each robot. Robots reporting checksum errors are put on the CandidateList and a prede-

fined number of programming retries are performed on these robots. Robots still not able
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to be programmed are discarded. The same procedure continues until all of the program is

downloaded to the robots.

The Kobots are initially kept in wait state, as indicated in Algorithm 2. They change

their state to receive state when the console starts to broadcast program words. On re-

ceiving the last byte of the program block, the checksum is calculated. If it is correct, the

received block is written to the program memory and TRUE is sent as a reply to the con-

sole. Otherwise, the write operation is not performed and FALSE is sent. In this case, the

host program re-broadcasts the same block. This procedure continues until all the blocks

are successfully broadcasted to the robots.

Performance of the Wireless Parallel Programming System

Several experiments were conducted to test the performance of the wireless parallel pro-

gramming system. In these experiments, a custom-designed XBee-PC interface card was

utilized to connect the console with XBee module, as shown in Figure 4.13(a). An XBee

module was also interfaced to each Kobot, as shown in Figure 4.13(b). The host program

was run on the console and the client program was run on the Kobots.

The results of these experiments are shown in Figure 4.14. During the experiments,

the XBee wireless module was interfaced at 57600 baud, which was the fastest baudrate

at which we faced the least amount of trouble. The program size in the experiments was

5.6 kWord, which is approximately 70% of the program memory of the PIC16F877A. It

takes approximately 33 s to program one robot and each robot adds approximately 10 s to

the programming time. The host program spends 10 s to verify after broadcasting a block of

program. A total of 130 s was spent to program 10 robots via parallel programming, which

would have been approximately 330 s (=33 × 10) if the robots had been programmed one

by one in serial fashion.

4.5 The Control Sub-system

The control sub-system runs the main control algorithm and controls the behavior of the

robots. Distributed architecture, processing power and low-power operation are the design

issues related to this sub-system.

The architecture of the control sub-system is required to be distributed, meaning that

each sub-system must have its own dedicated controller. In this way, modularity is assured

in the design of the robot and new sub-systems can easily be introduced into the design.
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Algorithm 1 The host program
1: {User marks the Kobots to be programmed}
2: marked Kobots are inserted in CandidateList
3: {User selects the program to be downloaded}
4: load the program to be downloaded
5: for Robot in CandidateList do
6: send ENQ to Robot
7: if not timeout and reply equal to ACK then
8: change robot’s tag to present
9: else

10: change robot’s tag to not present
11: end if
12: end for
13: for block in program do
14: for Robot in CandidateList do
15: if there exists RetryTaggedRobot then
16: put all RetryTaggedRobot in ProgramList
17: change block to previous
18: else
19: put all PresentTaggedRobot in ProgramList
20: end if
21: end for
22: for Robot in ProgramList do
23: send ENQ to robot to request checksum result
24: wait for ACK from robot
25: if no reply or unexpected character then
26: change tag to notpresent
27: else
28: if reply FALSE and retry less than 3 then
29: change tag to retry
30: else
31: change tag to present
32: end if
33: end if
34: end for
35: broadcast START character
36: broadcast block length
37: broadcast starting memory address
38: broadcast checksum
39: broadcast program block
40: end for
41: broadcast END character
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Algorithm 2 The client program
1: if not timeout and ENQ received then
2: send ACK to console
3: else
4: run current program
5: end if
6: while TRUE do
7: wait for ENQ
8: if checksum false then
9: reply FALSE

10: else
11: reply TRUE
12: end if
13: wait for START character
14: receive block length
15: if block length equal to END then
16: start downloaded program
17: end if
18: receive memory address
19: receive checksum
20: receive program block
21: calculate checksum
22: if checksum = 0 then
23: write program block to memory
24: end if
25: end while
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Figure 4.14: Duration of programming. XBee is interfaced at 57600 baud. Program size is

5.6 kWord.

Processing power and power consumption are again the two competing factors in the de-

sign. The operating frequencies of microcontrollers are kept at minimum levels to decrease

power consumption, and hence, save battery-life.

Design

Robots are designed to have a distributed control architecture, meaning that each sub-

system has its own controller to take care of low-level tasks. There is a common com-

munication medium between these controllers, as illustrated in Figure 4.7. The control

sub-system consists of the main controller board whose design is based on the PIC18F4620

microcontroller, as shown in Figure 4.15. It communicates with the main sensor controller

via I2C communication protocol to receive the sensor readings. Having the sensor read-

ings and the control algorithm, behavior of the Kobots is controlled by commanding the

left and the right motors with the main controller. The XBee wireless communication mod-

ule is also interfaced to the serial port of the main controller to download or debug the

control algorithm wirelessly.

The design is scalable and modular in the sense that any additional sub-system, such as

an imaging sub-system, can easily be interfaced to the control sub-system via I2C commu-

nication protocol. The imaging sub-system will have its own controller for low-level tasks

like camera parameter adjustment, data collection, and for high-level tasks like image pro-

cessing and pattern-recognition algorithms.
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Figure 4.15: Main control card.

4.6 The Locomotion Sub-system

The locomotion sub-system is responsible for the movement of the robot on the x−y plane.

Design issues related to the locomotion sub-system are: the driving system, the size of the

actuators, modularity, the driving electronics and low-power.

The driving system determines how Kobots are driven. Among various alternatives,

the differential drive system is utilized in Kobots for its ease of application and high ma-

neuverability characteristics. DC motors are used as the actuators and they should be

power efficient, high-torque and small. Flat motors are preferable to save space inside the

Kobot. The locomotion sub-system should also be modular, which means ease of chang-

ing motors to more powerful ones or more capable ones for different applications, without

making considerable changes in the structural sub-system. The driving electronics should

be simple and be able to drive motors efficiently at high PWM frequencies.

Design

The Kobot is a differentially-driven robot which has two powered wheels on its sides and

two caster wheels in front and back. Kobots can only move on smooth surfaces without any

gradients in indoor environments. 3 V, high-efficiency (to save power), low-profile (to save

space) and high torque motors from FTB Inc. of Faulhaber9 are used in the locomotion sub-

system. The wheels are directly coupled to the motors, and are composed of three parts.

The inner part, which is the wheel hub is manufactured from high-grade aluminum. It is

specially designed to decrease shaft load on the motors and to eliminate any possible cause

of eccentricity in the wheel. The middle part is the rim and is manufactured from Delrin.

9http://www.faulhaber.de. Last visited: April 2008.

44



The outer part is the tire, in which an O-ring is utilized to increase the coefficient of friction

between the wheel and the ground. The motors are mounted using an aluminum adapter

plate so that different motors can be utilized in Kobot with only a change of the adapter

plate.

The motors require a high-frequency PWM signal to increase efficiency; hence, the

Si9988 motor-driver chip from Vishay10, is utilized in the motor-driver module. The Si9988

is an efficient motor-driver chip which requires almost no external components. It allows

voltage and current measurement of the motors. It is not implemented in the current ver-

sion of the Kobot, but will be utilized in the future for close-loop speed or torque control

of the motors, respectively. The motors are driven in open-loop fashion for the time being,

with a frequency of 78.5 kHz, and consume approximately 30 mA in the worst case.

4.7 The Power Sub-system

Autonomous operation of the robots requires batteries to be used as the energy source.

Voltage from the batteries is converted to a convenient level by a voltage converter. The

design issues related to the power sub-system (battery and voltage converter) are: dura-

tion of operation (battery), efficiency (voltage converter), size and weight (battery), and

recharging (battery).

Batteries supply energy to the robot. The output of the batteries is converted to a conve-

nient level by a voltage conversion system, which should be efficient to maximize battery-

life. The energy content of the batteries depends on their chemistry and their size. Increas-

ing the size of the battery increases its capacity, but this causes problems in the system.

Therefore, it is logical to use high-technology batteries with an appropriate size having

high energy-density. These batteries should not only be rechargeable, but also allow rapid

recharging. An ideal figure for the duration of operation is assumed to be three hours.

Design

The power sub-system consists of rechargeable batteries and a voltage-conversion module

as shown in Figure 4.16. The voltage-conversion module is designed to operate with differ-

ent battery types and sizes. A three cell AAA/AA sized Ni-MH battery or a one-cell Li-Poly

battery can be utilized with the voltage-conversion module. The most popular recharge-

able battery on the market today is the Ni-MH battery, which can be found in different

10http://www.vishay.com. Last visited: April 2008.
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Figure 4.16: Voltage conversion module.

Table 4.1: Power consumption of sub-systems

Sub-system Current (mA) Voltage (V) Power (mW)

Locomotion 60 5 300

Short-range 60 5 300

Control 20 5 100

Communication 50 5 250

Total 950

sizes and shapes. AA and AAA sizes are convenient due to their size and weight. Li-Poly

batteries are the most recently-introduced rechargeable batteries. They have an energy

density of approximately three times that of Ni-MH batteries. One of the important points

one should consider when using Li-Poly batteries is to prevent the battery voltage from

dropping below a critical value, or else the batteries will be damaged permanently. The

voltage-conversion module consists of a 10F202 microcontroller (yet to be implemented) to

automatically stop the robot when the battery voltage drops below the critical value.

The voltage-conversion module regulates the input voltage to a constant 5 V, which

is the required TTL voltage level for the robot, except for the communication sub-system,

which has its own regulator that converts 5 V to 3.3 V for the operation of the XBee module.

There is a red LED in the voltage-conversion module to indicate low-battery voltage.

The measured power consumption values are tabulated in Table 4.1. Endurance tests

were performed with Kobot, having all of its sub-systems operating with three-cell AA-size

Ni-MH or one-cell Li-Poly batteries. The results of the experiment were quite impressive,

and exceeded our expectations. 7.5 hours and 10.5 hours of autonomy were observed with

Ni-MH and Li-Poly batteries, respectively. These figures put Kobot in the first place in its

segment.
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4.8 The Structural Sub-system

The structural sub-system forms the body of the robot, that carries and protects the other

sub-systems. The issues related to the design of the structural sub-system can be listed as:

weight, modularity, durability, aesthetics, size and cost.

The weight of the body should be minimal to decrease the weight of the robot. Two

ways exist to minimize the weight. One is to decrease the size and the other is to decrease

the density of the material used for the body. The former approach is not feasible, since the

size of the components used in the robot limits the minimization of the body considerably.

The size of the robot should also be at a certain value for practical reasons. Hence, there is a

lower limit to the size of the robot. Having fixed the size to the an appropriate value, a low-

density material, polyurethanes was utilized as the body material of Kobot. Modularity

was facilitated through two-piece design of the body.

In the next chapter, we will model Kobot and its sensing systems in order to utilize them

in a physics-based simulator. The simulator is used to perform systematic experiments

with a large group of robots.
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Table 4.2: Comparison of mobile robots for swarm robotics research with Kobot

e-puck Alice Jasmine s-bot Swarmbot Pherobot Khepera
II

Flockbot Kobot

Interference
robots

N/A YES YES N/A NO NO YES YES NO

Interference
environment

NO NO NO YES NO NO NO NO NO

Kin detection YES YES YES YES YES YES YES NO YES
Stigmergic
sensing

NO NO NO NO NO NO NO NO NO

Generic sens-
ing

vision vision NO vision vision NO vision vision vision+IR

Wireless com-
munication

Bluetooth
802.15.4
ZigBee

RF mo-
dem

IR Wi-Fi RF mo-
dem

NO RF mo-
dem

Bluetooth 802.15.4
ZigBee

Wireless prog. YES NO NO YES YES NO YES YES YES
Parallel prog. NO NO NO NO NO NO NO NO YES
Wireless
robot-robot

YES YES YES YES YES YES YES YES YES

Physical Int. NO gripper gripper gripper NO NO gripper gripper NO
Battery Life medium high medium N/A N/A N/A short medium high
Size (cm) dia.=φ7 2.1*2.1*2.1 2.6*2.6*2.6 dia.=φ12

ht.=15
13*13*13 dia.=φ11 dia.=φ7

ht.=3
dia.=φ18 dia.=φ12

ht.=7
Cost low low low N/A N/A N/A high medium low
Simulator Webots Webots Breeve Swarmbot

3D
N/A N/A Webots MASON

and
Breeve

CoSS

Computation 30F6014A 16F877 ATMEGA
18

XScale 40 MHz
ARM

PALM V 25MHz
Motorola
68331

PXA255 18F4620
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CHAPTER 5

CHARACTERISTICS AND MODELING OF

KOBOT

In this chapter, we determine the Kobot’s characteristics of the short-range sensing system

and virtual heading sensor using systematic experiments. These characteristics are then

utilized in CoSS, a physics-based realistic simulator, to analyze the flocking behavior under

different controller parameters and virtual heading sensor characteristics for large groups.

5.1 The Characteristics of the Short-range Sensing Sub-system

Two different experiments were conducted to determine the characteristics of the short-

range sensing sub-system. One of these is the obstacle-proximity experiment as shown in

Figure 5.1(b) and the other is the robot-proximity experiment as depicted in Figure 5.1(d).

In both of the experiments, the robot for which proximity data was collected was kept

stationary (the bottom robot in Figure 5.1(b)) and the other robot (the top robot in Fig-

ure 5.1(b)) was moved in the first quadrant of the x − y plane at 1cm intervals, as shown

in Figure 5.1(a). 200 measurements were taken at each point. The stationary robot had its

frontal sensor (sensor I0 in Figure 4.8(a)) turned on in both of the experiments whereas the

moving robot’s sensors are turned on only in the robot-proximity experiment.

The results of the obstacle-proximity experiment are shown in Figure 5.1(b). In the

figure, the dark points denote low proximity values whereas the light ones denote high

proximity ones. When this graph is compared with the graph of the robot-proximity ex-

periment, shown in Figure 5.1(d), it can easily be seen that they are in accordance with

each other, which reveals that the sensing system has almost the same characteristics in

obstacle- and robot-proximity measurements. The experiments also revealed that the sen-

sor has a range of 21 cm in lateral and 10 cm in transverse directions (lateral direction lies
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on the x-axis and transverse direction lies on the y-axis, as shown in Figure 5.1(a)). The

results of these experiments are arranged as a look-up table and utilized in the simulator

to be explained in Section 5.3.

The percentage of success of robot detection is plotted in Figure 5.1(c). The dark points

show a higher success rate, and the lighter ones show a lower success rate. It can be ob-

served that for most of the operating range, the sensing system is 100% successful. The

outlying points, which are beyond the range of the sensor might be interpreted as out-

of-range values but are a proof of existence of a neighboring robot. These occur because

sensors may receive IR irradiation from very distant kin-robots, even up to 1 m away but

they cannot make a proximity measurement since the kin-robot is beyond the range of the

sensor. The output of the sensor reveals the detection of a kin-robot beyond the 21 cm

range. This information is quite useful in dispersion or aggregation tasks. It is also seen

that the rate of success decreases considerably for nearby points, which might be due to the

high intensity of IR irradition and the possibility that the sensor cannot operate properly

within such proximity.

5.2 The Characteristics of the Virtual Heading Sensor

Two characteristics of the virtual heading sensor are of main concern. One is the number

of VHS neighbors that a VHS node can "hear" for different group sizes and communication

ranges, and the other is noise in the heading measurement.

5.2.1 Number of VHS Neighbors

Three sets of experiments were performed to determine the average number of VHS neigh-

bors that a VHS node (hereafter be called node) can communicate with during a predefined

amount (equal to the duration of the control loop). A VHS neighbor of a robot is not nec-

essarily one of the robots in close-proximity. It can, rather, be any robot within the com-

munication range of robot’s VHS. Thus, in that sense, neighbor relations in Kobots can be

regarded as topological one rather than a metric, as in [12].

The experiments were performed in Prowler [59], an event-driven probabilistic wireless

network simulator, since the experiments required more nodes than were available phys-

ically. In all of the experiments, the nodes were placed on a hexagonal grid with a 25 cm

distance and kept stationary.

The first experiment aimed to test the effect of the communication range on the number
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(a) (b)

(c) (d)

Figure 5.1: (a) Experimental setup used in the obstacle-proximity measurement and robot-

proximity experiments. (b) Results of the obstacle-proximity experiment. (c) Rate of suc-

cess of robot detection. (d) Results of the robot-proximity experiment.
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Figure 5.2: The communication range experiment. (a) Topology of nodes. Circles indicate

various communication ranges of the central node. (b) Average number of VHS neighbors

of the central node. The ends of the boxes and the horizontal line in between correspond

to the first and third quartiles and the median points, respectively.

of VHS neighbors. In order to test this, the communication range was varied in such a way

that there existed robots beyond the communication range of the central node. The ex-

periment was performed with 817 nodes placed in a regular hexagonal grid having 25 cm

spacing. The communication range of the VHS was changed to five different values, indi-

cated by the concentric circles in Figure 5.2(a). When the communication range was set to

its largest value (200 cm), indicated by the outermost circle, many robots were still out of

the communication range, which indicates the locality of communication. For each range,

five different simulations were performed with random initial conditions for 10 time-steps.

The distribution of the average number of VHS neighbors for the central node are plotted

in Figure 5.2(b).

It was observed that the average number of VHS neighbors increased with an increase

in the communication range up to a certain value (∼ 25), then decreased and settled at

20 with a further increase in the communication range. This was due to the fact that an

increase in the communication range increases the number of collisions in the heading

messages, preventing a further increase in the number of VHS neighbors.

In the second experiment, the effect of group size on the number of VHS neighbors was

investigated. 91 nodes were utilized in a hexagonal formation having 25 cm spacing. The

communication range was set to its maximum value (20 m) so that all of the nodes were

within communication range of the other nodes; in other words, the communication range
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was global. The number of nodes was set to five different values and five simulations were

carried out for each case with random initial conditions. The simulations were performed

for 10 time-steps and the average number of VHS neighbors of a node was calculated for

each simulation. The results are plotted in Figure 5.3(a).

This experiment reveals that an increase in the number of nodes increased the number

of VHS neighbors up to 72, and then it decreases with a further increase in the group size

and settles at 20. The decrease in number of VHS neighbors is due to an increase in the

number of collisions of the heading messages, which consequently limited the number of

VHS neighbors to a smaller value.

The third experiment was conducted to measure the degree of randomness in the neigh-

bor selection of a node, i.e. to determine any bias or anisotropy in neighbor selection pro-

cess. In this experiment, we place 91 nodes on a hexagonal grid with 25 cm spacing. The

communication range of the nodes was again set to its maximum value (20 m). The ex-

periment was run for 100 time-steps and repeated 5 times. The hexagonal grid was hypo-

thetically divided into six equal regions and the region of the VHS neighbors of the central

node was recorded at each time-step. The results are plotted in Figure 5.3(b). It can be

seen that VHS neighbors are distributed evenly to each region. This reveals that there is no

directional preference in the selection of VHS neighbors.

The last two experiments revealed two important facts related to the VHS. (1) The

number of VHS neighbors of a node is almost constant and depends only on group size.

(2) Nodes pick up their neighbors randomly and without any directional preference. These

two points were utilized extensively in simulations and modeling of the flocking behav-

ior. It was also these two facts that enabled the possibility of an analytical treatment of the

model.

5.2.2 Noise

The VHS is composed of a digital compass and wireless communication modules. Hence,

its noise characteristic is a combination of these two modules. The digital compass module

has a noise of ±0.5◦ in heading measurement which is practically negligible. The wireless

communication module’s operation is also free of noise, due to the parity check11 feature

on the reception side and the CSMA-CA12 protocol (Carrier Sense Multiple Access with

11http://en.wikipedia.org/wiki/Parity_bit. Last visited: April 2008.
12CSMA-CA is a widely utilized method to minimize communication errors especially in wireless com-

munication protocols. http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_
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Figure 5.3: (a) The group-size experiment. Average number of VHS neighbors for five

different group sizes. (b) Neighbor-selection experiment. The ends of the boxes and the

horizontal line in it correspond to second and third quartiles and the median points, re-

spectively.

collision avoidance) present in the XBee modules, which avoids interference from other

robots when broadcasting heading messages.

In this respect, the VHS could be regarded as a perfect sensing system which is ex-

tremely accurate and free of noise. However, this is not the case. The noise characteristics

of the digital compass module depend highly on unpredictable factors, such as the pres-

ence of nearby ferrous metals and external magnetic fields in indoor environments. There-

fore, noise is regarded as an unknown parameter of the flocking behavior and is treated

accordingly.

Noise is modeled using the vectorial noise model introduced by Gregoire et al. [25], in

which a noise vector having a random direction with a variable magnitude is added to the

measurement as shown in Figures 5.4(a) and 5.4(b). The resultant heading vector (h̃j) is

calculated as:

h̃j = eiθ
′

j + ηeiξj (5.1)

θ′j is the heading measurement from the jth VHS neighbor with respect to the body fixed-

reference frame of the robot given in Equation 4.1. η is the magnitude of the noise vector,

and ξj is the direction of the noise vector determined by either a Gaussian or uniform

distribution.

In the Gaussian distribution case, ξ is a normally-distributed variable having a mean of

collision_detection. Last visited: April 2008.

54



(a) (b)

Figure 5.4: Vectorial noise model. The heading measurement vector (eiθ
′

j ) is denoted by a

continuous arrow. The noise vector (eiξj ) is shown by a dashed arrow and the resultant

vector (h̃j) is denoted by a bold continuous arrow. (a) η = 1. (b) η = 1.5. Adapted from [4].

θ′j and a standard deviation of either π/2 or π, whereas, in the uniform distribution case, ξ

is randomly selected from [−π, π]. The two cases are denoted by N(θ′j , π/2) and N(θ′j , π),

respectively. The case of N(0, π/2) is plotted in Figure 5.5.
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Figure 5.5: Histogram of simulated noisy measurements of VHS for θ′j = 0◦. The simula-

tions are performed for 10000 steps for three different η values.

5.3 The Co-Swarm Simulator

A physics-based simulator, called the Co-Swarm Simulator (CoSS), is used in computer

simulations. The CoSS is built on top of the Open Dynamics Engine (ODE) which enables
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modeling of complex physical interactions like the collision of bodies and slippage in the

wheels.

(a) (b)

Figure 5.6: (a) A photo of seven robots in CoSS. (b) A snapshot of seven robots.

The main body and wheels of the robot are modeled using basic cylindrical collision

geometries. DC motors are simulated using virtual motorized hinge joints, and the virtual

weights of the components are adjusted to obtain a similar movement pattern with similar

motor torques. The IR short-range sensing system and the VHS are modeled utilizing

the results of systematic experiments. Since the characteristics of the short-range sensing

system are determined using kin-robots (in passive/active state), they are not valid for

objects like walls or irregularly-shaped obstacles in the environment. Therefore, for the

time being, CoSS is only utilized to model the flocking behavior in free space. A photo of

seven robots and its CoSS counterpart is shown in Figure 5.6
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CHAPTER 6

THE FLOCKING BEHAVIOR

". . . thousands of tree swallows gathering for flight: an order held in constant

change: a congregation rich with entropy: nevertheless, separable, noticeable

as one event, not chaos . . . "

— A. R. Ammons

In this chapter, we propose a self-organized flocking behavior based on two basic be-

haviors. By self-organized flocking, we mean that a group of robots, initially connected but

not necessarily aligned, should be able to wander in an environment by moving as a co-

herent group in free space and avoiding any obstacles, as if it were a "super-organism".

Different from other studies, the flocking behavior is regarded as a fully decentralized

and scalable coordination method which does not utilize any designated or elected leader

within the group.

We then define several metrics such as order and entropy to measure the performance

of flocking qualitatively. Following that, we perform full-fledged flocking in a constrained

space using nine Kobots to demonstrate how the flocking behavior works. We then per-

form flocking in open space using seven robots in CoSS and seven Kobots, and verify the

CoSS simulations against the Kobot experiments using order and entropy metrics. Finally,

we utilize 1000 robots in CoSS to evaluate the flocking behavior with a large group in open

space.

6.1 The Flocking Behavior

The flocking behavior consists of heading-alignment and proximal-control behaviors, com-

bined in a weighted vector sum:
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a = α h + β p (6.1)

where h is the normalized heading-alignment vector having a weight of α, p is the nor-

malized proximal-control vector having a weight of β, and a is the desired acceleration

vector.

6.1.1 Heading Alignment

Heading alignment behavior aims to align the heading of a robot to the average heading

of its VHS neighbors as illustrated in Figure 6.1. The virtual heading sensor is utilized in

receiving the heading values of the VHS neighbors. The alignment vector (h̃) is calculated

by vectorially summing up Equation 5.1 for all the heading values of the VHS neighbors of

a robot as:

h̃ =
∑

j∈NR

h̃j (6.2)

where NR denotes the VHS neighbors of a robot when the communication range of the

VHS is set to R.

The normalized heading-alignment vector (h) is calculated as:

h =
h̃

‖h̃‖

(a) (b)

Figure 6.1: The heading alignment. The central robot aligns its heading to the average of

the three randomly selected VHS neighbors drawn in black. The other robots are drawn in

gray. The communication range is set to R and NR is set to 3. (a) t = 0. (b) t = 1.
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6.1.2 Proximal Control

Proximal-control behavior uses readings obtained from the IR sensing system to (1) avoid

collisions with other robots and obstacles and (2) maintain cohesion between the robots.

For each IR sensor, a virtual force proportional to the square of the deviation of the

measured distance from the desired distance is assumed. The desired distance is taken

as an appropriate finite value for kin-robots, and ∞ for obstacles, which forces the robot

to maintain a desired distance from kin-robots while moving away from obstacles. The

virtual force from the kth sensor is calculated as:

fk =







− (dk−ddes)
2

C
if dk ≥ ddes

(dk−ddes)
2

C
otherwise

where ddes, the sensor measurement corresponding to the desired distance, is half of the

sensor range (ddes = 3) for robots and 0 for obstacles, since IR sensors return a reading of 0

for objects at infinity. C is a scaling constant equal to 10 for robots and 35 for obstacles, and

is used to normalize fk. fk is less than 0 in the case of a repulsive force, and greater than 0

in the case of an attractive one. The sense of the forces is defined with respect to the robot.

The value of the force, fk, is plotted in Figure 6.2 for both robot- and obstacle-detection

cases. The ddes value is also indicated for both cases.
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Figure 6.2: The virtual force (fk) is plotted as a function of dk ∈ {0, 1, · · · , 7}, where dk = 1

for a distant and dk = 7 for a nearby object.

The calculation of the normalized proximal control vector, p, is as follows:
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p =
1

8

7
∑

k=0

fke
iφk

where k denotes the kth sensor having an angle of φk = π
4k with the x-axis shown in

Figure 4.8(a) of the body-fixed reference frame shown in Figure 6.3. 1
8 is the normalization

constant.

,

- ./
0
1

ω2
θ

Lv

Rv

Figure 6.3: The reference frame is fixed to the center of the robot where the x-axis coincides

with the rotation axis of the wheels. The forward velocity (u) is parallel to the y-axis. ω

denotes the angular velocity of the robot. vR and vL denote the velocity of the right and

left motors, respectively. The y-axis of the body-fixed reference frame makes an angle of θ

(current heading) with the sensed North direction (ns) at the instant the figure is drawn. l is

the distance between the wheels.

6.1.3 Motion Control

The acceleration vector (a) of the robot is mapped to forward velocity (u) and angular

velocity (ω). u is calculated as:

u =







( a

‖a‖ .âc)
γ umax if a

‖a‖ .âc ≥ 0

0 otherwise
(6.3)

where âc is the current direction of the robot that is coincident with the y-axis of the body-

fixed reference frame, and equal to j. γ is the modulation parameter.

When the modulation parameter γ is set to 1, the forward velocity of the robot (u) is

modulated depending on the "urge"-to-turn condition as shown in Figure 6.4. u is com-

puted by calculating the dot product of the desired direction (a) and the current direction
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(a) (b) (c)

Figure 6.4: Modulation of the forward velocity (u) when γ = 1. (a) The robot makes rotation

and translation. α ≈ 0◦ ⇒ u ≈ umax. (b) The robot makes mostly rotation. α ≈ 90◦ ⇒ u ≈
0. (c) The robot only makes rotation. α > 0◦ ⇒ u = 0.

(âc) vectors as in Equation 6.3. When the urge to turn is low meaning that the robot is al-

ready moving in the desired direction, the forward velocity is allowed to achieve its maxi-

mum value (umax) as shown in Figure 6.4(a). Conversely, when the urge to turn is high, u

decreases, converging to 0 in the extreme case, where the robot only rotates with respect to

its center of mass as illustrated in Figure 6.4(b). And when the dot product of the desired

direction of motion (a) and the current direction (âc) of the robot is negative, this indicates

that the angle between the two vectors is greater than 90◦ in absolute value as shown in

Figure 6.4(c). By setting u = 0 in this case, we constrain the robot’s motion to rotation only,

instead of assigning a negative velocity. Failure to do so would result in robots moving

backwards, a situation that would complicate the behavior and its analysis.

The angular velocity (ω) of the robot is determined using a proportional controller by

calculating the deviation of the desired direction (a) from the current direction (âc) of the

robot.

ω = (6 a − 6 âc)Kp (6.4)

where Kp is the proportional gain of the controller. 6 (.) computes the argument of the

related vectors and 6 âc = π
2 .

The rotational speeds of the right (NR) and the left (NL) motors as shown in Figure 6.3

are eventually calculated as follows:

NR =
(

u− ω

2
l
) 60

2πr

61



NL =
(

u+
ω

2
l
) 60

2πr

where NR and NL are the rotational speeds [rpm] of the right and left motors, respectively,

l is the distance between the wheels of the robot [m], u is the forward velocity [m/s] and w

is the angular velocity [rad/s] of the robot.

6.2 Metrics of Flocking Behavior

In desirable flocking behavior, individuals having an ordered formation are supposed to

move cohesively in a common direction with minimal energy consumption. It is required

to define some measures to quantify desirable flocking behavior in mathematical terms.

Hence, we define a number of metrics which will help us in two ways. Firstly, they will

serve as objective measures and quantify the performance of the flocking behavior. Sec-

ondly, they will be utilized in comparing the performance of different behaviors achieved

through setting controller parameters or sensing characteristics to different values than the

default ones.

Order, entropy and average angular velocity metrics are defined to measure the align-

ment, positional order and energy consumption of the group, respectively. The average

forward velocity metric is also utilized as a secondary measure of the energy consumption,

and is more convenient to use in some cases. The success rate metric is defined to indicate

the frequency of successful experiments.

Order (ψ) measures the angular order of the robots [2].

ψ(t) =
1

M

∣

∣

∣

∣

∣

M
∑

k=1

eiθk

∣

∣

∣

∣

∣

(6.5)

where M is the number of robots in the group and θk is the heading of the kth robot at time

t.

Order can have a value between 0 and 1 and is calculated by collecting the heading

value broadcasted by the robots at each time-step. When the group is aligned, and hence,

the system is in an ordered state, the order parameter approaches to 1. When the group

is unaligned, the system is in a disordered state and the order parameter is close to 0. In

desirable flocking behavior, robots are supposed to be in an ordered state, having a high-

order value.
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The steady-state value of order denoted by ψ̄is calculated by taking the average of

Equation 6.5 as:

ψ̄ = 〈ψ(t)〉t (6.6)

Entropy (S) measures the positional disorder of the group [60]. This metric is calculated

by finding every possible cluster combination, finding Shannon’s information entropy of

these clusters and then sum them up. Different clusters are found out by changing the

maximum distance (h) between individuals from 0 to ∞ to consider them to be in the

same cluster. Two robots i and j are considered to be in the same cluster, if and only

if ‖~ri − ~rj‖ ≤ h, where ~ri and ~rj denote the position vectors of the ith and jth robots,

respectively, and ‖.‖ calculates the Euclidean norm. Shannon’s information entropy (H(h))

of a cluster having a maximum distance of h is calculated as:

H(h) =
K

∑

k=1

pk log2(pk) (6.7)

where pk is the proportion of individuals in the kth cluster, and K is the number of clusters

for a given h.

These entropy values are integrated over all possible h’s ranging from 0 to ∞ in order

to find the total entropy (S) of the distribution:

S =

∫ ∞

0
H(h) dh (6.8)

When the absolute value or time evolution of the entropy is of no concern, we utilize

the rate of change of the entropy (dS/dt) in our analysis. Figure 6.5 shows four possible

configurations that a seven-robot flock can attain. In configuration (a), individuals are

placed linearly (the least-desired configuration), having the highest entropy value. Among

configurations (b) and (c), the former has a larger entropy value since the latter is more

ordered. Configuration (d) has the smallest entropy value since it is the most-ordered

configuration for a seven-robot flock. In desirable flocking behavior, the flock is required

to have a high positional order, and hence, a low entropy (S) value.

Entropy is calculated using relative positions of the robots, without the need for a high-

quality stationary overhead camera. A mobile overhead camera is utilized to calculate

entropy using the relative positions of the robots. The relative positions are determined by

utilizing an off-line tracking algorithm using the OpenCV computer vision library.
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(a) (b) (c) (d)

Figure 6.5: Entropy values for four different configurations of seven robots. Entropy de-

creases as the configuration loses its positional order.

Average angular velocity (ωrms) of the flock is the amount of unnecessary energy spent

[41] due to the rotational movement of each individual. It is calculated by taking the aver-

age of the root-mean-square (rms) of the angular velocity of each individual over the entire

operation time (t).

ωrms =
1

M

M
∑

i=1

√

〈ω2
i 〉t

where M is the number of robots in the group and ωi is the angular velocity of robot i.

In the experiments, average angular velocity is calculated using the angular velocity

values broadcasted by each robot at each control time-step. ωrms should ideally be 0 in

desirable flocking behavior to minimize energy consumption.

Average forward velocity (VG) is the average velocity of the geometric center of the

flock, calculated by dividing the distance traveled in the forward direction by the operation

time. The average velocity of a flock with non-rotating (having less tendency to rotate)

robots is high, meaning that the flock will reach a destination point in a shorter time. In

desirable flocking behavior, higher values of average forward velocity are preferred.

Success rate (SR) denotes the ratio of successful runs to the total number of experi-

ments. A run is considered a failure when robots collide with each other or get stuck, and

the cohesiveness of the group is lost.

6.3 Full-fledged Flocking in Constrained Space

The flocking behavior is implemented on Kobots using the default parameter settings given

in Table 6.1. The experiment is conducted with seven Kobots in a constrained environment

having an infinite wall in the path of the robots. In almost all of the trials, Kobots success-

fully adopted a common heading and avoided the wall in their way. It is observed that
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Table 6.1: The default settings for the controller and VHS parameters.
Parameter Default Value

C
on

tr
ol

le
r

weight of heading alignment (α) 0.125
weight of proximal control (β) 0.5

modulation parameter for forward velocity (γ) 1
maximum forward speed of a robot (umax) 7 cm/s

proportionality constant of angular velocity (Kp) 0.5
optimal IR measurement for kin robots (ddes) 3

V
H

S range (R) 20 m
number of VHS neighbors (Nc) 20

nature of noise (ξo) N(µ = θ′r, σ = ±π
2 )

flocking behavior results in three distinct phases of operation: (1) The alignment phase, in

which randomly oriented robots align their headings, keeping proximity with the other

robots at the desired value, resulting in a group possessing high positional and angular

order. Robots mostly perform rotations and hardly advance in this phase; (2) The advance

phase, in which an aligned and positionally-ordered group advances. Robots in this phase

mainly move forward at the maximum speed, keeping a common alignment and proxim-

ity with other robots. (3) The avoidance phase, in which an advancing group faces a wall.

Robots mainly perform rotations to get past the wall and attain a common heading.

Figure 6.6 shows a sample run, in which seven Kobots positioned in random orienta-

tions are allowed to move in an environment having a wall. In the experiment, robots are

allowed to communicate with six VHS neighbors and the VHS is only subject to environ-

mental noise; no additional noise is introduced. The following controller parameter set is

utilized: α = 0.125, β = 1, γ = 1, Kp = 0.5 and umax = 7 cm/s.

The robots begin in the alignment phase (t = 0 s) in which they try to align their heading

with their VHS neighbors’. At the end of this phase, the robots are aligned, and have

positional order, which marks the beginning of the advance phase (t = 6 s). When the

flock arrives at the wall, the avoidance phase starts (t = 16 s). The robots in front sense the

presence of the wall, come almost to a halt and rotate to bounce off the wall. The other

robots try to avoid the robots in front of them by decreasing their speeds and performing

rotations. The robots, after avoiding the wall, once more adopt a common alignment and

return to the advance phase (t = 20s). The same cycle is repeated and the robots bounce off

two additional walls until the end of the experiment.
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Figure 6.6: Self-organized flocking with seven Kobots. Starting from a connected but un-

aligned state, Kobots negotiate a common heading and move as a group in free space,

bouncing off a wall without losing their cohesion.

6.4 Full-fledged Flocking in Open Space

We performed full-fledged flocking experiments in open space to verify CoSS against Kobots.

The experiment was conducted using seven Kobots and seven robots in CoSS, and the

robots were placed in a regular hexagonal formation with random orientation. In the ex-

periments, robots first aligned their headings, which increased the order of the group to

approximately 1 shown in Figure 6.7(a); then they started to advance. During the ex-

periment, the entropy of the group did not change considerably, which shows that the

positional order of the group is maintained throughout the entire operating time as shown

in Figure 6.7(b).
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Figure 6.7: Self-organized flocking in open space with seven Kobots and seven robots in

CoSS. (a) Plot of order. (b) Plot of entropy. Five simulations are performed and the mean

values are plotted together with error-bars indicating ± one standard deviation of the value

from the mean.

66



We note that the results obtained from Kobots and CoSS are similar for both the tran-

sient and steady-state phases of the behavior shown in Figures 6.7(a) and 6.7(b) verify-

ing that CoSS provides a realistic simulation of flocking in open environments for Kobots.

Hence, it can be judged that CoSS may safely be utilized to simulate the flocking behavior.

CoSS will be utilized especially when experiments are to be performed with a large group

of robots.

6.5 Full-fledged Flocking with a Large Group in Open Space

In order to demonstrate the performance of the flocking behavior with a large group, we

utilized 1000 robots in CoSS, as shown in Figure 6.8. We set the controller parameters as:

α = 0.125, β = 2, umax = 7 cm/s and Kp = 0.5, and the VHS parameters as: R = 20m,

η = 3 and N = 10 in the experiment. These parameters are regarded as the default settings

of the flocking behavior and under these settings we obtained robust and scalable flocking

of the group. However, in the following chapters, in order to investigate the robustness

and the performance of the flocking behavior, we will evaluate it under different controller

parameters and VHS characteristics.
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(a) (b)

Figure 6.8: Full-fledged flocking with a large group. (a) The screenshot at the beginning of

the simulation. (b) The screenshot when t = 2000 s. The total displacement of the flock is

approximately 110 m.
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CHAPTER 7

ANALYSIS OF VARIANT BEHAVIORS AND

OPTIMIZATION OF THE CONTROLLER

PARAMETERS

In this chapter, we first set the weight of the heading vector (α), weight of the proximal

control vector (β) and the modulation parameter (γ) to their extreme values to generate

several variants of the flocking behavior and analyze them in advance, alignment and avoid-

ance phases using seven Kobots. We also perform advance-phase experiments using CoSS

for the sake of comparison.

We then optimize the weight of the proximal control vector, the maximum forward

velocity and the proportional for an aligned, cohesive and rapid flocking motion using 100

robots in CoSS and seven Kobots.

7.1 Analysis of Variant Behaviors

Specifically, in order to understand the effects of the different components of flocking, we

created four variants of flocking by setting some of the controller parameters to their ex-

treme values. In this way, we gained crude knowledge of the performance of the flocking

behavior in extreme cases.

The variants were created by setting the weight of the heading vector (α), the weight of

proximal-control vector (β), and the modulation parameter (γ) to their extreme values. In

this way, we attained four different variants as listed below:

• Proximal Control with Constant Forward Velocity (Pconst)

In this variant, only proximal control is performed and the forward velocity is not
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modulated. α is set to 0, β to 1, and γ to 0.

• Proximal Control with Modulated Forward Velocity (Pmod)

In this variant, the forward velocity is modulated with γ set to 1. α is again 0 and β

is 1, as in Pconst.

• Heading Alignment and Proximal Control with Constant Forward Velocity (HP const) This

variant adds a heading alignment term. α is set to 0.125 and β is set to 1. γ is 0 as in

Pconst, which means that the forward velocity is not modulated.

• Heading Alignment and Proximal Control with Modulated Forward Velocity (HPmod) In

this variant, α is set to 0.125, β is set to 1 and the forward velocity is modulated with

γ set to 1.

The variants of the flocking behavior were evaluated in three phases. The advance- and

alignment-phase experiments were conducted in free space, while the avoidance-phase ex-

periments were conducted in an environment that had a wall blocking the path of the

robots. The experiments were conducted using seven Kobots and were repeated ten times.

The advance-phase experiment was also conducted in CoSS with seven robots and was re-

peated ten times. In all of the experiments, the robots were initially put into hexagonal

formation having 25 cm spacing between their centers to ensure that each robot was in the

IR sensing range of at least one other robot. The experiments were conducted with the

default parameter set, as shown in Table 6.1, unless otherwise stated.

7.1.1 The Advance-Phase

We started evaluating the variant behaviors in advance-phase, since this is the only phase

in which we can compare all of the variant behaviors together. In this phase, the robots

were aligned and moving in a common direction at a relatively high speed while maintain-

ing the cohesion of the group.

In the experiments, the robots were initially aligned and then left to move for 15 s. The

performance of Pconst, Pmod, HPconst and HPmod behaviors were evaluated using order,

entropy, average forward velocity and average angular velocity metrics.

The steady-state value (the converged value at t = 15 s) of each metric attained in ten

experiments are presented as a box-and-whisker plot, showing the results of the CoSS and

Kobot experiments next to each other. The order and entropy values are plotted in Fig-

ures 7.1(a) and (b). The normalized average forward velocity and normalized average
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angular velocity values are depicted in Figures 7.1(c) and (d), respectively. The normaliza-

tion of the average forward velocity and average angular velocity were performed using

the maximum attainable values for the average forward velocity and average angular ve-

locity as 0.07m/s and 0.84rad/s, respectively. The snapshots of sample runs are shown in

Figure 7.1(e).

Pconst behavior results in a disordered state having a low-order value (∼ 0.2) as seen

in Figure 7.1(a). The reason for this is the lack of heading-alignment behavior, which

makes it impossible for the robots to preserve their common heading. The cohesiveness

of the group is also not preserved, as is evident from the high entropy values (∼ 1) seen

in Figure 7.1(b); hence, each robot moves independently unless they collide with each

other and get stuck, as seen in Figure 7.1(e). This is due to the fact that the robots cannot

modulate their forward speed, which stays at the maximum value (umax) at all times. Since

the cohesiveness of the group is lost, it is not logical to say anything about the average

forward velocity of the group. The noisy proximal measurements due to the IR sensors

cause the robots to perform extensive rotations resulting in high average angular velocity

values (∼ 1), as shown in Figure 7.1(d).

The second variant, Pmod, presents quite a different behavior. The robots, aiming only

to control their inter-distance and able to modulate their forward velocity, can indeed re-

main as a group as shown in Figure 7.1(e), is as evident with a considerably lower entropy

value (∼ 0.4) than the previous variant, seen in Figure 7.1(b). In order to preserve cohesion,

the robots perform so many rotations due to the noisy IR sensors that their forward speeds

approach to zero, resulting in a cohesive but stationary group, having approximately zero

average forward velocity as shown in Figure 7.1(c) and high average angular velocity val-

ues depicted in Figure 7.1(d). However, the robots can still neither preserve their common

heading nor adopt a new heading due to the absence of alignment behavior as shown in

Figure 7.1(a).

The HPconst and HPmod variants perform significantly better in all metrics with the

help of the heading-alignment behavior. In both cases, robots are capable of maintaining

their alignment perfectly, as indicated by an order value of 1, and keeping their cohesive-

ness, attaining a low entropy value (∼ 0.4), as seen in Figures 7.1(a) and (b), respectively.

Alignment behavior balances the effect of proximal-control behavior so that robots per-

form rotations less frequently, resulting in low average angular velocity values (∼ 0.4), as

depicted in Figure 7.1(d), and quite high average forward velocity values (∼ 0.9) as shown

in Figure 7.1(c). It can also be observed in Figure 7.1(e) that the two variants performed
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successfully in the advance-phase experiment.

Only the HPconst and HPmod behaviors can be regarded as successful in the advance-

phase, since these are the variants in which the robots were able to move forward main-

taining a common heading and keep the cohesiveness of the group. Therefore, we will

evaluate only the HPconst and HPmod variants for their alignment and avoidance perfor-

mance to determine the best among the two.

In the above discussions, we have not addressed the results of CoSS and Kobot experi-

ments explicitly, since it is evident from the figures that the results are in close agreement,

both qualitatively and quantitatively.

7.1.2 The Alignment-Phase

The alignment-phase is the phase in which robots are unaligned and try to assume a com-

mon orientation by performing rotations most of the time. Meanwhile, the robots have

to avoid collisions with their neighbors in close proximity. This experiment is expected

to accentuate the necessity of velocity modulation, existing only in HPmod among the two

variants that successfully completed the advance-phase experiment.

In the experiments, robots were placed with random orientations and left to operate for

5 s, which is enough time to adopt a common heading, if they could. Order and entropy

metrics were utilized to measure the performance of the HPconst and HPmod variants.

Figures 7.2(a) and 7.2(b) depict the time evolution of the order and entropy values of

two sample runs, respectively. The snapshots of these runs are shown in Figure 7.2(c).

In the HPmod behavior, robots attained a common orientation in approximately 4s re-

sulting in a high-order value (∼ 1), as shown in Figure 7.2(a). A sudden increase was

observed in entropy, indicating that the flock expanded while the robots were attaining a

common heading. As soon as order reached a high value (∼ 0.8), entropy decreased and

settled to a relatively low value (∼ 0.5) as shown in Figure 7.2(b). Out of ten experiments,

HPmod behavior attained a success rate of 100%. A snapshot of one of the runs is shown in

Figure 7.2(c).

Things changed in the case of the HPconst variant. The robots were not able to attain a

common orientation, which kept the order low (∼ 0.4), as shown in Figure 7.2(a). This was

mainly due to the fact that the robots were not able to modulate their forward speed; hence,

they collided with each other and got stuck. These colliding robots formed independent

stationary or moving clusters, increasing entropy continuously, as shown in Figure 7.2(b),
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Figure 7.1: Advance-phase experiments. (a) Plot of order. (b) Plot of entropy. (c) Plot of

normalized average forward velocity. (d) Plot of normalized average angular velocity.

(e) Snapshots of the initial and final configurations of Kobots. The ends of the boxes and

the horizontal line in between correspond to the first and third quartiles and the median

values, respectively. Outliers are indicated by a plus sign.
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Figure 7.2: The results of the alignment-phase experiment. (a) Time evolution of order.

(b) Time evolution of entropy. (c) Snapshots of the initial and final configurations of Kobots.

and preventing the flock from attaining a common heading. An independently moving

and a stationary group of robots can be observed in Figure 7.2(c). Out of ten experiments,

HPconst failed in all of them, resulting in a success rate of 0%.

The alignment-phase experiments clearly revealed that the HPmod variant is superior

to the HPconst variant due to the fact that the forward speed of the robots is modulated

in HPmod. Modulation has crucial importance in avoiding robots or obstacles, which will

become clearer in the avoidance-phase experiment.

7.1.3 The Avoidance-Phase

In the avoidance phase, robots having a common orientation and moving cohesively face

an infinite wall in their path. They bounce off that wall, retaining their alignment and

cohesiveness. At the same time, the robots avoid collisions with each other. These experi-

ments are also expected to demonstrate the importance of modulation in velocity as in the

alignment-phase experiment.

In the avoidance-phase experiments, robots were initially placed against an infinite wall

and had a common orientation. They were left to move for 15 s, during which they faced
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a wall, and tried to bounce off and move away from it. Order and entropy metrics were

utilized during the analysis of the HPconst and HPmod variants.

Figures 7.3(a) and 7.3(b) present the time evolution of the order and entropy values of

a sample run for the two behaviors, respectively. The snapshots of these runs are shown in

Figure 7.3(c).

In the case of the HPmod variant, the robots preserved their alignment before and after

they encountered with the wall, keeping the order high (∼ 1), as depicted in Figure 7.3(a).

The entropy graph shown in Figure 7.3(b) has a hump. Entropy first increases when the

robots encounter the wall, and then returns to its initial value, which indicates that the

group remains cohesive after bouncing off the wall. The HPmod variant performed suc-

cessfully in all of the ten runs, attaining a 100% success rate. One of these runs is shown in

Figure 7.3(c).

The performance of the HPconst variant is similar to its performance in the alignment-

phase experiment. Due to lack of modulation of forward velocity, the robots get stuck

at the wall or collide with each other as shown in Figure 7.3(c), preventing the group

from preserving its order as seen in Figure 7.3(a) and staying cohesive, which results in

a continuous increase of entropy as shown in Figure 7.3(b). Out of ten runs, the HPconst

variant had a success rate of 0%.

The results of the experiments in this phase revealed that modulation of forward ve-

locity is a must when avoidance is concerned and this ability is only present in the HPmod

variant.

The experiments reveal that the HPmod variant outperforms the other behaviors and

satisfies the requirements of desirable flocking behavior. Its success depends on two factors.

First is the heading alignment, which adjusts the orientation of the robots to a common

value. Second is modulation of forward velocity, which prevents collisions among the

robots.

7.2 Optimization of the Controller Parameters

Having analyzed the variants of the flocking behavior and decided on the HPmod variant,

in this section we optimize the controller parameters for an aligned, cohesive and rapid

flocking motion.

In the experiments, the weight of the proximal-control vector (β), maximum forward

speed (umax) and proportional gain (Kp) parameters were set to various values and their
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Figure 7.3: The avoidance-phase experiment. (a) Plot of order. (b) Plot of entropy. (c) Snap-

shots of the initial and final configurations of Kobots.

effects were analyzed using order, entropy and average forward velocity metrics. The ex-

periments were conducted with CoSS using 100 robots and repeated 20 times. The same

experiments were also conducted using seven Kobots and repeated 3 times. In the ex-

periments, robots had random orientations having a regular hexagonal formation with a

center distance of 25 cm. In this way, connectivity of the group was ensured, meaning that

each robot was in the IR sensing range of at least one other robot. The experiments were

conducted with the default parameter set, as shown in Table 6.1, unless otherwise stated.

7.2.1 Weight of Proximal-Control Behavior

The weight of proximal-control behavior (β) determines the relative strength of the two

behaviors when the weight of alignment behavior (α) is assumed to be constant. The α pa-

rameter favors heading alignment and increases the average forward velocity of the flock,

but does not consider the cohesiveness. In contrast, the β parameter favors proximal con-

trol and decreases the average forward velocity of the flock; however, it maintains the

cohesiveness. In this section, we try to find an optimum α and β combination which will
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preserve the cohesiveness of the flock while keeping the average forward velocity at high

values.

In the experiments, we took α as constant and changed β to various values to find its

optimum. The plots of CoSS and Kobot experiments are shown next to each for comparison

purposes. Figures 7.4(a) and 7.4(b) show the time evolution of order. Time evolution of

rate of change of entropy is depicted in Figures 7.5(a) and 7.5(b). Figures 7.6(a) and 7.6(b)

show the average forward velocity of the group as a box-and-whisker plot.

For CoSS experiments conducted with 100 robots, it is seen in Figure 7.5(a) that increas-

ing β, increases dS/dt having a value of 0 when β = 0.5. VG makes a peak as β increases,

then VG decreases continuously as shown in Figure 7.6(a). In all of the β values, order

reaches approximately 1 regardless of the choice of β as depicted in Figure 7.4(a). From

these results, we can conclude that for a large group, the optimum value of β is 0.5, since

at this value, dS/dt = 0 meaning that the group preserves its cohesiveness and VG has its

maximum value.

For the experiments performed with 7 Kobots, it is observed in Figure 7.5(b) that dS/dt

is approximately 0 when β = 1 and β = 2. VG has a similar trend as in the 100-robot

case, having its maximum when β = 0.5 as shown in Figure 7.6(b). Order again reaches

approximately 1 for all of the tested β values, as depicted in Figure 7.4(b). From these

results, we can conclude that the optimum value of β is 1.0 for a small group. This is the

value which both ensures cohesiveness of the flock (dS/dt = 0) and provides a moderate

speed. β being different in 100-robot and 7-robot case is an interesting result that might be

a consequence of differences in the dynamics of large and small groups.
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Figure 7.4: Plot of order in β experiments. (a) CoSS experiments. (b) Kobot experiments.

Error-bars are not shown for clarity.
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Figure 7.5: Plot of rate of change of entropy in β experiments. (a) CoSS experiments.

(b) Kobot experiments. Error-bars indicate ±1 standard deviation from the mean. Error-

bars in (b) are not shown for clarity.

7.2.2 Maximum Forward Speed

Maximum forward speed (umax) determines the maximum attainable forward speed (u) of

a robot. Experiments were conducted to determine the optimal value of umax that maxi-

mizes the average forward velocity of the group while maintaining its cohesiveness.

In the experiments, we varied umax and determined its effect on the flocking behavior.

For the Kobot experiments, umax was only set to 4 and 7 cm/s due to mechanical limitations

of the DC motors. The results of CoSS and Kobot experiments are presented next to each

other for comparison purposes. Figures 7.7(a) and 7.7(b) show time evolution of order.

Time evolution of the rate of change of entropy is shown in Figures 7.8(a) and 7.8(b).

Average forward velocity is represented as a box-and-whisker plot in Figures 7.9(a) and

7.9(b).

It is observed in Figures 7.7(a) and 7.7(b) that for all of the tested values of umax, the

robots attain an order value of approximately 1 at approximately equal times. dS/dt is

observed to be 0 when umax is 4 or 7 cm/s both in CoSS and Kobot experiments as shown

in Figures 7.8(a) and 7.8(b)). It is observed in Figures 7.9(a) and 7.9(b) that increasing

umax increases the average forward velocity of the group. As a result, we set the value

of umax to 0.7 m/s which ensures the cohesion of the flock, results in a moderate average

forward velocity and is the maximum physically realizable speed in Kobots.
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Figure 7.6: Plot of average forward velocity in β experiments (a) CoSS experiments.

(b) Kobot experiments. The ends of the boxes and the horizontal line in between corre-

spond to the first and third quartiles and the median values, respectively. Outliers are

indicated by ‘+’ signs.

7.2.3 Proportional Gain

Robots have two velocity components. The first is the forward speed (u), determined by

the umax parameter. The second is the angular velocity (ω), determined by a proportional

controller having a gain of Kp. The optimum value of the umax parameter was determined

in the previous section, and in this section, we will find the optimum value of Kp. When

Kp is large, a small deviation from the desired direction causes rapid rotations in robots,

eventually decreasing the average forward velocity of the flock. However, when Kp is

small, the robots become sluggish in their rotations, resulting in a high average forward
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Figure 7.7: Plot of order for umax experiments. (a) CoSS experiments. (b) Kobot experi-

ments. Error-bars are not shown for clarity.
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Figure 7.8: Plot of rate of change of entropy for umax experiments. (a) CoSS experiments.

(b) Kobot experiments. Error-bars indicate ±1 standard deviation from the mean. Error-

bars in (b) are not shown for clarity.

velocity but decreased responsiveness. Experiments were conducted to investigate these

counter-effects and find an optimal value of Kp.

In these experiments, Kp was varied and their results for CoSS and Kobot experiments

are presented next to each other. Time evolution of order is depicted in Figures 7.10(a)

and 7.10(b). Rate of change of entropy is plotted in Figures 7.11(a) and 7.11(b). Average

forward velocity is plotted as a box-and-whisker plot and shown in Figures 7.12(a) and

7.12(b).

It is observed in Figures 7.10(a) and 7.10(b) that order reaches a steady-state value of

approximately 1 for all of the tested values of Kp. dS/dt is 0 when Kp is 0.5 or 0.9 as seen

in Figures 7.11(a) and 7.11(b). For CoSS experiments, VG shows a decreasing trend as Kp

increases shown in Figure 7.12(a) which is not the same in Kobot experiments shown in

Figure 7.12(b) such that Kobots cannot attain a high VG when Kp is 0.1 unlike the CoSS

counterpart. This is due the fact that at this value ofKp, flock cannot stay cohesive (dS/dt >

0). Robots in a small group move away from each other much easily than robots in a large

group, hence; VG of Kobots is considerably lower than VG of robots in CoSS. From these

results, we can conclude that the optimal value of Kp is 0.5 which makes the flock stay

cohesive and attain a moderate average forward velocity.

The experiments conducted in this chapter revealed important facts. First, heading-

alignment behavior is crucial in attaining a common orientation among the robots. Noisy

IR sensors are not sufficient for this purpose. Second, when robots are in need of avoiding

an object, they should have their forward velocities modulated; otherwise, they collide
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Figure 7.9: Plot of average forward velocity for umax experiments. (a) CoSS experiments.

(b) Kobot experiments. The ends of the boxes and the horizontal line in between corre-

spond to the first and third quartiles and the median values, respectively. Outliers are

indicated by ‘+’ signs.

with the other robots or obstacles and usually get stuck. Third, there is an optimum set of

β, umax and Kp parameters of flocking that result in desirable flocking behavior. In the next

chapter, we will consider the effect of VHS characteristics on the flocking behavior.
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Figure 7.10: Plot of order forKp experiments. (a) CoSS experiments. (b) Kobot experiments.

Error-bars are not shown for clarity.
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Figure 7.11: Plot of rate of change of entropy for Kp experiments. (a) CoSS experiments.

(b) Kobot experiments. Error-bars indicate ±1 standard deviation from the mean. Error-

bars in (b) are not shown for clarity.
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Figure 7.12: Plot of average forward velocity for Kp experiments. (a) CoSS experiments.

(b) Kobot experiments. The ends of the boxes and the horizontal line in between corre-

spond to the first and third quartiles and the median values, respectively. Outliers are

indicated by ‘+’ signs.
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CHAPTER 8

ANALYSIS OF FLOCKING BEHAVIOR

UNDER DIFFERENT VHS

CHARACTERISTICS

The performance of flocking depends highly on the sensory characteristics of the VHS.

Therefore, in this chapter, we study the performance of flocking under different parameter

settings of the virtual heading sensor: (1) the amount and nature of noise of the digital

compass, (2) the number of VHS neighbors and (3) the range of wireless communication.

We specifically varied the magnitude (η) and direction (ξ) of the noise vector, the com-

munication range (R) and the number of VHS neighbors (N ). The experiments were con-

ducted with 100 robots in CoSS placed with random orientations in a regular hexagonal

formation having 25 cm center spacing to ensure initial connectivity of the group. The

default parameters as shown in Table 6.1 were utilized in the experiments unless other-

wise stated and the experiments were repeated 10 times in each case. The number of VHS

neighbors experiments were also performed with seven Kobots and were repeated 3 times.

8.1 Heading Noise

The digital compass utilized in the VHS is susceptible to noise due to the presence of fer-

rous metals in the environment when operated indoors. This noise is apt to affect the

performance of flocking considerably. Therefore, in this section, we try to investigate the

effect of heading noise in the virtual heading sensor.

Heading noise is modeled using the vectorial noise model [25], as shown in Equa-

tion 5.1. In the vectorial noise model, noise is represented by two components, one being

magnitude (η) and the other being angle (ξ). Two experiments were conducted to deter-
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Figure 8.1: Heading noise experiments. (a) Plot of order for different levels of noise (η)

when ξ is uniformly distributed in [−π, π]. (b) Plot of the steady-state value of order for

Gaussian noise N(0, π/2), N(0, π) and uniformly distributed noise in [−π, π].

mine the effect of these two components. In both of the experiments, the number of VHS

neighbors is set to 1 to accentuate the effect of heading noise.

8.1.1 Magnitude of Noise

In the first experiment, we investigated the effect of magnitude (η) by assuming that (ξ)

was uniformly distributed in [−π, π] and varied η. Time evolution of order for various η

values is plotted in Figure 8.1(a).

Results of the experiment reveal that even for rather high levels of noise (η < 15), order

of the group converges to rather high values, though the speed of convergence is slowed

as shown in Figure 8.1(a).

8.1.2 Nature of Noise

In the second experiment, we investigated the effect of the nature of noise by changing the

type of distribution of the angle as ξ ∈ [−π, π] = N(0,∞), ξ ∈ N(0, π/2) or ξ ∈ N(0, π),

whereN(x, y) denotes a Gaussian distribution having a mean of x and a standard deviation

of y. η was varied between 0 and 20 for each distribution.

The steady-state values of order are plotted in Figure 8.1(b). The values are calculated

by averaging order in the last 5000 time-steps of the experiments. The results indicate that

order stays above 0.8 for η values smaller than 5 when uniform or Gaussian distributions

(N(0, π)) are utilized. However, in case of the Gaussian distribution denoted by N(0, π/2),

order is approximately 1 for all the tested η values.
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Two experiments reveal that flocking behavior is robust against sensory noise, both

in cases of Gaussian and uniform distributions. In the rest of the experiments, noise is

assumed to be Gaussian (N(0, π/2)), with an η value of 3.0 unless otherwise stated.

8.2 Number of VHS Neighbors

In these experiments, we varied number of VHS neighbors and investigated its effects on

flocking using order, entropy and average forward velocity metrics. Two sets of experi-

ments were conducted. In the first set, 100 robots were utilized in CoSS and in the second

set, seven Kobots and seven robots in CoSS were utilized.

8.2.1 Large Group

The experiment was conducted using 100 robots in CoSS. Time evolution of order is plotted

in Figure 8.2(a), and its steady-state value is shown in Figure 8.2(b). Time rate of change of

entropy and average forward velocity are shown in Figures 8.3(a) and 8.3(b). Steady-state

order is calculated by averaging the last 5000 time-steps.

An increase in N improves the settling time of order as shown in Figure 8.2(b) and it

also increases the average forward velocity of the flock depicted in Figure 8.3(b). The rate

of change of entropy is not affected considerably which is approximately 0 for all the tested

values of N as seen in Figure 8.3(a). It is observed in Figure 8.2(b) that number of VHS

neighbors positively affects system’s robustness to noise. An η value of 15 decreases order

to 0.2 when N = 1, whereas order is approximately 0.8 when N = 3.

8.2.2 Small Group

The experiments were conducted using seven Kobots and seven robots in CoSS. Order,

entropy and average forward velocity values in Kobot experiments are plotted in Fig-

ures 8.4(a), 8.4(b) and 8.4(c), respectively. Order, entropy and average forward velocity

values for CoSS experiments are plotted in Figures 8.5(a), 8.5(b) and 8.5(c), respectively.

Similar to the 100-robot case, it is seen in Figures 8.4(a) and 8.5(a) that for all of the

tested N values, order approaches to 1 quite rapidly. The latency of the 1-neighbor case

in settling time is much less significant in seven robots than in 100 robots, since seven

robots assume a common heading more rapidly than hundred robots. The rate of change

of entropy is not affected significantly byN as shown in Figures 8.4(b) and 8.5(b). Average

forward velocity increases with increasing N , however the increase is less apparent than
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Figure 8.2: Number of VHS neighbors experiment with 100 robots in CoSS. (a) Plot of

order. (b) Plot of the steady-state value of order. Uniformly distributed noise is assumed

with η = 3 to accentuate the results.
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Figure 8.3: Number of VHS neighbors experiment for 100 robots in CoSS. (a) Plot of rate

of change of entropy. (b) Plot of average forward velocity. The ends of the boxes and

the horizontal line in between correspond to the first and third quartiles and the median

values, respectively. The outliers are denoted by ‘+’ signs.
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Figure 8.4: Number of VHS neighbors experiments with seven Kobots. (a) Plot of order.

(b) Plot of rate of change of entropy. (c) Plot of average forward velocity. The ends of the

boxes and the horizontal line in between correspond to the first and third quartiles and the

median values, respectively. The outliers are indicated by ‘+’ signs.
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Figure 8.5: Number of VHS neighbors experiment with seven robots in CoSS. (a) Plot of

order. (b) Plot of rate of change of entropy. (c) Plot of average forward velocity. The ends

of the boxes and the horizontal line in between correspond to the first and third quartiles

and the median values, respectively. The outliers are indicated by ‘+’ signs.

the 100-robot case, since the direction of motion in a 7-robot-flock is much more prone to

disturbances by momentary changes in the direction of individual robots as seen in Figures

8.4(c) and 8.5(c).

8.3 Range

In this section, we investigate the effect of range on the performance of flocking. Range

values (R) were varied such that a local (40 cm), an almost global (100 cm) or a global

range (200 cm) was attained for 100 robots. The number of VHS neighbors was taken as

the mean value obtained from Prowler experiments (shown in Figure 5.2(b)), which was 5

for 40 cm, 25 for 100 cm, 22 and 20 for 200 cm.

Order and rate of change of entropy values are plotted in Figures 8.6(a) and 8.6(b)

for various R. The size of the largest cluster is depicted in Figure 8.3. It is observed in
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Figure 8.6(a) that order converges to 1 for R values of 1.0 and 2.0 m. dS/dt is also 0 for

these values indicating a cohesive group as shown in Figure 8.6(b) which is also evident

in Figure 8.3.

As a conclusion, we can say that, size of the largest cluster approaches to the size of the

group when the range of communication tends to be global. We do not consider this as a

limitation since the range of VHS is 20 m in indoor environments which is well enough to

cover thousands of robots in its range.
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Figure 8.6: Range experiments. (a) Plot of order. (b) Plot of rate of change of entropy.

VHS characteristics have notable effects on the performance of flocking. First, flocking

is quite robust against sensing noise. Even for very high noise values, robots can still attain

a common heading and advance. Second, a large number of VHS neighbors increases the

robustness of flocking against sensing noise. Third, locality in the communication range

causes segmentation in the group, resulting in several independently-moving aligned and

cohesive clusters. The range should be global in order to attain a single cluster.
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CHAPTER 9

MODELING PHASE TRANSITION IN

FLOCKING

"Make everything as simple as possible, but not simpler."

— Albert Einstein

It was observed in the experiments related to heading noise in Section 8.1 and num-

ber of VHS neighbors in Section 8.2 that the unaligned-to-aligned transition of the robots

resembles phase transition observed in most physical systems. Hence, in this chapter, we

model the phase transition of flocking.

Modeling can be described as an abstraction of a system that is used to predict its re-

sponse under certain conditions13. Specifically, in our case, the model is supposed to pre-

dict phase transition characteristics of flocking as a function of heading noise and VHS

neighbors, yet simple enough to be treated analytically.

In this study, we extend an existing particle-based model, which is the vectorial net-

work model, and utilize it in modeling the phase transition of flocking. The vectorial

network model (VNM) [6] is a simple particle-based model proposed to analyze the pre-

dictions of the SDP model, utilizing stationary particles with random neighbors [2]. The

VNM predicts similar phase transition characteristics to the SDP model. Under certain con-

ditions, VNM can be treated analytically to show the existence of phase transition which is

not present in any of the similar models.

13http://en.wikipedia.org/wiki/Mathematical_model. Last visited: April 2008.

90



Figure 9.1: Plot of magnetization as a function of scaled temperature for five different mag-

netic materials. Reproduced from [5].

9.1 Phase Transition in Physical Systems

Phase transition14 is a widely-observed phenomenon in physical systems in which systems

transform from one phase to another under the influence of a certain physical parameter,

such as pressure or temperature. Phase transition can be categorized as: being first- or

second-order.

First-order phase transition is the most frequent one encountered in our daily lives.

Boiling of water, melting of ice and sublimation of naphthalene are some typical exam-

ples. In this type of transition, there is an abrupt or discontinuous change in the phase.

Second-order phase transition is not witnessed frequently. Ferromagnetic and super-fluid

transitions are two examples of this type of phase transition. In a second-order phase tran-

sition, phase change is continuous, as shown in Figure 9.1, an abrupt jump is not observed.

At this stage, it is interesting to note the similarities between Figures 9.1 and 9.2 despite

the great differences in the systems they represent. Figure 9.1 depicts magnetization as

a function of reduced temperature for five different magnetic materials, and Figure 9.2

shows order as a function of η for various number of VHS neighbors attained by 100 robots

in CoSS. This similarity is a clear indication of phase transition in unaligned-to-aligned

transition of robots under the heading noise. Furthermore, the transition is also argued to

be of second-order due to its continuous nature.

A similar observation was also reported by Baldassarre [4] in a recent study. In this

study, robots having random orientations were connected to each other physically. They

14http://en.wikipedia.org/wiki/Phase_transition. Last visited: April 2008.
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Figure 9.2: Plot of order. Experiments are conducted in CoSS using 100 robots for various

number of VHS neighbors. Each experiment is repeated 10 times. Steady-state value of

order is calculated by averaging its value for the last 5000 time-steps. Error-bars indicate

∓1 standard deviation from the mean.

were left to rotate and attain a common direction of motion and move in this direction.

Robots started pushing and pulling their neighbors while measuring the net force exerted

on their bodies, and finally, attained a common orientation and moved as a group. Results

of the experiments revealed that unaligned-to-aligned transition of the robots under the

influence of sensing noise showed second-order phase transition characteristics.

Order is utilized to study the second-order phase transition phenomenon. It represents

the state of a system, such as magnetization, against an independent variable, such as tem-

perature, in a system undergoing ferromagnetic phase transition, as shown in Figure 9.1.

At temperatures greater than the critical temperature, indicated by Tc in the figure, the sys-

tem has a low-order value, indicating a paramagnetic (un-magnetized) system. However,

when the temperature is lowered gradually, order increases continuously, showing second-

order phase transition characteristics. The system reaches an ordered state at temperatures

less than the critical temperature, indicated by a vertical line in the figure. The temperature

at which the transition occurs is called the Curie temperature (Tc)15.The details of this phe-

nomena is not fully understood and remains as an open problem in statistical physics [5].

15http://en.wikipedia.org/wiki/Critical_phenomena. Last visited: April 2008.
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9.2 Vectorial Network Model

The vectorial network model models the phase transition of the orientation of a group ofM

stationary particles placed evenly in a 2-D square lattice. The particles are only allowed to

change their orientations, i.e., modify their heading vectors; H(t) = {~h1(t),~h2(t), · · · ,~hM (t)}
where ~hj(t) = eiθj(t) is the heading vector of the jth particle at time t, having an angle of θj

and a magnitude of unity.

The heading vector of each particle is updated to the average of the heading vectors of

its neighbors with the addition of a noise term. The vectorial noise model [25] is utilized in

the model. The update equation with the vectorial network model is:

~hj(t+ 1) =
1

N

N
∑

k=1

eiθk(t) + ηeiξ(t) (9.1)

where N is the number of neighbors of each particle. η is the noise coefficient, and ξ is a

delta-correlated random variable16 uniformly selected from [−π, π].

The main difference of the VNM from other models is the way neighbors are deter-

mined as illustrated in Figure 9.3. In the VNM, neighbors are picked up from either the

nearest particles or any random particle in the group. The degree of locality is determined

by a parameter denoted by p. When p = 0, neighbors are all picked up randomly from the

group and when p = 1, neighbors are selected from the nearest particles only.

VNM predicts a transition from an unaligned state to an aligned state of particles when

the noise parameter (η) is decreased below the critical noise value (ηc ≃ 4.5), as shown in

Figure 9.4. The phase transition is only observed at a non-zero noise value when there

exists at least one random neighbor in the neighboring set of a particle, as observed when

p = 0.99 in Figure 9.4. This is due to the fact that long-range interactions are essential to

converge to an ordered state in one- or two-dimensional systems in the presence of noise,

as stated by Mermin-Wagner in [20]. In the VNM, long-range interactions can only be made

possible by introducing a random distant particle (p < 1), since the particles are stationary.

However, in the SDP model, long-range interactions are facilitated by the movement and

diffusion of particles that introduce long-range interactions; hence, a phase transition at a

non-zero noise value is still possible for locally interacting particles [23].

16A random variable is called delta-correlated when its autocorrelation function is a Dirac-delta function,

meaning that the current value of the random variable does not depend on its past values. It is also called

white-noise, and it does not depend on the way the random variable is distributed. http://en.wikipedia.

org/wiki/White_noise. Last visited: April 2008.
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Figure 9.3: Neighbor selection in the vectorial network model. Three possible neighbor

configurations for p = 7/8 when the number of neighbors (N ) is set to be 8. Reproduced

from [6].

Being a minimalist model, the VNM can successfully model the phase transition phe-

nomena of simple systems and can be treated analytically as well. However, due to its

simplicity, it cannot be used to directly to model phase transition of flocking. The main

reason for this failure is the lack of a proximal-interaction term in the VNM to account for

the close-range interactions among the particles present in the flocking behavior. Close-

range interactions make the robots sluggish so that they have a hard time turning to a

desired direction. The particles in the VNM can turn to a desired direction freely, without

any constraints.

9.3 Stiff Vectorial Network Model

We extended the VNM model to model phase transition of flocking. We add a term, called

the persistence term, to the VNM and call the resulting model S-VNM. The persistence term

consists of a coefficient (κ) multiplied by the current heading of the particle to account for

the current heading when the desired heading is being calculated.

We utilized the vectorial noise model [25], in which noise is considered as a vector

having a random direction and a variable magnitude that is added to each heading vector

of the neighbors of a particle. Neighbors are selected randomly from the group (p = 0) due

to two reasons: (a) The virtual heading sensor picks up neighbors randomly from the group

regardless of the topology of the neighbor as shown in the receive topology experiment,

Figure 5.3(b). (b) An analytical solution of the model is only possible in case of random
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Figure 9.4: Phase transition diagram predicted by the VNM with p = 0 (solid line) and

p = 0.99 (dashed line). The simulations are carried out using 2 × 104 particles with 15

neighbors. η denotes the magnitude of noise, and γ is the order parameter of the group.

Adapted from [6].

neighbors. S-VNM consists of M stationary particles placed in a 2-D lattice. The particles

can modify their headings vectors H(t) = {~h1(t),~h2(t), · · · ,~hN (t)}, where ~hj(t) = eiθj(t) is

the heading vector of the jth particle at time t having an angle of θj and a magnitude of

unity.

~hj(t+ 1) = κeiθj(t) + λ

Nc
∑

k=1

eiθk(t) + η

Nc
∑

k=1

eiξk(t) (9.2)

where Nc is the number of neighbors selected randomly from the group. Nc is chosen to be

the same for all particles. λ is the interaction coefficient and η is the noise coefficient. ξk is

a delta-correlated random variable uniformly selected from [−π, π].

The steady-state characteristics of the model are investigated using the time-averaged

version of the order (ψ̄) as shown in Equation 6.6. Another important point related to the

steady-state characteristics of the system is the critical noise coefficient (ηc). The critical

noise coefficient is the value of the noise coefficient (η) when order (ψ) is equal to 0.2. At

this value at which the system changes state. For η values greater than ηc, the system is

unaligned and in a disordered state. For η values smaller than ηc, the system is aligned,

and in an ordered state.

The effect of the persistence coefficient (κ) is shown by simulating the S-VNM in Matlab

with 100 particles, each having one neighbor as shown in Figure 9.5(a). Each simulation

is repeated three times for 10000 simulation time-steps, and ψ̄ is calculated by averaging

order in the last 5000 time-steps.

It is observed that an increase in κ flattens the order curve both in the high- and the low-
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noise regions, whereas an increase in λ flattens the curve mostly in the low-noise region as

illustrated in Figure 9.5(b).
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Figure 9.5: The effect of κ and λ coefficients on ψ̄. Plot of ψ̄ as a function of η. (a) κ ∈
{1, 5, 10, 20} and λ = 10. (b) λ ∈ {1, 5, 10, 15} and κ = 1. Error-bars indicate ± standard

deviation from the mean.

9.4 Analytical Treatment of S-VNM

One of the main appeals of the S-VNM lies in the possibility of analytical treatment of the

model. We will propose a solution near the transition point to estimate ηc in terms of κ, λ

and N [61].

We will first find the probability distribution functions (PDF) of each term in Equa-

tion 9.2, and then solve this equation to find ηc in the stationary (steady-state) condition.

Since only the direction of h is of consideration, we rescale the equation by dividing by

λ, and using κ̃ = κ/λ and η̃ = η/λ to simplify notation, and we will drop "tildes" until the

end of the calculation.

We first consider the noise term which corresponds to the sum ofN steps (each of length

1) in a random direction on the plane. This is equivalent to a standard random walk. As

such, we know that the PDF of the position on the x y plane after N steps will be:

Pη(x, y) =
1

Nη2π
e
−x2+y2

Nη2 (9.3)

We then take the 2-D Fourier transform of Equation 9.3 and obtain:
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P̂η(λx, λy) = e−
1
4
Nη2(λ2

x+λ2
y) (9.4)

The PDF of the interaction term is calculated in [6]. In the calculation, it is assumed that

all neighbors of a particle are picked randomly from the group, and hence neighbor inputs

are statistically independent. They also have identical PDFs since they are all uncorrelated.

In this case, we can utilize the Central Limit Theorem17 for N > 5 and obtain:

P̂Nθ(λx, λy) = eiN(∆1,0λx+∆0,1λy)−N
2

(σ2
cλ2

x+σ2
sλ2

y+2σ2
csλxλy) (9.5)

where σ2
c (t) = ∆2,0(t) − ∆2

1,0(t), σ
2
s(t) = ∆0,2(t) − ∆2

0,1(t), and σ2
cs(t) = ∆1,1(t) − ∆1,0∆0,1.

∆m,n(t) is the instantaneous sine-cosine moment of the distribution which is calculated

in [6] as:

∆m,n(t) =

∫ π

−π

Pθ(α; t) cosm(α) sinn(α)dα

We need to find the PDF of the heading of a single particle (Pθ(α; t)) to evaluate ∆0,1,

∆1,0, ∆1,1, ∆2,0 and ∆0,2, and hence, find the PDF of the interaction term (P̂Nθ(λx, λy)) in

Equation 9.5. Since we are interested in the stationary solution close to the critical noise

value (ηc), we only need to approximate Pθ(α; t) near this point.

We know that when the noise (η) is larger than the critical noise value (ηc) the particles

are in disordered state and each of them has the same probability of being in any direction,

which results in a uniform Pθ(α; t) distribution having a magnitude of 1
2π

. Decreasing the

noise (η) causes small perturbations to grow and transforms the system continuously to

the ordered state. Therefore, we assume a Pθ(α; t) having a perturbation term consisting of

a small constant (δ) multiplied by a continuous function such as cosine function. Without

loss of generality, the stationary distribution of Pθ(α; t) near ηc is taken as:

Pθ(α) =
1

2π
+ δ cos(α) (9.6)

Pθ(α) is the distribution of the heading of an agent, which is the same for all agents

due to the fact that they are all uncorrelated random variables. In addition to this, all

Pθ(α) evolve using Equation 9.2 to a stationary solution; this is also the distribution of the

persistence term in Equation 9.2 and of the left hand side (LHS) of this equation. With the

assumed form for Pθ, Equation 9.5 becomes:

P̂Nθ(λx, λy) = e
iπNδλx−

1
2
N

[

( 1
2
−π2δ2)λ2

x+
λ2

y
2

]

(9.7)

17http://en.wikipedia.org/wiki/Central_limit_theorem. Last visited: April 2008.
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Then we multiply P̂η(λx, λy) and P̂Nθ(λx, λy), and take the inverse Fourier transform

resulting in the combined PDF of the interaction and noise terms.

PNθη(x, y) =
1

πN
√

(1 + η2)(1 + η2 − 2π2δ2)
e
− 1

N

[

(x−Nπδ)2

1+η2
−2π2δ2

+ y2

1+η2

]

(9.8)

We then find the probability distribution of the RHS by taking the convolution of PNθη

with PDF of the persistence term, which is equal to Pθ(α). We finally obtain:

PRHS(x, y) =

∫ π

−π

PNθη(x− κ cos θ, y − κ sin θ)Pθ(θ)dθ (9.9)

Since we are considering a small δ, we expand Equation 9.9 to first-order in λ by consider-

ing small δ perturbation. We then express the resulting equation in polar coordinates (R,Φ)

and integrate over R. The resulting equation, which is the PDF of the RHS is:

PRHS(Φ) =
1

2π
+ λΓ cos(Φ) (9.10)

where Γ is:

Γ =

√
π e

−κ2

2N(1+η2)

2
√

N(1 + η2)

[

(N + κ) I0

(

κ2

2N(1 + η2)

)

+ κ I1

(

κ2

2N(1 + η2)

)]

(9.11)

where I0 and I1 are Modified Bessel Functions18 of the first kind which are defined as the

solution to the differential equation: z2y′′ + zy′ − (z2 + n2)y = 0.

In the stationary solution, the LHS of Equation 9.2 is equal to Pθ(φ). Hence the LHS

and the RHS have the same form, resulting in an equality of PRHS(Φ) = Pθ(Φ) which can

be expressed as:

1

2π
+ δ cos(Φ) =

1

2π
+ λΓ cos(Φ) (9.12)

We solve this equation for Γ, then use Equation 9.11 to determine the critical noise value

(ηc). We know that just above the critical noise value, the perturbations should grow and

put the system into an ordered state. When Γ < 1, the perturbations will die out, resulting

in a disordered state; conversely, when Γ > 1, the perturbations will grow and put the

system in an ordered state. We therefore set Γ to 1, which corresponds to the critical point.

We can find an explicit approximate form for ηc by carrying out certain approximations

in the regime that we are considering. We set κ and λ to 1.5 and 22, respectively, to capture

18http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html. Last vis-

ited: April 2008.
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Figure 9.6: The phase transition diagram obtained using simulation of S-VNM. In simula-

tions, κ is set to 1.5 and λ is set to 22.

the dynamics of the flocking behavior. For this set of coefficients, κ2

2N(1+η2)
<< 1, which

makes I0 ∼ 1 and I1 ∼ 0. κ is neglected since it is very small when compared to the other

coefficients. After substituting η = η̃λ, we obtain a simple equation for ηc as:

ηc = λ

√

Nπ

4
(9.13)

9.5 Results of S-VNM

The S-VNM can be utilized in two ways to predict the phase-transition of flocking. On

one side, the S-VNM can be easily solved numerically to obtain the full phase-transition

diagram of flocking that result from a given set of parameters. On the other side, the S-

VNM can be solved analytically to predict ηc.

Phase transition diagram is obtained by simulating S-VNM in Matlab. The simulation is

performed with 100 particles for 10000 steps utilizing 1 and 7 neighbors. η̄ for the last 5000

steps is plotted in Figure 9.5 together with the results of CoSS experiments. It is observed

that, predictions of S-VNM is in close agreement with CoSS whenN = 1. A slight deviation

is observed in N = 7 case for small η values.

In predicting the critical noise value of flocking, we utilized Equation 9.13 for different

N . The results are plotted in Figure 9.7 together with the results of CoSS simulations.

We can see that the two results are in close agreement both for small and large N values.

However, we should note that Equation 9.13 is actually valid for N > 5 due to the Central

Limit Theorem utilized in the analytical treatment.
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CHAPTER 10

CONCLUSION

In this thesis, we study self-organized flocking in a swarm of mobile robots without any

fixed or elected leader. We proposed a behavior based on the heading alignment and prox-

imal control behaviors. The behavior was first implemented using nine Kobots. We then

utilized a physics-based simulator to investigate the performance of flocking under differ-

ent controller parameters and virtual heading sensor characteristics. We finally modeled

the flocking behavior to study its stability conditions under different VHS characteristics.

This thesis has major contributions to various fields of research. First, the Kobot robotic

system, having a distinctive design, has two novel sensing systems: the short-range sens-

ing system and the virtual heading sensor. The short-range sensing system is designed

to perform proximity measurements at a range of 20 cm. It has the ability to distinguish

kin-robots from obstacles with minimal interference from other robots and the environ-

ment. The virtual heading sensor, which broadcasts digital compass readings through a

wireless-communication module and obtains the relative headings of a group of robots.

This method, based only on the assumption that the sensed North direction remains the

same as the neighboring robots, is scalable, and holds great promise for use in swarms of

mobile robots as well as UAVs.

Second, the flocking behavior that is proposed in the thesis creates self-organized flock-

ing in a group of robots. Different from previous flocking studies with mobile robots, this

behavior does not require "simulated sensors", a goal heading that is sensed by the whole

group or an elected or designated leader. In this sense, we claim that, to the best of our

knowledge, this study is the first truly self-organized flocking attained in a group of mo-

bile robots. It is also the first study that has proposed quantifiable metrics to analyze the

flocking behavior systematically under different parameters.

Third, systematic analysis of flocking behavior revealed important facts. The flocking
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behavior is quite robust to large amounts of noise, even when each robot hears from only a

single neighbor, although the robustness against noise and average forward velocity of the

group increases significantly by increasing the number of VHS neighbors. We have also

observed that communication range determines the size of the flock, which is consistent

with models of flocking in natural systems. Segmentation of the group is observed when

the communication range is kept at local values, which is due to the quasi-static movement

of robots after adopting a common heading. Due to this fact, the heading information can-

not spread throughout the group unless the communication range of the virtual heading

sensor is large enough.

Fourth, to the best of our knowledge, this is the first study to model and analytically

predict conditions of stability in flocking behavior implemented using a group of robots.
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