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ABSTRACT

TAILORING ONE DIMENSIONAL NOVEL NANO STRUCTURES FOR SPECIFIC
APPLICATIONS USING TOOLS OF MOLECULAR MODELING

Malc�o§lu, Osman Bar�³
Ph.D., Department of Physics

Supervisor: Prof. Dr. �akir Erkoç

March 2008, 151 pages.

In this work, the use of theoretical tools of molecular modeling for tailoring 1D novel

nanomaterials is demonstrated. There are four selected nano-structures as examples,

each tailored for a speci�c demand of nano-technology that is yet to be ful�lled. For

the purpose of modeling/calculating the electronic and structural properties, various

methods of de�ning the interatomic interaction, such as empirical potential energy

functions, semi-empirical methods and density functional theory, are used. Each of

these methods have a di�erent level of approximations leading to limitations in their

use. Furthermore, each method needs to be calibrated carefully in order to obtain

physically meaningful results. Examples being novel nano-structures, there does not

exist any experimental observations directly studying the material at hand. Thus, in

order to obtain a parameter set that best describes the system, a series of pre-existing

structures that are physically and/or chemically related are used. Among the methods

employed, the density functional theory (DFT) is certainly the most popular one, due to

its accuracy and more importantly the framework it provides for perturbative extensions

otherwise nearly impossible to calculate in Hartree-Fock level.

Keywords: Novel carbon nanomaterials, density functional theory, molecular-dynamics
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ÖZ

UYGULAMAYA YÖNELIK TEK BOYUTLU NANO YAPILARIN MOLEKÜLER
MODELLEME TEKNIKLERI KULLANARAK HAZIRLANMASI

Malc�o§lu, Osman Bar�³
Doktora , Fizik Bölümü

Tez Yöneticisi: Prof. Dr. �akir Erkoç

Mart 2008, 151 sayfa.

Bu çal�³mada, uygulamaya yönelik tek uzaml� karbon nanoyap�lar�n molekül modelleme

teknikleri kullanarak incelenmesi önerilmi³ ve örneklendirilmi³tir. Nanoteknoloji uygu-

lamalar� olabilecek dört farkl� model incelenmi³tir. Modellerin yap�lar� ve elektronik

özelliklerinin hesaplanmas� için ampirik ve yar� ampirik potansiyeller, Yo§unluk Fonksiy-

oneli Kuram� gibi farkl� yöntemler uygulanm�³t�r. Uygulanan her yöntemin bar�nd�rd�§�

farkl� yak�nsamalar uygulama alanlar�nda farkl� k�s�tlamalara yol açmakta, ve model

hakk�nda farkl� örneklemeler gerektirmektedir. Örnek olarak incelenen yap�lar ve özel-

likler için uygun olan fonksiyoneller ve dalga fonksiyonu setini seçmek amac�yla kimyasal

veya yap�sal aç�dan benzer yap�lar göz önüne al�nm�³t�r.

Elektronik özellikler için günümüzde yayg�n olarak kullan�lan Yo§unluk Fonksiyoneli

Kuram� yöntemi kullan�lm�³t�r. Bu kuram�n sa§lad�§� yap�sal çerçeve ile farkl� �ziksel

özelliklerin hesaplanmas� için Hartree-Fock seviyesinde mümkün olmayan yak�nsamalar

yap�labilmektedir.

Anahtar Kelimeler: karbon nanomalzeme, Yo§unluk fonksiyonel kuram�, molekül-dinami§i

v



To my mother, family, and in memory of my father.

vi



ACKNOWLEDGMENTS

Before anything else, I would like to express my deepest gratitude to my advisor

Prof. Dr. �akir Erkoç, with whom I have been studying more than eight years now. It

was through his teachings, not only in the scienti�c sense, but also in terms of discipline

and advisorship that this work you are about to read was possible.

I can still remember my �rst day in METU, the long queue at the registration

desk, and the strangeness of the surroundings. It feels funny that this memory is older

than eleven years now. I have seen my share of "circulation of people" within these

years. Most of my friends I have met in my undergraduate years are long gone for other

adventures, and now, the time of my departure comes near. I hope farewell in their

journeys, maybe we will meet again someday.

There are a number of people I would like to acknowledge for their direct help and

support in my Ph.D. years, although I am doubtful I will be able to express my gratitude

in the extent they deserve within the constraints of this text.

First of all, I would like to thank everyone in our group in METU for their friendship

and help, especially my partners in the micro anthropological entity formed by Emre

Ta³c�, Efe Yazgan and me. Every single day of coming to work was more interesting and

fun than the previous one thanks to them. It should also be mentioned that although

their line of work does not coincide directly with ours, Sezen Sekmen and Yasemin

Yazgan are the honorary members of this socio-(a)pedagogical entity due to its very

de�nition, and their contribution can not be overlooked. The cheerfulness and friendship

vii



of Rengin Peköz, Emel Kilit and Özge Amutgan has always made an otherwise ordinary,

even sad, day better. I will certainly long the customary lunch at each weekday. Naz�m

Dugan has courageously embraced all the computational work I am otherwise entitled

with in times of need, like when I was writing this thesis, I hope you follow the path

of scienti�c enlightenment you have chosen despite our best e�orts in intrusion with

more recreation than creation. Hüseyin Oymak, the big brother of our laboratory is

working happily in Korea now. I hope to see you back in Turkey soon. Deniz Çal�³�r

Tekin, and Aytun Koyuncular, the hard workers, I hope you achieve more than we did

in your studies. Although I have met her only recently (my loss), Assoc. Prof. Dr.

Hande Üstünel deserves a special thanks at this point, for her e�orts in teaching us

contemporary solid state theory, and her trust in me when I applied abroad. I hope

everything turns up alright for you, and you can achieve all the things you want, look

forward to traveling with you again. I would also like to thank the fellow assistants

in my department, Zeynep Deniz Eygi, Döndü �ahin, �nanç Kan�k, Hüseyin Da§, Ay³e

Ça§�l, Elif Beklen, Nadeer Gazanfari, Kadir Gök³en, Buket Kaleli, Efe Kemaneci and

all the others for making this the most cheerful department in whole METU, I wish I

got to know you better sooner. Also thanks to the former grad student Cheedem Özkan

(not forgetting the contribution of Dr. Sururi ), I am now addicted to Tchai-tea-latte

of Starbucks, and considering my options to compensate abroad.

The sizable load of bureaucratic work of studying in METU surely can not be han-

dled without the understanding help of the chairperson Prof. Dr. Sinan Bilikmen, the

vice chairpersons, Prof. Dr. �brahim Günal, and Prof. Dr. Meltem Serin Zeyrek, and

the hard work of the secretaries, Mrs. Sevim Aygar, Mrs. Zeynep Eke and Mrs. Gül³en

Özdemir Parlak, now retired Mrs. Sultan Köksal and recently joined Mr. Süleyman

Ta³

My mother A. Hülya Demirkan has always supported me in every way, and en-

couraged me in path I have chosen Without her support I would most probably be a

viii



tradesperson working in a dull job, always in self denial for what I have missed. I have

met with the other part of my family rather late, and in a time of great stress, and it is

sad to see I have met them this late. Ferda Malc�o§lu, I hope you �nd yourself in the

new �eld you have chosen, and achieve great success, Rana Güzelda§, I hope you make

your life meet your expectations to the fullest extent, once little ducklings, now little

ladies, Berna, Birgül, and Birnur, I wish you a good life, support each other no matter

what may life toss at you.

Before I conclude, I would like to thank everyone working in the sports facilities of

METU, the trainers and workers, for the support and encouragement in time of need,

and the ODTU-DOJO, which I am honored to be a part of and sad to meet all the

beatiful people within so late.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

1 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The special importance of Carbon atom . . . . . . . . . . . . . . 4
1.3 Approximate and Conquer: A Solution to the Infamous Many

Body Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 6
1.4 Handling the electronic equation of motion . . . . . . . . . . . . 9

1.4.1 An alternative for wave-functions in the quest for ob-
servables . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Nature of the interaction potential . . . . . . . . . . . . 16
1.4.3 Representing the orbitals . . . . . . . . . . . . . . . . . 20

1.5 The possibility of a classical treatment to the problem of struc-
tural mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Statistical Mechanics at the scale of few atoms . . . . . . . . . . 34
1.6.1 Boundary conditions . . . . . . . . . . . . . . . . . . . 42
1.6.2 Computational Methods . . . . . . . . . . . . . . . . . 43

x



1.6.3 Further improvements to the speed . . . . . . . . . . . 52

2 ON THE POSSIBILITY OF A POLYMER-LIKE NANOROD BASED
ON STANDALONE BENZENOID CARBON RINGS. . . . . . . . . . . 54
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2 Molecular Dynamics Investigation . . . . . . . . . . . . . . . . . 56

2.2.1 Method of calculation & Preparation of models . . . . 56
2.2.2 Results & Discussion . . . . . . . . . . . . . . . . . . . 59

2.3 Periodic Investigation . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.1 Method of calculation & Preparation of models . . . . 69
2.3.2 Results & Discussion . . . . . . . . . . . . . . . . . . . 71

2.3.2.2 The �ideal� benzorod . . . . . . . . . . . . . 71
2.3.3 Relaxed Benzorod . . . . . . . . . . . . . . . . . . . . . 79

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 BAMBOO SHAPED SINGLE WALL CARBON NANOTUBES . . . . . 86
3.1 Carbon nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Bamboo shaped carbon nanotubes . . . . . . . . . . . . . . . . . 90

4 FUNCTIONALITY OF C(4,4) CARBON NANOTUBE AS MOLECU-
LAR DETECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Method of Calculation . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 102

5 STRUCTURAL ANDMOLECULAR ELECTRONIC PROPERTIES OF
BN RING DOPED SINGLE�WALL CARBON NANOTUBES . . . . . 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 120

6 CLOSING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

APPENDICES

A LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . 136

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xi



LIST OF TABLES

1.1 The empirical parameters of the Terso� PEF for carbon [39]: . . . . . . 33
1.2 The empirical parameters of the Brenner PEF [40]: . . . . . . . . . . . . 33
1.3 Maxwell distribution of speeds. . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Parameters for Carbon Nanotubes(a) (adapted from [66]). . . . . . . . . 90
3.2 Diameters, d (in Å), of ideal carbon nanotubes in zigzag, C(n,0); arm-

chair, C(n,n); and chiral, C(n,m), m<n, m6=0, models (ac−c = 1.42 Å for
this case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Calculated energies (in kcal/mol) from AM1, for C(n,m) and CBN(n,m)
nanotubes. Etot: Total Energy; Ebind: Binding energy; Eatom:Isolated
atomic energy; Eelec: Electronic energy; Ec-c: Core-core Interaction
energy; ∆HO

f : Heat of formation . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Calculated energies (in kcal/mol) from AM1, for C(n,m) and CBN(n,m)

nanotubes. Etot: Total Energy; Ebind: Binding energy; Eatom:Isolated
atomic energy; Eelec: Electronic energy; Ec-c: Core-core Interaction
energy; ∆HO

f : Heat of formation . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Calculated energies (in kcal/mol, unless otherwise stated) and dipole

moment from DFT, for C(n,m) and CBN(n,m) nanotubes. . . . . . . . 122
5.4 Calculated energies (in kcal/mol, unless otherwise stated) and dipole

moment from DFT, for C(n,m) and CBN(n,m) nanotubes. . . . . . . . 123
5.5 Some molecular parameters of C(n,m) and CBN(n,m) nanotubes in DFT

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Some molecular parameters of C(n,m) and CBN(n,m) nanotubes in DFT

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xii



LIST OF FIGURES

1.1 A graphical representation of sp hybridization. . . . . . . . . . . . . . . 5
1.2 Schematic representations of possible bonding schemes of carbon. In non-

hybridized form, 2 bonds are possible (1 triple and one single). sp1 ,sp2

and sp3 hybridization leads to di�erent bonding schemes and orders. . . 6
1.3 Stretch, bend and torsion using ball&stick representation of atoms. non-

bonded interaction is not shown, as it is omnidirectional without bond
requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Two�body contribution to energy in Terso� and Brenner potentials. . . 50
1.5 Total energy versus MD steps plot of a sample system at 300K. . . . . . 52

2.1 The model structure of benzorod 4C6 . . . . . . . . . . . . . . . . . . . 57
2.2 A benzorod array. Periodic boundary is shown as the rectangle (along x

and y), and locations of benzorods are shown in ball and stick notation. 58
2.3 Benzorods 2-8C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Benzorods 9-14C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5 Benzorods 15-20C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6 Dependence of distortion temperature on the number of dehydrogenated

benzene rings n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7 Benzorod arrays 3C6 � 6C6 . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.8 Benzorod arrays 7C6 � 12C6 . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.9 Benzorod arrays 13C6 � 16C6 . . . . . . . . . . . . . . . . . . . . . . . . 66
2.10 Nanochains 3C60-1C6 � 3C60-9C6 at various temperatures. . . . . . . . 67
2.11 Optimized geometrical parameters for the direct coordination stacking

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.12 Relaxed benzorod. (a) The molecular geometry used in obtaining the

unit cell, (b) the relaxed benzorod . . . . . . . . . . . . . . . . . . . . . 70
2.13 Lattice parameter as determined by di�erent calculation parameters.

Here, k-point is under sampled . . . . . . . . . . . . . . . . . . . . . . . 71
2.14 Lattice parameter as determined by di�erent calculation parameters. Af-

ter this point, the change in lattice parameter is negligible . . . . . . . 72

xiii



2.15 Lattice parameter as determined by di�erent calculation parameters.
This precise set can be used in calculating relations that require total
energy convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.16 The geometrical parameters used in calculating elastic moduli for ben-
zorod. Fs and FE are the two orthogonal forces applied on one of the
layers for creating a shearing stress and elastic stress correspondingly. . . 73

2.17 E�ect of various smearing functions on total energy. . . . . . . . . . . . 74
2.18 E�ect of various smearing functions on Fermi level. . . . . . . . . . . . . 76
2.19 Projected partial density of states (PDOS) of carbon in benzene and

benzorod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.20 Band structure of the ideal benzorod . . . . . . . . . . . . . . . . . . . . 78
2.21 Charge density in the direct coordination scheme. . . . . . . . . . . . . 79
2.22 Relaxed benzorod, parameter optimization . . . . . . . . . . . . . . . . . 80
2.23 Relaxed benzorod, band graph . . . . . . . . . . . . . . . . . . . . . . . 81
2.24 Relaxed benzorod, e�ect of smearing on total energy. . . . . . . . . . . . 82
2.25 Relaxed benzorod, e�ect of smearing on Fermi level . . . . . . . . . . . . 82
2.26 Relaxed benzorod, PDOS . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.27 Relaxed benzorod, charge density . . . . . . . . . . . . . . . . . . . . . . 84

3.1 Graphene sheet. (a) the unit cell. (b) Brillouin zone. Points Γ, K, and
M are used for obtaining dispersion relations. Points A and B are the
two dissimilar carbon atoms in the unit cell [66]. ~a1 =

(√
3

2 a,
a
2

)
, ~a2 =(√

3
2 a,−a

2

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 The unrolled honeycomb lattice of a SWCNT [66] . In short, the unit-cell
is formed when the sheet is rolled such that points O and A coincide, rest
follows from the de�nitions. . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Electronic structure of carbon nanotubes as a function of chiral vector,
Indicated dots represent metallic nanotubes. . . . . . . . . . . . . . . . 91

3.4 Cross sectional geometries of a SWCNT. Top: Armchair; Middle: Zigzag;
Bottom: Chiral. Here (n,m) correspond to integers forming the chiral
vector [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Structural details of the Single�walled carbon bamboo nanotube. The
pentagons in the bamboo region are shown in the upper part. The length
of the tubular section in the initial structure is shown in the bottom. . 94

3.6 Molecular dynamics results at various temperatures, with and without
PBC respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 Pentagon and Hexagon geometry in the relaxed structures with and with-
out PBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.8 Charge Density and charge distribution of the structure. . . . . . . . . . 96
3.9 Plots of the highest occupied and lowest unoccupied molecular orbitals

(HOMO-LUMO) and eigenvalue spectrum. . . . . . . . . . . . . . . . . 97

xiv



4.1 Cl2 model, and maximum intensity projections for e�ective potential and
electron density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Di�erence e�ective potential maximum intensity projections for Cl2 model
(relative to 0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Di�erence electron density maximum intensity projections for Cl2 model
(relative to 0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 CNCl model, and maximum intensity projections for e�ective potential
and electron density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Di�erence e�ective potential maximum intensity projections for CNCl
model (relative to 0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Di�erence ρ maximum intensity projections for CNCl model (relative to
0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 HCN model, and maximum intensity projections for e�ective potential
and electron density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Di�erence e�ective potential maximum intensity projections for HCN
model (relative to 0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Di�erence ρ maximum intensity projections for HCN model (relative to
0 eV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 MPSH Eigenvalues and DOS distributions for the models considered
(Red: +1 eV Black: 0 eV Green: -1 eV Bias), for comparison purposes,
C(4,4) results are also presented . . . . . . . . . . . . . . . . . . . . . . . 112

4.11 Transmission values for the models considered, for comparison purposes
C(4,4) results are also presented . . . . . . . . . . . . . . . . . . . . . . . 113

4.12 Comparison of I-V characteristics. . . . . . . . . . . . . . . . . . . . . . 113

5.1 AM1 optimized geometries of CBN(4,0) and CBN(4,4) in comparison
with the ideal tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 AM1 optimized geometries of CBN(5,0) and CBN(5,5) in comparison
with the ideal tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Various 3D molecular plots of C(4,0) and CBN(4,0) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive . . . 119

5.4 Various 3D molecular plots of C(4,4) and CBN(4,4) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive . . . 121

5.5 Various 3D molecular plots of C(5,0) and CBN(5,0) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive . . . 121

5.6 Various 3D molecular plots of C(5,5) and CBN(5,5) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive . . . 124

5.7 Calculated excess charge on atoms in the nanotubes considered. (DFT
results). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Molecular orbital eigenvalue spectra of the nanotubes considered. (DFT
results). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 The model used in studying the conduction characteristics of CBN(5,0),
and ρ and Veff graphs for the model at 0 bias. . . . . . . . . . . . . . . 126

5.10 I-V trace for the CBN(5,0) and C(5,0) in the model described above. . . 127

xv



5.11 Comparison of the changes in electrostatic potential (shown at top row)
and the charge density (shown at the bottom row) with respect to 0 bias,
at +4 eV and -4 eV respectively. . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Large thermal �uctuations can �free� an atom that is not in its opti-
mal con�guration, whereas smaller �uctuations can not overcome the
restoring force. Thus adiabatic introduction of thermal �uctuations is
mandatory in a model geometry. . . . . . . . . . . . . . . . . . . . . . . 132

xvi



CHAPTER 1

THEORETICAL BACKGROUND

It should be noted beforehand that, this introductory text can be considered as a sum-

mary of information contained within the Refs. [1]-[9] (and more), for more detailed

discussion, the reader should refer to them accordingly.

1.1 Introduction

Nano refers to a length scale, 10−9 m, and it is just that. The interesting part, or let

me say �the problem� is the behavior of materials at that scale. Call it nanotechnology

or nanoscience, depending whether you are in for engineering or scienti�c purposes,

it does not matter, almost any �eld interested in physical entities and their applica-

tions are involved in some part or another. Exploring this scale, and tackling with the

new problems attached, lead to a better understanding of the nature of materials and

consequently their better use, which is what science and technology stands for. The

subject lies shared within the intellectual domains of most of the basic sciences, pri-

marily Physics and Chemistry. Biology, especially molecular biology, is special in its

interest and contribution, due to majority of its subjects already being in the nanoscale.
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In fact, this involvement is to the extent that biology can be considered as the working

example nanotechnology. It is a source of inspiration for possible applications, and proof

that concepts like �self-assembly�, �molecular machines� are not eccentric novelties, but

something nature has already excelled. As the understanding of this scale increases,

almost all branches of engineering are also slowly transformed in order to accommo-

date the new set of rules. With the (gate) size of a transistor being as small as few

nanometers nowadays, and consequent quantum e�ects coming more and more in the

play, electronic engineering is one of the �rst to incorporate nanoscale e�ects (although

rather covertly, due to commercial nature). Mechanical engineering is interested in the

new rules this dimension introduce, and how to use them for more e�cient mechanical

work, reducing friction inside the existing engines, or exploring the possibility of creating

useful mechanical work at nanometer scale. Even civil engineering and thus architecture

are slowly transformed, with the advent of new, stronger and lighter materials. These

examples may be expanded, but the essence of the story is the same, nanotechnology is

slowly changing the world, where the subtle but strong quantum e�ects are recognized

in everyday life. This transformation is considered to be crucial in most of the nations,

and the exponential increase of the diverted e�ort in the literature these last years is a

perfect indication of the importance the topic carries.

The peculiarity of the scale arises from being in the border of atomic and macro-

scopic worlds. As of all such �in the border� scales, this scale is challenging theoretically

as much as it is experimentally. In the scale of (one or very few) atoms, there is

quantum theory, which gives a huge amount of information on the structure, with its

consequences not accustomed to in everyday life. In the scale of macroscopic materials

(with the number of atoms contained is in the order of 1023, practically uncountable)

there is statistical physics, and empirical equations originating from experiments, which

can predict the outcome of a speci�c stimulus, although it gives limited information on
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intrinsic mechanisms. In principle these two scales are consistent, which is to say, quan-

tum equations should reduce to their macroscopic equivalents in the limit where the

elementary quantum of action (and the Dirac's constant h̄) is negligible, accompanied

with the expected loss of detail. But what happens just in between, when the structure

of interest �ts neither of the size criteria well? Nanoscale is just that. The number of

atoms is too much for a basic quantum approach, the equations become so tangled that

it is practically impossible to solve1, and since the h̄ and atomic/quantum e�ects at-

tached to it can not be dismissed readily, macroscopic equations tend to be inadequate.

What we need is the proper scaling of quantum equations. The application of wave

mechanics to larger systems is not a new problem, on the contrary, since the quantum

theory itself has its roots on the unexplained atomic phenomena, it was a very popu-

lar area of research in the pre-war era of 1923-1933. With the turn of events in 1933,

nuclear and high energy physics gain more popularity, and it is not much later that sig-

ni�cant achievements in this problem is made. The correlation with the advancements

in computers also can not be neglected. The form of the equations are most suitable

for iterative approaches, and the sheer quantity of iterations make the computers not a

luxury but mandatory. This makes the capacity of the particular computer a physical

limit on the problem that can be studied. Approximations lighten the load on the com-

puter, thus via a sacri�ce in generality and/or accuracy, the limitations are eased. Both

computer science and methods available exponentially grew since then, and continue

on growing. At some point, the necessity for approximations may cease to exists, but,

as of now, the knowledge of physical and mathematical nature of approximations and

their applicability is very important if not essential for someone involved in this �eld.

Nowadays, the pure theoretical interest of the last century is replaced by the urge to

explain empirical observations at the nanoscale. Theoretical methods bene�t from the

1In fact, even for atoms larger than hydrogen one does need simpli�cations to separate the
Hamiltonian and solve the electron related equations. But the modi�cations mentioned here is of
higher level, the separated Hamiltonian also becomes intangible after a certain limit, and further
simpli�cations come into play
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increased number of experimentation, as the empirical data greatly reduce the strain of

calculation, and in return, theoretical models provide the experiments a guide light on

where to proceed, ultimately leading to better understanding of the phenomenon.

In this last decade, the popularity of the �eld increased exponentially. The quan-

tity and quality of the available experimental information regarding the materials at

this scale is getting better and better. Stronger theoretical models are formed and

proposed in the literature frequently, along with new computational techniques that

exploit the advent of computer capabilities to a better extent, reducing the number of

approximations required. At this point, it is may be theorized that, using this already

available information, one can extrapolate at least some of the physical properties for

a novel nanomaterial that does not exist in the literature, within an acceptable mar-

gin of error. Due to nature of the theoretical models used, even for �ab-initio� density

functional methods, this nano material modeling/engineering approach is strictly not

a black box where you just turn the crank and wait for the results. One needs to

choose the parametrization samples carefully, keeping in mind the expected physics and

chemistry of the system, intervening with intuition when necessary. This work incorpo-

rates �ve self-contained examples of this approach to carbon nanomaterials, outlining

the methods used in the calculation and modeling in detail. Carbon materials are well

studied thanks to its popularity due to carbon nanotubes and Buckminsterfullerene,

and thus they have a better understood nature. Before proceeding any further, a short

introduction to the material is next.

1.2 The special importance of Carbon atom

There are numerous elements in the periodic table, each with its own set of unique

properties. Among them, the carbon atom carries a special signi�cance. The main

reason of this lies within the realms of biology and organic chemistry. Carbon is seen to

be functionalized in a huge number of ways in the subjects of these �elds. The presence
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is so strong that, in short, the life on earth is carbon based. But why not Silicon, or

another element? The reason is in the unique ability in hybridization. Hybridization can

be explained roughly as the intermixing of atomic orbitals of a particular atom in order

to form stronger molecular bonds and permit di�erent geometrical orientations2. Any

two atomic orbitals with di�erent shell designations that are close enough energetically

can intermix to form a hybrid orbital. For example if one refers a sp hybridization, it

translates as one s orbital and one p orbital intermixing to form two sp orbitals (See

Figure 1.1).

Figure 1.1: A graphical representation of sp hybridization.

The result is a better overlap and altered geometry. The process is common for most

atoms, even the particular geometry of water can be explained by the hybridization of

oxygen atom. In the case of carbon atom however, particular arrangement of valance

electrons make one electron leaving s orbital to occupy one of the vacant p orbitals

energetically viable, thus all sp hybridization variants (sp1, sp2 and sp3) are available

(Figure 1.2).

Furthermore, these hybrids are quite stable and favorable. Adding this the fact

2It is often pointed out that hybridization theory was indeed proposed in order to explain
peculiar geometric orientations of some molecules.
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Figure 1.2: Schematic representations of possible bonding schemes of carbon. In non-
hybridized form, 2 bonds are possible (1 triple and one single). sp1 ,sp2 and sp3 hy-
bridization leads to di�erent bonding schemes and orders.

that the resulting geometries are in fact the geometrical basics that can be used to

construct an in�nite number of structures, carbon atom serves as the ultimate building

block for complex functional molecules. One of the closest substitutes, silicone, lack the

bond strength, and thus silane (analogous to hydrocarbon chains) are not as stable. In

addition to this, silicon does not readily form double or triple bonds, and tend to react

strongly to the presence of oxygen if not in its sp3 hybridized state. The reason why

the life is not silicon based here on earth is most probably this lack of hybridization

capabilities.

Di�erent hybridization schemes lead to various forms of carbon that are distinctively

separate in behavior. Think of graphite and diamond, diamond has an incredible hard-

ness, optical properties and it is much prized as an item of fashion, whereas graphite is

�exible, black, conductive, and so common that it is often used as fuel!

1.3 Approximate and Conquer: A Solution to the Infamous Many

Body Schrödinger Equation

When one approaches the problem with the usual analytical quantum formalism, the

Hamiltonian encountered in its most general form looks like this:

Ĥ = Ĥk,n + Ĥk,e + Ĥp,n−n + Ĥp,e−e + Ĥp,n−e (1.1)
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in this equation, Ĥk,n and Ĥk,e are the kinetic energy contributions of the nuclei and the

electrons respectively. Ĥp,n−n, Ĥp,e−e and Ĥp,n−e are the interaction potential terms for

nucleus�nucleus, electron�electron and nucleus�electron terms. The exact compositions

of the Hamiltonians are unimportant at this point. The equation we are trying to solve

is simply,

[(
Ĥk,n + Ĥp,n−n

)
+

(
Ĥk,e + Ĥp,e−e + Ĥp,n−e

)]
Ψ( ~X, ~x) = E.Ψ( ~X, ~x) (1.2)

(where ~X and ~x are the nuclear and electronic coordinates respectively). Alas, there

is nothing simple about this equation, it is inseparable! One may try to solve this

extremely complicated problem using some mathematical method being also (if not

more) complex in its nature, but, the question is, do we require that much information?

Not in this case, and in a majority of others. Instead, at this point, which may be

called a crossroad of sorts, it is better to choose in which application the results will be

used, and proceed accordingly. In the context of this discussion, the point of interest is

somewhat limited, and thus considerable simpli�cations can be made. The price is the

compromise of generality, but armed with the knowledge of what is lost, and what can

still be done, the problem becomes solvable straightforwardly if not trivial.

A �rst level approach is to apply Born-Oppenheimer approximation. In this approx-

imation, it is pointed out that the electrons move so much faster than the nuclei such

that the corresponding part of the wave function adjusts itself to a new con�guration

almost instantly. Thus the equation can be investigated in two parts, an electronic and

a nuclear part which are assumed to be independent. The rest follows easily,

Ψ( ~X, ~x) = Ψn( ~X)Ψe( ~X, ~x) (1.3)

(
Ĥk,n + Ĥp,n−n

)
Ψn( ~X)Ψe( ~X, ~x) (1.4)

+
(
Ĥk,e + Ĥp,e−e + Ĥp,n−e

)
Ψn( ~X)Ψe( ~X, ~x)

' Ψe( ~X, ~x)
(
Ĥk,n + Ĥp,n−n

)
Ψn( ~X) (1.5)
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+Ψn( ~X)
(
Ĥk,e + Ĥp,e−e + Ĥp,n−e

)
Ψe( ~X, ~x)

= E.Ψn( ~X)Ψe( ~X, ~x)
(
Ĥk,n + Ĥp,n−n

)
Ψn( ~X)

Ψn( ~X)
+

(
Ĥk,e + Ĥp,e−e + Ĥp,n−e

)
Ψe( ~X, ~x)

Ψe( ~X, ~x)
(1.6)

= (En +Ee)

and since both parts must be independent (�rst fractional depends only on nuclear

coordinates, whereas second fractional depends also on electronic coordinates), we are

left with two slightly coupled equations

ĤeΨe( ~X, ~x) = EeΨe( ~X, ~x) (1.7)

ĤnΨn( ~X) = EnΨn( ~X) (1.8)

Notice that in Eq. 1.5 contributions like

− h̄2

2Mk
52

~X
Ψe( ~X, ~x) (1.9)

(kinetic energy of the nuclei originating from the electronic part of the wave function)

are ignored, and although this is feasible in our problem, it is not always justi�ed. Some

very important e�ects are now �out of reach�. Among the lost are the superconductivity

e�ect and electron charge- or spin-density waves. But via this loss of generality, the

equations become more solvable, and in the context of this text, the trade o� is more

than acceptable. The remaining electron integrals can be solved using various methods,

generally in a self-consistent manner, each with its own advantage and disadvantage,

leading to electron con�guration information with varying detail. Looking at Equation

1.8, one immediately recognize it as the quantum analog for the equations of motion

of a particle under a potential, thus, in the separated equation, the nuclei can now be

treated semi-classically (depending on the boundary conditions).

The dependence on electronic coordinates is not obvious in Equation 1.8 at �rst

sight. After all, ~x does not appear anywhere within. However, as the common sense
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dictates, this can not be the case, so lets investigate where does the e�ects of electron

con�guration come into play:

The equation of motion for nuclei can be written as simplistic as:

~Fi = Mi~ai (1.10)

where ~Fi is the force acting on the ith nucleus, and Mi,~ai are the mass and accelera-

tion accordingly. Basic Newtonian equation of motion that reduce the nuclei to point

particles. The sole requirements for the reduction in mathematical terms are a smooth

potential energy function and large enough boundary. For now, lets assume these re-

quirements are ful�lled, and proceed. The problem is now reduced to �nding the force

on the ith nucleus, or the force �eld using a more general name. This can be done

using numerous ways, but you guessed it correctly, it does depend on the con�guration

of electrons. The key point is to remember that the equation of motion for the nuclei

should be de�ned through the full Hamiltonian, not only through the nuclear part, as

the two parts are not completely uncoupled.

1.4 Handling the electronic equation of motion

Due to coupling in the electronic and nuclear parts of the Hamiltonian, any arrangement

in nuclear coordinates lead to a di�erent energy in the electronic part. If you are trying

to determine the nuclear positions in the structure, this poses a big problem, as these

kind of equations almost always prove to be impossible to solve by traditional analytical

methods. However, they can easily be solved iteratively. You start with an initial set of

nuclear coordinates, calculate the total Hamiltonian and its spatial gradient, and move

the nuclei (with your favorite method) arriving at a new set of coordinates. In these

new coordinates the electronic part needs to be recalculated, and you need to start over

the whole procedure again. This continues until a preset convergence criteria, usually

when the variation in total energy is negligible. In this sense, the electronic part of the

Hamiltonian is the key to the solution.
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Various levels of approximation and di�erent approaches can be used in order to

solve the problem, but except from a few simplistic methods, these all require com-

puters. The methods can be classi�ed in ab-initio, semi-empirical, and density func-

tional branches. Ab-initio methods try to solve wave-function for electrons employing

mathematical shortcuts and approximations, without any empirical data. Although

the precision and diversity of information obtained is excellent, the complexity of the

wave-function signi�cantly limits the applicability in this approach. Density functional

method replaces the di�erential equation for wave-function with an integral equation

for the density, eliminating some (excess in our case) information thus simplifying the

problem with minimum sacri�ce, at least in a number of cases. This method will be

detailed in the following section. Semi-empirical methods tries to incorporate empirical

data to simplify the equation for electronic wave-function, but as all empirical meth-

ods, parametrization is required. The problematic part is always the electron-electron

interaction terms, and usually all the parametrization comes into play when trying to

approximate these integrals with (a series of) one electron equations. Two such exam-

ples, AM1 [10] and PM3 [11, 12, 13] which are both descendants of modi�ed neglect

of di�erential orbitals approximation, are of most importance in this context, due to

their signi�cantly reduced form (translates as being cheaper computationally) and wide

applicability (a lot of parameter sets exist in the literature).

1.4.1 An alternative for wave-functions in the quest for observables

Seemingly, the most straightforward method we can choose is to �nd the electron wave-

function through the electronic part of the Hamiltonian

ĤeΨe( ~X, ~x) = EeΨe( ~X, ~x) (1.11)

However, even for a simple molecule, say Benzene, the wave-function depends on 126

spatial coordinates and 42 spin coordinates. Of course we can try to approximate this

equation, as brie�y mentioned in the previous chapter, various methods exist, but before
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trying to tackle this problem, there is an important question: Do we really need so much

detail in describing our system? Commonly experimental observables depend only on

spatial coordinates of the species considered. Consider such an operator:

Â =
∑
n

a1(~rn) (1.12)

the expectation is

∫
d~r1 . . . d~rN 〈Ψ(~r1 . . . ~rN )| Â |Ψ(~r1 . . . ~rN )〉 (1.13)

the above integral can be re-written using the density operator

a1(~rn) =
∫
a1(~s)δ(~rn − ~s) d~s (1.14)

→
∫
d~r1 . . . d~rN 〈Ψ(~r1 . . . ~rN )|

∑
n

a1(~rn) |Ψ(~r1 . . . ~rN )〉 (1.15)

=
∫ [∫

d~r1 . . . d~rN 〈Ψ(~r1 . . . ~rN )|
∑
n

δ(~rn − ~s) |Ψ(~r1 . . . ~rN )〉
]
a1(~s) d~s (1.16)

=
∫
ρ(~s)a1(~s) d~s (1.17)

to depend only on the electron density. Similar reductions exist for operators of more

complicated nature such as:

Â =
∑

n 6=m

a2(~rn, ~rm) (1.18)

consequently, most of the coordinates residing in the wave-function turn out to be

nothing more than redundancies for such cases, and, if a reformulation that bypasses

the wave-functions exists, even for the more complicated operator presented above, only

6 spatial and 2 spin coordinates de�ning the density will be su�cient, independent of

the number of electrons system contains. Gladly, such a formulation does exist, the

Density Functional Theory (DFT) 3.
3Possibly the �rst such formulation is the Thomas and Fermi Xα method, which is an ap-

proximation to solving the Schrödinger equation. Due to its nature, it will not be further mentioned
here.
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In 1964, Hohenberg and Kohn [14] have shown that it is possible to calculate all the

ground state properties only through the knowledge of electron density. The proof is

exceptionally simple. Split the potential energy term in the electron equation into two

parts, the electron�electron interaction term, and another term consisting of a series of

one-body interaction terms

Ĥe =




N∑

i=1

−1
2
∇2

~ri
+

N∑

i6=j

1
|~ri − ~rj |


 +

N∑

i=1

Vext(~ri) = Ĥfe + V̂ext (1.19)

this series of one-body interaction terms, called the �external potential�, is assumed to

be a near complete description of all the relevant stimuli to an otherwise free gas of

electrons (the square bracketed term). This term may correspond only to nuclei, or a

combination that also include external �elds applied to the matter depending on the

system under study. The square bracketed part is common for all the possible problems,

thus, what determines the exact behavior of electron distribution, and consequently the

uniqueness of the particular system under consideration, is solely the external potential.

Now consider two di�erent external potentials and the corresponding Hamiltonians

Ĥ1 = Ĥfe + V̂ext ; Ĥ2 = Ĥfe + V̂ ′ext ; V̂ext 6= V̂ ′ext (1.20)

de�ne the ground states of these two distinct Hamiltonians as

Ĥ1Ψ1 = E1Ψ1 ; Ĥ2Ψ2 = E2Ψ2 ; Ψ1 6= Ψ2 (1.21)

assume both wave-functions lead to same density

ρ(~r) =
∫
d~r1 . . . d~rN 〈Ψ1 (~r1 . . . ~rN )|

∑
n

δ(~rn − ~r) |Ψ1 (~r1 . . . ~rN )〉 (1.22)

=
∫
d~r1 . . . d~rN 〈Ψ2 (~r1 . . . ~rN )|

∑
n

δ(~rn − ~r) |Ψ2 (~r1 . . . ~rN )〉 (1.23)

since we are dealing with ground states, and Ψ2 is not the ground state of Ĥ1,

〈Ψ2| Ĥ1 |Ψ2〉 > 〈Ψ1| Ĥ1 |Ψ1〉 = E1 (1.24)
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E1 < 〈Ψ2| Ĥ1 |Ψ2〉 = 〈Ψ2| Ĥ1 − Ĥ2 + Ĥ2 |Ψ2〉 (1.25)

= 〈Ψ2| Ĥ1 − Ĥ2 |Ψ2〉+ 〈Ψ2| Ĥ2 |Ψ2〉 (1.26)

= 〈Ψ2| V̂ext − V̂ ′ext |Ψ2〉+E2 (1.27)

=
∫
ρ(~r)

[
V̂ext − V̂ ′ext

]
d~r + E2 (1.28)

E1 −E2 <

∫
ρ(~r)

[
V̂ext − V̂ ′ext

]
d~r (1.29)

but this is also valid other way around!

〈Ψ1| Ĥ2 |Ψ1〉 > 〈Ψ2| Ĥ2 |Ψ2〉 = E2 (1.30)

leading to

E2 − E1 <

∫
ρ(~r)

[
V̂ ′ext − V̂ext

]
d~r (1.31)

or

E1 − E2 >

∫
ρ(~r)

[
V̂ext − V̂ ′ext

]
d~r (1.32)

which is just the opposite of Equation 1.29. They can not be both true, the only logical

conclusion is that our initial assumption of two di�erent external potentials leading to

same ground state charge density should be wrong. Thus, electron charge density is

an unique property of the system. Now assume we know this density, ρ, which can be

calculated from the N�electron ground state wave-function Ψ0.

Ee = 〈Ψ0| Ĥe |Ψ0〉 (1.33)

since Ψ0 is the ground state

Ee = min
Ψ
〈Ψ| Ĥe |Ψ〉 (1.34)

we now know that ρ is an unique property of the system, thus we can safely state

Ee = min
Ψ→ρ

〈Ψ| Ĥe |Ψ〉 (1.35)

or

Ee = Ee [ρ] = min
Ψ→ρ

〈Ψ| Ĥe |Ψ〉 (1.36)
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where we have written Ee as a functional of ρ. Being an unique variable, variational

principle is valid

Ee
[
ρ′

] ≥ Ee [ρ] (1.37)

this, in fact, is a whole new perspective for our problem: If a practical way exists for

calculating the energy through the density, calculating the N�electron wave-function is

no longer obligatory. Hohenberg-Kohn theorems does not provide such a framework,

only the proof of existence. Lets see what we can do. Variational principle being valid,

the ground state density of the system can be found through

δEe [ρ]
δρ

= lim
δρ→0

(
Ee [ρ+ δρ]− Ee [ρ]

δρ

)
= 0 (1.38)

where δ
δρ is called a functional derivative. Furthermore, we require that the system

has a predetermined constant number of electrons (otherwise nasty things like charged

constituents separating due to Coulomb repulsion may occur)

∫
ρ(~r) d~r = N (1.39)

combining these two criteria via Lagrange multipliers an action integral for the ground

state is obtained
δ

δρ(~r)

{
Ee [ρ(~r)]− µ

[∫
ρ(~r) d~r −N

]}
= 0 (1.40)

Lets proceed further by expanding the Ee term. This term corresponds to the electronic

Hamiltonian:

Ĥe =




N∑

i=1

−1
2
∇2

~ri
+

N∑

i6=j

1
|~ri − ~rj |


 +

N∑

i=1

Vext(~ri) = T̂ + V̂ + V̂ext (1.41)

the kinetic energy part depends only on the single particle coordinates, thus it belongs

to the family mentioned in Equation 1.12. V̂ext also belongs to that family by de�nition,

thus we can write

T̂ → T [ρ] V̂ext → Vext [ρ] (1.42)
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but there is a problematic part. The Coulombic interaction part is a many body term,

and can not easily be cast into a form consisting only of one particle densities i.e.:

∫
ρ(~r, ~r′)
|~r − ~r′| d~rd~r

′ 6=
∫
ρ(~r)ρ(~r′)
|~r − ~r′| d~rd~r

′ (1.43)

which is mandatory in our derivation. Using a rather complicated expansion this term

can be approximated4 as

∫
ρ(~r, ~r′)
|~r − ~r′| d~rd~r

′ ≈
∫
ρ(~r)ρ(~r′)
|~r − ~r′| d~rd~r

′ + Êxc (1.44)

where Êxc contains all the second order e�ects not present in the
∫ ρ(~r)ρ(~r′)

|~r−~r′| d~rd~r′, such

as exchange and correlation. The total electronic energy is now

Ee = T [ρ] + Vext [ρ] + V [ρ] + Exc (1.45)

= T [ρ] +
∫
Vext(~r)ρ(~r) d~r +

∫
ρ(~r)ρ(~r′)
|~r − ~r′| d~rd~r

′ + Exc (1.46)

= T [ρ] +
∫
Vext(~r)ρ(~r) d~r +

∫
VC(~r)ρ(~r) d~r + Exc (1.47)

placing this into the action integral

δEe [ρ]
δρ

=
δT [ρ]
δρ

+ Vext(~r) + VC(~r) +
δExc

δρ
= µ (1.48)

The only problem we have now is the many-body nature of the exchange-correlation

term. In 1965, Kohn and Sham introduced an ingenious trick [15]. Consider a system of

N non-interacting particles that have the same density and same energy as our electron

system. These particles are strictly not electrons, thus the describing Hamiltonian is

completely di�erent,

Ĥ =

[
N∑

i=1

(
−1

2
∇2

~ri
+ Veff (~ri)

)]
Ee = T0 [ρ] +

∫
Veff (~r)ρ(~r) d~r (1.49)

4If an analytical method for calculating Exc exactly for free electron system existed, this term
would be exact
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but being non-interacting, the form is considerably simpler. Following the same steps,

and since the total energy of both the systems is the same it is seen that

δT [ρ]
δρ

+ Vext(~r) + VC(~r) +
δExc

δρ
≡ δT0 [ρ]

δρ
+ Veff (~r) (1.50)

thus the e�ective potential should be equivalent to

Veff (~r) ≡ δT [ρ]
δρ

− δT0 [ρ]
δρ

+ Vext(~r) + VC(~r) +
δExc

δρ
(1.51)

surely this is an approximation, since e�ectively we are modeling a many�body system

with a single body potential, but if Hohenberg-Kohn theorems hold true, sharing exactly

the same density, both Hamiltonians should return the same ground state observables,

even they are of completely di�erent nature! Solution to this model Hamiltonian is

simple if not trivial, but one must keep in mind that the orbitals are not those of

electrons in our system, luckily, for most of the cases, it has been empirically found that

the two has correspondence.

1.4.2 Nature of the interaction potential

The trickiest part in any problem is thus to model/choose the �E�ective potential�.

Apart from theVext(~r) and VC(~r), which are easily calculable, one can group all the

remaining terms into a parametric function, aptly named as Vxc. Remember Êxc is

an operator belonging to the free electron part of the Hamiltonian. Notice that other

grouped term is also of the same nature, belonging to the free-electron part of the

electronic Hamiltonian. Thus, in principle, Vxc does not depend on the speci�c problem,

but in reality, due to its complicated nature, Vxc is often parametrized, and although

this parametrization is not carried out with a speci�c material in mind, one must know

which approximation works best for the system at hand. Most of the debates density

functional theory being an ab-initio method or not arise from this.

There are numerous ways one can approximate the Vxc. Possibly the simplest one

is to use the local density approximation (LDA). In this approximation exchange and
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correlation e�ects are calculated through a model called the homogeneous electron gas

(see Chapter 5 in Ref. [16] for details) . In this model, electron density is assumed to

be constant and thus Vxc depends only on the electron density at some point. Although

crude, this approximation works very well for materials that have slowly varying electron

density, including many crystal bulk structures, and it may be extended to include spin

(LSDA) . The functional by Perdew & Zunger [17] can be shown as an example. A

�rst order correction is the non-local-density approximations, more widely known as

the generalized gradients approximation (GGA). In this approximation the dependence

on gradients
∣∣∣~∇ρ

∣∣∣ ,∇2ρ . . . are also included in the Vxc. GGA methods are almost always

as accurate as LDA in the systems which LDA describe well. In addition GGA methods

are able to handle structures in which LDA is known to be problematic, like the those

containing more weakly interacting parts, such as hydrogen-bonded sections. However,

in some cases, cancellation of errors lead to LDA performing better than GGA. A few

examples of GGA functionals are due to Becke [18], Perdew [19], Perdew&Wang [20].

In the beginning of 1990s, a new method for approximating the Vxc leading to even

more accurate energies and structure made its appearance [21]. This family of methods,

called hybrid methods, rely on the adiabatic connection approach [22].

Remember our �ctitious and approximated system that gives the same density and

same energy as the electronic part of the Hamiltonian

Ĥ =

[
N∑

i=1

(
−1

2
∇2

~ri
+ Vext(i) + VC(i) + Vxc(i)

)]
(1.52)

the most profound approximation here is that we have replaced the many-particle op-

erator Exc with a single particle operator Vxc. Lets assume an adiabatic connection in

this transition exists via a control parameter λ

Ĥλ =




N∑

i=1

(
−1

2
∇2

~ri
+ Vext(i) + VC(i) + Vλ(i)

)
+ λ

N∑

i6=j

Vee(i, j)


 (1.53)

Vee contains Exc directly, whereas Vλ has just the single body terms. Thus, when λ = 0

the system is fully non-interacting, and when λ = 1 the system is fully interacting.
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Vλis modeled such that the density and the energy of our model system is always

the same as the original electronic Hamiltonian, independent of λ.

Using the Hellman-Feynman theorem [23, 24]

∂

∂λ
〈Ψλ| Ĥλ |Ψλ〉 = 〈Ψλ| ∂Ĥλ

∂λ
|Ψλ〉 (1.54)

and

f(b) = f(a) +
∫ b

a

df

dx
dx (1.55)

one obtains

〈Ψ1| Ĥ1 |Ψ1〉 = 〈Ψ0| Ĥ0 |Ψ0〉+
∫ 1

0

∂

∂λ
〈Ψλ| Ĥλ |Ψλ〉 dλ (1.56)

= 〈Ψ0| Ĥ0 |Ψ0〉+
∫ 1

0
〈Ψλ| ∂

∂λ
Ĥλ |Ψλ〉 dλ (1.57)

= 〈Ψ0| Ĥ0 |Ψ0〉+
∫ 1

0
〈Ψλ| V̂ee +

∂

∂λ
V̂λ |Ψλ〉 dλ (1.58)

= 〈Ψ0| Ĥ0 |Ψ0〉+
∫ 1

0
〈Ψλ| V̂ee |Ψλ〉 dλ (1.59)

+
∫ 1

0
〈Ψλ| ∂V̂λ

∂λ
|Ψλ〉 dλ (1.60)

the V̂λ is tailored to be a one-body operator depending only on the coordinates, thus

∫ 1

0
〈Ψλ| ∂V̂λ

∂λ
|Ψλ〉 dλ =

∫ 1

0

∫
ρ(~r)

∂Vλ(~r)
∂λ

d~rdλ (1.61)

remembering our initial requirement that ρ(~r) is independent of λ

∫ 1

0

∫
ρ(~r)

∂Vλ(~r)
∂λ

d~rdλ =
∫
ρ(~r)

∫ 1

0

∂Vλ(~r)
∂λ

dλd~r (1.62)

=
∫
ρ(~r)V1(~r) d~r −

∫
ρ(~r)V0(~r) d~r (1.63)

we obtain

〈Ψ1| Ĥ1 |Ψ1〉 = 〈Ψ0| Ĥ0 |Ψ0〉+
∫ 1

0
〈Ψλ| V̂ee |Ψλ〉 dλ (1.64)

+
∫
ρ(~r)V1(~r) d~r −

∫
ρ(~r)V0(~r) d~r (1.65)
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inserting Ĥ1 and Ĥ0 into place and canceling out the relevant terms, we are left with

an interesting equality

〈Ψ1| V̂ee |Ψ1〉 =
∫ 1

0
〈Ψλ| V̂ee |Ψλ〉 dλ (1.66)

this may seem as added complexity, but in reality, it permits �ne tuning of the electron-

electron interaction approximation. The many�body operator can be split into exchange

and correlation parts to be investigated separately

V̂ee = V̂x + V̂c (1.67)

The correlation part is best handled with the usual methods, such as GGA, but the

exchange part can be handled in a di�erent manner now. The integral can (crudely) be

approximated as ∫ 1

0
f(x) dx ≈ a1.f(1)− a2.f(0) (1.68)

where a1, a2 can be treated as �tting parameters. The exchange correlation energy is

now

Exc = a1Ex;HF + a2Ex;LSD +Ec;LSD + ax∆Ex;NLSD + ac∆Ec;NLSD (1.69)

where Ex,HF is an exchange term calculated through Hartree-Fock equations represent-

ing the λ = 1 case, and Ex;LSD is the Local (spin) density approximated exchange

energy representing the λ = 0 case. The correlation term Ec;LSD is calculated directly

(through LSD), and the ∆ terms are the corrections due to non-local parts for the ex-

change and correlation. An additional constraint is due to normalization requirement

in the approximation to the integral

a1 + a2 = 1 (1.70)

thus by a simple transformation a1 = a0 a2 = 1− a0 the number of parameters can be

reduced

Exc = Ex;LSD + a0 [Ex;HF −Ex;LSD] + Ec;LSD + ax∆Ex;NLSD + ac∆Ec;NLSD (1.71)
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[Ex;HF − Ex;LSD] is a functional that can be approximated using models. This three

parameter expression is due to Becke [21]. In the original paper Becke found

a0 = 0.2 ax = 0.72 ac = 0.81 (1.72)

In the calculations utilizing this approximation, acronym �B3xxx� is used where �xxx�

denote the nature of the non-local correction terms. Probably the most popular choice

for this correction terms is the GGA of Lee Yang and Parr [25], resulting in the B3LYP

hybrid exchange correlation functional.

Although these methods provide a functional describing the potential electrons move

on, there exists a problem, the functional depends on the density of electrons, which

we are trying to �nd from this equation itself! The solution to this problem is an

iterative procedure called the self consistent �eld method. With an initial guess on

electron density, a potential term is written, which in turn is used to calculate a new

density. This goes on until the change in total energy between two consecutive densities

is negligible. The method relies on the hermiticity of the Hamiltonian, and can be

considered to be crudely resembling the LU decomposition orthoganilaztion scheme

when written in matrix form. Thus, for this method to work, a good representation of

the orbitals making the Hamiltonian matrix as close to being (n-)diagonal as possible

is mandatory.

1.4.3 Representing the orbitals

Computational nature of the problem is inevitable at this point, and this introduces

a number of complexities in handling the equations. The biggest problem is due to

discretization. The exact computational techniques and problems encountered encoun-

tered along the course of transformation will not be detailed here, but it will su�ce to

say that discretization requires a number of modi�cations in our equations. Probably

the most consequential one is transforming the eigenvalue equation into a matrix equa-

tion. In matrix notation, the wave-functions need to be represented in terms of a series
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of orthogonal functions.

Ψ =
∑

i

ciψi (1.73)

as long as they form an complete set, any function can be used in the expansion. One

may be tempted to use Slater type orbitals in the expansion, after all only a few of

them will be required to form a complete set describing any atomic wave-function, but

computationally they are rather hard to work with. Instead, a primitive Gaussian is

very much alike in appearance, and it is much easier to handle. There are compromises,

since no systematic way exists to prepare a complete orthogonal set from Gaussian

functions. In literature, especially in chemistry related works, basis sets composed of

primitive Gaussian are extensively used. They require a lot of inspiration and intuition

both to prepare and use, and thus there are many branches, each designed with a speci�c

family of materials in mind, but only two branches will be mentioned here, in relevance

to this context.

�Minimal basis sets� are composed of linear combinations of Gaussian functions,

and they are denoted by the notation STO-nG , where n is the number of primitive

Gaussians. After a certain complexity, this kind of basis sets become very unwieldy,

thus, calculations utilizing these wave-functions are often limited to be crude.

In a structure, not all the electrons contribute to the bonds, some of them are

attached to the nuclei so strongly that, the bonding energy does not alter their con-

�guration signi�cantly. These electrons can be classi�ed as the core electrons, and the

corresponding wave-functions need not to be described with as much detail. The in-

teresting part is due to the remaining electrons, or valance electrons. �Split-Valance�

basis sets treat core electrons and valance electrons with di�erent complexity. Using the

Pople notation, these sets are denoted as X−Y1 . . . Yng where X is the number of prim-

itive Gaussians describing the core electrons and Y1 . . . Yn give the number of primitive

Gaussians used in creating the multiple basis functions describing the valance orbitals
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(and n is the number of basis functions). This kind of basis sets can be extended with

polarization or di�usion functions, denoted by * or + in the end.

Gaussian is a localized function, thus an orbital de�ned through Gaussians is also

localized. Although very welcome in molecular structures, this becomes rather unwieldy

in periodic systems, such as crystals. An alternative to Gaussian function is the plane

waves. Basically, the plane wave representation of any arbitrary wave-function is pos-

sible, but in practice, since a computer can not deal with an in�nite number of plane

waves, and high frequency plane waves are problematic to describe when discretized,

localized orbitals tend to be a problem. Possibly the biggest advantage of using plane

waves is that it provides a systematic way of increasing level of detail in describing the

orbital, thus SCF convergence is achievable in a systematic manner for any given sys-

tem. In Gaussian formalism, if you start with a �non-suitable� basis set, most probably

you will end up without a solution for the electronic wave-function in the SCF itera-

tion, and without a systematic method of increasing the level of detail, one is obliged

to understand the chemical nature of the system under study before initiating. This is

where intuition comes into play.

In describing orbitals through plane-waves, the section of wave-functions in close

proximity with the nuclei pose a problem, since they tend to oscillate rapidly, and thus

require high frequency plane-waves in their description. Some orbital wave-functions,

namely those belonging to the core levels, entirely exist in this localized domain. Similar

to split-valance Gaussian orbitals, core and valance electron orbitals can be split without

much sacri�ce. However this time, in order to avoid high frequency plane-waves, the

localized sections of all the orbitals need to be truncated. This dictates a further

modi�cation to electronic Hamiltonian. A well behaving wave-function can be written

as a linear combination of a localized and a non-localized part.

Ψ = φ+
∑

c

bcψc (1.74)

where ψc denote the localized part. Since Ψ is not one of the core wave-functions of the
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system

〈ψc ||Ψ〉 = 0 (1.75)

and thus

0 = 〈ψc ||φ〉+
∑

c′
bc′ 〈ψc ||ψc′〉 (1.76)

= 〈ψc ||φ〉+ bc (1.77)

bc = −〈ψc ||φ〉 (1.78)

The equation we are trying to solve is

ĤeΨ = εΨ (1.79)

φ can be taken as a smooth function. In order to eliminate the problematic ψc, lets

assume that the localized wave-functions are already eigenfunctions of the electronic

Hamiltonian. The right hand side becomes

ĤeΨ(~r) = Ĥe

[
φ(~r) +

∑
c

bcψc(~r)

]
(1.80)

= Ĥeφ(~r) +
∑

c

bcĤeψc(~r) (1.81)

= Ĥeφ(~r) +
∑

c

bcεcψc(~r) (1.82)

= Ĥeφ(~r)−
∑

c

∫
ψ∗c (~r1)φ(~r1)d~r1εcψc(~r) (1.83)

and the left hand side is

εΨ(~r) = ε

[
φ(~r) +

∑
c

bcψc(~r)

]
(1.84)

= εφ(~r)−
∑

c

∫
ψ∗c (~r1)φ(~r1)d~r1εψc(~r) (1.85)

equating both sides we obtain

Ĥeφ(~r) +
∑

c

(ε− εc)
∫
ψ∗c (~r1)φ(~r1)d~r1ψc(~r) = εφ(~r) (1.86)
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which can be written as
(
Ĥe + V̂ps

)
φ(~r) = εφ(~r) (1.87)

it is often a good approximation that

V̂ps → Vps(~r) (1.88)

(i.e. the operator is approximated to be a function). Vps(~r) is called the �pseudo poten-

tial� [26], and represents an additional correction to all the previous terms (exchange,

correlation etc.) due to replacing the close proximity region with the smoother function

φ(~r). Non local extensions to approximation such as Vps(~r, ~r′) are also possible.

In writing equation 1.87, it is automatically assumed that
∫ ∞

0
|φ|2 dr = 1 (1.89)

naturally ∫ ∞

0
|Ψ|2 dr = 1 (1.90)

thus ∫ ∞

0
|φ|2 dr =

∫ ∞

0
|Ψ|2 dr = 1 (1.91)

the above equation makes sure that the valance density obtained for both the all-

electron calculation and the pseudo-potential scheme are the same. This is called the

�norm conservation� criteria, and the pseudo-potentials using this restriction are called

�norm-conserving� pseudo potentials. It is possible to ease this criteria to obtain much

smoother pseudo-potentials [27]. In this scheme the valance density is partitioned into

�hard� and �soft� sections.

n(r) =
∑
n


|φn|2 +

∑

ij

Qij 〈φn ||βj〉 〈βi ||φn〉

 (1.92)

where βi are projector functions depending on the ionic positions. Qij is called the

augmentation function

Qij = ψ∗i ψj − φ∗iφj (1.93)
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in which ψi are the all electron wave-functions and φj are pseudo wave-functions that

do not conserve norm at all. By modeling βi, minding the orthogonalization
〈
φi

∣∣∣∣∣∣
1 +

∑

ij

∫
Qij(~r)d~r |βi〉 〈βj |

∣∣∣∣∣∣
φj

〉
= 1 (1.94)

pseudo potentials that require signi�cantly lower cuto� in describing the system without

noticeable compromise can be obtained. However, due to additional parametrization

through the βi makes generalization of these pseudo-potentials di�cult.

When using a pseudo-potential, one must be aware that the de�nition is not unique,

and always more than one solution exists for the system at hand. There are many

parameters, including the decision where core levels start, that determine the capability

of a particular wave-function describing structure at hand. Combined with the other

parameters buried in, for example, exchange and correlation functions, DFT is hardly a

black box where only turning the crank is required. Careful pre-modeling and keeping

track of the e�ects due to numerous parameters is mandatory.

1.5 The possibility of a classical treatment to the problem of struc-

tural mechanics.

Atoms and molecules are strictly quantum objects. Being of this nature, there are

numerous phenomena related not explainable using the formalisms of classical physics.

However, in the essence, we have seen that a semi-classical equation of motion can be

derived. In this respect, is it possible to continue the approximations and derive a simple

model for the equations of motion for the nuclei in a complicated quantum problem?

The answer is yes, as long as you are willing to sacri�ce (a lot of) generality and

information. If the desired information is structural properties, this action can be

justi�ed. Apart from means of just simplifying, the electron integrals may be avoided

completely using empirical data. The idea follows from the old notion of �normal�

arrangement of atoms. Using a more mathematical sense, the idea can be summarized as
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the tendency to minimize con�guration energy. An abstract mathematical entity called

the potential surface is introduced, and using �normal� arrangements, it is parametrized.

This potential energy function is directly related to the enthalpy of the molecule due

to its nature, but it is not exactly enthalpy, since thermal motion and temperature

dependent contributions are absent. For the de�nition of this potential surface, the

old idea of stick bonds between atoms can be used. When the bonds are modeled as

elastic, springy sticks, and mechanical properties such as sti�ness, torsion resistance etc.

are assigned, the parametrization completely replaces the electron integrals. Since the

electron integrals are no longer involved, the point particles previously treated as nuclei

can now be renamed as atoms. Adding atom type information to these point particles is

a necessity due to the problem of assigning correct parameters for the bonds. This type

of approach is called molecular mechanics method. The basic ideas behind the procedure

can be traced back to a paper of D. H. Andrews in 1930, but the real utilization does

not start until 1946 due to advancements in computer technology. In its most basic

form, the potential surface in molecular mechanics method consists of these separate

sums (see Figure 1.3 for graphical representation):

V =
∑

Vstretch +
∑

Vbend +
∑

Vtorsion +
∑

Vnon-bonded (1.95)

Figure 1.3: Stretch, bend and torsion using ball&stick representation of atoms. non-
bonded interaction is not shown, as it is omnidirectional without bond requirement.
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Each sum covers all the bonds in the structure, and depending on the nature, some-

times the spatial orientation of more than two atoms are used. The count of individual

atoms contributing to the interaction term is referred as the order of the equation.

Non-bonded atoms interaction term is a special case in this matter, due to its omni-

directional and seamless nature. Additional terms may be added, in order to account

for special behavior. The most common examples for these additional terms are the

hydrogen bond and electrostatic interaction.

There are numerous parameter sets for molecular mechanics, and each set has its

own application domain. In order to name a few frequently used, there are MM+ [28, 29]

, AMBER [30, 31, 32] , BIO+ [33, 34] and OPLS [35, 36] parameter sets . MM+ is a

large parameter set, but it works best for thermodynamical and structural properties

of small non-polar molecules. The unique feature of the MM+ force �eld separating it

from the others listed is in the way it treats bonds and angles. In the corresponding

bond and angle interaction terms, MM+ utilize a functional with di�erent order along

with the standard quadratic. MM+ also contains a stretch-bend cross term, called a

Urey-Bradley term. A Urey-Bradley term includes 1-3 interactions, which are critical

for accurately simulating molecules. For example, the bond angles for heavy atoms in

cyclo butane are compressed, compared to the natural bond angle for C sp3 orbitals, and

the carbon-carbon bonds have higher p character. This results in a weaker bond and an

increased carbon-carbon bond length. A Urey-Bradley term allows for these structural

changes and recognizes the unique 1-3 interactions which occur in strained molecules.

AMBER and OPLS are parameterized for certain proteins and some crystals. BIO+,

which is based on CHARMM, on the other hand, focuses on certain macromolecules and

ignores lone pairs. In this latter parameter sets, point charges are utilized in calculating

electrostatic forces, whereas MM+ uses bond dipoles, resulting in the unreliability in

charged and/or polar systems. MM+ is the most popular force �eld in our context.

The molecular mechanics method works best when the particular parameter set used
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is not too deviant from the con�guration it is parameterized for. One drawback (and

sometimes the advantage) of the molecular mechanics method in general is that the bond

con�guration for each particle is to be input beforehand and this may not be always

preferable. The correct parameterization requires more than atom type information. For

example, as stated earlier, the behavior of carbon is very di�erent in their various hybrid

forms. In some cases, in order to make the force �eld utilise the correct parameter set,

the nature of the bonds must also be input along with the always required connectivity

information, and in the end, this pretty much dictates a particular geometry preventing

another occurence. Additional methods for re-con�guring bonds with each motion on

the �y can be devised, but in this formalism, the re-con�guration criteria introduces

much unwelcome discontinuities, and it is not always reliable.

The best use for molecular mechanics is the calculation of vibrational spectra of

known/given molecules and the geometry optimization procedure. In geometry opti-

mization, pre-given bond con�guration dictate the resultant geometry, making it quite

useful for obtaining an initial structural geometry for molecules. A discussion on how

to locate the minimum in a multidimensional energy surface (created by the molecular

mechanics force �eld in our case) can be found in ref. [37].

Instead of modeling bonds as rigid entities of their own, a geometrical expansion

for the abstract potential can be employed. The main advantage in doing so is that

now the system is capable of seamless geometric recon�guration. The necessity for pre-

entering bond con�guration is now lifted, as the potential energy function now only uses

the spatial coordinates of atoms. An energy is assigned for each preferred geometrical

con�guration, along with some transition parameters, and the mathematical form of the

potential energy function guarantees a smooth behavior for all geometries. Although

there is a slight increase in computation time, system behavior is now somewhat more

realistic for the problem at hand. This geometrical expansion procedure will be called

as potential energy function method, or PEF method in short, hereafter in this chapter.
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The PEF method has a better applicability for Molecular Dynamics calculations.

Being an analytical function, the most distinctive property in an empirical potential

energy function is its mathematical form. One has to formulate one such that it can

incorporate a majority of experimental geometrical con�gurations, for the sake of wider

applicability, while considering the mathematical complexity and the smooth behavior.

In terms of mathematics, the continuity and smoothness for the PEF is guaranteed if

one can expand it using a series of well behaved functions like:

Ep = φ2 + φ3 + φ4 + . . . (1.96)

where φn is the n-body interaction term. These �interaction� terms are mathematical

functions that translate a particular geometry to energy. Each interaction term spans

all the atoms in the structure, the number of bodies involved for a particular interaction

term dictate the geometrical con�gurations it can be used to explain. For example, two

body interaction term φ2 may only parameterize inter-atomic distances, whereas, three

body interaction term φ3 add �angles� to the mix. Each of these interaction terms must

be smooth and well behaving within itself. Wider applicability demands an expansion

with more interaction terms, while complexity problem demands less. It is assumed

that the series is rapidly converging, and interaction terms higher than four are almost

never used5.

In order to calculate the force, the required quantity is the gradient of the PEF.

Depending on the type of the problem, one must choose a functional describing the

behavior of the system adequately. The PEFs are grouped according to this form; in

this text, the following grouping is employed:

ΦI = φ2 (1.97)

ΦII = φ2 + φ3 (1.98)

ΦIII = φ2 + φ3 + φ4 (1.99)
5Nearly all the features of complex geometries are covered after order four.
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for example, a group one potential Lennard-Jones PEF has a functional form:

Φ = φ2 =
∑

i<j

Uij (1.100)

Uij = 4ε




(
σ

rij

)12

−
(
σ

rij

)6

 (1.101)

The applicability of this group of potentials is severely limited to situations where spher-

ical symmetry allows non directional interaction (such as Van der Waals interaction)

or where only one geometry is permissible due to particular property of the element

(Metallic crystals). In the presence of covalent bonds, necessity for higher order inter-

action terms is obvious. For a detailed discussion on many PEFs, please refer to Refs.

[4, 5].

Interaction of carbon atoms is rather well studied in the last two decades, resulting

in very well parameterized potential energy functions. There are two widely used PEFs

in the matter. One of the most suitable in our case is the Terso� PEF [38, 39]. Although

formulated for Silicon at �rst, later revisions cover Carbon atom in various hybrid forms.

In Terso� PEF, the total interaction energy of a system of particles is taken to be the

sum of total two�body and total three�body contributions

Φ = φ2 + φ3 (1.102)

This is a group II potential. Total two�body and three�body energies are expressed,

respectively, as

φ2 = A
N∑

i<j

U
(1)
ij (1.103)

φ3 = −B
N∑

i<j

U
(2)
ij


1 + βn




N∑

k 6=i,j

Wijk




n

−1/2n

(1.104)

here Uij and Wijk represent the two�body and three�body interactions, respectively.

U
(1)
ij = fc(rij) exp(−λ1rij) (1.105)

U
(2)
ij = fc(rij) exp(−λ2rij) (1.106)

Wijk = fc(rik)g(θijk) (1.107)
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where

g(θijk) = 1 +
c2

d2
− c2

d2 + (h− cos θijk)2
(1.108)

(this part handles angle to energy parameterization)

fc(r) =





1 for r < R−D

1
2 − 1

2 sin[π2 (r −R)/D] for R−D < r < R+D

0 for r > R+D

(1.109)

(and this part is a cuto� function which satis�es smoothness and continuity criteria).

In e�ect, Uij and Wijk convert the geometrical information to energy via a set of pa-

rameters.

The Brenner potential has a similar functional form

Φ = φ2 + φ3 (1.110)

This is also a group II potential. Total two�body and three�body energies are expressed,

respectively, as [40]

φ2 =
N∑

i<j

Uij (1.111)

φ3 =
N∑

i<j,k

Wij,k (1.112)

here again Uij and Wij,k represent the two�body and three�body interactions, respec-

tively.

Uij = fc(rij)VR(rij) (1.113)

Wij,k = fc(rij)VA(rij)bij,k (1.114)

the cuto� function fc(rij) is exactly the same of Terso� PEF

VR(rij) =
De

S − 1
e−β

√
2S(rij−re) (1.115)

VA(rij) = − SDe

S − 1
e−β

√
2/S(rij−re) (1.116)
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bij,k = (1 + zij,k)−n (1.117)

zij,k =
∑

k 6=i,j

fc(rik)g(θijk)em(rij−rik) (1.118)

three body contribution comes from6

g(θ) = α

{
1 +

c2

d2
− c2

d2 + (h+ cos θijk)2

}
(1.119)

In its later modi�ed form, Terso� and Brenerr PEFs are almost equivalent in be-

havior, with Brenner potential having an increased interaction range whereas Terso�

PEF having a simpler mathematical form. Terso� utilizes bulk data extensively in pa-

rameterizing the PEF, whereas Brenner uses molecular data. Consequently, in their

original forms, they do have some signi�cant intrinsic di�erences. The major di�erence

is the bond-order terms in Brenner PEF, solving some problems in Terso� PEF, but,

due to some torsion related misbehavior, it is often neglected in nanostructure related

calculations. Further improved PEFs are available in the literature, but their necessity

for the problem at hand can be debated, especially for larger structures.

The major drawback in PEF method is in its inaccuracy in vibrational spectra.

The parameterization and functional form is focused on the geometric recon�guration,

but the vibrational spectra is better modeled with the expansion used in molecular

mechanics.

If one is not satis�ed by a pure empirical treatment, and require more information,

then electron integrals must also be put into action. Due to expensive nature of these

integrals, the size of structures that can be investigated will be severely limited mak-

ing this procedure a good practice only if one can not �nd/formulate a good enough

empirical many body potential. Otherwise it is always possible to perform electronic

calculations on the obtained �nal structure.

As it can be seen, although the equations involved are greatly simpli�ed in the pre-

vious section, we still need a second level of assumptions and approximations, choosing
6Notice that this is also the same as Terso� one, the sign change is due to parameterization.
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Table 1.1: The empirical parameters of the Terso� PEF for carbon [39]:

Parameter Value
A 1393.6 eV
B 346.74 eV
λ1 3.4879 Å−1

λ2 2.2119 Å−1

β 1.5724× 10−7

n 0.72751
c 38049
d 4.3484
h −0.57058
R 1.95 Å
D 0.15 Å

Table 1.2: The empirical parameters of the Brenner PEF [40]:

Parameter Value
De 6.325 eV
re 1.28 Å
β 1.5 Å−1

S 1.29 Å−1

n 0.8047
α 0.0113
c 19.0
d 2.5
h 1.0
m 2.25 Å−1

R 2.1 Å
D 0.2 Å

one according to the problem. In summary, Electron integrals are expensive. They can

be simpli�ed by inclusion of empirical data accompanied by the loss of generality, or

basis set formalism can be used, compromising the accuracy. The results are accurate

up to a predetermined level, however, the procedure still is not trivial. If a suitable set

of parameters exist, one can use Molecular mechanics or PEF methods, but the accu-

racy of the outcome solely depends on the correct parameterization, which is problem

speci�c at least. Molecular mechanics permit a wider range of application by its nature,

and it is more accurate in vibrational spectra but generally PEF methods are more

realistic in geometric recon�guration.
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1.6 Statistical Mechanics at the scale of few atoms

Having established the equations of motion for the system in last two sections, we now

have a physical model describing the motion of atoms within a structure. But this

model by itself is not capable of providing information we are looking for. What we

are looking for is the measurable structural properties of the system and this requires

statistical mechanics intervention.

Thermodynamics does not concern itself with the intrinsics of the system such as

atoms and molecules, they are certain to be intangibly complex for a macroscopic body,

and the topic itself precedes atomic and molecular theories. Instead, the observables of

the system are interlinked via the use of a set of postulates such that one can estimate

one by measuring others in a given environment. Statistical mechanics, on the other

hand, focuses on the derivation of these observables from the �rst principles. The

combination of statistics and mechanics (classical and quantum) at the microscopic level

leads to thermodynamics itself, meaning the spectroscopic data of individual molecules

can lead to observables at the bulk scale. But, similar to everything involving statistics,

the system needs to be de�ned carefully, and restrictions must be put in place. A most

obvious �rst necessity is that the number of available states for this systems must be

vast, so what is the state of our system?

The force �eld obtained in the previous chapter permit us to formulate the energetics

of a system for a given spatial con�guration x. Lets call this energy function H(x),

where, in our case, H no longer stands for the true Hamiltonian of the structure,

but instead the classical one obtained from equations of motion. The x designate

the particular geometrical con�guration system is in. For a given structure, even with

limited number of atoms contained within, the number of geometrical con�gurations

with essentially the same energy is enormous, and due to all of them being in the same

energy, they are all available. So, if we label these individual con�gurations as the state,

and the ensemble of geometric con�gurations as the system, due to vastness of available
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states, we are in the realm of statistical mechanics.

In our case, an ensemble of such con�gurations is not completely independent, since,

the necessity dictate that it should prepared in a manner that it contains con�gurations

�resembling7� the system of question. This way, we can be sure that the calculated

observable is for the structure at hand, but not for a random geometry with same

number of atoms.

As previously mentioned, statistical predictions require restrictions on the con�gu-

ration space. These restrictions are named in terms of postulates utilized in obtaining

observables:

• The micro�canonical ensemble: The constants of the con�gurations are the num-

ber of particles (N), the volume (V) and the internal energy(E). An alternative

nomenclature is (NVE ) ensemble.

• The canonical ensemble: (N), (V) and temperature (T) of the ensemble is constant.

Alternative nomenclature is (NVT) ensemble.

• The isothermal�isobaric ensemble: Pressure (P), (T), and (N) are constants. Hence

it may be called (NPT) ensemble.

• The grand canonical ensemble: (N) may vary to achieve constant chemical poten-

tial µ but the (V) and (T) are constants. So the other name is (µVT) ensemble.

In order to carry on, we need to de�ne the ensemble we are working in. There is not

much freedom of choice within our context, the goal is clear, we are trying to obtain

observables for an isolated interacting set of atoms in a heat bath. Being isolated, there

is no atom leaving or entering the system, thus the number of particles (N) is constant,

and we have to be controlling the ambient temperature to observe its e�ects (constant

T). The foundation principle of molecular thermodynamics clearly state that micro-

canonical ensemble should be used for isolated molecules, but it is already eliminated.
7i.e. they have similar geometrical con�gurations, same kind of atoms etc.
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The point of debate lies within the de�nition of heat bath. In macroscopic dimensions,

the nature of the heat bath is almost always not a point of concern, but in molecular

size, nearly all the heat transfer mechanisms has a huge and discontinuous impact on

the system. At this point, one may choose to include the elements of heat bath into

structure for more realistic representation, or take the heath bath concept to a more

abstract level for focusing on the properties of system only. We will proceed with the

second, due to special properties of the carbon nanostructures. This way, the contact

with heat bath becomes a conceptual one, avoiding alteration of structure and the

complications related.

At this point, a choice has to be made: Either the pressure or the volume of the

container should remain constant. Although many constant pressure scenarios can be

devised that can be used for similar purposes (i.e. [41]), a constant volume environment

is somewhat more suited in our case, especially due to the nature of the heath bath.

Thus, canonical ensemble will be assumed for the rest of this text, if not otherwise

mentioned.

In systems having statistical nature, measurable physical quantities, namely the

observables, appear as averages over some space of con�gurations.

〈A〉 = Z−1
∫
A(x).f(H(x))dx (1.120)

Z =
∫
f(H(x)) dx (1.121)

〈A〉 is called the ensemble average of the system. First problem in a calculation

arises from the de�nition of this integral. In a computation for an observable, say

the temperature, one can consider a large number of �resembling� con�gurations, or

propagate system through a trajectory in phase space and evaluate kinetic energy along

the path instead. First choice leads to famous Monte Carlo algorithms, whereas the

latter leads to molecular dynamics, which will be emphasized within this context due

to its ability of describing dynamics of the system. Using a trajectory along the phase
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space instead of ensemble averaging is called the time average and in integral form it

can be represented as:

Āt = (t− t0)−1
∫ t

t0
A(x(τ)dτ (1.122)

and via the ergodicity theorem

〈A〉 = Ā∞ (1.123)

but yet again, observation time can not possibly be in�nite as it requires an in�nite

calculation time, so we must be content with something like

〈A〉 ≈ Āt (1.124)

after all, the system should reach an equilibrium after a su�cient amount of time,

and apart from �uctuations, major deviations in energy become highly improbable in

equlibrium. A system in such a condition is called a relaxed system.

At this point one may argue that assumed weak interaction when calculating the

energy of the system is not valid for our case, and instead of above, one has to use

something like

f → f(H1(x), H2(x), . . .) (1.125)

Z →
∫

1

∫

2
. . . f(H1(x),H2(x), . . .)dx (1.126)

where each �atom� is treated separately according to its surroundings. But the sheer

complexity of this integral is on the level of electron integrals if not more, and it is

clear that it must be avoided. The trick is to use the continuity and well behavior of

potential function. These two properties guarantee that for a small enough time interval,

interaction potential can be considered constant, thus the above partition function is

valid. Since in this context we will be employing discrete integration methods that utilize

geometrical interpretation of integration, small time intervals is already a necessity. The

overall error is negligible in the relaxed structure. The choice of �small enough� time

interval depends on the nature of the system and the method of integration employed,

thus it may be considered as a parameter itself.
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Apart from �nite observation time, there are also some �nite size e�ects on the

system. Although number of states for a given energy is vast, it is not in�nite as it

should be, and this introduces some major �uctuations. In order to cope with the

problem, special boundary conditions are imposed, which will be discussed in the next

chapter. This seemingly disadvantage can be utilized in a number of ways, though. For

example speci�c heat of the system

CV = − ∂

∂T

(
T 2∂(F/T )

∂T

)

V
(1.127)

can be approximated from the �uctuations in temperature.

δ(T ) =
〈T 〉2 − 〈

T 2
〉

〈T 〉2 = 1−
〈
T 2

〉

〈T 〉2 (1.128)

〈
T 2

〉

〈T 〉2 =

〈
T ∂E

∂T
∂T
∂S

〉

〈T 〉2 =
3
2
NKB

〈T 〉
〈T 〉

1〈
T ∂S

∂T

〉 =
3
2
NKB

1
〈Cv〉 (1.129)

〈T 〉2 − 〈
T 2

〉

〈T 〉2 =
(

1− 3KBN

2Cv

)
(1.130)

(where an ideal gas of non-interacting point particles are considered) and thus di�cult

free energy calculation may be avoided. Notice that for an ideal canonical ensemble

where temperature �uctuation is zero, above equation reduces to

Cv =
3
2
NKB (1.131)

which is the heat capacity due to translational motion in an ideal gas. The level of

detail can be increased according to needs, for example using Debye approximation,

and a more realistic de�niton of equation of states.

The temperature argument is enforced as a velocity distribution to the system. Thus,

what we need now is a suitable one. Using the fundamental law of thermodynamics

dE = −PdV + µdN + TdS (1.132)

the principle of equal weight, and the de�nition of canonical ensemble where N, V and

T are constants, the partition function and thermodynamic function for this ensemble
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can be obtained as

Z(N,V, T ) =
∫ ∞

0
e−E/KBT Ω(E, V,N)dE (1.133)

F (N,V, T ) = −KBT logZ(N,V, T ) (1.134)

where Ω is the density of states of the system.

These two equations may be utilized for obtaining various bits of information on

observables of the system. But, as of now, what we are interested in is the inclusion of

temperature parameter to the equations of motion obtained in the previous section.

The heat of a system is interrelated with the internal kinetic energy. Thus, if we can

�nd a distribution function suitable for our case, we can assign corresponding velocities

to achieve a speci�c temperature. In order to do this, we need to know the particular

distribution of momentum for a system in a given temperature. Without going in to

further details, the three dimensional density of states in momentum space for a given

translational momentum interval in the non-relativistic limit is simply [8]

f(p)dp =
V 4πp2dp

h3
(1.135)

using this, the partition function for translational momentum becomes

Ztr
1 =

∫ ∞

0

V 4πp2dp

h3
exp(−βp2/2m) (1.136)

the integral is a common one with result

Ztr
1 = V

(
2πmKBT

h2

)3/2

(1.137)

since the energy corresponding to a particular translational momentum state is

ε =
1

2m
p2 (1.138)

and the number of molecules with this state is

n̄ = N
1
Ztr

1

exp(−βε) (1.139)
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we obtain a distribution of the form

n̄(p) =
N

V

(
2πmKBT

h2

)−3/2

exp(−p2/2mKBT ) (1.140)

if the p is replaced by mv, we obtain the desired probability distribution for the speed

P(v)dv = 4πv2dv

(
2πmKBT

h2

)−3/2

exp(−mv2/2KBT ) (1.141)

This is called the Maxwell speed distribution. Using this speed distribution for the each

Cartesian component, one obtains a spherically symmetric velocity distribution called

the Maxwell velocity distribution. Before carrying on, some details on this distribu-

tion are worth mentioning. The most probable speed for this distribution, vm, can be

calculated from dP
dv = 0, which gives:

(
− (kBT )−1mve−(kBT)−1

(mv2/2)
)
v2 + e−(kBT)−1

(mv2/2)(2v) = 0 (1.142)

from this equality one obtains:

vm =

√
2kBT

m
(1.143)

average or arithmetic mean of the distribution is

v̄ =
1
N

∑
vP(v) (1.144)

=
4√
πv3

m

∫ ∞

0
v3e−v2/v2

mdv =
2√
pi
vm (1.145)

the root�mean�square of the distribution is

vrms =
√
v̄2 =

(
4√
πv3

m

∫ ∞

0
v4e−v2/v2

mdv

)
(1.146)

=
3
2
vm (1.147)

summary of this distribution is given in Table 1.3.

The distribution serves as an initial step for assigning velocities to the molecules,

if enforced exclusively it will break the equations of motion. However, in order to

enforce canonical ensemble, a control over the temperature is required. This is done by

introducing a constraint function.
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Table 1.3: Maxwell distribution of speeds.

name value

Distribution function 4πn
(

(kBT)−1
m

2π

)3/2

e−(kBT)−1
(mv2/2)v2dv

Most Probable speed vm =
√

2kBT
m

Arithmetic mean of the speed v̄ =
√

2.55kBT
m

Root�mean�square of the speed vrms =
√

3kBT
m

The constraint may be a nonholonomic constraint on the velocity like (iso kinetic

MD)

A =
1
2

∑

i

mv2
i = const. (1.148)

or one may introduce a vanishing proportionality constant depending on the tempera-

ture of the system at speci�c time (Gaussian iso kinetic MD)

1
2

∑

i

mv2
i = αt (1.149)

Velocity restraint is a more straightforward method. At predetermined time inter-

vals, a velocity rescaling factor is used to keep temperature at a constant level. The

timing is somewhat critical, if it is too tight, correct energetics of the system is dis-

turbed, if it is too relaxed, the ensemble can no longer be considered as canonical. This

is yet another control parameter depending on the system. Lets see how we can obtain

such a restraint. In a thermodynamical system the velocities and the temperatures

should be interrelated as:

Total Kinetic Energy =
Degrees of Freedom

2
×KB × T (1.150)

using this de�nition, one can easily come up with a rescaling factor for velocities as:

α =

[
(3N) kBTref/

∑

i

mv2
i

]1/2

(1.151)

In this formula N is the number of moving particles. Notice that there are (3N − 4)

degrees of freedom due to constraints imposed on total linear momentum and total
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kinetic energy but keeping in mind that N is often very large, and constraints imposed

are �exible, it is a common practice to just use (3N) instead. Tref or Tr in short stands

for the reference temperature of the system. The actual temperature of the system may

be di�erent than Tr due to previously mentioned reasons.

1.6.1 Boundary conditions

As mentioned a few times before, our ability to use statistical mechanics lies in the

identi�cation of the system, so that the appropriate postulate may be chosen. The

knowledge on structure supply some of the information, and we now have a control on

temperature, but there is something missing: the vicinity of the molecule. In terms of

mathematics, one needs to de�ne an enclosed space, even if it is of in�nite volume, in

order to proceed. The boundary of this volume provides the missing piece of information,

ultimately de�ning the postulate.

There is no restriction on the shape or size of this volume, as long as it is bigger

than the system at hand. But there are some special considerations. One such special

consideration is the periodic boundary condition. This condition de�nes an enclosed

space such that when an atom leaves a boundary it re�enters through the opposite

one. Thus it is a necessity that the geometrical shape of the volume should be able

to cover all the space without gaps. Perhaps the most trivial, if not most common,

such geometry is a rectangular box (or a rectangle in 2D). An obvious feature is that

one does not need to transform heading vector of the re�entering particle if Cartesian

coordinates are used, and the �opposite� boundary is simply the face parallel to the

original one. The periodic boundary �xes the number of particles within the volume,

without introducing hard walls, thus the impact on the structure itself is minimal.

At this point, it must be re-mentioned that, in this context we are not interested

in the exact mechanism of how the pressure, temperature or any other parameter is

maintained within the container, as long as it does not disturb the mechanics of the

42



system (i.e. the molecular Hamiltonian) signi�cantly, in the same sense thermodynamics

is not interested in the intrinsics of bulk matter. This does not mean that this is always

the case. In some structures, especially in those that can only exist in solvents, the

environment does play an important role in structural mechanics. There exists solvent

models for the purpose of explaining such interactions. But majority of Carbon (only)

structures may exist in vacuum, and they are inert enough to carry on with the above

axiom.

1.6.2 Computational Methods

The ensemble average and the time average presented in the previous section are equiv-

alent in the sense that they both lead to same physical observables. However, there

is a big intrinsic di�erence between them: the time. In general, a propagation, that

is, a physical relevance between the consequent members, is not a requirement in an

ensemble average. On the other hand, time average is a propagation in phase space by

de�nition. This intrinsic di�erence results in a branching of calculation methods. There

are many di�erent methods in both branches, each unique in its own way. One common

thing in all of them is the requirement of computers due to vast number of calcula-

tions. In this chapter we will focus on the related computational details. Although each

method has its own appeal, remembering our goal, only molecular dynamics method

using a canonical ensemble will be presented in detail, along with a brief introduction

to Monte�Carlo method, for comparison purposes.

In the realm of computers, the symbolic equations encountered before need to be

re-described in a numerical manner, and there are many alternatives for doing so. It

will turn out that, in the end, this is a choice between precision and computer time.

Lets begin with the canonical Monte Carlo algorithm.

Monte Carlo (MC ) and its derivatives rely on ensemble averaging for the observ-

ables, therfore there is no propagation in time. The main goal is to �nd the most
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suitable con�guration in a given environment, such that its probability of occurrence is

signi�cantly higher than the others. Since it is impossible and unsuitable to achieve this

by investigating an in�nite set of random geometries, a mechanism for selecting more

favorable and resemblant is required. Generally, the mechanism involves the deforma-

tion of initial geometry in some manner, followed by a decision to keep newly obtained

geometry. Although a better con�guration in each step (or after a number of steps)

is not guaranteed, in the long run the goal should be reached. The exact intrinsics of

the deformation and decision mechanisms ultimately de�ne the method at hand, for

example in MC, both these mechanisms rely on random numbers, whereas in a genetic

algorithm there are other considerations. The major steps a canonical MC are given

below:

1. Specify an initial con�guration

2. Generate a new con�guration x′.

3. Compute the energy change ∆H.

4. If ∆H < 0, accept the new con�guration and return to step 2

5. Compute exp
(−∆H/kBT

)
.

6. Generate a uniform random number R∈ [0, 1].

7. If exp
(−∆H/kBT

)
is less than R do not apply the change and goto 2

8. Otherwise, apply the changes and goto 2

Algorithm 1: Canonical MC

Notice the propagation in this algorithm, not in phase space but in con�guration

space. Without the implicit restrictions of such propagation, one will not be examining

the structure of interest at all, since there always exists some irrelevant con�guration of

atoms with �nite or better probability of occurrence. Overall, this restricts the ensemble
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to a collection of �resembling structures�. Since such a collection is also huge, this

does not break statistical assumptions. When a particular geometry does not change

signi�cantly for a signi�cant amount of steps through this propagation, the system is

considered to be converged. The PEF is directly involved in the calculation through

the Hamiltonian, and numerical calculations involved are pretty straightforward.

Being a stochastic method, MC has its advantages and disadvantages. The algorithm

is cheap computer-wise, thus it is very fast and scalable. Furthermore, the motion of

atoms are not calculated, and temperature is included through the selection mechanism

without e�ecting the internal energetics of the structure. On the other hand, the method

cannot be used for observations of dynamics (which is enough reason for not going into

detail in this context), along with the restrictions on the use in non�equilibrium systems.

The convergence may take a long time, if the system converges at all8. In fact all the

derivations of this method try to improve the convergence.

Molecular Dynamics (MD . Instead of a propagation in con�guration space, the

system is propagated through the phase space, which requires previously introduced

equations of motion. This results in a fast convergence rate, since the structure propa-

gates according to its own internal dynamics, and these dynamics of the system can be

observed through the process.

The energy of a particular phase space state of the structure is de�ned through the

Hamiltonian

H =
1
2

∑

i

1
m
p2

i +
∑

i6=j 6=k

Φ(~ri,j,k) (1.152)

where Φ is the interaction potential. The phase space state is the spatial orientations of

the molecules (~ri,j,k = ~rij , ~rik, ~rjk) and the momentum (~pi). We know that momentum

in our phase space is not completely independent, due to restrictions on temperature

and the interaction potential. Thus, there exists a perpetual propagation mechanism

for this system: The spatial coordinates result in a �eld through interaction potential

8Classical MC does not guarantee this convergence
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giving momentum to atoms, which in turn result in a new set of spatial coordinates. The

gears can be started by supplying a set of initial momenta, which is easily done by the

use of Maxwell velocity distribution. Some may have considerations on the use of this

distribution in a highly interacting system, but in e�ect, the distribution is active only

for an in�nitesmall amount of time after which the dynamics of the system take over

immediately. After this, rescaling the velocities in order to maintain temperature once

in a while will be su�cient. Lets start by the classical solution introduced beforehand:

d2ri(t)
dt2

=
1
m

∑

i

Fi (1.153)

Fi = −∇
∑

j 6=k

Φ(~ri,j,k) (1.154)

these are simple equations. However, in computational terms, there is a problem: How

can this equation be translated into a numerical one? Using the Taylor expansion of

course! The expansion for an arbitrary function u(t+ h) looks like this

u(t+ h) = u(t) +
n−1∑

i

hi

i!
u(i)(t) (1.155)

(in this expansion a dummy variable x = t+h is de�ned and series are expanded around

x = t). Lets expand the same function using another dummy variable x = t− h.

u(t+ h) = u(t) + h
du(t)
dt +

1
2
h2d2u(t)

dt2
+O(h3) (1.156)

u(t− h) = u(t)− h
du(t)
dt +

1
2
h2d2u(t)

dt2
+O(h3) (1.157)

here O(h3) means that there is an error due to truncation of series in the order of

h3. Assuming all possible u(x) is known but not d2
u(t)

dt2 these equations can be solved

simultaneously to yield:

d2u(t)
dt2

=
1
h2

[u(t+ h) + u(t− h)− 2u(t)] +O(h) (1.158)

which is one of the numerical representations of a second order derivative. Please

notice that the error in this approximation grows to h! Normally it is assumed that h
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is su�ciently small and it can be neglected. There exists representations with smaller

error, but they require more points and have a more complex mathematical form, greatly

consuming computation time. These equations will be used in a statistical calculation

in the end, thus as long as the drift introduced by this error is small, it will be ruled

out. Using a similar approach to a �rst order derivative one obtains:

du(t)
dt =

1
2h

[u(t+ h)− u(t− h)] +O(h) (1.159)

which is considerably better than applying geometrical de�nition of derivative. After

this point, our system is discretized in time in steps of h. The size of this time step is very

important both mathematically and physically. This will be discussed later. Applying

these equations for discretizing the solution of Newton equations of motion, positions

(ri) and velocities (vi) of particles are found as (the error is neglected hereafter):

rn+1
i = 2rn

i − rn−1
i + Fn

i h
2/m (1.160)

vn
i =

1
2h

(
rn+1
i − rn−1

i

)
(1.161)

where

tn = nh (1.162)

rn
i = ri(tn) (1.163)

Fn
i = Fi(tn) (1.164)

a consequence of this discretization is that velocities calculated belong to coordinates

one time step before, so calculated kinetic energy of the system is retarded compared

to potential energy! This undesired e�ect can be eliminated with a neat mathematical

trick. De�ne:

zn
i = (rn+1

i − rn
i )/h (1.165)

using this de�nition, a mathematically equivalent form of eq. 1.160 can be obtained:

rn
i = rn−1

i + hzn−1
i (1.166)

zn
i = zn−1

i +m−1hFn
i (1.167)

47



eq. 1.167 is obtained using the eq. 1.160 in the following manner:

zn
i = (2rn

i − rn−1
i + Fn

i h
2/m− rn

i )/h (1.168)

= (rn
i − rn−1

i )/h+m−1hFn
i (1.169)

= zn−1
i +m−1hFn

i (1.170)

we can use zn
i in eq. 1.161 to de�ne vn

i , and obtain two linearly independent equations:

vn
i = (zn

i + zn−1
i )/2 (1.171)

zn
i − zn−1

i = m−1hFn
i (1.172)

solving for zn
i :

zn
i = vn

i +
1
2
m−1hFn

i (1.173)

and putting this into previously obtained eq. 1.166 and eq. 1.171:

rn+1
i = rn

i + hvn
i +

1
2
m−1h2Fn

i (1.174)

vn+1
i = vn

i + h(Fn+1
i + Fn

i )/2m (1.175)

a more convenient form is obtained. This form is not only computationally more e�-

cient, since only terms with one previous con�guration is present, but also eliminates

the nasty problem of retarded kinetic energy. Equations 1.174 and 1.175 together are

called Verlett algorithm (velocity form).

Using these numerical equations of motion, an algorithm for canonical molecular

dynamics can be devised (Alg.2).

This is one of the most basic algorithms one can follow. Although being so, the

numerical calculation is considerably more intense than a Monte Carlo algorithm, and

there is an increased set of control parameters. These parameters do not directly depend

on the PEF used, their origin is mostly statistical and mathematical considerations on

underlying physics. For example, how often does the rescaling of velocities applied?, do

we apply it instantaneously or through a time period? Most of them will be omitted since
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1. Specify the initial positions r1i .

2. Specify the initial velocities v1
i .

3. Compute forces.

4. Compute the positions at n+ 1 using rn+1
i = rn

i + hvn
i + 1

2m
−1h2Fn

i .

5. Compute velocities at n+ 1 using vn+1
i = vn

i + h(Fn+1
i + Fn

i )/2m.

6. Compute kinetic energy.

7. Scale the velocities αvn+1 → vn+1 using α =
[
(3N) kBTref/

∑
imv

2
i

]1/2 at speci�c

time intervals.

8. Goto 3 until the duration of simulation expires.

Algorithm 2: NVT MD Algorithm

they are highly application speci�c, but, maybe one of the most important parameter

is the length of a single time step, which deserves a little discussion of its own.

A very important consequence of numerical calculation in a MD program is the

discretization of time in calculations. The length of a single time step may be considered

as a parameter of the system. This time parameter should neither be too large, since

error assumptions in the discretization process would lead to wrong results, nor too

small, since precious computer time would be lost needlessly. Also, when the time

step becomes too small there is machine constant9 limit which may lead to enormous

errors. Value of this parameter depends on the application, and it is decided according

to experience. In this particular kind of MD using Verlett algorithm, 1/100th of the

oscillation period between two neighboring atoms known to work well. For example,

using the two�Body component of the Terso� potential in Figure 1.4, this parameter

9machine constant is the number of digits that a computer can store in assigned data memory
cell
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can be estimated as:

r0 = 1.45Å (1.176)

ε0 = 2.58Å (1.177)
1
2
m

(
∆x
∆t

)2

= ε0 (1.178)

∆t =

√
mr20
2ε0

(1.179)

∆t/100 = h ≈ 10−16s (1.180)

where h is the time step in Verlett algorithm. Luckily, this value does not violate the

single block machine constant of 32 bit CPU, enabling faster calculations in even home

computers of today.

Figure 1.4: Two�body contribution to energy in Terso� and Brenner potentials.

Another important point in a MD simulation is the decision where to stop. The aim

is to reach a stable con�guration. Such con�guration is most simply explained through
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the structural appearance, as the geometry does not evolve any further. Of course, a

geometrical approach is quite subjective and hard to decide on. A more �tting way is

to use statistical physics de�nition as the ensemble being in every one of its accessible

states with equal probability. The de�nition may seem obscure, but, in e�ect, the use of

this de�nition makes the decision job much easier. Remember, the states of our system

are de�ned through con�guration energy in PEF, and due to propagation mechanism in

MD algorithm, number of accessible states with unrelated geometries is severely limited.

In short, when the con�guration becomes stable, the energy of the system should be

�uctuating around a mean value which corresponds to the desired stable geometry.

Using a plot of energy versus time, such behavior can be identi�ed easily.

The intensity of these �uctuations is almost always constant, but there may be

some infrequent large �uctuations. Whether these large �uctuations die or carry the

system to another stable con�guration depends on the actual state of the system. If

the system is in the absolute stable con�guration, then the �uctuation is certain to die

after a certain number of time steps, but the system may have been in a meta stable

state, which is not always easy to decide. For example, look at Figure 1.5. The unlikely

starting con�guration rapidly decays into a meta stable state, which is in e�ect for about

ten thousand MD steps! But pressing on, the system achieves a better con�guration.

After eighty thousand MD steps, it is highly unlikely that the system is in a yet another

metastable state, thus simulation concludes. However, 10000 MD steps is no small value,

especially if one is using semi-empirical or ab-initio methods, the metastable state may

have easily been misjudged as the stable con�guration.

The main advantage of the MD procedure is the rapid decay of unlikely states.

Although each step is considerably more expensive than a MC one, with this property,

the algorithm is much faster to converge compared to MC in general.
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Figure 1.5: Total energy versus MD steps plot of a sample system at 300K.
This plot is somewhat extraordinary showing a metastable state.

1.6.3 Further improvements to the speed

A calculation of presented nature, or a simulation as some may prefer to call it, requires

a delicate balance between precision and speed. Typically, several thousands of steps

are required for each calculation, and if the speed of the computer which calculates

each step is slow, then problem at hand becomes insolvable. There are a couple of

commonly practiced methods increasing this speed drastically without sacrifying too

much precision. For example, in calculating the force exerted on an atom in a MD

simulation, it is often unnecessary to consider all atoms in the structure due to cuto�s

present in PEFs. A list of close proximity neighbors kept for each atom may save a lot

of computer time, since it should only be updated rather infrequently. Using a spatial

mesh the idea can be carried on further, improving the method of updating neighbor
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list. Ultimately, the structure can be divided to a series of networked computers, to be

calculated in parallel processing. There are several di�erent such tweaks, and some of

them may even depend on the speci�c computer architecture. The nature of the tweaks,

especially the parallel ones, are beyond this context, a more detailed discussion can be

found, for example, in Numerical Recipes series or Parallel programming with MPI [42,

43]. Due to nature of parallel computing, node communication need to be minimalised.

This sometimes requires modi�cations to PEF itself, and speci�c algorithms including

modi�ed forms of PEFs do exist in literature [44, 45].

With this, the discussion on the theoretical nature of the problem is concluded. Of

course, this limited text does not cover all the details, but as mentioned above, it is

a target speci�c text, aimed to introduce some nomenclature. The rest of the text is

designed in a modular manner, in which each chapter is a self-contained topic. Some

further details can be found in each corresponding section, but, as always, the full details

are beyond the constraints of this work.
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CHAPTER 2

ON THE POSSIBILITY OF A POLYMER-LIKE

NANOROD BASED ON STANDALONE BENZENOID

CARBON RINGS.

2.1 Introduction

In this chapter, the possibility of existence of a periodic structure consisting of stacked

C6 rings is investigated theoretically. Such a structure is interesting primarily for two

reasons: Vertically stacked π-conjugated polymers are interesting both due to self orga-

nization properties and their aromatic nature. Phtalocyanine and Hemi-porphyrazine

are two examples of such structures [46]. Due to π-conjugation, they are generally

expected to be semiconducting or conducting, and due to nature of the coordination,

they are expected to be rod-like rigid structures, with properties/advantages of hairy

polymers. The minimum cross-section area achievable for such a structure is observed

to be limited, too thin structures tend to be radicals. Whether this is due to inherited

properties from the polymerized unit, or due to aromaticity leading to instabilities in

coordination for certain arrangements is an open question. C6 ring (a.k.a. benzenoid
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ring), without Hydrogens, is a very unstable structure by itself, and extremely hard to

realize, if possible at all, as a standalone structure. However, dehydrogenation leads to

under-coordination, resulting in a increased p character in the hybridized orbitals, per-

mitting a strained but stronger bond in the stacking direction. The vertically stacked

C6 rings can be considered to be in an intermediate coordination state between sp2,

sp3 hybridization, maintaining the aromaticity. This may lead to reduced inheritance

of radical behavior from the unit cell, resulting in a more stable structure. In this work,

two possible schemes for coordination between C6 rings are considered, with predictions

on various physical properties, that can be used in deciding if they are realizable at all.

The importance of C6 ring stems from the carbon nonstructural with aromatic na-

ture. There are many such 0D nanomaterials in the literature, each with its own set of

unique and promising electronic/structural properties. However, how to construct e�ec-

tive networks with such nanostructures interlinked to each other is still an open question.

The most important property one has to satisfy is not to disturb the interlinked nanos-

tructures. In order to maintain aberrations due to linking on the perturbative level, one

has to devise a method for not only maintaining geometry, but also the electronic con-

�guration. A solution that immediately comes into mind is to use π-conjugation in the

C6 rings that are favored energetically in such structures. This should introduce very

little geometrical aberration, and alteration in electronic behavior is generally expected

to be on perturbation level, depending on the structure itself. There are a couple of

strategies for this purpose, such as Dewar coordination. Other π-conjugated polymers

are already used for such purposes. Vertical stacking considered in this work is expected

to have two advantages over the planar arrangement often considered: Increased rigid-

ity, and due to aromatic ring-aromatic ring coordination, less impact on the electronic

con�guration of the connected structure.

The structure investigated will be called the �benzorod� as suggested by the S. Erkoc

who proposed it in a recent work [47]. This chapter is segmented into two parts. In
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the �rst part, the structure is investigated as a non-periodic macromolecular entity

via empirical potential molecular dynamics calculations. In the second part, a more

detailed study using DFT is presented, treating the structure as a 1D periodic nanorod.

Various theoretical calculation parameters are established using an abstraction based

on molecular properties of benzenoid rings and similarly coordinated bulk systems.

2.2 Molecular Dynamics Investigation

Molecular dynamics method is a very good tool for prototyping a modeled structure

which little is known about. Force driven relaxation procedure that is statistical in its

nature provide an autonomous mechanism to test the structural stability and thus assert

the validity of a given model. Even in some cases such as this one, results can directly

be used to predict a better structural model for the system at hand. In this sense, there

should be as little predetermined structural constraints on the system as possible. This

is best achieved when the system is modeled as a macromolecular entity, getting rid

of the restraints imposed by periodic boundary conditions. However, it should be kept

in mind that, in the end, we are trying to model a nanorod which is by de�nition a

1D periodic structure. In order to achieve resemblance, benzorods of varying lengths

are prepared. Too long and too short models prone to have various problems that are

irrelevant for our purposes.

Conjugation of benzorod with an aromatic structure is modeled via graphene sur-

face (surface interaction) and Buckminsterfullerene (C60) molecule (0D nanostructure

interaction) [48].

2.2.1 Method of calculation & Preparation of models

The empirical many�body potential energy function developed for carbon [38, 39] is

used in the calculations. This PEF describes the structural properties and energetics

of carbon relatively accurately; including diamond crystal as well as the properties of
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Benzorod 4C6

stacking direction
~1.45 A

1.

2.

3.

4.

Figure 2.1: The model structure of benzorod 4C6

the individual basal planes of graphite. Furthermore, buckminsterfullerene [48] related

structures, such as carbon nanotube and buckyball, can also be simulated, and relatively

accurate structural properties and energetics are obtained [49]. There is no explicit

�bond� information in the Terso� PEF and thus carbon atoms may rearrange under

external in�uence without bond conservation restriction, unlike molecular mechanics

method [28, 29]. Absence of long range interactions is of no signi�cant importance in

this part.

The equations of motion of the particles are solved by considering the Verlet algo-

rithm. The canonical ensemble molecular�dynamics NVT [9] is proceeded. The tem-

perature scaling is taken into account at predetermined MD steps and the temperature

of the system is kept constant at a given temperature with direct rescaling of velocities.

One time step is taken to be 10−16 s in accordance to the two body component of the

PEF used.

A pseudo-annealing method is employed in the following manner : Starting at very

low temperature (1 K) the initial model is relaxed (as described in Section 1.6.2). Then

the temperature of the system is increased to 100 K and relaxation procedure is initiated

again. After this, the temperature is increased in steps of 100 K, relaxing the structure

at each temperature step, until the system considered distorts. Distortion criteria can
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be described as a �non-insigni�cant deviation from the initial model�, such as separation

of atoms, geometrical aberrations that change whole the structure, etc. Each system

distorts at a di�erent temperature. Relaxation at each temperature step lasts for about

50000 time steps, which is almost always enough to reach equilibrium.

Thanks to this pseudo-annealing method, structural parameters in the initial models,

such as inter-layer separation, need not be determined exactly, any under- or over-

estimation is corrected through the course of calculations.

Initial benzorod models are generated by stacking dehydrogenated benzene rings to-

gether. Each ring, or layer, is in alignment with the others and the inter-layer separation

is about1.45 Å. Benzorods are named as nC6 where n is the number of dehydrogenated

benzene rings present. As an example, model structure of benzorod 4C6 is shown in

Figure 2.1. Notice that, Terso� PEF is modeled with mostly hybrid orbital bonding in

mind, and it is only an assumption that the under-coordination due to missing hydrogen

atoms leads to a bonding scheme that is describable using this PEF.

Benzorod location

14.757 A

25.56 A

PBC Rectangle

Figure 2.2: A benzorod array. Periodic boundary is shown as the rectangle (along x
and y), and locations of benzorods are shown in ball and stick notation.
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In order to simulate the graphene surface, periodic boundary conditions (PBC)

are applied in lateral directions (x,y). In order to model surface relaxation due to

benzorod addition adequately, the size of the periodic rectangle is chosen so that there

is a large enough area independent of the restrictions of PBC. Benzorods attached to the

graphene surface, or benzorod arrays in short, are structured by adding dehydrogenated

benzene rings to selected hexagons of a graphene sheet (Figure 2.2). The site points for

benzorods are chosen so that they are beyond interaction distance of each other, which

is approximately 1.7 Å in the PEF used.

Benzorod may also act as an interconnecting element for 0D nanostructures. In order

to demonstrate this, a chain structure that is composed of C60 [48] and interconnecting

benzorods is modeled. In this model, there are three C60 nanoballs. The benzorods

connect C60 nanoballs in a linear fashion, using consequent hexagonal faces. By varying

the length of two interconnecting benzorods, 9 di�erent structures are obtained. These

structures are named as mC60-nC6 where m is the number of buckyballs present and

n is the length of the benzorods.

2.2.2 Results & Discussion

Standalone benzorods at various temperatures are shown in Figures 2.3-2.5. The highest

temperature indicated for each benzorod is the point where the structure is considered to

be distorted. It should be noted that the indicated temperatures are solely for compari-

son purposes with similar calculations, the system lacks proper environment interaction

modeling. The most useful information gained here is the geometrical rearrangement

of the structure under stress.

The previously mentioned strain on the structure leads to an interesting geometric

recon�guration. When there are a group of three rings, the middle ring distorts, i.e. it

moves outside the bonding radius of the other ring members, and each member becomes

a �joint� connecting the other two layers. These �joint� atoms align themselves in a
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Figure 2.3: Benzorods 2-8C6
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Figure 2.4: Benzorods 9-14C6
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Figure 2.5: Benzorods 15-20C6
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Figure 2.6: Dependence of distortion temperature on the number of dehydrogenated
benzene rings n.

geometry such that there is an angle of 107◦ between the �bonds� connecting the two

layers. This geometry is most clearly seen in benzorod 3C6. When there are more than

three rings, the 3C6 geometry is favored, and the structure aligns itself such that 3C6�

like geometry is maximized through the length. When there is an even number of rings

however, one of the layers is left�out. This left�out layer maintains the original geometry

(2C6�like geometry) with its neighboring layer. The smallest benzorod with a left�out

layer is 4C6. Left�out layer geometry has a preferred location. In most of the cases

studied the left�out layer geometry was encountered in the middle of the structure or as

close as possible, most probably due to under-coordination at the ends. The exceptions

are the 6C6 and 8C6 benzorods. The left�out layer in these two benzorods appear in

the ends most probably due to their smaller length. Lastly, the ideal benzorod geometry

seems to be stable up to room temperature for lower (and even) number of benzorod

rings. When temperature is increased above room temperature , geometry assumes the

above described form.

The overall thermal stability of the benzorods studied is length dependent. This is to

be expected, as with increasing length, the possibility of a thermal �uctuation leading to
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a deformation exceeding the maximum elastically sustainable bending angle increases.

In general, when the number of rings increases thermal stability decreases. Distortion

temperature versus number of dehydrogenated benzene rings plot is shown in Figure

2.6. The biggest �uctuation in this general trend is 8C6 with distortion temperature of

about 11700 K. The peculiar location of the left�out layer seems to increase the stability.

This may be interpreted as the re-arranged geometry having a sti�er structure than

the initially modeled one. 8C6 is found to be the most stable structure against heat

treatment among the models considered. This structure is exceptionally strong and

keeps its form up to 11600 K. When the number of rings pass 12, the major structural

deformation under heat treatment is bending. The bending occurs at the middle, at

the location of left�out layer if present, reinforcing the idea that the initial model has

lower modulus of elasticity.

100 K1 K

3C
6

1 K

4C
6

3400 K 3500 K

1 K

5C
6

2800 K 2900 K

1 K

6C
6

2100 K 2200 K

Figure 2.7: Benzorod arrays 3C6 � 6C6
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Figure 2.8: Benzorod arrays 7C6 � 12C6
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The benzorod arrays at various temperatures are shown in Figures 2.7 -2.9. Even

at very low temperatures benzorods deviate from ideal geometry. In the new structure

each benzorod assumes a geometrical form similar to isolated benzorods. When the

benzorod assumes the above mentioned geometry at elevated temperatures, there is a

noticeable geometrical rearrangement in the vicinity of the joint between the benzorod

and the graphene sheet. This signs a binding scheme other than sole π-coordination.

The most important point is that the graphene�benzorod interconnection seems to be

stable up to elevated temperatures.
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C
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Figure 2.9: Benzorod arrays 13C6 � 16C6
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Figure 2.10: Nanochains 3C60-1C6 � 3C60-9C6 at various temperatures.
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Too short and too long benzorod arrays are not favored. In the former, substrate

graphene sheet disintegrates, and in the latter, benzorods loose rigidity. Benzorod arrays

formed from odd number of benzenoid rings seem to be less stable.

Among the arrays simulated, 4C6 array seems to be the most stable, thus it is the

strongest candidate for application, for example as a �eld-emitter. With the exception

of 3C6, arrays shorter than 12C6 are stable up to elevated temperatures.

The nanochains at various temperatures are shown in Figure 2.10 . Again, benzorods

assume above described form even at very low temperatures. There is a slight elongation

in C60 where the benzorods are connected due to change bonding characteristic. This

seems to lower the thermal stability of that section. In chains with shorter benzorods,

the decomposition is observed at around these locations. After 3C60-6C6, benzorods

seem to be less stable, and decompose before the nanoballs. Starting from 3C60-7C6,

length dependent nature of the benzorods surpass the now-disturbed C60 in instability.

The structures considered are stable at elevated temperatures, with one exception

of 3C60-8C6. Length and ring number dependent nature of benzorod stability is again

clearly observable.

These structures are promising in creating aligned rigid nano materials. Chemically

more active pentagons are left free for interaction with other material, and separation

between C60 may be controlled. Thus it may be used in magnetic or photovoltaic

applications.

2.3 Periodic Investigation

Molecular dynamics calculations of the previous section demonstrate that there exists

stable benzorod geometries at elevated temperatures. This can be interpreted as an

indication of the existence and stability of the structure. However, due to nature of the

material, a deeper analysis is in order, in order to verify the applicability of Terso� PEF

and to gain insight on the electronic structure.
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In this second part, benzorod is investigated as a nanorod, or 1D crystal, using

DFT. Both the initially purposed geometry that is seen to be stable only at lower

temperatures, and the rearranged (relaxed) geometry is studied. Various observables

are calculated for comparison purposes, to be used in the decision whether this structure

is viable or not.

2.3.1 Method of calculation & Preparation of models

1.796 A

1.401 A

Figure 2.11: Optimized geometrical parameters for the direct coordination stacking
scheme

DFT calculations presented in this section are performed using PWSCF [50], a part

of the Quantum Espresso package [51].

An ultra-soft pseudo potential using Becke-Lee-Yang-Parr (B3LYP) hybrid exchange

correlation generated with Vanderbilt code has been used in the calculations. The

pseudo potential is selected due to its smooth behavior in optimizing the lattice param-

eter of this rather strained system and well description of the geometric properties in

the reference carbon structures considered (graphite, diamond and polyethylene). The

details for this pseudo can be obtained from the web [52].

Direct stacking scheme for the C6 ring is presented in Figure 2.11. The C6 ring of

the unit cell is obtained by removing the hydrogen from a geometry optimized benzene
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molecule using the same level of approximation. The lattice constant for the system

is obtained using a golden search algorithm and cubic spline �t to obtain the energy

minimum [42].

(a) (b)

Figure 2.12: Relaxed benzorod. (a) The molecular geometry used in obtaining the unit
cell, (b) the relaxed benzorod

In the previous section, it is seen that the direct coordination scheme is observed

only at lower temperatures. This indicates that the rearranged benzorod geometry has

lower energy than the initial �ideal� geometry. This rearranged geometry should be

investigated separately. In modeling this geometry for DFT, it should be kept in mind

that in parametrization of Terso� PEF, hydrogen are treated implicitly, whereas in DFT

they should be present explicitly. Since the e�ect of under-coordination due to lack of

hydrogen is crucial in the �rst form, there was no problem, but in the rearranged form,

hydrogenation should be considered manually. In order to obtain rearranged unit cell,

a hydrogenated array of three C6 rings with the middle layer having a slightly enlarged

radius is relaxed, using the same level of approximation. The resulting molecular geom-

etry is modi�ed to be a periodic unit, and lattice parameter is calculated by minimizing
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the energy via compressing the unit cell in the direction of repetition. The relaxed

structure is presented in Figure 2.12.

2.3.2 Results & Discussion

2.3.2.2 The �ideal� benzorod

Figure 2.13: Lattice parameter as determined by di�erent calculation parameters. Here,
k-point is under sampled

p− p coordination is rather hard to describe in DFT formalism due to its localized

nature and steep gradient. Generally, hybrid functionals tend to work better than GGA

counterparts. An automatically generated uniform Monkhorst-Pack [53] grid of k-points

is used in the calculations. Both due to complexities arising from the delocalized p
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orbitals and lattice constant being small, a very precise set sampling the k-point space

is required. Under sampling of the k-space leads to an anhormonic splitting as shown

in Figure 2.13 due to ill representation of the wave-functions. The convergence for the

lattice parameter is achieved using the parameter set in Figure 2.14. Convergence of

total energy is achieved much later, in Figure 2.15 . Total energy convergence with

respect to parameter set is not mandatory in this calculation, since we will not be

investigating related observables such as optical properties. Thus the set shown in (b)

is used, in order to save computation time.

ecutwfc = 50 Ry
ecutrho = 500 Ry
K Points = 1x1x35

celldm(3) (periodicity/26.46)

Figure 2.14: Lattice parameter as determined by di�erent calculation parameters. After
this point, the change in lattice parameter is negligible
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Figure 2.15: Lattice parameter as determined by di�erent calculation parameters. This
precise set can be used in calculating relations that require total energy convergence.

F
F

length

Area

s
E

shear angle

Figure 2.16: The geometrical parameters used in calculating elastic moduli for benzorod.
Fs and FE are the two orthogonal forces applied on one of the layers for creating a
shearing stress and elastic stress correspondingly.
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The optimized lattice parameter for the system is calculated as 1.765 Å. This value

is considerably larger than the initially proposed value of 1.4 Å, but compared to inter

layer spacing in graphite (3.34 Å[54]), it is clear that the coordination between the layers

is not solely due to plain π − π conjugation. The pseudo potential employed tends to

overestimate bonding length in similar cases, however, length being this close to the

cuto� of Terso� PEF, the reason why structure tends to rearrange into the second form

in MD calculations is clear.

In small perturbations, the material can be assumed as isotropic due to symmetry.

Then, by applying harmonic approximation all the observable structural properties can

be asserted from only two elastic constants. Among the others, Young's modulus and

shear modulus are somewhat easier to calculate in our case. In Figure 2.16, parameters

used in calculating these constants are shown.

Figure 2.17: E�ect of various smearing functions on total energy.
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Using the cubic �t functions in Figure 2.14, Young's modulus of the structure can

be approximated, for the limited range where harmonic approximation is valid. The

cubic function in (b) reads (in Rydberg)

EEOS,(b)(x) = −25741.4x3 + 10236.6x2 +−1354.47x+−7.28699 (2.1)

Force along the periodic direction, calculated from the gradient of energy at 0.01 Åaway

from the minimum (c/a = 0.1261898 ; a ≈ 14 ), where harmonic �t is in order, is

approximately

F+0.01 = −
(
EEOS,(b)(0.1261898)− EEOS,(b)(0.1269040)

)
J

0.01× 10−10m
= 5.1467× 10−10N (2.2)

Elastic modulus (Young's modulus) can be approximated from [55]

E =
stress
strain =

FE/A

dL/L
(2.3)

The cross-sectional surface area, A, for a single benzorod is approximately 5.09951 ×
10−20m2 . Putting the calculated values in place the elastic modulus is obtained as

E =
(5.1467× 10−10N)(1.765× 10−10m)
(5.09951× 10−20m2)(0.01× 10−10m)

≈ 1781× 109N/m2 (2.4)

which is comparable with that of diamond [56]. Although the above result is just

a crude approximation, and should be approached skeptically, it may safely be stated

that bonding along the stacking direction is much stronger than pure π−π coordination

observed between graphite layers.

Using a similar approximation, shear modulus can also be calculated.

G =
shear stress
shear strain =

Fs/A

tan(θ)
(2.5)

where θ is the shear angle. For a shear angle of ≈ 1◦ 1, the above quantity is calculated

as

G =
(2.635707× 10−10N)

(5.09951× 10−20m2)(0.02)
= 258.3758× 109N/m2 (2.6)
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Figure 2.18: E�ect of various smearing functions on Fermi level.

which is again in the vicinity of diamond[57].

Before initiating electronic structure calculations, there is another consideration in

our system. Since direct conjugated benzorod is expected to be conducting, in order

to de�ne density through the Fermi surface adequately, a smearing function should

be added. Smearing function allows fractional occupancies for the states crossing the

Fermi level, thus continuity of the electron density can be maintained at this boundary.

The method can be seen as an arti�cial temperature acting on the system, but due to

numerous considerations, there are a number of choices for the distribution function.

In this work, Gaussian spreading [58], Methfessel-Paxton �rst-order spreading [59] and

Marzari-Vanderbilt cold smearing [60] is considered. The e�ect of smearing on the total

energy of the system should be on the perturbative level, whereas monotonous behavior
1Due to �uctuations, minimum reliable energy di�erence is observed at this angle.
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is expected with increasing spreading in the approximated Fermi level. In Figure 2.17,

2.18 the e�ect of the considered smearing schemes are shown. Looking at this plot,

Methfessel-Paxton �rst-order spreading with a spread value of 0.01 Ry is decided.

Comparison between projected partial electronic density of states (PDOS) of a single

carbon atom in Benzene and Benzorod are presented in Figure 2.19. In both graphs,

the values are broadened with a full-width-half-maximum value of 0.03 Ry, for easier

comparison. It is clear that the structure is no longer in a pure sp2 hybridized state.

There are two trends observable in the graph, low lying states are dominated by a

distorted sp2 like arrangement, and close to Fermi level, there is a p dominated mixture

of orbitals. DOS around Fermi level is non-zero, and most probably the structure has

delocalized states leading to conduction.

Benzene

Ideal Benzorod
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Figure 2.19: Projected partial density of states (PDOS) of carbon in benzene and
benzorod.

The conducting characteristic is veri�ed when the band structure is investigated
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(Figure 2.20). There are four channels crossing the Fermi level, two directly crossing,

two forming a semi-metallic arrangement similar to that observed in basal layers of

graphite. This interesting behavior may be attributed to individual layers in benzorod

maintaining their aromaticity. Comparing with PDOS, it may be argued that the direct

crossing band is most probably due to p-p coordination , whereas the semi-metallic state

is due to conjugation between the two aromatic states.

Γ X

Figure 2.20: Band structure of the ideal benzorod

Charge density plot for the direct coordination scheme is shown in Figure 2.21.

Each carbon contributes to the coordination in the lateral direction. These are the

non-localized states encountered in the previous section.

Binding energy per atom can be calculated from

Eb =
(Ecell −

∑n
i Eatom,i)
n

(2.7)

where n is the number of atoms, Ecell is the total energy per unit cell and Eatom,i is
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Figure 2.21: Charge density in the direct coordination scheme.

the self energy of ith atom calculated at the same level of approximation as the Ecell.

For directly conjugated geometry the binding energy comes out to be Eb = −6.04 eV.

Being negative, the structure can be considered as stable energetically.

2.3.3 Relaxed Benzorod

One interesting trend in the rearranged unit cell geometry is that the number of

hexagons is maximized. Although this leads to highly uncommon rectangular arrange-

ment of carbon, the binding energy per atom is Eb = −6.39 eV in the rearranged cell,

noticeably lower than the previous model. Interestingly, removing hydrogen and re-

relaxing the unit-cell leads to the unit cell of an armchair carbon nanotube [61] (which

has considerably lesser binding energy per atom Eb ≈ 7.9 eV)! Carbon nanotube are

discussed extensively in the literature, and will not be further discussed here.

Convergence of the lattice parameter is achieved at 2.669 Åusing the parameter set
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ecutwfc = 55 Ry

K Points = 17x1x1
ecutrho = 550 Ry

Lattice parameter (in Bohr)

Figure 2.22: Relaxed benzorod, parameter optimization

seen in Figure 2.22. The cubic �t presented in the Figure reads

Efit(x) = −0.961718x3 + 16.731x2 − 95.3771x+ 36.262 (2.8)

using this function, force required to compress structure 0.01 Åis calculated as

F+0.01 = −1.693026× 10−9N (2.9)

in turn, Young's modulus comes out to be

E =
(−1.693026× 10−9N)(2.669× 10−10m)

(6.0716× 10−20m2)(0.01× 10−10m)
≈ 7442× 109N/m2 (2.10)

which is again on par with diamond. However, calculating the Shear modulus for a

displacement of ∼ 1◦

G =
(8.288844× 10−12N)

(6.0716× 10−20m2)(0.02)
= 6.8245× 109N/m2 (2.11)
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it turns out that the rearranged geometry is much more elastic than the previous one.

The value is in the vicinity of soft metals such as lead [62].

In the rearranged form, benzorods are not expected to be conductors, trying the

place a smearing function proves this (Figure 2.24,2.25).

Fermi Level

Γ X

Figure 2.23: Relaxed benzorod, band graph

Band graph in Figure 2.23 proves this fact. The exact value of band gaps in DFT

are not always reliable, a di�erent methodology than what is used is required for more

precise results. However in rearranged form, benzorod can be considered as a direct gap

semiconductor.

There are two distinct atoms in the unit cell, the interconnecting layer atom (atom

2), and the rearranged layer atom (atom 11). Investigating Figure 2.26, it is seen

that both atoms are in a state resembling sp3 hybridization, with a slightly stronger
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Figure 2.24: Relaxed benzorod, e�ect of smearing on total energy.

Figure 2.25: Relaxed benzorod, e�ect of smearing on Fermi level
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p character (like in sp2 hybridization) in interconnecting layer atom. The separation

of levels at the vicinity of Fermi level is large, and it is outside the limits of covalent

splitting of channels.
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Figure 2.26: Relaxed benzorod, PDOS

Charge density is shown in Figure 2.27. As expected, the inter layer coordination is

purely due to covalent bonding.

2.4 Conclusion

MD calculation presented in the �rst part predict that benzorod is thermally stable,

with a rearrangement of geometry at elevated temperatures. Furthermore, coordination

with aromatic surfaces and nanocages are predicted to be possible, with little impact on

the coordinated species at lower temperatures. As a macromolecular entity, benzorod
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has a length limit, the structure is eventually prone to bending.

Figure 2.27: Relaxed benzorod, charge density

DFT calculations show that the structure is energetically stable as well. Binding

energy per atom in the ideal benzorod is Eb = −6.0 eV. The rearranged geometry

has slightly lower binding energy Eb = −6.3 eV, but without the presence of hydrogen

the unit cell transforms into that of an armchair nanotube which has considerably

lower binding energy Eb = −7.9 eV. This is an interesting transformation, it may

indicate that hydrogenation of a carbon nanotube results in cubane like formations on

the surface and rearranges the nanotube into the relaxed benzorod geometry via an

endothermic reaction. Noting the signi�cant di�erence of elastic constants and band

structure between the two geometries, this transformation may be utilized in tuning the

properties carbon nanomaterials.

The ideal benzorod geometry is conducting, with more than one channel, and cal-

culated elastic properties are comparable with that of diamond. Adding this the small

cross-section area, this structure is quite promising for �eld emission applications such
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as STM tips.

The rearranged form is quite resistant to compression, however, unlike the ideal

geometry, very susceptible to shearing forces. The rearranged form is also a direct band

semi-conductor instead of being a conductor.

Note: This chapter is based on published works [63, 64, 65]
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CHAPTER 3

BAMBOO SHAPED SINGLE WALL CARBON

NANOTUBES

3.1 Carbon nanotubes

Carbon nanotube (CNT) [61] is probably the most reknown and popular nanostructure

within this context.

The carbon nanotubes have many varieties, and all these various forms have their

own subgroups, resulting in a huge family of materials. However, generally, majority

of attributes common in members are due to properties of single wall carbon nanotube

(SWCNT ). Thus, a solid understanding of the intrinsics of this particular one is a

necessity for studying carbon nanotubes in general. The discussion in this section is

intended to be a short introduction limited, but the reader is encouraged to proceed

further (For example see [66]).

Single wall carbon nanotube structure consists of sp2 hybridized carbon atoms. The

corresponding wavefunction for this hybridization scheme is:
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∣∣∣sp2
a

〉
= C1 |2s〉 −

√
1− C1

2 |2py〉 (3.1)
∣∣∣sp2

b

〉
= C2 |2s〉 −

√
1− C2

2

{√
3

2
|2px〉+

1
2
|2py〉

}
(3.2)

∣∣∣sp2
c

〉
= C1 |2s〉 −

√
1− C1

2

{
−
√

3
2
|2px〉+

1
2
|2py〉

}
(3.3)

the three unknown coe�cients are solved using the already known orthogonality rela-

tions of the
∣∣sp2

i
〉
, |2s〉, and |2px,y〉:

C1
2 + C2

2 + C3
2 = 1 (3.4)

C1C2 − 1
2

√
1− C1

2
√

1− C2
2 = 0 (3.5)

C1C3 +
1
2

√
1− C1

2
√

1− C3
2 = 0 (3.6)

yielding C1 = C2 = 1/
√

3 and C3 = −1/
√

3. The resultant geometry for the combined

orbitals is the co-planar equidistant angular-wise con�guration we see.

Due to common hybridization scheme, it is no surprise that in de�ning the geometry

and electronic properties of a single wall carbon nanotube, graphene layer is often used

as a starting point. Geometrical details of graphitic lattice are presented in Figure 3.1.

Figure 3.1: Graphene sheet. (a) the unit cell. (b) Brillouin zone. Points Γ, K, and
M are used for obtaining dispersion relations. Points A and B are the two dissimilar
carbon atoms in the unit cell [66]. ~a1 =

(√
3

2 a,
a
2

)
, ~a2 =

(√
3

2 a,−a
2

)
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One of the most interesting points in a graphene sheet is its electronic con�guration.

The non hybridized p orbitals of carbon lead to a behavior called aromaticity, which

result in the mobility of electrons in this particular geometry. The lattice is conducting

due to continuous overlap of phase space electronic wavefunction at consequent cells,

but not quite like the mobility of electrons encountered in metals. In fact, the graphene

layer is called a �zero band semiconductor� for this property. The mobility, as mentioned

before, is geometry related, and should the lattice geometry be distorted, a band gap

could be observed.

This is exactly what happens in a single wall carbon nanotube. The bulk of the

structure is analogous to a graphene sheet rolled into a cylindrical shape. This is a

direct intervention to unit cell periodicity without disturbing sp2 nature signi�cantly,

thus, there is a relation between the bulk geometry and band gap. Term �bulk� is

used here, since the resultant structure can be considered as a one dimensional crystal.

Consequently, it is possible to name a single carbon nanotube after its unit cell (however,

such a name will not cover any information about the �caps�). The vectors used to de�ne

a single wall carbon nanotube unit-cell from graphene are shown and described in Figure

3.2, and Table 3.1 respectively.

It is clearly seen that these vectors are interrelated, making most of them redundant

in naming a structure. In fact, the unit-cell can be uniquely identi�ed by choosing only

one of them. A common practice is to use the chiral vector Ch. In this naming scheme

the composition of Ch in terms of graphene plane unit vectors is used, in the form

of C(n,m), where n and m are integers corresponding to this composition. Since the

electronic behavior directly depends on the geometry, this name also serves in identifying

the conduction characteristics .

The primary symmetry classi�cation of a SWCNT is either being chiral or achiral.

There are only two distinct cross�sectional geometries that the structure can be oriented

in achiral form, namely the armchair and the zigzag con�gurations. Nomenclature arises
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Figure 3.2: The unrolled honeycomb lattice of a SWCNT [66] . In short, the unit-cell
is formed when the sheet is rolled such that points O and A coincide, rest follows from
the de�nitions.

from the shape of the cross section (Figure 3.4). All the other possible orientations are

called chiral, having non�superposable axial mirror images.

Length of the chiral vector gives the circumference of cross section by de�nition.

Since ~a1 and ~a2 are not orthogonal to each other in Cartesian coordinate system length

of the chiral vector is found using:

~a1.~a1 = ~a2.~a2 = a2, ~a1.~a2 =
a2

2
(3.7)

∣∣∣~Ch

∣∣∣ =
√
~Ch. ~Ch = a

√
n2 +m2 + nm (3.8)

using this length, diameter of the tube can be found as :

dt =

∣∣∣~Ch

∣∣∣
π

(3.9)

the diameters of some selected tubules are presented in Table 3.2.
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Table 3.1: Parameters for Carbon Nanotubes(a) (adapted from [66]).

symbol name formula value
~Ch chiral vector ~Ch = n~a1 +m~a2 0 ≤ |m| ≤ n

θ chiral angle sin θ =
√

3m
2
√

n+m+nm

cos θ = 2n+m
2
√

n+m+nm
0 ≤ |θ| ≤ π

6

tan θ =
√

3m
2n+m

a length of unit vec-
tor

a =
√

3aC-C = 2.49Å aC-C = 1.44Å

~a1,~a2 unit vectors
(√

3
2 ,

1
2

)
a,

(√
3

2 ,−1
2

)
a x, y coordinate

~b1,~b2 reciprocal lattice
vectors

(
1√
3
, 1

)
2π
a ,

(
1√
3
,−1

)
2π
a x, y coordinate

d gcd(n,m)(b)

dr gcd(2n+m, 2m+
n)(b)

dR =
{

d if (n−m) is a multiple of 3d
3d if (n−m) is not a multiple of 3d

~T translational vec-
tor

~T = t1~a1 + t2~a2

gcd(t1, t2) = 1 t1 = 2m+n
dR

, t2 = −2n+m
dR

T length of ~T T =
√

3L
dR

N Number of
hexagons in
unit cell

N = 2(n+m+nm)
dR

~R symmetry vector ~R = p~a1 + q~a2 gcd(t1, t2) = 1
τ pitch of ~R τ = (mp−nq)T

N = MT
N

ψ rotation angle of
~R

ψ = 2π
N in radians

M number of ~T in
N ~R

N ~R = ~Ch +M ~T

(a) In this Table n,m, t1, t2, p, q are integers and d, dR N and M are integer functions of these
(b) gcd(n,m) is the greatest common divisor of integers n and m

3.2 Bamboo shaped carbon nanotubes

The cylindrical geometry of carbon nanotube arises an interesting question: What is

the source of the curvature? Knowing that the ground state of such graphitic carbon is

planar, there has to be a process causing this (stress inducing) curvature somewhere at

the synthesis. One of the �rst among the numerous mechanisms that come into mind is

a pentagon �defect�. Looking at the orbital composition of carbon sp2 hybrid discussed

in the previous section, and putting the corresponding atomic wavefunctions in place,
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Figure 3.3: Electronic structure of carbon nanotubes as a function of chiral vector,
Indicated dots represent metallic nanotubes.

the geometry of �bonds� turn out to be arranged in a planar fashion 120◦ apart, which

is clearly the reason of the hexagonal appearance of graphene layer. Even by simple

deduction, it is easy to predict that any other polygonal arrangement is in conjunction

with a disturbance in the overall geometry, especially the planar nature (along with

other changes, of course, [68]). Consequently, these �other� polygonal arrangements

can be labeled as defects, and some molecules can be considered as the carrier of these

defects1. The pentagon defect is particularly important, due to its common appearance

as the source of curvature in organic or graphitic carbon. It is now known that such

curvature inducing elements play an important role in single wall carbon nanotube

formation [69, 70].

In this chapter, a relatively recent addition to carbon nanotube related structure

1The label �defect� is meaningless in a macromolecular point of view. The label just points out
the presence of curvature inducing elements.
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Figure 3.4: Cross sectional geometries of a SWCNT. Top: Armchair; Middle: Zigzag;
Bottom: Chiral. Here (n,m) correspond to integers forming the chiral vector [67].

family is examined: The bamboo shaped carbon nanotubes [71, 72, 73, 74, 75]. Nomen-

clature comes from the overall appearance, geometrical abberations of these (period-

ically) compartmented multi wall carbon nanotubes resemble a bamboo plant. Ex-

perimental work suggest that intersecting layers forming the compartments are either

precipitation of the catalyst material, or a graphitic interlayer. A single wall bamboo

shaped carbon nanotube is not experimentally observed yet, but this example demon-

strates that it may very well be feasible with the help of an organic molecule called

coronene.

Assume that in the above mentioned non-catalytic growth process, the triggering

e�ect of folding in a specimen of graphite was not the single pentagon in the center

of corannulane, but a series of pentagons at the circumference of coronene. This is

energetically less probable, but nevertheless possible. Resultant structure would be a

carbon nanotube with dictated diameter. Furthermore, the structure of coronene per-

mits periodic compartmenting similar to graphitic inter-layers observed in multi-walled
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Table 3.2: Diameters, d (in Å), of ideal carbon nanotubes in zigzag, C(n,0); armchair,
C(n,n); and chiral, C(n,m), m<n, m6=0, models (ac−c = 1.42 Å for this case).

C(n,m) d C(n,m) d C(n,m) d C(n,m) d
C(2,0) 1.5669 C(2,1) 2.0728 C(7,1) 5.9148 C(9,3) 8.4742
C(3,0) 2.3503 C(3,1) 2.8247 C(7,2) 6.4127 C(9,4) 9.0351
C(4,0) 3.1338 C(3,2) 3.4149 C(7.3) 6.9634 C(9.5) 9.6271
C(5,0) 3.9172 C(4,1) 3.5902 C(7,4) 7.5552 C(9,6) 10.2448
C(6,0) 4.7006 C(4,2) 4.1456 C(7,5) 8.1793 C(9,7) 10.8839
C(7,0) 5.4841 C(4,3) 4.7655 C(7,6) 8.8289 C(9,8) 11.5408
C(8,0) 6.2675 C(5,1) 4.3620 C(8,1) 6.6937 C(10,1) 8.2540
C(9,0) 7.0510 C(5,2) 4.8926 C(8,2) 7.1803 C(10,2) 8.7240
C(10,0) 7.8344 C(5,3) 5.4841 C(8,3) 7.7160 C(10,3) 9.2366
C(2,2) 2.7139 C(5,4) 6.1189 C(8,4) 8.2911 C(10,4) 9.7851
C(3,3) 4.0709 C(6,1) 5.1374 C(8,5) 8.8982 C(10,5) 10.3639
C(4,4) 5.4278 C(6,2) 5.6495 C(8,6) 9.5309 C(10,6) 10.9681
C(5,5) 6.7848 C(6,3) 6.2184 C(8,7) 10.1847 C(10,7) 11.5938
C(6,6) 8.1417 C(6,4) 6.8299 C(9,1) 7.4735 C(10,8) 12.2377
C(7,7) 9.4987 C(6,5) 7.4735 C(9,2) 7.9510 C(10,9) 12.8970
C(8,8) 10.8556
C(9,9) 12.2126
C(10,10) 13.5696

counterparts. Symmetry will hopefully manage the high stress in such a compartmented

structure, and the idea may be carried on further, for bigger single wall bamboo shaped

nanotubes, although they would be less and less viable.

The dictated nanotube geometry by the coronene in this scheme is C(12,0). Re-

sultant structure is shown in Figure 3.5. Bamboo shape of the structure results from

the di�erent diameters of the C(12,0) nanotube and the coronene. There are 6 pen-

tagons in the C(12,0) - coronene connection, along with 6 distorted hexagons. These

pentagons and highly bent hexagons are the major source of stress, but the forces are

perfectly balanced out due to symmetry. In a sense, the structure is �locked� to be in

this geometry due to symmetry. There is no physical argument requiring the periodicity

of the structure at this point, however, this example will serve good in experimenting

with PBC for periodic structures. It should be restated at this point that a periodic

boundary condition is always in e�ect in a molecular dynamics study employing NVT

criteria. What is meant by �with PBC� is that the periodic boundary condition is used

for periodic repetition of the structure at hand, rather than placing the boundary at

93



11.7405 A

8.06789 A

Figure 3.5: Structural details of the Single�walled carbon bamboo nanotube. The
pentagons in the bamboo region are shown in the upper part. The length of the tubular
section in the initial structure is shown in the bottom.

an abstract distance. With a simple arrangement at both ends, the structure may be

prepared for repetition. This is similar to unit cell concept in solid state physics, the

geometry should be such that with consequent repetitions, a continuous and periodic

body should be obtained. However, there is no explicit restriction on size, the particular

unit may as well contain many sub-units itself. A one dimensional periodicity is planned

in this example, so the only consideration is, when the geometry is repeated on the left

or right several times, do we obtain a continuous structure? By arranging the length of

tubular sections after compartment in the left end right, this can be taken care of. The

unit is big enough to observe behavior in the vicinity of compartmenting layers, and the

compartment itself, smaller units risk too much intervention of periodicity criteria.

The results of molecular dynamics are shown in Figure 3.6. There is a slight,

nonetheless noticeable, di�erence in results with and without PBC. Both results agree
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Figure 3.6: Molecular dynamics results at various temperatures, with and without PBC
respectively.

that the structure is stable up to elevated temperatures, in agreement with the sym-

metry balancing force hypothesis. However, the structure without periodicity seems to

be slightly more stable. Furthermore, the weakest point in periodic structure turns out

to be the vicinity of bamboo region, whereas in the non periodic structure the tubular

section collapses. Why is it so? First of all, lets begin by comparing the non peri-

odic result with Figure 3.5. Without the periodicity, the length of the tubular section

between the intersections shrink to 8.55 Å. This is due to a small re-alignment of the

pentagon hexagon pairs in the bamboo region (Figure 3.7). There is a signi�cant kink

close to bamboo region due to this re-alignment. In the re-aligned shape, pentagons are

more planar, and it turns out that this increases stability. This is a typical example

how the structure re-aligns in a dynamical situation. The periodicity for PBC is calcu-

lated using an energy optimal geometry, which is not necessarily same in a dynamical

state with �nite temperature. Thus, in this particular example the periodic structure is

slightly elongated, as if something is pulling it from both sides. This is due to number

of particles in the periodic box being constant.

Electronic properties of the structure is calculated at the Extended Huckel level

[76]. This is a semi emprical method useful for predicting chemical properties such as
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Figure 3.7: Pentagon and Hexagon geometry in the relaxed structures with and without
PBC.

molecular orbitals and electronic con�guration of very large systems. Structural geom-

etry related calculations using this method are unreliable, thus the results of molecular

dynamics at 1 K are used directly. Charge distribution and charge density on the struc-

ture are shown in Figure 3.8. There are no signi�cant abberations in the charge density.

Charge distribution at the vicinity of the bamboo regions is uneven. This is expected

due to lack of PBC and asymmetry of the region, but it is seen that Coronene acts as

a barrier e�ecting the overall distribution. A band study of the structure may yield

Charge Density

Excess charge on atoms

Figure 3.8: Charge Density and charge distribution of the structure.
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interesting behavior.

Molecular orbital graphs are presented in Figure 3.9. It is seen that because of

Coronene spacers, most of the molecular orbitals are not continuous through the struc-

ture. This is also the case for the highest occupied and lowest unoccupied (HOMO,

LUMO) orbitals. This may indicate an e�ective barrier in band structure. Apart from

that, HOMO and LUMO orbitals are placed very close in the energy spectrum, and

frontier band gap is negligible. The spectrum is continuous upto and above Fermi level.

Continuity is maintained upto slightly above the 0 eV level. Although this spectrum

corresponds only to zero momentum point in a band graph, due to localization of molec-

ular orbitals and continuous behavior of the eigenvalue spectrum, it is highly probable

that the conducting behavior of the tubular section is unaltered.

Figure 3.9: Plots of the highest occupied and lowest unoccupied molecular orbitals
(HOMO-LUMO) and eigenvalue spectrum.

Note: This chapter is based on published work[77]
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CHAPTER 4

FUNCTIONALITY OF C(4,4) CARBON NANOTUBE

AS MOLECULAR DETECTOR

4.1 Introduction

One application of carbon nanotubes is functionalization as a high precision detector

for chemicals at the molecular level [78]. Detectors of this kind are highly anticipated in

industry and commercial applications, mostly in security. Due to cylindrical symmetry,

the carbon nanotube has a large surface area, and electronic properties are drastically

altered with disruption of the surface con�guration. In this respect, it is an ideal

receptor for a detector. However, there are a couple of problems in realization of such

a detector.

Geometry and hybridization dependence of the Carbon nanotube translate into al-

terations in electronic conductance with the disruption of the surface. However, due

to chemically inert nature, not all elements can interact with a carbon nanotube. This

drawback is most commonly overcome by using intermediate receptors, organic or oth-

erwise [79]. Although the number of chemicals that can be detected is drastically
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increased, the e�ective surface area is reduced, and additional problem of interaction of

intermediate material with nanotube is introduced. In some of the rare cases, especially

in highly reactive chemicals, the intermediate material can be bypassed [80, 81, 82, 83].

High surface area and detection even at single molecular level features may be exploited

in a potential application in this case. Increasing the surface curvature increases the

tension on the sp2 hybridized carbon, thus a carbon nanotube with smaller diameter

should be more susceptible to surface intrusion.

Another problem in realization of a detector is the ever-present environmental �uc-

tuations. Carbon nanotubes are quite �exible, thus in a typical exposed environment,

signi�cant vibrational modes are present, thermal or otherwise. These geometrical

vibrations show as �uctuations in the conductance. Any detectable alteration in con-

ductance thus should be signi�cant enough to be observable among these, or alter the

structural behavior itself. Use of smaller diameter nanotubes increases the sti�ness and

alterations in the conductance become more signi�cant.

Electron transport at nano scale is a quantum concept [84, 85]. This is due to mean

free path of electrons being comparable or larger than the characteristic length of the

structure of interest. In this case, quantum coherence e�ects become signi�cant and

classical approaches are mostly inadequate. Thus, a more delicate approach is required.

Calculation of electron distribution is a requirement for most general cases. Once the

distribution is established, one of the available non-equilibrium techniques is employed

to solve transport equations. In addition to fundamental limits imposed by quantum

transport theory, the overall conductance behavior is determined by quantum e�ects at

the interfaces, the most dominant of which are being the overlap of consequent orbitals

and broadening of levels. Any realistic model for transport calculation should at least

incorporate these factors. Since conductance is calculated at the quantum level, each

problem is quite speci�c to its geometry and electronic con�guration. The question of

identifying chemical by the features of I-V trace is an open question.
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4.2 Method of Calculation

Single wall Carbon nanotube (SWCNT) C(4,4) is used as the medium in this calculation.

In the common nomenclature, which is also used in this work, integers n and m in

C(n,m) represent the composition of chiral vector in terms of graphitic unit vectors.

This uniquely de�nes the unit cell of SWCNT, and thus its general electronic behavior.

Like all armchair nanotubes, C(4,4) exhibit metallic conductance behavior.

The �rst step in the calculation is to obtain a stable geometry for the activated

carbon nanotube. Gaussian package is used in this part of the calculation [86]. Various

toxic and/or corrosive chemical agents are investigated for the possible activation of

C(4,4). Each agent is placed in all of the typical sites over one of the hexagons towards

the center of the nanotube, with various orientations, and a geometry relaxation proce-

dure is invoked at PM3 level. Without the bond conservation restriction, this procedure

serves as a method for both �nding/testing a stable orientation for the tested agent and

obtaining a relaxed geometry for the activated SWCNT. The atoms at both ends of the

C(4,4) segment used in this part are held �xed, in order to maintain geometrical con-

sistency with the ideal unit cell geometry used in electrode regions. Several chemicals

were unable to form a stable bond with the surface in all of the tested setups, and these

molecules are omitted in this context. The discussed activations of the C(4,4) surface

are due to HCN, Cl2 and CNCl molecules individually.

Transiesta-C package is used in the calculation of transport properties [88]. The

package is based on and developed from the McDCal, Siesta and TranSiesta programs

[90, 91, 92, 93]. The unique feature of this package is the ability to simulate open

systems, in which an applied bias di�erence drives a current. The system is treated in

three parts, right electrode, scattering region, and left electrode. The �electrodes� are

treated as bulk, and in a separate calculation e�ective potential is calculated. Non -

equilibrium Greens function (NEGF ) technique is then employed in a self consistent

fashion to solve corresponding e�ective potential in the scattering region [89]. The
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procedure used in the package is as follows: First, using an initial guess for the potential,

Hamiltonian Matrix is formed using localized basis sets. The Hamiltonian matrix is

used to setup the NEGF of the system. In the next step the non-equilibrium density

matrix is calculated from the NEGF. The density matrix de�nes the e�ective potential

in the scattering region, and thereby new set of Hamiltonian parameters. The steps are

repeated until a self-consistent solution is found.

In a typical case, electrodes are chosen to be metal crystals, and act as electron

reservoirs. However, in this case, the point of interest is the change in the transport

behavior of carbon nanotube, and use of metal electrodes complicates the results with

non-trivial surface overlap matrices and consequent non-linear e�ects. C(4,4) ideal

geometry has a nearly constant density of states (DOS ) spectrum in a wide range and

it is quite suitable for an electrode. In this way, an in�nite carbon nanotube with a

single molecule attached is simulated with an assumption of contacts at in�nity.

The procedure of calculation of surface matrices and non-equilibrium electron den-

sity are handled intrinsically in Transiesta-C. Control of the procedure is mainly limited

to de�ning cuto�s and ranges. Due to number of atoms involved, Single-Zeta type or-

bitals, and LDA exchange correlation functional of Perdew and Zunger is employed.

After calculating the relaxed geometry for the scattering region, the electrodes are

attached to suitable sites, and Transiesta-C electronic calculation described above is

invoked. Next, by increasing chemical potential of either the left or right electrode

correspondingly, a bias is created. In steps of 0.1 eV, calculation is performed up to

1 eV, for both negative and positive bias. This energy is quite lower than the binding

energy of the species considered, and it is seen that the changes in the DOS (MPSH ) of

the scattering region is insigni�cant, thus the perturbative approach mentioned above

holds. Since the system is a conductor, Fermi-Dirac smearing at a temperature of 300

K is considered in all of the calculations.
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4.3 Results and Discussion

There are three activated C(4,4) models in the context of this calculation. The models

are named according to the molecule attached to the surface of the carbon nanotube,

Cl2, CNCl, and HCN. For comparison purposes, a limited calculation on clean C(4,4)

geometry is also performed. Figures 4.1-4.9 show di�erent volumetric graphs, and rep-

resentations of the optimized geometry of scattering regions . There are three �gures for

each model considered. Two volumetric graphs presented along with the geometry in

the �rst Figure of each model are the maximum intensity projection of the e�ective po-

tential and the di�erence between the atomic electronic density and the self-consistent

one (referred as Veff and ρ henceforth) at zero bias. Next two �gures contain a series of

graphs showing di�erences in e�ective potential (∆Veff ), and di�erences in ρ (∆ρ) with

respect to zero bias result, under potential di�erence. Darker shades of blue represent

more negative values in both types of volumetric graphs, and, if used, darker shades of

red correspond to larger values. DOS, molecular projected self consistent eigenvalues

(MPSH) spectrum for all the models considered are given in Figure 4.10. Transmission

spectrum and I-V trace are presented in Figures 4.11 and 4.12 respectively.

The geometry optimized result of the Cl2 model is shown in Figure 4.1. After

the geometry optimization procedure, Cl2 disassociate, and two chlorine atoms attach

separately to two carbon atoms (at top position) on the surface. With the change in

coordination number, the geometry and aromaticity in the immediate vicinity of the

activation site is altered. Although the geometrical aberrations seems not extravagant,

the electronic structure is altered signi�cantly due to high electronegativity introduced

by the Chlorine atoms. In both Veff and ρ graphs, electronegativity of chlorine atoms

is visible. An e�ective potential barrier is observable in Veff graph. Veff is interlinked

with the Fermi level, thus this graph is a measure of how much the internal electronic

structure, especially the DOS, alters in the middle region. In all the models considered,

the barrier due to scattering region manifests itself as a hourglass like spatial geometry
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Figure 4.1: Cl2 model, and maximum intensity projections for e�ective potential and
electron density.

in Veff distribution, around the footprints of atoms. The strength of barrier can be

interpreted from the change in intensity along the body. In this respect, the Cl2 model

has a less stronger barrier compared to the CNCl model. Although, under increased

bias the barrier may alter drastically, it is seen that Veff graphs at zero bias give a good

estimate on drop of conduction in the I-V trace.

The most signi�cant observation in ρ graph is the buildup of electrons at the elec-

trode interface surfaces. This is inevitable due to high electronegativity of the Chlorine.

The saturation tendency in the IV graph can be attributed to this accumulation. It

may be argued that this charge accumulation is purely due to method of calculation,
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and in an ideal case it should disappear. However, when a highly electronegative species

is present, charging of the contact region is inevitable in a realistic case, and the accu-

mulation encountered here can be considered as a crude approximation of it. Also, as

expected, chlorine atoms have a large electron density around them, and under certain

conditions, this charged region may act as the capacitor region in a �eld e�ect device

(FET).

Figure 4.2: Di�erence e�ective potential maximum intensity projections for Cl2 model
(relative to 0 eV).

Figures 4.2 and 4.3 contain ∆Veff and ∆ρ series. The graphs are prepared such

that the scattering region is centered at x = 0, for easier distinction of behavior at left

and right electrodes. In the ∆Veff series, a strong energy barrier is observed at the
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Figure 4.3: Di�erence electron density maximum intensity projections for Cl2 model
(relative to 0 eV).

vicinity of Chlorine. This indicates an interruption of conduction channels, as for an

uninterrupted channel, the variation should be homogeneous through all the scattering

region. There is a clear distinction in negative and positive bias, which manifests itself as

asymmetric I-V trace. The underlying reason for this is the asymmetry in the position of

chlorine atoms, and the resultant unidirectional �eld at the center. There is a saturation

behavior observed in the I-V graph, as expected, and the structure is saturated more

readily in positive bias. In the ∆ρ series, it is seen that the charge accumulation on

the electrode region boundary increase with applied bias. The surface closer to the

Chlorine atoms tends to accumulate charge more, and in reverse bias, the structure is

more hesitant to deplete this charge, which explains the behavior at I-V trace. In a

more realistic case, this asymmetric behavior is most likely to disappear. Overall, the
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Figure 4.4: CNCl model, and maximum intensity projections for e�ective potential and
electron density.

structure can be modeled as a leaky capacitor, with ohmic behavior under certain bias.

Looking at the CNCl model in Figure 4.4, the �rst thing to note is the orientation

of molecule. In fact, a stable orientation with molecule oriented parallel to the surface

can not be found using the method at hand. Even at 0 bias, there is a buildup of

electrons on the surface, meaning a signi�cant repulsion from the middle region. In

overall, the weakest conductance is observed in this model. Also, this model has the

strongest Veff barrier using the considerations presented above. The electron density

in ρ graph peaks slightly above the nanotube, approximately at N-Cl bond. Chlorine

again has a signi�cant footprint observed in Veff graph.
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Figure 4.5: Di�erence e�ective potential maximum intensity projections for CNCl model
(relative to 0 eV).

Looking at ∆Veff series in Figure 4.5, it may be inferred that number of channels

contributing to the current is low, although a barrier is present at lower bias, the

distribution is mostly homogeneous. The e�ect of lower conductance is also observable

in the ∆ρ series (Figure 4.6), where an homogeneous change is observed, and the impact

of the applied bias is mostly seen as the charging of contact regions. In the end, despite

the impact of electronegativity is not as drastic as the case of Cl2, the e�ect of CNCl

on the scattering region runs deeper, decreasing the number of conduction channels

signi�cantly. This case can be modeled as an ohmic resistance of very high value.

The last model considered in this study, the HCN model, is presented in Figure

4.7. This molecule also has a electronegative nature. There is an observed buildup

of electrons close to Nitrogen atom. The footprint of atoms in attached molecule is
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Figure 4.6: Di�erence ρ maximum intensity projections for CNCl model (relative to 0
eV).

signi�cantly lower than chlorine containing models. Also at zero bias graph, the buildup

of electrons at the contact surfaces are signi�cantly less compared to other models. The

strength of barrier is comparable to that of the Cl2 model.

∆Veff series presented in Figure 4.8 show a behavior that is in between the Cl2
model and the CNCl model. A barrier is present at all times, but it is overlaid on a

general trend of homogeneous change in e�ective potential. ∆ρ series also indicate an

homogeneous behavior under increased bias. Overall, the linear character of this model

is stronger, and can be modeled as an ohmic resistance of lower value than the CNCl

case.

DOS and MPSH spectrum are presented in Figure 4.10. Bare C(4,4) contains a
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Figure 4.7: HCN model, and maximum intensity projections for e�ective potential and
electron density.

rather wide constant DOS range, which is in direct correspondence with metallic be-

havior. In all the other models considered, there is a strong presence of singular peaks

in this range, hinting how much the aromatic nature is altered when something attaches

to the surface. The depletion of channels emerges as a decrease of states around the

Fermi level in DOS graph. Being on the perturbative level, the e�ect of applied bias

manifests itself as a translation of Fermi energy mostly, thus the depletion bias can be

predicted from this graph. Frontier molecular orbital gap seen in MPSH is also altered,

which indicates an altered optical behavior. The change in level separation in some
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Figure 4.8: Di�erence e�ective potential maximum intensity projections for HCN model
(relative to 0 eV).

cases can be attributed to the energy grid used in calculating the MPSH, otherwise, the

impact of applied bias is mostly negligible.

Transmission spectrum is another heavily altered quantity. Instead of rather monotonous,

even ohmic conductor like transmission spectrum of C(4,4), there are a number of high

peaks and deep recessions through the spectrum for all models. At this point it must

be stated that this graph is not normalized, and is not a substitute for transmission

eigenvalues which are used in calculating the current. However, this graph gives an

insight on how many channels could contribute to current, and what energies of incom-

ing distribution of electrons are more likely to be transmitted under given bias. It is

seen that, except the CNCl model, all the models should have more than one channel

contributing to the current, consistent with what observed in previous graphs. For both
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Figure 4.9: Di�erence ρ maximum intensity projections for HCN model (relative to 0
eV).

Cl2 and HCN model, the transmission spectrum distribution close to Fermi level tends

to increase under negative bias. Saturation behavior in Cl2 is clearly observable, as the

distribution tends to �atten around Fermi level under increased bias, but higher bias

may result in increased conductance looking at the upcoming peaks. The larger reces-

sion observed in CNCl suggests that majority of electrons are not transmitted directly,

only indirect conduction seems to be possible. It is curious how this happens, since

looking at transmission spectrum at zero bias, one may expect increased conductance

under negative bias, but as the Fermi level changes, transmission spectrum tends to

�atten instead of translating itself.

The most notable results from the I-V trace are the signi�cant loss in conductivity

and localized non-linear behavior for activated models. Metallic behavior of C(4,4) and
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Figure 4.10: MPSH Eigenvalues and DOS distributions for the models considered (Red:
+1 eV Black: 0 eV Green: -1 eV Bias), for comparison purposes, C(4,4) results are also
presented

ideal overlap shows as a perfectly linear I-V trace for the range considered. Cl2 model

exhibit a saturation behavior for increased bias. The conductance in CNCl model drops

drastically. There are a number of jumps in conductance, and position of these kinks are

di�erent for each model, indicating di�erent splitting of conductance channels. However,

it remains indeterminate whether this is a result of the molecule used in activation, or

the geometrical location of the activation itself. A larger model is required to study this

e�ect, which is sadly beyond the limitations of the package used. Another interesting

result is the non-symmetric behavior under negative and positive bias. Negative bias

results in a less resistive structure if averaged. As mentioned above, this e�ect should

be geometrical in nature. If to be modeled ohmically ignoring the non-linear behavior,

it is observed that each model has a di�erent resistance. Not surprisingly, the molecules
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Figure 4.11: Transmission values for the models considered, for comparison purposes
C(4,4) results are also presented

Figure 4.12: Comparison of I-V characteristics.

113



that are able to attach C(4,4) exhibit high electron activity.

Although this is an approximate calculation in order to observe general behavior,

signi�cant prospects are observed. In the use of detecting active chemicals even at

molecular level, the structure is promising. There are stable geometrical con�gurations

for various chemicals attached to the surface, nanotube is rather small in diameter,

and thermally stable by itself. The alteration in electronic behavior may also be used

in a di�erent fashion, for example in electronics, or optronics. There are a number of

points left uncovered at this preliminary work, such as the e�ect of applied current on

the geometry, thermal vibration issues, and reversibility. Even at this level the results

indicate a realizable application in the future.

Note: This chapter is based on published work [94]
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CHAPTER 5

STRUCTURAL AND MOLECULAR ELECTRONIC

PROPERTIES OF BN RING DOPED SINGLE�WALL

CARBON NANOTUBES

5.1 Introduction

Electronic behaviour of Carbon nanotubes is decided by geometrical parameters [66].

This arises from the peculiar 0-band semi conductor con�guration of graphene plane.

Depending on the chiral vector, which is a measure of how the graphene plane is folded

to form the carbon nanotube, band gap of the material varies. One result of this

geometrical dependence is that the electronic structure of carbon nanotube can be

varied, even after the synthesis, by mechanical distortions.

The decision whether this is good or bad relies on the application. Potential appli-

cations suggest that by connecting tubes with di�erent geometry, or by mechanically

deforming a particular carbon nanotube, one may obtain various electronic devices [110].

But such precision in synthesis of carbon nanotubes is not yet achieved, and dependence

of electronic properties on mechanical deformations prove to be more of a problem than
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an advantage [111].

So in order to realize devices using nanotubes, di�erent approaches to the problem

suiting the needs are required, at least in the short term. Boron-Nitride nanotubes

(BNNTs), for example, are large band semiconductors independent of the geometry and

wall composition [112, 113]. Furthermore, they are more rigid, more prone to oxidation

[114], and can be produced nearly defect-free. However, by themselves, they do not o�er

the �exibility of carbon nanotubes, and they are often more expensive to synthesise.

At this point, the question of �Are these doping techniques are applicable to this

problem?� arises. In general, theoretical calculations suggest that CBN heterofullerenes

are possible [115]. In literature it is suggested that by introducing dopants [116], or by

creating heterojunctions between nanotubes [111], chemically and electronically more

stable electronic devices may be realized.

When one looks at the synthesis methods of BNNTs, chemical vapor deposition, laser

evaporation and carbon nanotube substitution mechanisms are encountered. Among

these, carbon substitution methods are of interest [95, 96], since if a controlled expo-

sure technique may be realised, carbon nanotube-boron nitride nanotube heterojunction

devices may be produced. There are other methods in producing a CBN heterojunction

from scratch [97], but geometrical yield control is often not possible.

E�ect of Boron, Nitride [98, 99, 100] and Boron-Nitride [101] dopants on fullerene,

carbon dopants on BNNTs [102], also CBN nanotube heterojunctions [111] are dis-

cussed in a number of works. For example, addition of Boron is reported to increase

conductivity of the material [116].

Usually, CBN nanotube heterojunctions are considered to be a junction between

BNNT and CNT, a domain region of hexagonal B-N on carbon nanotube surface, or

a single B-N ring. Since nanotubes are considered to be one dimensional structures

theoretically, it is feasible to consider a B-N dopant that does not alter this feature,

yet maintain interesting features of a BNNT. In this work, a single BNNT unit cell
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replacing that of a corresponding carbon nanotube is studied. The ring is composed of

B-N hexagons, and replaces one ring of Carbon nanotube.

Since BNNTs are always semiconducting independent of the geometry, the intro-

duced ring would also be a semiconductor. One of our aims is to discuss molecular

electronic properties of a possible metallic carbon nanotube - semiconducting B-N nan-

otube dopant - metallic carbon nanotube device. This device should be a Schottky

diode by de�nition, although this may not be the case due to presence of nearly free

electron orbital inside the B-N nanotubes, and the polar nature of the B-N bond.

The polar nature of the B-N bond leads to some interesting behaviour, such as

the proposed self-polarization e�ect [103]. This self-polarization is maximised in some

particular geometries, when the polar bonds align along the tube axis. As a result some

interesting �eld emission properties are predicted and observed in BNNTs [104, 105, 106].

Some interesting results in the present work are due to this e�ect.

Carbon nanotubes are customarily identi�ed by their chiral vector. The nomen-

clature is �C(n,m)� where n and m are integers identifying the composition of chiral

vector in terms of graphitic plane base vectors. The usual nomenclature is also contin-

ued in this work, with C(n,m) identifying carbon nanotubes and CBN(n,m) identifying

Boron-Nitride doped carbon nanotubes.

5.2 Calculation

In order to compare the electronic properties of C(n,m) and CBN(n,m) both Carbon

nanotube and doped Carbon nanotube structures were prepared. Four geometries were

considered, which sum up to eight di�erent structures. First four of these structures are

Hydrogen terminated Carbon nanotubes. Remaining four structures are obtained by

replacing the middle ring of the corresponding Carbon nanotube by a BNNT ring. Con-

sidered structures are C(4,0), C(4,4), C(5,0), C(5,5) and their CBN(n,m) counterparts.

All eight structures are shown in Figures 5.1-5.2.
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CBN(4,0)

C(4,0)
C(4,4)

CBN(4,4)

Figure 5.1: AM1 optimized geometries of CBN(4,0) and CBN(4,4) in comparison with
the ideal tubes.

C(5,0)

CBN(5,0)

C(5,5)

CBN(5,5)

Figure 5.2: AM1 optimized geometries of CBN(5,0) and CBN(5,5) in comparison with
the ideal tubes.
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Charge

HOMO

LUMO

Electrostatic
Potential

Density

CBN(4,0)C(4,0)

Figure 5.3: Various 3D molecular plots of C(4,0) and CBN(4,0) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive

The initial geometries of Carbon nanotubes are obtained using corresponding de�-

nitions from Saito et al's book [66]. Due to nature of the dopant and size limitations,

the system needs to be studied as a macromolecular entity in this calculation. Thus,

the ends are hydrogenated, so that the coordination number of all the carbons is three.

As mentioned earlier, carbon nanotubes assume an electronic behaviour in terms of

the structural geometry. In general, all C(n,n) are metallic. In addition to this, when

n+m is a multiple of three, the tube also assumes metallic properties. All the remaining

nanotubes are semi conductors, with varying band gaps [66].

First, all eight models were geometry optimized using molecular mechanics method

[29] considering MM+ force �eld. Then, geometry optimization using Austin Model

1 (AM1) [10] in restricted Hartree-Fock formalism [107] was performed. Polak-Ribiere

optimizer [37] was used in geometry optimizations. The convergence criteria considered
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is gradient reaching less than 0.001 kcal/(A mol). Finally, single point electronic cal-

culations were performed using Density Functional Theory (DFT) considering B3-LYP

exchange-correlation functional [21, 25] in STO-3G basis set [108]. Although this basis

set is relatively small, it is su�cient for qualitative analysis.

All the calculations were performed in ground state of the system in its singlet state

con�guration. HyperChem 7.51 Professional [109] package was used in the calculations.

5.3 Results and Discussion

Numerical results of AM1 calculation, presented in Tables 5.1 and 5.2, show that ad-

dition of a BNNT ring reduces the binding energy in all the models considered. On

the other hand, although all the models are structurally stable, heat of formation of all

the models are endothermic, except the CBN(5,5), which is exothermic. Furthermore,

comparision of the heat of formation energies suggests that the doped structures are

obtainable from nanotubes by chemical exothermic reactions. Numerical results from

DFT calculation at least con�rm that electrons reside in energetically lower orbitals

after doping. (Tables 5.3-5.4).

Table 5.1: Calculated energies (in kcal/mol) from AM1, for C(n,m) and CBN(n,m)
nanotubes. Etot: Total Energy; Ebind: Binding energy; Eatom:Isolated atomic energy;
Eelec: Electronic energy; Ec-c: Core-core Interaction energy; ∆HO

f : Heat of formation

Quantity C(4,0) CBN(4,0) C(4,4) CBN(4,4)
Etot -143202.179 -147500.156 -287926.581 -296398.517
Ebind -7365.140 -7144.453 -16252.504 -15687.111
Eatom -135837.038 -140355.703 -271674.077 -280711.406
Eelec -1657998.349 -1646005.185 -5024230.043 -4997026.045
Ec-c 1514796.170 1498505.029 4736303.462 4700627.528
∆HO

f 1254.396 730.443 986.568 62.681

A further look in these tables (Tables 5.3-5.4), indicate that in general interfron-

tier molecular orbital eigenvalues (LUMO-HOMO gap) become lower, meaning a more

readily excitable system. The largest doped model CBN(5,5) is an exception, having a
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Figure 5.4: Various 3D molecular plots of C(4,4) and CBN(4,4) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive
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Figure 5.5: Various 3D molecular plots of C(5,0) and CBN(5,0) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive
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Table 5.2: Calculated energies (in kcal/mol) from AM1, for C(n,m) and CBN(n,m)
nanotubes. Etot: Total Energy; Ebind: Binding energy; Eatom:Isolated atomic energy;
Eelec: Electronic energy; Ec-c: Core-core Interaction energy; ∆HO

f : Heat of formation

Quantity C(5,0) CBN(5,0) C(5,5) CBN(5,5)
Etot -179433.373 -184787.219 -360176.622 -370723.002
Ebind -9637.074 -9342.590 -20584.026 -19833.744
Eatom -169796.298 -175444.629 -339592.596 -350889.258
Eelec -2398240.785 -2382366.812 -7112912.784 -7073242.899
Ec-c 2218807.413 2197579.593 6752736.162 6702519.897
∆HO

f 1137.346 501.030 964.814 -146.504

Table 5.3: Calculated energies (in kcal/mol, unless otherwise stated) and dipole moment
from DFT, for C(n,m) and CBN(n,m) nanotubes.

Quantity C(4,0) CBN(4,0) C(4,4) CBN(4,4)
Etot -1135270.831 -1152474.083 -2271964.046 -2306266.543
Ee,k 1118465.605 1135691.198 2234909.956 2269772.557
Ee,v -4736229.593 -4717254.046 -13277858.216 -13231173.854
En-n 3600958.762 3564779.963 11005894.170 10924907.311
EH (eV) -3.441 -3.547 -2.590 -2.863
EL (eV) -3.354 -3.497 -2.365 -2.758
EL − EH (eV) 0.087 0.050 0.226 0.105
~p (Debye) 0.291 2.051 1.448 0.059

Etot: Total energy; Ee,k: Electron kinetic energy; Ee,v: Electron interaction terms;
En-n: Nuclear repulsion energy; EH: Eigenvalue of HOMO; EL: Eigenvalue of LUMO;
~p: Electric dipole moment

greater gap compared to undoped C(5,5). This may be due to peculiar orientation of

nearly free electron band in BNNT [112], which should be more observable when the

nanotube grows larger. Some details of the molecular parameters from DFT calculations

are presented in Tables 5.5-5.6.

Various molecular electronic plots are shown in Figures 5.3-5.6. Addition of Boron -

Nitride ring drastically changes HOMO - LUMO and electrostatic potential con�gura-

tion of the Carbon nanotube. In general, the probability density of these orbitals tend

to be away from BNNT ring dopant.

Investigating the metallic carbon nanotube based models, CBN(4,4) and CBN(5,5),

an electrostatic potential barrier in the middle is observed. This barrier is not present

in the C(4,4) and C(5,5) counterparts. Although it is uncertain that this barrier would
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Table 5.4: Calculated energies (in kcal/mol, unless otherwise stated) and dipole moment
from DFT, for C(n,m) and CBN(n,m) nanotubes.

Quantity C(5,0) CBN(5,0) C(5,5) CBN(5,5)
Etot -1419459.882 -1440862.226 -2840255.769 -2883099.176
Ee,k 1397586.475 1419467.939 2793278.386 2836904.105
Ee,v -6649315.097 -6622694.237 -18429548.608 -18359130.023
En-n 5229855.215 5181832.011 15589292.839 15476030.847
EH (eV) -1.535 -1.420 -2.041 -2.850
EL (eV) -0.993 -1.399 -1.128 0.140
EL − EH (eV) 0.542 0.021 0.914 2.991
~p (Debye) 5.192 100.563 0.025 0.031

Etot: Total energy; Ee,k: Electron kinetic energy; Ee,v: Electron interaction terms;
En-n: Nuclear repulsion energy; EH: Eigenvalue of HOMO; EL: Eigenvalue of LUMO;
~p: Electric dipole moment

Table 5.5: Some molecular parameters of C(n,m) and CBN(n,m) nanotubes in DFT
calculations.

Quantity C(4,0) CBN(4,0) C(4,4) CBN(4,4)
Number of Electrons 296 296 592 592

Number of Doubly Occupied Levels 148 148 296 296
Number of Virtual Orbitals 148 148 296 296
Number of Total Orbitals 248 248 496 496

Number of primitive Gaussians 744 744 1488 1488

still be e�ective in an electronic current condition, theoretical models on graphitic con-

duction suggest that its presence is promising. Furthermore, this potential barrier is

e�ective inside the nanotube, and there are no evident holes. Thus, for example, a

hypothetical memory device application, which relies on physical position of a fullerene

inside a nanotube, may bene�t from its presence [117]. Electronic charge density dis-

tribution plot is not signi�cantly altered (i.e. atoms are still the focus of the density

distribution with magnitude changes), but, due to polar nature of the newly added ring,

there is some uneven distribution. Figure 5.7 shows that in these nanotubes, there is a

charge accumulation to the BNNT ring compared to undoped models.

Consequences of the polar behaviour of the BNNT ring is apparent in CBN(4,0)

and CBN(5,0). Especially in CBN(5,0), there is a large electric dipole moment directed

along the tube axis (Table 5.4). The dipole moment of CBN(4,0), is also considerably
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Table 5.6: Some molecular parameters of C(n,m) and CBN(n,m) nanotubes in DFT
calculations.

Quantity C(5,0) CBN(5,0) C(5,5) CBN(5,5)
Number of Electrons 370 370 740 740

Number of Doubly Occupied Levels 185 185 370 370
Number of Virtual Orbitals 185 185 370 370
Number of Total Orbitals 310 310 620 620

Number of primitive Gaussians 930 930 1860 1860

CBN(5,5)C(5,5)

Charge

HOMO

LUMO

Electrostatic
Potential

Density

Figure 5.6: Various 3D molecular plots of C(5,5) and CBN(5,5) nanotubes from DFT
calculations. Color coding: Green: Negative, other colors: Positive

grater than that of C(4,0). This time dipole moment is not entirely aligned in the

tube axis, but has signi�cant transverse components. It seems that there is no direct

correlation between the dipole moment values and the HOMO-LUMO gap values of the

models considered.

It should be noted that, AM1 predicts nonzero dipole moments only for CBN(4,0)

and CBN(5,0) nanotubes. It is most possible that the non-zero dipole moments en-

countered in the DFT calculation is due to lack of mirror symmetry in the models,

and, although small, the nonzero polar vector displaces electrons to the asymmetrical

site. This may lead to a slightly di�erent geometrical orientation in a DFT geometry
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Figure 5.7: Calculated excess charge on atoms in the nanotubes considered. (DFT
results).
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Figure 5.8: Molecular orbital eigenvalue spectra of the nanotubes considered. (DFT
results).

125



GoldGold
CBN(5,0)

Figure 5.9: The model used in studying the conduction characteristics of CBN(5,0),
and ρ and Veff graphs for the model at 0 bias.

optimisation calculation, which is ine�ciently costly in computational e�ort.

Molecular orbital eigenvalue spectrum is shown in Figure 5.8. Among the above men-

tioned HOMO-LUMO changes, there are some intermediate levels introduced. These

levels may have some interesting contribution in a band calculation. Changes in inter-

frontier moleculer eigenvalue is often accompanied by changes in optical behaviour.

When the contribution of s and p orbitals of individual atoms to the bonds are inves-

tigated, it is seen that the s orbital contribution is dominant. Nitrogen atoms, however,

have a larger p orbital contribution, that leads to stronger hybridization characteristics.

These models are very promising candidates for two-terminal devices. The e�ects
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Figure 5.10: I-V trace for the CBN(5,0) and C(5,0) in the model described above.

of addition of BNNT ring is mostly charge oriented. Thus an external �eld may be

used to control this behaviour, possibly leading to Field-E�ect devices such as FETs.

Furthermore, there is a charge oriented potential barrier, and its presence may be used

in a number of applications.

Using a simple model, for example the one shown in Figure 5.9 some of these pre-

dicted characteristics can be approximated roughly. In this model, gold contacts at both

ends serve as electron reservoirs. The contact region is modelled by relaxing the surface

atoms using DFT (B3LYP exchange correlation 6-31g basis set, Hyperchem 7.52) and

the same calculation procedure for conductance described in the previous chapter is

proceeded. Again for comparison purposes, reference calculations on clean C(5,0) are

presented accorodingly.

The current versus applied potential energy di�erence (bias) is presented in Figure
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Figure 5.11: Comparison of the changes in electrostatic potential (shown at top row)
and the charge density (shown at the bottom row) with respect to 0 bias, at +4 eV and
-4 eV respectively.

5.10. C(5,0) is not a nanotube with metallic conduction properties, which results in the

non-linear behaviour visible in the graph. In CBN(5,0), however there exists a linear

region where the conduction can be modelled ohmically. Furthermore the conductivity

increases signi�cantly in the ring doped model. There also exists a non-linear region

for the CBN model, which although considerably dominant in positive bias, becomes

negligible in negative bias. This asymetric behaviour can be explained by a formation

of a p-n junction like interface region at the dopant region. This assumption is also in

correspondance with the previous observations.

The di�erence in charge density in the BN ring region seen in Figure 5.9 (in corre-

spondance with the previous calculations) has some interesting consequences. In Figure

5.11 the di�rences in electrostatic potential and charge density with respect to zero bias

at ±4 eV (the non-linear region) is shown. Under positive bias, a big electrostatic bar-

rier builds up at the center, and it is seen that the charge density remains unchanged.
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However, under negative bias, the size of the barrier is signi�cantly low, and there is a

charge accumulation at the interface.

In e�ect, the BN ring acts as a p-n junction interface, with a visible alteration in the

real space electrostatic potential, which hints a possible application in �eld emmission,

or tuning via control of these �elds just like a FET.

Note: This chapter is based on published work [118]
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CHAPTER 6

CLOSING REMARKS

In a material point of view, each of the topics discussed in this work is self contained, and

the discussion on the speci�c material can be found within the corresponding chapter.

In this chapter, the underlying methodology in studying the structural and electronic

properties of these materials is discussed.

There are various methods available for studying molecular and crystal structures,

and in most cases they come packed with easy-to-use graphical interfaces, such as Hy-

perchem, or Gaussview. No matter how easy the package is to use, the fact that the

many-body problem presented by inter-atomic interaction being unsolvable remains. It

must be kept in mind that the results presented even by the most sophisticated calcu-

lation are still approximations, and it is the users responsibility to interpret the results

physically according to the nature of the approximation(s) used.

Almost always, the complexity of the system requires parametrization, in some way

or another. The parametrization is often system speci�c, and there are more than one

consideration in their realization. This is the main source of problems in studying novel

nanomaterials, by de�nition, experimental studies on that particular structure does

not exist, thus how can we adjust a suitable parameter set? A second problem is the
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size limitations. Even a supercomputer can not handle more than a couple of hundred

atoms in an highly optimized DFT calculation, which is sadly where the hot topics in

nanotechnology reside. Thus, studying such materials require a di�erent approach.

In this work, a ground-up, coarse to �ne methodology is employed, trying to cir-

cumvent these problems. First of all, it must be emphasized that in carbon based

nanotechnology, spatial geometry of a structure is probably the most important con-

sideration. Once the geometry is �xed, most (if not all) of the ground state physical

properties are also �xed (through Hohenberg-Kohn theorems)1. Thus, the �rst step

is to start with testing the structural stability of the proposed novel nanostructure.

For this purpose, the system is modeled in an atomic and molecular physics point of

view, using coarse, semi-classical parametric interaction functions between atoms that

are modeled for structures resembling the one under study, and with tools of statistical

physics the discrepancies with a more complicated equation of motion are averaged out.

The procedure is nothing but the pseudo annealing procedure described in the Chapter

2. This exposes the proposed geometry under random �uctuations with a gradually

increasing amplitude, and being a macromolecular entity, geometrical re-alignments are

possible, like in the benzorod case, which can be studied separately. The pseudo an-

nealing method allows adiabatic introduction of large �uctuations, which are required

to compensate the coarse interaction potential, by permitting the structure to realize

the most energetically optimized form, thus decreasing the chance of transformations

to non-resembling geometrical con�gurations (see Figure 6.1).

Again, in this step, the structure can be investigated as a 1D periodic entity, if there

are any foresight regarding the periodicity resulting in geometrical realignments, like in

Bamboo shaped carbon nanotube case.

However, due to semi-classical nature, only structural information (which need to

be approached skeptically due to statistical �uctuations) can be obtained in this step.

1Non-carbon atoms add complications that often need to be handled in a di�erent and more
precise manner
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Figure 6.1: Large thermal �uctuations can �free� an atom that is not in its optimal
con�guration, whereas smaller �uctuations can not overcome the restoring force. Thus
adiabatic introduction of thermal �uctuations is mandatory in a model geometry.

Also, being parametric and coarse, one must be familiar with the shortcomings and

behavior of the PEF utilized, and act accordingly before proceeding any further. One

good example of this kind of intervention is in Chapter 2, where the information on

the modeling of Terso� PEF is used to add hydrogen explicitly in modeling the relaxed

benzorod geometry, which otherwise relaxes to a nanotube unit cell.

In �doped� structures, where non-carbon atoms are present, the characteristics of

a structure is to a large extent de�ned by the dopant. The structural stability under

�uctuations becomes a secondary concern here, primary concern being a precise de�ni-

tion of dopant interaction, thus the MD step described previously can be replaced by

a geometry optimization procedure, that permits more precise interaction schemes due

to considerably lesser number of steps involved. Chapter 4 and Chapter 5 are the two
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examples of such occurrences. For example in Chapter 5, Boron is a problematic atom

in handling using the methods at hand. A MD study is unfeasible (and unnecessary)

due to complexities involved. In order to compensate, the complexity of the interaction

scheme is increased gradually, starting from MM+ empirical force �eld then going to

semi-empirical methods, performing geometry optimization at each step and using the

previous result as an initial con�guration for the next, reducing the cost of calculation

considerably in each step.

Second step is to model the electronic structure of the system, again in a macro-

molecular point of view, using DFT whenever possible. Localized basis sets are utilized

which require a lot of chemical intuition in handling. The purpose of this step is mul-

tifold: First the chemical stability of the system can be asserted, secondly a geometry

optimization results in an increased precision in structural geometry, without the pre-

viously mentioned statistical �uctuations. A lot of interesting observables that may

be of use for application purposes are within reach at this point, such as molecular

density of states, which above all provides information about optical properties, elec-

tric dipole �eld, and the spatial location of HOMO and LUMO which can be used to

determine active regions where the structure is most susceptible to corrosion. Due to

large number of atoms involved, some structures can not be studied further, for example

the Bamboo shaped nanotube of Chapter 3, and one has to be satis�ed with structural

properties. Keeping in mind the primary application, this does not pose a problem for

this particular structure.

The last step is to model system in a solid-state point of view, as a periodic entity.

Due to previous steps, the system can be described more precisely now, and most of

the discrepancies due to constraining boundary conditions imposed by the periodicity

is bypassed due to previous macromolecular treatment. There are new complications,

however, since the set of approximations are somewhat di�erent in a solid-state ap-

proach. For example, when studying a structure using DFT in a macromolecular point
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of view, localized basis sets are used, which are intrinsically di�erent in handling com-

pared to the plane wave basis sets often employed in solid-state physics. For example,

in solid state physics, the contribution of the delocalized orbitals is the focal point, and

localized segments are modeled only coarsely, if not omitted completely using valance

orbital theory via an extension to interaction potential. Whereas in a macromolecu-

lar point of view, the core orbitals still can be handled somewhat coarsely, but due to

localized nature of whole the inter-atomic orbitals, their de�nition is de�nitely more

precise, and their contribution need to be almost always handled. In the end, a re-

parametrization is required to employ tools of solid state physics. The biggest problem

arises from approximate handling of core orbitals, one needs to �nd a suitable pseudo

potential describing the system adequately. For this purpose, �resembling� structures

are used, and a pseudo potential is tested to see whether it can describe those sys-

tems adequately. For example in Chapter 2, poly-ethylene and 3x3x3 slab of graphite

was used in choosing the pseudo potential, it was seen that although the pseudo po-

tential tends to slightly underestimate the hybridized bonds (with temperature scaling

in mind) and overestimate the p-p coordination in graphite, the di�erences are within

tolerance limits, and it is the most widely applicable among the tested. Luckily, there

exists a systematic way of increasing level of detail for the rest in plane wave basis sets,

unlike localized basis sets where intuition on the bonding scheme of the structure is

required. Then by comparison with the results from the previous macromolecular step,

a parametrization can be obtained rather e�ortlessly. An optimization procedure based

on golden search and energy �tting is used to deduce the parameter set. In order not to

increase complexity of calculation needlessly, only convergence of physicals observables

such as the lattice parameter is sought.

Some systems can not be handled in a periodic manner. For example in order to

observe the change in band structure due to attachment of a corrosive as in Chapter

4, a periodic model may have been devised where corrosive-corrosive interaction is
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negligible. However, this would involve more than 300 atoms, which is well above

the limits of DFT for the frameworks available. Instead, using NEGF formalism, the

system is modeled as a standalone perturbation to an ideal nanotube connected to ideal

contacts at in�nity, and changes in conductance are observed. Although this simpli�es

modeling considerably, the model structure is still sizable, and only relatively coarse

parametrization is possible. Again, due to precise modeling in macromolecular step,

the impact of using a coarse parameter set is lowered. In Chapter 5, a similar procedure

is present, but this time due to possible application as a FET or FED, the contacts are

metallic, in order to see if the presence of a p-n junction like interface region is adequate

to form a p-n device from a semiconductor.

Nanoscale resides at the borderline between the realms of solid state physics and

atomic and molecular physics, which have intrinsically di�erent approaches to the design

of new materials. Top-down or bottom-up approaches are possible for known materials

at nanoscale, however, in order to model novel materials at this scale, concepts of both

approaches need to be used together, until a better formalism connecting both worlds

can be found. This methodology is gaining importance in literature in the recent years,

as the motivation for studying novel materials and e�ects increase (see for example,

[119])
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APPENDIX A

LIST OF ABBREVIATIONS

µVT Grand Canonical statistical ensemble

AM1 Austin Model 1, a semi emprical quantum chemistry method [10]

AMBER An empirical force �eld [30, 31, 32]

B3LYP A Hybrid Exchange correlation functional which uses Becke - 3 parameter ap-

proximation in combination with GGA of Lee Yang and Parr

BIO+ An empirical force �eld [33, 34]

BNNT Boron-Nitrade nanotube

CNT Carbon Nanotube

DFT Density Functional Theory

DOS Density of states

GGA Genaralized Gradients Approximation

LDA Local Density Approximation
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LSDA Local Spin Density Approximation

LU Decomposition A diagonalization method which decomposes a matrix into Lower

and Upper parts

MC Monte Carlo

MD Molecular Dynamics

MM+ An empirical force �eld [28, 29]

MPI Message passing interface

MPSH Molecular projected self consistent eigenvalues

NEGF Non-equilibrium Green's function

NPT Isothermal�isobaric statistical ensemble

NVE Microcanonical Statistical Ensemble

NVT Canonical Statistical Ensemble

OPLS An empirical force �eld [35, 36]

PBC Periodic Boundary Condition

PDOS Partial or Projected density of states

PDOS Partial or Projected density of states

PEF Potential Energy Function

PM3 Parametrized Model number 3, a semi emprical quantum chemistry method [11,

12, 13]

SCF Self Consistent Field

STM Scanning Tunnelling Microscope
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STO Slater type orbital

SWCNT Single Wall Carbon Nanotube
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