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ABSTRACT 
 

 

ASSESSMENT AND MODELLING OF PARTICLE CLUSTERING IN  

CAST ALUMINUM MATRIX COMPOSITES 

 

 

Çetin, Arda 

Ph.D., Department of Metallurgical and Materials Engineering 

Supervisor: Prof. Dr. Ali Kalkanlı 

 

April 2008, 114 pages 

 

 

The damage and deformation behaviour of particle reinforced aluminum matrix 

composites can be highly sensitive to local variations in spatial distribution of 

reinforcement particles, which markedly depend on melt processing and solidification 

stages during production. The present study is aimed at understanding the mechanisms 

responsible for clustering of SiC particles in an Al-Si-Mg (A356) alloy composite during 

solidification process and establishing a model to predict the risk of cluster formation as a 

function of local solidification rate in a cast component. Special emphasis has been given 

to spatial characterization methods in terms of their suitability to characterize composite 

microstructures. Result indicate that methods that present a summary statistics on the 

global level of heterogeneity have limited application in quantitative analysis of 

discontinuously reinforced composites since the mechanical response of such materials are 

highly sensitive to dimensions, locations and spatial connectivities of clusters. The local 

density statistics, on the other hand, was observed to provide a satisfactory description of 

the microstructure, in terms of localization and quantification of clusters. A 

macrotransport - solidification kinetics model has been employed to simulate 

solidification microstructures for estimation of cluster formation tendency. Results show 
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that the distribution of SiC particles is determined by the scale of secondary dendrite arms 

(SDAS). In order to attain the lowest amount of particle clustering, the arm spacings 

should be kept within the limit of 2dSiC >SDAS >dSiC, where dSiC is the average particle 

diameter. 

 

 

Keywords: Discontinuously reinforced composites, clustering, thermal analysis, 

solidification modelling, quantitative metallography. 
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ÖZ 
 

 

DÖKÜM YOLUYLA ÜRETİLMİŞ ALÜMİNYUM TABANLI 

KOMPOZİTLERDE PARÇACIK TOPAKLANMASININ 

DEĞERLENDİRİLMESİ VE MODELLEMESİ 

 

Çetin, Arda 

Doktora, Metalurji ve Malzeme Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ali Kalkanlı 

 

Nisan 2008, 114 sayfa 

 

 

Parçacık takviyeli alüminyum tabanlı kompozitlerin hasar ve deformasyon tepkileri 

üretimin sıvı faz ve katılaşma aşamalarında şekillenen parçacık dağılımına yüksek 

duyarlılık göstermektedir. Bu çalışma SiC parçacıklarıyla desteklenmiş Al-Si-Mg (A356) 

kompozitlerin katılaşma sürecinde parçacık topaklanmasına yok açan mekanizmaları 

anlamayı ve döküm parçalarda yerel katılaşma hızına bağlı topak oluşma riskini 

değerlendirebilecek bir model oluşturmayı amaçlamaktadır. Çalışma kapsamında birçok 

uzamsal analiz yöntemine yer verilmiş ve kompozit mikroyapısı analizine uygunlukları 

değerlendirilmiştir. Sonuçlar, kompozitlerin mekanik tepkilerinin topakların boyutları, 

pozisyonları ve uzamsal bağlantılarıyla yakından ilişkili olması nedeniyle genel 

heterojenlik seviyesini özetleyen istatistiklerin bu malzemelerin karakterizasyonunda 

sınırlı kullanımı olduğunu göstermektedir. Yerel yoğunluk istatistiğinin sonuçları ise 

topakların niceliksel değerlendirmesi ve pozisyonlarının tespiti açılarından tatmin edici 

bulunmuştur. Topak oluşma eğilimini tahmin edebilmek amacıyla katılaşma 

mikroyapılarının benzetimi için makro transfer - katılaşma kinetiği yaklaşımı 

kullanılmıştır. Elde edilen benzetimsel mikroyapı değerlendirmelerin deneysel sonuçlarla 

oldukça uyumlu oldukları görülmüştür. Sonuçlar, SiC parçacık dağılımının ikincil dendrit 
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kol aralıkları (İDKA) tarafından belirlendiğini göstermektedir. En düşük topaklanma 

seviyesine ulaşabilmek için ikincil dendrit kol aralıklarının 2dSiC >İDKA >dSiC, (dSiC 

ortalama parçacık boyutunu göstermektedir) aralığında tutulması gerekmektedir. 

 

 

Anahtar kelimeler: Parçacık takviyeli kompozitler, topaklanma, termal analiz, katılaşma 

modellemesi, niceliksel metalografi. 
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CHAPTER 1 
 

INTRODUCTION 

 

 

Metal matrix composites (MMC) have proven to offer distinctive advantages over a 

number of conventional materials being used in aerospace, ground transportation (auto 

and rail), defense, thermal management and infrastructure industries. These advantages 

include improved strength, stiffness, fatigue and wear resistances with good thermal 

properties, while maintaining low weight. Another advantage is that the extent of such 

improvements can be tailored by altering the type, size and morphology of the 

reinforcement phase. There are two basic groups of reinforcements, which are referred as 

continuous and discontinuous. Continuous reinforcements are typically fibers or 

monofilament wires, offering attractive improvements in longitudinal properties by 

sacrificing transverse properties. Isotropic improvements can be obtained by employing 

discontinuous reinforcements, such as whiskers, particles and short fibers. Among these 

alternatives, the most attractive options for commercial practice are silicon carbide and 

alumina in the form of “particles” with aluminum alloy matrices due to their distinct 

advantage in terms of affordability. Hence, in today’s industry, discontinuously reinforced 

aluminum composites (DRA) account for majority of MMC annual production. 

 

 Due to extensive research on production and characterization of such materials, 

today DRA are an established technology. However, there are still certain problems, one 

and most important, being the clustering or agglomeration of reinforcement particles. The 

extent of property degradation associated with particle clustering have numerously been 

underlined by many researchers throughout the period covering from early 80’s, where 

DRA technology was first emerged, onwards to very recent investigations. Although 

certain solutions were derived by altering the processing method (such as infiltrating the 

liquid metal to a packed preform of reinforcements) or controlling processing variables 
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(such as the particle size ratio in powder metallurgy routes), no neat solutions could be 

proposed for casting processes, where bulk of MMC production are carried out. There are 

only certain beliefs about solidification routes that finer dendritic arm spacings would 

produce uniform distribution of reinforcements (which is proved to be wrong in this 

study), however no quantitative data were reported in the literature.  

 

 In order to understand the origin of clustering problem and to be able to quantify 

the amount of reinforcement clustering, one should have a very clear idea of what a 

cluster is. The literature on this aspect of MMC technology sadly lacks a thorough 

understanding of spatial characterization methods. There are only a few studies that came 

into prominence in this aspect, which are briefly reviewed in the following pages. In 

general, there is an ambiguity concerning the type of information that an engineer needs 

regarding the microstructure of a MMC. The problem is that, the terms inhomogeneity and 

clustering are commonly used as synonyms and the microstructures of MMCs are 

considered in terms of global trends in the distribution. However, as far as the fracture 

mechanics of MMCs is concerned, one also needs to gather information on the amount, 

locations and spatial connectivities of reinforcement clusters, since failure mechanisms of 

such materials include crack nucleation and propagation with a high sensitivity to cluster 

locations. Therefore attempting to characterize MMC microstructures by simple scalar 

descriptions, although holds a practical value, lacks a great deal of information to 

successfully associate the mechanical response of the composite to its microstructure. 

 

 The present study is structured in three parts. The first part attempts to answer the 

questions; what is a cluster and how can it be detected? The effort to answer these 

questions actually forms the backbone of the study, since the clusters can neither 

experimentally be detected nor computationally predicted without a clear understanding of 

what we are looking for. The second part is an experimental study on relation of clustering 

with local microstructure, which will help to understand cluster formation tendencies as a 

function of location within castings with complex geometries. The third and final part is a 

computational study aimed at simulating solidification microstructures as a function of 

local solidification time and therefore to predict the tendency of reinforcement clustering. 

Putting these parts together results in a thorough picture in which certain locations in a 

casting, where there exists a tendency towards clustered particle arrangements can be 

predicted before production. Such an ability will obviously help engineers to come up 
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with solutions to produce these components with more uniform microstructures and hence, 

less prone to failure. These solutions may include interventions to production process such 

as refinement of microstructure or varying reinforcement size, or altering component 

designs to improve microstructural uniformity. 

 

 Due to combinatorial nature of the present work, the theoretical background is 

presented in three different chapters. Firstly, the spatial characterization methods are given 

in Chapter 2. Chapter 3 focuses on thermal analysis of metal matrix composites, which 

provides a clear description of MMC solidification. Chapter 4 introduces the numerical 

approach to MMC solidification. Chapter 5 presents the experimental and computational 

details, followed by the results and discussion in Chapter 6. Finally, concluding remarks 

are summarized in Chapter 7. 
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CHAPTER 2 
 

QUANTIATIVE ANALYSIS OF  

PARTICLE DISTRIBUTION 
 

 

2.1 Brief Review of Literature 
 

It is well known that introduction of hard ceramic particles into soft metallic matrices 

leads to profound improvements in mechanical properties such as increased strength, 

stiffness and fatigue resistance while maintaining low weight1,2. The origin of these 

property enhancements is primarily attributed to two mechanisms. In the first one, the 

strengthening is ascribed to direct load transfer from the matrix to the reinforcement 

phase3-6. The second mechanism, on the other hand, attributes strengthening of the 

material to increasing dislocation density of matrix due to developed residual plastic 

strain, which results from thermal mismatch between the ceramic particles and the matrix 

material5-9.  

 

 In structural composites, one of the most critical design criterions is fatigue 

resistance, which is particularly important in automotive and aerospace industries where 

resistance to high cycle fatigue resistance is strictly necessary6. The failure process of 

discontinuously reinforced composites is generally described over two stages; damage 

localization and damage globalization10. The first stage includes various mechanisms such 

as particle and matrix interface debonding, particle fracture, void formation in the ductile 

matrix, short crack initiation and crack coalescence. The second stage, on the other hand, 

consists of a long crack growth stage, which follows Paris’ Law in the intermediate stress 

intensity factor range10.  There are various factors that influence localization and 

globalization of the damage. One such parameter is the size of reinforcement particles. In 
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general, as the particle size increases, it is more likely that it contains a surface crack11, 12.  

This assumption was verified through various experimental studies that directly relate the 

particle cracking frequency with increasing particle size2, 13. Orientation and morphology 

of the reinforcing particles were also reported to contribute to damage behaviour of the 

composites14, 15. One other important factor that determines the mechanical response of the 

composite is the spatial distribution of second phase particles. Although the 

aforementioned factors other than spatial arrangement of particles can well be altered by 

varying the size or morphology of reinforcements, control of particle distribution requires 

a thorough understanding of the factors that determine their arrangement.  

 

 Composite microstructures often display clustered arrangements. Although such 

clusters were reported to have negligible effect on elastic properties,16, 17 they have 

profound influence on damage evolution and failure mechanisms. One such influence is 

the stress localization in these regions15, which increases the probability of particle failure 

to a significant extent17, 18. Presence of particle clusters was also reported to decrease the 

yield strength, strain hardening rate and failure strain of the composite over the monolithic 

material16. The origin of this property degradation is attributed to preferential nucleation 

of cracks12, 14 in clustered regions and final fracture is produced by crack propagation 

through the matrix to other clusters11, 19, 20. Finally, Ayyar and Chawla’s14, 21 work have 

shown through finite element simulations that the crack growth resistance of the material 

is also lower in composites with clustered distributions compared to random 

arrangements. 

 

The very first attempts in quantitative metallography of metal matrix composites 

were carried out by Wray et al22 and Spitzig et al23 by characterizing the composite 

microstructures by Dirichlet tessellation and nearest neighbour methods. Among the 

various studies that came into prominence in this field; Everett et al24 have compared the 

Monte-Carlo based computer generated patterns with actual composite microstructures by 

utilizing Dirichlet tessellation, nearest neighbour statistics and radial distribution function. 

Various characterization functions of Voronoi cell based geometric parameters for 

characterization and response modeling of composites was introduced by Ghosh et al25. Li 

et al26 computationally constructed 3D microstructure models by sequentially assembling 

digital section micrographs obtained by serial sectioning and presented a systematic 

approach to 2D and 3D microstructural characterization. A computational approach based 
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on Voronoi tessellation to determine the local reinforcement area fraction contour maps 

was adopted by Ganguly and Poole27. Finally, Scalon et al28 investigated the distribution 

of second phase particles by various pattern descriptor functions and modeled their spatial 

distribution by a Strauss point process model.  

 

Those studies have either concentrated on application of various quantitative 

characterization methods or attempted to correlate the spatial configuration of second 

phase particles to the mechanical response of composite systems. They have mainly 

described the observed spatial patterns by considering the global trends in the distribution 

of particles and used suitable descriptors to discriminate between random and clustered 

arrangements. However, such approaches may fail to predict the actual failure 

susceptibility of these materials since damage and deformation behaviour of composites 

can be highly sensitive to local variations in particle content and spatial correlations 

between these local variations. For example, previous research18, 19 on fracture behaviour 

of discontinuously reinforced composites showed that in composites with clustered 

particle arrangements, damage preferentially initiates from clusters and final fracture is 

produced by crack propagation through the matrix to other clusters. Therefore, the spatial 

heterogeneity in these systems should be characterized by considering the locations, 

dimensions and spatial connectivity of the clusters rather than simple scalar descriptions 

of microstructures. 

 

 

2.2 Spatial Analysis Methods 
 

2.2.1 Refined Nearest Neighbour Analysis 

 

The refined nearest-neighbour analysis29 is based on comparison of the complete 

distribution functions of either w, the nearest-neighbour distance between events (G-

function), or x, the distance from a sampling point (not event) to the nearest event (F-

function) with that of expected distribution of events for complete spatial randomness 

(CSR). The theoretical cumulative distribution function of nearest-neighbour distances 

under the null hypothesis of CSR is given by 
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2( ) 1 exp( )G w wγπ= − −                 (2.1) 

 

where γ is the intensity. An appropriate edge corrected estimate of the observed 

distribution function would be  
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               (2.2) 

 

where I is the indicator function that denotes the count of events, and ri and wi are the 

distances from the ith event to its nearest boundary and to its nearest neighbour, 

respectively. The deviation of an observed pattern from randomness can be detected from 

the difference of estimates of observed and theoretical distribution functions29. The 

deviation of an observed pattern from CSR can also be brought out by utilizing the ratio of 

means, given by 

 

( )
( )

obs

pois

E wQ
E w

=                  (2.3) 

 

where ( )obsE w  is the observed mean of nearest neighbour distances and ( )poisE w  is the 

expected mean of nearest neighbour distances for a Poisson process. The expected mean 

of a Poisson distribution is given by the expression30 

 
0.5

( ) 0.5pois
NE w
A

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                (2.4) 

 

where N/A gives the area density of the events within the study region. Different types of 

spatial distributions can therefore be classified according to: 

 

 Q ≈ 1 denotes random event sets, 

 Q < 1 implies clustered distribution, 

 Q > 1 implies uniform distribution. 
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2.2.2 K-Function 

 

One drawback of the refined nearest-neighbour distance methods is that they only 

consider the distances to the closest events, ignoring the larger scales of pattern. The K-

function, on the other hand, provides a summary of spatial dependence over a wide range 

of scales including all event to event distances, not only the nearest-neighbour distances. 

The most commonly used edge-corrected estimator of the K-function is given by Ripley31 

as 

 

( )
( )1ˆ t ij

i j i ij

I u
K t

wγ ≠

= ∑∑                 (2.5) 

 

where γ is the intensity, uij is the distance between the ith and jth events and It is the 

indicator function that denotes the count belonging to a value of t for the distance 

comparisons uij ≤ t. The weight function wij provides the edge correction by considering 

the proportion of the circumference of the circle around event i. The K-function for a 

homogeneous Poisson distribution of events is given by K(t) = πt2. K-function is 

commonly transformed to  

 

ˆ ( )ˆ( ) K tL t t
π

= −                 (2.6) 

 

as Eqn. (2.6) yields a theoretical value of zero under the null hypothesis of CSR. Positive 

values above the confidence interval suggest the presence of clusters whereas negative 

values below the confidence interval suggest a uniform distribution of events. 
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2.2.3 Inference of Local Clustering 

 

Although the K-function successfully measures the local density around each event over 

many distance scales, the presence of clustering can be inferred only when the local 

density around an event exceeds a certain threshold value. In order to determine this 

threshold value and to estimate the local amount of clustering around an event, we have 

adopted a cumulative radial distribution function, ρ(Pi, r), which in the present study is 

defined as the number of reinforcement particles per unit area within the radius r from an 

original particle Pi, divided by the number of particles per unit area of the whole study 

region. Fig. 2.1 illustrates the evaluation of ρ(Pi, r). 

 

 

 
 

Figure 2.1 Evaluation procedure of ρ(Pi, r) illustrated at five distance scales; r1, r2, r3, r4 and r5. 

ρ(Pi, r) is also illustrated for particles P81 and P114 at distance scales of 100 and 160 units, 

respectively.   
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A similar concept of density calculation was previously introduced by Prodanov et 

al32 by defining a parameterized threshold function Tξ(r), which expresses the probability 

that the local density around a particle, as depicted by ρ(Pi, r), exceeds a certain threshold 

value in an associated Poisson (random) point process. In the present study the threshold 

function Tξ(r) for each study region was estimated from 200 simulations of homogeneous 

Poisson process with the same intensity as the studied pattern. The significance parameter 

ξ was set to 0.95; meaning that only 5% of the points in an associated Poisson point 

process were expected to exceed the threshold T0.95(r). Therefore, a particle in the study 

region can be inferred as a part of a cluster if the local density around that particular 

particle exceeds the amount present in an associated Poisson process; ρ(Pi, r) > T0.95(r), at 

a particular radius, r. In order to consider the edge effects, a weighted edge correction 

scheme, which is based on weighing the proportion of the circumference of the disc that 

remains inside the study region to entire circumference, was applied31. 

 

An important aspect of this approach is that the local density around a particle 

may or may not exceed the corresponding threshold value depending on the scale of 

observation, r. Following the method of Prodanov et al32 the above-threshold particles, 

which were accepted to be a part of a cluster were updated at each scale of observation 

and the information regarding the coordinates of these particles were collected in a set of 

above-threshold particles, S(r).  The percent ratio of above-threshold events averaged over 

all scales of observation is then calculated from 

 

 

0

1 ( )
%

T

events

N t dt
T

Threshold
N

=
∫

               (2.7) 

 

where Nevents is the total number of events in the study region and T denotes the overall 

scale of observation.  
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2.2.4 Visualization of Clusters 

 

In order to reveal the spatial correlations between the detected clusters, one needs to 

visualize the locations, dimensions and relative intensities of the clusters. One common 

way to obtain a spatially smooth intensity estimate of points within a study region is the 

kernel estimation33. The intensity, γ(x), at location x can be estimated by 

 

2
1

( )1ˆ ( )
n

i
h

i
k

hh
γ

=

−⎧ ⎫= ⎨ ⎬
⎩ ⎭

∑ x xx                (2.8) 

 

where h is the bandwidth parameter that regulates the degree of smoothness, x is the 

location for intensity estimation, xi is the observed event location, n is the number of 

points and k{} represents the kernel weighting function. Scalon et al28 successfully 

utilized this method for intensity estimation of the second phase particles in an Al/SiCp 

composite. A more refined approach to visualize the clusters would be to associate the set 

of above-threshold particles to the sum of kernels by only considering the above-threshold 

particles that belong to S(r), at a particular scale of observation, r. With this approach, one 

can locate the clusters and compare their relative intensities instead of complicated 

contour plots that represent the intensity variation of the whole data set. Since different 

suitable alternatives of the kernel weighting functions have relatively small effect on the 

resulting intensity estimate,34 we have implemented a simple quartic density function 

denoted by 

 

( )
23 (1 )        for 1

0                        otherwise
k π

⎧ − <⎪= ⎨
⎪⎩

Tu u u
u               (2.9) 

 

where u  represents the Euclidean distance of the vector x (e.g. =Tu u x ). The relative 

intensities of the above-threshold particles can therefore be estimated by 

 
22

2 2
( )

3ˆ ( ) 1 i
h

i S r

d
h h

γ
π∈

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑x                (2.10) 
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where, di is the distance between the location of intensity estimation and the observed 

particle location, and the summation is only over values of di which do not exceed h. 

 

 

2.2.5 Voronoi Tessellation 

 

The Voronoi diagram35 built on a set of events represents partition of the area into a set of 

adjacent regions that have the shape of convex polygons such that each polygon contains 

exactly one event. The relevant properties of a Voronoi polygon, such as its area, may be 

used to distinguish between different point processes. The dispersion of the probability 

density function, known as the coefficient of variation, can be defined for polygon area as 

 

A
A

A
CV σ

μ
=                (2.11) 

 

where σ is the standard deviation and μ is the mean of the probability density function, and 

the subscript A refer to polygon area. A lower CVA value indicates uniform distribution 

whereas higher values imply clustering of events. 
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CHAPTER 3 
 

THERMAL ANALYSIS OF MMC SOLIDIFICATION 

 

 

3.1 Newtonian and Fourier Thermal Analysis Methods  
 

Newtonian36 and Fourier37 thermal analysis methods are simplified but convenient 

techniques to monitor the average temperature variations and phase changes during the 

course of solidification. They are actually applicable at the limiting cases when 

solidification is fully controlled by the thermal resistance at the metal / mold interface or 

by low thermal diffusivity of the metal.  

 

Both methods are based on interpretation of cooling curves obtained from one or 

more locations in the casting. The difference of these method is the way their baseline, or 

zero curve, is generated. The zero curve represents the hypothetical variation of the 

metal’s cooling rate, if there would be no phase transformation within the covered 

temperature range. Newtonian analysis neglects the presence of thermal gradients and 

generates the zero curve from the thermal data obtained from a single thermocouple. In 

Fourier analysis, on the other hand, the zero curve is a function of temperature Laplacian 

and therefore requires minimum of two (in cylindrical geometry) or three (in Cartesian 

geometry) thermocouples.  

 

As mentioned above, in Newtonian analysis only one thermocouple, placed at the 

geometrical center of the casting is used and the presence of thermal gradients is 

neglected. This assumption is valid only when the Biot number for a particular geometry 

and metal-mold system is less than 0.1. Biot number38 is a dimensionless number that 

relates the resistance to heat transfer inside and at the surface of a sample (i.e. the metal-

mold interface in the present case). Values smaller that 0.1 imply that the heat conduction 
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inside the solidifying sample is much faster than at the metal-mold interface, so that the 

temperature gradients within the sample may be neglected. In all samples analyzed in the 

present study, the Biot numbers were verified to be smaller than 0.1 for validity of the 

Newtonian thermal analysis procedure.  

 

 In Newtonian analysis, the zero curve is derived from a simple energy balance for 

a hypothetical case where the metal does not go under any phase transformation. The rate 

of heat loss to the surroundings is given by the expression 

 

( )i
dQ h A T T
dt ∞= − −                 (3.1) 

 

where dQ / dT is the rate of heat loss to the surroundings, t is time, hi is the coefficient of 

heat loss to the surroundings, A is the effective surface area over which heat transfer 

occurs, T is instantaneous temperature and T∞ is the temperature of the surroundings. The 

rate of heat evolved to the surroundings can be described by the equation 

 

p
dQ dTV c
dt dt

ρ=                 (3.2) 

 

where V is the volume of solidifying metal, ρ is density and cp is the specific heat 

capacity. If the metal does not go under any phase transformation within the covered 

temperature range, these two equations can be equated to yield 

 

( )i

p

h AdT T T
dt V cρ ∞

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
               (3.3) 

 

 

Eqn. (3.3) represents the derivative of the cooling rate of a sample, which does not 

go under any phase transformation; i.e. the zero curve. However, there are certain 

difficulties associated with this equation. First one is the calculation of the heat transfer 

parameter, since it is affected from many parameters such as; variations in pouring 

temperature, sample geometry and reactions between the sample and the sand mold. The 

value of specific heat is the second potential difficulty, since it is a strong function of 
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composition and temperature, and therefore depends on the relative amounts of phases 

present at any temperature. These difficulties can be overcome by using the thermal data 

obtained from cooling curve to generate the zero curve. Rearranging and integrating Eqn. 

(3.3) yields 

  

0i

T t
i

pT

h AdT dt
T T V cρ∞

= −
−∫ ∫                 (3.4) 

 

i

i p

h AT Tln t
T T V cρ

∞

∞

⎛ ⎞⎛ ⎞−
= −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

               (3.5) 

 

Rearranging to give the instantaneous temperature; 

 

( ) i
i

p

h AT T T exp - t T
V cρ∞ ∞

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
              (3.6) 

 

where Ti is the initial temperature at t = 0. Derivative of Eqn. (3.6) finally yields the 

expression for zero curve  

 

( ) i i
i

zc p p

h A h AdT T T exp t
dt V c V cρ ρ∞

⎛ ⎞ ⎛ ⎞⎛ ⎞ = − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
             (3.7) 

 

Eqn. (3.7) can be rewritten as 

 

( )1 2 2
zc

dT C C exp C t
dt

⎛ ⎞ = − −⎜ ⎟
⎝ ⎠

               (3.8) 

 

where the subscript zc denotes the zero curve and 1 iC T T∞= −  and 2 /i pC h A V cρ=  are 

constants to be determined experimentally. 
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 Therefore, one can obtain the Newtonian zero curve experimentally by curve 

fitting of an exponential function from one no-phase transformation region (i.e. above 

liquidus) to the other (i.e. after solidification is completed). The obvious source of error in 

this approach is the chosen time steps for curve fitting, which can create significant 

differences in the resulting zero curve. There are various suggestions for curve fitting of 

the arbitrary function in the literature39, 40 however; no common agreement or a procedure 

could be established to obtain this curve. 

 

 The derivation of the Fourier zero curve is much more straight forward. It starts 

with the Fourier equation, including a heat source; 

 

2 1

v

T QT
t c t

α∂ ∂
= ∇ +

∂ ∂
                (3.9) 

 

where α is the thermal diffusivity, ∇T is the temperature Laplacian and cv is the 

volumetric specific heat and Q is the heat evolved during solidification. Rearranging 

 

v F
Q Tc Z
t t

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
               (3.10) 

 

where ZF = α∇2T is the Fourier zero curve. In order to obtain the Fourier zero curve, 

therefore, one should be able to describe the temperature Laplacian within the solidifying 

casting. In a Cartesian geometry, a minimum of three thermocouples are necessary to 

describe the temperature field. However, the required number of thermocouples can be 

reduced to two in a symmetric temperature field37. The temperature Laplacian in a 

cylindrical casting, which is symmetrical with respect to the vertical axis, is given by 

 
2

2
2

1T TT
r rr

∂ ∂
∇ = +

∂∂
              (3.11) 
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When two thermocouples are placed in a cylindrical casting at two different locations, P1 

and P2, from the center, the differentials in Eqn. (3.11) can be expressed as 

 

2 1

2 2 1 2 1

2 1 2 1 2 1
1 1

0
1

2 2

T T
P P T TT P P P P P PP P

−
−

⎛ ⎞− −
∇ = + ⎜ ⎟− − −⎝ ⎠+ +

           (3.12) 

 

where T1 and T2 are temperature values read from thermocouple locations P1 and P2, 

respectively. Upon rearranging, Eqn. (3.12) reduces to 

 

( )2 12

2 1

4 T T
T

P P
−

∇ =
−

               (3.13) 

 

When there is no phase transformation (Qs = 0) the thermal diffusivity of the system can 

be obtained from Eqn. (3.10) as 

 

2
1T

t T
α ∂
=
∂ ∇

               (3.14) 

 

Therefore, when the cooling rates and Laplacians are known before and after 

solidification, thermal diffusivities of the solid, αs, and liquid, αl, can be calculated. The 

instantaneous values of the thermophysical properties during solidification can be 

calculated by an iterative method. The iteration starts with a linear assumption of the 

variation in solid fraction 

 

end
S

end start

t tf
t t

−
=

−
               (3.15) 

 

where, t is the instantaneous time and the subscripts start and end denote the start and end 

of solidification, respectively. At each time step, the instantaneous values of α and cv of 

the solid liquid mixture are calculated as 
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[ ]1L S S Sf fα α α= − +               (3.16) 

[ ], ,1v v L S v S Sc c f c f= − +              (3.17) 

 

where, cv,L and cv,S are the volumetric heat capacities of the liquid and solid, respectively.  

 

 

3.1.1 Calculation of Latent Heat of Solidification 

 

As mentioned above, the zero curve represents the variation in the cooling rate of a 

hypothetical sample if it would go under no phase transformation. Consequently, it should 

be clear that, the difference between the cooling rate of a sample (i.e. the derivative of 

cooling curve) and its zero curve results from the released latent heat associated with the 

solidification of the sample. Therefore, one can calculate the amount of released latent 

heat by quantifying this difference.  

 

 Latent heat calculation in Newtonian analysis starts with including the heat 

generation term. When phase transformation occurs, Eqn. (3.3) can be expressed as 

 

L
p

dQdQ dTV c
dt dt dt

ρ= +               (3.18) 

 

where QL is the heat resulting from latent heat release during phase transformation. 

Combining Eqn.s (3.1) and (3.18) and rearranging 

 

( )1 L
i

cc p

dQdT h A T T
dt V c dtρ ∞

⎛ ⎞⎛ ⎞ = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (3.19) 

 

The magnitude of latent heat released during solidification can be calculated by 

subtracting Eqn. (3.7) from Eqn. (3.19) and integrating within the interval of solidification 

 

e e

s s

t t

p
cc zct t

dT dTL c dt dt
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫             (3.20) 
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 In Fourier analysis, latent heat is calculated by integrating Eqn. (3.10). This 

integrated form is actually very similar to Eqn. (3.20) since the zero curve term is already 

included in Eqn. (3.10). The governing equation is 

 
e

s

t

t

QL dt
t

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫                (3.21) 

 

where ts and te denote the start and end of solidification, respectively. 

 

 

3.1.2 Calculation of Instantaneous Solid Fraction 

 

The solid fraction evolution is calculated with the assumption that the latent heats 

associated with primary and eutectic solidifications are equal. The instantaneous fraction 

of the solid phase at time t can therefore be calculated as 

 

1( )
s

t

s
t

Qf t dt
L t

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫               (3.22) 

 

 

3.2 Thermal Analysis of Composite Solidification 
 

Newtonian and Fourier methods need some corrections to be applied to composite 

solidification. Firstly, the reinforcement particles do not go under any phase 

transformation during solidification of the matrix alloy. Therefore the mass content of 

particles should be considered since the latent heat values are calculated per unit mass. 

The latent heat associated with the solidification of the composite therefore can be 

expressed as 

 

( )1comp pL L M= −               (3.23) 
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where Mp is the mass content of particles and the subscript comp denotes composite. The 

second point to be corrected is the effect of particles on the thermophysical properties of 

the composite materials. The governing equations are presented in Table 3.1.  

 
 
Table 3.1. Equations for thermophysical properties 

 

Temp Interval Derived Equations  
 

(1 )SiC L
SiC SiC p SiC p Lcomp

p
comp

V c V c
c

ρ ρ
ρ

⋅ ⋅ + − ⋅ ⋅
=  

 

(3.24)

 

T > TL 

(1 )comp SiC SiC SiC LV Vρ ρ ρ= ⋅ + − ⋅  
  

(3.25)

  

(1 )SiC m
SiC SiC p SiC p mcomp

p
comp

V c V c
c

ρ ρ
ρ

⋅ ⋅ + − ⋅ ⋅
=  

 

(3.26)

(1 )comp SiC SiC SiC mV Vρ ρ ρ= ⋅ + − ⋅  (3.27)

(1 )m L S
p p S p Sc c f c f= ⋅ − +  (3.28)

 

 

 

TL > T > Tend 

(1 )m L S S Sf fρ ρ ρ= ⋅ − + ⋅  
  

(3.29)

  

(1 )SiC S
SiC SiC p SiC p Scomp

p
comp

V c V c
c

ρ ρ
ρ

⋅ ⋅ + − ⋅ ⋅
=  

 

(3.30)

 

Tend > T 

(1 )comp SiC SiC SiC SV Vρ ρ ρ= ⋅ + − ⋅  
  

(3.31)

 

 

where VSiC is the volume content of SiC particles, and the sub- and superscripts l, s, m and 

SiC denote liquid, solid, matrix and SiC particles, respectively.    
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3.3 Dendrite Coherency Point 
 

Dendrite coherency point (DCP) is defined as the solid fraction at which the freely 

growing equiaxed dendrites impinge upon each other and a rigid, solid network of 

dendrites is established throughout the casting. It also defines a transition from mass 

feeding to interdendritic feeding41. Casting defects such as interdendritic porosity, 

macrosegregation and hot tears start to develop after DCP42. 

 

 SiC particles are not suitable substrates for nucleation of α-Al. The dendrites 

therefore nucleate on available substrates other than SiC particles and push the 

reinforcement particles into the interdendritic regions, resulting in a segregated pattern of 

particles. Within the framework of the present study, we have also analyzed whether DCP 

can be regarded as an index to the distribution of second phase particles, since the distance 

scales that the particles are being pushed by the growing dendrites are related to the point 

where impingement occurs. 

 

DCP can be determined by either mechanical methods43, 44 or thermal analysis45, 46. 

The mechanical methods are based on rheological measurements during solidification. 

The abrupt increase in viscosity of the melt at some stage during solidification is attributed 

to impingement of primary dendrites. Thermal analysis method, on the other hand, 

monitors the variation in thermal gradient during the course of solidification. One 

thermocouple is placed at the geometrical center of the casting and another next to the 

mold wall and the temperature difference, ΔT, read from these thermocouples are 

recorded. When the freely growing dendrites touch each other and a solid network is 

established all throughout the casting, the rate of heat transfer increases due to higher 

thermal conductivity of the solid phase. This results in a decrease in the magnitude of the 

thermal gradient in the casting, which can be monitored from the ΔT curve in Fig. 3.1. The 

first minimum in this curve is the dendrite coherency since the magnitude of thermal 

gradient starts to decrease after this point.  
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Figure 3.1 Cooling curves obtained from the center (Tcenter) and wall (Twall) thermocouples and the 

ΔT curve for an A356 alloy reinforced with 20% SiCp. The first minimum in the ΔT curve is taken 

as the dendrite coherency point (DCP).  
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CHAPTER 4 
 

MODELLING OF MMC SOLIDIFICATION 

 

  

The present study is aimed at building a comprehensive approach to MMC solidification 

to assess the as-cast microstructure and reinforcement distribution. Predicting the cluster 

formation tendency in a part before casting would provide a distinct advantage due the 

significant savings in prototyping and production costs. Such an ability would also help 

engineers to come up with new designs to produce these parts with a more uniform 

microstructure and therefore less prone to failure. 

 

 The distribution of second phase particles during solidification is determined by 

the primary dendrites. Subsequent reactions after dendritic solidification, such as the 

eutectic reaction or solidification of various intermetallic phases do not yield any 

influence on the final arrangement of particles, since the particles are already stabilized 

within the solid network of dendrite arms during the period of these transformations. 

Therefore, an attempt to assess the as-cast particle distribution through numerical 

simulations should concentrate on predicting the local solidification rate, since the 

dendritic spacings (both primary and secondary) are functions of the local cooling rate47. 

 

 The main focus of the present work regarding the solidification process is, 

therefore, correct prediction of cooling curves at various locations within the casting as a 

function of casting geometry. The coupling of macrotransport equations with 

solidification kinetics was achieved through the latent heat method. The ripening of 

secondary dendrite arms was described by a dynamic coarsening model. 
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4.1 Theoretical Formulation of Macroscopic Heat Transfer 
 

The main issue in continuum modelling of solidification process is to simultaneously 

solve the mass, energy and momentum transport equations. The standard transport 

equation for advection-diffusion is48 

 

 ( ) ( ) ( ) S
t
ρφ ρ φ ργ φ∂

+∇ =∇ ∇ +
∂

V               (4.1) 

 

where t is time, ρ is density, φ is the phase quantity, V is the velocity vector, γ is the 

general diffusion coefficient and S is source term. However, as far as the casting 

solidification is concerned, the entire process is primarily controlled by diffusion of heat 

and, to a small extent, convection in the liquid49. Therefore, neglecting the diffusion of 

species (i.e. constant density) and momentum transfer (V = 0) the transport equation can 

be written in terms of temperature rather than enthalpy as 

 

2

p

T QT
t c

α
ρ

∂
= ∇ +

∂
                (4.2) 

 

where T is temperature, α is the thermal diffusivity, cp is the specific heat and Q  is the 

heat source term. This source term represents the latent heat released during solidification 

and is given by 

 

S
f

fQ H
t

∂
= Δ

∂
                 (4.3) 

 

where ΔHf is the latent heat of fusion and fS is the solid fraction. During the experimental 

studies, the composites were cast into cylindrical molds with insulation in the axial 

surfaces to ensure the heat transfer to occur in radial coordinates. In order to simulate the 

experimental conditions, composites were assumed to solidify in sand molds with 

cylindrical cavities and with zero heat flux in θ and z directions. The definition of 

cylindrical coordinates is presented in Fig 4.1. The equation for transient heat conduction 

is given by 
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( , )( , ) 1 ( , ) s
p f

f r tT r t T r tc k r H
t r r r t

ρ
∂∂ ∂ ∂⎛ ⎞= + Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

            (4.4) 

 

where, r is the radial coordinate and k is the thermal conductivity. In order to solve this 

equation, the evolution of solid, fS(r, t) must be described as a function of time and 

location inside the casting. This can be achieved through various schemes for coupling of 

the macroscopic heat flow with the microscopic solidification kinetics50, 51. In the present 

study, the latent heat method (LHM)52 was used to incorporate the latent heat release 

during phase transformation to the macroscopic heat transfer. Heat transfer was assumed 

to be controlled by the resistance at the metal/mold interface and a prescribed flux 

boundary condition was used to account for the transfer at the interface48.  

 

 

 
 

Figure 4.1 Definition of ˆ,r θ̂  and ẑ directions in cylindrical coordinates.  
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4.2 Microscopic Modelling 
 

4.2.1 Pseudo-Binary Alloy Assumption: Calculation of Equivalent Solute 

 

Formation of intermetallic phases at the later stages of eutectic solidification does not 

have any influence on the as-solidified particle distribution. Therefore, for the ease of 

calculations, it was assumed that solidification of the A356 matrix alloy results in two 

distinct microstructural regimes; the equiaxed α-Al dendrites and the eutectic phase. The 

silicon equivalency (Sieq) method53 was used to treat the A356 alloy as a pseudo-binary 

Al-Sieq alloy. The Sieq value expresses the amount of alloying elements other than Si (only 

0.35% Mg in this case) in terms of an equivalent amount of silicon by the following 

expression 

 

iX
eq eqSi Si Si= +∑                 (4.5)

     

where, X denotes the alloying elements other than Si. The X
eqSi∑ values for some major 

and minor alloying elements and the resulting depression in the liquidus temperature are 

presented in Table 4.1.  

 

 

Table 4.1 iX
eqSi (wt%) values and the resulting liquidus depression (ΔTL) of some alloying elements 

for 3XX aluminum alloys53. 

 

 Alloying elements (1wt%) 

 Cu Fe Mg Mn Zn Ni Pb Sn Bi Sr 

Sieq 0.323 0.650 0.017 0.787 0.123 0.536 0.889 0.752 0.898 0.770 

ΔTL (°C) 1.98 4.00 0.10 4.84 0.75 3.29 5.47 4.63 5.53 4.74 

 

 

 

 

 

 



 27

4.2.2 Nucleation of α-Al Dendrites 

 

It was assumed that solidification of the A356 matrix alloy results in two distinct 

microstructural regimes; the equiaxed α-Al dendrites and the eutectic phase. It was 

previously reported2 that the SiC particles are not suitable substrates for nucleation of α-Al 

dendrites. Therefore, we have assumed that the presence of SiC particles have no 

influence on nucleation kinetics of the α-Al dendrites. 

 

The nucleation models used in the present study are mainly intended for equiaxed 

solidification. Bulk nucleation heterogeneously takes place within the melt on foreign 

particles already existing in the liquid. A simple empirical instantaneous nucleation model 

was used to account for the nucleation of equiaxed α-Al dendrites in order to avoid 

computational complications related to definition of the micro-volume element48 as will be 

explained in the following section. The model assumes that all nuclei are generated at the 

nucleation temperature (Fig 4.2a) and the nucleation site density is determined by the 

cooling rate at the onset of solidification. The governing equation is given by 

 
2

s
TN a b
t

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
                (4.6) 

 

where, Ns is the volumetric nucleation site density and a and b are experimentally 

determined constants54. 
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Figure 4.2 Schematic comparison of (a) instantaneous and (b) continuous nucleation models48.  

 

 

4.2.3 Dendritic Growth 

 

There is still no complete theoretical solution that can describe the complexity of dendrite 

growth48. Although the diffuse interface approaches55 (also known as the phase field 

method) can handle the morphological evolution of a dendrite quite successfully, they 

have limited applicability in terms of engineering usefulness. Furthermore, focusing on 

morphological evolution of each dendrite in a three dimensional space would require 

excessive computational capabilities, which does not seem possible at the current state of 

the art. Therefore, for the problem under consideration in this study, we have employed a 

simplified volume averaged dendrite model48. 

 

 The schematic representation of the volume average model for an equiaxed 

condensed dendrite is given in Fig. 4.3. The dendrite envelope defines a pseudo-interface 

that separates the intradendritic and extradendritic liquid phases. It embraces the solid 

phase and the intradendritic liquid. The equivalent dendrite envelope (rE), on the other 

hand, defines a spherical volume identical to the dendrite envelope. This volume also 

includes the solid and the intradendritic liquid. For further ease of calculations, this 

volume can be assumed as approximately equal to the volume of solid phase. Therefore, 

the growth rate of the condensed dendrite can be described over an averaged volume of 

sphere. The growth proceeds until all micro-volume element is filled, which has a radius 

of rf. 
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Figure 4.3 Schematic representation of assumed morphology and the associated concentration 

profile of globular equiaxed dendrites as given by Nastac and Stefanescu56. 

 

 

 
 

Figure 4.4 The concentration and temperature profiles ahead of the dendrite tip. ΔTc and ΔTt shows 

the solutal and thermal undercoolings, respectively. L
LC is the intrinsic volume average 

concentration56. 
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The growth rate of the equiaxed dendrites was calculated by the model developed 

by Nastac and Stefanescu56 which relies on the melt undercooling at the dendrite tip (Fig. 

4.4), which is given by 

 

c tT T TΔ = Δ + Δ                  (4.7) 

 

where ΔTc and ΔTt are the solutal and thermal undercoolings, respectively. The governing 

equation to describe the mean growth velocity of the dendrite tip is given by Eq. (4.8). 

The original derivation is given by Nastac and Stefanescu56.  

 
1

*
2 2( 1)2 fL

s
L p L

Hm CV T
D c

κ
π

α

−
⎡ ⎤⎛ ⎞Δ−

= Γ + ⋅Δ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
             (4.8)

   

 

where, m is the liquidus slope, κ is the partition coefficient, CL* is the liquid interface 

concentration, DL is the liquid diffusion coefficient, Γ is the Gibbs-Thomson coefficient, 

αL is the liquid thermal diffusivity and ΔT is the undercooling. The melt undercooling is 

calculated by a linear liquidus assumption; 

 

m L bulkT T m C TΔ = + −                (4.9) 

 

where, Tm is the melting point of pure aluminum, LC  is the volume average 

extradendritic liquid concentration and Tbulk is the average temperature in the volume 

element (see Fig. 4.4).  

 

 

4.2.4 Eutectic Nucleation  

 

The eutectic microconstituent may form by heterogeneous nucleation on the primary 

phase or as independently nucleated equiaxed grains on nucleant particles in the 

interdendritic liquid57. However, the literature reports contradictory results on whether the 

SiC particles could act as nucleants for heterogeneous nucleation of the eutectic phase. 
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Although SiC particles were previously reported58, 59 as suitable substrates for 

heterogeneous nucleation of the eutectic phase, Nagarajan et al59 did not detect any 

significant alteration in the eutectic undercooling due to presence of SiC particles. For the 

ease of calculations, following the method of Gonzalez-Rivera et al54, we have assumed 

that the eutectic phase forms only as independently nucleated equiaxed grains. This 

assumption leads to prediction of higher eutectic growth rates than the actual case, which 

was compensated by a suitable impingement treatment, as will be explained in the 

following section.  

 

A continuous nucleation model (Fig. 4.2b) was adopted to account for the 

nucleation of eutectic grains in order to obtain a more realistic impression of eutectic 

undercooling and recalescence periods on the simulated cooling curves. Oldfield’s 

empirical model60 was used to describe the nucleation site distribution. The governing 

equation is given by 

 

( ) ( )1 1ns
N S

N Tn T f
t t

μ −∂ ∂
= − Δ −

∂ ∂
            (4.10) 

 

where, μN is a nucleation parameter, n = 2 and the term (1 – fS) was included to account for 

the residual volume fraction of liquid.  

 

 

4.2.5 Eutectic Grain Growth and Impingement  

 

The growth of the equiaxed eutectic grains was calculated by using the Johnson-Mehl 

model61  

 

2
s eut eut

RV T
t

μ∂
= = Δ
∂

              (4.11) 

 

where, R is the grain radius, μeut is the eutectic growth constant and ΔTeut is the eutectic 

undercooling. Since the equiaxed grains have spherical morphology, the evolution of solid 

fraction can be described by48 
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( )
3
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3
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⎛ ⎞∂ ∂ ∂

= + −⎜ ⎟∂ ∂ ∂⎝ ⎠
           (4.12) 

 

The effect of grain impingement was considered by weighting the effective area 

between the solid grains and liquid by the term (1 ) Sf
Sf

ψ− in Eq. (4.12) with Ψ = 3. This 

correction is analogous to previous approximations by Johnson-Mehl61 and Avrami62. Ψ is 

a constant introduced to account for the delay in the eutectic growth rate54 due to 

impingement of growing eutectic grains with each other, with the preexisting primary 

dendrites and also with the reinforcing SiC particles.  

 

 

4.2.6 Coarsening of Secondary Dendrite Arms  

 

The main aim of the numerical studies in this work is to estimate the secondary dendrite 

arm spacing distribution in a casting as a function of local cooling rate. Therefore, special 

emphasis will be given to this section and the applied model will be described in more 

detail.  

 

 The secondary arms are morphological instabilities or branches that grow 

perpendicular to the primary trunk. Although in early theories of dendritic solidification it 

was assumed that the secondary arms form in beginning of dendritic solidification and 

grow cooperatively with the primary trunk, it has later been recognized that the secondary 

arms coarsen with a mechanism analogous to Oswald ripening process in precipitate 

growth63. During coarsening of secondary dendrite arms, smaller branches shrink and melt 

and remaining larger branches continue their growth. The main reason behind this 

phenomenon is the effect of curvature on the liquidus temperature and the concentration 

profiles along the surfaces of these instabilities. 

 

 As the dendrite arm gets smaller, the contribution of the surface energy to the free 

energy of the solid phase increases due to increasing surface energy to volume ratio. This 

increment in free energy results in a depression in the equilibrium melting temperature of 

the solid phase (Fig. 4.5). Therefore, the smaller dendrite arms with higher curvature and 

therefore lower melting point dissolve to the melt and eventually disappear, whereas; the 
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larger arms continue their growth. This phenomenon is known as the dynamic coarsening 

of secondary dendrite arms48.  

 

 

 
 
Figure 4.5 Variation of free energy of the solid and liquid phases as a function of temperature. 

Additional surface due to curved interface results in a depression in the equilibrium melting 

temperature of the solid phase by ΔT66.  

 

 

The coarsening of secondary arms is a diffusion controlled process. It is well 

established that the secondary dendrite arm spacing can be related to the solidification 

time by the empirical relationship 

 
3
2 0 ftλ μ=                (4.13) 

 

where, λ2 is the secondary dendrite arm spacing, tf is the solidification time and μ0 is the 

coarsening constant. The correct prediction of as-solidified arm spacings depends on the 

derived expressions of μ0. Various derivations of μ0 were previously proposed in the 

literature63-65. In the present study, the dynamic coarsening model developed by 

Mortensen65 was used. The governing derivation in the following pages is for array of 

coarsening cylinders, which represents the secondary dendrite arms, held at a constant 

holding temperature, Thold, for a certain time, t.  
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As the dendrites grow, the secondary arms also get thicker. The average diameter 

of the dendrite arms, Φ, therefore can be represented as a function of fraction solid 

formed. The governing relationship is 

 

2 sfλΦ =                (4.14)  

 

where fs is the solid fraction. Since under isothermal conditions the solid fraction remains 

constant, the rate of thickening of the arms can be expressed by 

 

2
s

dd f
dt dt

λΦ
=                (4.15) 

 

While other approximations cited above generally focus on dissolution time of 

small dendrite arms into the melt, the Mortensen’s model focuses on the fraction of 

dendrites that continue their growth. Some fraction of dendrites, F, is assumed to continue 

their growth, while others shrink. If the diameters of the growing and shrinking arms are 

denoted as Φg and Φs, respectively; then the average dendrite arm diameter can be given 

by the following relationship 

 

(1 )g sF FΦ = Φ + − Φ               (4.16) 

 

Assuming 0.5F ≈ and 2g sΦ ≈ Φ and combining Eqns. (4.14) and (4.16); we have 

 

20.75 g sfλΦ =               (4.17) 
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(a) 

 

 
 

(b) 

 
Figure 4.6 Schematic illustration of the situation between two solid cylinders of different radii, 

placed in a locally isothermal melt. 



 36

 Fig. 4.6 illustrates the situation between two solid cylinders of different radii 

placed in a locally isothermal melt. Due to effect of curvature, (see Fig. 4.5) the two 

cylinders will have different liquidus temperatures and hence, the concentration along the 

surfaces of these cylinders will also be different. The surface of the cylinder with smaller 

radius will be at a lower solute concentration. Therefore, the solute will diffuse along the 

concentration gradient from the larger to smaller cylinder, while the solvent atoms will 

diffuse from the smaller to larger cylinder. As a consequence, the smaller cylinder will 

dissolve to the melt, while the larger cylinder will continue its growth. If it is assumed that 

the spacing between these cylinders are sufficiently small and the coarsening rate is 

sufficiently low so that local equilibrium is established between them, then the solute flux 

from the larger to smaller cylinder and solvent flux from the smaller to larger cylinder are 

given by 

  

solute L
CJ D
x

∂
= −

∂
              (4.18) 

1(1 )
2

r s
solvent L

dJ C
dt

κ
Φ

= − −              (4.19) 

 

where κ is the partition coefficient. Now, if we assume that the difference between surface 

concentrations is very small so that r R
L L LC C C= = , where LC  is the average liquid 

concentration, by combining Eqns. (4.18) and (4.19) and writing the flux of the solvent for 

the growing arms, we obtain the expression for the thickening rate of the larger arms; 

 

( )
1
2 1

g L

L

d D C
dt C xκ
Φ ∂

= −
− ∂

             (4.20) 

 

The rate at which the larger sphere coarsens is therefore a function of the concentration 

gradient; that is the term ∂C/∂x in Eqn (4.20), which in turn depends on the amount of 

depression in liquidus temperatures (see Fig. 4.5). The liquidus temperatures at the 

surfaces of the cylinders are given by Kurz and Fisher63 as 

  

2r r
L m L

s
T T mC Γ

= + −
Φ

              (4.21) 
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2R R
L m L

g
T T mC Γ

= + −
Φ

              (4.22) 

 

where Tm is the melting point of the solvent, m is the liquidus slope and Γ is the Gibbs-

Thomson coefficient. Under isothermal conditions, combining Eqns. (4.21) and (4.22) 

 

( ) 2 2R r
L L

s g
m C C

⎛ ⎞
− = Γ −⎜ ⎟⎜ ⎟Φ Φ⎝ ⎠

             (4.23) 

 

Therefore the concentration difference is 

 

2

g
C

m
Γ

Δ = −
Φ

               (4.24) 

 

Combining Eqns. (4.17) and (4.24), the difference in concentration can be written as 

 

2

3
2 s

C
m f λ

Γ
Δ = −               (4.25)  

 

The average diffusion distance, Δl, in Fig. 4.6 is given by Mortensen65 as 

 

( ) 21 sl f λΔ = −               (4.26) 

 

Then, it can be estimated that 

 

( )2
2

3
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            (4.27) 

 

Combining Eqns. (4.17), (4.20) and (4.27) we obtain 
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            (4.28) 
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Integrating Eqn. (4.28) with in the interval of isothermal holding time, th, 

 

( ) ( )
3 3
2, 2,0 0

27
4 1 1

L h
f h

L s s

D t t
m C f f

λ λ μ
κ

Γ
− = =

− −
           (4.29) 

 

where 3
2,0λ and 3

2, fλ  are the spacings between secondary arms at the beginning and end of 

the isothermal holding. Assuming that 2,0 2, 2fλ λ λ<< = , the final secondary arm spacing 

is given by 

 

3
2 0 ftλ μ=   with  
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27
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=

− −
          (4.30) 

 

 Eqn. (4.30) describes the coarsening of secondary arms under isothermal 

conditions. In order to integrate this equation to the actual process of solidification, one 

needs to know the functional dependence of the average liquid concentration and solid 

fraction with time65. The dependence of these variables to time was directly calculated 

from their corresponding alterations within the micro-volume element, which was 

presented in section 4.2.3, and implemented to Eqn. (4.30) to achieve the as solidified 

secondary dendrite arm spacing distribution within the casting. 
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CHAPTER 5 
 

EXPERIMENTAL & COMPUTATIONAL DETAILS 

 

 

5.1 Materials 
 

5.1.1 Matrix Alloy 

 

The matrix alloy chosen for the present study was A356 aluminum alloy due to its 

excellent castability and rather wide solidification range (see Appendix A). The 

composition limits of the A356 alloy are presented in Table 5.1. Typical applications are 

aircraft structures, machine parts, truck chassis parts and other structural applications 

requiring high strength. 

 
Table 5.1 Composition limits of A356 aluminum alloy 
 

Si Mg Cu Mn Fe 

6.5% - 7.5% 0.25% - 0.45% 0.20% (max) 0.10% (max) 0.20% (max) 

Zn Ti Other (each) Others (total) Al 

0.10% (max) 0.20% (max) 0.05% (max) 0.15% (max) Balance 

 

 

5.1.2 The Reinforcement Phase 

 

F320 type, green silicon carbide (SiC) particles with an average particle size of 29.2 ± 1.5 

μm were used as the reinforcement phase. Table 5.2 presents the chemical and physical 

properties of the SiC particles. The surface chemical values of the particles are given in 

Table 5.3.  
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Table 5.2 Chemical and physical properties of the SiC particles 
 

Crystal form: α-SiC hexagonal 

True density (kg m-3): 3.20 

Color: Green 

Decomposition point (°C):  2300 

Hardness - Knoop (kg cm-2): 2500 - 2900 

Reaction with acids: Very slight surface action with hydrofluoric acid 

Oxidation-reduction: Oxidation slowly starts at 800 °C. No reduction. 

 

 
Table 5.3 Surface chemical values of F320 silicon carbide 
 

Product %SiC %Free C % Si %SiO2 %Fe2O3 

F240 - F800 99.50 0.10 0.10 0.10 0.05 

 

 

 

 
 
Figure 5.1 Morphology of SiC particles used in this work. 
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Figure 5.2 (a) X-ray diffraction pattern of the SiC particles and (b) standard powder pattern of  

6H-SiC (JCPDS 29-1131). 

 

 

 Fig. 5.1 shows the morphology of the SiC particles used in this study. The X-ray 

diffraction pattern (Cu Kα) of reinforcement particles is shown in Fig. 5.2 with JCPDS 

(Joint Committee on Powder Diffraction Standards) data 29-1131 (6H-SiC). 
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5.2 Stir Casting of Aluminum Matrix Composites 
 

The aluminum alloy matrix composites were synthesized by the double stir-casting 

method. A weighed quantity of high purity aluminum electrical wires were melted in a 

clay bonded graphite crucible and alloyed with required amount of silicon. After complete 

dissolution of silicon, the melt was degassed with high purity argon (99.998%) for 20 min 

with a flow rate of 5 liter per min. In order to improve the wettability of SiC particles67, 

the melt was alloyed with 1% Mg and temperature was dropped below liquidus, to the 

semi-solid state. SiC particles, preheated at 300 °C for 2 hours were added to the slurry 

and manually stirred until the particles were completely wetted. The composite slurry was 

then reheated to TL ± 5 °C, where TL is the liquidus temperature, and stirred with a 

stainless steel four-blade impeller at 300 rpm for 15 minutes. The blades of the impeller 

were coated with a zirconia based suspension to avoid iron contamination of the melt. In 

order to compensate the oxidized magnesium during the stirring period, the melt was 

brought to fully liquid state and alloyed with required amount of magnesium to reach the 

nominal composition. Extreme care was taken for temperature control of the melt (720 ± 

10 °C) during processing to avoid Al4C3 formation. 

 

 
 

 

(a) (b) 
 

Figure 5.3 (a) Schematic diagram of the experimental setup for synthesis of aluminum matrix 

composites; (b) schematic of a typical cylindrical thermal analysis cup.  
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(a) (b) 
 

Figure 5.4 (a) Position of stirrer in the ladle; (b) schematic of the four-blade stirrer. 

  

 

During production of samples, the amount of charge materials, stirring duration 

and position of stirrer in the crucible were almost kept constant to minimize the 

contribution of variables related to stirring on distribution of reinforcement particles. Fig 

5.4 illustrates the position of the stirrer in the ladle and the schematic of the four-blade 

stirrer. In all experiments, the total amount of charge materials ranged between 1800 to 

2400 gr, which resulted in a liquid metal height of 6.5 to 8 cm. Nagata68 stated that, in 

order to avoid accumulation of particles at the bottom of the ladle, the position of the 

stirrer should not exceed 30% of the height of the liquid metal from the base. In all 

experiments, care was taken to position the stirrer 1.5 to 2 cm from the base to ensure 

uniform dispersion of particles within the liquid.  
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5.3 Thermal Analysis of MMC Solidification 
 

The composites were poured into cylindrical resin-coated shell sand molds (see Fig. 5.3b) 

with varying dimensions (see Appendix B) to obtain different solidification rates and 

allowed to cool down to room temperature. The investigated range of solidification rates 

were between 0.164 and 2.417 °C sec-1. 

  

The temperature of the solidifying composites was monitored from three alumina 

sheathed K-type thermocouples placed inside each cylindrical mold. In each mold, one 

thermocouple was positioned at the geometrical center of the mold and the others at two 

different radial distances from the center and at the same vertical height as the center 

thermocouple (Fig. 5.3b). Apart from its suitability for both Fourier and Newtonian 

thermal analysis procedures, this set-up is also typical for estimation of dendrite 

coherency point (DCP) with two thermocouples, which is based on the temperature 

difference (ΔT) between the wall and center thermocouples41.  

 

The thermocouple tips were in direct contact with the liquid. The top and bottom 

surfaces of the cylindrical molds were isolated with layers of zirconia and kaolin wool 

placed on preheated ceramic plates to ensure the cooling of the samples only by heat 

transfer from the radial surfaces for estimation of dendrite coherency points and also to 

establish similar heat transfer conditions with the 2D computational algorithm presented 

in Chapter 4. The thermal data were obtained by recording the time and temperature 

values by using an Elimko multi-channel data acquisition system at a rate of 1 Hz. The 

recorded data were processed with a program developed in Mathcad environment 

(Mathsoft Eng. & Ed. Inc. v11), which allowed application of Newtonian (NTA) and 

Fourier thermal analysis (FTA) procedures, calculation of solid fraction (fS) curves and 

estimation of dendrite coherency points (DCP). Solidification rate of the samples were 

calculated from the slopes of the cooling curves between liquidus and eutectic reactions, 

as received from the center thermocouples. The solidification rates were defined to be 

positive so that the calculated values indicate their magnitude. 
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 The DTA measurements were carried out by the Setaram SETSYS DTA device 

already available in the Department of Metallurgical and Materials Engineering in METU. 

The investigated temperature range was from 660 to 480 °C, at a cooling rate of 10 °C 

min-1 under argon atmosphere. 

 

 

5.4 Image Analysis 
 

The solidified samples were sectioned and prepared for metallographic analysis. The 

Cartesian coordinates of the centroids of the SiC particles and the secondary dendrite arm 

spacing (SDAS) values were obtained by Clemex Image Analysis system. At least 20 

random fields of each sample were analyzed to achieve the spatial and metallographic data 

and care was taken to avoid overlapping of the analyzed fields. The metallographic fields 

were 1376.3 × 1017.2 μm2 in all cases (Fig. 5.5). 

 

 

 
Figure 5.5 (a) An optical micrograph of sample no A2010; (b) selected SiC particles for 

quantitative analysis and; (c) centroids of SiC particles, presented with the Voronoi diagram. 
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In order to capture the long range spatial patterns and to analyze the effect of 

metallographic study area on the resulting statistics, the calculations were also performed 

on digital montages of contiguous microstructural fields. Fig. 5.6 shows such a montaged 

microstructure of an A356-20% SiC composite and a close-up image showing the high 

resolution of the image. The photographs of contiguous metallographic fields were 

collected and montaged with Adobe Photoshop CS2 image editor software. This 

procedure is necessary to capture relatively large microstructural fields that cannot be 

captured by an optical microscope with high resolution. The high resolution of the image 

is particularly important for the image analysis program to capture the microstructural 

details. 

 

 

 
Figure 5.6 (a) A high resolution montage of contiguous fields from an A356 - 20% SiC composite 

microstructure; (b) a close-up image from the metallographic field, together with the binary image. 
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5.5 Computational Details 
 

5.5.1 Quantitative Analysis of Particle Distribution 

 

5.5.1.1 Computer generated point data 

 

Computer simulated artificial distributions of events, where each event represents a 

reinforcement particle, were generated in order to test the response of applied statistical 

methods to various point patterns and levels of clustering. Three types of point processes; 

random (Poisson), regular and clustered were considered. Random event sets were 

generated by simulation of homogeneous Poisson process, in which the x and y 

coordinates were sampled from two independent uniform distributions within the 

boundaries of the study region, R. Inhibition model was used for regular event sets, which 

commences with generation of a Poisson distribution, followed by elimination of events 

that are found to be less than some specified distance, d, from their nearest-neighbour. The 

clustered event sets were generated by a three step Neyman-Scott cluster process. First, 

parent events were distributed according to a Poisson process with a pre-defined intensity. 

Then a number of events, obtained from a random distribution with mean μ were assigned 

to each parent. Finally, the assigned events were distributed around the parents according 

to a Gaussian probability distribution function centered on the parents and with standard 

deviation σ. In order to monitor the response of the applied functions to local variations in 

particle content, we have generated regular, random and clustered data sets with three 

different intensities. Each representative distribution was limited to a 1000 × 1000 square 

area and consisted of 150, 300 and 450 events. The clustered data sets were generated 

with varying μ and σ to test the robustness of the applied functions to alterations in 

clustering levels. Nine different clustered distributions were generated with the following 

properties: 

 

 For 150 events: μ = 10; σ = 50, 100, 150 

 For 300 events: μ = 20; σ = 50, 100, 150 

 For 450 events: μ = 30; σ = 50, 100, 150 
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5.5.1.2 Spatial analysis programs 

 

Four different analysis methods were used in the present study; Voronoi tessellation, 

refined nearest neighbour analysis, K-function and the local density statistics. The 

Voronoi polygons for the set of coplanar points, which represent the centroids of SiC 

particles, were first determined with MATLAB (The Mathworks, Inc. v7). Area 

distribution of the resulting cells was evaluated by Clemex image analysis software. The 

polygon areas could also be determined by the inbuilt function ‘polyarea’ in MATLAB. 

However, since the ‘polyarea’ function also takes the marginal polygons into 

consideration and makes no edge correction; the analysis ends up with incorrect results. In 

order to overcome this problem, the marginal polygons were eliminated and the area 

distributions were evaluated via the image analysis software. A set of programs developed 

in-house by the author were used for the refined nearest neighbour analysis, K-function 

and the local density statistics. All programs were developed in Mathcad environment 

(Mathsoft Eng. & Ed. Inc. v11). 

 

 

5.5.2 Macrotransport – Solidification Kinetics Modelling 

 

A program developed by the author was used for numerical assessment of composite 

solidification. The program calculates the evolution of fraction of solid during the course 

of solidification and couples the calculated evolution with the governing macrotransport 

equations. The coupling was achieved through the latent heat method (LHM)52. The 

flowchart of the coupling procedure is given in Fig. 5.7. The numerical parameters used in 

simulations and thermal analysis are presented in Table 5.3. 
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Figure 5.7 Basic flowchart of macrotransport – solidification kinetics coupling algorithm by latent 

heat method (LHM)52. 
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Table 5.3 Selected data used in simulations and in thermal analysis of composites. 

 
 

Quantity 
 

Value 
 

Unit 
 

Mold (shell sand) 
  

Density ρm = 1600 kg m-3 

Thermal conductivity km = 0.52 W m-1 °C-1 

Specific heat cp,m = 1170 J kg-1 °C-1 
   

Matrix(A356)  - Reinforcement (SiC)   

Solid density ρS = 2700 kg m-3 

Liquid density ρL = 2400 kg m-3 

Particle density ρP = 3200 kg m-3 

Solid specific heat cp,S = 1084 J kg-1 °C-1 

Liquid specific heat cp,L = 963 J kg-1 °C-1 

Particle specific heat cp,P = 1300 J kg-1 °C-1 

Solid thermal conductivity kS = 159 W m-1 K-1 

Liquid thermal conductivity kL = 121 W m-1 K-1 

Particle thermal conductivity kP = 250 W m-1 K-1 

Latent heat (Pure Al) ΔHf
α = 3.91× 105 J kg-1 

Latent heat (Eutectic) ΔHf
eut = 5.63× 105 J kg-1 

Partition coefficient κ = 0.132  

Liquidus slope m = -6.656 °C wt%-1 

Liquid diffusion coefficient DL = 3×10-9 m2 s-1 

Gibbs-Thomson coefficient Γ = 0.9×10-7 m °C 
   

Nucleation and Growth   

Primary nucleation parameter a = 3.57×109 m-3 

Primary nucleation parameter b = 2.3×107 s2 m-3 °C2 

Eutectic nucleation parameter μN = 1×106 m-2 °C-2 

Eutectic growth constant μeut = 5×10-6  m s-1 °C2 
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CHAPTER 6 
 

RESULTS & DISCUSSION 

 

 

The present work aims to study the clustering of reinforcement particles in metal matrix 

composites through experimental studies and numerical simulations.  The scope of the 

study consists of (i) understanding the effect of solidification rate on clustering of 

reinforcement particles; (ii) studying suitable statistical descriptions of composite 

microstructures that can successively quantify the amount of particle clustering and (iii) 

establishing a model that predicts the cluster formation tendency in complex geometry 

cast parts. 

 

Prediction of clustering is an important issue for two reasons. Firstly, being able to 

predict the cluster formation tendency in complex geometry cast parts before production 

would help the engineers to come up with new designs to produce these parts with a more 

uniform microstructure and therefore less prone to failure. The second benefit would be 

for the modelling studies aimed at predicting the mechanical response of complex 

composite parts with varying section thicknesses produced by solidification processing. 

Until now, such studies could only introduce the effect of particle clustering by some 

scalar descriptions. However, being able to predict and describe the particle distribution as 

a function of solidification rate would offer the possibility to consider the effect of local 

microstructural features as well. 

 

 The first section to be presented in this chapter concerns the thermal analysis 

results. The aim of the thermal analysis studies is to describe the evolution of solid 

fraction during the course of solidification and estimate the dendrite coherency points. The 

former also holds significance in verifying the numerical model, which describes the 

solidification of composites. The results regarding the quantitative analysis of particle 
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distribution will be presented in the following section, which will be followed by the 

effect of solidification rate on as-solidified particle distribution and the results of the 

numerical analysis study. As described previously, the aim of the numerical analysis study 

is to establish a model that can predict the solidification microstructures, which 

determines the as-cast particle distribution. 

 

 

6.1 Thermal Analysis of Composite Solidification 
 

Distribution of SiC particles was evaluated in terms of two parameters related to primary 

solidification of composites; secondary dendrite arm spacing (SDAS) and volume fraction 

of solid phase at the dendrite coherency (fS
DCP). Secondary dendrite arm spacing is a 

function of local cooling rate and is known to decrease as the cooling rate increases47. The 

volume fraction of the solid phase at the dendrite coherency, on the other hand, depends 

on the evolution of microstructure during the course of solidification. Refinement of the 

dendritic structure postpones the coherency whereas; increased growth rate results in an 

earlier formation of the dendritic skeleton44, 69-72. From a macro-scale point of view, one 

could expect earlier occurrence of coherency with an increase in the magnitude of cooling 

rate as a result of increased volumetric transformation rate. However, an increase in the 

magnitude of cooling rate also results in refinement of the dendritic structure due to 

increased undercooling. Therefore, the solid fraction at which coherency occurs is actually 

determined by the competition between these two processes with counteracting effects44, 

72. 

 

In order to obtain the variation of solid fraction during the course of solidification, 

the thermal data obtained from various locations within the cylindrical molds were 

processed according to Newtonian (NTA) and Fourier (FTA) thermal analysis methods. 

Fig. 6.1 presents sample cooling curves, their derivatives, the zero curves and the solid 

fraction curves on the same time scale. The range of solidification rates investigated in the 

present study is tabulated in Table 6.1. 
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(a) 

 
(b) 

 
Figure 6.1 Sample cooling curves, derivative curves, zero curves and solid fraction curves obtained 

by (a) Newtonian and (b) Fourier thermal analysis methods for A356 alloy composites reinforced 

with 20% SiC particles. 
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Table 6.1 Range of investigated solidification rates. 
 
SiC Content Sample SR (°C sec-1) SiC Content Sample SR (°C sec-1) 

 A1001 0.164  A2001 0.213 

 A1002 0.242  A2002 0.309 

 A1003 0.280  A2003 0.353 

 A1004 0.345  A2004 0.429 

 A1005 0.411  A2005 0.566 

 A1006 0.429  A2006 0.652 

 A1007 0.596  A2007 0.698 

10% A1008 0.682 20% A2008 0.775 

 A1009 0.725  A2009 0.806 

 A1010 0.795  A2010 1.107 

 A1011 0.981  A2011 1.211 

 A1012 1.121  A2012 1.421 

 A1013 1.329  A2013 1.861 

 A1014 1.928  A2014 2.417 

 A1015 2.319    

 
 

 

6.1.1 Evolution of Solid Fraction 

 

The difference between the FTA and NTA lies in the way they generate the baselines, also 

known as the zero curves. Instead of NTA, which arbitrarily calculates the zero curve by 

some extrapolation or curve fitting techniques, in FTA the zero curve is obtained from the 

temperature Laplacian, ∇2T. The extent of this difference can be seen on the generated 

zero curves in Fig. 6.1. The zero curve generated by the NTA exhibits a smooth trend 

during the course of solidification, since it is obtained by fitting of an exponential 

function. The zero curve generated by FTA, on the other hand, is a function of the cooling 

rate and temperature Laplacian and therefore exhibits similar trends with the derivative 

curve. 
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Figure 6.2  Comparison of solidification rates obtained from NTA and FTA methods. 

  

 

 The differences between the solid fraction (fS) estimations of NTA and FTA can 

better be understood by close examination of solidification rates in Fig. 6.2. NTA 

calculates a higher solidification rate at the onset of solidification compared to FTA. Due 

to this difference within the interval of primary solidification of α-Al dendrites, the solid 

fraction values at the dendrite coherency point obtained from NTA and FTA also differs. 

The second peaks in Fig. 6.2 account for the eutectic solidification. FTA demonstrates 

another third peak corresponding to the solidification of intermetallic phases such as 

Mg2Si and β-Al5FeSi. The solidification of these phases cannot be monitored from the 

curve obtained from NTA. Formation of these phases was verified by DTA (Fig. 6.3) and 

also from the literature73, 74. 
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Figure 6.3 DTA curve of the A356 alloy. Cooling rate was 10 °C min-1. The inflection indicated by 

the black arrow corresponds to solidification of intermetallic phases such as Mg2Si and β-Al5FeSi. 

 

 

6.1.2 Comparison of Dendrite Coherency Point Estimations 

 

As far as the as-cast particle distribution is concerned, formation of these intermetallics 

holds no importance. The main difference that needs to be underlined is the calculated 

solid fraction evolutions during dendritic solidification, since the distribution of 

reinforcement particles is determined during this interval. Therefore, it should again be 

noted that, NTA calculates a higher solidification rate at the onset of solidification 

compared to FTA. Consequently, the solid fraction values at the dendrite coherency point 

obtained from NTA generally, though not necessarily, corresponds to a higher solid 

fraction compared to FTA.  
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Figure 6.4 A typical output data: cooling curves obtained from center and wall thermocouples, the 

ΔT curve and the solid fraction curve for an A356 – 20% SiCp composite, presented on the same 

time scale. 

 

 

 
 
Figure 6.5 Calculated solid fractions at the dendrite coherency point by NTA and FTA. 
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Fig. 6.4 illustrates a typical fS
DCP estimation procedure with two thermocouples. 

The solid fraction that corresponds to the first negative peak on the ΔT curve is accepted 

as the dendrite coherency point. Fig. 6.5 shows the comparison of fS
DCP values by NTA 

and FTA. Although no clear relationships could be observed, the solid fractions calculated 

by NTA were found to correspond to higher values compared to FTA. This difference was 

also reported by Barlow and Stefanescu40. The shaded region in Fig. 6.5 is added to 

emphasize this tendency. 

 

 

6.2 Quantitative Analysis of Particle Distribution 
 

The spatial data obtained from composite microstructures were analyzed with various 

methods in spatial statistics to quantify the amount of particle clustering. The discussed 

methods are the refined nearest neighbour statistics, Voronoi tessellation, K-function and 

the local density statistics method. Series of point processes with known properties were 

simulated in order to explore the reaction of the aforementioned methods to various levels 

of clustering. The applicability of these methods to quantify composite microstructures 

was discussed.  

 

 

6.2.1 Simulated Point Data 

 

Computer simulated artificial distributions of events, where each event represents a 

reinforcement particle, were generated in order to test the response of applied statistical 

methods to various point patterns and levels of clustering. Three types of point processes; 

random (Poisson), inhibition (uniform) and clustered were considered. Summary statistics 

of the simulated events are presented in Table 6.2. The tabulated results are calculated 

from 200 simulations of each point process with 150, 300 and 450 events. Fig. 6.6 

demonstrates some examples of the simulated point processes. 
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Figure 6.6 Examples of simulated point processes with 300 events: (a) Neyman-Scott (NS) cluster 

process with σ = 50; (b) NS with σ = 100; (c) NS with σ = 150; (d) Poisson (random); (e) Inhibition 

(uniform) d = 25. All point processes were simulated on a 1000 × 1000 square. 
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Table 6.2 Summary statistics of the simulated point processes 

 

Events Process Q-ratio % Threshold CVA 

150 NS (μ = 10; σ = 50) 0.614 ± 0.025 34.911 ± 9.032 1.457 ± 0.288 

 NS (μ = 10; σ = 100) 0.770 ± 0.060 29.001 ± 6.672 0.966 ± 0.194 

 NS (μ = 10; σ = 150) 0.818 ± 0.047 21.200 ± 4.709 0.758 ± 0.082 

 Poisson 0.988 ± 0.044 5.371 ± 1.194 0.548 ± 0.020 

 Inhibition (d = 25) 1.127 ± 0.045 0.396 ± 0.137 0.533 ± 0.017 

     

300 NS (μ = 20; σ = 50) 0.657 ± 0.026 38.010 ± 10.706 1.517 ± 0.218 

 NS (μ = 20; σ = 100) 0.797 ± 0.022 29.199 ± 11.403 1.017 ± 0.208 

 NS (μ = 20; σ = 150) 0.840 ± 0.020 22.479 ± 5.766 0.932 ± 0.081 

 Poisson 1.025 ± 0.024 4.802 ± 1.129 0.611 ± 0.043 

 Inhibition (d = 25) 1.285 ± 0.014 0.275 ± 0.088 0.410 ± 0.031 

     

450 NS (μ = 30; σ = 50) 0.669 ± 0.020 40.567 ± 11.592 1.856 ± 0.248 

 NS (μ = 30; σ = 100) 0.793 ± 0.034 28.926 ± 6.669 1.275 ± 0.245 

 NS (μ = 30; σ = 150) 0.859 ± 0.018 18.378 ± 3.933 0.923 ± 0.124 

 Poisson 0.992 ± 0.016 4.962 ± 1.103 0.597 ± 0.032 

 Inhibition (d = 25) 1.334 ± 0.014 0.134 ± 0.098 0.338 ± 0.022 
Values are presented as mean ± standard deviation. NS refers to Neyman – Scott clustering process.. 

 

The Q-ratios derived from the nearest neighbour statistics were observed to be 

robust discriminators of varying clustering levels and different point processes with 

various intensities. However, it should be noted that, the clustered patterns were generated 

by Poisson (Neyman - Scott) clustering process and different clustering levels correspond 

to alterations in the standard deviation of the Gaussian probability function that specifies 

the distance of clustered events from the parent event. Therefore, the mechanism of 

clustering in the synthetic data is closely related to the nearest neighbour distances, which 

may be reason for the success of nearest neighbour analysis in the present case. The 

graphical representations of the refined nearest neighbour analysis are demonstrated in 

Fig. 6.7. 
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(a) 

 

 
(b) 

 

Figure 6.7 (a) The cumulative density function and (b) ˆ ( ) ( )G w G w−  plots of random (CSR), 

clustered (Neyman-Scott) and uniform (inhibition) point processes. Confidence intervals plotted at 

α = 0.01 level, based on 200 replicates. 
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 The generated point patterns were also analyzed by the local density statistics and 

the Voronoi tessellation method. % Threshold values in Table 6.2 were calculated from 

the ratio of average number of clustered events to the total number of events in each 

particular study region (Eqn. 2.7). The dispersions of the probability density functions for 

area (CVA) distributions were also found to be sensitive to the different point patterns and 

to alternating cluster levels, which may again be due to same reason as discussed for the 

nearest neighbour method. 

 

 
 

Figure 6.8 Sample Voronoi plots derived from generated point data:  (a) Neyman Scott cluster 

process with σ = 50, (b) Neyman Scott cluster process with σ = 100, (c) Poisson (random) and (d) 

uniform distribution. Marginal polygons are shown in dark color and excluded from analysis since 

they are not statistically significant.  
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One drawback of the Voronoi tessellation method is the lack of information 

regarding the theoretical distribution functions for either Poisson or other known spatial 

processes. Consequently, the distinction between clustered and uniform distributions 

cannot be brought out by comparing the observed values with some theoretical statistics. 

Therefore, the results can only be evaluated in terms of the alterations in CVA values. A 

lower CVA value indicates uniform distribution, whereas higher values imply a tendency 

of cells to aggregate into clusters. Sample Voronoi plots derived from point data are 

presented in Fig. 6.8. 

    

Fig. 6.9 presents the K-function plots of the generated data for clustered, random 

and uniform distributions. The advantage of K-function over the other methods discussed 

so far is that, it can characterize the pattern over many length scales. For example, the 

nearest neighbour statistics cannot identify the distinction between different patterns 

beyond a length scale of approximately 60 units (see Fig. 6.7). K-function, on the other 

hand, was observed to identify any deviation from randomness all throughout the analyzed 

length scales. 

 

 
 

Figure 6.9 K-function plots presented with the ˆ( )L r correction for clustered, random and uniform 

distributions. Confidence intervals at α = 0.01 level, based on 200 replicates. 
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The % Threshold values presented in Table 6.2 were obtained from the ratio of 

above-threshold events to all events within considered study regions averaged across all 

scales of observation. The decision whether an event belongs to a cluster or not depends 

on the number of events surrounding that particular event at some specific radius r. If the 

number of events surrounding an event exceeds the threshold Th0.95(r) at some distance r, 

that event was inferred to be a part of a cluster for that scale of observation. Therefore, the 

global clustering set S(r) was updated at each distance scale, meaning that the number of 

above-threshold events varies at each scale of observation. Fig. 6.10a presents this 

variation in percentages as a function of distance r for a generated clustered data set 

composed of 300 events with μ = 20 and σ = 100 (see Fig 6.6b).  

 

Three different distance scales were considered (80, 200 and 360) to monitor the 

effect of scale parameter r on localization of detected clusters. The kernels associated to 

the global cluster sets S(r) for each indicated distance scale are presented in Fig. 6.10b. 

Increasing the scale parameter from r = 80 to r = 200 expands the clusters, meaning that 

extra events were considered to be a part of a cluster.  Further increasing the scale 

parameter from r = 200 to r = 360 results in rejection of some events from the global 

clustering set (the decrease in Fig. 6.10a). However, the kernels emerging from individual 

clusters merge into a single large cluster due to their interaction as a result of relatively 

large scale of observation as compared to the distance between the cluster centers. Note 

that while varying the scale parameter, the cluster centers remain approximately at the 

same positions. 
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(a) 

 

 
 

(b) 

Figure 6.10 (a) Variation in amount of above-threshold events with scale of observation, (b) 

Kernel surfaces associated to above-threshold events. 

 

 

According to Fig. 6.10a, clustering is most pronounced at a distance scale of r = 

200 units. At this scale, the percentage of events that exceed the threshold reaches to a 

maximum. Therefore, this scale of observation can accepted to be the most informative 

scale regarding cluster geometries. Scales lower than r = 200 result in small individual 

clusters distributed as spikes over the matrix and higher scales result in formation of big 

merged clusters. 
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6.2.2 Quantitative Analysis of Composite Microstructures 

 

6.2.2.1 Refined nearest neighbour analysis 

 

The results of the nearest neighbour statistics indicate that, although the method is 

sensitive to various levels of clustering, it is not the best choice for quantitative analysis of 

particle distribution in metal matrix composites. The first reason is that, the method only 

considers the interaction of nearest particles and do not take the second, third or any other 

nearest particle into account. However, clusters in composites occur by involvement of 

many reinforcement particles and over many distance scales. The lack of information 

regarding the distribution of particles beyond the nearest neighbours makes this method a 

weak candidate in quantitative analysis of composite microstructures.   

 

 The refined nearest neighbour statistics can be presented by a variety of plots, 

which were demonstrated through Figs. 6.11 and 6.12. Fig. 6.11 shows the cumulative 

density function plots and the corresponding ˆ ( ) ( )G w G w−  variations. ˆ ( ) ( )G w G w−  plots 

simply express the difference between observed and theoretical (Poisson) distributions. 

Values below the confidence interval suggest uniform distribution, whereas values above 

the confidence interval indicate clustering of particles. Another way to present the nearest 

neighbour statistics is demonstrated through Figs. 6.12a, 6.12c and 6.12e. These plots 

present the nearest neighbour statistics of the observed pattern with reference to the 

Poisson distribution. Any deviation from linearity also indicates deviation from 

randomness. Similarly, values below the confidence interval suggest uniform distribution, 

whereas values above the confidence interval indicate clustering of particles. 
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Figure 6.11 Sample cumulative density function plots (on the left hand side) and ˆ ( ) ( )G w G w−  

plots (on the right hand side) for A356 alloy composites reinforced with 10% SiCp for samples 

A1002 and A1009. 

 

 

The refined nearest neighbour analysis was found to be effective in characterizing 

the global trends in distribution; however, cannot provide information about the local 

variations in the microstructure. The main issue in quantitative characterization of particle 

distribution is to relate the microstructure to the mechanical response of the composites. 

The nearest neighbour statistics fail to overcome this problem since the mechanical 

response is mainly determined by local variations in particle content and therefore cannot 

be described over a statistics that presents a summary that considers the interaction 

between closest particles.  
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Figure 6.12 Sample refined nearest neighbour analysis results for A356 alloy composites 

reinforced with 20% SiCp. for sample A2004, A2009 and A2014. 

 

 

 It is interesting to note that all plots indicate a solid tendency towards regularity at 

length scales up to approximately 30 μm. This value corresponds to the average SiC size 

used in the present study (29.2 ± 1.5 μm). Since the particles cannot approach each other 

closer than their diameter, the statistics suggest regularity within this length scale. 



 69

6.2.2.2 Voronoi tessellation 

 

The Voronoi tessellation method considers the area distribution of the polygonal cells to 

assess the level of inhomogeneity. The results indicate that, although the method yields a 

good pictorial impression of the spatial pattern of the reinforcement particles, it cannot 

provide a comprehensive description of the microstructure. Sample tessellated composite 

microstructures are presented in Fig. 6.13. 

 

 
 
Figure 6.13 Sample Voronoi plots derived from composite microstructures together with the 

corresponding CVA values for each particular micrograph. A higher CVA value indicates tendency 

of cells to aggregate into clusters. 
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Figure 6.14 Sample probability density function plots for composites reinforced with 10% SiC and 

20% SiC particles. A higher CVA value indicates tendency of cells to aggregate into clusters. 

 

 

The probability density functions of polygon area, f(A), for some composite 

microstructures are plotted in Fig. 6.14. One problem associated with this approach is the 

sensitivity of the method to the volume fraction particles. At higher volume fraction (20% 

SiC), the distinction between levels of clustering is not as clear as in lower volume 

fraction of particles (10% SiC). Yet, this comparison is only valid for composites with 

similar volume fraction of particles. Normally, the intensity of the peaks ceases as the 

level of inhomogeneity increases. However, the reduction in the intensity of the peaks 

with increasing volume fraction occurs due to the decrease in area gradients as a result of 

high particle density and should not be interpreted as an increase in inhomogeneity.  

 

The terms “inhomogeneity” and “clustering” are frequently used as synonyms 

with regard to distribution of second phase particles in metal matrix composites. However, 

the clusters in such materials cannot be directly detected by measuring the level of 

inhomogeneity by some statistical method. The Voronoi diagrams and their corresponding 

probability density function plots indicate that, the method is actually informative when 

one needs to assess the level of inhomogeneity of a given spatial pattern. However, in the 
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case of metal matrix composites, one also needs to gather information on the locations, 

relative intensities and spatial connectivities of the clusters. Description of whole 

microstructures in terms of some scalar numbers obviously cannot provide these 

information. Therefore, Voronoi tessellation was also not considered as a suitable method 

in quantitative characterization of metal matrix composites.  

 

 

6.2.2.3 K-function 

 

K-function (also known as Ripley’s K-function) is a second order intensity function and is 

known as the most effective method for assessing departure from spatial randomness75, 76. 

Similar to radial distribution function, it is very sensitive to local variations and it has the 

ability to characterize a given morphological pattern over many length scales. The K-

functions for some composite microstructures are plotted in Fig. 6.15. 

 

 

          (a)             (b) 

 
Figure 6.15 Sample K-function plots for a number of composites reinforced with (a) 10% SiC and 

(b) 20% SiC particles. 
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Figure 6.16 Sample ˆ( )L r  function plots for composites reinforced with 10% and 20% SiCp. The 

confidence intervals are not shown on the plots for simplicity, since each sample has different 

intensity resulting in different confidence limits. 

 

 

 Although K-function is quite sensitive to the trends in the pattern, it is commonly 

presented with a linearization transformation in order to bring out the differences between 

various patterns. Corresponding ˆ( )L r functions are plotted in Fig. 6.16. Instead of nearest 

neighbour statistics and the Voronoi tessellation, K-function is observed to detect any 

deviation from regularity over many length scales. The reinforcement particles aggregate 

into clusters at all distance scales greater than approximately 30 μm, which corresponds to 

the average SiC size used in the present study (29.2 ± 1.5 μm). The K-function results 

reveal that, clustering of reinforcement particles occur with arrangement of many particles 

over various distance scales. Therefore, the nature of these clusters can hardly be inferred 

by a statistics that only considers the interaction with the nearest neighbours. This is 

another limitation that indicates the deficiency of nearest neighbour statistics and Voronoi 

tessellation to be employed in quantitative characterization of composite microstructures. 

 

 

 



 73

6.2.2.4 Local density statistics 

 

As mentioned previously, although the K-function successfully measures the local density 

around each particle, presence of clustering can be inferred only when the local density 

around a particle exceeds a certain threshold value. These threshold values were obtained 

from a threshold function, T0.95(r), which expresses the probability that the local density 

around a particle, as depicted by ρ(Pi, r), exceeds a certain value in an associated Poisson 

point process. Figs. 6.17 through 6.24 show sample microstructural patterns, together with 

the variation of above-threshold particles as a function of observation scale. 

 

 

 
 

Figure 6.17 Evaluation of a micrograph from sample A1001: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 360 μm). 

 

 



 74

 
 

Figure 6.18 Evaluation of a micrograph from sample A1002: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 400 μm). 

 

 

 
 
Figure 6.19 Evaluation of a micrograph from sample A1008: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 120 μm). 
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Figure 6.20 Evaluation of a micrograph from sample A1009: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 200 μm). 

 

 

 
 
Figure 6.21 Evaluation of a micrograph from sample A2001: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 240 μm). 
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Figure 6.22 Evaluation of a micrograph from sample A2001: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 260 μm). 

 

 

 
 
Figure 6.23 Evaluation of a micrograph from sample A2009: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 140 μm). 
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Figure 6.24 Evaluation of a micrograph from sample A2009: (a) Effect of observation scale on the 

amount of above-threshold particles and (b) clusters demonstrated by kernel surfaces at the 

observation scale where clustering is most pronounced (r = 360 μm). 

 

 

As described previously, the local density around a particle may or may not 

exceed the corresponding clustering threshold depending on the scale of observation, r. 

The subfigures (a) in Figs. 6.17 through 6.24 show the influence of scale on the amount of 

above-threshold particles for actual composite microstructures. From these plots, the 

amount of deviation from randomness can be quantified over many length scales in terms 

of the amount of particles that have higher local density as compared to an associated 

Poisson process with the same intensity. The intensity of the peaks in these plots indicates 

the amount of particles that exceeds the clustering threshold.  

 

The detected clusters are demonstrated by kernel surfaces in subfigures (b) in 

Figs. 6.17 through 6.24 at observation scales where clustering is most pronounced. It is 

interesting to note that, samples solidified with relatively slow and fast cooling rates 

display large clusters with arrangement of many above-threshold particles. The samples 

solidified with relatively moderate cooling rates, on the other hand, display small clusters, 

randomly distributed throughout the matrix. This result was verified to hold for all 

samples produced in this study and will be discussed in detail in section 6.3.2. No 

information regarding the cluster dimensions could be inferred from previously described 

statistical functions. Demonstration of the intensity variation of all particles also cannot 

help to obtain a clear picture about the cluster dimensions. One such example is illustrated 
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in Fig. 6.25, which compares the visual effectiveness of the local density statistics with the 

intensity variation of all particles, as demonstrated by kernel surfaces. The kernel surfaces, 

when associated with all particles, display similar trends with the intensity variation of the 

above-threshold particles in the clustered regions. However, these plots cannot provide 

information on the scales of clustered regions. The kernel surfaces associated with above-

threshold particles, on the other hand, provide a much better description of the clustered 

regions by avoiding the particles, which do not agglomerate into clusters. 

 

 
 

Figure 6.25 Kernel surfaces demonstrating the intensity variation of (a) all particles and (b) above-

threshold particles. 

 

 

The main aim of quantitative characterization of particle distribution is to relate 

the microstructure to the mechanical response of the composite materials. The results 

reveal that methods such as the nearest neighbour statistics or Voronoi tessellation have 

limited use in these systems since the mechanical response of the composites is 

determined by local variations in particle content and therefore cannot be described over a 

statistics that presents a summary of the interaction between nearest particles. The 

presented methodology, on the other hand, describes the pattern from the perspective of 

individual particles and even in a microstructure that globally conforms to random 

distribution, local clusters, which may actually control the mechanical response can be 

detected. 
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One problem, however, associated with this method is that not every particle that 

belongs to a cluster is included in the set of above-threshold particles, S(r). As an 

example, let us consider an individual cluster composed of many SiC particles and 

surrounded by matrix only. Although the local density around the particles in the cluster 

core will exceed the clustering threshold, some particles close to cluster surface may not 

be accepted to S(r) since the local density around these particles may be lower than the 

threshold. This limitation will especially be more pronounced as the particles form 

compact and well-separated clusters. In such cases, although the cluster locations can still 

be determined precisely, the amount of above-threshold particles may not reflect the 

actual amount of clustered particles. However, since the clusters in discontinuously 

reinforced composites are in the form of local variations in particle content rather than 

compact, well-separated agglomerates, the extent of this problem will not be realized 

significantly. 

 

 

6.2.2.5 Effect of metallographic field size on cluster dimensions 

 

The results of the local density statistics show that clusters in metal matrix composites can 

successfully be detected and visualized by the described approach. However, in all 

attempts the metallographic field size was constant (1376 × 1017 μm). We have also 

investigated the effect of metallographic field size on the size of the detected clusters. In 

order to capture the long range spatial patterns with high resolution we have performed the 

calculations on digital montages of contiguous microstructural fields (see Fig. 5.6). 

 

 Fig.6.26 shows the corresponding results of the local density statistics. A 

comparison from Fig. 6.26a between the samples reinforced with 10% and 20% SiC 

particles indicates that the sample reinforced with 10% SiC has higher level of clustering 

at all studied length scales, including the scale at which clustering is most pronounced. 
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Figure 6.26 (a) Variation in the amount of above-threshold particles with scale of observation;    

(b-c) kernel surfaces associated to the set of above-threshold particles at scales where clustering is 

most pronounced and; (d-e) at an observation scale of 140 µm for composites reinforced with 10% 

and 20% SiCp. 
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Figs. 6.26b-e shows the kernel surfaces associated to the set of above-threshold 

particles at scales where clustering is most pronounced to analyze the influence of scale on 

cluster locations. While varying the scale of observation from r = 260 μm to r = 140 μm, 

the cluster locations do not vary significantly in the sample with 10% SiC since the 

differences in length scales and amount of above-threshold particles at these scales are 

relatively small. In the sample with 20% SiC, on the other hand, although the locations 

where the clusters are detected remain almost the same, there is significant difference in 

the dimensions of the detected clusters. This is due to the fact that when the calculations 

are performed at a length scale of r = 140 μm, the nature of the pattern beyond 140 μm 

cannot be seen and therefore remains unevaluated. Consequently, the analysis results in 

small individual clusters distributed throughout the matrix, which do not seem to represent 

the actual cluster dimensions since no information is available beyond 140 μm. Upon 

increasing the length scale to r = 440 μm, some particles are rejected from S(r) and some 

small clusters disappear since the local density around these particles does not exceed the 

clustering threshold anymore. However, a larger number of them are found to exceed the 

clustering threshold (the increasing trend in Fig. 6.26a). At this larger scale, the kernels 

merge to form bigger clusters, which can be accepted to represent a more accurate picture, 

since the number of particles that exceed the threshold reach to a maximum at this scale. 

Further increasing the length scales result in a decrease in the amount of above-threshold 

particles and the difference of the patterns from random distribution start to diminish.    

 

 It is interesting to note that, although there are considerable differences in cluster 

dimensions, the scales where clustering is most pronounced do not vary with 

metallographic field size. In all attempts, regardless of the metallographic field size, 

clustering was most pronounced at scales ranging between 150 – 500 μm. Therefore, in 

order to quantify the scale of clustering, one can make calculations on relatively small 

metallographic fields and end up with correct results. However, in order to reveal the 

actual dimensions of clusters, it is always better to work on micrographs that represent 

larger metallographic fields. 
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6.2.2.6 Comparison of methods 

 

The refined nearest neighbour analysis and Voronoi tessellation were found to be effective 

in characterizing the global trends in distribution; however, cannot provide information 

about the local variations in the microstructure. The main issue in quantitative 

characterization of metal matrix composites is to relate the microstructure to the 

mechanical response of the composites. The nearest neighbour statistics and Voronoi 

tessellation fail to overcome this problem since the mechanical response is mainly 

determined by local variations in particle content and therefore cannot be described over a 

statistics that presents a summary that considers the interaction between closest particles. 

K-function was observed to be very sensitive to local variations in particle content and can 

effectively characterize the pattern over many distance scales. However, this method also 

fails to provide visual information on locations and dimensions of the clusters. 

 

The local density statistics was observed to provide a much better description of 

the spatial pattern over many distance scales. Plots that show the variation of above-

threshold particles with observation scale reveal that, the actual nature of clusters can 

hardly be inferred from the distances between nearest particles since clustering is 

evidenced over much larger scales of observation compared to nearest neighbour 

distances. The presented method considers the distribution from the perspective of 

individual particles, so that even in a pattern that globally conforms to random 

distribution, local clusters, which may actually control the mechanical response, can be 

detected. Results show that the presented methodology is an effective discriminator of 

clustered particles and can successfully be used for quantitative characterization of 

particle distribution.  
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6.3 Effect of Solidification Rate on Clustering of SiC Particles 
 

6.3.1 Effect of Solidification Rate on Dendritic Structure 

 

Distribution of SiC particles was evaluated in terms of two parameters related to primary 

solidification of composites; secondary dendrite arm spacing (SDAS) and volume fraction 

of solid phase at dendrite coherency point (fS
DCP). We have examined the influence of 

solidification rate on these parameters for A356 alloy composites reinforced with 10% and 

20% SiCp. The influence of different SiCp contents on SDAS was negligible, in agreement 

with the previous results reported in literature1, 59. Power law fits to the experimental data 

for composites with 10% and 20% SiCp contents yield; 

 

A356-10% SiCp: 0.52
2 37.2 Tλ −= ⋅  (R2 = 0.954)            (6.1) 

A356-20% SiCp: 0.56
2 38.1 Tλ −= ⋅  (R2 = 0.949)            (6.2) 

 

where, λ2 is SDAS in μm and T is cooling rate in °C sec-1. There exists a discrepancy 

regarding the cooling rate dependence of coherency point in the literature. Arnberg et al42 

reported a decrease in fS
DCP with increasing cooling rate. Veldman et al44 on the other 

hand, concluded from their research that an alteration to cooling rate alone has a 

negligible effect on fS
DCP. In the present study, no relationships could be established 

between the solidification rate and the calculated coherencies. Although the coherency 

predictions obtained by NTA were observed to be in a slowly decreasing trend, FTA 

results were randomly scattered within the range of investigated solidification rates. As far 

as the effect of particle content is concerned, FTA results seem to yield a more accurate 

picture since, contrary to NTA, the fS
DCP values obtained by FTA decrease as the particle 

content is increased from 10% to 20%.This is actually expected since the thermal 

conductivity of SiC77 is much higher than that of A356 alloy78 at the temperature range of 

coherency. Therefore, the SiC particles between growing dendrite arms contribute to the 

established fast channel of heat transfer and manipulate the coherency values, resulting in 

early predictions in general. 
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6.3.2 Effect of Solidification Rate on Particle Distribution 

  

It was observed that the relationship of particle distribution to solidification rate can be 

characterized by three intervals for both reinforcement contents, which were denoted as 

intervals 1, 2 and 3 in Tables 6.3 and 6.4 and Figs. 6.27 and 6.28. First interval was 

characterized by a continuous decrease in SDAS with increasing solidification rate. Both 

statistical functions suggested a decrease in amount of clustering with increasing 

solidification rate in this interval for both reinforcement contents. The fS
DCP values were 

observed to be almost independent of solidification rate. In the second interval, further 

increasing the cooling rate did not create significant alterations in SDAS and the spacings 

remained almost constant around 40 μm. Interestingly, the corresponding statistics also 

did not suggest any significant tendency in this range. The fS
DCP values were still 

fluctuating, however at relatively lower values as compared to the first interval. In the 

third interval SDAS values were smaller than the average particle size (29.2 ± 1.5 μm). In 

contrary to first two intervals, the statistical functions suggest tendency towards 

clustering. The fS
DCP values exhibited sharp alterations, maintaining its scattered nature. 

 

The tabulated results of statistical functions indicate that distribution of SiC 

particles is mainly determined by secondary dendrite arm spacings. This dependence is 

characterized by two steps in the first two intervals: (i) the growing secondary dendrite 

arms push the SiC particles into interdendritic regions, where the particles start to 

agglomerate; (ii) during growth of dendrite arms, there also occurs a fluid flow through 

these arms to feed the solidification shrinkage79. This flow carries some particles from 

interdendritic spaces towards the roots of secondary arms, therefore preventing formation 

of larger clusters. 
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Figure 6.27 Effect of SDAS on clustering of reinforcement particles in A356 alloy composites 

reinforced with 10% SiCp. 

 

 

 
 

Figure 6.28 Effect of SDAS on clustering of reinforcement particles in A356 alloy composites 

reinforced with 20% SiCp. 
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In the third interval, where the spacings were smaller than the average particle 

size, however, there was a net increase in amount of clustering. Karnezis et al80 also 

observed a similar behavior in squeeze cast samples in which the arm spacings were lower 

than the average particle size. This reversed trend occurs when the fluid flow due to 

shrinkage cannot carry the particles through the finer secondary arms. The particles were 

therefore pushed by the finer mesh of secondary arms, resulting in formation of larger 

clusters80. 

 

 The microstructural trends in these intervals are illustrated in Fig. 6.29 through 

sample micrographs. In the first interval (Fig. 6.29a), the particles accumulate at relatively 

large interdendritic regions. In the second interval (Fig. 6.29b), where the arm spacings 

are slightly larger than the average particle size, the number of particles that could be 

contained in these interdendritic spaces decreases significantly, leading to a considerable 

decrease in the amount of clustering. In the third interval (Fig. 6.29c), where the arm 

spacings are lower than the average SiC size, the particles cannot penetrate through the 

finer mesh of secondary arms and the amount of clustering again increases.    

 

 There is also a significant difference in amount of clustering between composites 

reinforced with 10% and 20% SiCp. All statistical functions indicate a tendency towards 

regularity with an increase in SiCp content from 10% to 20%. This tendency can be 

explained by two factors: (i) the statistical functions presented in this study are quite 

sensitive to local variations in distribution at low volume fractions, however, as the 

volume fraction of the particles increase the functions start to lose their effectiveness and 

the distinction between different clustering levels diminishes25; (ii) the presence of hard, 

insoluble particles increases the viscosity of the melt to a great extent81. Increased 

viscosity at higher volume fraction of particles suppresses the convection during 

solidification of the composite and hinders the settling of reinforcements82, 83. Therefore, 

the particles almost preserve their positions in the liquid state prior to solidification and 

show less tendency to agglomeration since faster settling rates at low fractions and 

convection effects contribute to clustering of reinforcement particles2. 
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(a)  

 

 
(b) 

 

 
(c) 

 
Figure 6.29 Micrographs from samples (a) A1002, (b) A2009 and (c) A1015, representing the 

microstructural trends in the first, second and third intervals, respectively. 
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6.4 Modelling of MMC Solidification 
 

The results of the previous chapters indicate that, distribution of second phase particles is 

mainly determined by the secondary dendrite arm spacings. In general, finer arm spacings 

result in lower clustering levels. However, when the arm spacings are lower than the 

average particle size, this tendency is reversed, leading to an increase in the amount of 

clustering. 

 

  Therefore, in order to predict the cluster formation tendency in any cast part 

before production, one should be able to determine the dendritic arm spacing distribution 

throughout the casting. Such information would bring the advantage of assessing the 

critical regions in cast parts, where the particles are prone to agglomerate and help the 

engineers to come up with solutions by altering the solidification conditions or the design 

of the component. The final part of this study, therefore, focuses on numerical approaches 

to composite solidification to predict the local solidification rates and the resulting 

secondary dendrite arm spacings.  

 

 

6.4.1 Prediction of Local Solidification Rate 

 

A series of cooling curve simulations were performed to predict the local solidification 

rate distributions within the cylindrical castings. In each simulation, the experimental 

conditions were duplicated by entering the mold dimensions to the computer program. 

The simulated cooling curves were also plotted from the same radial locations with the 

experimental curves. The schematic illustrating the mold dimensions and the 

thermocouple locations is shown in Fig. 6.30.  
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Figure 6.30 Schematic illustrating the mold dimensions and thermocouple locations. 

 

 

Figs. 6.31 through 6.33 show the experimentally determined and simulated 

cooling curves for A356 alloy composites reinforced with SiC particles. Figs. 6.31a, 6.32a 

and 6.33a present the cooling curves obtained from the thermocouples located at the 

geometrical center (r = 0 mm) of the castings and Figs. 6.31b, 6.32b and 6.33b show the 

cooling curves obtained from various radial distances from the center, together with the 

simulated curves. The results reveal good agreement between the experimental and 

simulated cooling curves, especially in terms of local solidification time predictions.  
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(a) 

 

 
 

(b) 

 
Figure 6.31 The simulated and experimental cooling curves of A356 alloy composite reinforced 

with 10% SiCp (sample A1002). The mold dimensions are D = 50 mm, H = 60 mm, T = 12.5 mm, 

and the outer thermocouples are located at r1 = 9 mm and r2 = 16 mm.  
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(a) 

 

 
 

(b) 

 
Figure 6.32 The simulated and experimental cooling curves of A356 alloy composite reinforced 

with 20% SiCp (sample A2002). The mold dimensions are D = 55 mm, H = 60 mm, T = 12.5 mm, 

and the outer thermocouples are located at r1 = 8 mm and r2 = 14 mm. 
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(a) 

 

 
 

(b) 

 
Figure 6.33 The simulated and experimental cooling curves of A356 alloy composite reinforced 

with 20% SiCp (sample A2008). The mold dimensions are D = 30 mm, H = 50 mm, T = 15 mm, 

and the outer thermocouples are located at r1 = 5 mm and r2 = 9 mm. 
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 There still exist some differences between the experimental and simulated curves, 

which may better be understood by close examination of the solidification kinetics in 

terms of evolution of the solid. Fig. 6.34 presents the variation of solidification rates 

during the course of solidification obtained from experimental cooling curves and 

simulation for sample A2002. The experimental solid fraction results were obtained by 

Fourier and Newtonian thermal analysis methods. The solidification rate of the simulated 

sample exhibits a higher initial peak (which corresponds to the nucleation and growth of 

primary α-Al dendrites) compared to the initial peaks of the experimental curves obtained 

by NTA and FTA. The simulated curve also ceases more rapidly as compared to the 

solidification rate curves of the actual sample. This is most probably due to the 

instantaneous nucleation model used in the calculations, which assumes that all nuclei are 

generated at the nucleation temperature. Therefore, the model predicts a high value of 

latent heat release at the initial stage of primary solidification. However, because the 

actual transformation proceeds with continuous nucleation during the interval of primary 

solidification, the initial maxima of the experimental curves are lower and the subsequent 

decrease in the solidification rates are slower. 

 

 

 
 

Figure 6.34 Variation of solidification rate as a function of solid fraction for sample A2002 

obtained by NTA and FTA, together with simulation result. 
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 The magnitudes of the second maxima are observed to be reasonably in agreement 

due to the continuous nucleation model used in eutectic solidification. However, the start 

of eutectic solidification in the simulated curve corresponds to a higher solid fraction as 

compared to the experimental observations as derived by FTA and NTA. The delay in 

eutectic nucleation cannot be detected when the transformation start times are considered 

on the cooling curves. This quantitative discrepancy indicates that further improvements 

are required to the model to simulate the nucleation kinetics of the eutectic grains. 

 

 There exists a third peak in the solidification rate curve of the FTA processed 

experimental cooling curve, which corresponds to formation of intermetallic phases such 

as Mg2Si and β-Al5FeSi, which was also illustrated in Fig. 6.2. This third peak is not 

visible on the simulated solidification rate curve. This is because of the pseudo-binary 

alloy assumption, which considers all alloying elements other than Si as solutes and 

calculates and equivalent solute for the eutectic reaction. Therefore, no extra 

transformation is visible after the eutectic reaction in the simulated curves. 

 

 

6.4.2 Prediction of Secondary Dendrite Arm Spacings 

 

As mentioned previously, we have assumed that the presence of SiC particles do not have 

any influence on the secondary dendrite arm spacings, which is in accordance with the 

previously reported results in the literature1, 59 and with our experimental findings. 

Therefore, it was assumed that the dynamic coarsening model developed by Mortensen65 

can be applied both reinforcement contents (10% and 20%) without any modifications. 

Fig. 6.35 presents variation of SDAS as function of local solidification time for the 

composites, together with the predicted results from Eq. (4.30).   
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Figure 6.35 Predicted and experimental variations of secondary dendrite arm spacings as a 

function of local solidification time. 

 

 

 The experimental and predicted SDAS values are found to be in reasonably good 

agreement. Although the predicted and experimental variations have very similar trends, 

the predicted values are observed to be slightly higher than the actual spacings at local 

solidification times lower than approximately 50 seconds. This limitation may be a 

problem in correct prediction of SDAS values in rapidly cooled samples that belong to the 

third interval and therefore estimating the cluster formation tendencies. The origin of the 

quantitative discrepancies may be attributed to presence of factors not considered by the 

coarsening model.  

 

 Fig. 6.35 reveals that, the arm spacing distribution throughout any cast part can be 

predicted if the local solidification rate values at those locations are correctly calculated. 

Therefore, one can assess the local arm spacing at particular regions in a casting and 

evaluate the risk of cluster formation by looking at the particle size to SDAS ratio. One 

such example is shown in Fig. 6.36, which demonstrates the variation of SDAS values as a 

function of radial location within the casting for an A356 alloy composite reinforced with 

20% SiC particles (sample A2009). It was observed that there exists a good agreement 
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between the experimental and predicted trends. However, the predicted values are slightly 

lower than the mean SDAS values all throughout the radial locations, which again may be 

attributed to the limitations discussed above and also to wrong estimation of local 

solidification times, which arises from incorrect description of the heat transfer system as 

a result of limitations in the thermophysical parameters. 

 

 

 
 
Figure 6.36 Predicted and experimental variations of secondary dendrite arm spacings as a 

function of radial location within the cylindrical casting for sample A2009. 
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CHAPTER 7 
 

CONCLUSIONS 
 

 

1. The distribution of SiC particles in aluminum alloy composites was found be 

highly dependent on secondary dendrite arm spacing (SDAS), which is a strong 

function of local solidification rate. In general, with decreasing arm spacings, 

particles exhibit less tendency towards clustering. At higher solidification rates, 

however, this tendency is reversed, resulting in formation of larger clusters. This 

reversed trend occurs when the average secondary dendrite arm spacing decreases 

below the average particle size. The particles cannot penetrate through the finer 

mesh of secondary arms and agglomerate in larger interdendritic channels. The 

results indicate that, in order to attain the lowest possible amount of particle 

clustering, the secondary dendrite arm spacings must lie with in the range of dSiC < 

SDAS < 2dSiC, where dSiC is the average particle diameter.  

 

2. No relationships could be established between the as-cast particle distribution and 

the fraction of solid phase at the dendrite coherency (fS
DCP). fS

DCP indicates the 

fraction of solid phase when a solid network is established throughout the casting. 

This solid fraction value, however, does not give any information on the length 

scales that the particles were pushed by the growing dendrites during the course of 

solidification. Therefore, the fraction of solid phase at the dendrite coherency is 

not considered as a determining factor in clustering of reinforcement particles. 
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3. The applicability of various spatial characterization methods was investigated. 

Results indicate that, methods that describe the microstructural pattern over a 

statistics that presents a summary of the interaction between nearest particles have 

limited use in discontinuously reinforced composites since clustering in such 

materials is evidenced over many length scales. Methods such as the nearest 

neighbour statistics and Voronoi tessellation can describe the microstructural 

heterogeneity to a certain extent, however, cannot provide information on the 

characteristics of the pattern at length scales beyond nearest neighbour distances. 

 

K-function is observed to be an effective solution to overcome this problem, since 

it has the ability to analyze the microstructural pattern over many length scales. 

However, similar to the above aforementioned methods, K-function also cannot 

provide any sort of information regarding dimensions, locations and spatial 

connectivities of the detected clusters. However, as far as the fracture mechanics 

of the discontinuously reinforced composites is concerned, one also needs to 

gather such information in order to successfully relate the mechanical response of 

the composite to its microstructure. 

 

The local density statistics, on the other hand, was observed to provide a much 

better description of the composite microstructures. The method considers the 

microstructural pattern from the perspective of individual particles, therefore even 

in a pattern that globally conforms to random distribution, local clusters, that may 

actually control the mechanical properties, can be detected.  

 

The variation of above-threshold particles with observation scale show that 

clustering of SiC particles is most pronounced at length scales ranging between 

150 - 500 µm. In general, slower solidification rates result in large clusters. The 

samples solidified with higher cooling rates, on the other hand, display small 

clusters, randomly distributed throughout the matrix. Further increasing the 

solidification rate, again produces large clusters due to agglomeration of particles 

within large interdendritic spaces. 
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The effect of metallographic field size on the corresponding statistics was also 

analyzed. It was observed that the length scales where clustering is most 

pronounced do not vary with metallographic field size. However, there are 

considerable differences in observed cluster dimensions. When the metallographic 

field area is increased, the kernel surfaces emerging from individual clusters 

merge together to reveal the actual cluster morphologies. Therefore, although 

clustering levels can successfully be quantified from relatively small micrographs, 

the actual dimensions of clusters can only be revealed from micrographs that 

represent much larger visual fields compared to reinforcement particle size.  

 

4. Coupling of macroscopic heat transport with solidification kinetics through the 

latent heat method was observed to provide a neat description of MMC 

solidification process, especially in terms of local solidification time predictions. 

The experimental and predicted SDAS values are found to be in reasonably good 

agreement. Small quantitative discrepancies can be attributed to the presence of 

factors not considered in the model and incorrect description of the heat transfer 

system as a result of limitations in the thermophysical parameters.  

 

It was concluded that locations in a casting where there exists a tendency towards 

clustered particle arrangements can be successfully predicted prior to production 

with the described numerical approach. This advantage will obviously help 

engineers to come up with solutions to produce cast composites with more 

uniform microstructures and hence less prone to failure. 

 

5. The present study differs from previous investigations in three ways. Firstly, the 

results hereby reported marks the first attempt in the literature to bring a 

quantitative approach to effect of dendritic solidification on spatial distribution of 

reinforcement particles.  

 

Another difference is that, this study approaches to the problem of clustering from 

a different perspective and quantifies the amount of clustering from the 

perspective of individual particles rather than global trends in the pattern. This is a 

much appropriate way to look at the problem under consideration since clusters in 

MMCs are in the form of local variations in particle content rather than compact, 
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well separated agglomerates and therefore are hard to detect by conventional 

methods of spatial statistics.  

 

Finally, the described computational strategy marks the first attempt reported in 

the literature to predict the risk of cluster formation as a function of local 

solidification rate. With this approach, certain locations in a casting, where there 

exists a tendency towards clustered particle arrangements can be predicted before 

production. Such an ability will obviously help engineers to come up with 

solutions to produce these components with more uniform microstructures and 

hence, less prone to failure.  
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APPENDIX A 

PHASE DIAGRAM AND SOLIDIFICATION PATH 

OF A356 ALLOY 
 

 

A356 is basically an Al - 7% Si - 0.35% Mg alloy. In order to present an accurate picture 

of the solidification path of the alloy and also the phases present at room temperature, 

various isothermal sections obtained from the ternary Al-Si-Mg phase diagram and 

solidification sequence of various  phases were calculated by Pandat Multi-Component 

Phase Diagram Calculation Software (CompuTherm LLC, v5).  

 

 

 
Figure A1 Isothermal sections from the Al-Si-Mg ternary phase diagram. 
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Figure A1 Isothermal sections from the Al-Si-Mg ternary phase diagram (continued). 
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Table A1 Theoretical non-equilibrium (Scheil) solidification sequence of A356 alloy calculated by 

Pandat Multi-Component Phase Diagram Calculation Software. 
 

 T (°C) X (AL) X (MG) X (SI) ΔG (J) PhaseName 

613,57 0,9265 0,0035 0,07 -31000,3 LIQ +  (Al) 

613,47 0,926352 0,003506 0,070142 -31001,8 LIQ +  (Al) 

613,27 0,926057 0,003518 0,070425 -31003 LIQ +  (Al) 

612,87 0,925467 0,003542 0,070991 -31005,4 LIQ +  (Al) 

612,07 0,924288 0,003591 0,072122 -31009,7 LIQ +  (Al) 

610,47 0,921936 0,003687 0,074377 -31017,5 LIQ +  (Al) 

607,27 0,91726 0,003879 0,078861 -31029,1 LIQ +  (Al) 

604,07 0,912617 0,004069 0,083313 -31009,8 LIQ +  (Al) 

600,87 0,908008 0,004259 0,087733 -30988,8 LIQ +  (Al) 

597,67 0,903432 0,004447 0,092121 -30966,1 LIQ +  (Al) 

594,47 0,898887 0,004635 0,096477 -30941,9 LIQ +  (Al) 

591,27 0,894374 0,004822 0,100803 -30916,2 LIQ +  (Al) 

588,07 0,889892 0,005009 0,1051 -30889 LIQ +  (Al) 

584,87 0,885439 0,005195 0,109366 -30860,5 LIQ +  (Al) 

581,67 0,881016 0,00538 0,113604 -30830,7 LIQ +  (Al) 

578,47 0,876621 0,005565 0,117813 -30799,6 LIQ +  (Al) 

575,27 0,872255 0,00575 0,121995 -30767,3 LIQ +  (Al) 

574,87 0,871711 0,005773 0,122515 -30726,9 LIQ +  (Al) 

574,67 0,87144 0,005785 0,122776 -30722,2 LIQ +  (Al) 

574,66 0,871432 0,005785 0,122783 -30719,7 LIQ + (Al) + (Si) 

574,56 0,871128 0,00605 0,122823 -30734,9 LIQ + (Al) + (Si) 

574,36 0,87052 0,006579 0,122901 -30759,1 LIQ + (Al) + (Si) 

573,96 0,869303 0,007637 0,123059 -30801,3 LIQ + (Al) + (Si) 

573,16 0,866866 0,009756 0,123378 -30870,7 LIQ + (Al) + (Si) 

571,56 0,861971 0,013998 0,124032 -30979,5 LIQ + (Al) + (Si) 

568,36 0,852102 0,022502 0,125396 -31151,4 LIQ + (Al) + (Si) 

565,16 0,842124 0,031034 0,126842 -31411,6 LIQ + (Al) + (Si) 

561,96 0,83203 0,0396 0,128371 -31668,3 LIQ + (Al) + (Si) 

558,76 0,821813 0,048201 0,129986 -31917,7 LIQ + (Al) + (Si) 

557,16 0,816655 0,052517 0,130828 -32158,6 LIQ + (Al) + (Si) 

556,36 0,814064 0,054679 0,131257 -32278,6 LIQ + (Al) + (Si) 

555,96 0,812766 0,05576 0,131474 -32338,4 LIQ + (Al) + (Si) 

555,91 0,81258 0,055915 0,131505 -32368,2 LIQ + (Al) + (Si) + Mg2Si 

555,91 0,81258 0,055915 0,131505 -32372,5 (Al) + (Si) + Mg2Si 
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Table A2 Theoretical non-equilibrium (Scheil) solid phase evolution of A356 alloy calculated by 

Pandat Multi-Component Phase Diagram Calculation Software. 
 

T (°C) fL fS fTot(Al) fTot(Si) fTot(Mg2Si) 

613,57 1 0 0 0 0 

613,47 0,997718 0,002282 0,002282 0 0 

613,27 0,993185 0,006815 0,006815 0 0 

612,87 0,984236 0,015764 0,015764 0 0 

612,07 0,9668 0,0332 0,0332 0 0 

610,47 0,933668 0,066332 0,066332 0 0 

607,27 0,873612 0,126388 0,126388 0 0 

604,07 0,820779 0,179221 0,179221 0 0 

600,87 0,773955 0,226045 0,226045 0 0 

597,67 0,732181 0,267819 0,267819 0 0 

594,47 0,69469 0,30531 0,30531 0 0 

591,27 0,660864 0,339136 0,339136 0 0 

588,07 0,630195 0,369805 0,369805 0 0 

584,87 0,602266 0,397734 0,397734 0 0 

581,67 0,576729 0,423271 0,423271 0 0 

578,47 0,553292 0,446708 0,446708 0 0 

575,27 0,531709 0,468291 0,468291 0 0 

574,87 0,529136 0,470864 0,470864 0 0 

574,67 0,52786 0,47214 0,47214 0 0 

574,66 0,527822 0,472178 0,472178 0 0 

574,56 0,500454 0,499546 0,496568 0,002977 0 

574,36 0,452731 0,547269 0,539098 0,008171 0 

573,96 0,378352 0,621648 0,605378 0,016269 0 

573,16 0,281021 0,718979 0,6921 0,026879 0 

571,56 0,180225 0,819775 0,781885 0,037891 0 

568,36 0,099748 0,900252 0,853532 0,04672 0 

565,16 0,067398 0,932602 0,882321 0,050281 0 

561,96 0,050232 0,949768 0,897593 0,052175 0 

558,76 0,039695 0,960305 0,906965 0,053341 0 

557,16 0,035863 0,964137 0,910372 0,053765 0 

556,36 0,034199 0,965801 0,911853 0,053949 0 

555,96 0,03342 0,96658 0,912545 0,054035 0 

555,91 0,033311 0,966689 0,912642 0,054047 0 

555,91 0 1 0,940323 0,05727 0,002408 
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APPENDIX B 

MOLD DIMENSIONS AND THERMOCOUPLE LOCATIONS 
 
 

Table B1 Mold dimensions and thermocouple locations (r2, r3)  

Sample H (mm) D (mm) T (mm) r2 (mm) r3 (mm) 

A1001 60 55 10 7 20 

A1002 60 50 12.5 9 16 

A1003 60 45 15 4 14 

A1004 60 40 17.5 6 14 

A1005 55 50 17.5 4 10 

A1006 55 37 11.5 7 11 

A1007 55 34 13 4 10 

A1008 50 32 14 4 7 

A1009 50 30 15 9 14 

A1010 45 30 15 6 10 

A1011 45 28 16 5 10 

A1012 45 25 17.5 4 8 

A1013 40 25 12.5 4 9 

A1014 40 20 15 4 8 

A1015 35 18 11 4 7 
      

A2001 60 55 10 8 12 

A2002 60 55 12.5 8 14 

A2003 60 45 15 6 16 

A2004 60 40 17.5 8 15 

A2005 55 35 20 5 8 

A2006 55 32 14 6 9 

A2007 55 30 15 4 8 

A2008 50 30 15 5 9 

A2009 50 28 16 5 9 

A2010 45 28 16 5 10 

A2011 45 25 17.5 4 10 

A2012 40 25 17.5 5 9 

A2013 40 20 15 4 8 

A2014 35 18 11 3 7 
      

There is also a third thermocouple (r1) placed at the center of each cylindrical mold (r = 0 mm).  
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Figure B1 A sample cylindrical thermal analysis cup with three thermocouples placed at three 

different radial locations. 
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