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ABSTRACT 

 
 

ASYNCHRONOUS DESIGN OF SYSTOLIC ARRAY ARCHITECTURES IN CMOS 
 
 

 
İSMAİLOĞLU, A. Neslin 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor      : Prof.. Dr. Murat AŞKAR 

 
April 2008, 96 pages 

 

In this study, delay-insensitive asynchronous circuit design style has been adopted to systolic 

array architectures to exploit the benefits of both techniques for improved throughput. A 

delay-insensitivity verification analysis method employing symbolic delays is proposed for 

bit-level pipelined asynchronous circuits. The proposed verification method allows data-

dependent early output evaluation to co-exist with robust delay-insensitive circuit behavior 

in pipelined architectures such as systolic arrays. Regardless of the length of the pipeline, 

delay-insensitivity verification of a systolic array with early output evaluation paths in one-

dimension is reduced to analysis of three adjacent systoles for eight possible early/late 

output evaluation scenarios. Analyzing both combinational and sequential parts 

concurrently, delay-insensitivity violations are located and corrected at structural level, 

without diminishing the early output evaluation benefits. Since symbolic delays are used 

without imposing any timing constraints on the environment; the method is technology 

independent and robust against all physical and environmental variations. To demonstrate 

the verification method, adders are selected for being at the core of data processing systems. 

Two asynchronous adder topologies in the delay-insensitive dual-rail threshold logic style, 

having data-dependent early carry evaluation paths, are converted into bit-level pipelined 

systolic arrays. On these adders, data-dependent delay-insensitivity violations are detected 

and resolved using the proposed verification technique. The modified adders achieved the 

targeted O(log2n) average completion time and -as a result of bit-level pipelining- nearly 

constant throughput against increased bit-length. The delay-insensitivity verification method 

could further be extended to handle more early output evaluation paths in multi-dimension.  

 

Keywords: Asynchronous Logic Circuits, Pipeline Arithmetic, Pipeline Processing, Systolic 

Arrays. 
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ÖZ 
 
 

CMOS DEVRELERLE ASENKRON SİSTOLİK DİZİ MİMARİSİ TASARIMI  
 
 

İSMAİLOĞLU, A. Neslin 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi          : Prof.. Dr.  Murat AŞKAR 

 
Nisan 2008, 96 sayfa 

 

 

Bu çalışmada, asenkron devre tasarım yöntemi sistolik dizilere uyarlanarak her iki yöntemin 

faydalarının birleştirilmesi ve veri işlem hacminin arttırılması amaçlanmıştır. Bit-

seviyesinde boru hattı mimarisine sahip asenkron sistolik diziler için, sembolik gecikme 

değerleri kullanımına dayalı bir gecikmeye-duyarsızlık analiz ve doğrulama yöntemi 

önerilmiştir. Önerilen doğrulama yöntemi, bit-seviyesinde boru hatlandırılmış asenkron 

sistolik dizilerde, erken ve girdi-tamlığı olmayan çıktı üretimi durumunda gecikmeye-

duyarsızlık isterlerinin güvenli bir şekilde karşılanmasını sağlar. Sistolik dizinin 

uzunluğundan bağımsız olarak, tek yönde erken çıktı üretimi olan bir sistolik dizinin 

gecikmeye-duyarsızlık analizi, üç adet komşu sistolün olası sekiz adet erken/geç çıktı üretme 

senaryoları için analizine indirgenmiştir. Hem işlem hem de kayıt yapan birimler birarada 

analiz edilerek, gecikmeye-duyarsızlık ihlalleri yapısal seviyede belirlenmekte ve erken çıktı 

üretiminin sağladığı hızlanmadan ödün vermeden düzeltilmektedir. Bu yöntem, sembolik 

gecikme değerleri kullanarak ve çevre birimlere herhangi bir zaman kısıtı getirmeden 

doğrulama yaptığı için, fiziksel ve çevresel etkilere karşı gürbüzdür, dolayısıyla devre üretim 

teknolojisinden de bağımsızdır. Önerilen yönteminin gösterimi için, veri işleme yapılarının 

temelini oluşturan toplayıcılar seçilmiştir. Çift-hatlı eşikli mantık tipinde ve erken elde 

üretebilen iki adet asenkron toplayıcı bit-seviyesinde boru hatlandırılmış asenkron sistolik 

dizilere dönüştürülmüştür. Bu toplayıcılardaki girdiye bağlı gecikmeye-duyarsızlık ihlalleri 

önerilen doğrulama yöntemiyle saptanmış ve düzeltilmiştir. Düzeltilmiş toplayıcılar, -bit-

seviyesinde boru hatlandırma sayesinde- O(log2n) ortalama işlem süresi ve bit uzunluğundan 

bağımsız sabite yakın veri hacmi hedefine ulaşmaktadır. Gecikmeye-duyarsızlık doğrulama 

yöntemi daha çok sayıda ve yönde erken çıktı üreten sistolik dizileri de kapsayacak şekilde 

geliştirilmeye açıktır. 
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Anahtar Kelimeler: Asenkron mantık devreleri, Boru-hattı aritmetiği, Boru-hattı işlemleri, 

Sistolik diziler. 
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Equation Chapter 1 Section 1 

  CHAPTER 1 
 
 
1             INTRODUCTION 
 
 
Asynchronous design has been an active area of research ever since the late 1950s. In the 

early days of computers, i.e. before the coming of VLSI technology, machines were 

constructed from discrete components and designers worked at the switch level [1]. Hence 

asynchronous circuit design was more prevalent. With the introduction of digital integrated 

circuits, synchronous design techniques started to dominate the industry. The clocked 

approach, where all state transitions in a design are restricted to occur at the edge of a global 

clock signal, is a straightforward process, easier to design and verify. As a result, it leads to 

great progress in the architectures of machines and productivity of designers [2]. The design 

tools which automate the design process also developed along with the technology. Today, it 

is possible to synthesize a complete chip from high-level behavioral description with little 

manual intervention. Research in asynchronous design still continued in academia, providing 

a framework for development of some mathematical techniques to verify the correctness of 

circuits [2]. 

 

In the late 1990s, there has been a renewed world-wide interest in asynchronous design. 

After being considered as a more “anarchic” approach to circuit design, -due to absence of a 

global clock signal to govern all state transitions-, asynchronous design techniques made a 

come-back when synchronous design techniques started to hit their limitations, as it 

happened in the case of clock distribution and power dissipation problems in very large and 

dense integrated circuits: As the feature size of silicon technologies became smaller and 

transistors became faster, the designed chips began to encompass more functionality and 

higher performance, which in turn resulted in very dense circuitry in more silicon area and 

higher operating power to be dissipated on the chip [2]. Skew-free routing of the clock 

signal and restricting the clock activities for reducing power dissipation became the key 

issues in synchronous design. With the introduction of System-On-Chips, interfacing of 

different clocked domains and handling the electro-magnetic emission due to the high clock 

rates also added on to these design problems [3]. Hence, the industry started to seriously 

consider benefiting from the advantages of asynchronous design where synchronous 

methods failed. Research activities were activated in many areas of asynchronous design [4, 

5]. Fully or partially asynchronous chips appeared and become used in end-user products 
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[6]. Existing automated design tools are tuned for asynchronous design while new automated 

tools targeting asynchronous design are also developed [7]. The SIA (Silicon Industries 

Association) stated in its year 2001 report that since the clock distribution in purely 

synchronous designs account for 40% of dynamic power, there would be a trend for more 

robust and power-efficient hybridization of synchronous and asynchronous designs [8] 

which became true since then with the introduction of Globally Asynchronous Locally 

Synchronous (GALS) design of System-on-Chip applications. 

 

The added value of asynchronous circuits can be better understood by reviewing the basic 

operating principles of both types [8]: In synchronous circuits, an external global clock 

signal is used to observe system states (Figure 1.1). Hence the inputs to a register must stay 

unchanged within a set-up/hold window around a clock event [9]. In asynchronous circuits, 

internal or external events are used to observe system states, such as signal “handshake”, 

which can be implemented using either delay padding or completion detection (Figure 1.2). 

Therefore asynchronous circuits are also called “self-timed” [9].  

 

Sender Receiver

Clock

 
Figure 1.1 Synchronous Circuit 

 

Sender Receiver

Ack

Req

 
Figure 1.2 Asynchronous (Self-Timed) Circuit 
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1.1 Benefits of Asynchronous Design 

 

Asynchronous systems greatly benefit from elimination of the global clock signal. The 

following are the main advantages of asynchronous design: 

 

(i) Elimination of clock network: In a synchronous system, the global clock signal must be 

distributed evenly throughout the chip so that the clock event arrives at each register at the 

same time to avoid clock skew. As feature sizes decrease and integration levels increase, the 

clock distribution network in the circuit becomes more difficult to handle, requiring 

extensive design effort, consuming silicon area and power [10]. Asynchronous systems use 

local handshaking signals to regulate data transitions between stages instead of a global 

clock. Elimination of clock signal also eliminates the clock distribution network and clock 

skew considerations. 

 

(ii) Low power consumption: In a synchronous system, all parts of the circuit are clocked 

whether they are actually doing anything useful or not. The clock distribution network itself, 

being constructed of large buffers, also consumes 30-40% of the total dynamic power on a 

chip [8]. To introduce power-saving/idle-modes to synchronous circuits clock-gating or 

clock-stopping techniques are applied but at the cost of increased design effort, complexity 

and lots of other problems created at high clock rates. On the other hand, asynchronous 

circuits inherently cease their switching activity when no transition occurs on data signals 

and can go from idle to full activity instantaneously on the event of a data transition. 

 

(iii) Average Case Performance instead of Worst: In a synchronous circuit, the slowest path 

in the design determines the clock speed. This means that circuits in the critical path require 

extra design effort and complexity to ensure the desired clock rates. Rather then being fixed 

to operate at the worst-case rate, asynchronous systems are designed to sense the completion 

of an evaluation before proceeding data to the next stage and hence they can operate at the 

average-case speed. 

 

(iv) Robustness to Environmental Variations: The delay through a circuit is affected by 

variations in temperature, supply voltage and fabrication. Synchronous systems assume that 

worst possible combination of these factors are present and adjust the clock rate accordingly. 

On the other hand, most asynchronous systems sense completion detection and run as fast as 

the current physical conditions allow [3]. 
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(v) Easier Metastability Avoidance and Input Accommodation: When external signals, 

which are by nature asynchronous, are fed into a synchronous circuit, they need to be 

sampled by the active edge of the global clock signal to be synchronized to the circuit. For 

proper sampling, external inputs must stay unchanged within a set-up/hold window around 

active edge of the global clock signal. If they don’t, then metastability is experienced. With 

proper precautions in circuit design metastability is resolved eventually but it may still last 

for an unbounded amount of time, causing failures in functionality of synchronous circuits 

which are always designed for bounded delays [11]. Meanwhile, asynchronous circuits do 

not need synchronization of external signals, but wait indefinite amounts of time until the 

inputs become available. So they accommodate inputs more gracefully. 

 

(vi) Easier Technology Migration: Today’s industry demand for achieving fast time-to-

market dictates reducing the design cycle of an integrated circuit through implementation of 

previously designed modules in various technologies during their lifetimes. As a result fast 

migration of module designs from one technology to another is frequently required. 

Asynchronous circuits with their robustness to physical conditions provide easier technology 

mitigation possibilities than their synchronous counterparts whose timing closure is highly 

related to technology dependent parameters. 

 

(vii) Suitability for SOC Applications (Modularity, Scalability and Reusability): System-On-

Chips require accommodation of several blocks designed in different technologies and with 

different constraints on a single chip. Migration of module designs from one technology to 

another faces the problem of interfacing multiple clock domains and adjusting chip-level 

timing constraints to module level circuit-timing constraints. Asynchronous designs 

inherently have precisely specified interfaces which simplify their integration into larger 

systems [3]. There is no need to worry about synchronization problems, clock phase 

differences or clock skew at chip-level interconnect. The module design itself is independent 

of the interface constraints and hence reusable and scalable as well. 

 

(vii) Lower Electromagnetic Emission: In synchronous systems all activity in the circuit is 

focused around the active edges of the global clock. This localization in time causes sharp 

spikes in current consumption and large amounts of electromagnetic energy to be radiated at 

the harmonics of the clock frequency [6]. This emission can make it difficult to deliver 

enough current to the circuit at clock edges, to meet the EMC requirements and to operate 

radio frequency circuits nearby as it happens in the case of wireless mobile applications. The 
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elimination of clock in asynchronous systems spreads out all circuit activity in time, 

resulting in a broadband distributed electromagnetic emission and reduced interference to 

nearby systems. 

 

1.2 Difficulties of Asynchronous Design 

 

With all the stated advantages, asynchronous systems are still not so widely adopted as 

synchronous ones since they have their drawbacks as well. These are:  

 

(i) Design Complexity: Synchronous systems work on the principle that every computing 

stage completes its evaluation in less than the duration of clock period. Hence they are easily 

designed by defining the combinational logic to compute a given function and dividing the 

data path with registers to achieve the desired clock rate. On the other hand, asynchronous 

circuits require extra hardware to allow each computing block to perform local 

synchronizations with the blocks that it is passing its data to. Some design styles also 

requires completion-detection circuitry as well. These increase the complexity of hardware 

and in some cases also the silicon area. 

 

(ii) Difficulty of Verification: In synchronous systems, by setting the clock period to a 

reasonably long interval, all problems about dynamic behavior of the circuit are eliminated. 

Verification consists of checking the logical functionality of combinatorial blocks and static 

timing constraints imposed by the clock. However in asynchronous design, the dynamic 

state of the circuit should be carefully analyzed to prevent hazards and critical races. 

 

(iii) Reduced Testability: Synchronous designs are easily tested by using the scan-path 

testing technique where the registers in the design act as latches of a single large shift-

register in scan-mode. Hence all registers in an integrated circuit can be brought to a desired 

state and tested.  Asynchronous circuits lack the deterministic behavior of state transitions in 

clocked circuits, so it is much more difficult and not so straightforward to test them.  

 

(iv) Poor Tool Support: Over the last three decades, all phases of the synchronous circuit 

design process have been completely and successfully automated by CAD tools. These CAD 

tools either need modifications for asynchronous design or do not apply to them at all. New 

design tools for asynchronous circuit design are also developed but they are not so wide-

spread yet [7]. 
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(v) Not well-known or well-thought: As synchronous systems have been dominating the 

industry for years, designers are not familiar with asynchronous design methods and it’s 

hard to break the habits. Besides, it is not as easy and as straightforward to grab the design 

concepts when there is no clock to govern and synchronize all activities [1]. 

 

1.3 When to Use Asynchronous Design? 

 

Both synchronous and asynchronous sequential circuits have their use in the design world, 

depending on the requirements of the problem at hand. Rather than considering 

asynchronous systems as a complete alternative to synchronous designs, it is usually 

preferred to benefit from their advantages when synchronous methods fail or meet their 

limitations. A most obvious example of when asynchronous design is preferable is 

interfacing signals from outer world which are in fact asynchronous by nature [1]. In 

synchronous circuits, interfacing external signals to a system clock is always subject to 

meta-stability conditions where as, asynchronous circuits can be more gracefully interfaced 

since they can wait as long as required, until the meta-stability resolves.  

System-On-Chip (SoC) applications are another obvious application for asynchronous 

circuits, where interconnections among different blocks within the chip constitute the 

biggest design challenge. Synchronizing all blocks with one global clock is not practical, 

especially when several blocks with different timing constraints are to be interfaced. 

Improving the clock rate of the system could only be done at the cost of improving the 

response time of each module. Implementing the chip-level interconnects asynchronously is 

a widely preferred way of interfacing multiple clocked domains within the chip. System-On-

Chips designed in this manner are called Globally Asynchronous Locally Synchronous 

(GALS). When a System-On-Chip is completely designed with asynchronous techniques 

then it is called Globally Asynchronous Locally Asynchronous (GALA) [12]. 

 

1.4 Main Features of Asynchronous Circuits 

 

Asynchronous designs operate on the self-timing principle where subsystems exchange 

information at mutually negotiated times without external timing regulation. Data is passed 

between modules through a group of wires known as the channel, which are usually 

unidirectional point-to-point connections. The device that delivers data to the channel is 

called the sender and the device that accepts data is called the receiver. The device that starts 
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the data transfer is called the initiator and the device responding to the initiator is called the 

target [9].The presentation of essential issues in asynchronous design is based upon this 

terminology. 

 
1.4.1 Delay models 

 
In asynchronous design, certain assumptions are made regarding the delays in gates and 

wires within a circuit and the mode in which the circuit is operating. The unbounded delay 

assumption, which ensures that a circuit will always function correctly under any 

distribution of delay among the gates and wires within the circuit, is very convenient since it 

separates the delay management from the functional correctness issue. However unbounded-

delay assumption is hard to realize in circuit design so there are many different delay models 

in asynchronous design in addition to the unbounded-delay assumption [13]. The 

classification of asynchronous design styles according to the delay models, which include 

the timing assumptions and constraints on the circuit design, is as follows. 

 

(i) Delay Insensitive: A circuit which conforms to the unbounded delay assumption, i.e. 

which functions correctly irrespective of both gate and wire delays, is called delay-

insensitive [3]. For such circuits, no timing assumptions or constraints are required to ensure 

functional correctness hence they offer the most reliable and robust self-timed operation 

with the least amount of timing analysis effort. However delay-insensitive circuits are hard 

to realize and in reality only a few types of circuits could confirm to this model. 

 

(ii) Quasi-Delay Insensitive: These are similar to delay-insensitive circuits except that the 

forks in wires are assumed to be isochronic, which means that difference between the signal 

propagation delays in the branches of a set of interconnect wires is negligible with respect to 

the delays of gates connected to these branches. This assumption is used when a signal is 

demultiplexed to multiple targets: Unacknowledged forked signals are assumed to have 

changed based on the observation at a single point on the fork. 

 

(iii) Speed Independent: A circuit in which the wire delays are assumed to be negligible with 

respect to gate delays is called speed-independent. Forks are assumed to be isochronic in 

these circuits. This model is only applicable to small circuits or small portions of circuits [3]. 
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1.4.2 Signaling and Handshaking Conventions 

 
Signaling protocols are required to control transfer of data between two communicating 

units in asynchronous designs. This scheme is called handshaking. The initiator issues a 

request (REQ) to start a data transfer action and indicate data validity and the target responds 

to it by issuing an acknowledge (ACK) to indicate the readiness of receiver to accept further 

data. Handshaking may occur either in dedicated wires or is implicit in the data encoding.  

  

a. Push Channel b. Pull-Channel 

  

  

c. 2-Phase Push Protocol d. 2-Phase Pull Protocol 

  

  
e. 4-Phase Push Protocol f. 4-Phase Pull Protocol 

Figure 1.3 Signaling Protocols [14] 
 

The direction of data flow with respect to the request determines whether the channel is a 

Push Channel or a Pull Channel: In a Push Channel, data flows in the same direction as the 

request; whereas in a Pull Channel, data flows in the opposite direction to the request (Fig. 

1.3.a. and 1.3.b) [14]. 

 
When the REQ/ACK handshaking scheme is implemented using dedicated signaling wires, 

the signal transitions on REQ and ACK wires determine the communication protocol as 

either 2-Phase event signaling (non-return-to-zero) or 4-Phase level signaling (return-to-
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zero). Of these two protocols, 4-Phase is easier to implement in CMOS digital circuits 

(Figure 1.3.c., 1.3.d., 1.3.e. and 1.3.f.) [14]. 

 

The handshake in an asynchronous circuit can be implemented either by completion-

detection or by delay-padding. Completion-detection requires special redundant data 

encoding schemes to be employed to sense data validity (Figure 1.4.a). Delay-padding 

requires estimation of maximum logic delay (Figure 1.4.b) [9]. 

 

Sender Receiver

Ack

Req

 
a. Completion-detection 

 

Sender Receiver

Ack

Req
Delay

 
b. Delay-padding 

Figure 1.4 Handshaking Mechanisms 
 

1.4.3 Data Representation 

 
In synchronous design, data is usually binary encoded so that 2n symbols are represented by 

n distinct wires and the global clock signal indicates the data validity. In asynchronous 

design, several data encoding schemes other than binary are employed to implement 

completion detection:  

 

(i) Single Rail Encoding: Also known as bundled-data approach, Single Rail Encoding is 

almost the same as the binary encoding in synchronous designs except that dedicated wires 

are allocated for REQ and ACK lines.  
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(ii) Dual Rail Encoding: This scheme uses two wires to represent each bit of data, where 

each transfer involves an activity on only one of the wires at a time. Hence 2n distinct wires 

are required to represent 2n symbols. The benefit is that timing information, i.e. validity of 

data, is implicit in the encoding hence dedicated ACK lines are not required. In this design-

style, and-gates are replaced by Muller-C Elements [15]. (Figure 1.5)  

 
  

A B Q 

0 0 0 

0 1 Q 

1 0 Q 

1 1 1 

   
 

 

a.  a 2-input Muller-C Gate b. its truth table c. its operation 

Figure 1.5 Muller C-Element [15] 

 

(iii) One Hot Encoding: This encoding scheme uses n distinct wires to represent n symbols. 

Only one of the n wires is held at high (logic level 1) at a time to encode a particular symbol. 

The obvious extra state in this encoding scheme is the case when all wires are held at low 

(logic level 0). This is called the NULL state and used to indicate that no data is transferred. 

Hence, the associated timing information (data validity) is implicit in the encoding. The Null 

Convention Logic (NCL) [16] design style from Theseus Logic Inc. uses this encoding 

scheme (Figure 1.6). 

 

 

 

a. An NCL threshold gate (2-
of-5):  

b. An NCL 4-bit word completion detection logic: 

Figure 1.6 Null-Convention Logic [16] 

c 
A 

B 
Q 
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(iv) N of M Encoding: This encoding scheme covers the special cases of One-Hot Encoding 

and Dual-rail Encoding schemes. Provided  that M>N, activity on N of M wires are required 

to indicate a particular data symbol, hence 2N symbols are transferred over M lines together 

with the implicit timing information (data validity). 

 

1.4.4 Elastic Micropipelines 

 
Elastic Micropipelines [17] design style allows for the speed-independent model to be 

applied to larger circuits by partitioning them into regions small enough for SI assumptions 

to hold reasonably. Data path design is the same as the combinational logic in a synchronous 

design and control signaling is handled by handshaking units with delay-padding 

mechanisms, where worst case delay models are assumed locally (Figure 1.7). Hence large 

processing units can be built from a set of asynchronous library elements. Most 

asynchronous processors of today, like AMULET [18] and TITAC [19] are designed in this 

style.  

 

 
Figure 1.7 Elastic Micropipelines [16] 

 

 

1.5 Systolic Arrays in Asynchronous  

 

Systolic arrays are a special form of distributed processing in which a large computation is 

partitioned into its smaller counterparts and performed by small identical functional units, 

called “systoles”. The key issue in this design style is to eliminate across-chip data transfers 

which require long interconnect wires. Systoles are designed to allow for exchange of data 

only with neighboring systoles. The task of placement and routing of the chip is simplified 
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and across-chip data transfer delays are eliminated due to reduced global routing and the 

well-defined and localized data interfaces in each systole (Figure 1.8). As a result, overall 

throughput of the circuit could be improved by only increasing the computation speed of a 

single systole. Scalability is another added value: The design can be easily extended to build 

larger computational blocks, independently from single systole design. 

 
Figure 1.8 Systolic Arrays  

 

Systolic arrays are mostly used in digital signal processing and cryptographic applications 

where data is flowing in a regular fashion in one or two dimensions; such as filters, 

equalizers [20, 21, 22], encryption units for block ciphers, arithmetic units in crypto 

processing engines (for example Modular Multiplication in RSA Encryption) [23, 24]. 

Image processing and pattern recognition circuits also benefit from systolic array type 

architectures where one systole is assigned to one pixel of an image, and computations are 

easily carried out in pixel-by-pixel basis [25, 26, 27, 28]. 

In conventional clocked systems, all systoles are governed by the same global external clock 

signal. To improve the clock rate, pipeline stages are inserted among the systoles, i.e. 

systoles are designed with embedded registers. However, this improvement is achieved at 

the expense of increased silicon area and power. The target of this PhD research is to 

efficiently introduce asynchronous design styles in systolic array type architectures as a 

better way of improving the throughput of the system without sacrificing modularity and 

scalability issues. The study is mostly concentrated on logic and gate level design issues and 

exploring the delay insensitive asynchronous design space for novel systolic architectures 

and design methodologies addressing them. 
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1.6 Thesis Outline  

 

The thesis study mainly consists of delay-insensitive logic/gate level circuit design 

techniques, their applications to systolic data processing architectures, and verification 

analysis of these circuits. In the chapters that follow, these issues are presented as follows: 

 

The basic principles governing delay-insensitive asynchronous circuit design are given in 

Chapter 2, with a detailed discussion of the delay-insensitivity criteria. Application of these 

criteria to pipelined architectures is also included.  

 

In Chapter 3, verification methods for delay models are overviewed including recent 

alternative methods developed specifically for asynchronous circuits. The conflict of early 

output evaluation with delay-insensitive delay model is introduced and demonstrated on a 

typical systolic array. 

 

In Chapter 4, a new delay-insensitivity verification analysis method targeting to evaluate 

early output evaluation conflict in systolic arrays is proposed. Construction of this method 

using symbolic delay relations is explained.  

 

In Chapter 5, merging of delay-insensitive asynchronous circuit design with systolic array 

data processing architectures is demonstrated on two selected adder applications. Early carry 

evaluation features contributing to speedup of these adders but conflicting with delay-

insensitive delay model are analyzed using the proposed delay-insensitivity verification 

method. Modified systolic architectures resolving these problems while maintaining speedup 

advantages are introduced and simulation results of all applied techniques are compared. As 

a mean for further improvement of throughput, application of bit-skewed inputs technique is 

introduced to the delay-insensitive systolic adder structures together with an output 

registration method for de-skewing the sum bits.  

 

In Chapter 6 the thesis work is summarized, conclusions are drawn and suggestions are 

made for future improvements and possible utilizations of the proposed delay-insensitivity 

verification analysis method. 

 

 



 

 

14 

Equation Chapter 2 Section 1 
CHAPTER 2 

 
 

2 DELAY INSENSITIVE ASYNCHRONOUS DESIGN 
 

 
Delay-insensitivity is based on the assumption that “a circuit should function correctly 

irrespective of all gate and interconnect delays as if these delays are unbounded” [3]. That’s 

why delay-insensitive asynchronous circuits present a convenient alternative for designing in 

deep-submicron, where interconnect delays have nearly equal effect on circuit behavior as 

gate delays [29]. Delay-insensitive circuits offer robust self-timed operation with the least 

amount of timing analysis effort available to asynchronous design styles: No global 

constraints are required from the environment. Completion of each operation is 

acknowledged to allow the environment to apply the next input, so the circuit can wait for 

indefinite input arrival times and once the input arrives, can run as fast as the underlying 

silicon technology allows [3]. Thus average case performance could be delivered by the 

circuit instead of worst. 

 

 

2.1 Delay Insensitive Design Styles  

 

Delay-insensitive design style mainly falls into two categories according to the level of 

abstraction applied [30]: Transistor -Level and Gate -Level. 

 

Transistor-Level Delay-Insensitive Design Styles usually follow Martin’s methods [36] for 

designing at transistor level and building optimized and usually state holding circuits 

through formal transformations from logic descriptions. This design style produces the 

circuits with minimum transistor count [37, 38], and has a specific language and design tool 

developed for it [36], but due to its abstraction being at “transistor” level, not as widely 

supported  and automated as gate (logic) level design styles. 

 

Gate-Level Delay-Insensitive Design Styles set the level of abstraction at logic design level, 

provided that a standard cell library composed of special logic gates is used for circuit 

implementation, either totally or partially, alongside with ordinary boolean logic. Such a 

library contains logic elements which resemble the Muller C gates [31], in that they can hold 

their states in case certain input conditions are not attained. These are called threshold-logic 



 

 

15 

gates, of which the most well-known and cooperated into an automated CAD flow is Null 

Convention Logic (NCL) [16].  In gate-level delay-insensitive design mutually exclusive 

symbol representations are used frequently instead of boolean representation, even though 

boolean gates are still partially used. There is an increasing degree of automated tool support 

for design and verification of gate-level design-insensitive circuits, due to their suitability for 

system-on-chip design constraints. 

 

 

2.2 Dual-Rail Threshold Logic Gates 

 

True delay-insensitive circuits are very hard to realize, therefore very rare. However, being 

the closest approximation, “Dual-rail Threshold Logic Gates” are widely referred as building 

blocks for delay-insensitive circuits in literature. These circuits are actually “Quasi-delay 

insensitive”, meaning that their functionality is based on the “isochronic forks” assumption 

which states that all wiring works have equal delays, or at least those on small circuit scales. 

Dual-rail Threshold Logic gates implement a logic function in case a certain input 

conditions, namely the “threshold” are met, otherwise hold their states. They have been 

developed concurrently under different names by different parties for gate-level delay-

insensitive design [33, 34, 35]. The most well known is the Null Convention Logic (NCL), 

developed and commercialized by Theseus Logic Inc. in 1996, to address the delay-

insensitive asynchronous design space [16, 39, 40]. In NCL style, completion information is 

not explicitly sent but embedded in data representation and circuits are constructed using all 

gates from an NCL-type cell library. The basic principles characterizing the Dual-rail 

Threshold Logic Gates are explained in the following subsections. 

 

2.2.1 Symbolic Completeness of Expression 

 
Symbolic Completeness of expression requires a logical expression to depend only on the 

relationships of the symbols present, without a reference to the evaluation time [30]. Dual-

rail Threshold logic circuits use Mutually Exclusive Assertion Groups (MEAG), instead of 

the Boolean Representation, to achieve Symbolic-Completeness of Expression. MEAGs 

such as dual-rail signals eliminate the time reference by embedding control information into 

data representation: A NULL or RESET value exists in the symbol set which is asserted 

when data is not valid. 
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A dual-rail signal has two mutually exclusive data paths, D0 and D1, and implements three 

logic states {NULL, DATA0, and DATA1} as given in Table 2.1. State DATA1 (D0 = 0 

and D1 = 1) for Boolean logic 1, State DATA0 (D0 = 1 and D1 = 0) for Boolean logic 0 and 

State NULL (D0 = 0 and D1 = 0) to indicate the result is not available yet. So the validity of 

the output could be determined without a time reference. As the two rails are mutually 

exclusive, (D0 = 1 and D1 = 1) is an illegal state. 

 
Table 2.1 Dual Rail Signalling  

 STATES 

 

SIGNALS 

DATA0  

(Boolean Logic 0) 

DATA1  

(Boolean Logic 1) 

NULL  

(Data not valid) 

-  

(undefined) 

D0 1 0 0 1 

D1 0 1 0 1 

 

2.2.2 Two-Phase Operation 

 
Dual-rail Threshold logic circuits are constructed from primitive modules known as 

threshold gates with hysteresis [41]. A typical thmn gate, with 1 ≤ m ≤ n, has n inputs, of 

which at least m of them has to become DATA for the output to assert a DATA value. This 

is the “threshold” behavior. Similarly, at least m of the n inputs has to transition to NULL for 

the output to assert NULL. Otherwise the threshold gate maintains its current state, 

displaying “hysteresis” behavior. Specifically, a thmn gate functions like an n-input C-

element while a th1n gate like an n-input OR gate. Two typical gates from the Dual-rail 

Threshold Logic Library and their truth tables are given in Figure 2.1.  

 

a b c z

1 1 1 1
1 1 0 z
1 0 1 z
1 0 0 z
0 1 1 z
0 1 0 z
0 0 1 z
0 0 0 0

a
th33b

c
z

 

a
b
c

zth13

a b c z

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

 
a. th33 gate with hysteresis b. th13 gate with hysteresis 

Figure 2.1 Dual-rail Threshold logic style basic building gates  
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The threshold gates partition the inputs into separate NULL and DATA wavefronts, such 

that a NULL value must be applied to the circuit inputs between consecutive DATA values, 

so that the circuit always cycles between consecutive NULL and DATA inputs, eliminating 

races and hazards completely. 

 

2.2.3 Logic Design using Dual Rail Threshold Logic Gates 

 

The most basic approach for logic design using Dual Rail Threshold Logic Gates is 

producing a sum of minterms for both rails of the dual-rail output in DIMS (Delay 

Insensitive Minterms Summation) style [32, 33], to implement the logic functionality. A 

DIMS style full-adder built from dual-rail threshold logic gates is illustrated in Figure 2.2. 

 

th14

th14

th14

th14

a1b1c1

a1b0c0

a0b1c0

a0b0c1

a0b0c0

a0b1c1

a1b0c1

a1b1c0

th33

th33

th33

th33

th33

th33

th33

th33

a1

a0

b1

b0

c1
c0

Cout1

Cout0

Sum1

Sum0

 

Figure 2.2 DIMS Adder Structure built with Dual-Rail Threshold Logic Gates 

 

There are other approaches which allow for some degree of boolean optimization and hence 

do not require complete minterms but rely on C-gates to guarantee delay-insensitivity [34, 

35].  
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2.2.4 Transistor Level Design of Dual Rail Threshold Logic Gates 

 
For abstracting design layers in delay-insensitive circuit design, a design library is 

constructed by designing Dual-rail threshold logic gates at transistor level in standard 

CMOS technologies and using custom CAD tools. Then functional modules are designed at 

logic level using these threshold-logic gates in the design library. Among the various CMOS 

circuit design techniques that could be employed in designing the Dual-rail threshold logic 

gates, the Static Implementation Method for NCL Gates [41] is preferred for being the most 

reliable method available. In Figure 2.5.a. the typical structure of static M-of-N threshold 

gate is given. Both nMOS and pMOS logic is constructed in two parts. The “Go to NULL” 

part of the pMOS logic is ON only when all N inputs are at logic level 0. The functionality 

of this block is complementary to the functionality of the “Hold DATA” part of the nMOS 

logic which, together with the feedback nMOS gate from the gate output Y, implements the 

case when one or more of the N inputs are at logic level 1. Similarly the functionalities of 

the “Go to DATA” part of the nMOS logic and “Hold NULL” part of the pMOS logic are 

complementary to each other but their structures depend on the values of M and N values. In 

case M=N, i.e. the gate is an N-of-N threshold gate, the “Go to DATA” part of the nMOS 

logic, implements the case when all N inputs are at logic level 1 and “Hold NULL” part of 

the pMOS logic, together with the feedback pMOS gate from the gate output Y, implements 

the case when one or more of the N inputs are at logic level 0. Figure 2.5.b. illustrates the 

general structure of such a gate. 

 

 

Y

Go To
NULL

Hold
NULL

VDD

Go To
DATA

Hold
DATA

 

Y

VDD

A1

A1

A2

A2

An

An

A1 A2 An

A1 A2 An

 
 

a. Structure of M-of-N threshold gate [41] b. Structure of N-of-N threshold gate [41] 

Figure 2.3 Static implementation of Dual-Rail threshold gates with hysteresis 
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After constructing a Dual-Rail Threshold gate according to the given Static Implementation 

rules, further circuit optimizations could be employed to decrease the transistor count and 

circuit area or to increase gate response times [30]. 

 

2.2.5 Registration and Pipelining  

 
Each Dual-rail threshold logic circuit requires at least two registration stages, one at the 

output to detect the completion of a DATA/NULL value and one at the input to request the 

next NULL/DATA value. More registration stages could be introduced to divide the 

functional blocks in pipelined fashion, as seen in Figure 2.3.  

 

REQn+1

DATAin

REQn-1ACKn-2 ACKn

DI 
Latch 
(n+1)

DATAout
DI 

Combinational 
Logic

DI 
Combinational 

Logic

DI 
Combinational 

Logic

DI 
Latch 
(n-2)

DI 
Latch
(n-1)

DI 
Latch 
(n)

REQn-2 ACKn-1 REQn ACKn+1

STAGEn-1 STAGEn STAGEn+1

 
Figure 2.4 Delay-Insensitive (DI) Pipeline with Explicit Registration 

 
In a Dual-rail threshold logic pipeline, the flow of DATA/NULL wavefronts between 

adjacent stages is controlled by Dual-rail Threshold logic latches (registers) through use of 

dedicated ACK and REQ lines [42]. The ACK output, generated by the completion detection 

block of each pipeline stage is connected to the REQ input of the preceding stage to convey 

a DATA Acknowledge/NULL Request or a NULL Acknowledge/DATA Request, 

resembling closely the control flow in “micropipelines” [17]. As a result, Dual-rail 

Threshold logic circuits continuously cycle between DATA and NULL states, where a 

complete cycle, called a DATA-to-DATA cycle time (TDD), resembles a clock period in a 

pipelined synchronous circuit except that the period TDD is not definite, but input-dependent; 

and approximately half of the period is used for actual logic operation, while the other half is 

used to generate the NULL marker between successive logic operations (see Figure 2.4). 

This is a disadvantage in terms of throughput, but there are certain techniques addressing 

compensation for this slow down [42, 43].  
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NULL
Evaluation

DATA
Evaluation

DATA
Ack

NULL
Ack

DATA-to-DATA Cycle Time (TDD)

 
Figure 2.5 TDD cycle of a Pipelined  Dual-Rail Threshold Logic Circuit 

 

 

In a Dual-rail Threshold Logic pipeline, the pipeline registration stages could be completely 

eliminated by embedding the pipeline registration stage into the last level of combinational 

logic. Since each Dual-rail threshold logic gate can inherently hold its state like a register, 

the REQ input from next state could be fed into the last level of combinational gates of each 

pipelining stage as an extra input and the threshold level of these combinational gates could 

be increased by 1 to include the REQ input. Thus gate count and DATA-to-DATA cycle 

time (TDD) could be reduced and throughput of the pipeline would be improved. 

 

 

2.3 Delay Insensitivity Criteria  

 
Dual-rail Threshold logic circuits need to obey certain criteria for maintaining delay-

insensitivity. These can be summarized as follows: 

 

(i) Completeness of Input requires that all outputs of a combinational circuit may not 

transition from NULL to DATA until all inputs have transitioned from NULL to DATA, and 

may not transition from DATA to NULL until all inputs have transitioned from DATA to 

NULL. For circuits with multiple outputs, Seitz’s “Weak Conditions for Completeness of 

Input” [44] allow some outputs to transition without having a complete input set, as long as 

all outputs cannot transition before all inputs arrive.  

 

(ii) Observability requires that every input and internal wire transition in the circuit should 

cause a transition in at least one of the outputs [30, 40]. Transitions that are not used in 

determination of the outputs, called “orphans”, are not allowed propagate through gate 

boundaries. 
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2.4 Pipelining Criteria 

 

Dual-rail Threshold Logic circuits lend themselves easily to pipelining but pipelining 

requires additional criterion to be obeyed for delay insensitivity. For maintaining proper 

control flow in a pipelined Dual-rail Threshold Logic circuit, so that NULL and DATA 

waves would not interact within a pipelining stage and violate delay insensitivity, the 

evaluation time of ACK output of each pipelining stage should not be greater than arrival 

time for REQ input to that pipelining stage, which is fed back from the next pipelining stage 

as ACK output, as formulated in (1): 

 

[ ] [ ] [ ] 1,,, +=≤ nnn ACKinputTimeREQinputTimeACKinputTime    (1) 

 

Due to their ease of pipelining, Dual-rail Threshold logic circuits could be intrinsically 

transformed into systolic arrays for increased throughput in data processing. In systolic 

arrays, data exchange is localized to adjacent systoles so global data paths are eliminated. 

With asynchronous design, global control paths (clock signals) are also eliminated and 

replaced with local handshaking signals. A delay-insensitive bit-level pipelined systolic 

array with embedded registration is shown in Figure 2.6. 
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Figure 2.6 DI systolic array with bit-level embedded pipelining 

 

Bit-level pipelining in systolic arrays has the advantage of reducing the latency of the circuit 

to the latency of a single systole, so that the speed of a single systole signifies the overall 

throughput of a systolic array circuit and the throughput of the systolic array could be kept 
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constant against increasing array dimensions. But, with bit-level pipelining, an additional 

criterion for delay insensitivity, called Completion Completeness [45], is introduced in case 

bit-wise completion is used at registration stages and the combinational parts of the circuit 

only conform to the Weak Condition for Completeness of Input  

 

Completion Completeness is based on the fact that the dual-rail threshold logic registration 

stage, which acknowledges either a DATA output or a NULL output, can only assure the 

completeness of the output, not the completeness of input [45]. This may cause interaction 

of consecutive DATA/NULL wavefronts and violate delay insensitive operation, when bit-

wise completion is adopted instead of word-wise completion for increasing the throughput 

of the dual-rail threshold logic pipeline and the combinational parts only conform to the 

Weak Condition for Completeness of Input. Since, in bit-wise completion, the completion 

signal of each bit of the output is sent only to the dual-rail threshold logic registers that took 

part in the calculation of that output bit. So an output bit does not reflect all input transitions 

individually.  

 

In case a dual-rail threshold logic registration stage is completion-incomplete, two methods 

are proposed in [45] in order to ensure delay insensitivity: Either the topology of the 

combinational blocks is modified to make all output bits input-complete or the completion 

set of each register is modified to reflect input-completeness. However, these two methods 

may conflict with logic level optimizations introduced for the purpose of decreasing the gate 

count or increasing the evaluation speed. To preserve the advantages of logic level 

optimizations while realizing completion-completeness in order to ensure delay-

insensitivity, alternative methods are required. 
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CHAPTER 3 
 
 

3 VERIFICATION OF DELAY INSENSITIVITY 
 

 
All asynchronous systems are designed using a delay-model assumption and no matter what 

the chosen delay model is (delay-insensitive, quasi delay-insensitive or speed-independent) 

the circuit should be verified to ensure that the chosen delay model really holds with actual 

circuit delays and under all desired operating conditions enforced by the environment.  

 

Employing the dual-rail threshold logic gates and following certain design rules do not 

always guarantee delay-insensitivity in dual-rail threshold logic circuits [46]. Even though a 

dual-rail threshold logic circuit correctly performs the logical function for which it has been 

designed for, some input sets may exist for which it can still violate delay-insensitivity. 

Generally, there is a tradeoff between reliable delay-insensitive operation and overall 

performance of delay-insensitive circuits. The special logic gates and data representation 

style cost increased gate counts and slower completion times. A strict commitment to delay 

insensitivity constraints introduces more redundant logic. On the other hand, optimizations 

at circuit level which require relaxation of delay-insensitivity constraints (like early output 

evaluation) increase the verification cost of the circuit, which is already a tedious issue in 

asynchronous circuit design, no matter what delay model is used or how the circuit is 

designed. After every optimization phase, verification should be iterated as well.  

 

Preferably, verification of delay-model should be at behavioral specification level, because 

performing timing verification on an implemented circuit, i.e. at the end of design flow is 

infeasible and tedious, requiring extensive simulations and timing analysis for all possible 

inputs and all possible orderings of inputs.  

 

3.1 Formal Verification Methods and State Explosion Problem 

 

The most well-known and commonly used verification method at behavioral abstraction 

level is formal analysis. The formal analysis methods for verification of delay-insensitivity 

are generally based on exploration of reachable states [46]; hence address State Transition 

Graph (STG) based design flows (Figure 3.1). However with increasing circuit sizes, the 

number of states explodes exponentially and even with automated tools, formal analysis 
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becomes too complex. Recent research on STG based methods either target at compacting 

state space [53, 54] or using abstraction [55] to reduce verification complexity, addressing 

STG based design flows such as Petrify [50].  

 

In recent studies the STG based methods are also revised to support delay-insensitive 

interfacing for Globally Asynchronous Locally Synchronous (GALS) circuits and then to 

support delay insensitive design flow [29]. 

 

 

 

  
 

Figure 3.1 A STG and its corresponding State Diagram [3] 

 

 

 

3.2 Recent Alternative Methodologies 

 

Recently asynchronous research has been mostly targeted towards automation and 

optimization of design and verification flows. Guaranteeing the correctness of the circuit at 

the behavioral specification level, whether for delay-insensitivity or for some bounded delay 

model, is a significant step towards simplification of verification, especially in case of area 

and timing optimizations which usually come at the expense of robustness. Some of these 

new methodologies are summarized in the succeeding paragraphs. 
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3.2.1 Relative Timing Assumptions 

 

Relative Timing is an abstraction from exact timing constraints by considering relative 

ordering of events with respect to each other instead of exact timing which is hard to know 

at the beginning of a design flow [56]. “Difference” (event a fires earlier than event b) and 

“Simultaneity” (event a and b fire at the same time with respect to event c) are examples of 

Relative Timing Assumptions (RTA). By using RTA constraints, inconsistent event 

sequences could be eliminated which in turn helps in compaction of reachable state space 

and allow for optimizations in circuit design. This method has been both applied manually 

[57, 58] and integrated into automated design flows in such a way that some of the relative 

timing constraints could be generated from the circuit specification automatically [59, 60]. 

 

3.2.2 Lazy Transition Systems 

 

The concept of “Laziness” was introduced in [56] to distinguish between the enabling and 

firing of an event in a STG-based system. Using laziness concept, the concurrency of 

transitions in an STG-based system could be increased or decreased, whichever is suitable 

for the design simplification and optimization. Like RTA constraints, they allow for state 

space reduction. This method has been successfully integrated in automated design flow 

Petrify[59], so that Laziness could be detected and exploited automatically in generating and 

backannotating RTA constraints [59] [60]. 

 

3.2.3 Symbolic Methods 

 

Using symbolic and parametric delays instead of actual or relative timing constraints is 

another method for timing abstraction, where actual delays of the circuit could only be 

known after implementation. As introduced in [63] and [64], using unspecified timing 

constraints represented as symbols, a set of linear constraints which guarantee the 

correctness of timed transition systems could be generated and circuit optimizations could be 

based on these models. 

 

3.2.4 Partial Completion Methods with Early Evaluation 

 

For automated design flows using dual-rail threshold logic gates such as NCL-X [51] [52], 

there are recently proposed techniques for finding a compromise between circuit 
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optimization and reliable delay-insensitive operation. Early Evaluation and Partial 

Completion Methods given in [61] and [62] respectively, both introduce relaxation of delay-

insensitivity constraints for dual-rail threshold circuits to allow for early evaluation of 

signals so that more optimized and faster circuits could be synthesized without actually 

violating delay-insensitivity constraints. This is achieved by distributing the early output 

evaluation paths and gates which are to be relaxed and replaced with faster and smaller gates 

in stead of NCL threshold gates within a complex combinational circuit in such a way that 

the robustness of delay-insensitivity would not be diminished in the overall circuit and [61] 

[62]. Both methods target to being embedded into automated NCL design flows. The method 

in [61] also targets at gate-level simplifications as well as logic-level. 

 

Partitioning a dual-rail threshold logic circuit into its control and data paths is another way to 

reduce delay-insensitivity analysis complexity as proposed in [46], which tackles this 

problem through orphan analysis. It assumes that DATA and NULL waves are properly 

acknowledged at asynchronous registration stage, i.e. the cases of early generation or no 

generation of completion acknowledgment are handled structurally, so it concentrates on 

settling of all gates in the combinational network before acknowledgement is produced.  

 

3.3 Early Outputs Conflict 

 

Latency and throughput advantages of bit-level pipelining in dual-rail threshold logic 

circuits could be easily outweighed by the slowness of threshold logic gates and the extra 

NULL cycles. Speed-up is usually attained by introducing early evaluation of the signals, 

propagating across the pipeline. However, early output evaluation implies allowing data-

dependent early execution where possible, i.e. by generating some circuit outputs, correctly, 

without waiting for the arrival of all inputs, which directly conflicts with the two main 

constraints of Delay-Insensitivity: When considered in terms of Input-Completeness, early 

output evaluation implies input-incompleteness of early evaluated outputs. In terms of 

Observability, the late arriving inputs, which are no longer required for generation of 

outputs, create orphans, since their transitions would not affect the early outputs.  

 

3.3.1 Early Output Evaluation vs. Delay Insensitivity 

 

The Input-Completeness conflict could be solved by confirming to Seitz’s Weak Constraints 

and Observability could be achieved by distributing the early output evaluation paths within 
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a complex combinational circuit in such a way that orphan-freedom could still be maintained 

in the overall circuit [61] [62]. However, these solutions could not be directly applied to 

systolic array style architectures since they evaluate only the combinational parts of the 

circuit. Applying Seitz’s Weak Constraints for Input-completeness directly may violate the 

Completion- Completeness requirement in bit-level pipelines. Meanwhile, commitment to 

Completion- Completeness requirements would eliminate the speed-up advantages due to 

early output evaluation. So, systolic array style delay-insensitive circuits, with bit-level 

pipelining need specific solutions of their own. 

 

3.3.2 Demonstration on a Systolic Array  

 

The initiating point for this study is the observation is that Delay-Insensitivity violations in a 

systolic array with early output evaluation in one-dimension could be examined on three 

adjacent systoles. This observation results from Spice simulations performed on gate level 

implementations of dual-rail threshold logic systolic arrays, but could also be proposed 

analytically: As each systole has data/control signal exchange with two neighboring systoles 

in a one-dimensional systolic array, it is sufficient to analyze all signal transitions regarding 

a single systole by considering the preceding and succeeding systoles in line. Therefore 

analysis of three adjacent systoles in a one-dimensional systolic array is representative of the 

behavior of all systoles in the array. 
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Figure 3.2 DI systolic array with bit-level embedded pipelining 
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In Figure 3.2 a simplified version of the DI bit-level pipelined systolic array is given. For the 

sake of simplicity, there is only one horizontal dual-rail output, which is propagated across 

the pipeline, which may evaluate early (input-incomplete) or late (input-complete) 

depending on the value of the vertical inputs to the pipeline. Also for the sake of simplicity, 

there is only one vertical dual-rail output from each systole which is always input-complete. 

The ACK outputs indicate completion detection of both vertical and horizontal outputs of 

each systole. For this analysis it is assumed that all vertical inputs and the horizontal input to 

the leftmost systole are applied concurrently to all systoles. 

 

Then a typical delay-insensitivity violation scenario due to early output evaluation, which is 

illustrated in Figure 3.3, through (a) to (d), runs as follows: 

 

i) All inputs including the (n-1)th horizontal input are applied concurrently with 

vertical inputs chosen such that, the nth and (n+1)th systoles evaluate early due to input-

incomplete horizontal outputs while the (n-1)th systole evaluates late due to input-complete 

horizontal output (Fig. 3.3.a).  

 

ii) The nth and (n+1)th systoles calculate early horizontal outputs concurrently since 

they need not wait for evaluation of the horizontal output from the (n-1)th and nth systoles. 

Evaluation of input-complete vertical output is triggered at the (n-+1)th systole by the arrival 

of horizontal output from the nth systole (Fig. 3.3.b).  

 

iii) The (n-1)th systole evaluates input-complete vertical output and late horizontal 

output while the (n+1)th systole evaluates input-complete vertical output. Evaluation of 

input-complete vertical output is triggered at the nth systole by the arrival of horizontal 

output from the (n-1)th systole (Fig. 3.3.c).  

 

iv) The (n+1)th systole asserts a Data Acknowledge transition on ACKn+1 output which 

arrives as a Null Request to REQn input of the nth systole, but before input-complete vertical 

output is evaluated at the nth systole. With REQn at Null Request level, the nth systole cannot 

assert valid input-complete vertical output; hence the ACKn output can not make a Data 

Acknowledge transition. As a result DATA and NULL wave fronts interact at the nth systole 

and stall control signal flow (Fig. 3.3.d). 
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(c) 

Figure 3.3 Signal flow for a delay-insensitivity violation scenario 
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(d) 

Figure 3.3 (continued) 
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CHAPTER 4 
 
 

4 DELAY-INSENSITIVITY VERIFICATION METHOD FOR SYSTOLIC 
ARRAYS 

 
 

For improving the performance of delay-insensitive circuits at structural level, pipelining 

methods and systolic-array architectures are introduced. However, the speed improvement 

achieved by pipelining in terms of throughput and latency is usually outweighed by the extra 

“reset phases”, which have to be inserted in between consecutive computations (“set 

phases”) to correctly operate delay-insensitive pipelines [3]. In order to make the delay-

insensitive pipelines fast enough to achieve the average case performance which is 

theoretically expected of them, data-dependent early output evaluation is allowed by 

relaxing the delay-insensitivity constraints. But relaxation of delay-insensitivity constraints 

(like early output evaluation) increase the verification cost of the circuit, which is already a 

tedious issue in asynchronous circuit design, no matter what delay model is used or how the 

circuit is designed.  

 

To detect input-dependent delay-insensitivity violations in systolic dual-rail threshold logic 

adders, running extensive simulations covering all possible inputs is not a feasible option, 

especially for large operand sizes. The formal analysis methods for verification of delay-

insensitivity, which are based on exploration of reachable states, usually suffer from the state 

explosion problem; hence reducing the verification complexity is an important step in 

simplifying the design cycle. A structural delay-insensitivity analysis and verification 

method is introduced for asynchronous pipelines, designed in dual-rail threshold logic style. 

The proposed method, which is abbreviated as the SDIVA (Structural Delay-Insensitivity 

Analysis And Verification) method, targets at maintaining delay-insensitivity of bit-level 

pipelined systolic array style structures where speed up is achieved by data-dependent early 

output evaluations in one-dimension and where it is safe to assume that all wiring forks 

within each systole are isochronic. Using symbolic delays for output evaluation times 

without imposing any timing assumptions on the environment, all possible data-dependent 

early/late output evaluation cases are examined by concentrating on only three adjacent bit 

systoles. This way, input sets causing delay-insensitivity violations are detected and 

corrected without diminishing the speed up advantages of early output evaluation feature.  
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4.1 Structural Delay Insensitivity Verification Analysis Method (SDIVA) 

 

The analysis carried out on systolic arrays with bit-level pipelining (presented in Chapter 3), 

shows that delay-insensitivity violations due to early output evaluation could be simplified 

down to interaction of three adjacent systoles. Since systolic arrays are constructed from 

identical systoles, i.e. units with identical functionality hence identical implementation and 

identical delays, then an analysis method which simplifies the verification task to the 

analysis of the eight possible Early/Late output evaluation scenarios  

 

{Early, Early, Early},  

{Early, Early, Late},  

{Early, Late, Early},  

{Early, Late, Late},  

{Late, Early, Early},  

{Late, Early, Late},  

{Late, Late, Early},  

{Late, Late, Late}  

 

on three adjacent systoles could be constructed. 

 

4.1.1 Symbolic Delay Assignment  

 
On the simplified bit-level pipelined systolic array example given in Figure 4.1, where the 

single horizontal output may follow two different evaluation paths as early and late 

depending on the applied inputs, delays of all output paths could be represented with the 

following symbolic values, such that each symbolic delay value represents sum of all gate 

and wiring delays on that evaluation path: 

 

dH
E delay of the horizontal output path in case of early evaluation (input-incomplete) 

dH
L: delay of the horizontal output path in case of late evaluation (input-complete) 

dV  delay of the vertical output path (input-complete) 

dA  delay of the completion detection path, ACK, (input-complete) 

 

Note that early evaluation of the horizontal output indicates evaluation of the horizontal 

output using the vertical systole inputs only, i.e. without waiting for the arrival of the 
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horizontal input from the previous systole and late evaluation of the horizontal output 

indicates evaluation of the horizontal output using both the vertical systole inputs and the 

horizontal input arriving from the previous systole. Therefore input-completeness or input-

incompleteness of the horizontal output indicates input-completeness or input-

incompleteness with respect to the propagated horizontal input. On the other hand the 

vertical output always evaluates using both the vertical systole inputs and the propagated 

horizontal input, hence it is always input-complete. 
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Figure 4.1 Simplified DI systolic array with bit-level embedded pipelining 

 

 

4.1.2 Initial Assumptions 

 

To start with this analysis, a manner of external input application to the systolic array needs 

to be chosen. Since synchronous data generation is more common in electronic systems, 

application of all vertical inputs to all systoles and the horizontal input to the leftmost systole 

concurrently is preferred for better and simpler representation of the environment. 

 

It is also assumed that 

• All wire forks within the systoles are isochronic 

• Since dH
E and dH

L denote the delays of the same path, in cases of input-

incomplete/early and input-complete/late output evaluation respectively, the delay, dH
E is 

always smaller than the delay dH
L: 
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L

H
E

H dd <     (2) 
 

To continue with this analysis, there is no need to make any other assumptions regarding the 

relational magnitudes of the symbolic delays with respect to each other. The relation given 

in (2), does not impose any timing constraints on the systole design either, hence it does not 

challenge the definition of delay-insensitivity  So it could be safely stated that no timing 

constraints are imposed on the circuit structure to maintain delay-insensitivity by these 

assumptions. 

 

4.1.3 Analysis with Symbolic Delays 

 

For all of the possible eight Early/Late carry output scenarios, evaluation time of ACK 

outputs from the time of inputs’ application is calculated in terms of the symbolic delays, dV, 

dA, dH
E, dH

L, and presented in Tables 4.1 to 4.8. In these tables, the following abbreviations 

are used: 

HI  : Horizontal Input, 

HO: : Horizontal Output,  

VI  : Vertical Input, 

VO  : Vertical Output, 

ACKO  : Completion Detection Output 

REQI : Request Input. 

The ACKO evaluation time of each systole is then compared to evaluation time of the REQI 

input to that systole, which is actually the to ACKO output of the next systole, in order to 

check if  the DI Pipelining Constraint, formulated in the relation (1) on page 21 is satisfied. 

In these comparisons, only the relation formulated in (2) is used and thus the input scenarios 

which violate the delay-insensitive pipelining constraint are detected.  

 

In calculation of the evaluation delays, the following formulas are applied to each systole 

which is enforced by the structure of the pipeline: 

HIn= HOn-1       (3) 

VOn =HIn + dV       (4) 

ACKOn= Max{HO n, VO n}+ dA     (5) 

REQI n= ACKOn+1      (6) 

 



 

 

35 

Note that the pipelining constraint is checked for the nth systole and (n-1)th systole only. The 

calculations on the (n+1)th systole only serve for calculating the evaluation time of the REQI 

input to the nth systole. 

 

Examining the Tables 4.1 to 4.8 reveals that for the input scenarios {Late, Early, Early} and 

{Late, Early, Late}, DI Pipelining Constraint is violated as indicated by the bold lettering in 

Table 4.5 and Table 4.6. and satisfied for all other scenarios as stated below: 

 

{Early, Early, Early},  DI Pipelining Constraint is satisfied √ 

{Early, Early, Late}, DI Pipelining Constraint is satisfied√ 

{Early, Late, Early},  DI Pipelining Constraint is satisfied √ 

{Early, Late, Late},  DI Pipelining Constraint is satisfied√ 

{Late, Early, Early},  DI Pipelining Constraint is violated ! 

{Late, Early, Late},  DI Pipelining Constraint is violated ! 

{Late, Late, Early},  DI Pipelining Constraint is satisfied √ 

{Late, Late, Late}   DI Pipelining Constraint is satisfied√ 

 

For the input scenario {Late, Early, Early}, the evaluation time for the ACKO output of nth 

systole is definitely smaller than the evaluation time for ACKO output of the (n+1) th systole, 

which is also the REQI input arrival time for nth systole. For the input scenario{Late, Early, 

Late}, given in Table 4.6, a violation of DI Pipelining Constraint is inferred in case the late 

evaluation time of the horizontal output dH
L is greater than the evaluation time of the vertical 

output dV or in case the evaluation time of the vertical output dV  is smaller than the late 

evaluation time of the horizontal output dH
L but greater than the early evaluation time of the 

horizontal output dH
E. In both scenarios, the result is NULL and DATA waves within the nth 

systole, leading to no generation of the ACKO output and blocking of signal flow. 

 

Another important revelation of the examinations carried on Tables 4.1 to 4.8 is that, in a 

bit-level pipelined systolic array in dual-rail threshold logic style, which has early and late 

output evaluation paths in one-dimension, out of the eight possible scenarios, the analysis of 

only two scenarios {Late, Early, Early} and {Late, Early, Late} on three adjacent systoles is 

sufficient for verification of delay-insensitivity.  
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Table 4.1 DI Systole in case of { Early, Early, Early } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (early) dH
E 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{dH
E, dV}+dA 

n-1 
(Early) 

REQI n-1= ACKOn dH
E + dV + dA 

HIn= HOn-1 (early) dH
E 

HOn (early) dH
E 

VOn =HIn + dV dH
E + dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV +dA 

n  
(Early) 

REQI n= ACKOn+1 dH
E+dV+dA 

HIn+1= HOn (early) dH
E 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV+dA 

n+1 
(Early) 

REQI n+1= ACKOn+2 … 

 

(i) Examination of Pipelining Constraints for {Early, Early, Early} Scenario 
 

DI Systole (n-1): 

If  dH
E>dV  then  

ACKOn-1= dH
E +dA and REQI n-1= dH

E + dV + dA > dH
E +dA 

If  dH
E< dV  then 

ACKOn-1= dV +dA and REQI n-1= dH
E + dV + dA > dV+dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

Since dH
E + dV > dH

E  

ACKOn= dH
E + dV + dA = REQI n  

Since REQI n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 4.2 DI Systole in case of { Early, Early, Late } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (early) dH
E 

VOn-1 =HIn-1 + dV dV. 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA  

n-1 
(Early) 

REQI n-1= ACKOn dH
E+dV+dA 

HIn= HOn-1 (early) dH
E 

HOn (early) dH
E 

VOn =HIn + dV dH
E+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA 

n  
(Early) 

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA 

HIn+1= HOn (early) dH
E 

HOn+1 (late) dH
E+dH

L 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA 

n+1 
(Late) 

REQI n+1= ACKOn+2 … 

 

(ii) Examination of Pipelining Constraints for {Early, Early, Late} Scenario 
 

DI Systole (n-1): 

If  dH
E>dV  then  

ACKOn-1= dH
E + dA and REQI n-1= dH

E + dV + dA > dH
E +dA 

If  dH
E< dV  then 

ACKOn-1= dV + dA and REQI n-1= dH
E + dV + dA > dV +dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

Since dH
E + dV > dH

E  

ACKOn= dH
E + dV + dA  

If  dH
L>dV  then  

REQI n= dH
E + dH

L + dA > dH
E + dV + dA =ACKOn 

If  dH
L < dV  then 

REQI n= dH
E + dV + dA and  dH

E + dV + dA = ACKOn 

Since REQI n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 4.3 DI Systole in case of { Early, Late, Early } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (early) dH
E 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA  

n-1 
(Early) 

REQI n-1= ACKOn Max{ dH
E+dH

L, dH
E+dV }+dA 

HIn= HOn-1 (early) dH
E 

HOn (late) dH
E+dH

L 

VOn =HIn + dV dH
E+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA 

(Late) 

REQI n= ACKOn+1 dH
E+dH

L+dV+dA 

HIn+1= HOn (late) dH
E+dH

L 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
E+dH

L+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E,dH

E+dH
L+dV}+dA = 

dH
E+dH

L+dV +dA 

(Early) 

REQI n+1= ACKOn+2 … 

 

(iii) Examination of Pipelining Constraints for {Early, Late, Early} Scenario 
 

DI Systole (n-1): 

If  dH
E>dV  and  dH

L>dV  then  ACKOn-1= dH
E + dA  < REQI n-1= dH

E + dH
L + dA  

dH
E>dV  and  dH

L< dV  is not logically possible since dH
L> dH

E 

If  dH
E< dV  and  dH

L>dV  then  ACKOn-1= dV + dA < REQI n-1= dH
E + dH

L + dA 

If  dH
E< dV  and  dH

L<dV  then  ACKOn-1= dV + dA < REQI n-1= dH
E + dV + dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √ 

 
DI Systole (n): 

Since dH
E + dH

L + dV > dH
E  

REQI n= dH
E + dH

L + dV + dA  

If  dH
L>dV  then  

ACKOn= dH
E + dH

L + dA < REQI n= dH
E + dH

L + dV + dA  

If  dH
L < dV  then 

ACKOn= dH
E + dV + dA < REQI n= dH

E + dH
L + dV + dA  

Since REQI n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 4.4 DI Systole in case of { Early, Late, Late } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (early) dH
E 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
E,dV}+dA  

n-1 
(Early) 

REQI n-1= ACKOn Max{ dH
E+dH

L,dH
E+dV }+dA 

HIn= HOn-1 (early) dH
E 

HOn (late) dH
E+dH

L 

VOn =HIn + dV dH
E+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA 

n  
(Late) 

REQI n= ACKOn+1 Max{ dH
E+dH

L+dH
L,dH

E+dH
L+dV}+dA 

HIn+1= HOn (late) dH
E+dH

L 

HOn+1 (late) dH
E+dH

L+dH
L 

VOn+1 =HIn+1 + dV dH
E+dH

L+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L+dH
L,dH

E+dH
L+dV}+dA 

n+1 
(Late) 

REQI n+1= ACKOn+2 … 

 

(iv) Examination of Pipelining Constraints for {Early, Late, Late} Scenario 
 

DI Systole (n-1): 

If  dH
E>dV  and  dH

L>dV  then  ACKOn-1= dH
E + dA  < REQI n-1= dH

E + dH
L + dA  

dH
E>dV  and  dH

L< dV  is not logically possible since dH
L> dH

E 

If  dH
E< dV  and  dH

L>dV  then  ACKOn-1= dV + dA < REQI n-1= dH
E + dH

L + dA 

If  dH
E< dV  and  dH

L<dV  then  ACKOn-1= dV + dA < REQI n-1= dH
E + dV + dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1 , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

If  dH
L>dV then  

ACKOn= dH
E + dH

L + dA  < REQI n= dH
E + dH

L + dH
L + dA  

If dH
L<dV  then  

ACKOn= dH
E + dV + dA < REQI n= dH

E + dH
L +dV + dA

 

Since REQI n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 

 



 

 

40 

Table 4.5 DI Systole in case of { Late, Early, Early } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA 

n-1 
(Late) 

REQI n-1= ACKOn dH
L+dV+dA 

HIn= HOn-1 (late) dH
L 

HOn (early) dH
E 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA 

n  
(Early) 

REQI n= ACKOn+1 dH
E+dV+dA 

HIn+1= HOn (early) dH
E 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA 

n+1 
(Early) 

REQI n+1= ACKOn+2 … 

 

(v) Examination of Pipelining Constraints for {Late, Early, Early} Scenario 

 
DI Systole (n-1): 

If  dH
L>dV  then  

ACKOn-1= dH
L + dA and REQI n-1= dH

L + dV + dA > dH
L +dA 

If  dH
L< dV  then 

ACKOn-1= dV + dA and REQI n-1= dH
L + dV + dA > dV +dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

Since dH
L > dH

E ,  dH
L + dV > dH

E then 

ACKOn= dH
L + dV + dA  

Since dH
E + dV > dH

E   

REQI n= dH
E + dV + dA < dH

L + dV + dA =ACKOn 

Since REQI n = ACKOn+1 < ACKOn  , DI Pipelining Constraint is violated ! 
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Table 4.6 DI Systole in case of { Late, Early, Late } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA 

n-1  
(Late) 

REQI n-1= ACKOn dH
L+dV +dA 

HIn= HOn-1 (late) dH
L 

HOn (early) dH
E 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA 

n  
(Early) 

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA 

HIn+1= HOn (early) dH
E 

HOn+1 (late) dH
E+dH

L 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+dH

L,dH
E+dV }+dA 

n+1  
(Late) 

REQI n+1= ACKOn+2 … 

 

(vi) Examination of Pipelining Constraints for {Late, Early, Late} Scenario 

 
DI Systole (n-1): 

If  dH
L>dV  then  

ACKOn-1= dH
L + dA and REQI n-1= dH

L + dV + dA > dH
L +dA 

If  dH
L< dV  then 

ACKOn-1= dV + dA and REQI n-1= dH
L + dV + dA > dV +dA

 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

Since dH
L > dH

E ,  dH
L + dV > dH

E then ACKOn= dH
L + dV + dA  

If dV > dH
L  then  

REQI n= dH
E + dV + dA < dH

L + dV + dA =ACKOn 

If  dV < dH
L  then  

If  dV < dH
E  then REQI n= dH

E + dH
L + dA > dH

L + dV + dA =ACKOn 

If  dV > dH
E  then REQI n= dH

E + dH
L + dA < dH

L + dV + dA =ACKOn 

Since REQI n = ACKOn+1 < ACKOn  , in case dV > dH
L > dH

E or dH
L > dV > dH

E  

then DI Pipelining Constraint is violated ! 
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Table 4.7 DI Systole in case of { Late, Late, Early } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV }+dA 

n-1 
(Late) 

REQI n-1= ACKOn Max{ dH
L+dH

L,dH
L+dV }+dA 

HIn= HOn-1 (late) dH
L 

HOn (late) dH
L+dH

L 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
L+dH

L,dH
L+dV }+dA 

n  
(Late) 

REQI n= ACKOn+1 dH
L+dH

L+dV+dA 

HIn+1= HOn (late) dH
L+dH

L 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
L+dH

L+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

L+dH
L+dV}+dA =                         

dH
L+dH

L+dV+dA 

n+1 
(Early) 

REQI n+1= ACKOn+2 … 

 

(vii) Examination of Pipelining Constraints for {Late, Late, Early} Scenario 
 

DI Systole (n-1): 

If  dH
L>dV  then   

ACKOn-1= dH
L + dA  < REQI n-1= dH

L + dH
L + dA  

If  dH
L< dV  then   

ACKOn-1= dV + dA < REQI n-1= dH
L + dV + dA 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

Since dH
L > dH

E , dH
L +dH

L + dV > dH
E then  

REQIn= dH
L + dH

L + dV + dA  

If  dH
L>dV  then  

ACKOn= dH
L + dH

L + dA < dH
L + dH

L + dV + dA = REQIn 

If  dH
L<dV  then 

ACKOn= dH
L + dV + dA < dH

L + dH
L + dV + dA = REQIn  

Since REQI n = ACKOn+1 < ACKOn  DI Pipelining Constraint is satisfied √ 
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Table 4.8 DI Systole in case of { Late, Late, Late } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV }+dA 

n-1  
(Late) 

REQI n-1= ACKOn Max{ dH
L+dH

L,dH
L+dV }+dA 

HIn= HOn-1 (late) dH
L 

HOn (late) dH
L+dH

L 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
L+dH

L,dH
L+dV }+dA 

n  
(Late) 

REQI n= ACKOn+1 Max{ dH
L+dH

L+dH
L,dH

L+dH
L+dV }+dA 

HIn+1= HOn (late) dH
L+dH

L 

HOn+1 (late) dH
L+dH

L+dH
L 

VOn+1 =HIn+1 + dV dH
L+dH

L+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
L+ dH

L+ dH
L, dH

L+dH
L+dV }+dA 

n+1 
(Late) 

REQI n+1= ACKOn+2 … 

 

(viii) Examination of Pipelining Constraints for {Late, Late, Late} Scenario 
 

DI Systole (n-1): 

If  dH
L>dV  then   

ACKOn-1= dH
L + dA  < REQI n-1= dH

L + dH
L + dA  

If  dH
L< dV  then   

ACKOn-1= dV + dA < REQI n-1= dH
L + dV + dA 

Since REQI n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

DI Systole (n): 

If  dH
L>dV  then   

ACKOn-1= dH
L + dH

L + dA  < REQI n-1= dH
L + dH

L + dH
L + dA  

If  dH
L< dV  then   

ACKOn-1= dH
L + dV + dA < REQI n-1= dH

L + dH
L + dV + dA 

Since REQI n= ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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4.2 Structural Modifications Inferred 

 

Instead of using the known methods for establishing delay insensitivity in bit-level pipelined 

NCL structures in literature [45] which would have sacrificed the early carry generation 

feature completely, direct solution to eliminate the delay-insensitivity violation could be 

easily devised by examining the analyses given in Tables 4.1 to 4.8: If for each DI systole, 

the REQI input received from the next systole is inhibited until the current systole’s ACKO 

output is asserted than the systole will not end its evaluation of  its input-complete vertical 

and horizontal outputs even if an early REQI input is received from the next systole to 

initiate the transition to NULL or vice versa. This could be done by adding a th22 gate on 

the REQI path, (see Figure 4.2), which is fed by the ACKO signals of both current and next 

DI systoles, so that instead of REQI input, output of this th22 gate, which is called REQE, 

would be fed into the embedded pipeline registration stage within the systole. The formula, 

regarding the generation of the REQE signal is as given below: 

 

[ ] { [ ] [ ] }nnn ACKOinputTimeACKOinputTimeMaxREQOEinputTime ,,,, 1+=  (7) 

 

 

REQIn= ACKOn+1 REQIn+1REQIn-1= ACKOn

HIn-2
0
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0,1

...

VImn-1
0,1

VImn
0,1

VImn+1
0,1
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1
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0 VOn-1

1
VOn

0 VOn
1 VOn+1

0 VOn+1
1
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1=HIn1
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0=HIn+1
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REQEn-1 REQEn
REQEn+1

DI 
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DI 
Systole

(n-1)

 
Figure 4.2 Modified DI systolic array with bit-level embedded pipelining 

 



 

 

45 

Then for the modified DI Systolic array, to satisfy the requirements of delay-insensitivity, 

the evaluation time of the ACKO output of each systole should be smaller than or equal to 

the evaluation time for the REQOE signal within the systole, which is generated from the 

ACKO outputs of the current and next systoles. In other words, the DI Pipelining constraint 

becomes: 

[ ] [ ]nn REQOEinputTimeACKOinputTime ,, ≤    (8) 

 

Re-application of the SDIVA method to modified DI Systolic Array is given in Tables 4.9 to 

4.10 for delay-insensitivity violating input scenarios {Late, Early, Early} and {Late, Early, 

Late}.  

 

This solution resembles the “Broad Data Validity” scheme mentioned in [73] for bundled 

data style asynchronous systems applied to dual-rail signals. The main difference is that the 

modification is handled without introducing any extra control signals such as “validity”, i.e. 

without complicating the inter-systole interfaces.  

 

Meanwhile the early output evaluation capability of the modified DI systole is not hindered 

with the addition of the new gate. The evaluation time of the Horizontal Output is only 

slightly increased with the addition of the th22 gate on the REQI path. Besides, the speed up 

advantages due to early output evaluation are still maintained as opposed to the completion-

completeness resolving methods proposed in [45]. For those input sets which do not require 

arrival of the Horizontal Input from the previous systole to evaluate the Horizontal Output, 

input-incomplete and early Horizontal Output evaluation still works as before, which could 

also be easily verified by applying the analysis method for all the other scenarios [74]. 

Analysis of  the fastest input scenario, {Early, Early, Early} is given in Table 4.11 as an 

example. 
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Table 4.9 Modified DI Systole in case of { Late, Early, Early } Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA 

REQI n-1= ACKOn dH
L+dV +dA 

n-1  
(Late) 

REQE n-1=  

Max{ ACKOn, ACKOn-1}+dB 

Max{ dH
L+dA, dV+dA,  dH

L+dV +dA }+dB =  

dH
L+dV +dA+dB 

HIn= HOn-1 (late) dH
L 

HOn (early) dH
E 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA 

REQI n= ACKOn+1 dH
E+dV+dA 

n  
(Early) 

REQE n=  

Max{ ACKOn+1, ACKOn1}+dB 

Max{ dH
L+dV+dA, dH

E+dV+dA)}+dB = 

dH
L+dV+dA+dB 

HIn+1= HOn (early) dH
E 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ 

dA 

Max{ dH
E,dH

E+dV }+dA = dH
E+dV+dA 

REQI n+1= ACKOn+2  

n+1 
(Early) 

REQE n+1= 

Max{ ACKOn+2, ACKOn+1}+dB 

 

 

(i) Examination of Modified DICSA Systole for {Late, Early, Early} Scenario 

Modified DICSA Systole (n): 

Since  dH
L + dV > dH

E then  

ACKOn= dH
L + dV + dA  

Since  dH
E + dV > dH

E  then  

REQI n= dH
E + dV + dA  

Since  ACKOn=dH
L + dV + dA > dH

E + dV + dA= REQI n then  

REQE n= ACKOn+ dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 4.10 Modified DI Systole in case of {Late, Early, Late} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
L 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{ dH
L,dV}+dA 

REQI n-1= ACKOn dH
L+dV +dA 

n-1  
(Late) 

REQE n-1=  

Max{ ACKOn, ACKOn-1}+dB 

Max{ dH
L+dA, dV+dA,  dH

L+dV +dA }+dB = 

dH
L+dV +dA+dB 

HIn= HOn-1 (late) dH
L 

HOn (early) dH
E 

VOn =HIn + dV dH
L+dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E,dH

L+dV }+dA = dH
L+dV+dA 

REQI n= ACKOn+1 Max{ dH
E+dH

L,dH
E+dV }+dA 

n  
(Early) 

REQE n=  

Max{ ACKOn+1, ACKOn1}+dB 

Max{ dH
L+dV+dA, dH

E+dH
L +dA, 

dH
E+dV+dA}+dB 

HIn+1= HOn (early) dH
E 

HOn+1 (late) dH
E+dH

L 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E+ dH

L,dH
E+dV }+dA 

REQI n+1= ACKOn+2  

n+1  
(Late) 

REQEn+1=Max{ACKOn+2,ACKOn+1}+dB  

 

(ii) Examination of Modified DICSA Systole for {Late, Early, Late} Scenario 

Modified DICSA Systole (n): 

Since dH
L > dH

E ,  dH
L + dV > dH

E then ACKOn= dH
L + dV + dA  

If  dV > dH
L > dH

E then REQI n= dH
E+ dV + dA < dH

L + dV + dA =ACKOn 

Since  ACKOn  > REQI n 

REQE n= ACKOn + dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn 

If  dH
L > dV > dH

E then REQI n= dH
E+ dH

L + dA < dH
L + dV + dA =ACKOn 

Since  ACKOn  > REQI n 

REQE n= ACKOn + dB = dH
L + dV + dA + dB > dH

L + dV + dA =ACKOn 

If  dH
L > dH

E > dV then REQI n= dH
E+ dH

L + dA > dH
L + dV + dA =ACKOn 

Since  REQI n >ACKO n  

REQE n= REQIn + dB = dH
E+ dH

L + dA + dB > dH
L + dV + dA =ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 4.11 Modified DICSA Systole in case of { Early, Early, Early } Scenario  

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

HIn-1 0 

HOn-1 (late) dH
E 

VOn-1 =HIn-1 + dV dV 

ACKOn-1= Max{HO n-1, VO n-1}+ dA Max{dH
E, dV}+dA 

REQI n-1= ACKOn dH
E + dV + dA 

n-1  
(Late) 

REQE n-1=  

Max{ ACKOn, ACKOn-1}+dB 

Max{ dH
E +dA, dV+dA,  dH

E +dV +dA }+dB = 

dH
E +dV +dA+dB 

HIn= HOn-1 (late) dH
E 

HOn (early) dH
E 

VOn =HIn + dV dH
E + dV 

ACKOn= Max{HO n, VO n}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV +dA 

REQI n= ACKOn+1 dH
E+dV+dA 

n  
(Early) 

REQE n=  

Max{ ACKOn+1, ACKOn1}+dB 

Max{ dH
E+dV +dA, dH

E+dV +dA }+dB = dH
E 

+dV+dA+dB 

HIn+1= HOn (early) dH
E 

HOn+1 (early) dH
E 

VOn+1 =HIn+1 + dV dH
E+dV 

ACKOn+1= Max{HO n+1, VO n+1}+ dA Max{ dH
E, dH

E+dV }+dA = dH
E+dV+dA 

REQI n+1= ACKOn+2  

n+1 
(Early) 

REQE n+1=Max{ACKOn+2,ACKOn+1}+dB  

 

(iii) Examination of Modified DICSA Systole for {Early, Early, Early} Scenario 

Modified DICSA Systole (n-1): 

If  dH
E>dV  then  ACKOn-1= dH

E +dA and REQI n-1= dH
E+dV+dA > dH

E+dA 

If  dH
E< dV  then ACKOn-1= dV +dA and REQI n-1= dH

E+dV+dA > dV +dA
 

Since REQI n-1 ≥ ACKOn-1  , 

 REQE n-1= REQI n-1+dB= dH
E+dV+dA+dB 

Early Output Evaluation is preserved and DI Pipelining Constraint is satisfied √ 

 

Modified DICSA Systole (n) 

Since dH
E + dV > dH

E then ACKOn= dH
E+dV+dA = REQI n  

Since REQI n≥ ACKOn  , then  

REQE n= REQI n+dB= dH
E+dV+dA+dB  

Early Output Evaluation is preserved and DI Pipelining Constraint is satisfied √ 
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4.3  Benefits of the SDIVA Method 

 

The SDIVA method employs symbolic delays for all output paths and analyses the signal 

flow on three adjacent systoles for all possible early/late carry generation conditions, to 

detect and correct the cases of early generation or no generation of completion 

acknowledgment. The verification of a complete systolic adder is reduced to verification of 

three systoles, regardless of the operand length of the adder, which is a significant saving in 

verification effort and time, especially when compared to formal analysis methods which are 

usually based on exploration of all reachable states hence suffer from the state explosion 

problem. 

 

Application of the SDIVA method to a typical delay-insensitive bit-level pipelined systolic 

array in dual-line threshold logic style with early output evaluation possibilities in one-

dimension demonstrated that, the analyses could further be simplified down to examination 

of two offending input scenarios, namely {Late, Early, Early} and {Late, Early, Late} and 

with this method, it is also possible to easily devise structural modifications to offending 

topologies without sacrificing the early output evaluation features and the resultant speed up 

advantages. 

 

Although the presented work concentrates on a particular class of bit-level pipelined systolic 

array, the SDIVA method is generic enough in that: 

• It is independent of operand length since evaluation of three adjacent systoles is 

sufficient; 

• It does not require actual path/gate delays but only symbolic ones to represent 

relative lengths of early/late output generation paths. 

• It not only analysis delay insensitivity but also evaluates the speed-up issues 

inherent in the topology. 

• It is completely technology independent, so verification is robust against all physical 

and environmental parameters 

• It could be safely applied to other systolic arrays having more than one early output 

evaluation paths in one dimension or multiple early output evaluation paths in more 

than one dimension. 
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CHAPTER 5 
 
 

5 DELAY INSENSITIVE SYSTOLIC ADDER DESIGN 
 
 
Binary addition resides at the critical path of most signal processing systems, so improving 

the critical path of addition is usually the key to improving the overall throughput of a data 

processing circuit. The complexity of binary addition is directly related to its operand length. 

When the operand size of the adder is large, either long carry propagation delays are 

suffered to keep the silicon area low, -as in the case of ripple-carry adders-, or other adder 

topologies are introduced to improve speed at the expense of silicon area, as in the case of 

carry look-ahead adders. Pipelining and systolic array structures also help to divide the 

critical path and the increase overall throughput of addition-based data processing circuits. 

Ripple carry style adders which could be easily converted into small identical and repeatable 

units (systoles) and which propagate the carry output of addition along row full adder 

systoles as carry input to the next systolic adder benefit the most form pipelining. But, even 

if pipelined at bit-level, the performance of synchronous systolic array adders is always 

bounded by the worst case of the critical path , i.e. the longest carry propagation path which 

is equal to the operand size of the adder. Bit-level pipelining may divide the n-bit carry 

propagation path into 1-bit full adder carry evaluation paths but the n-bit addition still 

requires n clock cycles to complete. 

 

In [65], it is claimed that, in the average, carry propagation steps of n-bit binary addition 

converge to log2n and n-bit carry propagation is extremely rare. But since synchronous 

circuits are designed to handle the worst case, they are designed for handling n-bit carry 

propagation. For example, for the 1024-Bit RSA crypto-processor IC [66], utilizing 

synchronous systolic array architecture to perform a highly compute-intensive 

exponentiation operation, namely the Montgomery Modular Multiplication algorithm [67], 

the critical path of the design is the 1024-bit carry propagation path. An extensive statistical 

analysis carried out on this IC by means of a RSA encryption/decryption simulator program, 

which records all partial product terms formed during RSA encryption sessions and the 

lengths of all carry propagations in the addition operations performed at each step of 

Montgomery Modular Multiplication, confirm the above stated facts: In all the 1024-bit 

additions performed during RSA encryption sessions, where the addition operands display a 
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random distribution, most of the longest carry propagations were observed near log21024=10 

and a carry propagation longer than 21 never occurred (Figure 3.1). In fact, the 1024-bit 

carry propagation path, which is the critical path for which the RSA crypto-processor IC was 

designed to handle, never came up in the extensive statistical analysis. A similar statistical 

analysis performed on sets of partial products recorded during the multiplication of 

randomly generated numbers ranging from 8 to 2048 bits, also reveals the same result: 

Average carry propagation length for n-bit addition converges to O(log2n), in stead of  O(n).  
 

 

Figure 5.1 Carry Propagation in 1024-bit RSA Operation 

 

The input-dependent behavior of carry propagation in addition, makes adders very suitable 

to benefit from asynchronous circuit design techniques. Since asynchronous circuits operate 

at average case performance, instead of worst, significant improvements could be achieved 

in terms of speed and throughput: The completion detection mechanism, inherent in 

asynchronous design styles, could be exploited to detect the end of carry propagation in 

addition and operands could be reloaded as soon as the current summation is completed. 

And, for adders having systolic array style architectures, delay-insensitive asynchronous 

circuit design techniques could be effectively combined with the pipelining structure, by 

employing dual-rail threshold logic style gates. The inherent completion detection 
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mechanism of these gates could be tuned to sense the end of carry propagation and assert the 

sum at the instant carry propagation has stopped. In this chapter, merging of delay-

insensitive asynchronous circuit design with systolic array data processing architectures is 

demonstrated on two selected adder applications in dual-rail threshold logic style. 

 

5.1 Delay Insensitive Adders with Early Carry Evaluation  
 

The gate-level delay-insensitive asynchronous design space has been explored for adder 

topologies which can lend themselves easily to pipelining and which can allow for fast 

output generation depending on the applied input data, because in asynchronous addition, 

the evaluation time of addition is highly data-dependent as demonstrated by the carry 

propagation analysis in the preceding section.  

 

Eventually, two different adder topologies have been selected for pipelining in systolic array 

style, chiefly owing to their data-dependent early and fast carry output evaluation feature 

which contributes significantly to speed up of addition in terms of completion time and 

throughput. These two adder topologies are presented in detail below. In addition to early 

carry evaluation, both topologies have it in common the suitability to be pipelined at bit-

level in ripple carry style, i.e., propagating the carry output to the next full adder systole as 

carry input, along a one-dimensional array of adder systoles as illustrated in Figure 5.2. 
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Figure 5.2 Bit-level Pipelined Dual-Rail Adder with embedded registration 
 

(i) Reduced NCL Adder: ([30, 39, 68]) is a reduced form of the DIMS adder [34], using 

logic simplification possible to NCL style dual-rail threshold logic gates. The equations 

defining the functionality of Reduced NCL Adder are given in Table 5.1 and the structure is 

illustrated in Figure 5.3. The Reduced-NCL Adder employs one level of logic for carry out 
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evaluating and two for sum evaluation. Depending on the value of applied inputs ai and bi, 

carry output ci+1 could be generated with or without waiting for the arrival of input carry, ci. 

So the Reduced NCL Adder allows for data-dependent early carry output evaluation and the 

carry output, ci+1 is an input-incomplete output. Meanwhile sum si is always generated from 

inputs ai, bi and carry input ci, so sum si is always late and input-complete. 

 

Table 5.1 Reduced-NCL Adder Formulas 

Signal Name Formula Status Input-Completeness 

Carry Out  ))((1 iiiiii cbabac ⋅⊕+⋅=+  

))((1 iiiiii cbabac ⋅⊕+⋅=+  

Early 
/Late 

Input-Incomplete 

Sum  
1)( +⋅+++⋅⋅= iiiiiiii ccbacbas  

1)( +⋅+++⋅⋅= iiiiiiii ccbacbas  

Late Input-Complete 

 

c1
c0

Cout1

Cout0

Sum1

th23

th23

a1

a0

b1

b0

th35

th35
Sum0

 

Figure 5.3 Reduced NCL Adder Structure 

 

(ii) Manchester Carry Save Adder (CSA) [69] divides the addition in two phases where first 

phase is the calculation of carry-propagate, carry-kill and carry-generate signals from the 

addition inputs, and the second is the calculation of sum and output carry from these signals 

The equations defining the functionality of Manchester Carry Save Adder are given in Table 

5.2 and its structure is illustrated in Figure 5.4. As seen from the table, depending on the 

value of the inputs ai and bi, the carry output ci+1 could be generated early without 
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participation of the carry input ci for cases of carry-generate ({ai, bi }={1,1}) and carry-kill 

({ai, bi }={0,0}). For the case of carry-propagate ({ai, bi }={0,1} or {1,0}), the carry output 

ci+1  should wait for the arrival of the carry input ci, as well as ai and bi inputs, so carry 

generation is late. Due this data dependent early or late evaluation possibility, the carry 

output, ci+1 is referred as an input-incomplete output. Meanwhile sum si is always generated 

from inputs ai, bi and carry input ci, so sum si is always late and input-complete. 

 

Table 5.2 Manchester CSA Formulas 

Signal Name Formula Status Input-Completeness 

Carry Generate  )( iii bag ⋅=  - - 

Carry Kill  
iiii bak )( ⋅=  - - 

Carry Propagate  )( iii bap ⊕=  - - 

Carry Out  )(1 iiii cpgc ⋅+=+  

)(1 cpkc iii ⋅+=+  

Early/Late Input-Incomplete 

Sum  ( ) )( cpckgs iiiii ⋅+⋅+=  
( ) )( iiiiii cpckgs ⋅+⋅+=  

Late Input-Complete 
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Figure 5.4 Manchester CSA Adder Structure 
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5.2 Application of Pipelining and Early Carry Evaluation Conflict 
 

The selected two adder topologies are implemented with dual-rail threshold logic gates and 

converted into bit-level pipelined systolic arrays with embedded registration. The resultant 

systolic adder topologies are given in the following subsections. However when the designed 

adder systoles are connected in ripple carry fashion so that the output carry of each full 

adder systole is propagated along the same row as carry input to the next systole (as given in 

Figure 5.1); data-dependent delay-insensitivity violations are observed due to the input-

incompleteness of the early evaluated carry out signals. These situations are also 

demonstrated in the subsections describing the systolic adder topologies. 

 

5.2.1 DI CSA Systole 

The Delay Insensitive Carry Save Adder (DICSA) has been developed from the basic 

Manchester Carry Save Adder by applying bit-level pipelining in two dimensions with 

dedicated handshaking signals controlling each dimension, as given in Figure 5.5. The 

topology of the Manchester Carry Save Adder has been modified as given in Figure 5.6., so 

that the ACKI/REQI handshaking controls the first (input) stage of the DICSA systole with 

embedded registration of the inputs ai and bi. The ACKO/REQO handshaking controls the 

second (output stage) of the DICSA systole with embedded registration of the outputs ci+1 

and si. Note that the systolic DICSA topology given in this study differs from the ones in 

literature which are either do not employ bit-level pipelining [70, 71] or generally pipelined 

in the multiplier array style [69], so that each adder unit operates independently from other 

adders in the same row delivering the sum and carry outputs to the next row of adders in the 

array. The formulas defining the operation of the systolic DICSA are as given in Table 5.3: 
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Figure 5.5 Pipelined DICSA 
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Figure 5.6 DICSA systole for bit-level pipelining 

 

 

Table 5.3 Systolic DICSA Formulas 

Signal Name Formula Status 

Carry Generate  
iiii REQIbag ⋅⋅= )(  - 

Carry Kill  
iiii REQIbak ⋅⋅= )(  - 

Carry 

Propagate  
iiii REQIbap ⋅⊕= )(  - 

Carry Out  
iiiii REQOcpgc ⋅⋅+=+ )(1  

iiii REQOcpkc ⋅⋅+=+ )(1  

Input-incomplete 

Sum  ( ) iiiiii REQOcpckgs ⋅⋅+⋅+= )(  

( ) iiiiiii REQOcpckgs ⋅⋅+⋅+= )(  

Input-complete 

Output 

Acknowledge 
))()()(( 11 iiiiiii ccccssACKO +⋅+⋅+= ++  Input-complete 

Input 

Acknowledge 
)( iii ppACKI +=  

- 
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As seen from Table 5.3, the inclusion of the embedded registration control inputs REQI and 

REQO does not affect the input completeness characteristics of the addition outputs: Due to 

the data dependent early or late evaluation possibility, the carry output, ci+1 is input-

incomplete while sum output si is input-complete. As for the added handshaking signals, the 

completion detection output for output registration , ACKOi is late and input-complete  while 

the completion detection output for input registration , ACKIi is early and input-incomplete. 

 

However, for this given systolic DICSA topology, the input-incompleteness of the early 

evaluated carry output may violate the Pipelining Constraint for Delay Insensitivity. Spice 

simulations of the systolic DICSA topology implemented in Dual-Rail Threshold Logic 

style displays an interaction of DATA and NULL waves for some input sets, hence a stalling 

of signal flow, pointing to a violation of Delay Insensitivity as seen in Figure 5.7. 

 

 

Figure 5.7 DI violation in systolic DICSA captured by Spice simulation  
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The SDIVA method proposed in Chapter 4 is applied to the systolic DICSA array of 3 

systoles, by assigning the below given symbolic delays to the output paths: 

 

dC
E delay of carry output path in case of early evaluation (input-incomplete) 

dC
L delay of carry output path in case of late evaluation (input-complete) 

dS delay of the sum output path (input-complete) 

dA delay of the completion detection path, ACKO, (input-complete) 

 

And the analysis started with the following assumptions:  

• Inputs ai and bi to all systoles and the carry input to the leftmost systole, ci-1 are 

applied concurrently  

• All wire forks within the systoles are isochronic 

• Since dC
E and dC

L denote the delays of the same path, in cases of input-

incomplete/early and input-complete/late carry evaluation respectively, the delay, dC
E is 

always smaller than the delay dC
L: 

 
L

C
E

C dd <     (9) 
 

Without making any other assumptions about the relative magnitudes of the output delays 

and leaving the handshaking signals of the input registration stage, ACKI/REQI out of the 

analysis, -since they do not have any affect on the output delays-, the evaluation time of 

ACKO output from the time of inputs’ application is calculated in terms of the symbolic 

delays, dS, dA, dC
E, dC

L for all of the 8 possible input scenarios and checked against the 

pipelining constraint, which becomes as given in (10), for the systolic DICSA array: 

 

[ ] [ ] [ ]nnn REQOinputTimeACKOinputTimeACKOinputTime ,,, 1 =≥ +    (10) 
 

Application of the SDIVA method reveals that for the input scenarios {Late, Early, Early} 

and {Late, Early, Late}, delay-insensitivity is violated as indicated by the bold lettering in 

Table 5.4 and Table 5.5. For these two scenarios, it is clearly seen that the evaluation time 

for the ACKO output of (n+1)th systole, which is also the REQO input arrival time for nth 

systole, is smaller than the evaluation time for ACKO output of the nth systole. So NULL and 

DATA wavefronts would interact within nth systole and violate delay-insensitivity. The 

result is no generation of the ACK output of nth systole and consecutively blocking of signal 

flow. 
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In these tables, the following abbreviations are used: 

CI  : Carry Input, 

CO: : Carry Output,  

SO  : Sum Output  

REQO : REQ Input to the output stage,  

ACKO  : ACK Output of the output stage 

 

 

Table 5.4 DICSA Systole in case of {Late, Early, Early} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= CIn-1 + dS dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA 

n-1  
(Late) 

REQOn-1= ACKOn dC
L+dS+dA 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn = CIn + dS dC
L+ dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA 

n  
(Early) 

REQOn= ACKOn+1 dC
E+dS+dA 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= CIn+1 + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA 

n+1 
(Early) 

REQOn+1= ACKOn+2 … 

 
Examination of DICSA Systole (n-1): 

If  dC
L>dS  then ACKOn-1= dC

L + dA and REQO n-1= dC
L + dS + dA > dC

L +dA 

If  dH
L< dV  then ACKOn-1= dS + dA and REQO n-1= dC

L + dS + dA > dS +dA
 

Since REQO n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

Examination of DICSA Systole (n): 

Since dC
L> dC

E,  dC
L + dS > dC

E then ACKOn= dC
L + dS + dA  

Since dC
L> dC

E,  dC
E + dS > dC

E then 

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn 

Since REQOn = ACKOn+1 < ACKOn  , DI Pipelining Constraint is violated ! 
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Table 5.5 DICSA Systole in case of {Late, Early, Late} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= CIn-1 + dS dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA 

n-1  
(Late) 

REQOIn-1= ACKOn dC
L+dS.+dA 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn= CIn + dS dC
L+ dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA 

n  
(Early) 

REQOn= ACKOn+1 Max{ dC
E+dC

L,dC
E+dS }+dA 

CIn+1= COn(early) dC
E 

COn+1(late) dC
E+dC

L 

SOn+1= CIn+1 + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E+ dC

L,dC
E+dS }+dA 

n+1  
(Late) 

REQOn+1= ACKOn+2 … 

 
Examination of DICSA Systole (n-1): 

If  dC
L>dS  then  

ACKOn-1= dC
L + dA and REQO n-1= dC

L + dS + dA > dC
L +dA 

If  dH
L< dV  then  

ACKOn-1= dS + dA and REQO n-1= dC
L + dS + dA > dS +dA

 

Since REQO n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

Examination of DICSA Systole (n): 

Since dC
L > dC

E,  dC
L + dS > dC

E then ACKOn= dC
L + dS + dA  

If  dS > dC
L  > dC

E then  

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn 

If dC
L > dS > dC

E then  

REQO n= dC
E + dC

L + dA < dC
L + dS+ dA =ACKOn 

If dC
L > dC

E > dS then  

REQO n= dC
E + dC

L + dA >dC
L + dS+ dA =ACKOn 

Since REQOn = ACKOn+1 < ACKOn  ,in case dS > dC
L or dC

L > dS > dC
E  

DI Pipelining Constraint is violated ! 
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5.2.2  NCL Adder Systole 

 
The NCL Adder systole has been developed from the reduced-NCL Adder [39], by applying 

bit-level pipelining in one-dimension, so that the handshaking signals ACK/REQ control the 

carry propagation flow as given in Figure 5.8. The topology of the reduced-NCL Adder has 

been modified so that the REQ input is embedded in to the first stage of addition which 

generates the carry output ci+1. Since the second stage of addition uses the output of the first 

stage to generate the sum output si, REQ input also controls the sum output flow implicitly. 

The formulas defining the operation of the NCL Adder systole are given in Table 5.6.  

 

 

Figure 5.8 Pipelined Reduced-NCL Adder 
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Figure 5.9 The Reduced-NCL Adder systole 
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Table 5.6 Systolic Reduced-NCL Adder Formulas 

Signal Name Formula Status 

Carry Out  
iiiiiii REQcbabac ⋅⋅⊕+⋅=+ ))((1  

iiiiiii REQcbabac ⋅⋅⊕+⋅=+ ))((1  

Input-incomplete 

Sum  
1)( +⋅+++⋅⋅= iiiiiiii ccbacbas  

1)( +⋅+++⋅⋅= iiiiiiii ccbacbas  

Input-complete 

Acknowledge ))()(( 11 ++ +⋅+= iiiii ccssACK  Input-complete 

 

As seen from Table 5.6, the inclusion of the embedded registration control input REQ does 

not affect the input completeness characteristics of the addition outputs: Due to the data 

dependent early or late evaluation possibility, the carry output, ci+1 is input-incomplete while 

sum output si is input-complete. Also the added completion detection output for output 

registration, ACKi is late and input-complete . 

 

However, the Systolic NCL Adder topology also violates the Pipelining Constraint for Delay 

Insensitivity for some inputs, due to the input-incompleteness of the early evaluated carry 

output. Spice simulations of the Systolic NCL Adder topology implemented in Dual-Rail 

Threshold Logic style displays an interaction of DATA and NULL waves in the same way 

as the Systolic DICSA. For some input sets, signal flow is  stalled, indicating a violation of 

Delay Insensitivity. Applying the proposed Delay Insensitivity verification analysis method 

to a Systolic NCL Adder array of 3 systoles reveals the input scenarios which violate Delay 

Insensitivity. Assigning similar symbolic delays to the output paths and using the same 

assumptions as the Systolic DICSA, the pipelining constraint given in () could be checked 

for all of the 8 possible input scenarios that generate possible combinations of the Late/Early 

Carry evaluation on three systoles. As given in Table 5.7, the Systolic NCL Adder exhibits 

interaction of DATA and NULL waves for {Late, Early, Early} input scenario only. For this 

scenario, it is clearly seen that the evaluation time for the ACK output of (n+1)th systole, 

which is also the REQI input arrival time for nth systole, is smaller than the evaluation time 

for ACKI output of the nth systole. So NULL and DATA wavefronts would interact within 

nth systole and violate delay-insensitivity resulting in no generation of the ACK output of nth 

systole and consecutively blocking of signal flow. 
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Table 5.7 Reduced-NCL Adder Systole in case of {Late, Early, Early} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= Max{CIn-1, COn-1} + dS dC
L+dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L, dC

L+dS}+dA= dC
L+dS+dA 

n-1  
(Late) 

REQIn-1= ACKOn dC
L+dS+dA 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn = Max{CIn, COn} + dS dC
L+ dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA 

n  
(Early) 

REQIn= ACKOn+1 dC
E+dS+dA 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= Max{CIn+1, COn+1} + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA 

n+1  
(Early) 

REQIn+1= ACKOn+2 … 

 
Examination of DI NCL Systole (n-1): 

Since dC
L+ dS > dC

L   

ACKOn-1= dC
L + dS + dA  

Since dC
L > dC

E,  dC
L + dS > dC

E  

 REQIn= dC
L + dS + dA = ACKOn-1 

Since REQO n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

Examination of DI NCL Systole (n): 

Since dC
L> dC

E,  dC
L + dS > dC

E then ACKOn= dC
L + dS + dA  

Since dC
E + dS > dC

E then 

REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn 

Since REQO n = ACKO n+1 < ACKOn  , DI Pipelining Constraint is violated! 
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5.3 Fixing Early Carry Evaluation Conflict with Structural Modifications 
 

Straightforward application of bit-level pipelining on the selected two delay-insensitive 

adder topologies, the systolic DICSA and NCL adders, results in unreliable operation; due to 

early carry generation feature’s conflicting with the pipelining constraint for delay 

insensitivity. By application of the SDIVA method, input-dependent delay insensitivity 

violations are detected without running extensive simulations. To fix these problems, 

following the methods given in [45] for resolving the Completion Completeness conflict 

would have helped the data-dependent early carry evaluation feature, the major contributor 

to speedup, would have to be sacrificed. So, the structural modifications, proposed in section 

4.2 are applied to the systolic DICSA and systolic NCL adders and the SDIVA method is re-

applied to check whether delay insensitivity is re-established and whether the speed up 

advantages due to early carry evaluation are still maintained.  

 

5.3.1 Modified DI CSA Systole  

 
Due to use of embedded registering in the DICSA systole, two methods for maintaining 

Completion Completeness in NCL pipelines [45] are equivalent: The carry output ci+1,  

should be made Input-Complete, by making the carry input ci participate in calculation of the 

carry output ci+1 for all values of the inputs, ai and bi. However, this solution sacrifices the 

early carry evaluation path, major contributor to speedup. In stead, the structural 

modification proposed in section 4.2 is applied to the DICSA systole by addition of the th22 

gate at the REQO path, which is fed by the ACKO signals of both current and next systoles. 

The REQOi input received from the next systole is inhibited until the current systole’s 

ACKOi signal is generated so that the current systole will not end its evaluation of sum and 

carry outputs, ci+1 and si even if an early REQOi input is received from the next systole to 

initiate the transition to NULL or vice versa. The modified DICSA systole topology is seen 

in Figure 5.10. 

 

Reapplication of the SDIVA method to modified DICSA systole is given in Tables 5.8 and 

Table 5.9, for the two violating input scenarios {Late, Early, Early} and {Late, Early, Late}. 

It is clearly seen that the pipelining constraint for delay insensitivity, formulated in (8) is 

satisfied: The evaluation time of the ACKO output of each systole is smaller than or equal to 

the evaluation time for the REQOE signal within the systole, which is generated from the 

ACKO outputs of the current and next systoles. 
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Figure 5.10 Modified DICSA systole with delayed REQO 
 

 

The modified DICSA systole satisfies all requirements of Delay Insensitivity while 

maintaining the speedup advantages introduced by early carry evaluation. Through the new 

ACKO feedback path within the systole, the Input-Completeness of carry output, ci+1 is 

achieved: Since ACKO output is Input-Complete, using it in the generation of REQE signal, 

which participates in evaluation of all outputs makes all outputs of the DICSA systole Input-

Complete. The carry output evaluation time is not significantly affected by the addition of 

the feedback path either. For those input sets which do not require arrival of carry input from 

the previous systole to evaluate the carry output, namely carry generate and carry kill, early 

carry evaluation still works as before, which could also be easily verified by applying 

SDIVA method for the fastest input Scenario, {Early, Early, Early}, as given in Table 5.10, 

and evaluation time of the carry output, ci+1 is only slightly affected with the addition of the 

new gate:  
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Table 5.8 Modified DICSA Systole in case of {Late, Early, Early} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= CIn-1 + dS dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA 

REQOn-1= ACKOn dC
L+dS+dA 

n-1 (Late) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max {dC
L+dA, dS+dA, dC

L+dS+dA}+dB = 

dC
L+dS+dA+dB 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn = CIn + dS dC
L+ dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA 

REQOn= ACKOn+1 dC
E+dS+dA 

n  
(Early) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max {dC
L+ dS+dA, dC

E+dS+dA}+dB = 

dC
L+dS+dA+dB 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= CIn+1 + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA 

REQOn+1= ACKOn+2  

n+1 
(Early) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 
 

 
Examination of modified DICSA Systole (n): 

Since dC
L> dC

E,  dC
L + dS > dC

E then  

ACKOn= dC
L + dS + dA  

Since dC
E + dS > dC

E   

REQO n= dC
E + dS + dA 

Since ACKOn= dC
L + dS + dA > dC

E + dS + dA = REQO n 

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 5.9 Modified DICSA Systole in case of {Late, Early, Late} Scenario 

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= CIn-1 + dS dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
L,dS}+dA 

REQOn-1= ACKOn dC
L+dS+dA 

n-1 
(Late) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max {dC
L+dA, dS+dA, dC

L+dS+dA}+dB = 

dC
L+dS+dA+dB 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn = CIn + dS dC
L+ dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

L+dS}+dA=dC
L+dS+dA 

REQOn= ACKOn+1 Max{dC
E+ dC

L ,dC
E+dS }+dA 

n  
(Early) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max{dC
L+dS+dA,dC

E+dC
L+dA,dC

E+dS+dA}+dB 

CIn+1= COn(early) dC
E 

COn+1(late) dC
E+dC

L 

SOn+1= CIn+1 + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E+ dC

L,dC
E+dS }+dA 

REQOn+1= ACKOn+2  

n+1  
(Late) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 
 

 
Examination of modified DICSA Systole (n): 

Since dC
L> dC

E,  dC
L + dS > dC

E then ACKOn= dC
L + dS + dA  

If  dS > dC
L  > dC

E then REQO n= dC
E + dS + dA < dC

L + dS + dA =ACKOn 

Since ACKOn > REQO n 

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn 

If dC
L > dS > dC

E then REQO n= dC
E + dC

L + dA < dC
L + dS+ dA =ACKOn 

Since ACKOn > REQO n 

REQE n= ACKOn + dB = dC
L + dS + dA + dB > dC

L + dS + dA =ACKOn 

If dC
L > dC

E > dS then REQO n= dC
E + dC

L + dA >dC
L + dS+ dA =ACKOn 

Since ACKOn > REQO n 

REQE n= REQOn + dB = dC
E + dS + dA + dB > dC

L + dS + dA =ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 5.10 Modified DICSA Systole in case of {Early, Early, Early} Scenario  

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(early) dC
E 

SOn-1= CIn-1 + dS dS 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max {dC
E, dS}+dA 

REQOn-1= ACKOn dC
E +dS+dA 

n-1 
(Early) 

REQE n-1=Max{ACKOn-1, ACKOn}+ dB 
Max {dC

E+dA, dS+dA, dC
E +dS+dA}+dB =  

dC
E+dS+dA+dB 

CIn= COn-1 (early) dC
E 

COn(early) dC
E 

SOn = CIn + dS dC
E + dS 

ACKOn= Max{SOn, COn}+ dA Max{dC
E, dC

E +dS}+dA= dC
E +dS+dA 

REQOn= ACKOn+1 dC
E+dS+dA 

n  
(Early) 

REQE n-1=Max{ACKOn-1, ACKOn}+ dB 
Max {dC

E + dS+dA, dC
E+dS+dA}+dB =      

dC
E+dS+dA+dB 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= CIn+1 + dS dC
E+dS 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E,dC

E+dS }+dA = dC
E+dS+dA 

REQOn+1= ACKOn+2  

n+1 
(Early) 

REQE n-1=..  

 
Examination of modified DICSA Systole (n-1): 

Since dC
E + dS > dC

E REQOn-1= dC
E + dS + dA 

If  dS > dC
E then ACKOn-1= dS + dA < dC

E + dS + dA = REQOn-1 

Since ACKOn-1 < REQOn-1  

REQEn-1= REQOn-1+ dB = dC
E + dS + dA + dB > dS + dA =ACKOn 

If  dS > dC
E then ACKOn-1= dC

E + dA < dC
E + dS + dA = REQOn-1 

Since ACKOn-1 < REQOn-1 

REQEn-1= REQOn-1+ dB = dC
E + dS + dA + dB > dC

E + dA =ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 

Examination of modified DICSA Systole (n): 

Since dC
E + dS > dC

E ACKOn= dC
E + dS + dA = REQO n 

Since ACKOn= REQO n   REQE n= ACKOn + dB = dC
E + dS + dA + dB > ACKOn 

Since  REQE n> ACKOn  , DI Pipelining Constraint is satisfied √ 
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5.3.2 Modified NCL Adder Systole 

 

The two methods for establishing Completion Completeness [45] are also equivalent for the 

systolic NCL Adder, due to embedded registering: Either The carry output ci+1 should be 

made Input-Complete by making the carry input ci participate in calculation of the carry 

output ci+1 for all values of the inputs, ai and bi. But, this solution sacrifices the early carry 

evaluation feature, the major contributor to speed up. Application of the structural 

modification proposed in section 4.2, in the same way as DICSA systole is presented in 

Figure 5.11, as the modified systolic NCL Adder topology. A th22 gate, fed by the ACK 

signals of both current and next systoles, is added on the REQ path. Thus, the REQOi input 

received from the next systole is inhibited until the current systole’s ACKOi output is 

asserted so that the systole will not end its evaluation of sum and carry outputs, ci+1 and si 

even if an early REQOi input is received from the next systole to initiate the transition to 

NULL or vice versa.  

 

 

Figure 5.11 Modified Systolic NCL Adder with delayed REQ 
 

Reapplication of the SDIVA method to modified Systolic NCL Adder is given in Tables 

5.11 for the violating input scenario {Late, Early, Early}. It is clearly seen from the table that 

the pipelining constraint for delay insensitivity, formulated in (8) is satisfied: The evaluation 
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time of the ACK output of each systole is smaller than or equal to the evaluation time for the 

REQE signal within the systole, which is generated from the ACK outputs of the current and 

next systoles. 

 

The modified Systolic NCL Adder satisfies all requirements of Delay Insensitivity while 

maintaining the speedup advantages introduced by early carry evaluation. Through the new 

ACK feedback path within the systole, which uses the Input-Complete ACK output in 

generation of REQ signal, the Input-Completeness of carry output, ci+1 is achieved: Since 

REQ participates in evaluation of all outputs. Meanwhile the carry output evaluation time is 

not significantly affected by the addition of the feedback path either. For those input sets 

which do not require participation of carry input from the previous systole to evaluate the 

carry output, early carry evaluation still works as before, which could also be easily verified 

by applying the SDIVA method for the fastest input Scenario, {Early, Early, Early}, as 

given in Table 5.12, and evaluation time of the carry output, ci+1 is only slightly affected 

with the addition of the new gate:  
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Table 5.11 Modified Systolic NCL Adder in case of {Late, Early, Early} Scenario  

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(late) dC
L 

SOn-1= Max{CIn-1, COn-1} + dS dC
L+ dS. 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max{ dC
L, dC

L.+ dS}+ dA=dC
L+ dS + dA 

REQIn-1= ACKOn Max{ dC
L+ dS.+ dA, dC

L.+ dS. + dA }= 
 dC

L.+ dS. + dA 

n-1 
 (Late) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max { dC
L+ dS + dA, dC

L+ dS + dA }+dB =  

dC
L+ dS + dA +dB 

CIn= COn-1 (late) dC
L 

COn(early) dC
E 

SOn = Max{CIn, COn} + dS dC
L+ dS. 

ACKOn= Max{SOn, COn}+ dA Max{ dC
E, dC

L.+ dS}+ dA=dC
L+ dS + dA 

REQIn= ACKOn+1 dC
E+ dS. + dA 

n 
(Early) 

REQE n= 

Max{ACKOn, ACKOn+1}+ dB 

Max{ dC
L.+ dS. + dA, dC

E+ dS. + dA } = 
 dC

L.+ dS. + dA 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= Max{CIn+1, COn+1} + dS dC
E+ dS. 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E, dC

E.+ dS}+ dA= dC
E+ dS. + dA 

REQIn+1= ACKOn+2  

n+1 
(Early) 

REQE n+1= 

Max{ACKOn+1, ACKOn+2}+ dB 

 

 
Examination of DI NCL Systole (n-1): 

Since dC
L+ dS > dC

L ACKOn-1= dC
L + dS + dA  

Since dC
L > dC

E,  dC
L + dS > dC

E then  REQIn-1= dC
L + dS + dA  

Since REQIn-1= ACKOn-1  REQEn-1= REQIn-1+ dB = dC
L + dS + dA+ dB > ACKOn-1 

Since REQE n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

Examination of DI NCL Systole (n): 

Since dC
L> dC

E,  dC
L + dS > dC

E then ACKOn= dC
L + dS + dA  

Since dC
E + dS > dC

E REQO n= dC
E + dS + dA  

Since REQIn< ACKOn   REQEn= ACKOn + dB = dC
L + dS + dA+ dB > ACKOn 

Since REQE n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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Table 5.12 Modified Systolic NCL Adder in case of {Early, Early, Early} Scenario  

Systole/ 
Scenario 

Input/Output Signal Evaluation Time 

CIn-1 0 

COn-1(early) dC
E 

SOn-1= Max{CIn-1, COn-1} + dS dC
E+ dS. 

ACKOn-1= Max{SOn-1, COn-1}+ dA Max{ dC
E, dC

E.+ dS}+ dA=dC
E+ dS + dA 

REQIn-1= ACKOn dC
E+ dS + dA 

n-1 
(Early) 

REQE n-1= 

Max{ACKOn-1, ACKOn}+ dB 

Max {dC
E+ dS + dA, dC

E+ dS + dA}+dB =  dC
E+ 

dS + dA +dB 

CIn= COn-1 (early) dC
E 

COn(early) dC
E 

SOn = Max{CIn, COn} + dS dC
E+ dS. 

ACKOn= Max{SOn, COn}+ dA Max{ dC
E, dC

E+ dS}+ dA=dC
E+ dS + dA 

REQIn= ACKOn+1 dC
E+ dS. + dA 

n  
(Early) 

REQE n= 

Max{ACKOn, ACKOn+1}+ dB 

Max{ dC
E.+ dS. + dA, dC

E+ dS. + dA } = 
dC

E+ dS. + dA+ dB 

CIn+1= COn(early) dC
E 

COn+1(early) dC
E 

SOn+1= Max{CIn+1, COn+1} + dS dC
E+ dS. 

ACKOn+1= Max{SOn+1, COn+1}+ dA Max{ dC
E, dC

E.+ dS}+ dA= dC
E+ dS. + dA 

REQIn+1= ACKOn+2  

n+1 
(Early) 

REQE n+1= 

Max{ACKOn+1, ACKOn+2}+ dB 

 

 
Examination of DI NCL Systole (n-1): 

Since dC
E+ dS > dC

E  ACKOn-1= dC
E + dS + dA =REQIn-1 

Since REQIn-1= ACKOn-1   

 REQEn-1= REQIn-1+ dB = dC
E + dS + dA+ dB > ACKOn-1 

Since REQE n-1 = ACKOn ≥ ACKOn-1  , DI Pipelining Constraint is satisfied √ 

 

Examination of DI NCL Systole (n): 

Since dC
E+ dS > dC

E ACKOn= dC
E + dS + dA = REQO n 

Since REQIn= ACKOn 

REQEn= ACKOn + dB = dC
E + dS + dA+ dB > ACKOn 

Since REQE n = ACKOn+1 ≥ ACKOn  , DI Pipelining Constraint is satisfied √ 
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5.3.3 Benefits of Modified Systolic DI Adder Structures 

 

The Delay Insensitive Carry Save Adder (DICSA) and Reduced Null Convention Logic 

(reduced-NCL) Adder topologies are adopted for bit-level pipelining and analyzed for 

reliable operation. Since straightforward implementation of the bit-level pipelined adder 

systoles exhibited input-dependent violations of delay insensitivity, hence unreliable 

operation, the SDIVA method has been applied to the designed systolic adders to resolve 

these conflicts, which turned out to be resulting from the early carry evaluation feature of the 

adder topologies violating the Pipelining Constraint for Delay Insensitivity. Without 

resorting to the known methods to attain Completion Completeness, which would have 

sacrificed the speedup advantages introduced by the early carry evaluation features 

completely, modifications are proposed to the bit-level pipelined adder topologies, to 

maintain reliable delay insensitive operation. Distinguishing characteristics of both Systolic 

DI Adder topologies are summarized and compared in Table 5.13. 

 

Spice-based simulation of the modified DI Systolic Adder circuits constructed at transistor 

level in Dual-Rail Threshold Logic Style, verified that the modified architectures still enjoy 

the speed up advantages due to their early carry evaluation features while maintaining 

reliable delay insensitive operation. The introduction of the ACK feedback path contributed 

to the transistor count of each adder by 12 transistors but did not bring any extra signal 

exchange at systole boundaries (Note that gate count is directly proportional to silicon area). 

As seen from the table, although the gate count of DICSA is twice as much as the gate count 

of reduced-NCL adder, with more logic stages for carry and sum evaluation, the completion 

time of DICSA systole is better than reduced-NCL adder’s, due to the use of smaller and less 

complicated NCL gates in DICSA systole.  

 

Table 5.13 Comparison of DI adder systoles  

Characteristics DICSA Systole NCL Adder Systole 

# stages (Carry Out) 4 1 

# stages (Sum) 4 2 

#gates (silicon area) 274 130 

completion time/systole 
(in 0.35μm CMOS technology) 1.08ns 1.70ns 
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5.3.4 Performance Comparison of Systolic DI Adder Structures 

 

The performances of DICSA and reduced-NCL adder against increased bit-lengths, obtained 

by simulations performed on maximal length input sets, are presented in Table 5.14. Note 

that Completion Time indicates the time from the application of data inputs to the generation 

of all output bits, sum and carry out, i.e. the completion time of a DATA wave. On the other 

hand DATA-to-DATA Cycle Time (TDD) indicates the time from the application of a data 

input set to the application of next input set, i.e. the completion time of DATA wave and the 

succeeding NULL wave.  

 

Table 5.14 DI Systolic Adder performances against bit length 

NCL Adder Systole DICSA Systole 

# Bits Average  
DATA-to-DATA 
Cycle Time (TDD) 

Average 
Completion 

Time 

Average 
DATA-to-DATA 
Cycle Time (TDD) 

Average 
Completion 

Time 
1 4.29ns 1.70ns 5.72ns 1.08ns 
2 5.57ns 2.97ns 5.86ns 2.96ns 
4 6.98ns 5.43ns 6.81ns 4.72ns 
8 11.04ns * 8.49ns* 7.55ns* 7.50ns* 
(*): Not simulated with maximal length input sequence 

 
Since the maximal length sequence for n-bit addition increases by O(22n), Spice-based 

simulation of maximal length sequences become excessively long and tedious as bit-length 

of addition increases. The results for 8-bit addition in Table 5.14 could not be obtained from 

simulation of the maximal-length input sequence, which is of length 217(=28x28x2), but from 

simulation of a pseudo random sequence, namely PN-sequence, of length 3000. Similarly, it 

was not either possible to run Spice simulations with input sequences long enough to 

evaluate average Completion Time and DATA-to-DATA Cycle Time (TDD) values when bit-

length of addition is greater than 8. As it is, the values presented in Table 5.14 do not suffice 

to deduce any conclusions about performances of DICSA and reduced-NCL adder systoles. 

 

To overcome the simulation difficulty, an estimation method is constructed by means of a 

program code in C language which accepts randomly generated input sequences of bit length 

n and calculates the carry propagation delay of n-bit addition using delay values obtained 

from the Spice-based simulation of a single DI adder systole. In order to keep run time 

complexity of the program code at O(n) instead of O(22n), so that higher n-bit values could 
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also be covered, an approximation is made by providing two randomly generated sequences, 

not as n-bit inputs a and b to the addition, but as randomly generated n-bit inR=a xor b and 

inCP=carry out values. The n-bit input inR indicates either one of the carry generation (for 

bit value “1”) or carry propagation (for bit value “1”) case so that Early or Late delay values 

(recorded by Spice simulations) are assigned to bitwise carry propagation delays. The 

second n-bit input inCP indicates if an output carry is generated by each bitwise addition so 

that bitwise carry propagation delays are to be accumulated or not. By evaluating in this 

manner from least significant bit to most, maximum carry propagation delay in each n-bit 

input pair is calculated with O(n) complexity.  

 

The crucial point in this approximation is to run the program for a number of times L, which 

is sufficiently long to evaluate a meaningful average. To achieve this at a reasonably low L 

value, since the complexity of the program code becomes now O(Ln), the two input 

sequences inR and inCP should be representative of all possible input sequences with 

randomly generated L sequences. Since the probability of Late and Early carry evaluation is 

equal for both DICSA and reduced-NCL adder systoles, a randomly generated inR sequence 

represents both inputs a and b at once. With the randomly generated inCP sequence, a 

uniform distribution of carry propagation is obtained by fixing the L value at 100000 for this 

study, covering a bit-range n from 2 to 64. The program codes generating the average 

evaluation time estimation for DICSA and reduced-NCL adder systoles are given in 

Appendices A and B. The program codes slightly differ from each other due to modeling of 

two different adder topologies: Since the delay due to the first stage of the DICSA systole 

does not accumulate by carry propagation and does not change with input, it is added as a 

constant to the calculated average evaluation time. Meanwhile, the delay due to the first 

stage of the reduced-NCL adder systole adds up with carry propagation, hence it is added as 

a constant to carry accumulation at every carry propagation step. The results of these 

estimation programs are plotted in Figure 5.12 for both adder structures alongside with the 

evaluation time curve of a synchronous Full Adder for comparison. 

 

In Figure 5.12, the evaluation time curve of Full Adder displays O(n) increase against bit 

length n, while the average evaluation time curves of systolic DICSA and reduced-NCL 

adders display O(log2n) increase. The results confirm that due to self-timed data flow, 

proposed adder systoles both operate at O(log2n) average completion time, which makes 

them preferable to synchronous Full adder for bit-lengths greater than 16-bit for DI CSA and 

21-bit for Reduced-NCL adder. Another revelation of this approximation is that, as the bit-
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length increases, the DICSA outperforms the reduced-NCL adder in terms of average 

completion time by approximately 3ns, although for small bit-lengths their performances are 

close to each other. 

 

 

Figure 5.12 Evaluation Time versus Bit Length in Adders 
 

 

In Figure 5.13, the average DATA-to-DATA Cycle Times (TDD) of the systolic DI adders, 

obtained from simulations are given. Due to bit-level pipelining the adders are expected to 

deliver nearly constant DATA-to-DATA Cycle Time (TDD) hence constant throughput 

against increased operand length. But since all adder input bits are applied concurrently and 

all the adder outputs are read concurrently as a whole word, i.e. the benefits of bit-level 

pipelining are not fully reflected in these simulations and the curves in Figure 5.13 display 

slightly increasing characteristics against bit-length: 
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Figure 5.13 DATA-to-DATA Cycle Time (TDD) versus Bit Length in DI Systolic Adders 
 

 

 

5.4 Application of Bit-Skewed Inputs 
 

Bit-level pipelining with bit-level completion is advantageous for ripple carry style adders, 

since they become faster when the carry signal is propagated at each stage of the pipeline 

from the least significant systolic adder to the most significant. This has been demonstrated 

by the two designed DI systolic adders. But the most important benefit of bit-level 

pipelining, which is single-bit adder latency, is still not attained since all adder input bits are 

applied concurrently and the adder outputs, namely the sum bits, are “de-skewed” at the 

output, i.e. registered as a whole word. As a result the latency and throughput calculations do 

not reflect the full performance of delay-insensitive systolic addition.  

 

The bit-level pipelined systolic adders could further speedup, especially in case of addition 

of long operands, still using the same proposed architectures but applying skewed input bits 

[72], i.e. by each systolic adder in the pipeline receiving the next input set as soon as it has 

completed summation of the previous bit without waiting for completion of all systoles in 
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the pipeline. For dual-rail threshold logic this would mean, each systolic adder receiving the 

NULL wave as soon as its DATA wave has been processed and receiving the next DATA 

wave as soon as the NULL wave has been processed as seen in Figure 5.14 This is also 

called “vertical pipelining” [73] and improves the overall throughput of the systolic array.  
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Figure 5.14 Bit-Skewed Inputs/Outputs in a DI Systolic Adder 
 

 

5.4.1 Bit-skewed Systolic DI CSA Pipeline 

 

The DICSA architecture reconstructed in this thesis is very suitable to benefit from vertical 

pipelining. The DICSA systole could easily be adopted to receive bit-skewed inputs with its 

dual-stage evaluation structure and its dedicated handshaking signals ACKI/REQI in the 

data flow direction, to attain constant throughput against increased bit-length. 
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The simulation environment for the designed systolic DICSA modules has been modified to 

apply inputs and receive outputs in bit-skewed fashion and exhaustive simulations have been 

started with randomly generated large data sets. The first available simulation results reveal 

that 27% improvement has been established in the average throughput of the 4-bit DICSA 

adder while the improvement in average throughput of the 8-bit DICSA adder is currently 

around 34%. The improvement in throughput is expected to increase as bit-length of the 

adder increases so that almost constant throughput is attained regardless of bit-length. 

 

5.4.2 Bit-skewed Systolic NCL Adder Pipeline 

 

The NCL adder systole reconstructed in this thesis is also very suitable to benefit from 

vertical pipelining. It could be adopted to receive bit-skewed inputs with its dual-stage 

evaluation structure. Although it has only one set of handshaking signals ACK/REQ, the 

same handshaking signals could control the data flow in directions, the direction of data/sum 

flow and the direction of carry flow, to attain constant throughput against increased bit-

length. 

 

5.4.3 Benefits of Bit-skewed Pipelining 

 

The simulations performed on systolic DICSA and NCL adders confirmed that when the 

environment for the designed systolic adder modules has been modified to apply inputs and 

receive outputs in bit-skewed fashion, 27-34% improvement has been established in the 

average throughput of the 4-bit and 8-bit systolic adders. The improvement in throughput is 

expected to increase as bit-length of the adder increases so that almost constant throughput is 

attained regardless of bit-length. 
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Equation Chapter 5 Section 1 

CHAPTER 6 
 
 
6                                                        CONCLUSION 
 
 
 
Asynchronous circuit design style has been adapted to systolic array architectures to exploit 

the benefits of both techniques, for fast, scalable and modular design. The initiative for this 

study was that merging asynchronous circuit design techniques with systolic array 

architectures would result in total elimination of global signal exchange which would in turn 

result in an improvement of the speed and throughput of data processing. Having in mind 

that the resultant circuits should be suitable for System-On-Chip design in deep sub-micron 

technologies, delay-insensitive asynchronous design style has been adopted, keeping the 

abstraction at logic level and employing dual-rail threshold logic gates with static 

implementation as design library. 

 

Inspired by the early carry generation related problems encountered in the design of systolic 

adders, a new structural delay-insensitivity verification analysis method is proposed for 

asynchronous systolic arrays in dual-rail threshold logic style. The proposed method, namely 

SDIVA, employs symbolic delays for all output evaluation paths and works at the behavioral 

specification level. For bit-level pipelined systolic arrays, which have data-dependent early 

output evaluation in one-dimension, SDIVA method confines the verification analysis task 

to examination of three adjacent systoles so that by analyzing all possible early/late output 

evaluation scenarios on three systoles, the delay-insensitivity of a complete systolic array 

could be verified at once, regardless of the array dimensions. This way, SDIVA achieves a 

significant reduction in verification effort and time. Since the verification analysis is kept at 

behavioral abstraction level using of symbolic delays and no timing constraints are imposed 

on the circuit, there is no requirement to know or adjust the actual path/gate delays in the 

circuit. As a result, the SDIVA method is completely independent of technology parameters 

and is robust against enviromental conditions. Using the SDIVA method, also structural 

modifications to the topologies offending the delay insensitivity requirements could be 

devised, while maintaining early output evaluation and speed up advantages.  

 

When compared to exsisting verification analysis methods, the SDIVA method brings 

significant advantages in decreasing verification effort and also fills the void for verification 
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of pipelined structures. Formal analysis methods, being the most well-known and commonly 

used verification method at behavioral abstraction level, are based on exploration of 

reachable states [46] and because of this, are subject to the state space explosion problem 

with increasing circuit sizes. Recent research to reduce verification complexity of 

asynchronous circuits mostly target at compacting state space [53, 55] or using abstraction 

[54] to reduce verification complexity, addressing State Transition Graph (STG) based 

design flows such as Petrify [50]. Introducing Relative Timing Assumptions [57, 59] or 

Lazy Transition System Assumptions [56, 60] are among the recent methods which 

introduce timing constraints at behavioral abstraction level and test the actual delays in the 

synthesized netlist against these timing constraints for verification of the delay model. Using 

symbolic or parametric delays in stead of actual or relative timing constraints as presented in 

[63] [64], is another method for timing abstraction, where actual delays of the circuit could 

only be known after implementation. Using unspecified timing constraints represented as 

symbols, a set of linear constraints which guarantee the correctness of timed transition 

systems could be generated and circuit optimizations could be based on these models. For 

automated design flows using dual-rail threshold logic gates such as NCL-X [51] [52], there 

are recently proposed techniques for finding a compromise between circuit optimization and 

reliable delay-insensitive operation. Early Evaluation and Partial Completion Methods given 

in [61] and [62] respectively, both introduce relaxation of delay-insensitivity constraints for 

dual-rail threshold circuits to allow for early evaluation of signals so that more optimized 

and faster circuits could be synthesized without actually violating delay-insensitivity 

constraints. This is achieved by distributing the early output evaluation paths within a 

complex combinational circuit in such a way that the robustness of delay-insensitivity could 

still be maintained in the overall circuit [61] [62] .Partitioning a dual-rail threshold logic 

circuit into its control and data paths is another way to reduce delay-insensitivity analysis 

complexity as proposed in [46], which tackles this problem through orphan analysis, 

assuming that completion of logic operations is properly acknowledged at asynchronous 

registration stages. However, all the existing delay-insensitivity verification techniques 

recently developed for dual-rail threshold logic circuits address the data flow paths in the 

circuit, assuming that the control parts achieving the completion detection and handshaking 

mechanisms function in a delay-insensitive manner, hence leaving the problem of early or 

no generation of completion acknowledgment uncovered. Besides, none of them address 

pipelined structures such as systolic arrays, where the constraints for maintaining delay-

insensitivity in the control flow become more significant in determining the performance of 

the circuit.  
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For demonstrating the proposed SDIVA method as well as merging of systolic array style 

and asynchronous design approaches, two systolic adder architectures have been designed 

and implemented in delay-insensitive asynchronous design style and constraints of delay-

insensitivity have been analyzed on them. Due to being the basic building block of signal 

processing applications, and being often on the critical path, adders were chosen for this 

demonstration. Two systolic delay-insensitive adders were pipelined at bit-level so that each 

systole functions as a full-adder, propagating the carry signal to the next systole in row in 

ripple-carry fashion. Due to the selection of adder topologies, both adders had data-

dependent early carry output evaluation which contributed greatly to the speed-up of the 

system, but violated delay-insensitivity. Applying the proposed SDIVA method to these 

systolic adders, these delay-insensitivity violations are detected without running extensive 

simulations. Then without resorting to known methodologies which would have diminished 

the early carry generation feature, the systolic adder topologies are modified to re-establish 

delay insensitivity by re-applying the SDIVA method. The resultant systolic adder 

topologies displayed the average case performance, O(log2n) which is expected of 

asynchronous addition. 

 

Lastly, bit-skewed input application is applied on the designed delay-insensitive systolic 

adders to further enhance the speed up issues and to boost their performance up to the 

constant throughput limit which is expected from bit-level pipelining. This method was 

expected to compensate for the excess processing delay introduced by the NULL cycles in 

dual-rail threshold logic implementation style by vertical pipelining the input and output 

registration stages of the adders. The obtained results pointed to 27-34% improvement in 

completion time of addition . 

 

The most promising part of the thesis study, which could have a potential for future 

improvement is the proposed Structural Delay Insensitivity Verification Analysis method 

SDIVA. It is a new technique directly targeting systolic array style architectures. And it also 

differs from other verification methods using symbolic delays in one major aspect: It does 

not impose any timing constraints on the environment, so there is no need for verification of 

the environment against any timing assumptions after implementation. The use of symbolic 

delays provides a degree of timing abstraction which makes this technique very handy to be 

re-applied during circuit optimizations. Since exact delay values are not required to apply 

the SDIVA technique, technology migration is also easier. 
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The SDIVA method could also be extended to systolic arrays which have early output 

evaluation paths in two-dimensions or multiple early evaluating outputs in one-dimension. 

In a two-dimensional systolic array, each systole has interaction with 4 to 8 neighboring 

systoles depending on the functionality. At worst case, i.e. if a systole has interaction with 8 

neighbors, the delay-insensitivity analysis of the entire array could be reduced to 

examination of nine adjacent systoles and 29 early/late output evaluation scenarios on a nine-

systole cluster, which is still a significant reduction in verification analysis cost, especially 

when compared to formal analysis methods. This technique could be very useful in design 

and verification of pipelined data processing systems in general, such as filters, crypto-

processers, image processers, so that verification of a regular systolic architecture could be 

performed by analysing a single systole and its neighbours which exchange signals with that 

systole.  

 

A possible future utilization of the SDIVA method could be embedding it into automated 

CAD tools for verification of delay-insensitivity . 
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APPENDIX A: C Code for DICSA Estimation  
 
 

#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
 
void char2bin (unsigned char* , unsigned char* , int ); 
 
FILE *inCP; 
FILE *inR; 
 
int main() 
{ 
 int R, N, L; 
 int i, m; 
 
 unsigned char* dR; 
 unsigned char* dCP; 
 unsigned char* binR; 
 unsigned char* binCP; 
 
 double* dX; 
 double dxa; 
 double dCS; 
 double dACC, dAVE; 
 

printf("\nEnter the number of binary digits: \n"); 
 scanf("%d", &N); 
 L = 100000; 
 printf("\nLength of the sequence to be generated: %d\n", L); 
 
 if ( ( inCP = fopen("randCP.dat","r") ) == NULL ) 

{ 
printf("\n Can't open file for input\n\n"); 
exit(-1); 

} 
 
 if ( ( inR = fopen("randR.dat","r") ) == NULL ) 

{ 
printf("\n Can't open file for input\n\n"); 
exit(-1); 

} 
 
 dR = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 dCP = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 binR = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 binCP = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 
 dX = (double*) malloc ( N*sizeof(double)); 
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  dACC = 0; 

for (i=0; i<L; i++) 
{ 

  fscanf(inR,"%s", dR); 
char2bin(dR, binR, n); 

  fscanf(inCP,"%s", dCP); 
char2bin(dCP, binCP, n); 
 

  dxa = 0; 
  for (m=0; m<n; m++) 
   { 
    if (binR[m]==0) 
   { 
    dX[m] =2.2915; // delay of EARLY Carry Outpu of DICSA 
   } 
    else if (binR[m]==1) 
   { 
    dX[m] =2.293; // delay of LATE Carry Output of DICSA 
   } 
   else printf("\nerror!!\n");   
    } 
  dCS=0; 
  for (m=0; m<n; m++) 
   { 
   if (binCP[m]) 
    dxa = 0; 
   else  
   { 
     dxa = dxa + dX[m]; 
     dCS = (dxa > dCS) ? dxa :  dCS; 
   } 
    } 
  dACC = dACC + dCS; 
   } 

dAVE = dACC/L; 
dAVE = dAVE + 0.5 ;// add propagation delay for first stage of DICSA systole 

 printf("\n%f\n", dAVE); 
fclose(inCP); 
fclose(inR); 

} 
 
void char2bin (unsigned char* cnum, unsigned char* bnum, int blen){ 
int b; 

for (b=0; b<blen; b++) 
{ 
 if (cnum[b] == '0')  

bnum[b] = 0; 
else if (cnum[b] == '1') 

bnum[b] = 1; 
else printf("\nerror!!\n"); 
} 

} 
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APPENDIX B: C Code  for DI NCL Adder Estimation  
 
 

#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
 
void char2bin (unsigned char* , unsigned char* , int ); 
 
FILE *inCP; 
FILE *inR; 
 
int main() 
{ 
 int R, N, L; 
 int i, m; 
 
 unsigned char* dR; 
 unsigned char* dCP; 
 unsigned char* binR; 
 unsigned char* binCP; 
 
 double* dX; 
 double dxa; 
 double dCS; 
 double dACC, dAVE; 
 

printf("\nEnter the number of binary digits: \n"); 
 scanf("%d", &N); 
 L = 100000; 
 printf("\nLength of the sequence to be generated: %d\n", L); 
 
 if ( ( inCP = fopen("randCP.dat","r") ) == NULL ) 

{ 
printf("\n Can't open file for input\n\n"); 
exit(-1); 

} 
 
 if ( ( inR = fopen("randR.dat","r") ) == NULL ) 

{ 
printf("\n Can't open file for input\n\n"); 
exit(-1); 

} 
 
 dR = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 dCP = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 binR = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 binCP = (unsigned char*) malloc ( N*sizeof(unsigned char)); 
 
 dX = (double*) malloc ( N*sizeof(double)); 
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  dACC = 0; 

for (i=0; i<L; i++) 
{ 

  fscanf(inR,"%s", dR); 
char2bin(dR, binR, n); 

  fscanf(inCP,"%s", dCP); 
char2bin(dCP, binCP, n); 
 

  dxa = 0; 
  for (m=0; m<n; m++) 
   { 
    if (binR[m]==0) 
   { 
    dX[m] = 2.16; // delay of EARLY Carry Output of NCL Add 
   } 
    else if (binR[m]==1) 
   { 
    dX[m] = 2.42; // delay of LATE Carry Output of NCL Add 
   } 
   else printf("\nerror!!\n");   
    } 
  dCS=0; 
  for (m=0; m<n; m++) 
   { 
   if (binCP[m]) 
    dxa = 0; 
   else  
   { 
     dxa = dxa + dX[m] + 0.5; // add propagation delay for 

   // ACK generation in NCL Adder 
     dCS = (dxa > dCS) ? dxa :  dCS; 
   } 
    } 
  dACC = dACC + dCS; 
   } 

dAVE = dACC/L; 
dAVE = dAVE +  

 printf("\n%f\n", dAVE); 
fclose(inCP); 
fclose(inR); 

} 
 
void char2bin (unsigned char* cnum, unsigned char* bnum, int blen){ 
int b; 

for (b=0; b<blen; b++) 
{ if (cnum[b] == '0')  

bnum[b] = 0; 
else if (cnum[b] == '1') 

bnum[b] = 1; 
else printf("\nerror!!\n");} 

} 
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