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ABSTRACT

DYNAMIC ANALYSIS OF FLOW IN TWO DIMENSIONAL CHANNEL

ENGIN, Erjona
M.S., Department of Engineering Sciences

Supervisor: Assoc. Prof. Dr. Hakan Isik TARMAN

February 2008, 59 pages

The Poiseuille Flow is the flow of a viscous incompressible fluid in a channel between two
infinite parallel plates. The behaviour of flow is properly described by the well-known
Navier-Stokes Equations. The fact that Navier-Stokes equations are partial differential
equations makes their solution difficult. They can rarely be solved in closed form. On the
other hand, numerical techniques can be applied successfully to the well-posed partial

differential equations.

In the present study pseudo-spectral method is implemented to analyze the Poiseuille
Flow. The pseudo-spectral method is a high-accuracy numerical modelling technique. It is
an optimum choice for the Poiseuille flow analysis due to the flows simple geometry. The
method makes use of Fourier Transform and by handling operations in the Fourier space
reduces the difficulty in the solution. Fewer terms are required in a pseudo-spectral

orthogonal expansion to achieve the same accuracy as a lower order method.



Karhunen-Loeve (KL) decomposition is widely used in computational fluid dynamics to
achieve reduced storage requirements or construction of relatively low-dimensional
models. In this study the KL basis is extracted from the flow field obtained from the

direct numerical simulation of the Poiseuille flow.

Key words: 2-D Poiseuille flow, direct numerical simulation, Pseudo-spectral methods,

Karhunen-Loeve decomposition
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IKi BOYUTLU KANALDA AKISIN DINAMIiK ANALIZi

ENGIN, Erjona
Yiksek Lisans, Miuhendislik Bilimleri Bolimu

Supervisor: Assoc. Prof. Dr. Hakan Isik TARMAN

Subat 2008, 59 sayfa

Poiseuille Akisi iki sonsuz paralel plaka arasinda viskoz sikistirilamaz bir akiskanin akisidir.
Bu akisin davranisi Navier — Stokes denklemleri tarafindan gosterilebilmektedir. Navier-
Stokes denklemerinin kismi diferensiyel denklem olmalarindan otlrld ¢éziimlerini elde
etmek zordur. Bu denklemlerin analitik ¢6zlimleri nadiren elde edilebilmektedir. Sayisal

teknikler denklemlerin ¢6ziimiinde yardimci arag olarak kullanilmaktadir.

Bu calismada, Poiseuille Akisi analiz etmek icin Sanki — Spektral Yontemlerden
faydalanilmistir. Sanki — Spektral Yontemler yiiksek oranda dogruluk saglayan sayisal
modelleme yontemidirler. Poiseuille Akisin basit geometrisinden dolayi, bu yontemler
optimum bir secim olmaktadir. Bu yontemler Fourier Donusiminid kullanmaktadir.
islemlerin Fourier uzayinda gerceklesmeleri ¢6zimi kolaylastirir. Sanki-Spektral
Yontemlerde daha duslik seviyedeki metodlardan elde edilen dogluluga ulasmak igin

daha az terim gerekmektedir.

Vi



Karhunen-Loeve ayristirma yontemi, hesaplamali akiskanlar dinamiginde, veri sikistirmak
ve daha diisiik boyutlu model olusturmak igin kullaniimaktadir. Bu ¢alismada, KL tabani,
Poiseuille akisin direkt sayisal similasyonundan elde edilmistir. Bu araclar kullanilarak

Poiseuille akisin laminar akistan tiirblilansa gegisi incelenmistir.

Anahtar Kelimeler: Poiseuille Akisi, Direkt Sayisal Simulasyon, Sanki- Spektral Yontemler,

Karhunen-Loeve Ayrisma Yontemi
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CHAPTER 1

INTRODUCTION

Turbulence is a flow regime characterized by chaotic, stochastic property changes.
Turbulence occurs nearly everywhere in nature. Turbulence results in increased drag;
decreased flow rate; increased noise; enhanced mixing and heat transfer. These may be
desirable or not, so in order to be able to predict and control, understanding is
important. Due to the nature of turbulence, the means used to understand laminar flow
cannot be used to understand it. Turbulence is nonlinear, highly unsteady, rotational and
3D. All these make the understanding of the transition from laminar flow to turbulent

flow crucial.

Hydrodynamic stability theory is concerned with the response of a laminar flow to a
disturbance of small or moderate amplitude. If the flow returns to its original laminar
state one defines the flow as stable, whereas if the disturbance grows and causes the
laminar flow to change into a different state, one defines the flow as unstable. (Schmid
and Henningson, 2001). The foundations of hydrodynamic stability are settled by the
work of Helmholtz, Kelvin, Rayleigh and Reynolds. The incidence of turbulence was first
recognized in relation to flows through straight pipes and channel: Hagen — Poiseuille
flow and Poiseuille plane flow respectively. Reynolds (1880) studied the stability of a flow
in a pipe by means of experiments and showed that the laminar flow breaks down when
the dimensionless number Re, which after him is called the Reynolds number, exceeds a

critical value, and that turbulence quickly ensues.

This study will focus on the Plane Channel Flow. Plane channel flow is also called
Poiseuille flow after Jean Leonard Marie Poiseuille (Paris 1797-1869) due to his

contribution in the study. The study of flow of liquids in small diameter glass capillaries is



one of the Poiseuille study topics. He considered the effects of pressure drop, tube
length, tube diameter and temperature. Poiseuille together with Hagen empirically

established the Hagen-Poiseuille Law:

3 TAPR*
T 8vL

The problem of Poiseuille Flow was solved by Stokes as an application of Navier-Stokes
Equations. Plane channel flow is very adequate to study the dynamics of transition of the
flow from laminar state to turbulent state. It is used to understand the no-slip boundary
condition for a viscous flow at a solid boundary (Sutera and Skalak, 1993). This problem
has been studied for years and some of the work to which is referred in this study is

given as follows.

One of the main steps in understanding the stability of viscous flows was taken by Orr
(1907) and Sommerfeld (1908), who derived the equation that now bears their name.
The Orr-Sommerfeld equation arose from the research on the stability to infinitesimal
disturbances in a linear approximation of plane Poiseuille flow. The first numerical
solution of the Orr-Sommerfeld equation was obtained by Thomas (1953) trying to clarify
the existing controversies concerning the existing asymptotic methods of approximation
and confirming the instability of plane Poiseuille flow. Thomas (1953) used finite

difference method to approximate the derivatives.

Lin (1955), Orszag (1971), Drazin and Reid (1982) studied further the equation. A critical
Reynolds number Re.. = 5772.22 for « = 1.02056 was obtained by Orszag and Kells
(1980). However experimental research performed by Carlson et al (1982), Nioshika and
Ashai (1985) and Alavyoon et al (1986) have shown that transition for turbulence is
observed for Re values as low as 1000. This incompatibility expands the research area.
Due to Squire’s (1933) theorem, to every three-dimensional perturbation of the
linearized Navier-Stokes equations for a given Re and a, it corresponds a two
dimensional perturbance for some & = a and Re* < Re. Squire’s theorem has been one
of the main reasons of firstly focusing on the study and understanding of the two-

dimensional behaviour. Some papers concerning finite amplitude solutions of Plane



Poiseuille flow in two and three dimensions that are taken as reference in this study are

given as follows.

The first computational attempt was carried out by Noether (1921), who implemented
Fourier series to expand equilibrium wave disturbances. Only one Fourier mode in the
periodic direction is considered. Meksyns and Stuart (1951) solved simultaneously the
Orr-Sommerfeld equation and a non-linear equation of mean motion, implementing
asymptotic expansions, to find periodic solutions of finite amplitude. The results were

(a, Re) = (1.20,2900) and (&, Re™) = (1.12, 5000).

Joseph and Sattinger (1972) expanded the flow , periodic in time and streamwise
direction, as power series, and used Runge-Kutta integration on the resulting vorticity
equations, Joseph and Sattinger (1972) showed that the only time-periodic solution
which bifurcates from laminar Poiseuille flow is a two dimensional wave, which is
unstable for the lowest Reynolds and small values of the amplitude. This instability
makes perturbations of laminar flow snap through the unstable time-periodic flow to

solutions of large amplitudes.

Zahn et al (1974) constructed a numerical integrator in space and time, using one and
two Fourier modes in the streamwise coordinate in two-dimensions and just one mode
in three-dimensions. The cross-stream variable was transformed to improve accuracy in
boundary layers. The derivatives were approximated by means of finite differences. An
implicit scheme is implemented in time discretization. The flow was driven by a constant
mean pressure gradient. A surface of the energy of disturbances for each pair (a, Re) is
obtained. An upper and a lower branch of solutions were received. These sets of
solutions were perturbated and followed in time. The lower branch resulted unstable

and the upper one stable for the tested disturbances.

Herbert (1976) employed a spectral method to approximate the vorticity equation for
plane Poiseuille flow in two dimensions. He used Galerkin - Fourier with N < 4 modes for
the stream variable and Chebyshev and collocation-Chebyshev with K < 64 modes. In

order to obtain a finite system of algebraic equations, the solution was imposed to be a



periodic secondary flow with even or odd Fourier harmonics according to the parity of its
order. The flow was driven by a constant mean pressure gradient. Neutral surface of
periodic flow and the minimum value of Re were found for the discretization. Fourier
series resulted slowly convergent. Jimenez (1990) simplified full numerical simulation of
spatially periodic channel with large longitudinal aspect ratios. Computations were

performed using 41x85 Fourier-Chebyshev modes.

Casas and Jorba (2004) by means of a numerical integrator of the Navier-Stokes
equations let the fluid evolve from an initially perturbed unstable solution until the fluid
reaches an attracting state. The flow was driven either by a constant mean pressure

gradient or by a constant flux. Different flow families were obtained.



CHAPTER 2

POISEUILLE FLOW

2.1 Definition

Poiseuille Flow is the flow of a viscous incompressible fluid in a channel between two
infinite parallel plates. In this study, 2D Poiseuille Flow is considered. The flow behaviour
is considered to be properly described by the Navier — Stokes Equations and

incompressibility condition.

Navier — Stokes Equations are named after Claude Louis Navier and George Gabriel
Stokes. The fluid studied is assumed to be a continuum, in other words, there is no
abrupt change in its properties. The Navier — Stokes Equations are differential equations.
They establish relations among the rate of changes of properties. They are established by
combining the fluid kinematics and constitutive relation into the fluid equation of
motion. These equations are extensions of the Euler Equations and include the effect of
the viscosity in the flow. Navier — Stokes Equations are used to understand both
compressible and incompressible fluid. So, in our case the incompressibility condition is

applied,

ou )
p(E+u-Vu)+VP=kex+uV u.

Here, V - u is the incompressibility condition, the term p (a—l: +u- Vu) describes inertia,

ou

P is the unsteady acceleration term and u - Vu the convective acceleration term. The



convective terms are nonlinear for incompressible Newtonian flow. On the other hand,

VP represents the pressure gradient and uV2u represents the viscous term.
The flow geometry is mathematically defined as:
XER; ye[-hh];t>0

where x (or x;) the streamwise variable and y (or x,) is the wall-normal variable.
Similarly, (u,v) = (u;,u,) denotes the streamwise and wall-normal velocity
components, respectively. Non-slip boundary condition applies because of the finite fluid

viscosity |,
u(x,—h,t) =u(x, h,t) =0.
Artificial boundaries are considered in the stream direction x. Let L be fixed period, then
ulx,y,t) =u(x+1L,y,t).

There exist two different approaches in defining the driving force of the flow, either
pressure gradient or flux. In this study, the flow is considered to be driven by a uniform

pressure gradient k in x — direction.

Fluid flow is assumed to be composed of mean flow and the fluctuations from the mean

as
u=(u)+u (2.1
where < u; > defines the mean flow and u’ defines the deviation from the mean flow.

The mean flow (u;) = U(y)d;4, is given by

1 T/2 1 L
() = lim f_ | e = lim 7 fo s (x, O



where L denotes the length of the channel. The last equivalence is a result of ergodicity
assumption according to which, for sufficiently large T and L time averaging is equivalent

to length averaging.

Substituting 2.1 into the NS equations, the fluctuation terms satisfies the following:

au'+ v +6p’_ Uau’+ ,0U  ou’ v
pat""axi_pxe""y uva

and the mean flow satisfies

a{au
ay“

3y p{u'v’ } (2.2)
The uniform pressure gradient k is balanced by the Reynolds stress ( p(u'v')) and the

U . . .
shear stress due to mean flow (”5)' The fluctuating component is driven by the

interactions with the mean flow and the mean flow is driven by the constant uniform

pressure gradient k. Integrating twice the equation of the mean

1y kh (h? — y?
U(y)—;f_h(uv)dy+7< oh )

in the case of laminar flow
1Y
- [ dv =0
vf_hw v')dy

gives

_kh (h? —y?
U(y)—7< h > (2.3)

Equation 2.3 gives the parabolic velocity profile.



The wall skin friction is:

_au - kh
T—uayy=_h— .

Removing the primes, from now on, u defines the fluctuation velocities.
The friction velocity is defined as:

u; =+/7/p = kh/p.

A wall length scale can be defined as:

where L, and u, are micro scales associated with the boundary region, whereas the
channel half height h, centreline velocity u.;, = U(h), are macro scales associated with

the core region.

Bulk velocity,

1 h
w =5 | UGy

is another macro scale for velocity.

Performing normalization by implementing u, as scale for velocity, h for length, h/u, for

time

_ﬁu*'_ﬁx*;

; ; P*.
Up h h/u, - p u? -




The normalized NS equations will be

au+*V*+VP +1V2*
_ u -vu =e _— u
at * " Re

where the Reynolds number is:

Normalization is possible also using [, for the length scale. The resulting units after this

normalization are called wall units. This normalization is given by:

The conversion between friction and wall units:

YRe )
Y= =T Y Re
T
tt = t*Re.

The wall units measure smaller scales in the near wall region and commonly called the
micro units. The friction units are sometimes referred to as macro units. The next section

gives somewhat more detailed information about the normalization.



2.2 Scales and normalizations

In this section, further details about the normalizing units used and the resulting

normalized equations are explained.
Integrating the equation 2.2 once yields:

ky L auj
—?=—(uv)+va—ur (2.5)

where u; the friction velocity as is mentioned in the previous section. Substituting

Jkh/p foru, in equation 2.5, we get:

2(1 NN iy v Y
uT(l h)_ (uv)+vdy (2.6)

If u; and h are utilized to normalize the equation the result is the following expression:

y_ Wwv) v dlU/u)

1"z — 4~ 7 2.7
h uz " ush d(y/h) (2.72)
Applying the normalized frictional units yields,
@wv'y 1 du”
1—y"=— (2.7b)

+ —_—
u? Redy*

For large values of the friction Reynolds number (Re = u;h/v), the viscous stress is
suppressed by this normalized form. The stress at the wall is predominated by the
viscosity. As a result, this normalization cannot be valid near the wall as Re = . In
order to solve this problem, the second unit system (wall units) was presented in the

preceding section.

10



Another normalized form is required in the immediate vicinity of the wall in order to
handle the problem of vanishing viscosity due to large values of Re. This can be achieved
by simply absorbing the friction Reynolds number in the length scale. With thus

modification 2.6 becomes,

y W) dU/u;)

1-2 = 2.
R Taougm) (25
Employing the normalized wall units yields,
o2 ) de 2.8b
Re —  u2 dy* (2.8)

The form stated in 2.8b tends to suppress the change of stress in the y-direction

as Re — oo,

Let us reconsider 2.7b and 2.8b as Re — oo. Provided that y*remains O(1), 2.7b

reduces to

. (urv/)
1-y' = ——; (2.9)
uT

This equation cannot be valid as y* — 0, which corresponds to finite values of y™ (i.e.
the vicinity of the wall). The part of the flow where 2.9 holds, is called the core region.

2.8b can be written as, y* being O(1),

Ww'v') dut

1= —
uz  dyt

(2.10)

The above equation is not valid as y* — oo (the core region). The region of validity for

2.10 is called as the surface layer.

The two layer description (surface layer — core region) presented above requires a

matching region. This matching should be done in a region characterized by the limits

11



y*t — o and y* — 0. This can be achieved by a process known as asymptotic matching
(Tennekes and Lumley, 1972). This overlap region of approximately constant Reynolds
stress. The viscous stress on the other hand is very small compared to Reynolds stress in
this region. Due to this lack of local viscous effects, this overlap region is called inertial
sublayer. Since the stress at the surface is purely viscous in nature, as one moves down
the inertial sublayer towards the wall there should be a region in which viscous stresses
dominate over Reynolds stresses (this is also suggested by experimental evidence). This
region is called the viscous sublayer and extends up to about y* = 5. The region where
the viscous and inertial sublayers merge is called the buffer layer. In this region neither of
the two stress components can be ignored. This layer is also the site for maximum

turbulent energy production, which occurs approximately at y+ = 12.

2.3 Linear Stability

We consider the linearized form of the governing equations for the fluctuations from the

mean (eq.2.1),

6u+U8u+ U' = ap+1v2
ot Voax VY T TRV
W you L 1o 2.11
at | ox “Toax RV (2.11)

where the primes on the fluctuating components are dropped and now a prime (U’)
denotes a y-derivative. Here, we followed the convention and used a scaling based on
the centerline velocity u.;, thus R = Ug h/v. This set of equations is completed by the

continuity equation

ou c')v_

—+—=0. 2.12
Ox Ox 0 ( )

12



Taking the divergence of the linearized momentum equations (2.11) and using the

continuity equation (2.12) yields an equation for the fluctuations pressure:

Vip = ZU'av
p= 0x

This equation may be used with the second equation in (2.11) to eliminate p, resulting in

an equation for the wall-normal velocity , v:

[(a+ua)v2 v _Lol,—o 213
ot T ox ox R IVTY (2.13)

The equation (2.13) is considered with the boundary conditions

at the walls.
Next, we introduce wavelike solutions of the form
v(x,y,t) = D(y)e'@¥-*0

where a denotes the streamwise wave number and w stands for the frequency.

Introducing this representation into (2.13) results in the following equation for ¥
: ; 2 2 oL 232 5
(—iw + iaU)(D?* — a*) — iaU _ﬁ(D —a=)?|v=0 (2.14)

with the boundary conditions ¥ = DU =0 at the walls. Here D stands for the
differentiation operator in the normal y-direction. This is the classical Orr-Sommerfeld
equation [Drazin and Reid 1982, Schmid and Henningson 2001]. The frequency w
appears as the eigenvalue in the Orr-Sommerfeld equation, and together with the
associated eigenfunctions ¥ is generally complex. The spatial wave number « is assumed

real. The critical Reynolds number is computed by Orszag to give R, = 5772.22

13



corresponding to the wave number a = 1.02055. This implies that for supercritical
R (R > R,), the flow is unstable to infinitesimal disturbances having the streamwise
wave number a = 1.02055, while for subcritical R (R < R.), the flow is stable to

infinitesimal disturbances (linearly stable).

It can be shown that the conventional Reynolds number (R) based on the centerline
velocity ucr, R = uc h/v, and the Reynolds number (Re) based on the friction velocity

u;, Re = u h/v, are related through
1
R= ERe2 (2.15)

in the regime of Poiseuille flow. Thus, Re, = V2 X 5772.22 = 107.4451.

14



CHAPTER 3

DISCRETIZATION AND NUMERICAL SCHEME

Pseudo spectral methods are used to develop the numerical scheme implemented in the
FORTRAN code. Pseudo spectral methods are chosen due to their high accuracy and fast

convergence.

Reconsidering our equations in normalized form:

O - Vu= TP+ ey + T2
3 u-Vu = e, Re u.

Recallw =VXxuandu:-Vu=V(u-u/2) —u X w.So,
Vu=20

ou VIl + e, + ! V2
) X — J—
at u w ex Re u

where VII = p + u - u/2 is the dimensionless stagnation pressure (Guessous, 2003).

The boundary conditions are:

u=v=0aty==1

15



3.1 Temporal Discretization

An implicit scheme is implemented in time integration. The non-linear terms are

considered explicitly using Adams — Bashforth method. The pressure terms are

discretized using an implicit Crank — Nicolson scheme. Both of the schemes are second

order accurate in time. The resulting discretized equations are:
V- un+1 =0

un+1 _ un
At 2

11
g2 n+1 n
+R62V(u +u").

They can be rearranged as:

V.-uttl =0

1 2
_VZ — _) n+1 _ VH“+1 n
(Re At U te

where

g'n=-3uXw+e)"+ (u Xw +ex)"‘1+Vl'I“—(

and At is the time step size.

The boundary conditions are u™** = 0at y = +1.

16
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(3.1)

(3.2)

1v2 2) n
Re Atu



3.2 Spatial Discretization

In the definition of the problem, the flow geometry extends to infinity in the x-direction.
In order to model the infinity in the x - direction, periodicity is introduced. That was

shown previously in the boundary conditions as
u(x,y,t) =u(x+1L,y,t).
The result represents one spatial period of an infinite periodic pattern.

Assume that the flow takes place in the region of aspect ratio s,,/2 X 1, where
Sx; —1<y<1

L is the dimensional length in x - direction. Let §¢ = 2w /s, be its wave number. Periodic

boundary conditions are applied in the x - direction with period s,, = 2w /¢

2mm
u(x+T,y,t)=u(x,y,t) meZt.

The spatial discretization was accomplished using pseudo-spectral representations
suggested by Orszag and Kells (1980) and Schumack et al (1991). Fourier series expansion

of the dependent flow variables is used in the x-direction.

(m,y,t) X expli &, x]

u U
v ( ) ) t) = U
fleso- 3 |

i< P

where the hats denote Fourier coefficients. The term &,,, = m¢ is the streamwise wave

number and m is the integer in the specified range.

17



The collocation points used in the x-direction are:

21l 0 <
xi=—,; 0
l EM
In the y — direction rescaled Legendre Lagrangian interpolant expansion is used for
velocity and conventional Legendre polynomial expansion with order two less than that

used for velocity is used for pressure (Schumack et al, 1991).

The lower order expansion for pressure eliminates the need to use a staggered grid in
the solution and the problem of pressure boundary conditions that arise when Poisson

equation is used to solve pressure. So,

N N

um,y,0) = ) w0 j, 0k ) = ) wh)
=0 7=0
N-1 N-1
P(my,0) = ) POnj,0Lia0) = Y Filys()
=1 =1

where L;(y) is the Legendre polynomial and i_lj(y) is the rescaled Legendre Lagrangian

polynomial of order j.

At the grid points, the rescaled Lagrangian interpolants satisfy:

1

7o

Ej(yi) = 5ij

where §;; is the usual Kronecker’s Delta function. The value of u(m,j,t) computed by

the numerical code is the rescaled value.
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The Fourier coefficients at y; will be:

T 5 1. ﬁ(m:y,t)
u(m,y;, t) = ulm,y;, Oh(y;) = —F—— /wL
i
The pressure coefficients P(mm,j,t) are the spectral coefficients of the Legendre

polynomial of order j.

In order to convert the fields between the physical and Fourier Space representations,
Fast Fourier Transformation (FFT) is typically used in pseudo-spectral methods. Non-
linear terms involve difficult and time consuming convolution sums in spectral space. So,
it is preferred performing the computation of nonlinear terms in physical space through

simple multiplication at the grid points.

Horizontal derivatives are easily computed in the Fourier Space. The derivative of ek*

is ike™ ™. Except the non linear terms, Fourier representation is used for all the rest.

3.3 Numerical Scheme

The numerical scheme implemented in this study is based on the work of Patera (1984),
Schumack (1991) and Guessous (2003). The algorithm makes use of the variational form
of the governing equations. The modification of the “spectral method” (Patera, 1984) is
applied in order to obtain a divergence free flow. This resolves the need of artificial

pressure boundary conditions.

Let us consider the governing equations in terms of Fourier Coefficients

a"}n+1
A + % =0 (3.3)
1 62 2 2 an+1 e pn+l O
Re\ayz %) TV S EPT A4 GH
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1 [ 92 2 opn+1
(2 g2 Lot = G0 3.5
[Re(ayz 5) At]v ay "9 (%)

In order to discretize the problem a variational formulation is used. The inner product

between the above equations in the y-direction and the same test function is taken.
These test functions are:
w;(y) =h(y) ,i=1,..,N—1

() =Li1() ,i=1.,N-1

For 0 < i < N, w; ensures that the test functions of the governing equations satisfy the

Dirichlet Boundary Condition of the problem,
wi (1) = hy(x1) = 0.

The equations become

1

f o) [ifﬁ”“ +
-1

on+1

Y _lday=o0 3.6
ay]y— (3.6)

1

1 1
1(0° 2 -
[ w0z (=) - ] 0y = [swwmpriay+ [wongray
21

-1 -1

(3.7)

1
[ wiorgzay

-1

w; (y) [Re <W_ 2>—— tldy = jwl

(3.8)
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ion b is performed for the = and 22
Integration by part is performed for t e,z and =

terms

' aZﬁn+1 aﬁn+1 1 ' dWi aﬁn+1
fWi 32 dy:[Wi_ay ] ~ )@y oy dy
-1 -1
aﬁn+1 1
Wi = = 0 — from Dirichlet Boundary Conditions
-1
1 1
aZﬁn+1 dWi aﬁn+1
= fwi—zdy == |- dy.
dy dy 0y
-1 -1
The pressure terms:
op+t rd
— pn+17]1 _ Wi pn+1
fwl- 3y dy = [WP ]|_1 o P dy
-1 -1

[wﬁ"”“il = 0 — from Dirichlet Boundary Conditions

1 . 1
= f Py = f Wi pna g
-1

-1

Substituting into the governing equations:

! a'\n+1
v
f ) [ifﬁ““ + 3y ]dy =0 (3.9
-1

1 1
f 1 dw; aﬁ"+1d &2 N 2 f o+t 4
Re dy 0y y Re At Wi dy Y
-1 -1
1

1
=i¢ fwils"+1dy+ fwl@{’dy (3.10)
“1

-1
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1

1
f 1 dw; 60”+1d &2 N 2 J‘ opntl p
Re dy 0y Y Re At Wi dy y
-1

-1

1

1
dw; .
-1 -1

Using the Einstein Summation notation

j=0
N-1
n+l — pn+ly . _ pn+iy
P - J Lj, = J Lj—
j=1

with the boundary conditionu, = uy = 0, for every test function w; and q; where

1 <i< N -—1,equations 3.9, 3.10 and 3.11 will be

1
j Li_q[igha*t + Rj9™* ] dy = 0 (3.12)

-1

1
1 AN fz 2 1. 1. =
e J.hihju}lﬂdy—(E‘l'E) fhi ;U dy

-1

1 1
= — j }_liZj_lpjn-'-ldy + f }'_ll}_l]gg]dy (314)
-1 -1

where the primes denotes derivative with respect to y.
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The integrals are evaluated making use of the Gauss-Lobato Quadrature

with the
weighting functions
2
Wi = z°
N(N + D[Ly(v)]

Recall that h;(y;) = Sij/\/Wj. The integrals become:

1 N

-1 p=0
1 N
fﬁ;']’- dy = Z wpﬁg(yp)i_lj’-(yp) = Aj; (3.16)
-1 p=0

1 N

ji_lizj—l dy = Z wyphi(¥p)Li—1(%p) = JWiLj-1 () = Dy (3.17)
-1 p=0

1 N
fE;Lj_l dy = > wphi(v)Ly-1 () = Dy (3.18)
-1 p=0

Note that the Einstein Summation Convention does not apply in the above equations.

In order to obtain the derivatives of the rescaled Lagrangian interpolants, the derivatives

for standard Legendre Lagrangian interpolants (Gottlieb et al, 1979) are modified.

1 Ly(y) Q%
YW v —yp)
) 0, i=j#0N
Ri(y) = 5

—-a/4fw;, i=j=0
+a/4wj, i=j=N
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where @ = N(N + 1).

Legendre Basis and rescaled Legendre Lagrangian interpolation is used to represent
velocity due to their computational efficiency for a weak formulation, even though
Chebyshev and Lagrange expansion methods have similar accuracies (Ronquist and
Patera, 1987). This is due to the natural selection of unity weighting in the inner products
for a Legendre Basis. Legendre Polynomials are orthogonal relative to a weight function

of one.

Gauss-Lobatto quadrature is defined relative to the weight function of the orthogonal set
of polynomials (Canuto et al 1988). If P(y)is a polynomial of order less or equal

to 2N — 1, then

1

N
fP(y)w(y)dy = Z P(y;)w;.
=0

-1

The inner products of the Legendre-based method are defined with weight one, similar
to Gauss-Lobatto quadrature. Usage of Legendre-Gauss Lobatto grid point in the y-
direction and Lagrangian interpolants for the velocities seriously simplifies the sums in
the equations 3.15 — 3.18. This would not have been possible if Chebyshev polynomials

had been used. So, this choice apparently decreases the operation count.
Let us rescale the interpolants as done in 3.15 — 3.18. The matrix [Bl-j]will become the
identity matrix. This solves the problem of rescaling the data before analysis. The

governing equations become

iED; UM + Dy = 0 (3.19)

1 § 2 _ o _
——eA--u’.l+1 - (— >Biju}1+1 = i§Dy; P + By g7y (3.20)
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1 § 2 _ = _
—EAUV}1+1 - (— )Bi,-v}”l = —D;;P"*" + By g5, (3.21)

In the matrix form A;;, B;;, D;j,D;jare the elements of (N—1)x (N —1) sized

A, B,D,D matrices.

For every wave number &, 0""+1, ¥+1 P"+1represents the vector array of length (N — 1)

constructed of elements @***, 7%, P where 1 < j < N - 1

If discrete Helmholtz operation is defined as

and the superscript T represents the transpose term, for every &

ngTEn+1 + 2§n+1 =0 (322)
H "™ =i&D P™* + gt (3.23)
H3"™ = —D P™*1 + gp (3.24)

And the boundary conditions are uy, = uy = 0.

To solve the equations, firstly they are divided into two sets, for velocity and pressure

according to Uzawa Method (Canuto, 1993). For velocity components:

=

untt = H71(iéD PM + g1 (3.25)

v = HU(-D P + g (326)
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For pressure we insert the above equations into the continuity equation 3.22 to obtain a

discrete equation
S P"*t = —igD" H™'gl —DH ™' g}
where S, = —(§2DT H™'D + DT H™1D) is the discrete pressure operator.

The equation can be solved for pressure E"“ for every wave number &. The result will

be substituted into 3.25 and 3.26, and solved for velocity components.

To avoid spurious pressure mode problems, the constant pressure mode is set to zero

(Schumack et al, 1991)
131 = 0 at 62 = 0

for which the pressure operator matrix is modified as

gl
I
| ————— |
(@) - O
o
==
& :
< .
=5
(e}
e e,
=
vy
N
Il
e

3.4 Velocity Solvers

In order to solve for the velocities in x and y direction at each time step, a matrix
equation must be solved in each direction for every wave number £. Multiply the right

hand side of the equation 3.25 and 3.26 by the inverse of H(H™1).
H™'-HU™' = H™'i¢D P + g7

ﬂ_l . ﬁyn+1 — _ﬂ—lgEn+1 + g;l
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His a full (N — 1) X (N — 1) matrix. The inversion is performed using the collocation
diagonalization method (Haidvogel and Zang, 1979) made possible by the rescaled
Lagrangian interpolants that lead to a mass identity matrix.

Making use of this method reduces the computational cost of matrix inversion
to O(N?). A is the symmetric second order y — derivative matrix that can be
diagonalized as A =E G E~! where G is a diagonal matrix whose elements are the

eigenvalues of A. E is a matrix composed of the eigenvectors of E and E~1 is its inverse.

Consider the Helmholtz operator H for a given wave number £ in terms of A.

H = 1EGE‘1 & 2 I 3.27
1= (reee+ (i) o

Multiply by E~1

Multiply both sides by G~ then by E
—ET'GT'ET'H=1.

The inverse of H is obtained as:

1 2 2\ \ !
Hl=—-F1—G+|=—+—]I E~1.
- = <Re— (Re At)‘) =

This inverting H reduces to inverting the diagonal matrix G. Notice that the presence of

the identity matrix is what makes the simple factorization of 3.27 possible.
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CHAPTER 4

KARHUNEN - LOEVE DECOMPOSITION

4.1 Karhunen - Loéve (KL) Decomposition

The KL expansion is the representation of a vector field u(x, t) as a series of the form:

[o0]

u= ) anOd" (0.

n=1

In terms of an orthonormal set of functions ¢,

(90, ¢™), = [ ${°9 AV = Sy where j =12,
%4

Summation convention on repeated indices (-,-), denotes inner product over x. The time

dependent coefficients a,, are required to satisfy

E{an,am} = j an(t)am(t)dt = Anbnm

where E{ } indicates the ensemble average. For any truncated representation

N

w =) an(O¢™ (x)

n=1
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the ensemble average is a maximum

The orthonormal basis is set by functions q.')(”) such that they are eigenfunctions of

[ Ky eax =1, 0@ @1
14

The kernel k;; is the autocorrelation tensor of the field u
kij(x,x") = E{ u;(x, 1), u (', t)}.

The autocorrelation tensor is hermitian, non-negative and square integrable assures that
a uniform convergent spectral representation for it exists (Mercer’s Theorem (Riesz and
Nagy, 1955)). So it is guaranteed that we have a complete set of orthonormal vector

eigenfunctions ¢ ™ as solutions to 4.1.

Since in the numerical formulation, the flow is assumed L-periodic in the x direction, the

KL eigenfunctions take the form

2Tmx

¢ y) =P my)e T (42)

This, in turn, implies that the dependence of the KL eigenfunctions on the vertical

variable y can be obtained by solving
1
[ Rymy 8 m vy = 1,8 m) (43)

-1

for each |m| < M/2 where K;;j(m,y,y’') = E{a;(m,y, t),ﬁj(m,y’,t)}.
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In order to increase the sharpness of the ensemble averaging procedure, the flow field
ensemble is enlarged by introducing new admissible flow fields constructed from the
computed flow field using symmetries of the governing equations. The continuous
symmetry of translational invariance in the streamwise x direction already leads to the
complex exponential representation (4.2) of the KL eigenfunctions in the x variable. The

discrete symmetry in the vertical midplane,

F{u} = (ul (x, =Y, t)! —Uy (X', =Y, t))
is admissible and it leads to doubling the size of the original ensemble. Note that the

symmetry operators I and F form a group of two elements {I, F} with I = F? the identity

operator. Further, using the reality of the flow, we have

u(—-m,y,t) = ﬁ(m, y,t)

where overbar denotes complex conjugation. Thus, (4.3) needs to be solved for only

0<m<M/2.
Since the computed flow field uses the Legendre basis and the corresponding Gaussian

guadrature in the wall-normal direction, the integral equation can be discretized to get a

matrix eigenvalue problem of size 2(N + 1)
Ko =70

where K = E{V(t) ® V(t)} and
O=[3:00) v i) B0 o B | with

V=[Joo ty(yo) - JonOin) oo fx(ye) - Jon ) |-

Here, ® denotes the dyadic product, ﬁi(y]-) = ﬁi(m, Y t) and $i(yj) = (T)i(m, y]-).

30



CHAPTER 5

RESULTS AND DISCUSSION

In this work, the numerical simulation is used to explore the stability and transition
behavior of the 2D Poisseuille flow. The method of study is based on the numerical
integration of the Navier Stokes equations for the time evolution of a disturbance flow

field added upon the laminar parabolic base flow profile

R
UG) =5 (1=

The initial energy of the disturbance field is specified and the time evolution of the
energy is monitored for growth or decay as indication of the stability of the base flow
against the disturbances of specified initial magnitude of energy. Throughout these runs
the simulation parameters are chosen as M =8, N =70 and the period
s=L/h=2m/1.02056 selected from literature. This corresponds to the critical

wavenumber from the linear stability analysis (see section 2.3).

The disturbance flow field should itself be an admissible flow field, satisfying the spatial
constraints such as the boundary conditions and the continuity equation as well as it
should contain a rich mixture of the dynamical features of the flow in order to test the
stability of the base flow against all possible type disturbances. In order to construct such
a disturbance flow field, we performed the numerical simulation of the 2D channel flow
at Re = 200 at which the resulting flow exhibits a dynamically rich nature. The resulting

flow regime is depicted in Figure 5.1.
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Figure 5.1 The actual (solid) and laminar (dashed) mean parabolic profiles and the centerline

velocity time series.

Clearly, at this high Re, the actual mean profile deviates from the corresponding laminar
profile in such a way that the core region is getting flatter and the flow is getting
retarded. This is a consequence of enhanced mixing between the two regions where the
slow fluid in the wall region mixes with the fast fluid in the core region, thus an overall

deceleration results.

KL decomposition is a tool for extracting the dynamical features contained in a database
representing a flow field. Based on their contribution to the flow energy, it also reveals
the hierarchy of these features which is specific to the flow regime under consideration.
These features and their hierarchy are represented by the KL eigenvectors and the
corresponding KL eigenvalues, respectively. The flow database at Re = 200 is used to
generate the KL eigenpairs. Table 5.1 shows the first 10 KL eigenvalues as they are

ordered and scaled with the magnitude of the largest eigenvalue.

It should be noted that the KL basis is generated using the fluctuating component of the
flow field after the removal of the mean flow. Otherwise, the first basis element
associated with the mean flow, namely (m = 0, g = 1), would dominate in the energy
content. The sharp drop in the energy content of the basis elements in the list as

indicated by the corresponding eigenvalues shows the optimality of the decomposition
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as the flow energy carried by the truncated representation of the flow in terms of KL

modes, u ~ uN = YN_, a, ¢, is maximal.

Table 5.1 KL eigenvalues

Re = 200
A/
0.10e+1
0.14e-1
0.53e-2
0.29e-2
0.14e-2
0.13e-2
0.95e-3
0.82e-3
0.44e-3
0.28e-3
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The vertical profiles of the corresponding KL eigenfunctions are shown in Figure 5.2.

As a result of the symmetry considerations in the construction of the covariance kernel,
the KL eigenfunctions possess odd or even symmetry in the mid-plane. They satisfy the
divergence-free property and the boundary conditions, so they are the building blocks of
the underlying flow. They exhibit increased zero crossings as the index (wavenumber)
increases, reminiscent of Sturm-Liouville type eigenfunctions. Some exhibit increased
variation in the core region and some in the wall region that may invoke the classification

as the core or the wall type to be utilized in the analysis of the underlying flow dynamics.
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Figure 5.2 The vertical profiles of the corresponding KL eigenfunctions.

Time variation of the corresponding expansion coefficients, a,, (t), and the KL spectrum
are shown in Figure 5.3. This is obtained by projecting the fluctuating flow field at

Re = 200 onto the KL basis, a, (t) = (u(x, t), ¢, (x)).
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Figure 5.3 The time variation of the projections of the flow field at Re = 200 onto the space
spanned by the first 10 KL eigenfunctions of Table 5.1 and the corresponding KL spectrum,

(anan)*2.
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We will use this dynamically rich and parametrized flow field at Re = 200 to disturb the
laminar base flow. For this purpose, the flow field at Re = 200 is reconstructed using a
truncated KL representation containing only the most energetic KL modes. Normally, the
appearance of each mode in the reconstruction is weighted by the corresponding KL

eigenvalues

N
u~ulV = E a, (), (x,y) with (a,a,) = 1,.
1

n=

This is a weighting specific to the flow regime Re = 200. In the reconstruction of the
flow field as a disturbance field, however, each KL mode is allowed to contribute equally
to specified flow energy in order to provide an equal representation of dynamical
features in the disturbance field. This specified flow energy is then used to control the

energy level of the disturbance.

The energy of a flow field u is defined as

1
1 S
E(u)=5j ju-ﬁdydx,
0 -1

thus, for the Poiseuille flow Ep = E(U) = sRe/6 . The energy of the disturbance flow
field is normalized with respect to the basic quantity Ep leading to the relative energy of

the disturbance

E(u)
Ep

g(u) =

The disturbance field is then constructed as

N

u§ey) = 4o ) real (9™ x,)) (5.1)

n=1
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where @™ (x,y) = ™ (m, y)e2™X/S with n = (m, q) and A4, is a real constant such
that s(ug) = &y . The evolution of the initial condition (5.1) for different initial energies
&y is computed at different Re values. The truncation cut-off index is selected as N = 50
to achieve a level of dynamical richness in the initial disturbance field. The time evolution
of the initial disturbance field for various initial energy and Re values are shown in Figure

5.4.

Re =109.5 or R =6000 Re =100 or R =5000
10 10

10 i 10

10_2% | “"2%
10° ] 10° f

0 100 200 300 400 500 0 100 200 300 400 500
time index time index

Re =949 or R =4500 Re=289.4 or R=4000

/I

0 100 200 300 400 500 0 100 200 300 400 500
time index time index

Figure 5.4 The time evolution of the energy of the disturbances superimposed upon the base flow

for various initial energy &, and Re values.

At the supercritical value of R = 6000(R > R,), as expected and as a verification of our
computations, the disturbances at all levels of initial energy experience growth. This is
the region where the base flow is theoretically known to be unstable to infinitesimal
disturbances (linearly unstable). At the subcritical R values (R < R.) where it is

theoretically known that the base flow is stable to infinitesimal disturbances (linearly
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stable), we observe instability to finite disturbances (subcritical instability). Due to the
instability of the base flow, the disturbances are attracted to another solution. The basin
of attraction of this solution is sketched in Figure 5.5 crudely showing the threshold

disturbance energy increasing with decreasing Re.

Rc
T T T T T T
107} & o 3 ° S .
ND 10'4_ & O . & ] ® -
10° L O ® i
i i i i L
4000 4500 5000 5500 6000

R

Figure 5.5 The overall depiction of the instability of the disturbances of Figure 5.4 as stable

(empty circle) and unstable (solid circle).

As shown in Figure 5.4, in the case of instability of the base flow, the disturbance field
eventually converges to a new flow field. In the following series of figures, the projection
of this flow field onto the first 10 the KL basis elements in Figure 5.2 as obtained at

Re = 200 are shown.
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Figure 5.6 The time variation of the projections of the limiting flow field obtained at R = 6000 in

Figure 5.4 onto the space spanned by the first 10 KL eigenfunctions of Table 5.1.

Figure 5.6 indicates that the flow field obtained at supercritical R = 6000 is of periodic
character as far as the most energetic component, namely n = 1, is concerned. The most
striking behaviour are observed at R = 5500 and R = 4500 in Figures 5.7 and 5.9,
respectively, where the flow exhibits a quasi-periodic character unlike the periodic
character at R = 5000 in Figure 5.8, again as far as the most energetic component is
concerned. These variations in the flow character in the subcritical regime call for a

careful analysis as a future work.
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Figure 5.7 The same as in Figure 5.6 at R = 5500.
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Figure 5.8 The same as in Figure 5.6 at R = 5000.
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Figure 5.9 The same as in Figure 5.6 at R
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CHAPTER 6

FUTURE WORK

In this work, KL basis is used to analyze the underlying dynamics in a passive sense as a
parametrization of the projection space. Alternatively, KL basis can be used to construct
a low dimensional description of the underlying phenomena using Galerkin procedure. In
order to describe the procedure, considering the Navier-Stokes equations in the symbolic

form

du
E = L(ll, RE)

Where L represents the nonlinear differential operator involving u, spatial derivatives of
u, and parameter Re. A low dimensional model capturing some important aspects of the
governing equation may be constructed by projecting the original equation onto a KL
subspace spanned by the Truncated KL expansion (via Galerkin projection). This can be
done as follows: first the KL eigenfunctions are extracted from the field u, obtained by,
say numerical simulation, at a reference value Re,. The truncated expansion u = ulN =

YN_,an(t) dn(x) is then substituted into the original equation, resulting in a residue

whose projection onto the KL subspace is zeroed

9
(% - L(uN,Re),q)n(x)) — 0.

This results in an amplitude equation of the form

da, .
—2=1(R
it (a,Re)
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For the KL expansion coefficients a,. This equation can be used to determine the time
evolution of the expansion coefficients and thus may constitute a low dimensional model
for the original equation in the neighbourhood of Rey. Note that optimality of the KL
expansion is no longer available when used for off reference values of Re, however, the
KL expansion functions still satisfy all the spatial constraints of the flow field, such as

boundary conditions, incompressibility conditions, etc.
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APPENDIX

The Karhunen-Loéve (KL) Process

1. The Eigenvalue Problem

The K-L decomposition or proper orthogonal decomposition is a technique to
parameterize experimental or numerical data optimally in energy norm. The original data
in this analysis is a set of two dimensional velocity vectors v]'v{* (x4, X,) where n denotes
the moment in time, i denotes the direction of the vector, and x;,x, denotes the
independent spatial variables. Although vv must be real since it represents a physical
velocity field, this analysis is done for a complex vector for reasons which will become
obvious. The purpose of the K-L method is to identify a vector ;;1(x4,X) which will

maximize the quantity

D v yl?

n

subject to (P, Y1) = 1. With the inner product defined as

(ab) = f @, (0)b; (x)dx (A1)

D
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where overbar indicates complex conjugation and summation on i is assumed, and the
energy defined as |v|? = (v, v)?, the energy composed in the eigenfunction is measured

by
N N
E=) @9’ = ) ho)®P) (A.2)
n=1 n=1

This can be rewritten in the form

E = i [ i vrax [ o7 w0
D

n=1 D

E =

O —

N
¥i(x) f Z v ()T (%), (X)dx dx.
D n=1

For convenience, this will commonly be written as E = (¥, Ky) where the kernel, K;; is

defined by
N
Kij(6,%) = ) o (7 (&) (A3)
n=1
and the tensor product is defined by
Ky = | Koo () di a4

D

Unless otherwise stated, Einstein’s summation convention is used throughout the
equations. Now using the constraint (¥, 1) = 1 and introducing a Lagrange multiplier, A,

modified energy is introduced,

E'W) = (. K¢) — A%, )

Perturbing the eigenfunction slightly produces the equation
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E*(y + ath) =f¢i+a¢ifKij(lp,.mlpj)m,z—xf Vit ad; (i + ay))dx
D D

D

E*( + a) =Dfm])f Kijlpjﬂdic+bf1/)i+m/3ifKijm/}iﬂdf

D

— )\f l/)i + dxl/}i l/)ldD_C + f llJi + aﬂ/;i ﬂl/;ld.?_f
D

D

Minimizing in @ and @ produces the equations

0 3 B o o
%E*(Il"*'“‘/’) u=0=d=0= f flpiKijll)j dXdX—/'lfgbillij dx
D D D
J . 3 _ _ _ )
%E (¢+dll)) _:O:Jf iKijlpjdxdx_/lflpilpidx
a=0=a
D D D
f flaijij dx — \p; lf)i dx = 0.
D |b

Since 1[)1- is arbitrary, this equation can only be true in the case

[ wyK, e 0% - a0 = 0
D

[ Ky = 2@ (A.5)
D
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This is the Eigenvalue problem commonly written as Ky = Ay using the product
definition presented earlier. The solution of this problem will lead to the most energetic

mode P (x) along with the energy in that mode A.

2. Boundary Conditions

The physical velocity vectors used to form the eigenfunctions come from a flow satisfying

the boundary conditions
vin(xli 1) = vin(xli_l) = 0.
The boundary condition for the eigenvectors which result from equation A.5 can be

derived from applying the boundary conditions of equation A.6 to the original equation

A.5 resulting in

1 —
Wi D) =5 [ Kijon o 142) G, 47) dF A7)
D

Using the definition of the kernel from equation A.3 produces the evaluations

N
Kij(x1,9'f1, 1,%,) = z v; (x, 1)1_7j(9’51:9’52) =0
n=1
N
Ky (g, 1, =1, %,) = Z v, (6, —1)7;(ky, %2) = 0.
n=1

Simply applying these equations to equation A.7 results in the boundary conditions of

the eigenfunctions

Wi, = [ 0 X i, %) dF = 0 (A.8)

D
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P;(xy,—1) = f 0 X (%, %) dX =0 (A.9)
D

So a set of eigenfunctions formed from a velocity field satisfying the no slip condition will

themselves satisfy the no slip condition.

3. Incompressibility

Another property of the original flow field is in compressibility,

O ) =0
axi'l?ix = V.

In order to evaluate the compressibility of the eigenfunctions’ their divergence is taken

from equation A.5 resulting in

9 ()_1jaK o s
o, V0 =7 | gy K D) dx.
D

Noticing that the kernel is the only term in the integrand with a dependence on x; and

using the definition of the kernel allows the application of the equation

N

9 ) 9 _
5 Ky = Zvj(x) 5 Vi) =0
n=

to produce the divergence of the eigenfunctions

0

o Wi (x) = f 0 X P(&)dk =0 (A.10)

D

So the eigenfunctions formed from an incompressible velocity field are themselves

incompressible.
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4. Orthogonality
The eigenvalue equation produces multiple eigenfunctions and eigenvalues. Two

solutions to the problem, 1™ and ¥™ with corresponding eigenvalues A, A" satisfy of

the equations

Kij (x, )i (%) dx = 2™ i (x)

O—

| Koy die = o,
D

Multiplying the first equation by ¥™(x) and integrating over the domain produces the

equation

)lmf 1p{”(x)z,l_){‘(x)dx=f fKij(x,k)zp}”(k)zj_){l(x)dkdx
D D D
~ [ wpw [ Ky odredads
D D
~ [ wp@ [ Rythdpeodads
D D

=1 [ urw @,
D

Bringing both terms to the same side of the equation produces

om -2 [ wr oo =o.
D

Since A™ # A™ for m # n this equation can only be true if the functions are orthogonal,
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j Y (x) Y (x)dx =0 form #n (A.11)
D

The condition of orthogonality along with the constraint that the magnitude of each
vector is 1 gives us the property of orthonormality (¢p™,¢¥™) = &,,, Which simplifys the

decomposition of a velocity field.

A velocity function can be written as a sum of eigenfunctions using the equation

B0 = ) an@PP ) (A.12)

m

Multiplying both sides of the equation by En(x) and integrating over the domain

produces the equation

fD P v (x, t)dx = ; am (£) fD PrOPT (x)dx = Z am ()80

m

an(t) = f BEEO(x, dx (A.13)
D

Using this equation, the expansion coefficients a,(t) can easily be produced by
integrating the product of the velocity and the conjugate of the eigenfunction. These

coefficients can then be used to reconstruct the velocity field as seen in equation A.13.

5. Translational Invariance and Symmetry

The flow field for channel flow is both periodic and translationally invariant in the
streamwise direction. As a result, any value can be added to the streamwise coordinate
producing an equally valid velocity field which can be added to the original ensemble
thereby increasing the size of the data set. To see how this affects the kernel K;; we add

an arbitrary value [ to x; producing a new velocity field v]*(x; + [,x,). The original
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kernel was the sum over all the independent time realizations n, so to include all possible
velocity fields, the kernel is calculated from a sum over time and an integral over space

Ly
0

N
K = Z f V' + Lx) 0] (kg + 1, %) dl.
n=1

Introducing a dummy variable s = Xx; + [ along with the corresponding equations

%1 +1 =5+ x;—x; and dl = ds lets the kernel be written as

N
K;; = Z vi' (g — %1 + 5, %) 7} (5, %) ds.
n=1

%1

With the flow fields being periodic in the streamwise, direction, the limits of integration
can be rewritten from 0 to L; and the integral can easily be seen to depend on only
X — X4 along with x,, x,. Because the kernel is also periodic and translationally invariant
in the spanwise direction the same analysis can be applied to that direction producing a

kernel

N
Ly
Kij(xy — %1, %2, %) = Z j v (g — %1 + 51, %)V (51, %) ds (A 14)
0
n=1

The original problem is now presented as

Ly r1
f f Kij(xl - 9'51,352.3'52)1/1]'(?31,?32)‘1932 dity = Mpi(xq, x2).
0o J-1

2TMXxq

Multiplying both sides of the equation by e " i and integrating in the spanwise and

streamwise directions produces the equation

1 Ly _l.21rmx1 Ly _l.21rmx1
f dffzf e I l/)j(ffpffz)f Kij(xqg — %1,%p, %) e~ L1 dxydXg
-1 0 0

Ly _iZTrmxl
=1 P (1, x5)e Lidx,
0
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which can be written as
Ly R
Y;(m, x3)K;j(m, x5, X5)dx, = 2 (m, x3) (A.15)
0

with the hat symbol denoting the Fourier transform of the kernel and the eigenfunction

in the streamwise and spanwise directions.

A close examination of the transformed kernel ﬁij shows how it can be calculated from
the transform of the velocity vectors. Beginning with the definition of the kernel in
equation A.14, multiplication by the exponentials and integration over the spanwise and

streamwise direction yields

N oL osLy ;2mmaxy
74 — n /. n /. -
Kij = z f f v (= X1 + 51,2200 (s, %2)e L1 dxy dsy.
0 0

n=1

Using a change of variables, xj = x; —x; = s; then splitting the exponents into two

terms, produces

Li—x1+51

N
L
7 — ! —n ‘ _L.Zﬂznx1 N(a* dx* d
Kij = vj (s1,%2)e 1 vi' (x1, x7)dxq ds;.
n=1"0

—X1+51

Note that the velocity is periodic in the streamwise direction so the integral can be
written from 0 to Ljand represent the Fourier transform of the velocity field in the

streamwise direction 9;*(m, x,).

With the second integral having no dependence on s;, the kernel is now the sum. The

first integral can be rewritten as

Ly _iZmnxl .
f Uj'(sy, %x)e 11 dsy = 0;'(m, %p).
0
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Putting this all together, the transform of the kernel, kij can then be calculated from a

much simpler equation

N
Kij(m, x5, %;) = Z o7 (m, x,) BT (m, %) (A.17)

n=1

Using the analysis, the decomposition must only be done in the wall normal direction on
a kernel that has been transformed in the streamwise direction. The decomposition must
be done for the Fourier mode m producing a set of eigenfunctions denoted by their
Fourier mode and quantum number g written as lljl.q(m, X,). The quantum number is an
index to distinguish the various eigenvalues and eigenvectors ranging from 1, the most

energetic mode to N, the least energetic mode.

The physical eigenfunctions are inverse Fourier transforms of these eigenfunctions

l,lA)iq (m, x,) so they have a sine and cosine dependence in the streamwise direction.

~mq ~q _l.Zn:mxl
lrbi (xlle) = ltbl (mle)e L

Both the position and the flow direction is being reversed in these directions so each of
the new flow fields is physical satisfying boundary conditions, continuity and Navier
Stokes Equations.

More specifically, with

vnl = (UILI (le xZ): ,U;ll (le xZ))

as an original flow field, new flow field can be obtained by symmetry

vz = (Vfl(xp—xz):—vznl(xll —xz))-
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The Fourier transforms can be written in terms of the original transform as
"2 = (0] (m, —x,), — 9 (m, —x,)) (A.18)

By including these flow fields in the ensemble, the kernel takes the form

N 2
Kij(m, x5, %;) = Z Z ;7 (m, x,) 0] (m, %,) (A.19)

n=1p=1

The velocity is a physical quantity so it is also real. A property of the Fourier transform for

physical variables is
Di(-m,x;) = ﬁ_i(_m' X3)
resulting in a similar property of the kernel
Rij(=m,x,) = Ryj(=m,xy).

Simply taking the complex conjugate of the equation A.15 leads to E(—m, X,) being the
corresponding solution to I?ij(—m, X,) again having the same eigenvalue A. If equation
A.15 is solved for some Fourier mode m > 0, an additional solution can be found for the
wave number —m and the energy in this mode is 2 times the energy of the reported
eigenvalue. If the wave number is 0 then the energy reported is exactly equal to that of
the eigenvalue. This factor of actual energy in a mode to eigenvalue is called degeneracy
so an eigenfunction in the Fourier mode m = 0 has a degeneracy of 1, while an

eigenfunction in the Fourier mode m > 0 has a degeneracy of 2.
The velocity fields in A.18 produce a set of relationships in a kernel that can be written as

Rll(mr X, —Xp) = 1?11("1, Xo, X2) (A.20a)
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k\lz(m: X —Xp) = —E1z(m, Xo, X2) (A.20Db)

Kz (m, x5, —%5) = Ky (m, x5, %5) (A.20c)

The kernel needs to be computed in half of the domain, x, = 0 while the values in the

other half of the domain are then obtained from these equations.

The time coefficients again come from the equation A.13. With two parameters needed
to define the eigenfunctions, the same two parameters m, q are needed to define the

coefficients.

Ly 1 R _j2mmxy
af&(t):f f v (x, %0, P (mx)e L1 dxg dx, (A.21a)
0 -1
1 =q
al (£) = f B,(m, %3, DA (m, x3) dxs (A.21b)
-1
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