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ABSTRACT 

EFFICIENT VISIBILITY ESTIMATION FOR DISTRIBUTED VIRTUAL 
URBAN ENVIRONMENTS 

 
Koldaş, Gürkan 

Ph.D., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Veysi İsler 

Co-Supervisor: Prof. Dr. Rynson W.H.Lau 

February 2008, 92 pages 

 

This research focuses on the utilization of occlusion culling for the real-time 

visualization of distributed virtual urban environments. Today's graphics 

hardware renders all the primitives in any order and uses z-buffer to 

determine which primitives are visible on a per-pixel basis. However, 

visibility is computed in the last stage of rendering pipeline and every 

rendered primitive is not visible in the final image. Early culling of the 

invisible primitives in a complex scene is valuable for efficiency in the 

conventional rendering pipeline. This may reduce the number of primitives 

that will be processed in the rest of the pipeline. In this thesis, we propose an 

efficient visibility estimation method for distributed virtual urban 

environments. The proposed method is based on occlusion culling to identify 

and cull the occluded parts of the scene. This not only computes conservative 

potential visible set (PVS) for each client but also assures the computed PVS 

to be available at the client on-time and reduces the network traffic by 

grouping the clients which may see each others dynamically. 
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ÖZ 

DAĞITIK SANAL ŞEHİR ORTAMLARI İÇİN ETKİN GÖRÜNÜRLÜK 
KESTİRİMİ 

 
Koldaş, Gürkan 

Doktora, Fen Bilimleri Bölümü 

Tez Yöneticisi: Doç. Dr. Veysi İsler 

Ortak Tez Yöneticisi: Prof. Dr. Rynson W. H. Lau 

Şubat 2008, 92 sayfa 

 

Bu araştırma dağıtık sanal kentsel ortamların gerçek zamanlı 

görselleştirilmesi için kapatma ayıklaması kullanımı merkezlidir. Günümüz 

grafik donanımları tüm temel öğeleri her hangi bir sırada gerçeklemekte ve z-

arabelleği kullanarak piksel seviyesinde görünebilir olanları belirlemektedir. 

Ancak, görünürlük görsel gerçekleme ardılış düzeninin en son aşamasında 

hesaplanmakta ve gerçeklenen her bir temel öğe en son görüntüde 

görünmemektedir. Karmaşık sahnelerde görünmeyen temel öğelerin erken 

ayıklanması görsel gerçekleme ardışık düzeninde etkinlik açısından 

önemlidir. Bu sayede görsel gerçekleme ardışık düzeninin geri kalan 

kısmında işlenecek olan temel öğe sayısı azaltılabilir. Bu tezde, dağıtık sanal 

şehir ortamları için etkin bir görünürlük hesaplama yöntemi önerilmektedir. 

Önerilen yöntem, sahnenin görünmeyen kısımlarının tanımlanması ve 

ayıklanması amacıyla kapatma ayıklaması temellidir. Bu sayede her bir 

katılımcı için kararlı Muhtemel Görünürler Kümesi (MGK) hesaplanmakla 

kalmaz ayrıca hesaplanan MGK’nin zamanında katılımcıda olması garanti 
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edilir ve dinamik olarak birbirini görebilecek katılımcıların gruplanması ile ağ 

trafiği azaltılır. 

 

Anahtar Kelimeler: Görünürlük, Kapatma Ayıklama, Dağıtık, İlgi Alanı, 

Etkileşimli 
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CHAPTER 1  

1 INTRODUCTION 

Visibility has broad application areas in computer graphics, architecture, 

computational geometry, computer vision, robotics, telecommunications, 

sensors and other research areas. The importance of visibility in computer 

graphics increases parallel to the recent developments in computer technology 

and increased demand on interactive simulations and games. Visibility is still 

an open research area from the beginning of the studies in computer graphics.  

Visibility researches in computer graphics focus on estimation of visible 

primitives in the scene that may have many complex and overlapped objects. A 

visibility method aims to compute the photo-realistic image by assuring that 

the primitives behind do not incorrectly occlude the front ones. Current 

graphics hardware renders all the primitives in any order and utilizes z-buffer 

to determine which are visible on a per-pixel basis [1]. However, every 

transmitted primitive to graphics hardware is not visible in the final image and 

visibility is computed in the last stage of the rendering pipeline [2].  

Rendering is a term used for the overall process of going from a database 

representation of a 3D object to a shaded 2D projection on a view surface [3]. 

The collection of these processes are usually known as graphics pipeline or 

rendering pipeline. Although the processes inside the pipeline may be different 

for different rendering systems, the conventional rendering pipeline for a 

polygon rasterization based rendering is given in Figure 1.1 [4]. 
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Rendering pipeline performs a collection of processes for each polygon 

transmitted to the pipeline. At the end of the pipeline, a polygon is either 

rasterized or discarded. In Figure 1.1, dbTraversal is the initial phase which 

transmits the polygons to the pipeline for rendering. Modeling transformation 

transforms the object geometry from local coordinates to the world 

coordinates. Culling phase discards polygons that can not be visible from the 

view point. The place of culling in pipeline may change with respect to 

visibility methods. We assume that view frustum culling is only performed in 

Figure 1.1. Lighting phase calculates the color of vertices by using shading 

parameters and an illumination model. [4]. Viewing transformation transforms 

objects from world coordinates to the viewer’s viewing frustum. Clipping is 

performed for the view frustum in the next phase. Projection transformation 

transforms 3D object to 2D view plane by projecting its vertices and calculates 

depth information for vertices. In the rasterization phase, polygons are scan 

converted. It is the operation of computing the screen coordinates of the 

projected polygons. The output of the rendering pipeline is the rendered pixels 

 

Figure 1.1: Conventional rendering pipeline.  
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which are sent directly to frame buffer or to an off-screen buffer to be utilized 

in the consecutive tests. 

Rendering pipeline processes are grouped into three different stages according 

to their concerns as follows [2]: 

1. Traversal: The objects in the virtual environment are traversed for 

rendering. A common method is to select the objects in the viewing frustum. 

2. Transformation: The geometry of each traversed object is transformed from 

the world coordinate system to the screen coordinate system. 

3. Rasterization: The geometry of each object is rasterized and written into the 

frame buffer after transformation. A fragment for each corresponding pixel in 

the frame buffer is generated. The term of fragment is used for all of the data 

needed to generate a pixel in the frame buffer. The depth information of each 

fragment is compared to the stored depth-value in the z-buffer to test the 

fragment’s visibility. 

The visibility test is performed in the rasterization stage of the rendering 

pipeline after generating fragments for the tested object. However, sending 

graphics hardware all primitives in view frustum to be rendered is inefficient 

for large scenes such as urban environments where a few close buildings might 

occlude hundreds of others. Processing all those occluded buildings in the 

remaining steps of the rendering pipeline is unnecessarily time consuming and 

useless.  

Visibility culling researches are classified as view-frustum culling, back-face 

culling and occlusion culling. The purpose of view-frustum culling is to discard 

the primitives outside the view frustum. Back-face culling avoids rendering the 

geometries facing away from the viewer. However, both of these visibility 

culling methods do not eliminate obscured primitives inside the view frustum 

as seen in Figure 1.2.   
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The purpose of occlusion culling is to avoid rendering primitives that are 

occluded by the front primitives as seen in Figure 1.2.  In this thesis, we focus 

occlusion culling which aims to identify occluded parts of the scene in the 

traversal-stage of the rendering pipeline. Occluded parts of the scene are culled 

early in the rendering pipeline and do not go through remaining steps of the 

pipeline. Thus, we reduce the rendering cost and save up time in an interactive 

simulation. After this point, we analyze visibility culling methods in terms of 

occlusion culling.  

Visibility culling methods usually utilize scene hierarchy to speed up testing of 

the objects for visibility. Occlusion culling tests are costly because of dealing 

with the interrelationship among the objects. The objects in the hierarchy are 

tested in a top-down manner. In addition, bounding boxes are utilized for 

complex or closely located or hierarchical objects to reduce the test period. A 

bounding box is a box which roughly covers object/objects it encloses. Testing 

 

Figure 1.2: Types of visibility culling methods. 
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a bounding box is computationally less expensive than testing the surrounded 

object/objects. 

The final target of visibility culling methods is to obtain exact visible set. 

However, this is too expensive and infeasible for interactive applications. 

Hence, conservative visibility methods, which overestimate the visible set of 

primitives, are proposed to compromise between culling accuracy and culling 

speed [1,5]. This overestimated visible set of primitives is referred to as 

Potential Visible Set (PVS). PVS includes all visible primitives plus some of 

invisible primitives. In other words, we may estimate an occluded object as 

visible, but may never estimate a visible object as occluded in conservative 

visibility. PVS is computed for either a view point or a view cell/region 

according to the visibility culling method. Apart from culling accuracy, there 

have been visibility studies on the location of the viewer (point-based / region-

based / cell-based), solution space (2D / 2½D / 3D, discrete / continuous, 

image precision / object precision) and occluder fusion support [1,6,7]. 

The importance of visibility culling increases as the virtual scene becomes 

more complex. The objects and the entire scene get more complex for better 

realism with the recent developments in technology. Visibility culling aims to 

decrease the cost of rendering to the complexity of the visible portion of the 

scene whatever the size of the entire scene is [1,8]. In an ideal manner, a 

visibility method should be output sensitive which means that its running time 

should be proportional to the size of the visible set.  

The motivation of this study is to develop a walkthrough application in 

complex distributed urban environment where buildings are the main source of 

occlusion [2]. The viewer only sees a small part of the city because close 

buildings usually occlude the ones behind. The methods which are developed 

for 3D visibility can also be utilized for urban walkthroughs. However, the 

computation of full 3D occlusion includes a significant overhead since 

buildings are connected to the ground. If we model the buildings with their 
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heights as the function of “ ( )yxfz ,= ”, we may say that we have an 

environment consisting of 2½D buildings. Thus, 2½D calculations should be 

enough for visibility estimation in urban environments.  

Throughout this thesis study, in achieving an efficient visibility, we have 

developed the following methods which are the major contributions of this 

thesis. 

The first visibility method is a conservative six degrees of freedom incremental 

occlusion culling method called Delta-Horizon (∆H) [9]. ∆H method is based 

on constructing an occlusion horizon (OH), which is a set of connected lines 

passing just above all visible primitives, for culling the invisible primitives 

beyond. It computes PVS that is visible from the current viewpoint for each 

frame on the fly incrementally. 

The second visibility method is an adjustable occluder shrinking method which 

computes PVS with respect to a region. Enhancing ∆H method with the 

proposed shrinking method enables us to compute PVS once and utilize it in 

many consecutive frames.  

Finally, we propose an efficient visibility estimation method for distributed 

virtual urban environments called Visibility-based Area of Interest (VbAoI) 

method. The scene is organized as a graph. Each distributed user is aware of 

the PVS of static objects for conservative visibility and only interacts with the 

PVS of dynamically grouped distributed users to reduce the network traffic.  

The rest of this thesis is organized as follows. Chapter 2 summarizes the 

literature survey on visibility in terms of occlusion culling and DVEs. Chapter 

3 introduces the proposed object space occlusion horizon culling method and 

incremental ∆H method. Chapter 4 presents the proposed adjustable occluder 

shrinking method. Chapter 5 explains the details of the visibility estimation for 

distributed virtual urban environments. Chapter 6 concludes the thesis and 

gives the future research directions.  
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CHAPTER 2  

2. LITERATURE SURVEY 

Comprehensive surveys on visibility culling may be found in [1,7,10]. Before 

reviewing the occlusion culling researches on visibility estimation methods, we 

initially give the criteria to categorize occlusion culling [1].  

2.1 Categorization Criteria in Occlusion Culling 

In this section, we summarize the categorization criteria presented in literature 

for occlusion culling researches [1].  

Point vs. Region: This is the major criterion for the visibility methods. 

Occlusion is computed for either a view point or a region where a viewer 

moves inside. A visible set computed for a point (i.e., view point) may change 

when the viewer moves. A visible set is a set of primitives which is seen from a 

view point or a region. A visible set computed for a region does not change 

unless the viewer gets out of the corresponding region. It may be utilized in 

rendering conservatively when the viewer is in the region.   

Image Precision vs. Object Precision: Image precision methods perform 

occlusion culling on the discrete representation of objects after they are 

transformed to viewing coordinates and fragmented in the rasterization phase. 

Object precision methods compute occlusion by utilizing the raw objects in 3D 

real space. 
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Accuracy of the Output: Culling method is classified with respect to accuracy 

as exact, conservative, approximate or aggressive. As mentioned before, the 

target of visibility estimation is to obtain the exact visible set. However, 

finding out exact visible set is very costly and infeasible for real-time complex 

virtual environment applications. Therefore, conservative visibility algorithms 

which overestimate the visible primitives are preferred when the accuracy of 

visibility is required. Conservative algorithms use the definition of Potential 

Visible Set (PVS) which contains the set of all visible primitives in addition to 

some of invisible ones. Instead of spending time for testing each primitive’s 

visibility, some of invisible primitives are considered visible and added to 

PVS. Approximate algorithms overestimate or underestimate the visible 

primitives while aggressive methods underestimate the visible primitives. 

Aggressive and approximate visibility methods do not support conservative 

visibility when the performance is crucial. 

All vs. Subset of Occluders: Some methods compute occlusion by utilizing all 

occluders in the scene while others use only a selected set of occluders such as 

big occluders in the scene.  

Occluder Fusion: Some methods compute occlusion for only individual 

occluders while others compute occlusion for all overlapped, connected or 

disconnected occluders. 

Dimension: Some methods compute occlusion for a particular dimension such 

as 2D, 2½D, 3D. Especially the methods proposed for urban walkthrough 

computes occlusion for 2½D. Occluders in urban environments are buildings 

connected to the ground. Thus, instead of modeling the buildings in 3D, we 

may describe them by giving a height value to 2D base geometry of each 

building. 

Convex vs. Generic Occluders: Some methods utilize only convex occluders 

in contrast to generic occluders for the occlusion estimation. 
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Special Hardware Requirement: Some methods need special hardware 

assistance in addition to z-buffer pass. 

Need of Precomputation: Some methods need precomputation to select the 

occluders or compute PVS. Especially region-based methods compute PVS in 

during a preprocessing phase. 

Treatment of dynamic scene: Handling dynamic scenes where there are 

moving objects in the scene can not be performed in most of the visibility 

methods since the object hierarchy may change on the fly.  

2.2 Point-based Visibility 

The proposed incremental occlusion horizon culling method in Chapter 3 is a 

point based method which is computed from a view point. Point-based 

visibility methods are computed for each frame since the visible set changes 

when viewer moves or changes viewing direction. The point-based visibility 

culling studies which can be roughly classified as geometric, image-based and 

hardware-based are summarized as follows.  

2.2.1 Geometric Point Visibility 

Geometric point visibility methods resolve the relations of primitives in object 

space to compute occlusion.  

The method proposed by Coorg and Teller [11,12] makes use of a set of large 

convex occluders to compute the occlusion in the scene. The method compares 

two objects, and takes one of them as an occluder and the other as the 

occludee. The endpoint connecting lines of occluder and occludee are defined 

as supporting and separating lines which partition the space into regions. In 3D, 

vertex-edge pairs generate supporting and separating planes instead of lines.  
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Hudson et al. [13] proposed a method where a set of occluders is chosen 

dynamically. It computes occluders for each cell in preprocess. When the view 

point is inside the cell, it computes shadow frustums of the selected occluders 

to cull the bounding boxes of objects’ hierarchy [1].  

Bittner et al. [14] improve the Hudson et al.’s method. They combine the 

shadow frustums of the occluders into an occlusion tree as in [15]. The 

comparison is reduced to a tree with an O(logN) depth, while taking occluder 

fusion into consideration. 

2.2.2 Image-Based Point Visibility 

Image-based methods execute the culling operation on the discrete 

representation of the image. They fill the image during the rendering of the 

scene. The subsequent objects are culled away quickly by the already filled 

parts of the image [1,16]. 

Greene proposes Hierarchical Z-Buffer (HZB) method, which is based on an 

octree hierarchy in object space and a z-buffer in image-precision [17]. The z-

buffer is defined as a multi-level buffer where the finest layer is the contents of 

the z-buffer. Each element in all layers holds the furthest z-value. Objects have 

been tested from coarser to more accurate level.  

The Hierarchical Occlusion Map (HOM) method proposed by Zhang [18] is 

similar to the HZB. HOM keeps opacity information with the z-values of the 

occluders. The method tests objects for overlap with occluded regions and then 

compares their depth values. It supports approximate visibility culling. Hence, 

visible objects through a few pixels can be culled using a user-specified opacity 

threshold.  

Wonka et al. [2,19] proposed a conservative image-based occlusion culling 

method for urban environments. They use two auxiliary data structures in a 

regular 2D grid: the scene grid and occluder grid. In each frame, the method 



 

11 

selects a set of occluders from the precomputed occluder grid and renders the 

occluder shadows to an auxiliary buffer called the cull map. Each pixel in the 

cull map corresponds to a cell of the scene grid (object space). Visibility of a 

cell is calculated according to the corresponding pixel value in the cull map. 

The method supports occluder fusion. The computation time depends on the 

numbers of pixels and occluders determined in preprocessing. The overhead 

incurred by copying the frame buffer and visibility traversal increases 

proportional to the size of the cull map. 

Unlike the above methods, former occlusion horizon methods in [20,21]] work 

in object space and use image plane to find PVS. We discuss these methods in 

detail at the beginning of Chapter 3 since our proposed incremental method is 

similar to these methods. 

2.2.3 Hardware-Based Point Visibility 

Some of the methods use Graphical Processing Unit (GPU) to estimate the 

occlusion in image space. The drawbacks are sending all the primitives to GPU 

and reading data from the frame buffer. The latter process is very slow. 

Hardware vendors have started adapting occlusion culling features into their 

designs. A feedback loop or flag added to the hardware reports any change in 

the z-buffer when a fragment passes the depth test [1,22,23]. When computing 

PVS, the depth test can be optimized to check the bounding boxes or an 

enclosing k-dop [24], which closely encloses the objects. Hardware vendors 

also employ occlusion culling methods [25,26] and provide occlusion culling 

support for common graphics APIs [16,27,28].  

2.3 Region-based Visibility 

This section includes region-based (from region or view cell) visibility 

methods.  
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The basic advantage of region-based visibility methods is that PVS is 

computed once and may be utilized for a number of frames. However, 

computing exact or conservative visibility from a region/cell is difficult. 

Computing visibility from a number of view points in the view cell yields 

approximated PVS and does not guarantee conservative visibility. When a user 

moves in the view cell, any primitive which is not in PVS may be visible and 

causes flickering artifacts in a walkthrough. In other words, view point 

sampling does not work because a lot of primitives should be visible from a 

small gap between occluders as seen in Figure 2.1.  

One of the important issues in region-based visibility method is supporting 

occluder fusion where the occluders are connected or separated [1]. Otherwise, 

PVS will have a lot of primitives when the view cell is larger than the average 

of occluders. If the sizes of occluders are larger than the view cell, occluders 

are more effective and PVS is more accurate. For example, smaller objects and 

their umbrae with respect to view cell are seen in Figure 2.2a. The union of 

umbras is insignificant without aggregating their umbras (i.e., occluder fusion) 

as seen in Figure 2.2b,  

 

Figure 2.1: An occluded object with respect to two sample points may be 

visible from a point between them. a-c) Object d is occluded. b) Object d is 

visible 
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Region-based methods are especially important for network applications and 

disk-to-memory pre-fetching because of its predicting capacity. Prefetching 

PVS of adjacent cell just before passing into the cell enables a smooth 

visibility. However, region-based methods have long preprocessing stage, need 

excessive storage to keep the PVS of regions and are not suitable for dynamic 

scenes.  

Region-based methods proposed for architectural environments are called cell 

and portal methods. These types of scenes are subdivided into cells. Cells are 

visible from the openings (such as doors or windows) called portals. PVS is 

computed for each cell in preprocess and utilized during run-time walkthrough. 

Airey et al. propose a conservative method for architectural environments 

[29,30]. This method computes whether a given primitive is visible through a 

portal. Airey utilizes ray shooting to estimate the visible primitives [29].  

Teller’s studies on 2D and 3D environments are in Ref. [31]. The scene is 

divided into convex cells using Binary Space Partitioning (BSP) tree. Opaque 

Figure 2.2: a) Umbra of individual occluders b) Aggregated umbra. 
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surfaces such as walls are the boundaries of the cells and non opaque portals 

such as doors are marked on boundaries. They builds adjacency graph for the 

cells using portals. Cell to cell visibility is determined by using sightlines. If 

there is a line between two cells, both cells see each others through portals. 

Adjacency graph is utilized for estimating the cell which a line passes through 

a portal. Calculated PVS of each cell is used during the run-time walkthrough.  

Schaufler et al. [32] proposed a conservative region-based method which 

works on the discrete representation of space. It determines the occluded 

regions. This method is effective for a set of occluders and supports occluder 

fusion. 

Durand et al. [33] proposed a method called conservative visibility 

preprocessing using extended projections. It is an extension of point-based 

image-precision methods in [17, 18] to volumetric visibility from a view cell. 

Occluders and occludees are projected onto a plane using the graphics 

hardware. If the projection of an occludee is in the cumulative projection of all 

occluders, it is invisible. For conservative visibility, the extended projection of 

an occluder is underestimating its projection while the extended projection of 

an occludee is overestimating its projection. 

Koltun et al. [34] proposed to utilize virtual occluders for region-based 

methods. A virtual occluder is a view dependent convex object. It is occluded 

from all the view points in view cell and utilized as an effective occluder for 

the corresponding view cell. In other words, virtual occluder is the aggregated 

occlusion of a set of individual occluders for the corresponding cell. This 

method also supports occlusion fusion and details of defining virtual occluders 

may be found in [34] 

Wonka et al. [2, 35,36] introduced a region-based method that computes 

conservative visibility by shrinking occluders. Our proposed shrinking method 

in Chapter 4 is based on this method and its details are going to be described in 

the beginning of Chapter 4. 
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2.4 DVEs and Visibility 

In this section, we initially summarize the previous researches on DVEs with 

respect to real-time contents delivery approach. After that, we mention about 

the previous researches on 3D streaming which refers to the delivery of the 

scene contents from network.   

2.4.1 DVEs 

In literature, the terms of Networked Virtual Environments (NVEs), 

Collaborative Virtual Environments (CVEs), Massively Multiplayer Online 

Games (MMOGs) and DVEs are all used for distributed multiplayer real-time 

simulation systems or games. 

Quake III Arena and Diablo II are well known multiplayer online games 

[37,38]. Their scenes are complex. There are a lot of game objects, increasing 

the game content size. These type of 3D games in complex scenes require the 

contents to be obtained [39,40,41]. Because of large contents, game companies 

prefer to sell the games in a CDROM/DVDROM to end users while some 

companies prefer to distribute their games from the Internet [42].  

A basic research topic in DVEs is to distribute the visible contents to the clients 

on-time for continuous simulation [39,43]. Loading all the scene content is 

useless and rendering all the primitives in the scene may not be performed on-

time for real-time Distributed Interactive Simulation (DIS) [43]. A client in 

DVE sees only a small part of the scene because of occlusion. In other words, a 

distributed client only needs PVS of primitives in his Area of Interest (AoI). 

The researches on this approach are classified as region-based and interest-

based [44]. Some of the methods implemented in several existing DVE systems 

are given as follows: 

Region-based approach was already implemented in the DVE systems of DIVE 

[45], CALVIN [46], Spline [47] and VIRTUS [48]. Virtual Environments 
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(VEs) of these systems are divided into regions. A distributed user downloads 

and loads a region just before entering the region. The size of the downloaded 

region influences the simulation if it is very large in size. The region definition 

is usually computed according to spatial hierarchy. Scattering the objects to 

regions according to their positions is a good way of grouping objects. 

However, a user needs to load the entire region if he only sees an object in that 

region. In addition, user may not have conservative visibility if user does not 

load all the regions in view frustum up to his visible distance. 

Google Earth is also a well known application based on region-based approach. 

A user participating in Google Earth application asks for the 2D satellite 

images of a region in real-time from the Internet [49].  

The interest-based approach focuses on the Area of Interest (AoI) of each user 

[44,50,51]. In this approach, each user is only interested in the objects in his 

AoI rather than interested in all the scene contents. A distributed user may 

navigate in DVE smoothly by only having the scene contents and updates in 

his AOI. This approach is implemented in NPSNET [50], MASSIVE [52], and 

NetEffect [53]. AoI approach reduces the amount of transmitted content in 

runtime. However, there are still problems as follows:  

Firstly, AoI computation for a client is not easy. Most of the systems define 

AoI by the view frustum and viewing distance [44]. This way, systems should 

accept very long viewing distance and wider view frustum to obtain 

conservative visibility. Otherwise, user may not obtain conservative visibility 

because a user may see a lot of primitives from a small gap in the scene. For 

example, many distant buildings may be visible from a gap between two 

buildings. Unfortunately, accepting long viewing distance increase the amount 

of contents to be transmitted.  

Secondly, the importance of objects within the AoI is not considered. A user 

may receive less important or invisible object before the critical and visible 

ones. Thus, limited bandwidth and time are wasted in runtime.  
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Thirdly, the geometry information of individual objects is transmitted as a 

whole to the client traditionally. However, transmitting a large model may 

easily consume the available network bandwidth for a considerable period of 

time, affecting the user interactivity. 

The interest-based approach may be utilized for grouping the related 

distributed user to reduce the network traffic by only communicating with the 

related users in DVEs. There are services which aim to route a communication 

to the related clients using the AoI approach in DVE applications. For example, 

High Level Architecture (HLA) establishes common high-level simulation 

architecture to make possible the interoperability of all types of simulations, 

models, and C4I systems. HLA is planned to achieve standardization in the 

Modeling and Simulation (M&S) community and to facilitate the reuse of 

M&S components [54]. HLA Interface Specification [55] describes a set of 

services to create federates. The services described in that interface 

specification is implemented in HLA Runtime Infrastructure (RTI). There are a 

set of services for Data Distribution Management (DDM) in HLA. These 

services reduce the network traffic by routing the communications such as 

attribute updates and interactions to the related federates in AoI.  

2.4.2  3D streaming  

3D streaming for DVE refers to the continuous and real-time delivery of the 

3D scene contents from network. The aim of this approach is to allow 

distributed users interact with each others without a full download [41,56]. 3D 

scene contents should be fragmented before transmitting and should be 

reconstructed and displayed on the client side. The basic difficulty is that PVS 

of each user is different and should be computed individually. Hu et al. focus 

on 3D scene streaming for a potentially large DVEs [40,41]. They propose a 

method for 3D scene streaming on peer-to-peer (P2P) networks identifying the 

3D streaming issues as the fragmentation of objects and the prioritization of 

transmission order. They also propose the method of Flowing Level of Details 
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(FLoD) which is a scalable P2P framework that supports 3D scene streaming 

for applications such as The Extensible 3D (X3D) Earth or MMOGs. 

The bottleneck of continuous and real-time delivery of 3D scene contents is 

considered to be the bandwidth rather than rendering or processing power [57]. 

As a solution, simplification and progressive transmission are proposed [58]. 

Existing 3D streaming methods are classified as object, scene, visualization, 

and image-based streaming [40,41]. 

Hoppe proposed the concept of Progressive Meshes (PM) as an object 

streaming approach [59]. An arbitrary coarser base mesh which preserves 

appearance is initially transmitted to the distributed user. User view or interact 

with this base mesh after its download finishes. Consequently, a number of 

refinement pieces are sent to the user. User incrementally refines the base mesh 

and obtains the original mesh in the end. There are many researches on PM 

such as view dependent PM [60], compressed PM [61], transmission of PM 

over different networks [62,63,64] and etc. 

Scene streaming approach is an extension of object streaming. A set of objects 

placed arbitrarily in space are streamed with respect to their importance to user. 

Scene streaming is generally divided into two phases as object determination 

and object transmission. Schmalstieg et al proposed techniques for scene 

streaming where each user’s visibility is limited to a circular AoI [65]. It is not 

a good approximation for AoI approach because it does not assures 

conservative visibility for all view points. If the radius of circular region is 

small, flickering effects may occur in a walkthrough. If the radius is large, user 

may need a lot of time to download excessive amount of useless data. There 

are also researches which focus on objects modeled at different level of details 

[66]. If switching between different levels of objects is not progressive, data 

redundancy may occur during the refinement of the object in user side. 

Cyberwalk [67] utilizes PM to avoid the data redundancy from sending 

consecutive LoDs. Cyberwalk also adopts caching and prefetching techniques 
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for optimization. Some of the systems such as in [68,69] utilizes scene 

streaming for dynamic contents.  

Visualization streaming is especially utilized in scientific visualization where 

large amount of data are processed [40,70,71]. It needs high performance 

networks and graphics servers to pipeline the processing of large data volumes. 

It is not applicable for DVEs. 

Image-based streaming approach is especially suitable for the clients which 

have low processing power such as mobile or handheld devices. 3D content of 

the scene is stored on a server and 2D rendered images generated in real-time 

are sent to the client to render [72]. Even though taking the 2D image of the 

DVE in server limits the scalability and interactivity of the system, it is good 

for using limited bandwidth. 

These existing 3D streaming methods focuses on simplification and 

progressive transmission of contents [40,41]. However, they do not propose 

how to obtain conservative PVS for each client in DVE. In this thesis study, we 

focus on estimation of conservative PVS of static and dynamic objects in each 

client’s AoI where AoI is computed with respect to visibility. 
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CHAPTER 3  

3 INCREMENTAL OCCLUSION HORIZON 

CULLING METHOD  

Real-time visibility is an important issue in virtual environment applications. 

Visibility studies focus on culling the invisible primitives to reduce the 

rendering cost. The basic visibility culling method discards the primitives 

outside the current view frustum. However, it does not purge obscured 

primitives inside the view frustum.  

The motivation of this study is to develop a walkthrough application in 

complex urban environment where buildings are the main source of occlusion 

[2]. The viewer only sees a small part of the city because close buildings 

usually occlude the ones behind. The methods which are developed for 3D 

visibility can also be used for urban walkthroughs. However, the computation 

of full 3D occlusion includes a significant overhead since buildings are 

connected to the ground. 2½D calculations should be enough for urban 

environments.  

In this chapter, we propose point-based Delta-Horizon (∆H) method for real-

time visualization of complex urban environments. It is based on Occlusion 

Horizon (OH) method proposed by Downs et al.[20].The proposed ∆H method, 

as in [20], computes the occlusion in 2½D, works on visibility based occluder 

selection, and supports both conservative visibility and occluder fusion. 

Besides, it builds OH using polar coordinates in object space which give rise to 

several advantages. Firstly, ∆H method allows flexible six DoF camera 
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movements. Downs’ method has only four DoF. Secondly, it accommodates a 

360-degree-wide field of view in one pass. This is desired for applications that 

need wide angle visibility such as radar simulations and panoramic viewing 

[73]. Thirdly, PVS computed in object space may be utilized without 

recomputation when the camera zooming is required. Finally, a significant 

improvement is achieved in updating OH incrementally.  

The rest of the chapter is organized as follows. Section  3.1 initially explains the 

details of the former OH method [20] and then presents the proposed ∆H 

method in detail. Section  3.2 discusses the performance gain in the empirical 

results. 

3.1 Delta Horizon (∆H) Method  

After discussing the former OH methods in [20,21], we explain the proposed 

method in detail. 

3.1.1 Details of Former OH Methods 

Downs et al. use the height fields to determine occlusion in 2½D for urban 

environments [20]. Each building is modeled with a bounding box and a set of 

  a)     b) 

Figure 3.1: a) Left: Building with bounding box. Right: CVPs of a building. 

b) Viewing direction is parallel to the xy- plane (i.e., ground plane) 
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Convex Vertical Prisms (CVPs) as seen in Figure 3.1a. A bounding box is used 

for outer hull and CVPs are applied for inner hull to occupy the inside of the 

building. Additionally, the scene is organized in a 2D quad tree scene hierarchy 

on the xy-plane. Each quad tree cell keeps the maximum height of any object 

within the cell or any of its descendants.  

A sweeping plane builds OH in a front-to-back traversal. Cells are tested 

against OH during the sweep. If the entire cell lies below the horizon, it is 

culled away. If it is not, buildings in the cell are tested. If the building is visible 

at its minimum distance to view point, it is added to PVS and its CVPs are 

applied to update OH at its maximum distance. This process ends after all the 

cells in view frustum are tested. 

OH is a series of 2D lines in the view plane which is perpendicular to xy-plane 

as seen in Figure 3.1b. It is a conservative mask of the space occluded by all 

buildings encountered in a front-to-back traversal. OH is approximated as a 

piecewise constant function and represented in a binary tree as seen in Figure 

3.2. Each node in the tree has an x range and a y-value for the mask height. The 

minimum and maximum mask heights of its descendants are stored at every 

internal node. Testing of a cell or a building is terminated without recursing to 

the leaves of the tree if its mask is completely below the minimum value or 

above the maximum value of a portion of the OH. 

Lloyd and Egbert [20] adapted OH method to hierarchical terrains. This 

method also uses a quad tree structure and individual line segments to 

approximate the edges of the leaf cells instead of CVP to compute OH as in 

[20]. 

Overhanging structures and bridges do not contribute to occlusion in the scene, 

but they will be correctly culled or accepted potentially visible. The drawbacks 

of these OH methods are summarized as follows:  
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1) OH can not be built in the view plane when the camera pitches or rolls as 

seen in Figure 3.3b and c. Thus, these methods have only four DoF. 

2) These methods have to build OH and compute PVS for each frame from 

scratch when the viewer moves. 

3.1.2 Object Space OH Method  

The motivation of implementing OH in object space is to overcome the 

drawback of four DoF. This drawback prevents the implementation of OH 

method in walkthrough application even if it is easy to implement. The main 

difficulty is how to represent OH in object space. OH is built as a series of 3D 

lines in polar coordinates[9]. Like the former methods, it is the accumulation of 

the shadow frustums of CVPs. The basic difference is the computation of 

 

Figure 3.2: Binary tree representation of OH 
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shadow frustum. We summarize how polar coordinates are utilized in the 

computation of shadow frustums as follows: 

The view point is located at the center of polar coordinate system. 

In polar coordinates, positive x-axis points to east, positive y-axis points to 

north, and positive z-axis points up, as seen in Figure 3.4a.  

The shadow frustum of a CVP is computed using its visible cross-section and 

extends to infinity as seen in Figure 3.4a. Shadow frustum is estimated by two 

horizontal angles and one vertical angle with respect to view point. 

Horizontal angles (αmin, αmax) bound a CVP in both sides. They are measured 

from east and range between 0 and 360 degrees. To find αmin and αmax of a 

CVP, we project CVP to the xy-plane orthogonally as seen in Figure 3.4b. If an 

occluder shadow spans zero horizontal degree (i.e., extends from 350 degree to 

20 degree in polar coordinates), we split it into two parts and test both parts 

individually. 

 

Figure 3.3. a) Six DoF: Surge (Su), sway (Sw), heave (H), roll (R), pitch (P) 

and yaw (Y). b-c) If camera pitches (P) or rolls (R), OH in the view plane can 

not be built conservatively in former methods [6,17] 
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Vertical angles (β-values) bound the height of a CVP. They are measured from 

the xy-plane and range between −90 and +90 degrees. The vertices at αmin and 

αmax bound the occluder shadow frustum on both sides. The smallest vertical 

angle of these two vertices is chosen as βmin  for conservative visibility. 

The contributions of the proposed object space method are summarized as 

follows: 

1) It supports six DoF. It does not fail when the camera pitches or rolls since 

OH is built before viewing transformation.  

2) Polar coordinates enable building OH up-to-360-degrees in one pass.  

3) Computing PVS before viewing transformation enables zooming without 

re-computation.  

Figure 3.4: a) Occluder shadow in polar coordinates. Horizontal angles (αmin, 

αmax) bound a CVP in both sides and measured from the positive x-axis (East). 

Vertical angle (β-values) bounds the height of a CVP and measured from the 

viewing direction parallel to the ground plane. b) Top view: OH is built only 

for the horizontal angle values where view frustum occupies 
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3.1.3 Incremental OH Method: ∆H Method 

Former methods test all the cells in view frustum and builds OH by the cells in 

front of OH. However, the invisible cells beyond OH are tested. In the 

proposed ∆H method, we aim to reduce the cost of testing invisible cells 

beyond OH. Its motivation is derived from the fact that OH does not change 

significantly in a consecutive frame during a walkthrough. The proposed ∆H 

method is implemented in both image and object spaces. From here, we 

initially explain the coherence of occluders and describe the proposed method 

in image space.   

In image space method, viewing direction is parallel to xy-plane. The 

primitives in viewing direction project to the Center of View Plane (CoVP) as 

seen in Figure 3.5. Figure 3.5 shows the coherence of vertex projections in the 

view plane when the viewer moves forward (F) and backward (B). It is obvious 

that the consecutive projections move away from CoVP in forward movement 

and move to CoVP in backward movement.  

 

Figure 3.5: Coherence of vertex projection in consecutive frame 
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Figure 3.6 summarizes the coherence of occluders that are taller than the view 

point’s height. They project upper half of the view plane. Visible buildings in 

forward and backward movements are marked as seen in Figure 3.6d and 

Figure 3.6f with respect to Figure 3.6e. Figure 3.6g shows the visible buildings 

(according to left (L) and right (R) movement) in lateral movements. If the 

viewing direction only changes, the buildings entered the view frustum are 

colored as blue and green as seen in Figure 3.6h. 

We consider how occluders in current OH impact the consecutive OH. The 

impact of an occluder varies according to its distance in object space and 

projection position in the view plane. Table 3.1 summarizes the impact of 

occluders for the user actions below:  

Forward movement: The parts of current OH above CoVP move up and its 

parts below CoVP move down in vertical axis. Simultaneously, they move 

away from CoVP in horizontal axis as seen in Figure 3.6d. Buildings in front of 

OH may form OH in consecutive frame regardless of being visible or not, as 

seen in Figure 3.7a and Figure 3.7b.  

Backward movement: The parts of current OH above CoVP move down and its 

parts below CoVP move up in vertical axis. Simultaneously, they move to 

CoVP in horizontal axis as seen in Figure 3.6f. An occluded building in front 

of current OH may be visible as seen in Figure 3.7c and Figure 3.7d. Occluded 

Table 3.1: Impacts of occluders 

… in Vertical Axis … in Horizontal Axis

   ∃∃∃∃x above CoVP moves up moves away from CoVP

   ∃∃∃∃x below CoVP moves down moves away from CoVP

   ∃∃∃∃x above CoVP moves down moves to CoVP

   ∃∃∃∃x below CoVP moves up moves to CoVP

Lateral Movement    ∀∀∀∀x do not move move to opposite site
Change in 

Viewing Direction    ∀∀∀∀x do not shift shift to opposite site

Backward Movement

User Action x: part of Current OH 
Consecutive OH

Forward Movement
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buildings behind OH may form OH in consecutive frame as seen in Figure 

3.6f.  

Lateral movement: All parts of current OH move to opposite side with respect 

to the movement. The more an occluder is away from the view point in object 

space, the less its consecutive projection moves in the view plane. Buildings in 

front of current OH may form OH in consecutive frame.  

Changing only viewing direction: If viewing direction changes, new primitives 

enter the view frustum as seen in Figure 3.6h and OH shifts to opposite side in 

consecutive frame.  

We summarize the abbreviations and the steps of ∆H method depicted in 

Figure 3.8 as follows: 

 

H(t)  : OH in frame t.  

H(t+1) : OH in frame t+1 (i.e., consecutive OH) 

∆H : Delta OH. It shows openings and is utilized to update H(t+1). 

1) Mark the cells in front of H(t) at frame t. 

2)  Build H(t+1) by the cells in front of H(t) from close to far. If an occluded 

primitive in frame t is visible in frame t+1, it should be added to the PVS.  

3) Calculate "∆H = H(t+1) – H(t)". ∆H has some parts risen and some parts 

lowered (i.e., openings). Subtraction details are as follows: There is no need to 

check the cells behind the parts of risen ∆H because they have already 

occluded in frame t. Thus the values of these regions in ∆H are extended to 

maximum values of horizon. Lowered parts of horizon in consecutive frame 

denote the openings to be checked in object space. We only copy the values of 

H(t+1) to ∆H for these regions. 
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Figure 3.6: Coherence of occluders. Orthogonal projections from a) top, b) 

left and c) front. d-f) Perspective projections from view point. d) In forward 

(F) movement. e) Before movement. f) In backward (B) movement. g) In 

lateral movements. h) In viewing direction changes. 
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4)  Check the cells projecting to the openings of ∆H in a front-to-back 

traversal 

5)  If the viewer only changes the viewing direction, the cells entered the 

view frustum should be tested as seen in Figure 3.6h. 

After testing all the cells in the openings of ∆H, H(t+1) is updated 

incrementally. 

 

 

Figure 3.7: a) Before forward (F) movement: A, B, C are visible and C 

builds OH. D is occluded. b) After forward (F) movement: A is visible and 

builds OH. B and C become occluded. c) Before backward movement: A 

and C are visible and C builds OH. B and D are occluded. d) After 

backward movement: A, B, C and D are visible and D builds OH. 
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Figure 3.8: Steps of proposed ∆H method 
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 We utilize link list and binary tree data structures together in the 

implementation. Binary tree data structure enables search the tree in (log n) 

time. Linked list data structure enables to compute ∆H easily. Thus, we 

significantly decrease the cost of OH method by reducing the number of cells 

tested behind OH.  

3.2 Results and Discussions 

As a testbed, we modeled an urban environment consisting of 160,000 

buildings, each of which has 46 triangles. The testbed has 7.36M triangles 

totally and is organized into 2D quad tree on the xy-plane. The buildings are 

scattered into the quad tree at the lowest level cell. In the experiments, OH is 

computed only for view frustum as seen in Figure 3.4b. 

We perform our tests on PC Pentium IV 3 GHz. with an nVidia GeForce 

FX5700LE-256 MB graphics card. We implement the methods in MS Visual 

C++ 6.0 with OpenGL API. The statistics are gathered on a predetermined 

walkthrough. In Figure 3.9, we compare the timings of the following culling 

                                       a)                                                                          b) 

Figure 3.9: Statistics gathered in the testbed a) Comparison of frame times. b) 

Comparison of OH computation times. 
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methods: OH culling method in image space (OH(IS)), proposed OH method in 

object space (OH(OS)) and proposed ∆H method (∆H) in object space. Figure 

3.9a summarizes the frame times which are the total of culling time (i.e., time 

of building OH and computing PVS) and rendering time (i.e., time of sending 

PVS to GPU and rendering). We only summarize the culling times to compare 

the cost of methods as seen in Figure 3.9b. 

Table 3.2 compares the averages of times gathered in Figure 3.9 and 

summarizes the speeds up of the proposed methods. The results show that ∆H 

achieves 8.95 times speedup in frame time and 21.54 times speedup in culling 

time over OH(IS). Besides, OH(OS) achieves 2.16 times speedup in frame time 

and 2.34 times speedup in culling time over OH(IS). The latter speed ups are 

caused by the difference between estimating the projected coordinates in image 

plane and angle values in polar coordinates. We utilized gluProject() function 

to estimate the window coordinates in OH(IS). If there is a cheaper way to 

estimate the window coordinates in OH(IS), these speedups may reduce. 

Therefore, we need to compare the times of OH(OS) and ∆H to see the 

performance gain in ∆H method. It is important to note that ∆H achieves 4.15 

times speedup in frame time and 9.18 times speedup in culling time over 

OH(OS). As a result, ∆H method reduces the costs of frame and culling times 

significantly. 

Table 3.2: Performance comparison of methods a) Comparison of average 

times. b) Average speed ups of the proposed methods. 

  OH(IS) OH(OS) ∆∆∆∆H 
Frame Time (msec.) 243.9 113 27.25 
Culling Time (msec.) 227.2 96.9 20363 

 a)   

  OH(IS)/OH(OS) OH(IS)/∆∆∆∆H OH(OS)/∆∆∆∆H 
Frame Time  2.16 8.95 4.15 
Culling Time 2.34 21.54 9.18 
 b)   
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The performance gain of the proposed ∆H method is caused by reducing the 

number of testing cells behind OH. In addition, the number of nodes in ∆H tree 

(after step 3 in Section 3.3.) is reduced to 20% at the average. Thus it speeds up 

testing primitives and updating OH. 

There is a trivial constrain for the proposed ∆H method. If user moves more 

than the width of a building, we can not update the occlusion horizon with a 

building which has smaller width than the distance moved. This extreme case 

is depicted in Figure 3.10. The building A is visible in the consecutive frame. 

However, ∆H method misses it because the horizon is risen as seen in Figure 

3.10. This extreme case can be solved by three different approaches: 1) 

Limiting the movement of a user with respect to the smallest width of the 

buildings in the environment 2) Updating OH with the buildings which have 

wider width than the distance of movement. 3) Switching the incremental 

method to non-incremental method for an instance.  

 

Figure 3.10: a) Top view. Building A becomes unoccluded in lateral motion. 

b) Side view: Occlusion horizon rises and no cells beyond it are checked, 

missing the black building. 



 

35 

3.3 A Sample Application: Radar Echo Generation 

Radars are used for locating objects that are on the line of sight but are not 

visible because of environmental conditions such as darkness, fog and distance. 

To solve this visibility problem in real life, radar beams are used to discover 

the visible cross sections of objects in the environment. Radars estimate 

visibility from a point in 360 degrees of coverage in reality. Because of this 

fact, we choose this sample application. In this section, we simulate the echo of 

mobile radar. Mobility hardens the generation of radar echo in real-time 

because it is necessary to regenerate the ground echo of the environment in 

each movement of radar platform. We adapted the proposed object space OH 

method in Section  3.1.2 for generating real-time radar echo for 360 degrees of 

coverage in 3D virtual terrain environment [73].  

Radar simulation in training increases the experience of personnel and reduces 

the cost of training. Stationary radars can be simulated by generating radar 

echo at the beginning and simulating the moving targets on the precomputed 

image of the environments. Simulation of radars on moving platforms such as 

aircrafts or ships uses simplified databases (in air to ground radars), tracks only 

moving objects (in air-to-air radars) or obtains low resolution using limited 

rays [74,75].  

In this section, we focus on echo generation for mobile radar simulation such 

as vehicle/mast mounted and man-portable ground radars used in battlefield 

[76]. The coverage area of modular ground radar mounted on moving platform, 

changes when the platform moves. Real-time simulation of mobile radar 

requires vast amount of computational resources to regenerate the ground echo 

(or visible cross sections of objects) in any movement. Radars determine the 

visible objects in the environment by the propagation of an electromagnetic 

field. Electromagnetic field exhibits some characteristics of a particle traveling 

through space and some wave characteristics [77]. Radar simulations are 
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generally use ray tracing method instead of modeling the characteristics of 

electromagnetic field. Unfortunately, the cost of keeping the accuracy in ray 

tracing method increases when the distance of objects in the range increase. To 

avoid the cost of ray tracing method and increase the performance of the 

simulation, we utilize object space OH culling method to generate ground radar 

echo in 3D terrain environment [20,20]. OH culling method uses 2½D features 

of the virtual environment even if the terrain is modeled in 3D. Thus, the 

computation complexity of the radar echo generation is reduced from ray 

tracing to 2½D visibility. 

The rest of this section is organized as follows. Section  3.3.1  reviews related 

work on radar simulations, Section  3.3.2 presents the proposed radar echo 

generation method in detail. Section  3.3.3 discusses the strengths and 

limitations of our method. 

3.3.1 Related Work on Radars 

Radar cross section of an object in the environment is predicted by the 

propagation of an electromagnetic field [77,78]. Radar simulations model the 

electromagnetic field which exhibits some characteristics of a particle traveling 

through space and some wave characteristics [77,79]. Unfortunately, modeling 

electromagnetic field is very costly for radar echo generation and most of the 

radar simulations use ray tracing method.  

Ray tracing is frequently used to simulate radar echo [77,80]. Fundamentally, 

rays are propagated trough the scene and the objects intersected with these rays 

are assumed to be visible. Two approaches are used: forward ray-tracing and 

backward ray-tracing. For the first approach, rays are sent from the transmitter 

through the scene. For the second, rays are sent from the objects to transmitter.  
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3.3.2 Radar Echo Generation Method 

We generate the ground radar echo of the virtual terrain environment by using 

object space OH method explained in Section  3.1.2. The objects in the 

environment are modeled in 3D and assumed to stand on the ground.  In other 

words, objects do not hang in the air. Such an object in the scene can be 

described by a function “z = f (x, y)”, and it is called 2½ dimensional. This 

assumption enables to use the height of the objects in the construction of 

occlusion horizon.  

Our proposed method computes occlusion horizon as piecewise 3D lines in 

polar coordinates in object space by accumulating the occluder shadows of 

visible primitives in a front-to-back order. Polar coordinate system enables this 

method to be applied to a radar simulation. To understand the proposed 

method; we describe occluder shadow concept and how it is used in the 

construction of occlusion horizon, and how to cull the obscured primitives 

beyond. 

Consider a pyramid which is constructed by four rays originated from the 

viewing point and passing through each corner of the occluding polygon. 

Occluder shadow is defined as the part of the pyramid behind the polygon as 

 

Figure 3.11: Occluder shadow 
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seen in Figure 3.11. We assumed that the polygon is attached to the ground. 

Thus three edges of the polygon are used to determine its occluder shadows in 

2½D. Detailed definition of occluder shadow is given by Wonka [2] In polar 

coordinates, the occluder shadow of a 2½D primitive is represented by two 

horizontal angles (αmin, αmax) on ground plane P and a vertical angle (βmin) 

from the ground plane, as seen in Figure 3.4a. 

The proposed method computes PVS of primitives which have a line of sight 

contact with the radar and culls the obscured primitives. Similarly, the radar 

echo displays the visible cross sections of all objects in 360 degrees of 

coverage and looks like the image seen from bird’s eye. We inspired from this 

similarity to simulate the image of radar echo. Thus, we compute the visible 

primitives in the scene and rasterize them from a camera above to generate the 

image of radar echo. We modeled the terrain with triangles. To take the 

advantage of spatial coherence for traversing the triangles efficiently, we 

scattered the triangles into the cells of regular grid. 

Our method computes the PVS based on the assumptions summarized below: 

1. The radar is at the center of polar coordinate system.  

2. Positive x-axis points to east, positive y-axis points to north, and positive z-

axis points up, as depicted in Figure 3.4a.  

3. The shadow frustum starts from the visible primitive, extends to infinity and 

culls the obscured primitives. 

4. Horizontal angles (αmin, αmax) of a visible triangle bound the triangle in both 

sides and measured from the positive x-axis (East). Thus, they range between 0 

and 360 degrees as seen in Figure 3.4a and Figure 3.12a.  

5. Vertical angle (βmin) of the triangle bounds the upside of the triangle and 

measured from the ground plane as seen in Figure 3.4a. It ranges between −90 

and +90 degrees.  
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         a)           b) 

Figure 3.12: a) The horizontal component: Orthogonal projection (A`) of 

triangle A on xy-plane. b) The vertical component: The perspective 

projection of triangle A on a plane at infinity. 

 

Figure 3.13: Calculating β min by using the projection of the triangle on the 

sphere at infinity. 
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To find αmin and αmax of a triangle, we first locate its orthogonal projection 

(A`) on the ground plane (xy-plane). As shown in Figure 3.12a, αmin is 

represented by α1 and αmax by α3. 

 To determine βmin of a triangle, we assume that there is a sphere at infinity as 

in Figure 3.4a. We project the tested triangle onto this sphere perspectively as 

in Figure 3.12b. All possible triangle projections on the sphere are depicted in 

Figure 3.13. The vertices at αmin and αmax bound the occluder shadow frustum 

on both sides. For conservative visibility, the smallest vertical angle of these 

two vertices is chosen as βmin. For example, consider v1 and v3 vertices in 

Figure 3.12a. β1 of v1 is smaller than β3 of v3 in Figure 3.12b. β1 is chosen as 

βmin to support conservative visibility. Thus, occluder shadow of tested triangle 

is calculated as the region behind the triangle below βmin between αmin and 

αmax. 

 

Figure 3.14: Cell test. 
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The occluder shadows of visible triangles are accumulated as occlusion 

horizon. The method consists of two steps as follows:  

In the first step, OH is built by the triangles in the cell of the transmitter. If a 

triangle faces towards the transmitter, it is added to the PVS and tested against 

the OH for visibility. If it is above the horizon thus visible, its shadow is used 

to update the occlusion horizon.  

In the second step, we check all cells in the range from front to back. As seen 

in Figure 3.14, C1 and C3 are utilized to estimate αmin and αmax of the tested cell 

on the ground plane. C2 is the closest point of the cell to the viewer and used to 

estimate βmin, assuming that the highest point is at C2 for conservative 

visibility. Then, we check whether the tested cell is visible. If the cell is visible, 

its primitives above βmin are added to PVS and used to update occlusion 

horizon as shown in Figure 3.15. 

As a result, we compute the PVS of triangles which are the visible cross 

sections of primitives in polar coordinate system. We rasterize the computed 

PVS from a camera above to simulate the image of radar echo in 2D display. 

Figure 3.15: The region to be checked in a tested cell. 
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3.3.3 Results and Discussion 

The terrain model illustrated in Figure 4.16 is about 66 km by 56 km and has 

~4.96 million triangles. During the pre-processing stage, terrain is divided into 

2D regular grids of various sizes for spatial coherence. The grid sizes of the 

terrain environment are 30×30, 60×60, 100×100, 200×200, 400×400 cells. If a 

triangle spans more than one cell, it is referenced by all cells intersecting it. In 

addition, the highest value of each cell is precomputed and all triangles in each 

cell are sorted from highest to lowest.  

 

Figure 3.16: Generated radar echo. 
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The measurements of the performance in radar echo generation are reported in 

Table 3.3. These measurements are collected in 1,280×1,024 resolution on a 

Pentium IV 3GHz PC with a 64 MB NVIDIA GeForce4 MX 400 graphics 

card. Assuming that the antenna of the radar completes a cycle of rotation in 2 

seconds, current performance of the method is sufficient for the grid sizes less 

than 400×400.  

 

Table 3.3: The measurements of the performance in radar echo generation for 

60 degrees of coverage. 

Regular Grid Size 
Radar Echo Generation 

Time for 60o (msec.) 

30×30 266 

60×60 214 

100×100 209 

200×200 333 

400×400 898 

 

The main strength of the proposed method is its conservativity. Conservative 

feature of OH method guarantees that all visible primitives are correctly added 

to the PVS. Thus, it finds all visible primitives in 360 degree of coverage to 

generate radar echo. 

We use regular height field data. Therefore all triangles have the same 

projection size on the x-y plane. As a result, sizes of the triangles are limited to 

the accuracy of the terrain data. Depending on this fact, we neglect the error 

caused by triangles marked as visible because of a very small visible portion. 
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Besides, cell size is an important parameter for the proposed method. The 

proposed method culls the triangles cell by cell and computes the PVS more 

accurately when the cell size is smaller. Unfortunately, reducing the cell size 

increases the number of cells and proportionally the number of cell tests as 

seen in Table 3.3. Thus, appropriate grid size of the scene should be 

determined to obtain desired accuracy of the image at optimum frame rate. 
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CHAPTER 4  

4 AN ADJUSTABLE OCCLUDER SHRINKING 

METHOD  

Point-based visibility methods estimate visibility for a view point and 

recompute visibility when the camera moves. These methods can not guarantee 

constant frame rate for real-time walkthrough applications. Therefore, region-

based visibility methods which compute PVS with respect to a region before 

hand, are proposed [1]. 

The basic advantage of region-based visibility methods is that PVS is 

computed once and may be utilized for a number of frames [1]. However, 

computing exact or conservative visibility from a region/cell is difficult. 

Computing visibility from a number of view points in the view cell yields 

approximated PVS and does not guarantee conservative visibility. When a user 

moves in the view cell, any primitive that is not in PVS may be visible and 

causes flickering artifacts in a walkthrough. In other words, view point 

sampling does not work because a lot of primitives may be visible from a small 

gap between occluders as seen in Figure 2.1.  

We enhanced ∆H method with a newly proposed conservative occluder 

shrinking method. Occluder shrinking method shrinks occluder in preprocess. 

Shrunk versions of occluders are used in visibility estimation for the samples 

points on the border of view cell. Shrinking occluders an amount of the half 

distance between sample points guarantees that an invisible primitive is not 

visible from a point between sample points as seen in Figure 2.1. This method 
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is similar to the former shrinking method proposed for region-based visibility 

[2,35,36]. In former method, a visibility server shrinks all dimensions of 

occluders ε-distance in preprocess and utilize them to compute PVS for ε-

radius circular region around the view point. When the viewer moves inside 

this circular region, he renders computed PVS and does not update PVS.  

Enhancing ∆H method with the proposed shrinking method enables to compute 

potential visible set once and utilize it in consecutive frames for a circular 

region during an interactive walkthrough in urban environment. The 

contributions of the proposed shrinking method are summarized as follows:  

• It only shrinks the shadow frustum of a potential visible occluder and 

computes 30% more accurate PVS.  

• Occluder shrinking is performed on the fly and there is no need to store 

the shrunk versions of occluders preprocessed  

• Occluders are selected regarding visibility from the view point on the 

fly rather than a selection method.  

• It is more generic since all operations are performed in CPU without a 

need of specific graphics hardware.  

• Shrinking distance may be adaptively arranged with respect to the 

speed of user and frame rate on the fly. Hence, it enables to reach a 

compromise between PVS accuracy and real-time constraints.  

The rest of this chapter is organized as follows: Section  4.1 initially explains 

the details of the former shrinking method [2,35,36] and then presents the 

proposed adjustable shrinking method in detail. Section  4.2 summarizes and 

discusses the empirical results.  



 

47 

4.1 Adjustable Occluder Shrinking Method 

We explain the proposed new occluder shrinking method for 2½D 

environments in detail after we discuss the former occluder shrinking method 

[2,35,36]. 

4.1.1 Details of Former Shrinking Method 

Wonka et al. proposed a method based on the intersection of the occluder 

shadow umbras calculated for a set of discrete point samples placed on the 

view cell’s boundary [2,35]. The umbra of a sample point is calculated by the 

accumulation of occluder shadows. The main difficulty is that an occluded 

object with respect to two sample points may be visible from a point between 

them as seen in Figure 2.1. Wonka proposed to shrink occluders ε-distance, 

 

Figure 4.1: Occluder Shrinking. 
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which is the half distance of two consecutive sample points on the view cell’s 

boundary as seen in Figure 4.1. A smaller umbra is built by shrinking an 

occluder ε-distance. It guarantees that an occluded object does not visible from 

e-radius around the sample point as seen in Figure 4.1. An object is occluded 

for the whole view cell if it is contained in the fused umbra of the shrunk 

occluders for all sample points on the view cell’s boundary as seen in Figure 

4.2. The proposed method also supports occlusion fusion as seen in the Figure 

4.2.  

Wonka adapted shrinking method to a point-based visibility method in Ref. 

[36]. This method enhances a point-based visibility method with the shrinking 

occluder approach which is proposed for region-based visibility. A visibility 

server computes PVS for ε-radius circular region around the current view point 

and sends it to the client. Client renders the computed PVS for consecutive 

 
        a)       b) 

Figure 4.2 a) Sampling of the occlusion from six sampling points. b) The fused 

umbra from the six points is the intersection of the individual umbrae. 
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frames when he moves in ε-radius circular region. Thus, this method allows 

asynchronous processing of conservative visibility and display operations.  

In this method, 2½D occluders are shrunk in 2D and PVS is computed with 

respect to the highest point where the camera can move up [35]. A selected set 

of occluders are shrunk in preprocess. A visibility server utilizes the stored 

shrunk occluders to compute the combined shadow frustum and PVS. The 

minimum distance between a shrunk occluder and original occluder should not 

be less than ε-distance for conservative visibility as seen in Figure 4.3.  

This shrinking method uses graphics hardware to compute PVS [2,35,36]. The 

disadvantage of using graphics hardware is that it requires read access to the 

frame buffer for each occluder test. To reduce the total cost of reading frame 

buffer, they select a set of occluders that is most likely to occlude a large part 

of the scene. However, missing small occluders may create holes that make 

additional objects visible and cause an increase in the number of objects in 

PVS.  

 

Figure 4.3: Shrinking occluders ε-distance in preprocess from top view. 

Occluders are shrunk in 2D. Shrunk occluders are colored yellow. Occluder 

shrinkings are compared with two horizontal lines at the top. The distance of 

two lines is equal to ε-distance. a) Optimum shrinking occurs in a circle. b-d) 

Amount of excessive shrinking increases in parallel to the sharpness of the 

edges of primitives as seen from b to d. 



 

50 

4.1.2 Adjustable Shrinking Method  

The proposed method is based on shrinking the shadow frustum (i.e., visible 

cross section) of an occluder on the fly. In former methods, occluders are 

shrunk from all dimensions in a preprocessing step. The distance to be shrunk 

for each vertex of an occluder should be equal or more than ε-distance as seen 

in Figure 4.3. It is seen that shrinking gets more if the vertex which intersects 

two edges gets sharper. Otherwise it does not support conservative visibility in 

former method. The proposed method shrinks occluder shadows instead of 

occluders on the fly. We shrink an occluder shadow ε-distance exactly 

although its shadow frustum changes with respect to the view point. Therefore, 

the proposed method computes more accurate PVS supporting the conservative 

visibility.  

We implemented the proposed shrinking method with ∆Η method. The 

proposed method adaptively shrinks the visible cross section projection (i.e., 

shadow frustum) of an occluder in angular values. The shrinking angles are 

computed for horizontal and vertical axes. Horizontal shrinking angles always 

correspond to ε-distance as seen in Figure 4.4 while the vertical shrinking 

 

Figure 4.4: Shows the amount of shrinking on the visible cross-section (shadow 

frustum) of an occluder. We calculate shrink angles (α1 and α2) which 

correspond to shrink distances (ε and ε’s) for two vertices (A and E) of an 

occluder visible cross-section  



 

51 

angle is a variable shrinking distance which guarantees conservative visibility 

in vertical axis. We previously calculated horizontal angles (αmin, αmax) to 

update OH as explained in Section 3. Therefore, we initially need to calculate 

shrinking angles for αmin, and αmax as seen in Figure 4.4.  

[BC] is parallel to [AD] and [CF] is parallel to [GE] as seen in Figure 4.4. 

Their lengths are equal to ε-radius as seen in Eq.1 and Eq.2. In addition [BC] is 

perpendicular to [AB] and [CD]. [CF] is perpendicular to [FE] and [CG] as 

defined in Eq.3. It is seen that ABCD and EFCG are rectangles. Angle ACD 

( ACD∠ ) is equal to angle BAC ( BAC∠ ) and denoted by α1. ECG∠  is equal to 

CEF∠  and denoted by α2. Hence, the calculation of horizontal shrinking angles 

(α1 or α2) is given in Eq.4 and Eq.5. Consequently, we calculate the shrunk 

horizontal angles (αmins, αmaxs) as seen in Eq.6. 
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To support conservative visibility for 2½D scenes, it is necessary to shrink an 

occluder shadow in vertical axis and calculate the shrunk vertical angle (βmins). 

Figure 4.5 shows the relation between circular region around view point and 

occluders (building X and Y) from top and side views. A shadow frustum 

should be shrunk as the shrinking distance (s) in vertical axis as seen in Figure 

4.5b. Shrinking distance (s) changes with respect to the distance of occluder. 

Thus, the proposed method shrinks an occluder shadow adaptively as seen in 

Figure 4.5b. [BC] is parallel to [AD] and their lengths are equal to ε-radius as 

given in Eq.7. ABCD forms an equilateral quadrangle as seen in Figure 4.5b. 

The amount of s is equal to vertical distance (ho) of view point (C) to [AB] as 

given in Eq.8. As seen in Figure 4.5b, ho changes with respect to corresponding 

occluder height (hX/hY) and distance (dX/dY) from the view point. We calculate 

vertical shrinking angle (βS) which corresponds to s and ho. Thus, we calculate 

βmins which is the shrunk vertical angle, as summarized below: 

 

 

 

Figure 4.5: a) Top view: PVS are computed for ε-radius circular region around 

the current view point. b) Side view: around the view point. It is necessary to 

shrink an occluder as the distance of s which equals to ho.  
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[ ] [ ] ε== ADBCADBC ,//  Eq 7 
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If the tested occluder’s height is less than the camera’s height as seen in Figure 

4.6, shrunk vertical angle is calculated by changing the Eq.9 and Eq.10 with 

Eq. 13 and Eq.14 defined as follows:  
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We calculated βmin as the smallest vertical angle in OH method as explained in 

Section 3. It ranges from -90o to +90o. We may use Eq.15 instead of Eq.10 for 

the occluders higher than camera. We may also use Eq.16 instead of Eq.13 for 

the occluders lower than the camera’s height.  

min90 ββ −= o

N   Eq 15 

min90 ββ += o

F   Eq 16 
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Figure 4.6: Calculation of shrunk vertical angle of a building which has less 

altitude than the view point (C). 

Figure 4.7: Comparisons of occluder shrinking and its visible cross-section 

shrinking. Occluders are red and its shrunk versions are yellow. Blue colored 

arrows show the shrinking on the visible cross section projection. a-c) 

Shrinking occluders ε-distance in 2D causes excessive shrinking. b) Optimum 

occluder shrinking. c) Calculating ε-distance on the visible cross section 

projection. (i.e., Angle (BOC) = Angle (ABO)). 
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As a result, we utilize αmins, αmaxs and βmins for each occluder to update OH 

with the proposed adjustable shrinking method. 

PVS is only computed for a view point and its directional viewing frustum. 

Viewer does not need to recompute PVS when he moves in ε-radius circle 

around view point without changing viewing direction. ε-radius may be 

adjusted by the speed of user. If ε-radius is very small, we compute more 

accurate PVS but it is utilized for less number of frames. If ε-radius gets larger, 

PVS gets coarser and is utilized for more consecutive frames. When client 

changes the viewing direction, there are three ways to use the computed PVS 

for consecutive frames: 1) Compute OH and PVS for the angle values which 

enter the view frustum incrementally as explained in Chapter 3. 2) Instead of 

computing OH and PVS just for the view frustum, we enlarge the view frustum 

with respect to the maximum speed of turning around [36] as seen in Figure 

4.8. For example, assume that view frustum is 60 degrees and user may turn 

 

Figure 4.8: Extending view frustum. f1 is the original frustum. f2: is the 

extended frustum in angular values to utilize the computed PVS in extended 

angle values. f3: extended frustum to show the e-radius circular region which 

PVS is computed for. 
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around at the speed of 0.5 degree/frame. Enlarging the view frustum to 90 

degrees of coverage guarantees that PVS does not need to be recomputed at 

least 30 frames in changing viewing direction. 3) We may utilize both ways 

together as follows: Firstly, enlarge the view frustum with respect to the speed 

of turning around. Secondly, compute OH and PVS when user needs to turn 

around more than the enlarged view frustum.  

PVS is computed for ε-radius circular region around a view point. When 

viewer moves in the corresponding region we have enough time to compute the 

PVS for the neighbor regions. The problem is where the center of each 

neighbor circular regions is. In other words, which view position we should 

have to compute PVS for . 

We summarize the possible view cell (i.e. ε-radius circular region around view 

point) interactions in Figure 4.9. If the distance between the centers equals to ε-

radius, there are too much overlap as seen in Figure 4.9a-b. It costs too much 

repetitive computations. If the distance between centers equals to two times of 

ε−distance, holes occur between circles as seen in Figure 4.9c. We propose a 

new dynamic spatial partitioning approach for the proposed shrinking method 

as seen in Figure 4.9d. It is seen that the amount of overlap is optimum and 

there is no hole between circles. This approach enables to estimate the potential 

 

Figure 4.9: Shows the possible view cell interactions. a-b) Excessive overlaps 

c) There are holes between circles d) Optimum overlap.  
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next view point positions which we should compute PVS for. Thus, PVSs are 

predicted for neighbor regions according to the viewer movement direction 

when the viewer is still in the previous circular region.  

4.2 Results and Discussion 

The proposed method computes more accurate PVS by only shrinking shadow 

frustum of an occluder. Occluders are selected regarding visibility from the 

view point on the fly rather than a selection method in preprocess. It only 

shrinks the shadow frustum (i.e., visible cross section projection) of each 

potential visible occluder on the fly although the shadow frustum of an 

occluder changes with respect to the view point.  

The proposed method computes more accurate PVS as explained follows: 1) 

There is no excessive shrinking of an occluder as seen in Figure 4.3 and Figure 

4.7. We compare the proposed shrinking method with the former shrinking 

method in Figure 4.7. It is seen that the amount of shrinking exactly equals to 

 

Figure 4.10: Occluders which have smaller width than two times of ε-distance 

can not be shrunk in former method and do not update fused umbra. The 

proposed approach shrinks the occluder shadow of these objects and utilizes 

them to update the fused umbra (i.e.,OH).  
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ε-distance in the proposed method. However, shrinking distance is equal or 

more than ε-distance in the former method as seen in Figure 4.3 and Figure 4.7. 

2) The objects which have smaller width than two times of ε-distance can not 

be shrunk in former method. They should be added to PVS without updating 

the fused umbra of occluders (i.e., OH). It causes an increase in PVS. Some of 

them may have wider visible cross section projections than two times of ε-

distance as seen in Figure 4.10. The proposed method shrinks their visible 

cross sections and utilizes them to update OH as colored gray in Figure 4.10.  

The proposed method is implemented in a multithread environment. We 

utilized the testbed described in previous chapter. Visibility thread only loads a 

header file which has bounding boxes and CVPs of all buildings in a quad tree 

hierarchy. It does not load the data of buildings into memory. It only computes 

the PVS of buildings using this header file. Another thread loads the buildings 

in PVS to shared memory in an on-demand loading manner. Render thread just 

         a)     b) 

Figure 4.11: a) Viewer navigates in the street and sees only the potentially 

visible buildings. b) The buildings in PVS are seen from the camera above the 

viewer (In wide angle). There should be buildings in all the gray area without 

culling.  
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renders the buildings in the corresponding PVS. Instead of visibility thread, we 

may use a server as a visibility server and only send the computed PVS to the 

viewer [36]. 

Our aim is to develop a real-time walkthrough application which supports 30 

frames in a second. We assume that a pedestrian walks 5 km in an hour. It 

means that viewer moves 1.4 mt. in a second. The 2 meters step allows 

computing PVSs for 2 -radius circle around the view points. Shrinking 2 -

distance is enough to compute PVS once and utilize it for 30 frames in a 

second. Rendering of a frame is related to the number of buildings in PVS. Our 

empirical results show that the rendering time for a frame is not more than 15 

msec. during the path.  

Viewer navigates through the streets and only sees the buildings along the 

street conservatively as seen in Figure 4.11a. Figure 4.11b shows the buildings 

 

Figure 4.12: Timing gathered during a path in a walkthrough in visibility 

thread 
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in the PVS which are seen from the camera above the viewer in wide angle. In 

normal circumstances, there are buildings on all the gray area in Figure 4.11b.  

Performance statistics are gathered on the predetermined path for the following 

three methods: Method 1: OH method with no shrinks. It is utilized to estimate 

the optimum PVS for 60 degrees of viewing frustum. The computed PVS is 

only valid for view point. Method 2: OH method with former shrinking method 

for 90 degrees of vieiwing frustum[36]. Method 3: OH method with the 

proposed shrinking method for 90 degrees of vieiwing frustum. The empirical 

results gathered during a path in a walkthrough are represented in Figure 4.12 

and the average times are summarized in Table 4.1. 

The details of the path are as follows: Visibility thread computes the PVS for 

90 degrees of viewing angle for Method 2 and Method 3. We aim to use the 

computed PVS for ε-distance in movements and 15 degrees in changing 

viewing directions to both sides. To compare the number of buildings increased 

in Method 2 and Method 3, we also computed the PVS of Method 1 for 60 

degrees of viewing angle as a reference. Visibility thread computes PVS in a 

step of 2 meters (mt.) in forward movement and recomputes PVS when viewer 

changes viewing direction more than 7 degrees. At the top of Figure 4.12, 

forward movements are represented by arrows which show the distances 

traveled below. Changing viewing directions are represented by curved arrows 

which signs the turning direction. The number of buildings in the PVSs of all 

methods is computed for a step (i.e., a frame). A PVS computed for a step is 

utilized for 30 frames by the viewer.  

The scenario details are as follows: In the first forward movement (566 mt. 

long), the number of buildings in PVS reduces when he reaches the ends of the 

street. On the end of the street, there is a square which is 170 mt. long 

diagonally. Viewer enters this square from one of its corner, changes his 

direction to diagonal and moves forward 162 mt. more. He comes to the end of 

square. The buildings seen from this point are very close and occlude others. In 
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other words, the number of visible buildings is less than the other frames. 

Viewer turns left hand side 56 degrees to enter a long street (550 mt.). It is 

noticed that the viewer may see long distances in the street after the first half of 

its turn. The number of buildings increases for the corresponding frames. 

Similar path is followed once more for the street which the viewer is directed. 

The statistics in Table 4.1 are gathered for 60 and 90 degrees of viewing angles 

respectively. The statistics for 60 degrees are computed as a reference. In 

former method (Method 2), PVSs have 75% more buildings for 90 degrees of 

viewing angle. In the proposed method (Method 3), PVSs have only 24% more 

buildings. Widening the view frustum for 15 degrees in both direction costs 

about 7-8% more buildings in all methods for this path. Its reason is that front 

buildings occlude behind and view frustum culling discards the buildings in 

perpendicular streets to moving direction. As a result, the proposed new 

method computes 30% less buildings in PVS than the former method [36]. 

Additionally, the proposed method is more generic since all operations are 

performed in CPU without a need of specific graphics hardware. All the 

computations are summarized in Eq.1 to Eq.16. It does not bring a significant 

overhead because these calculations are only performed for potentially visible 

buildings. Occluders are selected regarding visibility from the view point on 

Table 4.1: Comparisons of Methods. 

Method
Viewing

Angle
Buildings Triangles

Increase 

in PVS 

Method 1 60º 33,7 1550 0%

Method 2 60º 56,8 2612 68%

Method 3 60º 39,6 1822 17%

Method 1 90º 35,7 1640 6%

Method 2 90º 59,1 2717 75%

Method 3 90º 41,7 1916 24%  
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the fly rather than a selection method in preprocess. Visibility-based occluder 

selection is the main purpose of visibility methods. Thus, the other occluder 

selection methods (such as estimating large occluders in the scene) are the 

subset of visibility-based occluder selection method. The proposed method has 

no preprocess for shrinking occluders and does not need to store the shrunk 

versions of occluders. Finally, ε-distance, which is adjustable with respect to 

the speed of viewer and frame rate on the fly, may be a good way to obtain 

real-time conservative visibility for complex urban environments.  
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CHAPTER 5  

5 EFFICIENT VISIBILITY FOR 

DISTRIBUTED VIRTUAL URBAN 

ENVIRONMENTS 

The number of real-time simulations in complex Distributed Virtual 

Environments (DVEs) increases in parallel to the recent developments in 

technology. Multiple users, located in geographically different places, interact 

with each other in real-time [43]. DVE provides users with a sense of realism 

by incorporating 3D graphics and sound to create an immerse experience. For a 

smooth Distributed Interactive Simulation (DIS), each user should render the 

visible part of the scene on-time and interact with other users in real-time.  

Each user in DVE should load all the visible primitives in his Area of Interest 

(AoI) to give the impression of fluid motion. Most simulations load the entire 

scene into each distributed user from a CD or network at startup. However, a 

user only sees a small portion of the scene because most of the primitives in 

view frustum are occluded by the close visible primitives. Besides, every 

computer does not have enough capacity to load and run all the contents of the 

complex scenes. Especially mobile and handheld devices which have a limited 

capacity may not load all the contents. Hence, processing invisible primitives is 

useless and time consuming since it consumes the limited resources of 

computers such as memory and CPU power.  

 There are researches which focus on continuous and real-time delivery of the 

scene contents over network connections [39,40,41,43,44]. The purpose is to 
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send the PVS to a related user prior to participating in the virtual environment 

without a full download and update PVS as occasion may require. The main 

problem is that each user’s visibility or AoI is different and should be 

computed individually. In an ideal manner, each user should only hold a subset 

of the scene corresponds to his AoI enabling to utilize his limited capacity and 

CPU power efficiently. 

In addition to estimating AoI and sending the related PVS to a user, a user 

should also interact with the other users who he sees and who sees him in real-

time. In most of the simulations, each user broadcasts his position and 

orientation updates to all users. Broadcasting all updates to everyone causes 

intensive network traffic when the number of user increases. Performance 

decreases and it will be a bottleneck in the end. There is no need for a user to 

communicate with the invisible users or the users out of his AoI. Therefore, it 

is enough for a user to communicate with the users in his AOI only.  

In this study, we propose efficient visibility estimation for distributed virtual 

environments called Visibility-based Area of Interest (VbAoI) method. VbAoI 

method utilizes from region visibility method to compute PVS of static objects 

according to a region considering the occlusion in DVE. PVS for each 

navigable region is computed in preprocess conservatively using the ∆H and 

shrinking methods explained in Chapter 3 and Chapter 4. In the proposed 

VbAoI method, scene is organized as a graph and nodes of the graph map to 

the navigable regions where a distributed user may walkthrough on. Each 

distributed user only loads the PVS of static objects which are seen from the 

corresponding navigable region. A user renders the loaded PVS and interacts 

with the distributed users on the PVS of navigable regions in real-time.  

The contributions of this study are summarized as follows:  

1. The PVS of static objects are computed for each navigable region of 

urban environment in preprocess conservatively. Thus, each user loads the 

related PVS prior to entering the corresponding region. 
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2. All visible navigable regions from each navigable region are 

computed considering the occlusion of static objects in preprocess. A user 

should learn which navigable regions are visible from the region he is going to 

enter and which regions can see this region. Thus, a user only sends his updates 

to the users in these navigable regions and updates the positions and 

orientations of the other user simulators or avatars in PVS of regions 

dynamically. 

3. VbAoI method abstracts users and environment using adjacency 

graph for navigable regions in DVE. Thus, a user does not need to be aware of 

the entire scenegraph of virtual environment. He is only aware of a subset of 

the graph which corresponds to his AOI in DVE.  

4. VbAoI method builds a DVE infrastructure. After computing the PVS 

of static and dynamic objects conservatively, other optimization methods such 

as caching, prefetching, prioritization of content delivery, progressive loading, 

Level of Detail (LoD) and dead reckoning methods may be developed in this 

infrastructure as a future work.  

The rest of this chapter is organized as follows: In Section  5.1, we present the 

details of proposed method. Section  5.2 discusses the results. 

5.1 Visibility Based Area of Interest (VbAoI) Method  

The proposed Visibility Based Area of Interest Method (VbAoI) is based on 

region-based visibility method explained in Chapter 4. VbAoI method 

estimates PVS of static primitives in preprocessing conservatively. The 

computed PVS may be splitted into active occluders such as buildings and 

passive occluders such as navigable regions which users may walkthrough on. 

We modeled an urban environment as a testbed. The buildings and roads are 

modeled separately. A sampled urban environment is represented in Figure 

5.1a. It is seen that roads are divided into navigable regions in Figure 5.1a. In 
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preprocessing, we initially build an adjacency graph from these navigable 

regions as seen in Figure 5.1b. Figure 5.1b shows which navigable regions (i.e., 

nodes or cell) are directly connected to each other. Adjacency graph abstract 

users from DVE. In other words, a user only knows the node he was inside and 

does not deal with whole DVE. From this point, the term of node, cell and 

region are used for the same meaning.  

We compute PVS of buildings and navigable regions seen from each region 

considering the occlusion in DVE. We utilize ∆H and shrinking method 

together to compute PVS for each region. We determine sample points on the 

 

Figure 5.1: a) A part of urban. Buildings are colored blue. Roads are divided 

into navigable regions and colored yellow. b) An adjacency graph is 

constructed from the navigable regions. Each navigable region is represented 

as a node. Relation between nodes is represented by lines.  



 

67 

boundary of each region as seen in Figure 4.2. Occluders (i.e., buildings) are 

shrunk ε-distance, which is the half distance of two consecutive sample points 

on the view cell’s boundary as explained in Chapter 4. A smaller umbra is built 

by shrinking an occluder ε-distance. It guarantees that an occluded object does 

not visible from e-radius around the sample point as seen in Figure 4.1. We use 

∆H method to build OH (i.e., fused umbra) for each sample point as explained 

in Chapter 3. A building is occluded for the whole view cell if it is contained in 

the fused umbra (OH) of the shrunk occluders for all sample points on the view 

cell’s boundary as seen in Figure 4.2.  

A unique id is assigned to each object in the environment. An object is sent to a 

client with its unique id. All the computed PVSs are associated with the 

corresponding nodes of adjacency graph. Occluders (buildings) and nodes in 

PVS are splitted into two sets of PVSo and PVSn. We use PVSo for PVS of 

occluders and PVSn for PVS of nodes.  

In addition, there are channels associated to each node of the graph for data 

distribution management [54,55]. Channel id is the same id of the 

corresponding node. Channels are utilized for communications between the 

clients in DVE. Visibility in 360 degrees is mutual. In other words, if node A is 

visible from node B, node B is visible from node A. Thus, each client publishes 

his data from the channel id of his node and listens to the channel of nodes in 

Set of Neighbors (SNs). In the transmitted package between clients, channel 

ids are defined. A client only listens to and receives a packet from the 

subscribed channels.   

The data structure of a node is given in Figure 5.2. The details of node items 

are summarized as follows:  

1. Node Id: It is used to identify the corresponding node. It is also the 

channel id which a user in the corresponding cell publishes his position and 

orientation updates from. 
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2. Coordinates (Coords) of Node: A user utilizes the coordinates of 

corresponding cell to check whether he is still in the cell.  

3. PVS of Occluders (PVSo): It is the PVS of visible static occluders 

(i.e., buildings). When a user is in a region, PVSo is enough to render all the 

visible static primitives.  

4. PVS of Nodes (PVSn): It is the PVS of visible nodes from the node of 

user. It is also the set of channels which a user listens to. 

5. Set of Neighbor Nodes (SNs): It is the set of neighbor nodes. When a 

node is sent to a user, a client or server transmits SNs with all their node data 

structure. It means that all the neighbor nodes are sent with their Node Ids, 

Coords, PVSo,PVSn.  

The flowchart of VbAoI method is given in Figure 5.3. Top left dashed box 

summarizes the steps in the initial phase. A client participating DVE should 

follows these steps. Top right dashed box summarizes the steps performed by 

server because server has the entire graph. After client learned his node id and 

coordinates, the second communication may be performed with another client 

 

Figure 5.2: Data structure of a node 
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in the corresponding cell or server. At the end of initial phase, a client has a 

subset of graph containing neighbor nodes.  

Blue colored steps in the three dashed box below in Figure 5.3 are performed 

by the clients after finishing the initial phase. Each client performs these steps 

when he is in DVE. After all the data received, a client runs the following three 

threads simultaneously: 1) Publish Thread: A client moves in DVE according 

to the user input. When he moves, he always checks whether he is still in the 

cell. If he is still in the cell, he just only publishes his new positions and 

orientation to the channel of node. If not, he compares his position with the 

coordinates of neighbor nodes, discovers his new node, sends a leaving 

message to the channel of previous node, sends a welcome message including 

his position and orientation updates to the channel of new node and triggers 

subscribe thread. 2) Subscribe Thread: Subscribe or listen to the channels of 

PVSn and updates the position and orientation of potentially visible user 

simulators or avatars. If subscribe thread is triggered by publish thread, 

subscribe thread asks for the updates of SNs from a client/server who received 

welcome message. 3) Render Thread: It renders the PVSo and PVSn with 

respect to the client’s position and orientation.  

The flowchart in Figure 5.3 is represented as modules in Figure 5.4. Modules 

refer to simultaneously working threads in clients and server. We describe the 

steps of VbAoI methods in detail as follows: On the right hand side of Figure 

5.4, main server loads adjacency graph at startup. After loading, server main 

loop runs. Network server thread periodically checks network if there is a new 

client connection request. When a client wants to participate in DVE, he sends 

a client connection request. In the first client connection request, a client only 

sends his starting position in DVE or accepts default starting position. Server 

replies this newly arrived client with his node id and Coords as seen in Figure 

5.3. As a second step, client asks what he sees in DVE. If there is another client 

in the node which a new client wants to start, this client may reply the client 

connection request. He sends the requested data to the newly  arrived  client.  If 
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Figure 5.3: The flowchart of the proposed VbAoI method. 
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not, server may reply the client request. The quickest client or server sends the 

requested data to the newly arrived client. The quickest client publishes data 

from the channel of the node. The other clients who received the first reply 

message do not send the requested data to newly arrived client. If the newly 

arrived client can not receive the requested data for a time period, he resends 

his request to the channel of his node.  

Server also keeps the list of all users with node ids. Render thread of server 

does not run in normal mode and may be utilized if we want to render all the 

clients in DVE from bird’s eye view as seen in Figure 5.5.  

 

Figure 5.4: Modules of VbAoI method 
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Figure 5.5: Screen shots from the testbed 



 

73 

Client modules are represented in the right hand side of Figure 5.4. A client 

participating in DVE has already received a part of graph, PVSo, and PVSn. 

Client knows the channel to publish his updates and the channels to be 

subscribed for listening to. If a client moves, he publishes his updates to the 

channel of the corresponding node. The clients subscribed to this channel 

receive updates and move user simulator or avatar. If a client passes to another 

node, he publishes his updates to channels of both nodes. Publishing his update 

to the channel of the node he left, informs the clients who listen to this channel 

about his leaving. Publishing his update to the channel of the node just entered 

is to inform the users who listen to this channel that he has just arrived to the 

node. When a client changes the node, he utilizes PVSs of the node he entered. 

At the same time, subscribe thread is triggered to update the part of adjacency 

graph, SNs, and their PVSn and PVSo. Node id, PVSn and PVSo of the entered 

node has already known by the client. Thus, user does not have flickering 

effect in DVE since he already has all the visible data. As seen in Figure 5.4, 

all communications of a client is performed by Network Client Thread.  

5.2 Results and Discussion 

We created a 3D model of an urban environment from the photographs taken 

from the satellite as a testbed. We modeled the roads and occluders separately 

as seen in the middle of Figure 5.5. We extend the buildings in z-axis 

randomly. There are 134 buildings and 93 navigable regions in the testbed as 

seen in Figure 5.5. We computed PVS of buildings and navigable regions seen 

from each region as explained in the previous section.  

The snapshots taken from the testbed are gathered in Figure 5.5 to show how 

the proposed VbAoI method works. In the middle of Figure 5.5, the entire 

scene and the users in DVE are represented from top view in server. Buildings 

are colored dark gray and navigable regions are colored white and separated 

with line segments. Each screenshots of clients are taken from top to show their 
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positions in DVE. The visible navigable cells are colored blue in clients. The 

edges of client region are marked red. It is seen that Client 6 may see all the 

clients in the environment because his node may be visible from the nodes of 

other clients. Client 2 does not deal with Client 1 because the node of Client 2 

can not see the node of Client 1. Client 1 only subscribes to the channel of 

Client 6 and updates its user simulator although Client 6 is subscribed to the 

channels of all clients to listen and update their user simulators.    

The basic advantages of the proposed VbAoI method is to compute PVS of 

occluders and navigable regions in preprocess and model the environment as 

an adjacency graph. We build an adjacency graph of navigable regions for the 

whole scene as seen in Figure 5.1b. Adjacency graph enables to abstract the 

users from the environment. A user only knows the node which he is inside, his 

neighbor nodes and PVS of objects (i.e., buildings and roads) in his AoI. User 

does not deal with the whole DVE or an occluded object even if it is very close 

to user. DVE may be enlarged by adding new adjacency graphs to existing 

graph without users’ notice. A client can use the extended part of the graph if 

that is in his AoI. Thus, modeling new towns or cities and joining them to DVE 

does not affect users in DVE. Furthermore, the number of servers in the 

environment may be increased and the graph of DVE may be divided into 

multiple servers. Thus, scalability of the DVE may be dynamically controlled 

with respect to the requirements of user, environment, network and etc.  

A client does not need to communicate with a server if there is at least one user 

in the corresponding node or its neighbor nodes. A user which enters a new 

node may obtain all the required data from this user directly. Because each user 

has the data of its own node and neighbor nodes as seen in Figure 5.6a. A user 

in the environment does not care about server breakdown if there is at least one 

user in his node or neighbor nodes. If server gets available after a period, server 

will go on his service and update the user simulators listening to all channels. 
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In the implementation, each user only obtains the data of his node and SNs as 

seen in Figure 5.6a. If a user has enough bandwidth and capacity, he may 

obtain more number of node data as seen in Figure 5.6b. Each user has a 

greater subset of graph which may overlaps more in DVE. Thus availability of 

the DVE is increased against the server breakdown by sharing the graph to 

clients more.  

 

Figure 5.6: We assume that there are users in the red colored nodes. a) Default 

AoI of users covers the node of user and its neighbors. B) Extended AoI of 

users. User may extend his AoI if a user has enough bandwidth and capacity. 

There are more AoI overlaps in DVE. Much more parts of the graph are 

distributed to users and a user refers the server less frequently.  



 

76 

It is seen that each of neighbor nodes of the graph keeps similar PVS because 

of occlusion in DVE. Visible primitives do not change much between the 

neighbor nodes. This gives the advantage of only sending the differential data 

when it is needed as seen in Figure 5.7. Thus, we may use the bandwidth 

effectively avoiding the data redundancy.  

  

 

Figure 5.7: To avoid the data redundancy from sending the previously 

transmitted data, Differential data are sent to user prior to entering the new 

node. 
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CHAPTER 6  

6 CONCLUSION 

The importance of visibility estimation in computer graphics increases parallel 

to the recent developments in computer technology and increased demand on 

interactive simulations and games. Current graphics hardware computes 

visibility in the last stage of rendering pipeline. However, every rendered 

primitive is not visible in the final image. Early culling of the invisible 

primitives in a complex scene is valuable for efficiency in the conventional 

rendering pipeline.  

The motivation of this thesis is to develop a walkthrough application in 

distributed complex urban environment where buildings are the main source of 

occlusion. The viewer only sees a small part of the city because close buildings 

usually occlude the ones behind. The methods which are developed for 3D 

visibility can also be used for urban walkthroughs. However, the computation 

of full 3D occlusion includes a significant overhead since buildings are 

connected to the ground and may be modeled in 2½D.  

In this thesis, we compute conservative visibility considering the occlusion for 

2½D urban environments. We estimate visibility in the traversal stage of the 

conventional rendering pipeline to reduce the number of primitives that will be 

processed in the rest of the pipeline. We have developed the following three 

visibility methods based on occlusion culling throughout this thesis: 

1. Incremental Occlusion Horizon Culling Method 
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The first method is a conservative incremental occlusion culling method called 

Delta-Horizon (∆H). ∆H method is based on constructing OH, which is a set of 

connected lines passing just above all visible primitives, for culling the 

invisible primitives beyond. The proposed ∆H method, as in [20], computes the 

occlusion in 2½D, works on visibility based occluder selection, and supports 

both conservative visibility and occluder fusion. We utilize polar coordinates 

and build OH in object space although ∆H method may work in image space.  

The contributions of this method are summarized as follows: 

• It computes PVS that are visible from the current viewpoint for each 

frame on the fly incrementally. Utilizing the coherence of occluders 

enables the incremental update of OH in consecutive frames.  

• ∆H method allows flexible six DoF camera movements. Downs’ 

method has only four DoF[20]. Solving this drawback of former 

method is going to increase the number of OH method implementation 

in walkthrough applications. 

• It accommodates a 360-degree-wide field of view in one pass. This is 

desired for applications that need wide angle visibility such as radar 

simulations and panoramic viewing [73]. 

• PVS computed in object space may be utilized without recomputation 

when the camera zooming is required. 

2. An Adjustable Occluder Shrinking Method  

Adjustable occluder shrinking method computes PVS with respect to a region. 

Point-based visibility methods can not guarantee to compute PVS on time for 

complex scenes in real-time walkthrough applications. Therefore, we 

developed a new generic conservative occluder shrinking method for 2½D 

objects. Enhancing ∆H method with the proposed shrinking method enables to 

compute potential visible set once and utilize it in many consecutive frames. 

The contributions of this method are summarized as follows: 
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• It only shrinks the shadow frustum of a potential visible occluder and 

computes 30% more accurate PVS than former method [36OTEREF 

_Ref184658625 \h 36].  

• It has no preprocess to shrink occluders and does not need to store the 

shrunk versions of occluders.  

• It is more generic since all operations are performed in CPU without a 

need of specific graphics hardware.  

• Occluders are selected regarding visibility from the view point rather 

than a selection method in preprocess.  

• Shrink distance is dynamically adjustable with respect to the speed of 

viewer and frame rate on the fly. Hence, it enables to reach a 

compromise between PVS accuracy and real-time constraints.  

3. Efficient Visibility for Distributed Virtual Urban Environments 

Finally, we developed a visibility estimation method for distributed virtual 

urban environments called Visibility-based Area of Interest (VbAoI) method. 

A client in DVE does not need to load occluded parts of the scene and to 

communicate invisible clients who cause unnecessary communication overload 

in network. The scene is organized as a graph and each distributed client only 

be aware of the PVS of static objects and interacts with the PVS of 

dynamically grouped distributed clients. Nodes of the graph map to the 

navigable regions where a distributed client may walkthrough. The 

contributions of VbAoI method are summarized as follows: 

• It estimates output sensitive PVSs for navigable regions in 

preprocessing. It assures the visible objects to be available at the 

distributed client on-time.  
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• It dynamically groups clients which may see each others in real-time. 

Thus, it enables these clients to communicate with each others and 

reduces the network traffic in DIS. 

• It abstracts users and environment using adjacency graph for navigable 

regions in DVE. Thus, a user does not need to be aware of the entire 

scenegraph of virtual environment. He is only aware of a subset of the 

graph which corresponds to his AOI in DVE. VE may be extended 

dynamically without the notice of users in DVE. For example, you may 

model another city and add it to the existing DVE by only connecting 

the modeled city to a few node of the graph. 

• It creates a DVE infrastructure. After computing the PVS of static and 

dynamic objects conservatively, other optimization methods such as 

caching, prefetching, prioritization of content delivery, progressive 

loading, Level of Detail (LoD) and dead reckoning methods may be 

developed in this infrastructure as a future work.  

Computing conservative PVS and using adjacency graph for the navigable 

regions enables VbAoI method to create a DVE infrastructure. New 

optimization methods may be developed to increase the performance of the 

DVE as future work. The methods we foresaw may be more than the following 

list:  

• Caching: Caching methods prevent to resend the previously sent object 

to client. Client may utilize his free memory as cache if it is available 

using a developed caching method for the needs of environment.  

• Prefetching: The user in the environment has trends like moving 

forward for a while, following the same path when he goes to work and 

etc. Prefetching methods based on user trends may be adopted to 

increase the performance of the clients in the environment. For 

example, most of the nodes have one entrance and one exit with respect 
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to the movement direction. If a user enters the node from one side, he 

should exit from the other side. Thus, client may ask for the PVS of the 

following nodes without waiting. A new prefetching method based on 

probabilistic optimization is already implemented by Çevikbaş in [81]. 

• Prioritization, Progressive Loading and Simplification: In 

preprocessing, we have already computed conservative PVSs for all 

nodes. Computing PVS in preprocessing gives the advantage of 

prioritization of objects in the environment. In addition, we may model 

the simplified versions of the objects using Level of Detail (LoD) 

method of progressive meshes. Furthermore, we may load the PVS to 

the client progressively.  

• Dead reckoning: VbAoI method computes the PVS of navigable nodes 

for each node in preprocessing. Before a user enters the node, he has 

the list of visible nodes. Thus we may prioritize the visible nodes with 

respect to its distance and direction. A client may use dead reckoning 

methods for the users of the nodes out of view frustum or the nodes 

away from the client. 
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