

i

ASYNCHRONOUS DESIGN OF SYSTOLIC ARRAY ARCHITECTURES IN CMOS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

A. NESLİN İSMAİLOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

APRIL 2008

ii

ii

Approval of the Thesis

“ASYNCHRONOUS DESIGN OF SYSTOLIC ARRAY
ARCHITECTURES IN CMOS”

Submitted by A. NESLİN İSMAİLOĞLU in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Electrical and Electronics Engineering by,

Prof. Dr. Canan ÖZGEN
Dean, Graduate School of Natural And Applied Sciences

Prof. Dr. İsmet ERKMEN
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Murat AŞKAR
Supervisor, Electrical and Electronics Engineering

Examining Committee Members:

Prof. Dr. Hasan GÜRAN (*)
Electrical and Electronics Engineering, METU

Prof. Dr. Murat AŞKAR (**)
Electrical and Electronics Engineering, METU

Prof. Dr. Abdullah ATALAR
Electrical and Electronics Engineering, Bilkent University

Yrd. Doç. Dr. Cüneyt BAZLAMAÇÇI
Electrical and Electronics Engineering, METU

Yrd. Doç. Dr. Ece SCHMIDT
Electrical and Electronics Engineering, METU

Date:

(*) Head of Examining Committee
(**) Supervisor

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

 Name, Last name: A. NESLİN İSMAİLOĞLU

Signature :

iv

ABSTRACT

ASYNCHRONOUS DESIGN OF SYSTOLIC ARRAY ARCHITECTURES IN CMOS

İSMAİLOĞLU, A. Neslin

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof.. Dr. Murat AŞKAR

April 2008, 96 pages

In this study, delay-insensitive asynchronous circuit design style has been adopted to systolic

array architectures to exploit the benefits of both techniques for improved throughput. A

delay-insensitivity verification analysis method employing symbolic delays is proposed for

bit-level pipelined asynchronous circuits. The proposed verification method allows data-

dependent early output evaluation to co-exist with robust delay-insensitive circuit behavior

in pipelined architectures such as systolic arrays. Regardless of the length of the pipeline,

delay-insensitivity verification of a systolic array with early output evaluation paths in one-

dimension is reduced to analysis of three adjacent systoles for eight possible early/late

output evaluation scenarios. Analyzing both combinational and sequential parts

concurrently, delay-insensitivity violations are located and corrected at structural level,

without diminishing the early output evaluation benefits. Since symbolic delays are used

without imposing any timing constraints on the environment; the method is technology

independent and robust against all physical and environmental variations. To demonstrate

the verification method, adders are selected for being at the core of data processing systems.

Two asynchronous adder topologies in the delay-insensitive dual-rail threshold logic style,

having data-dependent early carry evaluation paths, are converted into bit-level pipelined

systolic arrays. On these adders, data-dependent delay-insensitivity violations are detected

and resolved using the proposed verification technique. The modified adders achieved the

targeted O(log2n) average completion time and -as a result of bit-level pipelining- nearly

constant throughput against increased bit-length. The delay-insensitivity verification method

could further be extended to handle more early output evaluation paths in multi-dimension.

Keywords: Asynchronous Logic Circuits, Pipeline Arithmetic, Pipeline Processing, Systolic

Arrays.

v

ÖZ

CMOS DEVRELERLE ASENKRON SİSTOLİK DİZİ MİMARİSİ TASARIMI

İSMAİLOĞLU, A. Neslin

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof.. Dr. Murat AŞKAR

Nisan 2008, 96 sayfa

Bu çalışmada, asenkron devre tasarım yöntemi sistolik dizilere uyarlanarak her iki yöntemin

faydalarının birleştirilmesi ve veri işlem hacminin arttırılması amaçlanmıştır. Bit-

seviyesinde boru hattı mimarisine sahip asenkron sistolik diziler için, sembolik gecikme

değerleri kullanımına dayalı bir gecikmeye-duyarsızlık analiz ve doğrulama yöntemi

önerilmiştir. Önerilen doğrulama yöntemi, bit-seviyesinde boru hatlandırılmış asenkron

sistolik dizilerde, erken ve girdi-tamlığı olmayan çıktı üretimi durumunda gecikmeye-

duyarsızlık isterlerinin güvenli bir şekilde karşılanmasını sağlar. Sistolik dizinin

uzunluğundan bağımsız olarak, tek yönde erken çıktı üretimi olan bir sistolik dizinin

gecikmeye-duyarsızlık analizi, üç adet komşu sistolün olası sekiz adet erken/geç çıktı üretme

senaryoları için analizine indirgenmiştir. Hem işlem hem de kayıt yapan birimler birarada

analiz edilerek, gecikmeye-duyarsızlık ihlalleri yapısal seviyede belirlenmekte ve erken çıktı

üretiminin sağladığı hızlanmadan ödün vermeden düzeltilmektedir. Bu yöntem, sembolik

gecikme değerleri kullanarak ve çevre birimlere herhangi bir zaman kısıtı getirmeden

doğrulama yaptığı için, fiziksel ve çevresel etkilere karşı gürbüzdür, dolayısıyla devre üretim

teknolojisinden de bağımsızdır. Önerilen yönteminin gösterimi için, veri işleme yapılarının

temelini oluşturan toplayıcılar seçilmiştir. Çift-hatlı eşikli mantık tipinde ve erken elde

üretebilen iki adet asenkron toplayıcı bit-seviyesinde boru hatlandırılmış asenkron sistolik

dizilere dönüştürülmüştür. Bu toplayıcılardaki girdiye bağlı gecikmeye-duyarsızlık ihlalleri

önerilen doğrulama yöntemiyle saptanmış ve düzeltilmiştir. Düzeltilmiş toplayıcılar, -bit-

seviyesinde boru hatlandırma sayesinde- O(log2n) ortalama işlem süresi ve bit uzunluğundan

bağımsız sabite yakın veri hacmi hedefine ulaşmaktadır. Gecikmeye-duyarsızlık doğrulama

yöntemi daha çok sayıda ve yönde erken çıktı üreten sistolik dizileri de kapsayacak şekilde

geliştirilmeye açıktır.

vi

Anahtar Kelimeler: Asenkron mantık devreleri, Boru-hattı aritmetiği, Boru-hattı işlemleri,

Sistolik diziler.

vii

“All that is gold does not glitter
Not all those who wander are lost”

J.R.R. Tolkien

To all wanderers

viii

ACKNOWLEDGMENTS

The author wishes to express her deepest gratitude for her supervisor Prof. Dr. Murat

AŞKAR for his precious guidance, advice, criticism, encouragements and insight throughout

the research.

The author would also like to thank her supervising comittee members Prof. Dr. Hasan

GÜRAN and Prof. Dr. Abdullah ATALAR for their valuable suggestions, comments and

guidance.

The suggestions and comments of comittee members Assist. Prof. Dr. Ece GÜRAN

SCHMIDT and Assist. Prof. Dr. Cüneyt BAZLAMAÇCI are gratefully acknowledged.

The author also wishes to express her gratitude for her former supervisor Dr. Çağatay

TEKMEN for his support, assitance and encouragement at the begining of the research.

The author also wishes to thank TÜBİTAK-UZAY (formerly TÜBİTAK-ODTÜ- BİLTEN)

for the facilities and environment provided to her throughout the research and for the support

given to her for publications. The author’s colleagues and friends at TÜBİTAK-UZAY are

also appreciated for all the support and encouragement she received from them.

The author thanks especially to her family for their amazing love, constant support, great

patience and extensive encouragement throughout her studies.

ix

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGMENTS ..viii

TABLE OF CONTENTS.. ix

LIST OF ABBREVIATIONS..xii

LIST OF FIGURES ..xiii

LIST OF TABLES..xiv

CHAPTERS

1 INTRODUCTION ... 1

1.1 Benefits of Asynchronous Design ... 3
1.2 Difficulties of Asynchronous Design... 5
1.3 When to Use Asynchronous Design? .. 6
1.4 Main Features of Asynchronous Circuits... 6

1.4.1 Delay models ... 7
1.4.2 Signaling and Handshaking Conventions .. 8
1.4.3 Data Representation ... 9
1.4.4 Elastic Micropipelines ... 11

1.5 Systolic Arrays in Asynchronous... 11
1.6 Thesis Outline .. 13

2 DELAY INSENSITIVE ASYNCHRONOUS DESIGN ... 14

2.1 Delay Insensitive Design Styles... 14
2.2 Dual-Rail Threshold Logic Gates .. 15

2.2.1 Symbolic Completeness of Expression.. 15
2.2.2 Two-Phase Operation... 16
2.2.3 Logic Design using Dual Rail Threshold Logic Gates 17
2.2.4 Transistor Level Design of Dual Rail Threshold Logic Gates....................... 18
2.2.5 Registration and Pipelining.. 19

2.3 Delay Insensitivity Criteria .. 20
2.4 Pipelining Criteria.. 21

3 VERIFICATION OF DELAY INSENSITIVITY ... 23

x

3.1 Formal Verification Methods and State Explosion Problem 23
3.2 Recent Alternative Methodologies .. 24

3.2.1 Relative Timing Assumptions.. 25
3.2.2 Lazy Transition Systems.. 25
3.2.3 Symbolic Methods ... 25
3.2.4 Partial Completion Methods with Early Evaluation 25

3.3 Early Outputs Conflict ... 26
3.3.1 Early Output Evaluation vs. Delay Insensitivity.. 26
3.3.2 Demonstration on a Systolic Array.. 27

4 DELAY-INSENSITIVITY VERIFICATION METHOD FOR SYSTOLIC ARRAYS31

4.1 Structural Delay Insensitivity Verification Analysis Method (SDIVA) 32
4.1.1 Symbolic Delay Assignment.. 32
4.1.2 Initial Assumptions .. 33
4.1.3 Analysis with Symbolic Delays ... 34

4.2 Structural Modifications Inferred .. 44
4.3 Benefits of the SDIVA Method ... 49

5 DELAY INSENSITIVE SYSTOLIC ADDER DESIGN .. 50

5.1 Delay Insensitive Adders with Early Carry Evaluation ... 52
5.2 Application of Pipelining and Early Carry Evaluation Conflict 55

5.2.1 DI CSA Systole.. 55
5.2.2 NCL Adder Systole.. 61

5.3 Fixing Early Carry Evaluation Conflict with Structural Modifications................. 64
5.3.1 Modified DI CSA Systole.. 64
5.3.2 Modified NCL Adder Systole.. 69
5.3.3 Benefits of Modified Systolic DI Adder Structures....................................... 73
5.3.4 Performance Comparison of Systolic DI Adder Structures 74

5.4 Application of Bit-Skewed Inputs ... 77
5.4.1 Bit-skewed Systolic DI CSA Pipeline ... 78
5.4.2 Bit-skewed Systolic NCL Adder Pipeline ... 79
5.4.3 Benefits of Bit-skewed Pipelining ... 79

6 CONCLUSION.. 80

BIBLIOGRAHPY.. 84

xi

APPENDIX A: C CODE FOR DICSA ESTIMATION .. 90

APPENDIX B: C CODE FOR DI NCL ADDER ESTIMATION 92

CURRICULUM VITAE.. 94

xii

LIST OF ABBREVIATIONS

ACK :Acknowledge Signal

CAD :Computer Aided Design

CMOS :Complimentary Metal-Oxide Semiconductor

CSA :Carry Save Adder

DI :Delay-Insensitive

DIMS :Delay-Insensitive Minterms Summation

EMC :Electromagnetic Compatibility

EMI :Electromagnetic Interference

GALA :Globally Asynchronous Locally Asynchronous

GALS :Globally Asynchronous Locally Synchronous

MEAG : Mutually Exclusive Assertion Groups

MOS :Metal-Oxide Semiconductor

MOSFET :Metal-Oxide Semiconductor Field-Effect Transistor

NCL :Null Convention Logic

nMOS :n-Channel MOSFET

pMOS :p-Channel MOSFET

REQ :Request Signal

RSA :Rivest-Shamir-Adleman Encryption Algorithm

RTA :Relative Timing Assumptions

SI :Speed-Independent

SIA :Silicon Industries Association

SOC :System-On-Chip

STG :Signal Transition Graph

VLSI :Very Large Scale Integrated Circuits

xiii

LIST OF FIGURES

Figure 1.1 Synchronous Circuit .. 2
Figure 1.2 Asynchronous (Self-Timed) Circuit .. 2
Figure 1.3 Signaling Protocols [14] .. 8
Figure 1.4 Handshaking Mechanisms... 9
Figure 1.5 Muller C-Element [15] .. 10
Figure 1.6 Null-Convention Logic [16] .. 10
Figure 1.7 Elastic Micropipelines [16] ... 11
Figure 1.8 Systolic Arrays .. 12
Figure 2.1 Dual-rail Threshold logic style basic building gates ... 16
Figure 2.2 DIMS Adder Structure built with Dual-Rail Threshold Logic Gates 17
Figure 2.3 Static implementation of Dual-Rail threshold gates with hysteresis 18
Figure 2.4 Delay-Insensitive (DI) Pipeline with Explicit Registration................................. 19
Figure 2.5 TDD cycle of a Pipelined Dual-Rail Threshold Logic Circuit.............................. 20
Figure 2.6 DI systolic array with bit-level embedded pipelining.. 21
Figure 3.1 A STG and its corresponding State Diagram [3]... 24
Figure 3.2 DI systolic array with bit-level embedded pipelining.. 27
Figure 3.3 Signal flow for a delay-insensitivity violation scenario 29
Figure 4.1 Simplified DI systolic array with bit-level embedded pipelining........................ 33
Figure 4.2 Modified DI systolic array with bit-level embedded pipelining.......................... 44
Figure 5.1 Carry Propagation in 1024-bit RSA Operation ... 51
Figure 5.2 Bit-level Pipelined Dual-Rail Adder with embedded registration....................... 52
Figure 5.3 Reduced NCL Adder Structure.. 53
Figure 5.4 Manchester CSA Adder Structure ... 54
Figure 5.5 Pipelined DICSA ... 55
Figure 5.6 DICSA systole for bit-level pipelining.. 56
Figure 5.7 DI violation in systolic DICSA captured by Spice simulation 57
Figure 5.8 Pipelined Reduced-NCL Adder... 61
Figure 5.9 The Reduced-NCL Adder systole.. 61
Figure 5.10 Modified DICSA systole with delayed REQO.. 65
Figure 5.11 Modified Systolic NCL Adder with delayed REQ.. 69
Figure 5.12 Evaluation Time versus Bit Length in Adders .. 76
Figure 5.13 DATA-to-DATA Cycle Time (TDD) versus Bit Length in DI Systolic Adders.77
Figure 5.14 Bit-Skewed Inputs/Outputs in a DI Systolic Adder... 78

xiv

LIST OF TABLES

Table 2.1 Dual Rail Signalling.. 16
Table 4.1 DI Systole in case of { Early, Early, Early } Scenario ... 36
Table 4.2 DI Systole in case of { Early, Early, Late } Scenario... 37
Table 4.3 DI Systole in case of { Early, Late, Early } Scenario... 38
Table 4.4 DI Systole in case of { Early, Late, Late } Scenario... 39
Table 4.5 DI Systole in case of { Late, Early, Early } Scenario... 40
Table 4.6 DI Systole in case of { Late, Early, Late } Scenario... 41
Table 4.7 DI Systole in case of { Late, Late, Early } Scenario... 42
Table 4.8 DI Systole in case of { Late, Late, Late } Scenario .. 43
Table 4.9 Modified DI Systole in case of { Late, Early, Early } Scenario 46
Table 4.10 Modified DI Systole in case of {Late, Early, Late} Scenario............................. 47
Table 4.11 Modified DICSA Systole in case of { Early, Early, Early } Scenario 48
Table 5.1 Reduced-NCL Adder Formulas .. 53
Table 5.2 Manchester CSA Formulas ... 54
Table 5.3 Systolic DICSA Formulas... 56
Table 5.4 DICSA Systole in case of {Late, Early, Early} Scenario 59
Table 5.5 DICSA Systole in case of {Late, Early, Late} Scenario 60
Table 5.6 Systolic Reduced-NCL Adder Formulas... 62
Table 5.7 Reduced-NCL Adder Systole in case of {Late, Early, Early} Scenario............... 63
Table 5.8 Modified DICSA Systole in case of {Late, Early, Early} Scenario 66
Table 5.9 Modified DICSA Systole in case of {Late, Early, Late} Scenario 67
Table 5.10 Modified DICSA Systole in case of {Early, Early, Early} Scenario 68
Table 5.11 Modified Systolic NCL Adder in case of {Late, Early, Early} Scenario 71
Table 5.12 Modified Systolic NCL Adder in case of {Early, Early, Early} Scenario 72
Table 5.13 Comparison of DI adder systoles .. 73
Table 5.14 DI Systolic Adder performances against bit length .. 74

1

Equation Chapter 1 Section 1

 CHAPTER 1

1 INTRODUCTION

Asynchronous design has been an active area of research ever since the late 1950s. In the

early days of computers, i.e. before the coming of VLSI technology, machines were

constructed from discrete components and designers worked at the switch level [1]. Hence

asynchronous circuit design was more prevalent. With the introduction of digital integrated

circuits, synchronous design techniques started to dominate the industry. The clocked

approach, where all state transitions in a design are restricted to occur at the edge of a global

clock signal, is a straightforward process, easier to design and verify. As a result, it leads to

great progress in the architectures of machines and productivity of designers [2]. The design

tools which automate the design process also developed along with the technology. Today, it

is possible to synthesize a complete chip from high-level behavioral description with little

manual intervention. Research in asynchronous design still continued in academia, providing

a framework for development of some mathematical techniques to verify the correctness of

circuits [2].

In the late 1990s, there has been a renewed world-wide interest in asynchronous design.

After being considered as a more “anarchic” approach to circuit design, -due to absence of a

global clock signal to govern all state transitions-, asynchronous design techniques made a

come-back when synchronous design techniques started to hit their limitations, as it

happened in the case of clock distribution and power dissipation problems in very large and

dense integrated circuits: As the feature size of silicon technologies became smaller and

transistors became faster, the designed chips began to encompass more functionality and

higher performance, which in turn resulted in very dense circuitry in more silicon area and

higher operating power to be dissipated on the chip [2]. Skew-free routing of the clock

signal and restricting the clock activities for reducing power dissipation became the key

issues in synchronous design. With the introduction of System-On-Chips, interfacing of

different clocked domains and handling the electro-magnetic emission due to the high clock

rates also added on to these design problems [3]. Hence, the industry started to seriously

consider benefiting from the advantages of asynchronous design where synchronous

methods failed. Research activities were activated in many areas of asynchronous design [4,

5]. Fully or partially asynchronous chips appeared and become used in end-user products

2

[6]. Existing automated design tools are tuned for asynchronous design while new automated

tools targeting asynchronous design are also developed [7]. The SIA (Silicon Industries

Association) stated in its year 2001 report that since the clock distribution in purely

synchronous designs account for 40% of dynamic power, there would be a trend for more

robust and power-efficient hybridization of synchronous and asynchronous designs [8]

which became true since then with the introduction of Globally Asynchronous Locally

Synchronous (GALS) design of System-on-Chip applications.

The added value of asynchronous circuits can be better understood by reviewing the basic

operating principles of both types [8]: In synchronous circuits, an external global clock

signal is used to observe system states (Figure 1.1). Hence the inputs to a register must stay

unchanged within a set-up/hold window around a clock event [9]. In asynchronous circuits,

internal or external events are used to observe system states, such as signal “handshake”,

which can be implemented using either delay padding or completion detection (Figure 1.2).

Therefore asynchronous circuits are also called “self-timed” [9].

Sender Receiver

Clock

Figure 1.1 Synchronous Circuit

Sender Receiver

Ack

Req

Figure 1.2 Asynchronous (Self-Timed) Circuit

3

1.1 Benefits of Asynchronous Design

Asynchronous systems greatly benefit from elimination of the global clock signal. The

following are the main advantages of asynchronous design:

(i) Elimination of clock network: In a synchronous system, the global clock signal must be

distributed evenly throughout the chip so that the clock event arrives at each register at the

same time to avoid clock skew. As feature sizes decrease and integration levels increase, the

clock distribution network in the circuit becomes more difficult to handle, requiring

extensive design effort, consuming silicon area and power [10]. Asynchronous systems use

local handshaking signals to regulate data transitions between stages instead of a global

clock. Elimination of clock signal also eliminates the clock distribution network and clock

skew considerations.

(ii) Low power consumption: In a synchronous system, all parts of the circuit are clocked

whether they are actually doing anything useful or not. The clock distribution network itself,

being constructed of large buffers, also consumes 30-40% of the total dynamic power on a

chip [8]. To introduce power-saving/idle-modes to synchronous circuits clock-gating or

clock-stopping techniques are applied but at the cost of increased design effort, complexity

and lots of other problems created at high clock rates. On the other hand, asynchronous

circuits inherently cease their switching activity when no transition occurs on data signals

and can go from idle to full activity instantaneously on the event of a data transition.

(iii) Average Case Performance instead of Worst: In a synchronous circuit, the slowest path

in the design determines the clock speed. This means that circuits in the critical path require

extra design effort and complexity to ensure the desired clock rates. Rather then being fixed

to operate at the worst-case rate, asynchronous systems are designed to sense the completion

of an evaluation before proceeding data to the next stage and hence they can operate at the

average-case speed.

(iv) Robustness to Environmental Variations: The delay through a circuit is affected by

variations in temperature, supply voltage and fabrication. Synchronous systems assume that

worst possible combination of these factors are present and adjust the clock rate accordingly.

On the other hand, most asynchronous systems sense completion detection and run as fast as

the current physical conditions allow [3].

4

(v) Easier Metastability Avoidance and Input Accommodation: When external signals,

which are by nature asynchronous, are fed into a synchronous circuit, they need to be

sampled by the active edge of the global clock signal to be synchronized to the circuit. For

proper sampling, external inputs must stay unchanged within a set-up/hold window around

active edge of the global clock signal. If they don’t, then metastability is experienced. With

proper precautions in circuit design metastability is resolved eventually but it may still last

for an unbounded amount of time, causing failures in functionality of synchronous circuits

which are always designed for bounded delays [11]. Meanwhile, asynchronous circuits do

not need synchronization of external signals, but wait indefinite amounts of time until the

inputs become available. So they accommodate inputs more gracefully.

(vi) Easier Technology Migration: Today’s industry demand for achieving fast time-to-

market dictates reducing the design cycle of an integrated circuit through implementation of

previously designed modules in various technologies during their lifetimes. As a result fast

migration of module designs from one technology to another is frequently required.

Asynchronous circuits with their robustness to physical conditions provide easier technology

mitigation possibilities than their synchronous counterparts whose timing closure is highly

related to technology dependent parameters.

(vii) Suitability for SOC Applications (Modularity, Scalability and Reusability): System-On-

Chips require accommodation of several blocks designed in different technologies and with

different constraints on a single chip. Migration of module designs from one technology to

another faces the problem of interfacing multiple clock domains and adjusting chip-level

timing constraints to module level circuit-timing constraints. Asynchronous designs

inherently have precisely specified interfaces which simplify their integration into larger

systems [3]. There is no need to worry about synchronization problems, clock phase

differences or clock skew at chip-level interconnect. The module design itself is independent

of the interface constraints and hence reusable and scalable as well.

(vii) Lower Electromagnetic Emission: In synchronous systems all activity in the circuit is

focused around the active edges of the global clock. This localization in time causes sharp

spikes in current consumption and large amounts of electromagnetic energy to be radiated at

the harmonics of the clock frequency [6]. This emission can make it difficult to deliver

enough current to the circuit at clock edges, to meet the EMC requirements and to operate

radio frequency circuits nearby as it happens in the case of wireless mobile applications. The

5

elimination of clock in asynchronous systems spreads out all circuit activity in time,

resulting in a broadband distributed electromagnetic emission and reduced interference to

nearby systems.

1.2 Difficulties of Asynchronous Design

With all the stated advantages, asynchronous systems are still not so widely adopted as

synchronous ones since they have their drawbacks as well. These are:

(i) Design Complexity: Synchronous systems work on the principle that every computing

stage completes its evaluation in less than the duration of clock period. Hence they are easily

designed by defining the combinational logic to compute a given function and dividing the

data path with registers to achieve the desired clock rate. On the other hand, asynchronous

circuits require extra hardware to allow each computing block to perform local

synchronizations with the blocks that it is passing its data to. Some design styles also

requires completion-detection circuitry as well. These increase the complexity of hardware

and in some cases also the silicon area.

(ii) Difficulty of Verification: In synchronous systems, by setting the clock period to a

reasonably long interval, all problems about dynamic behavior of the circuit are eliminated.

Verification consists of checking the logical functionality of combinatorial blocks and static

timing constraints imposed by the clock. However in asynchronous design, the dynamic

state of the circuit should be carefully analyzed to prevent hazards and critical races.

(iii) Reduced Testability: Synchronous designs are easily tested by using the scan-path

testing technique where the registers in the design act as latches of a single large shift-

register in scan-mode. Hence all registers in an integrated circuit can be brought to a desired

state and tested. Asynchronous circuits lack the deterministic behavior of state transitions in

clocked circuits, so it is much more difficult and not so straightforward to test them.

(iv) Poor Tool Support: Over the last three decades, all phases of the synchronous circuit

design process have been completely and successfully automated by CAD tools. These CAD

tools either need modifications for asynchronous design or do not apply to them at all. New

design tools for asynchronous circuit design are also developed but they are not so wide-

spread yet [7].

6

(v) Not well-known or well-thought: As synchronous systems have been dominating the

industry for years, designers are not familiar with asynchronous design methods and it’s

hard to break the habits. Besides, it is not as easy and as straightforward to grab the design

concepts when there is no clock to govern and synchronize all activities [1].

1.3 When to Use Asynchronous Design?

Both synchronous and asynchronous sequential circuits have their use in the design world,

depending on the requirements of the problem at hand. Rather than considering

asynchronous systems as a complete alternative to synchronous designs, it is usually

preferred to benefit from their advantages when synchronous methods fail or meet their

limitations. A most obvious example of when asynchronous design is preferable is

interfacing signals from outer world which are in fact asynchronous by nature [1]. In

synchronous circuits, interfacing external signals to a system clock is always subject to

meta-stability conditions where as, asynchronous circuits can be more gracefully interfaced

since they can wait as long as required, until the meta-stability resolves.

System-On-Chip (SoC) applications are another obvious application for asynchronous

circuits, where interconnections among different blocks within the chip constitute the

biggest design challenge. Synchronizing all blocks with one global clock is not practical,

especially when several blocks with different timing constraints are to be interfaced.

Improving the clock rate of the system could only be done at the cost of improving the

response time of each module. Implementing the chip-level interconnects asynchronously is

a widely preferred way of interfacing multiple clocked domains within the chip. System-On-

Chips designed in this manner are called Globally Asynchronous Locally Synchronous

(GALS). When a System-On-Chip is completely designed with asynchronous techniques

then it is called Globally Asynchronous Locally Asynchronous (GALA) [12].

1.4 Main Features of Asynchronous Circuits

Asynchronous designs operate on the self-timing principle where subsystems exchange

information at mutually negotiated times without external timing regulation. Data is passed

between modules through a group of wires known as the channel, which are usually

unidirectional point-to-point connections. The device that delivers data to the channel is

called the sender and the device that accepts data is called the receiver. The device that starts

7

the data transfer is called the initiator and the device responding to the initiator is called the

target [9].The presentation of essential issues in asynchronous design is based upon this

terminology.

1.4.1 Delay models

In asynchronous design, certain assumptions are made regarding the delays in gates and

wires within a circuit and the mode in which the circuit is operating. The unbounded delay

assumption, which ensures that a circuit will always function correctly under any

distribution of delay among the gates and wires within the circuit, is very convenient since it

separates the delay management from the functional correctness issue. However unbounded-

delay assumption is hard to realize in circuit design so there are many different delay models

in asynchronous design in addition to the unbounded-delay assumption [13]. The

classification of asynchronous design styles according to the delay models, which include

the timing assumptions and constraints on the circuit design, is as follows.

(i) Delay Insensitive: A circuit which conforms to the unbounded delay assumption, i.e.

which functions correctly irrespective of both gate and wire delays, is called delay-

insensitive [3]. For such circuits, no timing assumptions or constraints are required to ensure

functional correctness hence they offer the most reliable and robust self-timed operation

with the least amount of timing analysis effort. However delay-insensitive circuits are hard

to realize and in reality only a few types of circuits could confirm to this model.

(ii) Quasi-Delay Insensitive: These are similar to delay-insensitive circuits except that the

forks in wires are assumed to be isochronic, which means that difference between the signal

propagation delays in the branches of a set of interconnect wires is negligible with respect to

the delays of gates connected to these branches. This assumption is used when a signal is

demultiplexed to multiple targets: Unacknowledged forked signals are assumed to have

changed based on the observation at a single point on the fork.

(iii) Speed Independent: A circuit in which the wire delays are assumed to be negligible with

respect to gate delays is called speed-independent. Forks are assumed to be isochronic in

these circuits. This model is only applicable to small circuits or small portions of circuits [3].

8

1.4.2 Signaling and Handshaking Conventions

Signaling protocols are required to control transfer of data between two communicating

units in asynchronous designs. This scheme is called handshaking. The initiator issues a

request (REQ) to start a data transfer action and indicate data validity and the target responds

to it by issuing an acknowledge (ACK) to indicate the readiness of receiver to accept further

data. Handshaking may occur either in dedicated wires or is implicit in the data encoding.

a. Push Channel b. Pull-Channel

c. 2-Phase Push Protocol d. 2-Phase Pull Protocol

e. 4-Phase Push Protocol f. 4-Phase Pull Protocol

Figure 1.3 Signaling Protocols [14]

The direction of data flow with respect to the request determines whether the channel is a

Push Channel or a Pull Channel: In a Push Channel, data flows in the same direction as the

request; whereas in a Pull Channel, data flows in the opposite direction to the request (Fig.

1.3.a. and 1.3.b) [14].

When the REQ/ACK handshaking scheme is implemented using dedicated signaling wires,

the signal transitions on REQ and ACK wires determine the communication protocol as

either 2-Phase event signaling (non-return-to-zero) or 4-Phase level signaling (return-to-

9

zero). Of these two protocols, 4-Phase is easier to implement in CMOS digital circuits

(Figure 1.3.c., 1.3.d., 1.3.e. and 1.3.f.) [14].

The handshake in an asynchronous circuit can be implemented either by completion-

detection or by delay-padding. Completion-detection requires special redundant data

encoding schemes to be employed to sense data validity (Figure 1.4.a). Delay-padding

requires estimation of maximum logic delay (Figure 1.4.b) [9].

Sender Receiver

Ack

Req

a. Completion-detection

Sender Receiver

Ack

Req
Delay

b. Delay-padding

Figure 1.4 Handshaking Mechanisms

1.4.3 Data Representation

In synchronous design, data is usually binary encoded so that 2n symbols are represented by

n distinct wires and the global clock signal indicates the data validity. In asynchronous

design, several data encoding schemes other than binary are employed to implement

completion detection:

(i) Single Rail Encoding: Also known as bundled-data approach, Single Rail Encoding is

almost the same as the binary encoding in synchronous designs except that dedicated wires

are allocated for REQ and ACK lines.

10

(ii) Dual Rail Encoding: This scheme uses two wires to represent each bit of data, where

each transfer involves an activity on only one of the wires at a time. Hence 2n distinct wires

are required to represent 2n symbols. The benefit is that timing information, i.e. validity of

data, is implicit in the encoding hence dedicated ACK lines are not required. In this design-

style, and-gates are replaced by Muller-C Elements [15]. (Figure 1.5)

A B Q

0 0 0

0 1 Q

1 0 Q

1 1 1

a. a 2-input Muller-C Gate b. its truth table c. its operation

Figure 1.5 Muller C-Element [15]

(iii) One Hot Encoding: This encoding scheme uses n distinct wires to represent n symbols.

Only one of the n wires is held at high (logic level 1) at a time to encode a particular symbol.

The obvious extra state in this encoding scheme is the case when all wires are held at low

(logic level 0). This is called the NULL state and used to indicate that no data is transferred.

Hence, the associated timing information (data validity) is implicit in the encoding. The Null

Convention Logic (NCL) [16] design style from Theseus Logic Inc. uses this encoding

scheme (Figure 1.6).

a. An NCL threshold gate (2-
of-5):

b. An NCL 4-bit word completion detection logic:

Figure 1.6 Null-Convention Logic [16]

c
A

B
Q

11

(iv) N of M Encoding: This encoding scheme covers the special cases of One-Hot Encoding

and Dual-rail Encoding schemes. Provided that M>N, activity on N of M wires are required

to indicate a particular data symbol, hence 2N symbols are transferred over M lines together

with the implicit timing information (data validity).

1.4.4 Elastic Micropipelines

Elastic Micropipelines [17] design style allows for the speed-independent model to be

applied to larger circuits by partitioning them into regions small enough for SI assumptions

to hold reasonably. Data path design is the same as the combinational logic in a synchronous

design and control signaling is handled by handshaking units with delay-padding

mechanisms, where worst case delay models are assumed locally (Figure 1.7). Hence large

processing units can be built from a set of asynchronous library elements. Most

asynchronous processors of today, like AMULET [18] and TITAC [19] are designed in this

style.

Figure 1.7 Elastic Micropipelines [16]

1.5 Systolic Arrays in Asynchronous

Systolic arrays are a special form of distributed processing in which a large computation is

partitioned into its smaller counterparts and performed by small identical functional units,

called “systoles”. The key issue in this design style is to eliminate across-chip data transfers

which require long interconnect wires. Systoles are designed to allow for exchange of data

only with neighboring systoles. The task of placement and routing of the chip is simplified

12

and across-chip data transfer delays are eliminated due to reduced global routing and the

well-defined and localized data interfaces in each systole (Figure 1.8). As a result, overall

throughput of the circuit could be improved by only increasing the computation speed of a

single systole. Scalability is another added value: The design can be easily extended to build

larger computational blocks, independently from single systole design.

Figure 1.8 Systolic Arrays

Systolic arrays are mostly used in digital signal processing and cryptographic applications

where data is flowing in a regular fashion in one or two dimensions; such as filters,

equalizers [20, 21, 22], encryption units for block ciphers, arithmetic units in crypto

processing engines (for example Modular Multiplication in RSA Encryption) [23, 24].

Image processing and pattern recognition circuits also benefit from systolic array type

architectures where one systole is assigned to one pixel of an image, and computations are

easily carried out in pixel-by-pixel basis [25, 26, 27, 28].

In conventional clocked systems, all systoles are governed by the same global external clock

signal. To improve the clock rate, pipeline stages are inserted among the systoles, i.e.

systoles are designed with embedded registers. However, this improvement is achieved at

the expense of increased silicon area and power. The target of this PhD research is to

efficiently introduce asynchronous design styles in systolic array type architectures as a

better way of improving the throughput of the system without sacrificing modularity and

scalability issues. The study is mostly concentrated on logic and gate level design issues and

exploring the delay insensitive asynchronous design space for novel systolic architectures

and design methodologies addressing them.

13

1.6 Thesis Outline

The thesis study mainly consists of delay-insensitive logic/gate level circuit design

techniques, their applications to systolic data processing architectures, and verification

analysis of these circuits. In the chapters that follow, these issues are presented as follows:

The basic principles governing delay-insensitive asynchronous circuit design are given in

Chapter 2, with a detailed discussion of the delay-insensitivity criteria. Application of these

criteria to pipelined architectures is also included.

In Chapter 3, verification methods for delay models are overviewed including recent

alternative methods developed specifically for asynchronous circuits. The conflict of early

output evaluation with delay-insensitive delay model is introduced and demonstrated on a

typical systolic array.

In Chapter 4, a new delay-insensitivity verification analysis method targeting to evaluate

early output evaluation conflict in systolic arrays is proposed. Construction of this method

using symbolic delay relations is explained.

In Chapter 5, merging of delay-insensitive asynchronous circuit design with systolic array

data processing architectures is demonstrated on two selected adder applications. Early carry

evaluation features contributing to speedup of these adders but conflicting with delay-

insensitive delay model are analyzed using the proposed delay-insensitivity verification

method. Modified systolic architectures resolving these problems while maintaining speedup

advantages are introduced and simulation results of all applied techniques are compared. As

a mean for further improvement of throughput, application of bit-skewed inputs technique is

introduced to the delay-insensitive systolic adder structures together with an output

registration method for de-skewing the sum bits.

In Chapter 6 the thesis work is summarized, conclusions are drawn and suggestions are

made for future improvements and possible utilizations of the proposed delay-insensitivity

verification analysis method.

14

Equation Chapter 2 Section 1
CHAPTER 2

2 DELAY INSENSITIVE ASYNCHRONOUS DESIGN

Delay-insensitivity is based on the assumption that “a circuit should function correctly

irrespective of all gate and interconnect delays as if these delays are unbounded” [3]. That’s

why delay-insensitive asynchronous circuits present a convenient alternative for designing in

deep-submicron, where interconnect delays have nearly equal effect on circuit behavior as

gate delays [29]. Delay-insensitive circuits offer robust self-timed operation with the least

amount of timing analysis effort available to asynchronous design styles: No global

constraints are required from the environment. Completion of each operation is

acknowledged to allow the environment to apply the next input, so the circuit can wait for

indefinite input arrival times and once the input arrives, can run as fast as the underlying

silicon technology allows [3]. Thus average case performance could be delivered by the

circuit instead of worst.

2.1 Delay Insensitive Design Styles

Delay-insensitive design style mainly falls into two categories according to the level of

abstraction applied [30]: Transistor -Level and Gate -Level.

Transistor-Level Delay-Insensitive Design Styles usually follow Martin’s methods [36] for

designing at transistor level and building optimized and usually state holding circuits

through formal transformations from logic descriptions. This design style produces the

circuits with minimum transistor count [37, 38], and has a specific language and design tool

developed for it [36], but due to its abstraction being at “transistor” level, not as widely

supported and automated as gate (logic) level design styles.

Gate-Level Delay-Insensitive Design Styles set the level of abstraction at logic design level,

provided that a standard cell library composed of special logic gates is used for circuit

implementation, either totally or partially, alongside with ordinary boolean logic. Such a

library contains logic elements which resemble the Muller C gates [31], in that they can hold

their states in case certain input conditions are not attained. These are called threshold-logic

15

gates, of which the most well-known and cooperated into an automated CAD flow is Null

Convention Logic (NCL) [16]. In gate-level delay-insensitive design mutually exclusive

symbol representations are used frequently instead of boolean representation, even though

boolean gates are still partially used. There is an increasing degree of automated tool support

for design and verification of gate-level design-insensitive circuits, due to their suitability for

system-on-chip design constraints.

2.2 Dual-Rail Threshold Logic Gates

True delay-insensitive circuits are very hard to realize, therefore very rare. However, being

the closest approximation, “Dual-rail Threshold Logic Gates” are widely referred as building

blocks for delay-insensitive circuits in literature. These circuits are actually “Quasi-delay

insensitive”, meaning that their functionality is based on the “isochronic forks” assumption

which states that all wiring works have equal delays, or at least those on small circuit scales.

Dual-rail Threshold Logic gates implement a logic function in case a certain input

conditions, namely the “threshold” are met, otherwise hold their states. They have been

developed concurrently under different names by different parties for gate-level delay-

insensitive design [33, 34, 35]. The most well known is the Null Convention Logic (NCL),

developed and commercialized by Theseus Logic Inc. in 1996, to address the delay-

insensitive asynchronous design space [16, 39, 40]. In NCL style, completion information is

not explicitly sent but embedded in data representation and circuits are constructed using all

gates from an NCL-type cell library. The basic principles characterizing the Dual-rail

Threshold Logic Gates are explained in the following subsections.

2.2.1 Symbolic Completeness of Expression

Symbolic Completeness of expression requires a logical expression to depend only on the

relationships of the symbols present, without a reference to the evaluation time [30]. Dual-

rail Threshold logic circuits use Mutually Exclusive Assertion Groups (MEAG), instead of

the Boolean Representation, to achieve Symbolic-Completeness of Expression. MEAGs

such as dual-rail signals eliminate the time reference by embedding control information into

data representation: A NULL or RESET value exists in the symbol set which is asserted

when data is not valid.

16

A dual-rail signal has two mutually exclusive data paths, D0 and D1, and implements three

logic states {NULL, DATA0, and DATA1} as given in Table 2.1. State DATA1 (D0 = 0

and D1 = 1) for Boolean logic 1, State DATA0 (D0 = 1 and D1 = 0) for Boolean logic 0 and

State NULL (D0 = 0 and D1 = 0) to indicate the result is not available yet. So the validity of

the output could be determined without a time reference. As the two rails are mutually

exclusive, (D0 = 1 and D1 = 1) is an illegal state.

Table 2.1 Dual Rail Signalling

 STATES

SIGNALS

DATA0

(Boolean Logic 0)

DATA1

(Boolean Logic 1)

NULL

(Data not valid)

-

(undefined)

D0 1 0 0 1

D1 0 1 0 1

2.2.2 Two-Phase Operation

Dual-rail Threshold logic circuits are constructed from primitive modules known as

threshold gates with hysteresis [41]. A typical thmn gate, with 1 ≤ m ≤ n, has n inputs, of

which at least m of them has to become DATA for the output to assert a DATA value. This

is the “threshold” behavior. Similarly, at least m of the n inputs has to transition to NULL for

the output to assert NULL. Otherwise the threshold gate maintains its current state,

displaying “hysteresis” behavior. Specifically, a thmn gate functions like an n-input C-

element while a th1n gate like an n-input OR gate. Two typical gates from the Dual-rail

Threshold Logic Library and their truth tables are given in Figure 2.1.

a b c z

1 1 1 1
1 1 0 z
1 0 1 z
1 0 0 z
0 1 1 z
0 1 0 z
0 0 1 z
0 0 0 0

a
th33b

c
z

a
b
c

zth13

a b c z

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

a. th33 gate with hysteresis b. th13 gate with hysteresis

Figure 2.1 Dual-rail Threshold logic style basic building gates

17

The threshold gates partition the inputs into separate NULL and DATA wavefronts, such

that a NULL value must be applied to the circuit inputs between consecutive DATA values,

so that the circuit always cycles between consecutive NULL and DATA inputs, eliminating

races and hazards completely.

2.2.3 Logic Design using Dual Rail Threshold Logic Gates

The most basic approach for logic design using Dual Rail Threshold Logic Gates is

producing a sum of minterms for both rails of the dual-rail output in DIMS (Delay

Insensitive Minterms Summation) style [32, 33], to implement the logic functionality. A

DIMS style full-adder built from dual-rail threshold logic gates is illustrated in Figure 2.2.

th14

th14

th14

th14

a1b1c1

a1b0c0

a0b1c0

a0b0c1

a0b0c0

a0b1c1

a1b0c1

a1b1c0

th33

th33

th33

th33

th33

th33

th33

th33

a1

a0

b1

b0

c1
c0

Cout1

Cout0

Sum1

Sum0

Figure 2.2 DIMS Adder Structure built with Dual-Rail Threshold Logic Gates

There are other approaches which allow for some degree of boolean optimization and hence

do not require complete minterms but rely on C-gates to guarantee delay-insensitivity [34,

35].

18

2.2.4 Transistor Level Design of Dual Rail Threshold Logic Gates

For abstracting design layers in delay-insensitive circuit design, a design library is

constructed by designing Dual-rail threshold logic gates at transistor level in standard

CMOS technologies and using custom CAD tools. Then functional modules are designed at

logic level using these threshold-logic gates in the design library. Among the various CMOS

circuit design techniques that could be employed in designing the Dual-rail threshold logic

gates, the Static Implementation Method for NCL Gates [41] is preferred for being the most

reliable method available. In Figure 2.5.a. the typical structure of static M-of-N threshold

gate is given. Both nMOS and pMOS logic is constructed in two parts. The “Go to NULL”

part of the pMOS logic is ON only when all N inputs are at logic level 0. The functionality

of this block is complementary to the functionality of the “Hold DATA” part of the nMOS

logic which, together with the feedback nMOS gate from the gate output Y, implements the

case when one or more of the N inputs are at logic level 1. Similarly the functionalities of

the “Go to DATA” part of the nMOS logic and “Hold NULL” part of the pMOS logic are

complementary to each other but their structures depend on the values of M and N values. In

case M=N, i.e. the gate is an N-of-N threshold gate, the “Go to DATA” part of the nMOS

logic, implements the case when all N inputs are at logic level 1 and “Hold NULL” part of

the pMOS logic, together with the feedback pMOS gate from the gate output Y, implements

the case when one or more of the N inputs are at logic level 0. Figure 2.5.b. illustrates the

general structure of such a gate.

Y

Go To
NULL

Hold
NULL

VDD

Go To
DATA

Hold
DATA

Y

VDD

A1

A1

A2

A2

An

An

A1 A2 An

A1 A2 An

a. Structure of M-of-N threshold gate [41] b. Structure of N-of-N threshold gate [41]

Figure 2.3 Static implementation of Dual-Rail threshold gates with hysteresis

19

After constructing a Dual-Rail Threshold gate according to the given Static Implementation

rules, further circuit optimizations could be employed to decrease the transistor count and

circuit area or to increase gate response times [30].

2.2.5 Registration and Pipelining

Each Dual-rail threshold logic circuit requires at least two registration stages, one at the

output to detect the completion of a DATA/NULL value and one at the input to request the

next NULL/DATA value. More registration stages could be introduced to divide the

functional blocks in pipelined fashion, as seen in Figure 2.3.

REQn+1

DATAin

REQn-1ACKn-2 ACKn

DI
Latch
(n+1)

DATAout
DI

Combinational
Logic

DI
Combinational

Logic

DI
Combinational

Logic

DI
Latch
(n-2)

DI
Latch
(n-1)

DI
Latch
(n)

REQn-2 ACKn-1 REQn ACKn+1

STAGEn-1 STAGEn STAGEn+1

Figure 2.4 Delay-Insensitive (DI) Pipeline with Explicit Registration

In a Dual-rail threshold logic pipeline, the flow of DATA/NULL wavefronts between

adjacent stages is controlled by Dual-rail Threshold logic latches (registers) through use of

dedicated ACK and REQ lines [42]. The ACK output, generated by the completion detection

block of each pipeline stage is connected to the REQ input of the preceding stage to convey

a DATA Acknowledge/NULL Request or a NULL Acknowledge/DATA Request,

resembling closely the control flow in “micropipelines” [17]. As a result, Dual-rail

Threshold logic circuits continuously cycle between DATA and NULL states, where a

complete cycle, called a DATA-to-DATA cycle time (TDD), resembles a clock period in a

pipelined synchronous circuit except that the period TDD is not definite, but input-dependent;

and approximately half of the period is used for actual logic operation, while the other half is

used to generate the NULL marker between successive logic operations (see Figure 2.4).

This is a disadvantage in terms of throughput, but there are certain techniques addressing

compensation for this slow down [42, 43].

20

NULL
Evaluation

DATA
Evaluation

DATA
Ack

NULL
Ack

DATA-to-DATA Cycle Time (TDD)

Figure 2.5 TDD cycle of a Pipelined Dual-Rail Threshold Logic Circuit

In a Dual-rail Threshold Logic pipeline, the pipeline registration stages could be completely

eliminated by embedding the pipeline registration stage into the last level of combinational

logic. Since each Dual-rail threshold logic gate can inherently hold its state like a register,

the REQ input from next state could be fed into the last level of combinational gates of each

pipelining stage as an extra input and the threshold level of these combinational gates could

be increased by 1 to include the REQ input. Thus gate count and DATA-to-DATA cycle

time (TDD) could be reduced and throughput of the pipeline would be improved.

2.3 Delay Insensitivity Criteria

Dual-rail Threshold logic circuits need to obey certain criteria for maintaining delay-

insensitivity. These can be summarized as follows:

(i) Completeness of Input requires that all outputs of a combinational circuit may not

transition from NULL to DATA until all inputs have transitioned from NULL to DATA, and

may not transition from DATA to NULL until all inputs have transitioned from DATA to

NULL. For circuits with multiple outputs, Seitz’s “Weak Conditions for Completeness of

Input” [44] allow some outputs to transition without having a complete input set, as long as

all outputs cannot transition before all inputs arrive.

(ii) Observability requires that every input and internal wire transition in the circuit should

cause a transition in at least one of the outputs [30, 40]. Transitions that are not used in

determination of the outputs, called “orphans”, are not allowed propagate through gate

boundaries.

21

2.4 Pipelining Criteria

Dual-rail Threshold Logic circuits lend themselves easily to pipelining but pipelining

requires additional criterion to be obeyed for delay insensitivity. For maintaining proper

control flow in a pipelined Dual-rail Threshold Logic circuit, so that NULL and DATA

waves would not interact within a pipelining stage and violate delay insensitivity, the

evaluation time of ACK output of each pipelining stage should not be greater than arrival

time for REQ input to that pipelining stage, which is fed back from the next pipelining stage

as ACK output, as formulated in (1):

[] [] [] 1,,, +=≤ nnn ACKinputTimeREQinputTimeACKinputTime (1)

Due to their ease of pipelining, Dual-rail Threshold logic circuits could be intrinsically

transformed into systolic arrays for increased throughput in data processing. In systolic

arrays, data exchange is localized to adjacent systoles so global data paths are eliminated.

With asynchronous design, global control paths (clock signals) are also eliminated and

replaced with local handshaking signals. A delay-insensitive bit-level pipelined systolic

array with embedded registration is shown in Figure 2.6.

REQ(n) ACK(n+1) REQ(n+1)

Y1n-1 Ykn-1

REQ(n-1) ACK(n)

H1n-2
0,1

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

...

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

0,1 0,1
Y1n Ykn

...

0,1 0,1
Y1n+1 Ykn+1

...

0,1 0,1

Hjn-2
0,1

H1n-1
0,1

...

Hjn-1
0,1

H1n
0,1

...

Hjn0,1

H1n+1
0,1

...

Hjn+1
0,1

...

Figure 2.6 DI systolic array with bit-level embedded pipelining

Bit-level pipelining in systolic arrays has the advantage of reducing the latency of the circuit

to the latency of a single systole, so that the speed of a single systole signifies the overall

throughput of a systolic array circuit and the throughput of the systolic array could be kept

22

constant against increasing array dimensions. But, with bit-level pipelining, an additional

criterion for delay insensitivity, called Completion Completeness [45], is introduced in case

bit-wise completion is used at registration stages and the combinational parts of the circuit

only conform to the Weak Condition for Completeness of Input

Completion Completeness is based on the fact that the dual-rail threshold logic registration

stage, which acknowledges either a DATA output or a NULL output, can only assure the

completeness of the output, not the completeness of input [45]. This may cause interaction

of consecutive DATA/NULL wavefronts and violate delay insensitive operation, when bit-

wise completion is adopted instead of word-wise completion for increasing the throughput

of the dual-rail threshold logic pipeline and the combinational parts only conform to the

Weak Condition for Completeness of Input. Since, in bit-wise completion, the completion

signal of each bit of the output is sent only to the dual-rail threshold logic registers that took

part in the calculation of that output bit. So an output bit does not reflect all input transitions

individually.

In case a dual-rail threshold logic registration stage is completion-incomplete, two methods

are proposed in [45] in order to ensure delay insensitivity: Either the topology of the

combinational blocks is modified to make all output bits input-complete or the completion

set of each register is modified to reflect input-completeness. However, these two methods

may conflict with logic level optimizations introduced for the purpose of decreasing the gate

count or increasing the evaluation speed. To preserve the advantages of logic level

optimizations while realizing completion-completeness in order to ensure delay-

insensitivity, alternative methods are required.

23

CHAPTER 3

3 VERIFICATION OF DELAY INSENSITIVITY

All asynchronous systems are designed using a delay-model assumption and no matter what

the chosen delay model is (delay-insensitive, quasi delay-insensitive or speed-independent)

the circuit should be verified to ensure that the chosen delay model really holds with actual

circuit delays and under all desired operating conditions enforced by the environment.

Employing the dual-rail threshold logic gates and following certain design rules do not

always guarantee delay-insensitivity in dual-rail threshold logic circuits [46]. Even though a

dual-rail threshold logic circuit correctly performs the logical function for which it has been

designed for, some input sets may exist for which it can still violate delay-insensitivity.

Generally, there is a tradeoff between reliable delay-insensitive operation and overall

performance of delay-insensitive circuits. The special logic gates and data representation

style cost increased gate counts and slower completion times. A strict commitment to delay

insensitivity constraints introduces more redundant logic. On the other hand, optimizations

at circuit level which require relaxation of delay-insensitivity constraints (like early output

evaluation) increase the verification cost of the circuit, which is already a tedious issue in

asynchronous circuit design, no matter what delay model is used or how the circuit is

designed. After every optimization phase, verification should be iterated as well.

Preferably, verification of delay-model should be at behavioral specification level, because

performing timing verification on an implemented circuit, i.e. at the end of design flow is

infeasible and tedious, requiring extensive simulations and timing analysis for all possible

inputs and all possible orderings of inputs.

3.1 Formal Verification Methods and State Explosion Problem

The most well-known and commonly used verification method at behavioral abstraction

level is formal analysis. The formal analysis methods for verification of delay-insensitivity

are generally based on exploration of reachable states [46]; hence address State Transition

Graph (STG) based design flows (Figure 3.1). However with increasing circuit sizes, the

number of states explodes exponentially and even with automated tools, formal analysis

24

becomes too complex. Recent research on STG based methods either target at compacting

state space [53, 54] or using abstraction [55] to reduce verification complexity, addressing

STG based design flows such as Petrify [50].

In recent studies the STG based methods are also revised to support delay-insensitive

interfacing for Globally Asynchronous Locally Synchronous (GALS) circuits and then to

support delay insensitive design flow [29].

Figure 3.1 A STG and its corresponding State Diagram [3]

3.2 Recent Alternative Methodologies

Recently asynchronous research has been mostly targeted towards automation and

optimization of design and verification flows. Guaranteeing the correctness of the circuit at

the behavioral specification level, whether for delay-insensitivity or for some bounded delay

model, is a significant step towards simplification of verification, especially in case of area

and timing optimizations which usually come at the expense of robustness. Some of these

new methodologies are summarized in the succeeding paragraphs.

25

3.2.1 Relative Timing Assumptions

Relative Timing is an abstraction from exact timing constraints by considering relative

ordering of events with respect to each other instead of exact timing which is hard to know

at the beginning of a design flow [56]. “Difference” (event a fires earlier than event b) and

“Simultaneity” (event a and b fire at the same time with respect to event c) are examples of

Relative Timing Assumptions (RTA). By using RTA constraints, inconsistent event

sequences could be eliminated which in turn helps in compaction of reachable state space

and allow for optimizations in circuit design. This method has been both applied manually

[57, 58] and integrated into automated design flows in such a way that some of the relative

timing constraints could be generated from the circuit specification automatically [59, 60].

3.2.2 Lazy Transition Systems

The concept of “Laziness” was introduced in [56] to distinguish between the enabling and

firing of an event in a STG-based system. Using laziness concept, the concurrency of

transitions in an STG-based system could be increased or decreased, whichever is suitable

for the design simplification and optimization. Like RTA constraints, they allow for state

space reduction. This method has been successfully integrated in automated design flow

Petrify[59], so that Laziness could be detected and exploited automatically in generating and

backannotating RTA constraints [59] [60].

3.2.3 Symbolic Methods

Using symbolic and parametric delays instead of actual or relative timing constraints is

another method for timing abstraction, where actual delays of the circuit could only be

known after implementation. As introduced in [63] and [64], using unspecified timing

constraints represented as symbols, a set of linear constraints which guarantee the

correctness of timed transition systems could be generated and circuit optimizations could be

based on these models.

3.2.4 Partial Completion Methods with Early Evaluation

For automated design flows using dual-rail threshold logic gates such as NCL-X [51] [52],

there are recently proposed techniques for finding a compromise between circuit

26

optimization and reliable delay-insensitive operation. Early Evaluation and Partial

Completion Methods given in [61] and [62] respectively, both introduce relaxation of delay-

insensitivity constraints for dual-rail threshold circuits to allow for early evaluation of

signals so that more optimized and faster circuits could be synthesized without actually

violating delay-insensitivity constraints. This is achieved by distributing the early output

evaluation paths and gates which are to be relaxed and replaced with faster and smaller gates

in stead of NCL threshold gates within a complex combinational circuit in such a way that

the robustness of delay-insensitivity would not be diminished in the overall circuit and [61]

[62]. Both methods target to being embedded into automated NCL design flows. The method

in [61] also targets at gate-level simplifications as well as logic-level.

Partitioning a dual-rail threshold logic circuit into its control and data paths is another way to

reduce delay-insensitivity analysis complexity as proposed in [46], which tackles this

problem through orphan analysis. It assumes that DATA and NULL waves are properly

acknowledged at asynchronous registration stage, i.e. the cases of early generation or no

generation of completion acknowledgment are handled structurally, so it concentrates on

settling of all gates in the combinational network before acknowledgement is produced.

3.3 Early Outputs Conflict

Latency and throughput advantages of bit-level pipelining in dual-rail threshold logic

circuits could be easily outweighed by the slowness of threshold logic gates and the extra

NULL cycles. Speed-up is usually attained by introducing early evaluation of the signals,

propagating across the pipeline. However, early output evaluation implies allowing data-

dependent early execution where possible, i.e. by generating some circuit outputs, correctly,

without waiting for the arrival of all inputs, which directly conflicts with the two main

constraints of Delay-Insensitivity: When considered in terms of Input-Completeness, early

output evaluation implies input-incompleteness of early evaluated outputs. In terms of

Observability, the late arriving inputs, which are no longer required for generation of

outputs, create orphans, since their transitions would not affect the early outputs.

3.3.1 Early Output Evaluation vs. Delay Insensitivity

The Input-Completeness conflict could be solved by confirming to Seitz’s Weak Constraints

and Observability could be achieved by distributing the early output evaluation paths within

27

a complex combinational circuit in such a way that orphan-freedom could still be maintained

in the overall circuit [61] [62]. However, these solutions could not be directly applied to

systolic array style architectures since they evaluate only the combinational parts of the

circuit. Applying Seitz’s Weak Constraints for Input-completeness directly may violate the

Completion- Completeness requirement in bit-level pipelines. Meanwhile, commitment to

Completion- Completeness requirements would eliminate the speed-up advantages due to

early output evaluation. So, systolic array style delay-insensitive circuits, with bit-level

pipelining need specific solutions of their own.

3.3.2 Demonstration on a Systolic Array

The initiating point for this study is the observation is that Delay-Insensitivity violations in a

systolic array with early output evaluation in one-dimension could be examined on three

adjacent systoles. This observation results from Spice simulations performed on gate level

implementations of dual-rail threshold logic systolic arrays, but could also be proposed

analytically: As each systole has data/control signal exchange with two neighboring systoles

in a one-dimensional systolic array, it is sufficient to analyze all signal transitions regarding

a single systole by considering the preceding and succeeding systoles in line. Therefore

analysis of three adjacent systoles in a one-dimensional systolic array is representative of the

behavior of all systoles in the array.

REQ(n) ACK(n+1) REQ(n+1)REQ(n-1) ACK(n)

Hn-2
0

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

Hn-2
1

...

Hn-1
0

Hn-1
1

Hn
0

Hn
1

Hn+1
0

Hn+1
1

Yn-1
0 Yn-1

1 Yn
0 Yn

1 Yn+1
0Yn+1

1

Figure 3.2 DI systolic array with bit-level embedded pipelining

28

In Figure 3.2 a simplified version of the DI bit-level pipelined systolic array is given. For the

sake of simplicity, there is only one horizontal dual-rail output, which is propagated across

the pipeline, which may evaluate early (input-incomplete) or late (input-complete)

depending on the value of the vertical inputs to the pipeline. Also for the sake of simplicity,

there is only one vertical dual-rail output from each systole which is always input-complete.

The ACK outputs indicate completion detection of both vertical and horizontal outputs of

each systole. For this analysis it is assumed that all vertical inputs and the horizontal input to

the leftmost systole are applied concurrently to all systoles.

Then a typical delay-insensitivity violation scenario due to early output evaluation, which is

illustrated in Figure 3.3, through (a) to (d), runs as follows:

i) All inputs including the (n-1)th horizontal input are applied concurrently with

vertical inputs chosen such that, the nth and (n+1)th systoles evaluate early due to input-

incomplete horizontal outputs while the (n-1)th systole evaluates late due to input-complete

horizontal output (Fig. 3.3.a).

ii) The nth and (n+1)th systoles calculate early horizontal outputs concurrently since

they need not wait for evaluation of the horizontal output from the (n-1)th and nth systoles.

Evaluation of input-complete vertical output is triggered at the (n-+1)th systole by the arrival

of horizontal output from the nth systole (Fig. 3.3.b).

iii) The (n-1)th systole evaluates input-complete vertical output and late horizontal

output while the (n+1)th systole evaluates input-complete vertical output. Evaluation of

input-complete vertical output is triggered at the nth systole by the arrival of horizontal

output from the (n-1)th systole (Fig. 3.3.c).

iv) The (n+1)th systole asserts a Data Acknowledge transition on ACKn+1 output which

arrives as a Null Request to REQn input of the nth systole, but before input-complete vertical

output is evaluated at the nth systole. With REQn at Null Request level, the nth systole cannot

assert valid input-complete vertical output; hence the ACKn output can not make a Data

Acknowledge transition. As a result DATA and NULL wave fronts interact at the nth systole

and stall control signal flow (Fig. 3.3.d).

29

REQ(n) ACK(n+1) REQ(n+1)REQ(n-1) ACK(n)

Hn-2
0

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

Hn-2
1

...

Hn-1
0

Hn-1
1

Hn
0

Hn
1

Hn+1
0

Hn+1
1

Yn-1
0 Yn-1

1 Yn
0 Yn

1 Yn+1
0Yn+1

1

(a)

REQ(n) ACK(n+1) REQ(n+1)REQ(n-1) ACK(n)

Hn-2
0

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

Hn-2
1

...

Hn-1
0

Hn-1
1

Hn
0

Hn
1

Hn+1
0

Hn+1
1

Yn-1
0 Yn-1

1 Yn
0 Yn

1 Yn+1
0Yn+1

1

(b)

REQ(n) ACK(n+1) REQ(n+1)REQ(n-1) ACK(n)

Hn-2
0

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

Hn-2
1

...

Hn-1
0

Hn-1
1

Hn
0

Hn
1

Hn+1
0

Hn+1
1

Yn-1
0Yn-1

1 Yn
0 Yn

1 Yn+1
0Yn+1

1

(c)

Figure 3.3 Signal flow for a delay-insensitivity violation scenario

30

REQ(n) ACK(n+1) REQ(n+1)REQ(n-1) ACK(n)

Hn-2
0

ACK(n-1)

DI Systole
(n)

DI Systole
(n+1)

DI Systole
(n-1)

V1n-1
0,1

V2n-1
0,1

V1n
0,1

V2n
0,1

...

V1n+1
0,1

V2n+1
0,1

...

Vmn-1
0,1

Vmn
0,1

Vmn+1
0,1

Hn-2
1

...

Hn-1
0

Hn-1
1

Hn
0

Hn
1

Hn+1
0

Hn+1
1

Yn-1
0 Yn-1

1 Yn
0 Yn

1 Yn+1
0Yn+1

1

(d)

Figure 3.3 (continued)

31

Equation Chapter 3 Section 1Equation Chapter 4 Section 1

CHAPTER 4

4 DELAY-INSENSITIVITY VERIFICATION METHOD FOR SYSTOLIC
ARRAYS

For improving the performance of delay-insensitive circuits at structural level, pipelining

methods and systolic-array architectures are introduced. However, the speed improvement

achieved by pipelining in terms of throughput and latency is usually outweighed by the extra

“reset phases”, which have to be inserted in between consecutive computations (“set

phases”) to correctly operate delay-insensitive pipelines [3]. In order to make the delay-

insensitive pipelines fast enough to achieve the average case performance which is

theoretically expected of them, data-dependent early output evaluation is allowed by

relaxing the delay-insensitivity constraints. But relaxation of delay-insensitivity constraints

(like early output evaluation) increase the verification cost of the circuit, which is already a

tedious issue in asynchronous circuit design, no matter what delay model is used or how the

circuit is designed.

To detect input-dependent delay-insensitivity violations in systolic dual-rail threshold logic

adders, running extensive simulations covering all possible inputs is not a feasible option,

especially for large operand sizes. The formal analysis methods for verification of delay-

insensitivity, which are based on exploration of reachable states, usually suffer from the state

explosion problem; hence reducing the verification complexity is an important step in

simplifying the design cycle. A structural delay-insensitivity analysis and verification

method is introduced for asynchronous pipelines, designed in dual-rail threshold logic style.

The proposed method, which is abbreviated as the SDIVA (Structural Delay-Insensitivity

Analysis And Verification) method, targets at maintaining delay-insensitivity of bit-level

pipelined systolic array style structures where speed up is achieved by data-dependent early

output evaluations in one-dimension and where it is safe to assume that all wiring forks

within each systole are isochronic. Using symbolic delays for output evaluation times

without imposing any timing assumptions on the environment, all possible data-dependent

early/late output evaluation cases are examined by concentrating on only three adjacent bit

systoles. This way, input sets causing delay-insensitivity violations are detected and

corrected without diminishing the speed up advantages of early output evaluation feature.

32

4.1 Structural Delay Insensitivity Verification Analysis Method (SDIVA)

The analysis carried out on systolic arrays with bit-level pipelining (presented in Chapter 3),

shows that delay-insensitivity violations due to early output evaluation could be simplified

down to interaction of three adjacent systoles. Since systolic arrays are constructed from

identical systoles, i.e. units with identical functionality hence identical implementation and

identical delays, then an analysis method which simplifies the verification task to the

analysis of the eight possible Early/Late output evaluation scenarios

{Early, Early, Early},

{Early, Early, Late},

{Early, Late, Early},

{Early, Late, Late},

{Late, Early, Early},

{Late, Early, Late},

{Late, Late, Early},

{Late, Late, Late}

on three adjacent systoles could be constructed.

4.1.1 Symbolic Delay Assignment

On the simplified bit-level pipelined systolic array example given in Figure 4.1, where the

single horizontal output may follow two different evaluation paths as early and late

depending on the applied inputs, delays of all output paths could be represented with the

following symbolic values, such that each symbolic delay value represents sum of all gate

and wiring delays on that evaluation path:

dH
E delay of the horizontal output path in case of early evaluation (input-incomplete)

dH
L: delay of the horizontal output path in case of late evaluation (input-complete)

dV delay of the vertical output path (input-complete)

dA delay of the completion detection path, ACK, (input-complete)

Note that early evaluation of the horizontal output indicates evaluation of the horizontal

output using the vertical systole inputs only, i.e. without waiting for the arrival of the

33

horizontal input from the previous systole and late evaluation of the horizontal output

indicates evaluation of the horizontal output using both the vertical systole inputs and the

horizontal input arriving from the previous systole. Therefore input-completeness or input-

incompleteness of the horizontal output indicates input-completeness or input-

incompleteness with respect to the propagated horizontal input. On the other hand the

vertical output always evaluates using both the vertical systole inputs and the propagated

horizontal input, hence it is always input-complete.

REQIn ACKOn+1 REQIn+1REQIn-1 ACKOn

HIn-2
0

ACKOn-1

DI
Systole

(n)

DI
Systole

(n+1)

DI
Systole

(n-1)

VI1n-1
0,1

VI1n
0,1

...

VI1n+1
0,1

...

VImn-1
0,1

VImn
0,1

VImn+1
0,1

HIn-2
1

...

HOn-1
0=HIn0

HOn+1
0

HOn+1
1

VOn-1
0 VOn-1

1
VOn

0 VOn
1 VOn+1

0 VOn+1
1

HOn-1
1=HIn1

HOn
0=HIn+1

0

HOn
1=HIn+1

1

Figure 4.1 Simplified DI systolic array with bit-level embedded pipelining

4.1.2 Initial Assumptions

To start with this analysis, a manner of external input application to the systolic array needs

to be chosen. Since synchronous data generation is more common in electronic systems,

application of all vertical inputs to all systoles and the horizontal input to the leftmost systole

concurrently is preferred for better and simpler representation of the environment.

It is also assumed that

• All wire forks within the systoles are isochronic

• Since dH
E and dH

L denote the delays of the same path, in cases of input-

incomplete/early and input-complete/late output evaluation respectively, the delay, dH
E is

always smaller than the delay dH
L:

34

L

H
E

H dd < (2)

To continue with this analysis, there is no need to make any other assumptions regarding the

relational magnitudes of the symbolic delays with respect to each other. The relation given

in (2), does not impose any timing constraints on the systole design either, hence it does not

challenge the definition of delay-insensitivity So it could be safely stated that no timing

constraints are imposed on the circuit structure to maintain delay-insensitivity by these

assumptions.

4.1.3 Analysis with Symbolic Delays

For all of the possible eight Early/Late carry output scenarios, evaluation time of ACK

outputs from the time of inputs’ application is calculated in terms of the symbolic delays, dV,

dA, dH
E, dH

L, and presented in Tables 4.1 to 4.8. In these tables, the following abbreviations

are used:

HI : Horizontal Input,

HO: : Horizontal Output,

VI : Vertical Input,

VO : Vertical Output,

ACKO : Completion Detection Output

REQI : Request Input.

The ACKO evaluation time of each systole is then compared to evaluation time of the REQI

input to that systole, which is actually the to ACKO output of the next systole, in order to

check if the DI Pipelining Constraint, formulated in the relation (1) on page 21 is satisfied.

In these comparisons, only the relation formulated in (2) is used and thus the input scenarios

which violate the delay-insensitive pipelining constraint are detected.

In calculation of the evaluation delays, the following formulas are applied to each systole

which is enforced by the structure of the pipeline:

HIn= HOn-1 (3)

VOn =HIn + dV (4)

ACKOn= Max{HO n, VO n}+ dA (5)

REQI n= ACKOn+1 (6)

35

Note that the pipelining constraint is checked for the nth systole and (n-1)th systole only. The

calculations on the (n+1)th systole only serve for calculating the evaluation time of the REQI

input to the nth systole.

Examining the Tables 4.1 to 4.8 reveals that for the input scenarios {Late, Early, Early} and

{Late, Early, Late}, DI Pipelining Constraint is violated as indicated by the bold lettering in

Table 4.5 and Table 4.6. and satisfied for all other scenarios as stated below:

{Early, Early, Early}, DI Pipelining Constraint is satisfied √

{Early, Early, Late}, DI Pipelining Constraint is satisfied√

{Early, Late, Early}, DI Pipelining Constraint is satisfied √

{Early, Late, Late}, DI Pipelining Constraint is satisfied√

{Late, Early, Early}, DI Pipelining Constraint is violated !

{Late, Early, Late}, DI Pipelining Constraint is violated !

{Late, Late, Early}, DI Pipelining Constraint is satisfied √

{Late, Late, Late} DI Pipelining Constraint is satisfied√

For the input scenario {Late, Early, Early}, the evaluation time for the ACKO output of nth

systole is definitely smaller than the evaluation time for ACKO output of the (n+1) th systole,

which is also the REQI input arrival time for nth systole. For the input scenario{Late, Early,

Late}, given in Table 4.6, a violation of DI Pipelining Constraint is inferred in case the late

evaluation time of the horizontal output dH
L is greater than the evaluation time of the vertical

output dV or in case the evaluation time of the vertical output dV is smaller than the late

evaluation time of the horizontal output dH
L but greater than the early evaluation time of the

horizontal output dH
E. In both scenarios, the result is NULL and DATA waves within the nth

systole, leading to no generation of the ACKO output and blocking of signal flow.

Another important revelation of the examinations carried on Tables 4.1 to 4.8 is that, in a

bit-level pipelined systolic array in dual-rail threshold logic style, which has early and late

output evaluation paths in one-dimension, out of the eight possible scenarios, the analysis of

only two scenarios {Late, Early, Early} and {Late, Early, Late} on three adjacent systoles is

sufficient for verification of delay-insensitivity.

36

Table 4.1 DI Systole in case of { Early, Early, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (early) dH
E

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{dH
E, dV}+dA

n-1
(Early)

REQI n-1= ACKOn dH
E + dV + dA

HIn= HOn-1 (early) dH
E

HOn (early) dH
E

VOn =HIn + dV dH
E + dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV +dA

n
(Early)

REQI n= ACKOn+1 dH
E+dV+dA

HIn+1= HOn (early) dH
E

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV+dA

n+1
(Early)

REQI n+1= ACKOn+2 …

(i) Examination of Pipelining Constraints for {Early, Early, Early} Scenario

DI Systole (n-1):

If dH
E>dV then

ACKOn-1= dH
E +dA and REQI n-1= dH

E + dV + dA > dH
E +dA

If dH
E< dV then

ACKOn-1= dV +dA and REQI n-1= dH
E + dV + dA > dV+dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
E + dV > dH

E

ACKOn= dH
E + dV + dA = REQI n

Since REQI n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

37

Table 4.2 DI Systole in case of { Early, Early, Late } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (early) dH
E

VOn-1 =HIn-1 + dV dV.

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA

n-1
(Early)

REQI n-1= ACKOn dH
E+dV+dA

HIn= HOn-1 (early) dH
E

HOn (early) dH
E

VOn =HIn + dV dH
E+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA

n
(Early)

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA

HIn+1= HOn (early) dH
E

HOn+1 (late) dH
E+dH

L

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA

n+1
(Late)

REQI n+1= ACKOn+2 …

(ii) Examination of Pipelining Constraints for {Early, Early, Late} Scenario

DI Systole (n-1):

If dH
E>dV then

ACKOn-1= dH
E + dA and REQI n-1= dH

E + dV + dA > dH
E +dA

If dH
E< dV then

ACKOn-1= dV + dA and REQI n-1= dH
E + dV + dA > dV +dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
E + dV > dH

E

ACKOn= dH
E + dV + dA

If dH
L>dV then

REQI n= dH
E + dH

L + dA > dH
E + dV + dA =ACKOn

If dH
L < dV then

REQI n= dH
E + dV + dA and dH

E + dV + dA = ACKOn

Since REQI n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

38

Table 4.3 DI Systole in case of { Early, Late, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (early) dH
E

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA

n-1
(Early)

REQI n-1= ACKOn Max{ dH
E+dH

L, dH
E+dV }+dA

HIn= HOn-1 (early) dH
E

HOn (late) dH
E+dH

L

VOn =HIn + dV dH
E+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA

(Late)

REQI n= ACKOn+1 dH
E+dH

L+dV+dA

HIn+1= HOn (late) dH
E+dH

L

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
E+dH

L+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E,dH

E+dH
L+dV}+dA =

dH
E+dH

L+dV +dA

(Early)

REQI n+1= ACKOn+2 …

(iii) Examination of Pipelining Constraints for {Early, Late, Early} Scenario

DI Systole (n-1):

If dH
E>dV and dH

L>dV then ACKOn-1= dH
E + dA < REQI n-1= dH

E + dH
L + dA

dH
E>dV and dH

L< dV is not logically possible since dH
L> dH

E

If dH
E< dV and dH

L>dV then ACKOn-1= dV + dA < REQI n-1= dH
E + dH

L + dA

If dH
E< dV and dH

L<dV then ACKOn-1= dV + dA < REQI n-1= dH
E + dV + dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
E + dH

L + dV > dH
E

REQI n= dH
E + dH

L + dV + dA

If dH
L>dV then

ACKOn= dH
E + dH

L + dA < REQI n= dH
E + dH

L + dV + dA

If dH
L < dV then

ACKOn= dH
E + dV + dA < REQI n= dH

E + dH
L + dV + dA

Since REQI n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

39

Table 4.4 DI Systole in case of { Early, Late, Late } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (early) dH
E

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA

n-1
(Early)

REQI n-1= ACKOn Max{ dH
E+dH

L,dH
E+dV }+dA

HIn= HOn-1 (early) dH
E

HOn (late) dH
E+dH

L

VOn =HIn + dV dH
E+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA

n
(Late)

REQI n= ACKOn+1 Max{ dH
E+dH

L+dH
L,dH

E+dH
L+dV}+dA

HIn+1= HOn (late) dH
E+dH

L

HOn+1 (late) dH
E+dH

L+dH
L

VOn+1 =HIn+1 + dV dH
E+dH

L+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L+dH
L,dH

E+dH
L+dV}+dA

n+1
(Late)

REQI n+1= ACKOn+2 …

(iv) Examination of Pipelining Constraints for {Early, Late, Late} Scenario

DI Systole (n-1):

If dH
E>dV and dH

L>dV then ACKOn-1= dH
E + dA < REQI n-1= dH

E + dH
L + dA

dH
E>dV and dH

L< dV is not logically possible since dH
L> dH

E

If dH
E< dV and dH

L>dV then ACKOn-1= dV + dA < REQI n-1= dH
E + dH

L + dA

If dH
E< dV and dH

L<dV then ACKOn-1= dV + dA < REQI n-1= dH
E + dV + dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

If dH
L>dV then

ACKOn= dH
E + dH

L + dA < REQI n= dH
E + dH

L + dH
L + dA

If dH
L<dV then

ACKOn= dH
E + dV + dA < REQI n= dH

E + dH
L +dV + dA

Since REQI n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

40

Table 4.5 DI Systole in case of { Late, Early, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA

n-1
(Late)

REQI n-1= ACKOn dH
L+dV+dA

HIn= HOn-1 (late) dH
L

HOn (early) dH
E

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA

n
(Early)

REQI n= ACKOn+1 dH
E+dV+dA

HIn+1= HOn (early) dH
E

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA

n+1
(Early)

REQI n+1= ACKOn+2 …

(v) Examination of Pipelining Constraints for {Late, Early, Early} Scenario

DI Systole (n-1):

If dH
L>dV then

ACKOn-1= dH
L + dA and REQI n-1= dH

L + dV + dA > dH
L +dA

If dH
L< dV then

ACKOn-1= dV + dA and REQI n-1= dH
L + dV + dA > dV +dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
L > dH

E , dH
L + dV > dH

E then

ACKOn= dH
L + dV + dA

Since dH
E + dV > dH

E

REQI n= dH
E + dV + dA < dH

L + dV + dA =ACKOn

Since REQI n = ACKOn+1 < ACKOn , DI Pipelining Constraint is violated !

41

Table 4.6 DI Systole in case of { Late, Early, Late } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA

n-1
(Late)

REQI n-1= ACKOn dH
L+dV +dA

HIn= HOn-1 (late) dH
L

HOn (early) dH
E

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA

n
(Early)

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA

HIn+1= HOn (early) dH
E

HOn+1 (late) dH
E+dH

L

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA

n+1
(Late)

REQI n+1= ACKOn+2 …

(vi) Examination of Pipelining Constraints for {Late, Early, Late} Scenario

DI Systole (n-1):

If dH
L>dV then

ACKOn-1= dH
L + dA and REQI n-1= dH

L + dV + dA > dH
L +dA

If dH
L< dV then

ACKOn-1= dV + dA and REQI n-1= dH
L + dV + dA > dV +dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
L > dH

E , dH
L + dV > dH

E then ACKOn= dH
L + dV + dA

If dV > dH
L then

REQI n= dH
E + dV + dA < dH

L + dV + dA =ACKOn

If dV < dH
L then

If dV < dH
E then REQI n= dH

E + dH
L + dA > dH

L + dV + dA =ACKOn

If dV > dH
E then REQI n= dH

E + dH
L + dA < dH

L + dV + dA =ACKOn

Since REQI n = ACKOn+1 < ACKOn , in case dV > dH
L > dH

E or dH
L > dV > dH

E

then DI Pipelining Constraint is violated !

42

Table 4.7 DI Systole in case of { Late, Late, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV }+dA

n-1
(Late)

REQI n-1= ACKOn Max{ dH
L+dH

L,dH
L+dV }+dA

HIn= HOn-1 (late) dH
L

HOn (late) dH
L+dH

L

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
L+dH

L,dH
L+dV }+dA

n
(Late)

REQI n= ACKOn+1 dH
L+dH

L+dV+dA

HIn+1= HOn (late) dH
L+dH

L

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
L+dH

L+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

L+dH
L+dV}+dA =

dH
L+dH

L+dV+dA

n+1
(Early)

REQI n+1= ACKOn+2 …

(vii) Examination of Pipelining Constraints for {Late, Late, Early} Scenario

DI Systole (n-1):

If dH
L>dV then

ACKOn-1= dH
L + dA < REQI n-1= dH

L + dH
L + dA

If dH
L< dV then

ACKOn-1= dV + dA < REQI n-1= dH
L + dV + dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

Since dH
L > dH

E , dH
L +dH

L + dV > dH
E then

REQIn= dH
L + dH

L + dV + dA

If dH
L>dV then

ACKOn= dH
L + dH

L + dA < dH
L + dH

L + dV + dA = REQIn

If dH
L<dV then

ACKOn= dH
L + dV + dA < dH

L + dH
L + dV + dA = REQIn

Since REQI n = ACKOn+1 < ACKOn DI Pipelining Constraint is satisfied √

43

Table 4.8 DI Systole in case of { Late, Late, Late } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV }+dA

n-1
(Late)

REQI n-1= ACKOn Max{ dH
L+dH

L,dH
L+dV }+dA

HIn= HOn-1 (late) dH
L

HOn (late) dH
L+dH

L

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
L+dH

L,dH
L+dV }+dA

n
(Late)

REQI n= ACKOn+1 Max{ dH
L+dH

L+dH
L,dH

L+dH
L+dV }+dA

HIn+1= HOn (late) dH
L+dH

L

HOn+1 (late) dH
L+dH

L+dH
L

VOn+1 =HIn+1 + dV dH
L+dH

L+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
L+ dH

L+ dH
L, dH

L+dH
L+dV }+dA

n+1
(Late)

REQI n+1= ACKOn+2 …

(viii) Examination of Pipelining Constraints for {Late, Late, Late} Scenario

DI Systole (n-1):

If dH
L>dV then

ACKOn-1= dH
L + dA < REQI n-1= dH

L + dH
L + dA

If dH
L< dV then

ACKOn-1= dV + dA < REQI n-1= dH
L + dV + dA

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

DI Systole (n):

If dH
L>dV then

ACKOn-1= dH
L + dH

L + dA < REQI n-1= dH
L + dH

L + dH
L + dA

If dH
L< dV then

ACKOn-1= dH
L + dV + dA < REQI n-1= dH

L + dH
L + dV + dA

Since REQI n= ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

44

4.2 Structural Modifications Inferred

Instead of using the known methods for establishing delay insensitivity in bit-level pipelined

NCL structures in literature [45] which would have sacrificed the early carry generation

feature completely, direct solution to eliminate the delay-insensitivity violation could be

easily devised by examining the analyses given in Tables 4.1 to 4.8: If for each DI systole,

the REQI input received from the next systole is inhibited until the current systole’s ACKO

output is asserted than the systole will not end its evaluation of its input-complete vertical

and horizontal outputs even if an early REQI input is received from the next systole to

initiate the transition to NULL or vice versa. This could be done by adding a th22 gate on

the REQI path, (see Figure 4.2), which is fed by the ACKO signals of both current and next

DI systoles, so that instead of REQI input, output of this th22 gate, which is called REQE,

would be fed into the embedded pipeline registration stage within the systole. The formula,

regarding the generation of the REQE signal is as given below:

[] { [] [] }nnn ACKOinputTimeACKOinputTimeMaxREQOEinputTime ,,,, 1+= (7)

REQIn= ACKOn+1 REQIn+1REQIn-1= ACKOn

HIn-2
0

ACKOn-1

VI1n-1
0,1

VI1n
0,1

...

VI1n+1
0,1

...

VImn-1
0,1

VImn
0,1

VImn+1
0,1

HIn-2
1

...

HOn-1
0=HIn0

HOn+1
0

HOn+1
1

VOn-1
0 VOn-1

1
VOn

0 VOn
1 VOn+1

0 VOn+1
1

HOn-1
1=HIn1

HOn
0=HIn+1

0

HOn
1=HIn+1

1

DI
Systole

(n+1)

th22 th22 th22

REQEn-1 REQEn
REQEn+1

DI
Systole

(n)

DI
Systole

(n-1)

Figure 4.2 Modified DI systolic array with bit-level embedded pipelining

45

Then for the modified DI Systolic array, to satisfy the requirements of delay-insensitivity,

the evaluation time of the ACKO output of each systole should be smaller than or equal to

the evaluation time for the REQOE signal within the systole, which is generated from the

ACKO outputs of the current and next systoles. In other words, the DI Pipelining constraint

becomes:

[] []nn REQOEinputTimeACKOinputTime ,, ≤ (8)

Re-application of the SDIVA method to modified DI Systolic Array is given in Tables 4.9 to

4.10 for delay-insensitivity violating input scenarios {Late, Early, Early} and {Late, Early,

Late}.

This solution resembles the “Broad Data Validity” scheme mentioned in [73] for bundled

data style asynchronous systems applied to dual-rail signals. The main difference is that the

modification is handled without introducing any extra control signals such as “validity”, i.e.

without complicating the inter-systole interfaces.

Meanwhile the early output evaluation capability of the modified DI systole is not hindered

with the addition of the new gate. The evaluation time of the Horizontal Output is only

slightly increased with the addition of the th22 gate on the REQI path. Besides, the speed up

advantages due to early output evaluation are still maintained as opposed to the completion-

completeness resolving methods proposed in [45]. For those input sets which do not require

arrival of the Horizontal Input from the previous systole to evaluate the Horizontal Output,

input-incomplete and early Horizontal Output evaluation still works as before, which could

also be easily verified by applying the analysis method for all the other scenarios [74].

Analysis of the fastest input scenario, {Early, Early, Early} is given in Table 4.11 as an

example.

46

Table 4.9 Modified DI Systole in case of { Late, Early, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA

REQI n-1= ACKOn dH
L+dV +dA

n-1
(Late)

REQE n-1=

Max{ ACKOn, ACKOn-1}+dB

Max{ dH
L+dA, dV+dA, dH

L+dV +dA }+dB =

dH
L+dV +dA+dB

HIn= HOn-1 (late) dH
L

HOn (early) dH
E

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA

REQI n= ACKOn+1 dH
E+dV+dA

n
(Early)

REQE n=

Max{ ACKOn+1, ACKOn1}+dB

Max{ dH
L+dV+dA, dH

E+dV+dA)}+dB =

dH
L+dV+dA+dB

HIn+1= HOn (early) dH
E

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+

dA

Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA

REQI n+1= ACKOn+2

n+1
(Early)

REQE n+1=

Max{ ACKOn+2, ACKOn+1}+dB

(i) Examination of Modified DICSA Systole for {Late, Early, Early} Scenario

Modified DICSA Systole (n):

Since dH
L + dV > dH

E then

ACKOn= dH
L + dV + dA

Since dH
E + dV > dH

E then

REQI n= dH
E + dV + dA

Since ACKOn=dH
L + dV + dA > dH

E + dV + dA= REQI n then

REQE n= ACKOn+ dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

47

Table 4.10 Modified DI Systole in case of {Late, Early, Late} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
L

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA

REQI n-1= ACKOn dH
L+dV +dA

n-1
(Late)

REQE n-1=

Max{ ACKOn, ACKOn-1}+dB

Max{ dH
L+dA, dV+dA, dH

L+dV +dA }+dB =

dH
L+dV +dA+dB

HIn= HOn-1 (late) dH
L

HOn (early) dH
E

VOn =HIn + dV dH
L+dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA

n
(Early)

REQE n=

Max{ ACKOn+1, ACKOn1}+dB

Max{ dH
L+dV+dA, dH

E+dH
L +dA,

dH
E+dV+dA}+dB

HIn+1= HOn (early) dH
E

HOn+1 (late) dH
E+dH

L

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+ dH

L,dH
E+dV }+dA

REQI n+1= ACKOn+2

n+1
(Late)

REQEn+1=Max{ACKOn+2,ACKOn+1}+dB

(ii) Examination of Modified DICSA Systole for {Late, Early, Late} Scenario

Modified DICSA Systole (n):

Since dH
L > dH

E , dH
L + dV > dH

E then ACKOn= dH
L + dV + dA

If dV > dH
L > dH

E then REQI n= dH
E+ dV + dA < dH

L + dV + dA =ACKOn

Since ACKOn > REQI n

REQE n= ACKOn + dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn

If dH
L > dV > dH

E then REQI n= dH
E+ dH

L + dA < dH
L + dV + dA =ACKOn

Since ACKOn > REQI n

REQE n= ACKOn + dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn

If dH
L > dH

E > dV then REQI n= dH
E+ dH

L + dA > dH
L + dV + dA =ACKOn

Since REQI n >ACKO n

REQE n= REQIn + dB = dH
E+ dH

L + dA + dB > dH
L + dV + dA =ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

48

Table 4.11 Modified DICSA Systole in case of { Early, Early, Early } Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

HIn-1 0

HOn-1 (late) dH
E

VOn-1 =HIn-1 + dV dV

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{dH
E, dV}+dA

REQI n-1= ACKOn dH
E + dV + dA

n-1
(Late)

REQE n-1=

Max{ ACKOn, ACKOn-1}+dB

Max{ dH
E +dA, dV+dA, dH

E +dV +dA }+dB =

dH
E +dV +dA+dB

HIn= HOn-1 (late) dH
E

HOn (early) dH
E

VOn =HIn + dV dH
E + dV

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV +dA

REQI n= ACKOn+1 dH
E+dV+dA

n
(Early)

REQE n=

Max{ ACKOn+1, ACKOn1}+dB

Max{ dH
E+dV +dA, dH

E+dV +dA }+dB = dH
E

+dV+dA+dB

HIn+1= HOn (early) dH
E

HOn+1 (early) dH
E

VOn+1 =HIn+1 + dV dH
E+dV

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV+dA

REQI n+1= ACKOn+2

n+1
(Early)

REQE n+1=Max{ACKOn+2,ACKOn+1}+dB

(iii) Examination of Modified DICSA Systole for {Early, Early, Early} Scenario

Modified DICSA Systole (n-1):

If dH
E>dV then ACKOn-1= dH

E +dA and REQI n-1= dH
E+dV+dA > dH

E+dA

If dH
E< dV then ACKOn-1= dV +dA and REQI n-1= dH

E+dV+dA > dV +dA

Since REQI n-1 ≥ ACKOn-1 ,

 REQE n-1= REQI n-1+dB= dH
E+dV+dA+dB

Early Output Evaluation is preserved and DI Pipelining Constraint is satisfied √

Modified DICSA Systole (n)

Since dH
E + dV > dH

E then ACKOn= dH
E+dV+dA = REQI n

Since REQI n≥ ACKOn , then

REQE n= REQI n+dB= dH
E+dV+dA+dB

Early Output Evaluation is preserved and DI Pipelining Constraint is satisfied √

49

4.3 Benefits of the SDIVA Method

The SDIVA method employs symbolic delays for all output paths and analyses the signal

flow on three adjacent systoles for all possible early/late carry generation conditions, to

detect and correct the cases of early generation or no generation of completion

acknowledgment. The verification of a complete systolic adder is reduced to verification of

three systoles, regardless of the operand length of the adder, which is a significant saving in

verification effort and time, especially when compared to formal analysis methods which are

usually based on exploration of all reachable states hence suffer from the state explosion

problem.

Application of the SDIVA method to a typical delay-insensitive bit-level pipelined systolic

array in dual-line threshold logic style with early output evaluation possibilities in one-

dimension demonstrated that, the analyses could further be simplified down to examination

of two offending input scenarios, namely {Late, Early, Early} and {Late, Early, Late} and

with this method, it is also possible to easily devise structural modifications to offending

topologies without sacrificing the early output evaluation features and the resultant speed up

advantages.

Although the presented work concentrates on a particular class of bit-level pipelined systolic

array, the SDIVA method is generic enough in that:

• It is independent of operand length since evaluation of three adjacent systoles is

sufficient;

• It does not require actual path/gate delays but only symbolic ones to represent

relative lengths of early/late output generation paths.

• It not only analysis delay insensitivity but also evaluates the speed-up issues

inherent in the topology.

• It is completely technology independent, so verification is robust against all physical

and environmental parameters

• It could be safely applied to other systolic arrays having more than one early output

evaluation paths in one dimension or multiple early output evaluation paths in more

than one dimension.

50

CHAPTER 5

5 DELAY INSENSITIVE SYSTOLIC ADDER DESIGN

Binary addition resides at the critical path of most signal processing systems, so improving

the critical path of addition is usually the key to improving the overall throughput of a data

processing circuit. The complexity of binary addition is directly related to its operand length.

When the operand size of the adder is large, either long carry propagation delays are

suffered to keep the silicon area low, -as in the case of ripple-carry adders-, or other adder

topologies are introduced to improve speed at the expense of silicon area, as in the case of

carry look-ahead adders. Pipelining and systolic array structures also help to divide the

critical path and the increase overall throughput of addition-based data processing circuits.

Ripple carry style adders which could be easily converted into small identical and repeatable

units (systoles) and which propagate the carry output of addition along row full adder

systoles as carry input to the next systolic adder benefit the most form pipelining. But, even

if pipelined at bit-level, the performance of synchronous systolic array adders is always

bounded by the worst case of the critical path , i.e. the longest carry propagation path which

is equal to the operand size of the adder. Bit-level pipelining may divide the n-bit carry

propagation path into 1-bit full adder carry evaluation paths but the n-bit addition still

requires n clock cycles to complete.

In [65], it is claimed that, in the average, carry propagation steps of n-bit binary addition

converge to log2n and n-bit carry propagation is extremely rare. But since synchronous

circuits are designed to handle the worst case, they are designed for handling n-bit carry

propagation. For example, for the 1024-Bit RSA crypto-processor IC [66], utilizing

synchronous systolic array architecture to perform a highly compute-intensive

exponentiation operation, namely the Montgomery Modular Multiplication algorithm [67],

the critical path of the design is the 1024-bit carry propagation path. An extensive statistical

analysis carried out on this IC by means of a RSA encryption/decryption simulator program,

which records all partial product terms formed during RSA encryption sessions and the

lengths of all carry propagations in the addition operations performed at each step of

Montgomery Modular Multiplication, confirm the above stated facts: In all the 1024-bit

additions performed during RSA encryption sessions, where the addition operands display a

51

random distribution, most of the longest carry propagations were observed near log21024=10

and a carry propagation longer than 21 never occurred (Figure 3.1). In fact, the 1024-bit

carry propagation path, which is the critical path for which the RSA crypto-processor IC was

designed to handle, never came up in the extensive statistical analysis. A similar statistical

analysis performed on sets of partial products recorded during the multiplication of

randomly generated numbers ranging from 8 to 2048 bits, also reveals the same result:

Average carry propagation length for n-bit addition converges to O(log2n), in stead of O(n).

Figure 5.1 Carry Propagation in 1024-bit RSA Operation

The input-dependent behavior of carry propagation in addition, makes adders very suitable

to benefit from asynchronous circuit design techniques. Since asynchronous circuits operate

at average case performance, instead of worst, significant improvements could be achieved

in terms of speed and throughput: The completion detection mechanism, inherent in

asynchronous design styles, could be exploited to detect the end of carry propagation in

addition and operands could be reloaded as soon as the current summation is completed.

And, for adders having systolic array style architectures, delay-insensitive asynchronous

circuit design techniques could be effectively combined with the pipelining structure, by

employing dual-rail threshold logic style gates. The inherent completion detection

52

mechanism of these gates could be tuned to sense the end of carry propagation and assert the

sum at the instant carry propagation has stopped. In this chapter, merging of delay-

insensitive asynchronous circuit design with systolic array data processing architectures is

demonstrated on two selected adder applications in dual-rail threshold logic style.

5.1 Delay Insensitive Adders with Early Carry Evaluation

The gate-level delay-insensitive asynchronous design space has been explored for adder

topologies which can lend themselves easily to pipelining and which can allow for fast

output generation depending on the applied input data, because in asynchronous addition,

the evaluation time of addition is highly data-dependent as demonstrated by the carry

propagation analysis in the preceding section.

Eventually, two different adder topologies have been selected for pipelining in systolic array

style, chiefly owing to their data-dependent early and fast carry output evaluation feature

which contributes significantly to speed up of addition in terms of completion time and

throughput. These two adder topologies are presented in detail below. In addition to early

carry evaluation, both topologies have it in common the suitability to be pipelined at bit-

level in ripple carry style, i.e., propagating the carry output to the next full adder systole as

carry input, along a one-dimensional array of adder systoles as illustrated in Figure 5.2.

FA(n-1)

REQ(n) ACK(n+1)

FA(n)

REQ(n+1)

Sn-1
0 Sn-1

1

REQ(n-1) ACK(n)

Sn
0 Sn

1

An-1
0 Bn-1

1

An-1
1 Bn-1

0
An

0 Bn
1

An
1 Bn

0

Cn-1
0

Cn-1
1

Cn
0

Cn
1 FA(n+1)

ACK(n-1)

Sn+1
0 Sn+1

1

Cn+1
0

Cn+1
1

An+1
0 Bn+1

1

An+1
1 Bn+1

0

Cn-1
0

Cn-1
1

Figure 5.2 Bit-level Pipelined Dual-Rail Adder with embedded registration

(i) Reduced NCL Adder: ([30, 39, 68]) is a reduced form of the DIMS adder [34], using

logic simplification possible to NCL style dual-rail threshold logic gates. The equations

defining the functionality of Reduced NCL Adder are given in Table 5.1 and the structure is

illustrated in Figure 5.3. The Reduced-NCL Adder employs one level of logic for carry out

53

evaluating and two for sum evaluation. Depending on the value of applied inputs ai and bi,

carry output ci+1 could be generated with or without waiting for the arrival of input carry, ci.

So the Reduced NCL Adder allows for data-dependent early carry output evaluation and the

carry output, ci+1 is an input-incomplete output. Meanwhile sum si is always generated from

inputs ai, bi and carry input ci, so sum si is always late and input-complete.

Table 5.1 Reduced-NCL Adder Formulas

Signal Name Formula Status Input-Completeness

Carry Out))((1 iiiiii cbabac ⋅⊕+⋅=+

))((1 iiiiii cbabac ⋅⊕+⋅=+

Early
/Late

Input-Incomplete

Sum
1)(+⋅+++⋅⋅= iiiiiiii ccbacbas

1)(+⋅+++⋅⋅= iiiiiiii ccbacbas

Late Input-Complete

c1
c0

Cout1

Cout0

Sum1

th23

th23

a1

a0

b1

b0

th35

th35
Sum0

Figure 5.3 Reduced NCL Adder Structure

(ii) Manchester Carry Save Adder (CSA) [69] divides the addition in two phases where first

phase is the calculation of carry-propagate, carry-kill and carry-generate signals from the

addition inputs, and the second is the calculation of sum and output carry from these signals

The equations defining the functionality of Manchester Carry Save Adder are given in Table

5.2 and its structure is illustrated in Figure 5.4. As seen from the table, depending on the

value of the inputs ai and bi, the carry output ci+1 could be generated early without

54

participation of the carry input ci for cases of carry-generate ({ai, bi }={1,1}) and carry-kill

({ai, bi }={0,0}). For the case of carry-propagate ({ai, bi }={0,1} or {1,0}), the carry output

ci+1 should wait for the arrival of the carry input ci, as well as ai and bi inputs, so carry

generation is late. Due this data dependent early or late evaluation possibility, the carry

output, ci+1 is referred as an input-incomplete output. Meanwhile sum si is always generated

from inputs ai, bi and carry input ci, so sum si is always late and input-complete.

Table 5.2 Manchester CSA Formulas

Signal Name Formula Status Input-Completeness

Carry Generate)(iii bag ⋅= - -

Carry Kill
iiii bak)(⋅= - -

Carry Propagate)(iii bap ⊕= - -

Carry Out)(1 iiii cpgc ⋅+=+

)(1 cpkc iii ⋅+=+

Early/Late Input-Incomplete

Sum ())(cpckgs iiiii ⋅+⋅+=
())(iiiiii cpckgs ⋅+⋅+=

Late Input-Complete

a0b1

a1b0

g = a1b1

k = a0b0

th22

th22

th22

th22

a1

a0

b1

b0

c1
c0

Cout1

Cout0

Sum1

Sum0

p

p

th22

th12

th22

th12

th22

th22

th22

th22

th12

th12

th12

th12

Figure 5.4 Manchester CSA Adder Structure

55

5.2 Application of Pipelining and Early Carry Evaluation Conflict

The selected two adder topologies are implemented with dual-rail threshold logic gates and

converted into bit-level pipelined systolic arrays with embedded registration. The resultant

systolic adder topologies are given in the following subsections. However when the designed

adder systoles are connected in ripple carry fashion so that the output carry of each full

adder systole is propagated along the same row as carry input to the next systole (as given in

Figure 5.1); data-dependent delay-insensitivity violations are observed due to the input-

incompleteness of the early evaluated carry out signals. These situations are also

demonstrated in the subsections describing the systolic adder topologies.

5.2.1 DI CSA Systole

The Delay Insensitive Carry Save Adder (DICSA) has been developed from the basic

Manchester Carry Save Adder by applying bit-level pipelining in two dimensions with

dedicated handshaking signals controlling each dimension, as given in Figure 5.5. The

topology of the Manchester Carry Save Adder has been modified as given in Figure 5.6., so

that the ACKI/REQI handshaking controls the first (input) stage of the DICSA systole with

embedded registration of the inputs ai and bi. The ACKO/REQO handshaking controls the

second (output stage) of the DICSA systole with embedded registration of the outputs ci+1

and si. Note that the systolic DICSA topology given in this study differs from the ones in

literature which are either do not employ bit-level pipelining [70, 71] or generally pipelined

in the multiplier array style [69], so that each adder unit operates independently from other

adders in the same row delivering the sum and carry outputs to the next row of adders in the

array. The formulas defining the operation of the systolic DICSA are as given in Table 5.3:

CSA(n-1)

REQO(n-2)
ACKO(n-1)

CSA(n-2)

REQO(n-1)

Sn-1
0 Sn-1

1

REQO(n-3)
ACKO(n-2)

Sn-2
0 Sn-2

1

An-1
0Bn-1

1

An-1
1 Bn-1

0

ACKI(n-1) REQI(n-1)

An-2
0 Bn-2

1

An-2
1 Bn-2

0

ACKI(n-2) REQI(n-2)

Cn
0

Cn
1

Cn-1
0

Cn-1
1

Cn-2
0

Cn-2
1 CSA(1)

REQO(0)ACKO(1)

CSA(0)

REQO(1)

S1
0 S1

1

ACKO(0)

S0
0 S0

1

C1
0

C1
1

A1
0 B1

1

A1
1 B1

0

ACKI(1) REQI(1)

A0
0 B0

1

A0
1 B0

0

ACKI(0)
REQI(0)

C2
0

C2
1

Cin
0

Cin
1

Figure 5.5 Pipelined DICSA

56

Cout 1

a0b1

a1b0

g = a1b1

k = a0b0

a1 a0 b1b0

ci 0

ci 1

Cout 1

Cout 0

Sum1

Sum0

p

th12

th12

th12

th12

(ACKO i+1)REQO i

ACKO i
REQI i

ACKI i

p

p

p

p

p
k

g

ci 1

ci 0

ci 0

ci 0

ci 1

ci 1

CIV

COV

SV

CIV
COVSV

p

ci 0
ci 1

ACKO i

Cout 0

REQO i

Sum1 Sum0

p

p

p

th12

th12th12

th12

th12

th33

th33

th33

th33

th33

th22
th12

th33

th33

th22

th33

th33

th33

th33

Figure 5.6 DICSA systole for bit-level pipelining

Table 5.3 Systolic DICSA Formulas

Signal Name Formula Status

Carry Generate
iiii REQIbag ⋅⋅=)(-

Carry Kill
iiii REQIbak ⋅⋅=)(-

Carry

Propagate
iiii REQIbap ⋅⊕=)(-

Carry Out
iiiii REQOcpgc ⋅⋅+=+)(1

iiii REQOcpkc ⋅⋅+=+)(1

Input-incomplete

Sum () iiiiii REQOcpckgs ⋅⋅+⋅+=)(

() iiiiiii REQOcpckgs ⋅⋅+⋅+=)(

Input-complete

Output

Acknowledge
))()()((11 iiiiiii ccccssACKO +⋅+⋅+= ++ Input-complete

Input

Acknowledge
)(iii ppACKI +=

-

57

As seen from Table 5.3, the inclusion of the embedded registration control inputs REQI and

REQO does not affect the input completeness characteristics of the addition outputs: Due to

the data dependent early or late evaluation possibility, the carry output, ci+1 is input-

incomplete while sum output si is input-complete. As for the added handshaking signals, the

completion detection output for output registration , ACKOi is late and input-complete while

the completion detection output for input registration , ACKIi is early and input-incomplete.

However, for this given systolic DICSA topology, the input-incompleteness of the early

evaluated carry output may violate the Pipelining Constraint for Delay Insensitivity. Spice

simulations of the systolic DICSA topology implemented in Dual-Rail Threshold Logic

style displays an interaction of DATA and NULL waves for some input sets, hence a stalling

of signal flow, pointing to a violation of Delay Insensitivity as seen in Figure 5.7.

Figure 5.7 DI violation in systolic DICSA captured by Spice simulation

58

The SDIVA method proposed in Chapter 4 is applied to the systolic DICSA array of 3

systoles, by assigning the below given symbolic delays to the output paths:

dC
E delay of carry output path in case of early evaluation (input-incomplete)

dC
L delay of carry output path in case of late evaluation (input-complete)

dS delay of the sum output path (input-complete)

dA delay of the completion detection path, ACKO, (input-complete)

And the analysis started with the following assumptions:

• Inputs ai and bi to all systoles and the carry input to the leftmost systole, ci-1 are

applied concurrently

• All wire forks within the systoles are isochronic

• Since dC
E and dC

L denote the delays of the same path, in cases of input-

incomplete/early and input-complete/late carry evaluation respectively, the delay, dC
E is

always smaller than the delay dC
L:

L

C
E

C dd < (9)

Without making any other assumptions about the relative magnitudes of the output delays

and leaving the handshaking signals of the input registration stage, ACKI/REQI out of the

analysis, -since they do not have any affect on the output delays-, the evaluation time of

ACKO output from the time of inputs’ application is calculated in terms of the symbolic

delays, dS, dA, dC
E, dC

L for all of the 8 possible input scenarios and checked against the

pipelining constraint, which becomes as given in (10), for the systolic DICSA array:

[] [] []nnn REQOinputTimeACKOinputTimeACKOinputTime ,,, 1 =≥ + (10)

Application of the SDIVA method reveals that for the input scenarios {Late, Early, Early}

and {Late, Early, Late}, delay-insensitivity is violated as indicated by the bold lettering in

Table 5.4 and Table 5.5. For these two scenarios, it is clearly seen that the evaluation time

for the ACKO output of (n+1)th systole, which is also the REQO input arrival time for nth

systole, is smaller than the evaluation time for ACKO output of the nth systole. So NULL and

DATA wavefronts would interact within nth systole and violate delay-insensitivity. The

result is no generation of the ACK output of nth systole and consecutively blocking of signal

flow.

59

In these tables, the following abbreviations are used:

CI : Carry Input,

CO: : Carry Output,

SO : Sum Output

REQO : REQ Input to the output stage,

ACKO : ACK Output of the output stage

Table 5.4 DICSA Systole in case of {Late, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= CIn-1 + dS dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA

n-1
(Late)

REQOn-1= ACKOn dC
L+dS+dA

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn = CIn + dS dC
L+ dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA

n
(Early)

REQOn= ACKOn+1 dC
E+dS+dA

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= CIn+1 + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA

n+1
(Early)

REQOn+1= ACKOn+2 …

Examination of DICSA Systole (n-1):

If dC
L>dS then ACKOn-1= dC

L + dA and REQO n-1= dC
L + dS + dA > dC

L +dA

If dH
L< dV then ACKOn-1= dS + dA and REQO n-1= dC

L + dS + dA > dS +dA

Since REQO n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

Examination of DICSA Systole (n):

Since dC
L> dC

E, dC
L + dS > dC

E then ACKOn= dC
L + dS + dA

Since dC
L> dC

E, dC
E + dS > dC

E then

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn

Since REQOn = ACKOn+1 < ACKOn , DI Pipelining Constraint is violated !

60

Table 5.5 DICSA Systole in case of {Late, Early, Late} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= CIn-1 + dS dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA

n-1
(Late)

REQOIn-1= ACKOn dC
L+dS.+dA

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn= CIn + dS dC
L+ dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA

n
(Early)

REQOn= ACKOn+1 Max{ dC
E+dC

L,dC
E+dS }+dA

CIn+1= COn(early) dC
E

COn+1(late) dC
E+dC

L

SOn+1= CIn+1 + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E+ dC

L,dC
E+dS }+dA

n+1
(Late)

REQOn+1= ACKOn+2 …

Examination of DICSA Systole (n-1):

If dC
L>dS then

ACKOn-1= dC
L + dA and REQO n-1= dC

L + dS + dA > dC
L +dA

If dH
L< dV then

ACKOn-1= dS + dA and REQO n-1= dC
L + dS + dA > dS +dA

Since REQO n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

Examination of DICSA Systole (n):

Since dC
L > dC

E, dC
L + dS > dC

E then ACKOn= dC
L + dS + dA

If dS > dC
L > dC

E then

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn

If dC
L > dS > dC

E then

REQO n= dC
E + dC

L + dA < dC
L + dS+ dA =ACKOn

If dC
L > dC

E > dS then

REQO n= dC
E + dC

L + dA >dC
L + dS+ dA =ACKOn

Since REQOn = ACKOn+1 < ACKOn ,in case dS > dC
L or dC

L > dS > dC
E

DI Pipelining Constraint is violated !

61

5.2.2 NCL Adder Systole

The NCL Adder systole has been developed from the reduced-NCL Adder [39], by applying

bit-level pipelining in one-dimension, so that the handshaking signals ACK/REQ control the

carry propagation flow as given in Figure 5.8. The topology of the reduced-NCL Adder has

been modified so that the REQ input is embedded in to the first stage of addition which

generates the carry output ci+1. Since the second stage of addition uses the output of the first

stage to generate the sum output si, REQ input also controls the sum output flow implicitly.

The formulas defining the operation of the NCL Adder systole are given in Table 5.6.

Figure 5.8 Pipelined Reduced-NCL Adder

c1
c0

Cout1

Cout0

Sum1

th34

th34

a1

a0

b1

b0

th34w2 Sum0

b0

b1

a0
c0

a0
b0

c0
Cout0

Cout1
a1

b1

c1

a1

c1

Cout0

Cout1

(ACK i+1)
REQ i REQ i

th12
SV

th12
COV

ACK i

th22

th34w2

Figure 5.9 The Reduced-NCL Adder systole

62

Table 5.6 Systolic Reduced-NCL Adder Formulas

Signal Name Formula Status

Carry Out
iiiiiii REQcbabac ⋅⋅⊕+⋅=+))((1

iiiiiii REQcbabac ⋅⋅⊕+⋅=+))((1

Input-incomplete

Sum
1)(+⋅+++⋅⋅= iiiiiiii ccbacbas

1)(+⋅+++⋅⋅= iiiiiiii ccbacbas

Input-complete

Acknowledge))()((11 ++ +⋅+= iiiii ccssACK Input-complete

As seen from Table 5.6, the inclusion of the embedded registration control input REQ does

not affect the input completeness characteristics of the addition outputs: Due to the data

dependent early or late evaluation possibility, the carry output, ci+1 is input-incomplete while

sum output si is input-complete. Also the added completion detection output for output

registration, ACKi is late and input-complete .

However, the Systolic NCL Adder topology also violates the Pipelining Constraint for Delay

Insensitivity for some inputs, due to the input-incompleteness of the early evaluated carry

output. Spice simulations of the Systolic NCL Adder topology implemented in Dual-Rail

Threshold Logic style displays an interaction of DATA and NULL waves in the same way

as the Systolic DICSA. For some input sets, signal flow is stalled, indicating a violation of

Delay Insensitivity. Applying the proposed Delay Insensitivity verification analysis method

to a Systolic NCL Adder array of 3 systoles reveals the input scenarios which violate Delay

Insensitivity. Assigning similar symbolic delays to the output paths and using the same

assumptions as the Systolic DICSA, the pipelining constraint given in () could be checked

for all of the 8 possible input scenarios that generate possible combinations of the Late/Early

Carry evaluation on three systoles. As given in Table 5.7, the Systolic NCL Adder exhibits

interaction of DATA and NULL waves for {Late, Early, Early} input scenario only. For this

scenario, it is clearly seen that the evaluation time for the ACK output of (n+1)th systole,

which is also the REQI input arrival time for nth systole, is smaller than the evaluation time

for ACKI output of the nth systole. So NULL and DATA wavefronts would interact within

nth systole and violate delay-insensitivity resulting in no generation of the ACK output of nth

systole and consecutively blocking of signal flow.

63

Table 5.7 Reduced-NCL Adder Systole in case of {Late, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= Max{CIn-1, COn-1} + dS dC
L+dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L, dC

L+dS}+dA= dC
L+dS+dA

n-1
(Late)

REQIn-1= ACKOn dC
L+dS+dA

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn = Max{CIn, COn} + dS dC
L+ dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA

n
(Early)

REQIn= ACKOn+1 dC
E+dS+dA

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= Max{CIn+1, COn+1} + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA

n+1
(Early)

REQIn+1= ACKOn+2 …

Examination of DI NCL Systole (n-1):

Since dC
L+ dS > dC

L

ACKOn-1= dC
L + dS + dA

Since dC
L > dC

E, dC
L + dS > dC

E

 REQIn= dC
L + dS + dA = ACKOn-1

Since REQO n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

Examination of DI NCL Systole (n):

Since dC
L> dC

E, dC
L + dS > dC

E then ACKOn= dC
L + dS + dA

Since dC
E + dS > dC

E then

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn

Since REQO n = ACKO n+1 < ACKOn , DI Pipelining Constraint is violated!

64

5.3 Fixing Early Carry Evaluation Conflict with Structural Modifications

Straightforward application of bit-level pipelining on the selected two delay-insensitive

adder topologies, the systolic DICSA and NCL adders, results in unreliable operation; due to

early carry generation feature’s conflicting with the pipelining constraint for delay

insensitivity. By application of the SDIVA method, input-dependent delay insensitivity

violations are detected without running extensive simulations. To fix these problems,

following the methods given in [45] for resolving the Completion Completeness conflict

would have helped the data-dependent early carry evaluation feature, the major contributor

to speedup, would have to be sacrificed. So, the structural modifications, proposed in section

4.2 are applied to the systolic DICSA and systolic NCL adders and the SDIVA method is re-

applied to check whether delay insensitivity is re-established and whether the speed up

advantages due to early carry evaluation are still maintained.

5.3.1 Modified DI CSA Systole

Due to use of embedded registering in the DICSA systole, two methods for maintaining

Completion Completeness in NCL pipelines [45] are equivalent: The carry output ci+1,

should be made Input-Complete, by making the carry input ci participate in calculation of the

carry output ci+1 for all values of the inputs, ai and bi. However, this solution sacrifices the

early carry evaluation path, major contributor to speedup. In stead, the structural

modification proposed in section 4.2 is applied to the DICSA systole by addition of the th22

gate at the REQO path, which is fed by the ACKO signals of both current and next systoles.

The REQOi input received from the next systole is inhibited until the current systole’s

ACKOi signal is generated so that the current systole will not end its evaluation of sum and

carry outputs, ci+1 and si even if an early REQOi input is received from the next systole to

initiate the transition to NULL or vice versa. The modified DICSA systole topology is seen

in Figure 5.10.

Reapplication of the SDIVA method to modified DICSA systole is given in Tables 5.8 and

Table 5.9, for the two violating input scenarios {Late, Early, Early} and {Late, Early, Late}.

It is clearly seen that the pipelining constraint for delay insensitivity, formulated in (8) is

satisfied: The evaluation time of the ACKO output of each systole is smaller than or equal to

the evaluation time for the REQOE signal within the systole, which is generated from the

ACKO outputs of the current and next systoles.

65

a0b1

a1b0

g = a1b1

k = a0b0

a1a0 b1b0

ci0

ci1

Cout 1

Cout 0

Sum1

Sum0

p
th12

th12

th12

th12

(ACKOi+1)
REQOEi

ACKO
i

REQI i

ACKI i

p

p

p

p

p

p

p

k

g

ci1

ci0

ci0

ci0

ci1

ci1

CIV

COV

SV

CIV
COV
SV

p
p

ci 0
ci 1

ACKOi

Cout 1
Cout 0

REQOi

Sum1 Sum0

th12

th22

th12

th12

th12

th12

th12

th33

th33

th33

th33
th33

th33

th33

th33

th33

th22

th33

th22

th33

Figure 5.10 Modified DICSA systole with delayed REQO

The modified DICSA systole satisfies all requirements of Delay Insensitivity while

maintaining the speedup advantages introduced by early carry evaluation. Through the new

ACKO feedback path within the systole, the Input-Completeness of carry output, ci+1 is

achieved: Since ACKO output is Input-Complete, using it in the generation of REQE signal,

which participates in evaluation of all outputs makes all outputs of the DICSA systole Input-

Complete. The carry output evaluation time is not significantly affected by the addition of

the feedback path either. For those input sets which do not require arrival of carry input from

the previous systole to evaluate the carry output, namely carry generate and carry kill, early

carry evaluation still works as before, which could also be easily verified by applying

SDIVA method for the fastest input Scenario, {Early, Early, Early}, as given in Table 5.10,

and evaluation time of the carry output, ci+1 is only slightly affected with the addition of the

new gate:

66

Table 5.8 Modified DICSA Systole in case of {Late, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= CIn-1 + dS dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA

REQOn-1= ACKOn dC
L+dS+dA

n-1 (Late)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max {dC
L+dA, dS+dA, dC

L+dS+dA}+dB =

dC
L+dS+dA+dB

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn = CIn + dS dC
L+ dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA

REQOn= ACKOn+1 dC
E+dS+dA

n
(Early)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max {dC
L+ dS+dA, dC

E+dS+dA}+dB =

dC
L+dS+dA+dB

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= CIn+1 + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA

REQOn+1= ACKOn+2

n+1
(Early)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Examination of modified DICSA Systole (n):

Since dC
L> dC

E, dC
L + dS > dC

E then

ACKOn= dC
L + dS + dA

Since dC
E + dS > dC

E

REQO n= dC
E + dS + dA

Since ACKOn= dC
L + dS + dA > dC

E + dS + dA = REQO n

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

67

Table 5.9 Modified DICSA Systole in case of {Late, Early, Late} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= CIn-1 + dS dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA

REQOn-1= ACKOn dC
L+dS+dA

n-1
(Late)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max {dC
L+dA, dS+dA, dC

L+dS+dA}+dB =

dC
L+dS+dA+dB

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn = CIn + dS dC
L+ dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA

REQOn= ACKOn+1 Max{dC
E+ dC

L ,dC
E+dS }+dA

n
(Early)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max{dC
L+dS+dA,dC

E+dC
L+dA,dC

E+dS+dA}+dB

CIn+1= COn(early) dC
E

COn+1(late) dC
E+dC

L

SOn+1= CIn+1 + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E+ dC

L,dC
E+dS }+dA

REQOn+1= ACKOn+2

n+1
(Late)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Examination of modified DICSA Systole (n):

Since dC
L> dC

E, dC
L + dS > dC

E then ACKOn= dC
L + dS + dA

If dS > dC
L > dC

E then REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn

Since ACKOn > REQO n

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn

If dC
L > dS > dC

E then REQO n= dC
E + dC

L + dA < dC
L + dS+ dA =ACKOn

Since ACKOn > REQO n

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn

If dC
L > dC

E > dS then REQO n= dC
E + dC

L + dA >dC
L + dS+ dA =ACKOn

Since ACKOn > REQO n

REQE n= REQOn + dB = dC
E + dS + dA + dB > dC

L + dS + dA =ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

68

Table 5.10 Modified DICSA Systole in case of {Early, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(early) dC
E

SOn-1= CIn-1 + dS dS

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
E, dS}+dA

REQOn-1= ACKOn dC
E +dS+dA

n-1
(Early)

REQE n-1=Max{ACKOn-1, ACKOn}+ dB
Max {dC

E+dA, dS+dA, dC
E +dS+dA}+dB =

dC
E+dS+dA+dB

CIn= COn-1 (early) dC
E

COn(early) dC
E

SOn = CIn + dS dC
E + dS

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

E +dS}+dA= dC
E +dS+dA

REQOn= ACKOn+1 dC
E+dS+dA

n
(Early)

REQE n-1=Max{ACKOn-1, ACKOn}+ dB
Max {dC

E + dS+dA, dC
E+dS+dA}+dB =

dC
E+dS+dA+dB

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= CIn+1 + dS dC
E+dS

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA

REQOn+1= ACKOn+2

n+1
(Early)

REQE n-1=..

Examination of modified DICSA Systole (n-1):

Since dC
E + dS > dC

E REQOn-1= dC
E + dS + dA

If dS > dC
E then ACKOn-1= dS + dA < dC

E + dS + dA = REQOn-1

Since ACKOn-1 < REQOn-1

REQEn-1= REQOn-1+ dB = dC
E + dS + dA + dB > dS + dA =ACKOn

If dS > dC
E then ACKOn-1= dC

E + dA < dC
E + dS + dA = REQOn-1

Since ACKOn-1 < REQOn-1

REQEn-1= REQOn-1+ dB = dC
E + dS + dA + dB > dC

E + dA =ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

Examination of modified DICSA Systole (n):

Since dC
E + dS > dC

E ACKOn= dC
E + dS + dA = REQO n

Since ACKOn= REQO n REQE n= ACKOn + dB = dC
E + dS + dA + dB > ACKOn

Since REQE n> ACKOn , DI Pipelining Constraint is satisfied √

69

5.3.2 Modified NCL Adder Systole

The two methods for establishing Completion Completeness [45] are also equivalent for the

systolic NCL Adder, due to embedded registering: Either The carry output ci+1 should be

made Input-Complete by making the carry input ci participate in calculation of the carry

output ci+1 for all values of the inputs, ai and bi. But, this solution sacrifices the early carry

evaluation feature, the major contributor to speed up. Application of the structural

modification proposed in section 4.2, in the same way as DICSA systole is presented in

Figure 5.11, as the modified systolic NCL Adder topology. A th22 gate, fed by the ACK

signals of both current and next systoles, is added on the REQ path. Thus, the REQOi input

received from the next systole is inhibited until the current systole’s ACKOi output is

asserted so that the systole will not end its evaluation of sum and carry outputs, ci+1 and si

even if an early REQOi input is received from the next systole to initiate the transition to

NULL or vice versa.

Figure 5.11 Modified Systolic NCL Adder with delayed REQ

Reapplication of the SDIVA method to modified Systolic NCL Adder is given in Tables

5.11 for the violating input scenario {Late, Early, Early}. It is clearly seen from the table that

the pipelining constraint for delay insensitivity, formulated in (8) is satisfied: The evaluation

70

time of the ACK output of each systole is smaller than or equal to the evaluation time for the

REQE signal within the systole, which is generated from the ACK outputs of the current and

next systoles.

The modified Systolic NCL Adder satisfies all requirements of Delay Insensitivity while

maintaining the speedup advantages introduced by early carry evaluation. Through the new

ACK feedback path within the systole, which uses the Input-Complete ACK output in

generation of REQ signal, the Input-Completeness of carry output, ci+1 is achieved: Since

REQ participates in evaluation of all outputs. Meanwhile the carry output evaluation time is

not significantly affected by the addition of the feedback path either. For those input sets

which do not require participation of carry input from the previous systole to evaluate the

carry output, early carry evaluation still works as before, which could also be easily verified

by applying the SDIVA method for the fastest input Scenario, {Early, Early, Early}, as

given in Table 5.12, and evaluation time of the carry output, ci+1 is only slightly affected

with the addition of the new gate:

71

Table 5.11 Modified Systolic NCL Adder in case of {Late, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(late) dC
L

SOn-1= Max{CIn-1, COn-1} + dS dC
L+ dS.

ACKOn-1= Max{SOn-1, COn-1}+ dA Max{ dC
L, dC

L.+ dS}+ dA=dC
L+ dS + dA

REQIn-1= ACKOn Max{ dC
L+ dS.+ dA, dC

L.+ dS. + dA }=
 dC

L.+ dS. + dA

n-1
 (Late)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max { dC
L+ dS + dA, dC

L+ dS + dA }+dB =

dC
L+ dS + dA +dB

CIn= COn-1 (late) dC
L

COn(early) dC
E

SOn = Max{CIn, COn} + dS dC
L+ dS.

ACKOn= Max{SOn, COn}+ dA Max{ dC
E, dC

L.+ dS}+ dA=dC
L+ dS + dA

REQIn= ACKOn+1 dC
E+ dS. + dA

n
(Early)

REQE n=

Max{ACKOn, ACKOn+1}+ dB

Max{ dC
L.+ dS. + dA, dC

E+ dS. + dA } =
 dC

L.+ dS. + dA

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= Max{CIn+1, COn+1} + dS dC
E+ dS.

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E, dC

E.+ dS}+ dA= dC
E+ dS. + dA

REQIn+1= ACKOn+2

n+1
(Early)

REQE n+1=

Max{ACKOn+1, ACKOn+2}+ dB

Examination of DI NCL Systole (n-1):

Since dC
L+ dS > dC

L ACKOn-1= dC
L + dS + dA

Since dC
L > dC

E, dC
L + dS > dC

E then REQIn-1= dC
L + dS + dA

Since REQIn-1= ACKOn-1 REQEn-1= REQIn-1+ dB = dC
L + dS + dA+ dB > ACKOn-1

Since REQE n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

Examination of DI NCL Systole (n):

Since dC
L> dC

E, dC
L + dS > dC

E then ACKOn= dC
L + dS + dA

Since dC
E + dS > dC

E REQO n= dC
E + dS + dA

Since REQIn< ACKOn REQEn= ACKOn + dB = dC
L + dS + dA+ dB > ACKOn

Since REQE n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

72

Table 5.12 Modified Systolic NCL Adder in case of {Early, Early, Early} Scenario

Systole/
Scenario

Input/Output Signal Evaluation Time

CIn-1 0

COn-1(early) dC
E

SOn-1= Max{CIn-1, COn-1} + dS dC
E+ dS.

ACKOn-1= Max{SOn-1, COn-1}+ dA Max{ dC
E, dC

E.+ dS}+ dA=dC
E+ dS + dA

REQIn-1= ACKOn dC
E+ dS + dA

n-1
(Early)

REQE n-1=

Max{ACKOn-1, ACKOn}+ dB

Max {dC
E+ dS + dA, dC

E+ dS + dA}+dB = dC
E+

dS + dA +dB

CIn= COn-1 (early) dC
E

COn(early) dC
E

SOn = Max{CIn, COn} + dS dC
E+ dS.

ACKOn= Max{SOn, COn}+ dA Max{ dC
E, dC

E+ dS}+ dA=dC
E+ dS + dA

REQIn= ACKOn+1 dC
E+ dS. + dA

n
(Early)

REQE n=

Max{ACKOn, ACKOn+1}+ dB

Max{ dC
E.+ dS. + dA, dC

E+ dS. + dA } =
dC

E+ dS. + dA+ dB

CIn+1= COn(early) dC
E

COn+1(early) dC
E

SOn+1= Max{CIn+1, COn+1} + dS dC
E+ dS.

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E, dC

E.+ dS}+ dA= dC
E+ dS. + dA

REQIn+1= ACKOn+2

n+1
(Early)

REQE n+1=

Max{ACKOn+1, ACKOn+2}+ dB

Examination of DI NCL Systole (n-1):

Since dC
E+ dS > dC

E ACKOn-1= dC
E + dS + dA =REQIn-1

Since REQIn-1= ACKOn-1

 REQEn-1= REQIn-1+ dB = dC
E + dS + dA+ dB > ACKOn-1

Since REQE n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √

Examination of DI NCL Systole (n):

Since dC
E+ dS > dC

E ACKOn= dC
E + dS + dA = REQO n

Since REQIn= ACKOn

REQEn= ACKOn + dB = dC
E + dS + dA+ dB > ACKOn

Since REQE n = ACKOn+1 ≥ ACKOn , DI Pipelining Constraint is satisfied √

73

5.3.3 Benefits of Modified Systolic DI Adder Structures

The Delay Insensitive Carry Save Adder (DICSA) and Reduced Null Convention Logic

(reduced-NCL) Adder topologies are adopted for bit-level pipelining and analyzed for

reliable operation. Since straightforward implementation of the bit-level pipelined adder

systoles exhibited input-dependent violations of delay insensitivity, hence unreliable

operation, the SDIVA method has been applied to the designed systolic adders to resolve

these conflicts, which turned out to be resulting from the early carry evaluation feature of the

adder topologies violating the Pipelining Constraint for Delay Insensitivity. Without

resorting to the known methods to attain Completion Completeness, which would have

sacrificed the speedup advantages introduced by the early carry evaluation features

completely, modifications are proposed to the bit-level pipelined adder topologies, to

maintain reliable delay insensitive operation. Distinguishing characteristics of both Systolic

DI Adder topologies are summarized and compared in Table 5.13.

Spice-based simulation of the modified DI Systolic Adder circuits constructed at transistor

level in Dual-Rail Threshold Logic Style, verified that the modified architectures still enjoy

the speed up advantages due to their early carry evaluation features while maintaining

reliable delay insensitive operation. The introduction of the ACK feedback path contributed

to the transistor count of each adder by 12 transistors but did not bring any extra signal

exchange at systole boundaries (Note that gate count is directly proportional to silicon area).

As seen from the table, although the gate count of DICSA is twice as much as the gate count

of reduced-NCL adder, with more logic stages for carry and sum evaluation, the completion

time of DICSA systole is better than reduced-NCL adder’s, due to the use of smaller and less

complicated NCL gates in DICSA systole.

Table 5.13 Comparison of DI adder systoles

Characteristics DICSA Systole NCL Adder Systole

stages (Carry Out) 4 1

stages (Sum) 4 2

#gates (silicon area) 274 130

completion time/systole
(in 0.35μm CMOS technology) 1.08ns 1.70ns

74

5.3.4 Performance Comparison of Systolic DI Adder Structures

The performances of DICSA and reduced-NCL adder against increased bit-lengths, obtained

by simulations performed on maximal length input sets, are presented in Table 5.14. Note

that Completion Time indicates the time from the application of data inputs to the generation

of all output bits, sum and carry out, i.e. the completion time of a DATA wave. On the other

hand DATA-to-DATA Cycle Time (TDD) indicates the time from the application of a data

input set to the application of next input set, i.e. the completion time of DATA wave and the

succeeding NULL wave.

Table 5.14 DI Systolic Adder performances against bit length

NCL Adder Systole DICSA Systole

Bits Average
DATA-to-DATA
Cycle Time (TDD)

Average
Completion

Time

Average
DATA-to-DATA
Cycle Time (TDD)

Average
Completion

Time
1 4.29ns 1.70ns 5.72ns 1.08ns
2 5.57ns 2.97ns 5.86ns 2.96ns
4 6.98ns 5.43ns 6.81ns 4.72ns
8 11.04ns * 8.49ns* 7.55ns* 7.50ns*
(*): Not simulated with maximal length input sequence

Since the maximal length sequence for n-bit addition increases by O(22n), Spice-based

simulation of maximal length sequences become excessively long and tedious as bit-length

of addition increases. The results for 8-bit addition in Table 5.14 could not be obtained from

simulation of the maximal-length input sequence, which is of length 217(=28x28x2), but from

simulation of a pseudo random sequence, namely PN-sequence, of length 3000. Similarly, it

was not either possible to run Spice simulations with input sequences long enough to

evaluate average Completion Time and DATA-to-DATA Cycle Time (TDD) values when bit-

length of addition is greater than 8. As it is, the values presented in Table 5.14 do not suffice

to deduce any conclusions about performances of DICSA and reduced-NCL adder systoles.

To overcome the simulation difficulty, an estimation method is constructed by means of a

program code in C language which accepts randomly generated input sequences of bit length

n and calculates the carry propagation delay of n-bit addition using delay values obtained

from the Spice-based simulation of a single DI adder systole. In order to keep run time

complexity of the program code at O(n) instead of O(22n), so that higher n-bit values could

75

also be covered, an approximation is made by providing two randomly generated sequences,

not as n-bit inputs a and b to the addition, but as randomly generated n-bit inR=a xor b and

inCP=carry out values. The n-bit input inR indicates either one of the carry generation (for

bit value “1”) or carry propagation (for bit value “1”) case so that Early or Late delay values

(recorded by Spice simulations) are assigned to bitwise carry propagation delays. The

second n-bit input inCP indicates if an output carry is generated by each bitwise addition so

that bitwise carry propagation delays are to be accumulated or not. By evaluating in this

manner from least significant bit to most, maximum carry propagation delay in each n-bit

input pair is calculated with O(n) complexity.

The crucial point in this approximation is to run the program for a number of times L, which

is sufficiently long to evaluate a meaningful average. To achieve this at a reasonably low L

value, since the complexity of the program code becomes now O(Ln), the two input

sequences inR and inCP should be representative of all possible input sequences with

randomly generated L sequences. Since the probability of Late and Early carry evaluation is

equal for both DICSA and reduced-NCL adder systoles, a randomly generated inR sequence

represents both inputs a and b at once. With the randomly generated inCP sequence, a

uniform distribution of carry propagation is obtained by fixing the L value at 100000 for this

study, covering a bit-range n from 2 to 64. The program codes generating the average

evaluation time estimation for DICSA and reduced-NCL adder systoles are given in

Appendices A and B. The program codes slightly differ from each other due to modeling of

two different adder topologies: Since the delay due to the first stage of the DICSA systole

does not accumulate by carry propagation and does not change with input, it is added as a

constant to the calculated average evaluation time. Meanwhile, the delay due to the first

stage of the reduced-NCL adder systole adds up with carry propagation, hence it is added as

a constant to carry accumulation at every carry propagation step. The results of these

estimation programs are plotted in Figure 5.12 for both adder structures alongside with the

evaluation time curve of a synchronous Full Adder for comparison.

In Figure 5.12, the evaluation time curve of Full Adder displays O(n) increase against bit

length n, while the average evaluation time curves of systolic DICSA and reduced-NCL

adders display O(log2n) increase. The results confirm that due to self-timed data flow,

proposed adder systoles both operate at O(log2n) average completion time, which makes

them preferable to synchronous Full adder for bit-lengths greater than 16-bit for DI CSA and

21-bit for Reduced-NCL adder. Another revelation of this approximation is that, as the bit-

76

length increases, the DICSA outperforms the reduced-NCL adder in terms of average

completion time by approximately 3ns, although for small bit-lengths their performances are

close to each other.

Figure 5.12 Evaluation Time versus Bit Length in Adders

In Figure 5.13, the average DATA-to-DATA Cycle Times (TDD) of the systolic DI adders,

obtained from simulations are given. Due to bit-level pipelining the adders are expected to

deliver nearly constant DATA-to-DATA Cycle Time (TDD) hence constant throughput

against increased operand length. But since all adder input bits are applied concurrently and

all the adder outputs are read concurrently as a whole word, i.e. the benefits of bit-level

pipelining are not fully reflected in these simulations and the curves in Figure 5.13 display

slightly increasing characteristics against bit-length:

77

Figure 5.13 DATA-to-DATA Cycle Time (TDD) versus Bit Length in DI Systolic Adders

5.4 Application of Bit-Skewed Inputs

Bit-level pipelining with bit-level completion is advantageous for ripple carry style adders,

since they become faster when the carry signal is propagated at each stage of the pipeline

from the least significant systolic adder to the most significant. This has been demonstrated

by the two designed DI systolic adders. But the most important benefit of bit-level

pipelining, which is single-bit adder latency, is still not attained since all adder input bits are

applied concurrently and the adder outputs, namely the sum bits, are “de-skewed” at the

output, i.e. registered as a whole word. As a result the latency and throughput calculations do

not reflect the full performance of delay-insensitive systolic addition.

The bit-level pipelined systolic adders could further speedup, especially in case of addition

of long operands, still using the same proposed architectures but applying skewed input bits

[72], i.e. by each systolic adder in the pipeline receiving the next input set as soon as it has

completed summation of the previous bit without waiting for completion of all systoles in

78

the pipeline. For dual-rail threshold logic this would mean, each systolic adder receiving the

NULL wave as soon as its DATA wave has been processed and receiving the next DATA

wave as soon as the NULL wave has been processed as seen in Figure 5.14 This is also

called “vertical pipelining” [73] and improves the overall throughput of the systolic array.

FA(n-1)

REQ(n) ACK(n+1)

FA(n)

REQ(n+1)

Sn-1
0,1

REQ(n-1) ACK(n)

Sn
0,1

An-1
0,1 Bn-1

0,1 An
0,1 Bn

0,1

Cn-1
0

Cn-1
1

Cn
0

Cn
1 FA(n+1)

ACK(n-1)

Sn+1
0,1

Cn+1
0

Cn+1
1

An+1
0,1 Bn+1

0,1

Cn-1
0

Cn-1
1

null null

null null

null

a1 b1

null null

a2 b2

null null

null null

a2 b2

null null

a3 b3

a2 b2

a3 b3

s1

s2

null

s1

s1

null

null

null

s0

s0

s0

Figure 5.14 Bit-Skewed Inputs/Outputs in a DI Systolic Adder

5.4.1 Bit-skewed Systolic DI CSA Pipeline

The DICSA architecture reconstructed in this thesis is very suitable to benefit from vertical

pipelining. The DICSA systole could easily be adopted to receive bit-skewed inputs with its

dual-stage evaluation structure and its dedicated handshaking signals ACKI/REQI in the

data flow direction, to attain constant throughput against increased bit-length.

79

The simulation environment for the designed systolic DICSA modules has been modified to

apply inputs and receive outputs in bit-skewed fashion and exhaustive simulations have been

started with randomly generated large data sets. The first available simulation results reveal

that 27% improvement has been established in the average throughput of the 4-bit DICSA

adder while the improvement in average throughput of the 8-bit DICSA adder is currently

around 34%. The improvement in throughput is expected to increase as bit-length of the

adder increases so that almost constant throughput is attained regardless of bit-length.

5.4.2 Bit-skewed Systolic NCL Adder Pipeline

The NCL adder systole reconstructed in this thesis is also very suitable to benefit from

vertical pipelining. It could be adopted to receive bit-skewed inputs with its dual-stage

evaluation structure. Although it has only one set of handshaking signals ACK/REQ, the

same handshaking signals could control the data flow in directions, the direction of data/sum

flow and the direction of carry flow, to attain constant throughput against increased bit-

length.

5.4.3 Benefits of Bit-skewed Pipelining

The simulations performed on systolic DICSA and NCL adders confirmed that when the

environment for the designed systolic adder modules has been modified to apply inputs and

receive outputs in bit-skewed fashion, 27-34% improvement has been established in the

average throughput of the 4-bit and 8-bit systolic adders. The improvement in throughput is

expected to increase as bit-length of the adder increases so that almost constant throughput is

attained regardless of bit-length.

80

Equation Chapter 5 Section 1

CHAPTER 6

6 CONCLUSION

Asynchronous circuit design style has been adapted to systolic array architectures to exploit

the benefits of both techniques, for fast, scalable and modular design. The initiative for this

study was that merging asynchronous circuit design techniques with systolic array

architectures would result in total elimination of global signal exchange which would in turn

result in an improvement of the speed and throughput of data processing. Having in mind

that the resultant circuits should be suitable for System-On-Chip design in deep sub-micron

technologies, delay-insensitive asynchronous design style has been adopted, keeping the

abstraction at logic level and employing dual-rail threshold logic gates with static

implementation as design library.

Inspired by the early carry generation related problems encountered in the design of systolic

adders, a new structural delay-insensitivity verification analysis method is proposed for

asynchronous systolic arrays in dual-rail threshold logic style. The proposed method, namely

SDIVA, employs symbolic delays for all output evaluation paths and works at the behavioral

specification level. For bit-level pipelined systolic arrays, which have data-dependent early

output evaluation in one-dimension, SDIVA method confines the verification analysis task

to examination of three adjacent systoles so that by analyzing all possible early/late output

evaluation scenarios on three systoles, the delay-insensitivity of a complete systolic array

could be verified at once, regardless of the array dimensions. This way, SDIVA achieves a

significant reduction in verification effort and time. Since the verification analysis is kept at

behavioral abstraction level using of symbolic delays and no timing constraints are imposed

on the circuit, there is no requirement to know or adjust the actual path/gate delays in the

circuit. As a result, the SDIVA method is completely independent of technology parameters

and is robust against enviromental conditions. Using the SDIVA method, also structural

modifications to the topologies offending the delay insensitivity requirements could be

devised, while maintaining early output evaluation and speed up advantages.

When compared to exsisting verification analysis methods, the SDIVA method brings

significant advantages in decreasing verification effort and also fills the void for verification

81

of pipelined structures. Formal analysis methods, being the most well-known and commonly

used verification method at behavioral abstraction level, are based on exploration of

reachable states [46] and because of this, are subject to the state space explosion problem

with increasing circuit sizes. Recent research to reduce verification complexity of

asynchronous circuits mostly target at compacting state space [53, 55] or using abstraction

[54] to reduce verification complexity, addressing State Transition Graph (STG) based

design flows such as Petrify [50]. Introducing Relative Timing Assumptions [57, 59] or

Lazy Transition System Assumptions [56, 60] are among the recent methods which

introduce timing constraints at behavioral abstraction level and test the actual delays in the

synthesized netlist against these timing constraints for verification of the delay model. Using

symbolic or parametric delays in stead of actual or relative timing constraints as presented in

[63] [64], is another method for timing abstraction, where actual delays of the circuit could

only be known after implementation. Using unspecified timing constraints represented as

symbols, a set of linear constraints which guarantee the correctness of timed transition

systems could be generated and circuit optimizations could be based on these models. For

automated design flows using dual-rail threshold logic gates such as NCL-X [51] [52], there

are recently proposed techniques for finding a compromise between circuit optimization and

reliable delay-insensitive operation. Early Evaluation and Partial Completion Methods given

in [61] and [62] respectively, both introduce relaxation of delay-insensitivity constraints for

dual-rail threshold circuits to allow for early evaluation of signals so that more optimized

and faster circuits could be synthesized without actually violating delay-insensitivity

constraints. This is achieved by distributing the early output evaluation paths within a

complex combinational circuit in such a way that the robustness of delay-insensitivity could

still be maintained in the overall circuit [61] [62] .Partitioning a dual-rail threshold logic

circuit into its control and data paths is another way to reduce delay-insensitivity analysis

complexity as proposed in [46], which tackles this problem through orphan analysis,

assuming that completion of logic operations is properly acknowledged at asynchronous

registration stages. However, all the existing delay-insensitivity verification techniques

recently developed for dual-rail threshold logic circuits address the data flow paths in the

circuit, assuming that the control parts achieving the completion detection and handshaking

mechanisms function in a delay-insensitive manner, hence leaving the problem of early or

no generation of completion acknowledgment uncovered. Besides, none of them address

pipelined structures such as systolic arrays, where the constraints for maintaining delay-

insensitivity in the control flow become more significant in determining the performance of

the circuit.

82

For demonstrating the proposed SDIVA method as well as merging of systolic array style

and asynchronous design approaches, two systolic adder architectures have been designed

and implemented in delay-insensitive asynchronous design style and constraints of delay-

insensitivity have been analyzed on them. Due to being the basic building block of signal

processing applications, and being often on the critical path, adders were chosen for this

demonstration. Two systolic delay-insensitive adders were pipelined at bit-level so that each

systole functions as a full-adder, propagating the carry signal to the next systole in row in

ripple-carry fashion. Due to the selection of adder topologies, both adders had data-

dependent early carry output evaluation which contributed greatly to the speed-up of the

system, but violated delay-insensitivity. Applying the proposed SDIVA method to these

systolic adders, these delay-insensitivity violations are detected without running extensive

simulations. Then without resorting to known methodologies which would have diminished

the early carry generation feature, the systolic adder topologies are modified to re-establish

delay insensitivity by re-applying the SDIVA method. The resultant systolic adder

topologies displayed the average case performance, O(log2n) which is expected of

asynchronous addition.

Lastly, bit-skewed input application is applied on the designed delay-insensitive systolic

adders to further enhance the speed up issues and to boost their performance up to the

constant throughput limit which is expected from bit-level pipelining. This method was

expected to compensate for the excess processing delay introduced by the NULL cycles in

dual-rail threshold logic implementation style by vertical pipelining the input and output

registration stages of the adders. The obtained results pointed to 27-34% improvement in

completion time of addition .

The most promising part of the thesis study, which could have a potential for future

improvement is the proposed Structural Delay Insensitivity Verification Analysis method

SDIVA. It is a new technique directly targeting systolic array style architectures. And it also

differs from other verification methods using symbolic delays in one major aspect: It does

not impose any timing constraints on the environment, so there is no need for verification of

the environment against any timing assumptions after implementation. The use of symbolic

delays provides a degree of timing abstraction which makes this technique very handy to be

re-applied during circuit optimizations. Since exact delay values are not required to apply

the SDIVA technique, technology migration is also easier.

83

The SDIVA method could also be extended to systolic arrays which have early output

evaluation paths in two-dimensions or multiple early evaluating outputs in one-dimension.

In a two-dimensional systolic array, each systole has interaction with 4 to 8 neighboring

systoles depending on the functionality. At worst case, i.e. if a systole has interaction with 8

neighbors, the delay-insensitivity analysis of the entire array could be reduced to

examination of nine adjacent systoles and 29 early/late output evaluation scenarios on a nine-

systole cluster, which is still a significant reduction in verification analysis cost, especially

when compared to formal analysis methods. This technique could be very useful in design

and verification of pipelined data processing systems in general, such as filters, crypto-

processers, image processers, so that verification of a regular systolic architecture could be

performed by analysing a single systole and its neighbours which exchange signals with that

systole.

A possible future utilization of the SDIVA method could be embedding it into automated

CAD tools for verification of delay-insensitivity .

84

BIBLIOGRAHPY

[1]. C. Maxfield, “To be or not to be asynchronous; that is the question”, EDN,
December 7, 1995.

[2]. S. B. Furber, “The Return of Asynchronous Logic”, URL
http://intranet.cs.man.ac.uk/apt/async/background/return_async.html, October 2007, Last
Accessed in April 2008.

[3]. S. Hauck, “Asynchronous Design Methodologies: An Overview”, Proceedings of
the IEEE, Vol. 83, No. 1, pp. 69-93, January 1995.

[4]. ACiD WG Home Page (Working Group on Asynchronous Circuit Design, funded
by European Commission), URL http://www.bcim.lsbu.ac.uk/ccsv/ACiD-WG, July 2005,
Last Accessed in April 2008.

[5]. D. A. Edwards, W. B. Toms, “The Status of Asynchronous Design in Industry”, IST
Programme Concerted Action Thematic Network Contract, IST-1999-29119, 2nd Edition,
January 2003.

[6]. C. H. van Berkel, M. B. Josephs, S. M. Nowick, “Scanning the Technology:
Applications of Asynchronous Circuits”, Proceedings of the IEEE, Vol. 87, Issue 2, pp. 223-
233, February, 1999.

[7]. D. A. Edwards, W. B. Toms, “Design, Automation and Test for Asynchronous
Circuits and Systems”, IST Programme Concerted Action Thematic Network Contract, IST-
1999-29119, 2nd Edition, January 2003.

[8]. “International Technology Roadmap for Semiconductors”, 2001 Edition, SIA, URL
http://www.itrs.net/Links/2001ITRS/Home.htm, January 2008, Last Accessed in April
2008.

[9]. M. Kishinevsky, L. Lavagno, P. Vanbekberen, “The Systematic Design of
Asynchronous Circuits”, ICCAD’95 Tutorial.

[10]. N.H.E. Weste, K. Esraghian, “Principles of CMOS VLSI Design, A Systems
Perspective”, Addison-Wesley, 2nd Edition, 1993.

[11]. T. J. Chaney, C. E. Molnar, “Anomalous Behavior of Synchronizers and Arbiters”,
IEEE Transactions on Computers, vol. C-22, pp. 421-422, Apr. 1973.

[12]. M. Reanaudin, “Asynchronous System Design”, TIMA Lab Research Reports,
ISRN TIMA--RR-02/03-01—FR, Communication to MEDEA Conference, Eindhoven,
October, 2001.

[13]. M. J. G. Lewis, “Low Power Asynchronous Digital Signal Processing”, PhD Thesis,
Faculty of Science and Engineering, University of Manchester, October, 2000.

[14]. W.J. Bainbridge, “Asynchronous System-On-Chip Interconnect”, PhD Thesis,

85

Faculty of Science and Engineering, University of Manchester, March, 2000.

[15]. A. Bardsley, “Implementing BALSA Handshake Circuits”, PhD Thesis, Faculty of
Science and Engineering, University of Manchester, 2000.

[16]. K. M. Fant, S. A. Brandt, “NULL Convention LogicTM Systems”, US Patent,
5305463, April, 1994.

[17]. I. E. Sutherland, “Micropipelines”, Communications of the ACM, 32 (6), pp 720-
738, June 1989.

[18]. APT Group, University of Manchester, UK, “The AMULET3 Processor”, URL
http://intranet.cs.man.ac.uk/apt/projects/processors/amulet/AMULET3_uP.php, July 2005,
Last Accessed in April 2008.

[19]. A. Takamura, M. Kuwakao, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, T.
Nanya, “TITAC-2: A 32-bit Scalable-Delay-Insensitive Microprocessor”, Proceedings of
ICCD’97, pp 288-294, October, 1997.

[20]. M. Singh, J.A. Tierno, A. Rylyakov, S. Rylov, S.M. Nowick, “An Adaptively-
Pipelined Mixed Synchronous-Asynchronous Digital FIR Filter Chip Operating at 1.3
GigaHertz”, Proceedings of 8th International Symposium on Asynchronous Circuits and
Systems, pp.84-98, April, 2002.

[21]. E. Allier, G. Sicard, L. Fesquet, M. Renaudin, “A New Class of Asynchronous A/D
Converters Based on Time Quantization”, Proceedings of 9th International Symposium on
Asynchronous Circuits and Systems, pp.196-205, May, 2003.

[22]. G. M. Jacobs, R. B. Brodersen, “A Fully Asynchronous Digital Signal Processor
Using Self-Timed Circuits”, IEEE Journal of Solid State Circuits, Vol. 25, No. 6, pp.1526-
1537, December, 1990.

[23]. S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor, “Improving
Smart Card Security Using Self-Timed Circuits”, Proceedings of 8th International
Symposium on Asynchronous Circuits and Systems, pp.211-218, April, 2002.

[24]. J. Kessel, G. Besten, V. Peeters, T. Kramer, “Applying Asynchronous Circuits in
Contactless Smart Cards”, Proceedings of 6th International Symposium on Asynchronous
Circuits and Systems, pp.36-44, April, 2000.

[25]. F. Robin, M. Renaudin, G. Privat, N. Van Den Bossche “Functionally
Asynchronous Array For Morphological Filtering of Greyscale Images”, IEE Proceedings,
Vol. 143, No. 5, pp.273-281, September, 1996.

[26]. D. P. Thompson, A. M. Peacock, D. Renshaw, G. A. Allan, “Asynchronous Filter
Banks for Discrete Wavelet Transform”, Electronic Letters, Vol. 37, No. 15, pp.983-884,
July, 2001.

[27]. D. Lattard, G. Mazzare, “Image Reconstruction Using an Original Asynchronous
Cellular Array”, Proceedings of International Symposium on Circuits and Systems, 1989.

[28]. C. E. C. Rayes, J. D. Brugera, “VLSI Systolic Array Architecture for the Lattice

86

Structure of the Discrete Wavelet Transform”, Proceedings of the International Symposium
on Circuits and Systems, Vol. 4, pp.605-608, May 2000.

[29]. H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, A. Yakovlev, “What is the cost
of delay insensitivity?”, 1999 IEEE/ACM International Conference on Computer-Aided
Design, Digest of Technical Papers, 7-11 Nov. 1999, pp. 316–323.

[30]. S. C. Smith, “Gate and Throughput Optimizations for NULL Convention Self-
Timed Digital Circuits”, Ph.D. Dissertation, School of Electrical Engineering and Computer
Science, University of Central Florida, May 2001.

[31]. D. E. Muller, “Asynchronous Logics and Application to Information Processing”,
Switching Theory in Space Technology, Stanford University Press, pp. 289-297, 1963.

[32]. T. S. Anantharaman, “A Delay Insensitive Regular Expression Recognizer”, IEEE
VLSI Technology Bulletin, Sept. 1986.

[33]. J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, “Design of Delay Insensitive Circuits
using Multi-Ring Structures”, Proceedings of the European Design Automation Conference,
pp. 15-20, 1992.

[34]. N. P. Singh, “A Design Methodology for Self-Timed Systems”, Master’s Thesis,
MIT/LCS/TR-258, Laboratory for Computer Science, MIT, 1981.

[35]. Ilana David, Ran Ginosar, and Michael Yoeli, “An Efficient Implementation of
Boolean Functions as Self-Timed Circuits”, IEEE Transactions on Computers, Vol. 41, No.
1, pp. 2-10,1992.

[36]. A. J. Martin, “Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits,” Distributed Computing, Vol. 1, No. 4, pp. 226-234, 1986.

[37]. A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U.
Cummings, and Tak Kwan Lee, “The Design of an Asynchronous MIPS R3000
Microprocessor,” Proceedings of the 17th Conference on Advanced Research in VLSI, pp.
164-181, 1997.

[38]. A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus, “The
Design of an Asynchronous Microprocessor,” Advanced Research in VLSI: Proceedings of
the Decennial Caltech Conference on VLSI, pp. 351-373, 1989.

[39]. K. M. Fant, S. A. Brandt, “NULL Convention LogicTM”, Theseus Logic Inc. White
Paper, 1997.

[40]. K. M. Fant, S. A. Brandt, “NULL Convention LogicTM : A Complete and Consistent
Logic for Asynchronous Digital Circuit Synthesis”, Proceedings of International Conference
on Applications Specific Systems, Architectures and Processors (ASAP’96), pp. 261-273,
19-21 August 1996.

[41]. G. E. Sobelman, K. M. Fant, “CMOS Circuit Design of Threshold Gates with
Hysteresis”, Proceedings of IEEE International Conference Circuits and Systems
(ISCAS’98), Vol. 2, pp. 61-64, 31 May-3 June 1998.

87

[42]. S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “Delay-
Insensitive Gate-Level Pipelining”, Integration, the VLSI Journal, Vol. 30/2, pp. 103-131,
October 2001.

[43]. J. Cortadella, A. Kondratyev, L. Lavagno, C. Sotiriou, “Coping with the variability
of combinational logic delays”, Proceedingsof the IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 2004, ICCD 2004, Page(s): 505- 508,
11-13 Oct. 2004.

[44]. C. L. Seitz, “System Timing,” Introduction to VLSI Systems, Addison-Wesley, pp.
218-262, 1980.

[45]. S.C. Smith, “Completion-Completeness for NULL Convention Digital Circuits
Utilizing the Bitwise Completion Strategy”, The 2003 International Conference on VLSI,
pp. 178-184, June 2003.

[46]. A. Kondratyev, L. Neukom, O. Roig, A. Taubin, K. Fant, “Checking delay-
insensitivity: 104 gates and beyond”, Proceedings of Eighth International Symposium on
Asynchronous Circuits and Systems 2002, 8-11 April 2002, pp. 149-157.

[47]. M. A. Franklin, T. Pan, “Performance comparison of asynchronous adders”,
Proceedings of International Symposium on Advanced Research in Asynchronous Circuits
and Systems 1994, 3-5 Nov 1994, pp. 117-125.

[48]. T. A. Chu, C. K. C. Leung, T. S. Wanuga, “A Design Methodology for Concurrent
VLSI Systems”, Proceedings of ICCD, pp. 407-410, 1985.

[49]. T. A. Chu, “Synthesis of Self-timed VLSI Circuits from Graph-Theoretic
Specifications”, M.I.T. Tech. Rep. MIT/LCS/TR-393, June 1987.

[50]. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.Yakovlev,
“Petrify: A tool for manipulating concurrent specifications and synthesis of asynchronous
controllers,” IEICE Transactions on Information Systems, vol. E80-D, pp. 315–325, Mar.
1997.

[51]. M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asynchronous
design using commercial HDL synthesis tools”, Proceedings of the International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp. 114-125. IEEE Computer
Society Press, Apr. 2000.

[52]. A. Kondratyev and K. Lwin, “Design of asynchronous circuits using synchronous
CAD tools”, IEEE Design & Test of Computers, 19(4):107-117, 2002.

[53]. A. Valmari, “Stubborn Sets for Reduced State Space Generation”, Advances in Petri
Nets 1990, Lecture Notes in Computer Science, 483, pp. 491-515.

[54]. P. Godefroid, “Partial-Order Methods for the Verification of Concurrent Systems --
An Approach to the State-Explosion Problem”, Lecture Notes in Computer Science, 1032,
January 1996.

[55]. E.M. Clarke, O. Grumberg, and D.E. Long, “Model checking and abstraction”,
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Programming

88

Languages, January 1992.

[56]. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin, A. Yakovlev,
“Lazy transition systems: application to timing optimization of asynchronous circuits”,
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, 1998,
ICCAD 98. Digest of Technical Papers. 1998, pp. 324- 331, 8-12 Nov 1998.

[57]. K. Stevens, R. Ginosar, S. Rotem, “Relative timing”, Proceedings of the Fifth
International Symposium on Advanced Research in Asynchronous Circuits and Systems,
1999. pp. 208-218, 1999.

[58]. K. Stevens, R. Ginosar, S. Rotem, “Relative timing”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume: 11 Issue: 1, pp. 129- 140, Feb 2003.

[59]. J. Cortadella, M. Kishinevsky, S.M. Burns, K. Stevens, “Synthesis of asynchronous
control circuits with automatically generated relative timing assumptions”, Computer-Aided
Design, 1999. Digest of Technical Papers. 1999 IEEE/ACM International Conference on,
pp. 324-331, 1999.

[60]. J. Cortadella, M. Kishinevsky, S.M. Burns, A. Kondratyev, L. Lavagno, K. Stevens,
A. Taubin, A. Yakovlev, “Lazy transition systems and asynchronous circuit synthesis with
relative timing assumptions”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Volume: 21 Issue: 2, pp. 109-130, Feb 2002.

[61]. Zhou Yu, D Sokolov, A. Yakovlev, “Cost-aware synthesis of asynchronous circuits
based on partial acknowledgement”, Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM
International Conference on, pp. 158-163, Nov. 2006.

[62]. C. Jeong,; S. M. Nowick, “Optimization of Robust Asynchronous Circuits by Local
Input Completeness Relaxation”, Proceedings of the Asia and South Pacific Design
Automation Conference 2007, ASP-DAC '07., pp. 622-627, Jan. 2007.

[63]. R. Clariso, J. Cortadella, “Verification of timed circuits with symbolic delays”,
Proceedings of the Asia and South Pacific Design Automation Conference, 2004, ASP-DAC
2004, pp. 628- 633, 27-30 Jan. 2004.

[64]. R. Clariso, J. Cortadella, “Verification of concurrent systems with parametric delays
using octahedral”, Proceedings of the Fifth International Conference on Application of
Concurrency to System Design, 2005, ACSD 2005, pp. 122- 131, 7-9 June 2005.

[65]. Çetin Kaya Koç, “RSA Hardware Implementation”, Copyright©RSA Laboratories,
Version 1.0, August 1995.

[66]. S. Yeşil, A. N. İsmailoğlu, Y. Ç. Tekmen, M. Aşkar, “Two Fast RSA
Implementations using High-Radix Montgomery Algorithm”, Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS’2004), Vancouver, Canada, May
23-36, 2004.

[67]. P. L. Montgomery, “Modular Multiplication Without Trial Division”, Mathematics
of Computations, Vol.44, pp.519-521, 1985.

[68]. S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, "Optimization of

89

NULL Convention Self-Timed Circuits," Integration, The VLSI Journal, Vol. 37/3, pp. 135-
165, August 2004.v

[69]. A. Tubin, K. Mred . Fant, J. McCardle, “Design of Delay Insensitive Three
Dimension Pipeline Array Multiplier”, Proceedings of IEEE International Conference on
Computer Design: VLSI in Computer and Processors 2002, pp. 104-111, 16-18 September
2002.

[70]. S.K. Bandapati, S.C. Smith, M.Choi, “Design and Characterization of Null
Convention Self-Timed Multipliers”, IEEE Design and Test of Computers, pp. 26-35,
November-December 2003.

[71]. S. C. Smith, "Development of a Large Word-Width High-Speed Asynchronous
Multiply and Accumulate Unit," Integration, The VLSI Journal, Vol. 39/1, pp. 12-28,
September 2005.

[72]. U. V. Cummings, A. M. Lines, A. J. Martin, “An Asynchronous Pipeline Lattice-
Structure Filter”, Proceedings of International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 126-133, IEEE Computer Society Press, 1994.

[73]. C. Brej, “Early Output Logic and Anti-tokens,” PhD. Thesis, University of
Manchester, UK, September 2005.

[74]. A. N. Ismailoglu, M. Aşkar, “Application of Bit-level Pipelining to Delay
Insensitive Null Convention Adders”, Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS’2007), pp. 3259-3262, May 2007.

90

APPENDIX A: C Code for DICSA Estimation

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

void char2bin (unsigned char* , unsigned char* , int);

FILE *inCP;
FILE *inR;

int main()
{
 int R, N, L;
 int i, m;

 unsigned char* dR;
 unsigned char* dCP;
 unsigned char* binR;
 unsigned char* binCP;

 double* dX;
 double dxa;
 double dCS;
 double dACC, dAVE;

printf("\nEnter the number of binary digits: \n");
 scanf("%d", &N);
 L = 100000;
 printf("\nLength of the sequence to be generated: %d\n", L);

 if ((inCP = fopen("randCP.dat","r")) == NULL)

{
printf("\n Can't open file for input\n\n");
exit(-1);

}

 if ((inR = fopen("randR.dat","r")) == NULL)

{
printf("\n Can't open file for input\n\n");
exit(-1);

}

 dR = (unsigned char*) malloc (N*sizeof(unsigned char));
 dCP = (unsigned char*) malloc (N*sizeof(unsigned char));
 binR = (unsigned char*) malloc (N*sizeof(unsigned char));
 binCP = (unsigned char*) malloc (N*sizeof(unsigned char));

 dX = (double*) malloc (N*sizeof(double));

91

 dACC = 0;

for (i=0; i<L; i++)
{

 fscanf(inR,"%s", dR);
char2bin(dR, binR, n);

 fscanf(inCP,"%s", dCP);
char2bin(dCP, binCP, n);

 dxa = 0;
 for (m=0; m<n; m++)
 {
 if (binR[m]==0)
 {
 dX[m] =2.2915; // delay of EARLY Carry Outpu of DICSA
 }
 else if (binR[m]==1)
 {
 dX[m] =2.293; // delay of LATE Carry Output of DICSA
 }
 else printf("\nerror!!\n");
 }
 dCS=0;
 for (m=0; m<n; m++)
 {
 if (binCP[m])
 dxa = 0;
 else
 {
 dxa = dxa + dX[m];
 dCS = (dxa > dCS) ? dxa : dCS;
 }
 }
 dACC = dACC + dCS;
 }

dAVE = dACC/L;
dAVE = dAVE + 0.5 ;// add propagation delay for first stage of DICSA systole

 printf("\n%f\n", dAVE);
fclose(inCP);
fclose(inR);

}

void char2bin (unsigned char* cnum, unsigned char* bnum, int blen){
int b;

for (b=0; b<blen; b++)
{
 if (cnum[b] == '0')

bnum[b] = 0;
else if (cnum[b] == '1')

bnum[b] = 1;
else printf("\nerror!!\n");
}

}

92

APPENDIX B: C Code for DI NCL Adder Estimation

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

void char2bin (unsigned char* , unsigned char* , int);

FILE *inCP;
FILE *inR;

int main()
{
 int R, N, L;
 int i, m;

 unsigned char* dR;
 unsigned char* dCP;
 unsigned char* binR;
 unsigned char* binCP;

 double* dX;
 double dxa;
 double dCS;
 double dACC, dAVE;

printf("\nEnter the number of binary digits: \n");
 scanf("%d", &N);
 L = 100000;
 printf("\nLength of the sequence to be generated: %d\n", L);

 if ((inCP = fopen("randCP.dat","r")) == NULL)

{
printf("\n Can't open file for input\n\n");
exit(-1);

}

 if ((inR = fopen("randR.dat","r")) == NULL)

{
printf("\n Can't open file for input\n\n");
exit(-1);

}

 dR = (unsigned char*) malloc (N*sizeof(unsigned char));
 dCP = (unsigned char*) malloc (N*sizeof(unsigned char));
 binR = (unsigned char*) malloc (N*sizeof(unsigned char));
 binCP = (unsigned char*) malloc (N*sizeof(unsigned char));

 dX = (double*) malloc (N*sizeof(double));

93

 dACC = 0;

for (i=0; i<L; i++)
{

 fscanf(inR,"%s", dR);
char2bin(dR, binR, n);

 fscanf(inCP,"%s", dCP);
char2bin(dCP, binCP, n);

 dxa = 0;
 for (m=0; m<n; m++)
 {
 if (binR[m]==0)
 {
 dX[m] = 2.16; // delay of EARLY Carry Output of NCL Add
 }
 else if (binR[m]==1)
 {
 dX[m] = 2.42; // delay of LATE Carry Output of NCL Add
 }
 else printf("\nerror!!\n");
 }
 dCS=0;
 for (m=0; m<n; m++)
 {
 if (binCP[m])
 dxa = 0;
 else
 {
 dxa = dxa + dX[m] + 0.5; // add propagation delay for

 // ACK generation in NCL Adder
 dCS = (dxa > dCS) ? dxa : dCS;
 }
 }
 dACC = dACC + dCS;
 }

dAVE = dACC/L;
dAVE = dAVE +

 printf("\n%f\n", dAVE);
fclose(inCP);
fclose(inR);

}

void char2bin (unsigned char* cnum, unsigned char* bnum, int blen){
int b;

for (b=0; b<blen; b++)
{ if (cnum[b] == '0')

bnum[b] = 0;
else if (cnum[b] == '1')

bnum[b] = 1;
else printf("\nerror!!\n");}

}

94

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: İsmailoğlu, A. Neslin

Nationality: Turkish (TC)

Date and Place of Birth: 6th September 1969, Adana

Marital Status: Single

Phone: +90 312 210 13 10 / 1141

Fax: +90 312 210 13 15

email: neslin.ismailoglu@uzay.tubitak.gov.tr

EDUCATION

Degree Institution Year of Graduation

MS METU Electrical & Electronics Engineering 1995

BS METU Electrical & Electronics Engineering 1991

High School Ankara Science High School 1987

WORK EXPERIENCE

Year Place Enrollment

1996 – Present TÜBİTAK UZAY (formerly BİLTEN) Senior Researcher,

Coordinator,

Project Manager

1991-1996 ASELSAN – MST Group Design Engineer

FOREIGN LANGUAGES

Advanced English, Average Italian

RECENT PUBLICATIONS

N. İsmailoğlu, M. Aşkar, “Application of Bit-level Pipelining to Delay Insensitive Null

Convention Adders”, Proceedings of ISCAS 2007: IEEE International Symposium on

Circuits and Systems, pp. 3259-3262, New Orleans, U.S.A., 27-30 May 2007.

95

N. İsmailoğlu, O. Benderli, S. Yeşil, R. Sever, B. Okcan, O. Şengül, R. Öktem, “GEZGİN &

GEZGİN-2: Adaptive Real-Time Image Processing Subsystems for Earth-Observing Small

Satellites”, Proceedings of 1st NASA/ESA Conference on Adaptive Hardware and Systems

(AHS 2006) Conference, İstanbul, 15-18 June 2006.

N. İsmailoğlu, O. Benderli, R. Öktem, “Improving Compression Ratio for Satellite

Transmission by use of Cloud Extraction”, Proceedings of 13th European Signal processing

Conference (EUSIPCO 2005) Conference, Antalya, 4-8 Sept. 2005.

N. İsmailoğlu, O. Benderli, S. Yeşil, R. Sever, B. Okcan, R. Öktem, “GEZGİN-2: An

Advanced Image Processing Subsystem for Earth-Observing Small Satellites”, Proceedings

of Recent Advances in Space Technologies (RAST 2005) Conference, İstanbul, 9-11 June

2005.

N. İsmailoğlu, S. Yeşil, R. Sever, B. Okcan, “GÖLGE: A Case Study of a Secure Data

Communication Subsystem for Micro-Satellites”, Proceedings of Recent Advances in Space

Technologies (RAST 2005) Conference, İstanbul, 9-11 June 2005.

N. İsmailoğlu, O. Şen, H. Sunay, C. Dudak, T. Kırılmaz, “High Data Rate X-Band

Transmitter For Low Earth Orbit Satellites“,Proceedings of ESA Small Satellite Systems &

Services Symposium (4S) Conference, La Rochelle, France, 20-24 Sept. 2004.

N. İsmailoğlu, R. Sever, Ç. Tekmen, M. Aşkar, “A High Speed ASIC Implementation of

The Rijndael Algorithm”, Proceedings of IEEE International Symposium on Circuits and

Systems (ISCAS’2004), Vancouver, Canada, 23-26 May 2004..

N. İsmailoğlu, S. Yeşil, Ç. Tekmen, M. Aşkar, “Two Fast RSA Implementations Using

High-Radix Montgomery Algorithm”, Proceedings of IEEE International Symposium on

Circuits and Systems (ISCAS’2004), Vancouver, Canada, 23-26 May 2004.

N. İsmailoğlu, O. Şen, H. Sunay, C. Dudak, T. Kırılmaz, “A High Data Rate X-Band

Transmitter”, ESA Microwave Technology and Techniques Workshop Preparing for Future

Space Systems, Noorwijk, Netherlands, 11-12 May 2004.

96

N. İsmailoğlu, O. Benderli, I. Korkmaz, S. Yeşil, R. Sever, H. Sunay, T. Kolçak, Ç. Tekmen,

“GEZGİN: A Case Study of a Real-time Image Processing Sub-system for Micro Satellites”,

Proceedings of Recent Advances in Space Technologies (RAST 2003) Conference, İstanbul,

20-22 Nov. 2003.

N. İsmailoğlu, O. Benderli, Ç. Tekmen, “Real Time, Low Latency, Architecture for the 2-D

Discrete Wavelet Transformation For Streaming Image Applications”, Proceedings of IEEE

Workshop on Signal Processing Systems Conference, Seul, S. Korea, 27-29 August 2003.

N. İsmailoğlu, O. Benderli, Ç. Tekmen, “Real Time, Low Latency, FPGA Implementation

of the 2-D Discrete Wavelet Transformation For Streaming Image Applications”,

Proceedings of EUROMICRO Symposium on Digital System Design, Antalya, 2-5

September 2003.

N. İsmailoğlu, O. Benderli, I. Korkmaz, M. Durna, T. Kolçak and Y. Ç. Tekmen, “A Real

Time Image Processing Subsystem: GEZGIN”, Proceedings of 16th AIAA/USU Conference

on Small Satellites Conference, Utah, U.S.A., August 2002.

HOBBIES

Sports (ski, tennis, basketball, mountain-bike, swimming), Yoga, Film Analysis, Rock

Music, Travelling.

