
 
 
 
 

VERIFICATION AND MATLAB IMPLEMENTATION 
OF THE INVERSE DYNAMICS MODEL 

OF THE METU GAIT ANALYSIS SYSTEM 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 

BY 
 
 

KORAY SAVAŞ ERER 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

MECHANICAL ENGINEERING 
 
 
 
 
 
 

FEBRUARY 2008 



 ii

 
 

Approval of the thesis: 
 
 

VERIFICATION AND MATLAB IMPLEMENTATION 
OF THE INVERSE DYNAMICS MODEL 

OF THE METU GAIT ANALYSIS SYSTEM 
 
 
 

Submitted by KORAY SAVAŞ ERER in partial fulfillment of the requirements for 
the degree of Master of Science in Mechanical Engineering Department, Middle 
East Technical University by, 

 
 
Prof. Dr. Canan ÖZGEN           _________________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Kemal İder            _________________ 
Head of Department, Mechanical Engineering 
 
Asst. Prof Dr. Ergin Tönük          _________________ 
Supervisor, Mechanical Engineering Dept., METU 
 
Assoc. Prof. Dr. Sibel Tarı          _________________ 
Co-Supervisor, Computer Engineering Dept., METU 
 
 
 
Examining Committee Members: 
 
Prof. Dr. Mehmet Çalışkan          _________________ 
Mechanical Engineering Dept., METU 
 
Asst. Prof. Dr. Ergin Tönük          _________________ 
Mechanical Engineering Dept., METU 
 
Assoc. Prof. Dr. Sibel Tarı          _________________ 
Computer Engineering Dept., METU 
 
Prof. Dr. M. Kemal Özgören          _________________ 
Mechanical Engineering Dept., METU 
 
Asst. Prof. Dr. Senih Gürses          _________________ 
Engineering Sciences Dept., METU 
 

Date:          07.02.2008  



 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 
 
 
 

Name, Surname: Koray Savaş Erer   
 

Signature:     
 



 iv

 
 

ABSTRACT 
 
 

VERIFICATION AND MATLAB IMPLEMENTATION 
OF THE INVERSE DYNAMICS MODEL 

OF THE METU GAIT ANALYSIS SYSTEM 
 
 
 

Erer, Koray Savaş 

M.Sc., Mechanical Engineering Department 

          Supervisor: Asst. Prof. Dr. Ergin Tönük 

          Co-Supervisor: Assoc. Prof. Dr. Sibel Tarı 

 
 

February 2008, 133 Pages 
 
 
 

The METU Gait Analysis System employs a computer program called Kiss-GAIT 

for the calculation of joint angles, moments and powers using force plate data and 

marker trajectories as input. Kiss-GAIT was developed using Delphi and is 

confined to calculations related to the standard gait protocol. Because the code lacks 

the flexibility required to carry out various test cases, the inverse dynamics 

formulation being used could not be verified and the extent of the error propagation 

problem could not be determined so far. 

The first aim of this study was to develop a code for the inverse dynamics model of 

the METU Gait Analysis System making use of the flexible programming 

environment provided by MATLAB. Verified and more reliable analysis results, 

obtained by reformulating the inverse dynamics algorithm in a new code, are 

presented. Secondly, data smoothing and differentiation techniques conventionally 

used in gait analysis were critically reviewed. A common tool used for filtering 

marker trajectories is the Butterworth digital filter. This thesis presents a modified, 

adaptive version of this classical tool that can handle non-stationary signals owing 

to its coefficients which are functions of local signal structure. 
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The results of this thesis indicate the dominancy of ground reactions as compared to 

inertial effects in normal human gait. This implies that the accuracy needed in body 

segment inertial parameter estimation is not a critical factor. On the other hand, 

marker trajectories must be as accurate as possible for meaningful kinetic patterns. 

While any smoothing and differentiation routine that produces reasonable estimates 

is sufficient for joint moment calculation purposes, the estimation performance 

becomes a key requirement for the calculation of joint powers. 

Keywords: Gait Analysis, Inverse Dynamics, Butterworth Filter, Non-stationary 

Signals. 
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ÖZ 
 
 

ODTÜ YÜRÜYÜŞ ANALİZİ SİSTEMİ 
EVRİK DİNAMİK MODELİNİN 

DOĞRULANMASI VE MATLAB ORTAMINA AKTARILMASI 
 
 
 

Erer, Koray Savaş 

Yüksek Lisans, Makine Mühendisliği Bölümü 

         Tez Yöneticisi: Y. Doç. Dr. Ergin Tönük 

         Ortak Tez Yöneticisi: Doç. Dr. Sibel Tarı 

 
 

Şubat 2008, 133 Sayfa 
 
 
 

ODTÜ Yürüyüş Analizi Sistemi, eklem açılarını, momentlerini ve güçlerini, kuvvet 

platformu ve işaretleyici yörüngeleri bilgilerini kullanarak hesaplayan Kiss-GAIT 

adlı bir yazılım ile çalışmaktadır. Delphi ile geliştirilen Kiss-GAIT yazılımı, 

standart yürüyüş analizi hesaplamaları ile sınırlıdır. Şu andaki kodun çeşitli testlere 

izin verecek esnekliğe sahip olmaması nedeniyle kullanılan evrik dinamik 

biçimlendirmesi doğrulanabilmiş değildir ve sistemindeki hata yayılım sorununun 

boyutları belirlenememektedir. 

Bu çalışmanın ilk amacı ODTÜ Yürüyüş Analizi Sistemi için, MATLAB tarafından 

sağlanan esnek programlama ortamından yaralanarak, bir kod geliştirmekti. Evrik 

dinamik algoritmasının yeni bir kodun içinde tekrar biçimlendirilmesiyle elde 

edilen doğrulanmış ve daha güvenilir analiz sonuçları sunulmaktadır. İkinci olarak, 

yürüyüş analizinde kullanılagelmekte olan veri düzleme ve türevleme teknikleri 

eleştirel bir bakış açısıyla irdelenmiştir. İşaretleyici yörüngelerinin süzülmesinde 

yaygın olarak kullanılan araçlardan biri Butterworth sayısal süzgecidir. Bu klasik 

aracın, durağan-olmayan sinyalleri, yerel sinyal yapısının işlevi olan katsayıları 

sayesinde süzebilen, uyarlanır bir biçimi bu tezde sunulmaktadır. 
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Bu tezin sonuçları, normal insan yürüyüşündeki yer tepkilerinin ataletsel etkilere 

kıyasla baskınlığına işaret etmektedir. Bu, uzuv ataletsel değiştirge tahmininde 

ihtiyaç duyulan doğruluk oranının ciddi bir etmen olmadığını gösterir. Öte yandan, 

anlamlı kinetik desenler için, işaretleyici yörüngeleri mümkün olduğunca doğru 

olmalıdır. Anlamlı tahminler ürüten herhangi bir düzleme ve türevleme uygulaması 

eklem momentlerini hesaplama amacı için yeterli olurken; tahmindeki başarım, 

eklem güçlerinin hesaplanmasında anahtar bir gereksinim haline gelmektedir. 

Anahtar Kelimeler: Yürüyüş Analizi, Evrik Dinamik, Butterworth Süzgeci, 

Durağan-olmayan Sinyaller. 



 viii

 
 

ACKNOWLEDGEMENTS 
 
 

The author thanks to Prof. Dr. Turgut Tümer for providing the opportunity to work 

in the field of gait analysis. 

The author thanks to Asst. Prof Dr. Ergin Tönük for his support during the final 

phases of the work. 

The author thanks to Assoc. Prof. Dr. Sibel Tarı for her understanding. 

The author acknowledges all those who contributed to the completion of this work 

in this or that way. 

National Scholarship for MSc Students provided by TÜBITAK is also 

acknowledged. 



 ix

 
 

TABLE OF CONTENTS 
 
 
 

ABSTRACT….………………………………………………………………......................iv 

ÖZ…...……………………………………………………………........................................vi 

ACKNOWLEDGEMENTS…………………...…………………………………………..viii 

TABLE OF CONTENTS…………………………………………………………...............ix 

CHAPTER 

1. INTRODUCTION ........................................................................................................ 1 
1.1. Motivation ............................................................................................................ 2 
1.2. Scope .................................................................................................................... 3 
1.3. Outline .................................................................................................................. 4 

2. AN OVERVIEW OF KINETIC ANALYSIS OF GAIT.............................................. 6 
2.1. Inverse Dynamics ................................................................................................. 6 
2.2. BSIP Estimation ................................................................................................... 9 
2.3. Filtering of Noisy Gait Data ............................................................................... 11 

3. A BRIEF OVERVIEW OF THE METU GAIT ANALYSIS SYSTEM.................... 21 
3.1.Collection of Data................................................................................................ 22 
3.2. Processing of Data .............................................................................................. 23 
3.3. Mathematical Joint Model .................................................................................. 26 
3.4. Extent of Noise in Kiss ....................................................................................... 28 

4. ABOUT SPECTRAL BEHAVIOURS OF REPRESENTATIVE DATA ................. 36 
4.1. Power Characteristics of Representative Data.................................................... 36 
4.2. Discussion on the Results ................................................................................... 50 

5. ABOUT THE SECOND ORDER BUTTERWORTH FILTER................................. 53 
5.1 Continuous Formulation ...................................................................................... 53 
5.2. Regular Digital Formulation............................................................................... 58 
5.3. The Need for an Advanced Formulation ............................................................ 58 
5.4. Adaptive Digital Formulation............................................................................. 61 
5.5. Performance Assessment of the Adaptive Butterworth Filter ............................ 63 
5.6. Comments on the Performance........................................................................... 70 
5.7. Discussion on Practical Aspects ......................................................................... 73 

6. KissGaitM: A GAIT ANALYSIS TOOL DEVELOPED IN MATLAB ................... 76 
6.1. Processing of Marker Trajectories...................................................................... 79 
6.2. Processing of Force Plate Data ........................................................................... 81 



 x

6.3. Inverse Dynamics Computations........................................................................ 84 
6.4. Kinematic and Kinetic Results Produced by KissGaitM.................................... 91 
6.5. Sensitivity of Kinetic Results to BSIP Estimation and Filtering Methods ......... 98 
6.6. Comparison of Kinetic Results between KissGaitM and Kiss-GAIT .............. 100 

7. DISCUSSIONS AND CONCLUSIONS .................................................................. 103 

REFERENCES…………………………………………………………………………....108 

APPENDICES 

A. THE BILINEAR TRANSFORMATION ................................................................ 114 

B. SOME NUMERICAL METHODS USED IN THE WORK ................................... 115 
B.1. Coefficients for the Second-Order Digital Butterworth Filter ......................... 115 
B.2. Second-Order Central Difference Formulae .................................................... 115 
B.3. Root Mean Squared Error ................................................................................ 116 

C. THE NEWTON-EULER EQUATIONS OF MOTION........................................... 117 

D. MATLAB CODE OF THE ADAPTIVE BUTTERWORTH FILTER ................... 119 

E. SAMPLE OUTPUTS OF Kiss-GAIT AND KissGaitM .......................................... 121 

F. THE PUBLISHED JOURNAL ARTICLE………………………………………...124 

 



 1

 
 
 

CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

One of the best aspects of doing scientific study is that most of the work can most 
probably be established upon what has been clarified by former researchers; 

scientific progress is made possible by such accumulation of technical knowledge. 
This work, whose foundations are available in the extensive literature on gait 

analysis, is no exception. 

 

Walking is the most direct means of human locomotion and has unsurprisingly been 

subject to extensive research. The specialized area of research associated with 

human walking is called gait analysis. The dictionary meaning of gait is a 

particular way of walking. As its name implies, gait analysis aims to unveil the 

mechanisms of human gait; in other words, it tries to shed light upon the manner in 

which human beings walk. 

Gait analysis is composed of attempts to quantify human walking. It has a multi-

disciplinary nature and is by definition far from being purely theoretical. Analysis 

of human gait involves cooperation of specialists from medical and engineering 

sciences. Information gained through investigation of how the real biosystem, the 

human body, accomplishes the task of walking provides invaluable insight into real 

problems. 

Identification of pathological gait is perhaps the most direct application of gait 

analysis. Quantification of human gait provides clinicians with objective means for 

distinguishing between normal and abnormal gait. Gait analysis also plays an 

important role in decision making. Analysis results may imply potential injury, in 

which case preventive action can be taken. And if injury has occurred, gait data can 

lead to correct selection between treatment options, obviating unnecessary surgical 
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operation. Moreover, effectiveness of a treatment can be assessed by comparing 

pre- and post-treatment analysis outputs. In addition to these medical applications, a 

non-medical example might be retrieved from the field of robotics: Gait analysis 

can supply useful information about kinematics and kinetics of human walking to 

be used in the design and manufacturing of humanoid robots. In short, it is likely 

that there is a lot of potential in gait analysis, which has not yet been fully utilized. 

Basically, gait analysis aims to arrive at mathematical relationships that govern the 

task of walking. For this purpose, it uses information extracted from the human 

body. One commonly adopted information extraction method is to record 

trajectories of body landmarks while ground reactions are simultaneously measured. 

Markers attached to various locations on the body facilitate this trajectory recording 

process and force plates provide ground reaction readings. 

1.1. Motivation 

The METU Gait Analysis Laboratory is one of many laboratories in the world 

equipped with cameras and force plates. The laboratory has been in the service of 

academic and clinical gait analysis applications for nearly a decade. In spite of this 

seemingly long duration, there are several issues that have not yet received the 

necessary attention. 

This thesis is one of many studies about the METU Gait Analysis System called 

Kiss (Kas iskelet sistemi in Turkish, Kinematic support system in English). The 

very first works were completed during the initialization of the set-up and involve 

information on hardware and software that are still being used in the laboratory 

(Güler, 1998) and on trajectory generation algorithms employed by the system 

(Shafiq, 1998). Later studies assess marker tracking capabilities of the system 

(Karpat, 2000) and reliability / repeatability of the adopted analysis protocol 

(Söylemez, 2002). Another early work concerns with effects produced by skin 

induced deviation of markers (Afşar, 2001). Recently, comparison of kinematic 

results of the system with those of a commercial system was presented (Civek, 

2006). Another recent study is about sensitivity / compatibility of the analysis 
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protocol to variations in experimental methodology (Kafalı, 2007). Except for that 

of Güler (1998), none of the works listed here includes evaluation of kinetic results 

produced by the system. The corresponding dissertation of Güler (1998) evaluates 

results from a former, inferior hardware configuration which was not representative 

of the current configuration. 

The inverse dynamics model of Kiss is originally embedded in the software 

program Kiss-GAIT, which has been used to process marker trajectories to obtain 

kinematic as well as kinetic gait variables. The problem is that Kiss-GAIT was 

developed using the development tool Delphi (Borland Software Corporation), 

which does not provide a flexible programming environment in current standards. 

The calculation routine in Kiss-GAIT is therefore confined to a previously coded 

form which does not allow tests to be carried out to verify the existing inverse 

dynamics formulation and to determine the extent of the error propagation problem. 

This work intends to give a full and coherent investigation of kinetic analysis 

capabilities of the system. The inverse dynamics model utilized by Kiss-GAIT was 

examined in the course of the study and several modifications to improve its 

reliability and traceability are proposed in this text. Examinations firstly revealed 

that there were complications inherent in the smoothing and differentiation 

algorithms, which adversely affect joint power results produced by Kiss-GAIT. 

Secondly, it was seen that kinematic computations were realized in a circuitous 

manner, which requires a certain deal of computational effort and which, more 

importantly, is not straightforward to understand and to implement. 

1.2. Scope 

With the aim of devising a consistent smoothing and differentiation algorithm for 

Kiss, filtering methods mentioned in the related literature were critically reviewed. 

During the process, it was realized that the conventional Butterworth filter, the 

actual potential of which is underestimated by Kiss-GAIT, was a suitable noise 

suppression tool for gait analysis purposes. It is nevertheless undeniable that this 

tool, like all conventional filters, is poor in performance when it comes to 
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processing non-stationary signals. Experimentations conducted in this direction 

resulted in a modified version of the Butterworth filter, which is described in this 

text. This work shows that employment of either the conventional or modified 

version of this filter, followed by a numerical differentiation routine, ensures more 

reliable joint power curves. The reason why joint powers, not joint moments, are 

improved is the fact that powers are obtained by multiplication of moments with 

angular rates. Due to the dominancy of ground reactions in human gait, the effect of 

the performance of a filtering technique is limited in moment calculations. On the 

contrary, the filtering technique directly determines the quality of estimated rates; in 

other words; the quality of estimated joint powers. Moreover, an improvement for 

kinematic computations is suggested here. This improvement is merely a 

reformulation of the algorithm using a direct computational approach so that the 

corresponding section of the source code is more traceable than that of Kiss-GAIT. 

Various tests on previously acquired gait data were executed making extensive use 

of the flexible programming environment MATLAB (The MathWorks, Inc.) 

provides. Considering that the first aim of this thesis was to develop a MATLAB 

code for the inverse dynamics model of the METU Gait Analysis System, the 

graphical user interface KissGaitM developed during the course of the study serves 

this purpose. 

1.3. Outline 

Chapter 2 is a concise overview of techniques used in kinetic analysis of gait. 

Chapter 3 briefly introduces the METU Gait Analysis System and then discusses 

some important features about the system. 

Chapter 4 is an investigation of spectral behaviours of selected signals that may be 

regarded as representatives of gait data for purposes of designing and testing filter 

routines. 

Chapter 5 is devoted to the second order Butterworth filter. Its regular and adaptive 

formulations are presented and their performances are evaluated. 
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Chapter 6 includes the introduction of a gait analysis program that runs in the 

MATLAB environment. Several newly developed algorithms are described in detail 

and results are presented. 

Chapter 7 discusses several issues and tries to reach conclusions based on the 

discussions. Suggestions for further work are also presented. 

.
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CHAPTER 2 
 
 

AN OVERVIEW OF KINETIC ANALYSIS OF GAIT 
 
 
 

Objective assessment of gait is possible with quantitative availability of angular 

joint variables. It naturally follows that the primary concern of gait analysis is to 

reveal these variables. Gait analysis tries to accomplish this via two specialized 

tools: kinematic analysis and kinetic analysis, the prerequisite of the latter being the 

former. Kinematic analysis reveals how joint angles vary throughout the gait cycle. 

Joint moments, by means of which such angular motion is realized, are the outputs1 

of kinetic analysis, or inverse dynamics analysis in its current meaning. 

There are several problematic issues of kinematic analysis such as determination of 

joint centres2 and construction of marker coordinates. On top of difficulties related 

to kinematic analysis, inverse dynamics analysis has inherent complications that 

render the issue more problematic. Although the methods of inverse dynamics are 

well defined and easily applicable, it is not as straightforward to obtain the inputs it 

requires. This routine is basically an estimation process, where inertial parameters 

and accelerations of body segments must be calculated. Estimation is the correct 

word here as these are almost never directly known. The tools of estimation are 

numerous and will be briefly described in what follows after several points about 

inverse dynamics are discussed. 

2.1. Inverse Dynamics 

As opposed to direct dynamics, which is used to generate movement trajectories by 

manipulating known forces and moments applied on a mechanical system, inverse 

                                                      
1 Joint forces are also calculated in the process. Joint powers and work done by joints can also be 

computed. 
2 There are no biological rotation centres in reality; joint centres are just mechanical idealizations. 
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dynamics proceeds in a direction opposite to natural flow of events (Yamaguchi et 

al., 1991). It is the task of calculating forces and moments using acquired trajectory 

information, estimated body segment inertial parameters (BSIP), and frequently, 

measured external reaction forces and moments. 

Inverse dynamics is a very powerful tool for gaining insight into kinetics of motion; 

yet, it is well known to be prone to errors when applied to human motion. Errors 

arise from a number of sources among which are inaccuracies in estimated BSIP, 

inherent noise in observed marker trajectories and in ground reaction 

measurements, inaccuracies in locating joint centres, and unavoidable relative 

motion between markers affixed to skin and underlying bones (Riemer et al., 2007). 

A broader perspective may be assumed by claiming that there is a fundamental 

inconsistency present in analysis methods in that data from actual biosystems are 

used in mathematical models whose dynamic behaviours are not representative of 

the actual systems (Hatze, 2002). From whichever point of view the issue might be 

observed, the conclusion to be drawn is that each and every attempt to perform 

inverse dynamics analysis of gait will inevitably result in errors of varying degrees. 

Although far from being the most adequate one, the customary approach in motion 

analysis is to model the human body as a system of rigid objects, i.e. body 

segments, connected to each other by means of mechanical joints. Segmental 

interactions of such a system can easily be calculated by employing the Newton-

Euler formulae in a recursive manner. Calculations are initiated from segments with 

known boundary conditions, recursively progressing to neighbouring segments. 

This way, it is possible to obtain all forces and moments in joints as well as 

unknown external reactions provided that there are as many known variables as 

there are unknowns3. 

When no inputs other than observed trajectories and estimated BSIP are available, 

inverse dynamics is known to yield poor results as it relies on accelerations 

                                                      
3 Human running and gait in swing phase are examples of such determinacy, where ground reactions 

do not act on both feet simultaneously. Weight lifting might be another example; although both 
feet are in contact with ground, reactions may be assumed to be equally distributed owing to 
symmetry considerations. 
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obtained by double differentiation of noisy displacement data (Kuo, 1998). One 

remedy would be introducing additional information in the form of force plate 

measurements, which are almost always more precise than acceleration estimates. 

Calculations are performed in a bottom-up fashion; and naturally, zero boundary 

conditions are expected for the head, the top-most segment. However, this 

requirement is very likely to be violated. Inverse dynamics failure, which manifests 

itself as residual forces and moments, is generally inevitable (Kuo, 1998). The 

failure can be prevented by realizing that the system becomes over-determinate, i.e. 

known variables outnumber unknown ones, after the introduction of force plates. 

Such a state of redundancy may be exploited by applying optimization methods for 

improved inverse dynamics results (Cahouёt et al., 2002; Kuo, 1998). Besides force 

plate usage, it is obvious that utilization of additional sensors such as 

accelerometers and gyros is useful (Dariush et al., 2001; Zijlstra and Bisseling, 

2004). However, this solution would be expensive because of additional tools used 

and also, movement patterns of the (especially pathological) subjects could be 

altered by the presence of equipment. 

The most commonly utilized way of observing human gait is the one that is 

performed via assistance of cameras tracking markers affixed to certain landmarks 

on the body and of force plates. As can be inferred, this practice results in an over-

determinate set of equations in case of whole body analysis. However, the over-

determinate nature vanishes if the researcher is interested only in lower extremity, 

which is often the case. Markers are placed on lower portions of the body and 

inverse dynamics calculations are performed up to hip joints. In this case, boundary 

conditions, which are hip joint forces and moments, are not readily available 

because of the usually non-invasive nature of gait analysis. Hence, the resulting 

mathematical system is a determinate one and does not allow the use of 

optimization techniques; one has to settle for the outputs of classical Newton-Euler 

solution. The results are always far less accurate for hip joint than for ankle joint, 

and in between for knee joint (Kuo, 1998). The fact that ankle joint solutions are 

quite satisfactory is immediately attributed to direct measurement of ground 

reactions. 
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If a better model representing the real biosystem is not available, the only way to 

decrease inverse dynamics errors is to perform better in estimation processes. 

Estimated BSIP are likely to represent the actual parameters poorly due to several 

reasons such as financial constraints and scarcity of time. Typically, accelerations 

must be estimated after filtering noisy displacement measurements, which is a 

notoriously difficult task and must be handled by proper data conditioning 

techniques. In the following paragraphs, these estimation techniques are briefly 

introduced and the ones that are most suitable for the purposes of this study are 

indicated. 

2.2 BSIP Estimation 

Experimental assessment and prediction are techniques through which BSIP can be 

estimated (Cappozzo and Berme, 1990). A historical overview of most of these 

techniques can be found in Bjørnstrup (1995). In summary, experimental 

assessment is subject specific, time-consuming and most of the time expensive; yet, 

it produces the most accurate results. Prediction techniques are classified into two 

as geometrical approximation and regression equations. In geometrical 

approximation, shapes of body segments are represented with standard geometrical 

forms, for which inertial parameter calculations are quite straightforward. On the 

other hand, regression equations are available through previous statistical analysis 

of data from sample populations. Both of these prediction techniques dictate 

anthropometric measurements be taken, the numbers of which for geometrical 

methods often by far exceeding those for regression methods. Despite the fact that 

regression equations produce the least accurate results as compared with 

experimental assessment and geometrical approximation, it is the most commonly 

employed method owing to its superiority in terms of ease of use (Best and Begg, 

2006). However, care must be taken when using regression equations; it is an 

accepted rule that equations derived using data from a certain population are not 

representative for members of other populations (Bjørnstrup, 1995; Cappozzo and 

Berme, 1990; Durkin and Dowling, 2003). 
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There were notable efforts to adjust previously reported BSIP estimations so that 

they conform to conventional definitions. One of these is the manipulation of the 

comprehensive set of data obtained by Zatsiorsky et al. (1990a) with a gamma-

scanner method (Zatsiorsky et al., 1990b) by de Leva (1996). Another was 

performed by Dumas et al. (2007) to adjust data reported by McConville at al. 

(1980) and Young et al. (1983). In the former study, parameters originally 

referenced to bony landmarks are referenced to joint centres or other commonly 

used landmarks. The scope of the latter work is similar and it also includes 

orientations of principal axes of inertias. Dumas et al. (2007) express that their 

findings are consistent with those obtained by de Leva (1996). 

Prediction methods found in the literature produce substantial variations in BSIP 

estimates (Durkin and Dowling, 2003; Pearsall and Costigan, 1999; Rao et al., 

2005). Influence of these methods on inverse dynamics analysis results was studied 

by several investigators. Pearsall and Costigan (1999) advocate that differences in 

results produced by various techniques are small for human gait. They conclude that 

these differences, despite being small, would become more important in 

applications requiring higher accelerations such as running. On the contrary, Rao et 

al. (2005) show that significant differences might arise especially in hip joint 

moments even when slow gait is concerned. Variations between methods are most 

of the time larger in swing phase, where gait is not dominated by ground reactions, 

than those in stance phase. 

The comparative work of Durkin and Dowling (2003) investigates performances of 

several prediction methods from literature. They developed their own regression 

equations after calculating frontal plane BSIP using dual energy x-ray 

absorptiometry. They show that the new regression equations are superior to 

existing methods; however, these equations are not generally applicable since they 

are only valid for the frontal plane. The authors state in conclusion that the 

regression equations from Zatsiorsky et al. (1990a) may be the best to be used for 

prediction purposes, especially since equations for both males and females are 

available. 
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As mentioned above, equations from Zatsiorsky et al. (1990a) were adjusted by de 

Leva (1996). Owing to segment end point definitions, these adjusted versions are 

directly applicable to the inverse dynamics methods used in this thesis work. 

Therefore, these equations are used for BSIP estimation, as is the practice by other 

authors (Ren et al., 2005, 2007; Riemer et al., 2007; Schache and Baker, 2007; 

Schache et al, 2007). 

2.3. Filtering of Noisy Gait Data 

In a general context, the word filtering means to enhance data quality by separating 

errors from signals. Data acquisition is almost always followed by some kind of 

filtering since captured signals are unavoidably contaminated by various error 

types. Errors present in gait data are discussed in detail in a number of studies 

(Lanshammar, 1982b; Hatze, 1990; Woltring, 1985, 1990, 1995; Wood, 1982). To 

summarize, these errors may in general be divided into two as systematic and non-

systematic errors. The former group is composed of camera calibration errors, 

deviations of skin-fixed markers from their intended positions, operator errors in 

setting up the equipment, electrical interference, etc. while the latter refers to 

random errors, namely noise, mainly arising due to quantization process such as 

analog to digital conversion. Noise is assumed to be additive, normally distributed, 

uncorrelated and to occupy a wide frequency band whereas systematic errors may 

arise even in the form of constant biases. It depends on circumstances which kind of 

error is more harmful. In an experiment, where most of systematic errors are 

prevented and/or eliminated, random errors would be the primary factor to be got 

rid of. However, if, for example, marker displacement caused by soft tissue 

movement beneath is at excessive levels, there is no point in wasting time with 

trying to suppress noise (Macleod and Morris, 1987). 

In a narrower context, filtering is increasing signal-to-noise ratio by means of noise 

suppression. There are a large number of filters available with different features. It 

is a crucial task to select a suitable one depending on requirements dictated by the 

application. Whenever exact power spectra of signal and noise are known, use of 

the Wiener filter is the optimal approach (D’Amico and Ferrigno, 1990; Woltring, 
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1985, 1990, 1995). This, however, is certainly not the case for gait analysis. Only 

assumptions can be made regarding the characteristics of these two. The first 

assumption, as stated above, is that noise is located on a wide frequency band. 

Secondly, it is assumed that gait signals are band-limited (D’Amico and Ferrigno, 

1990; Lanshammar, 1982b; Wood, 1982). It automatically follows these 

assumptions that spectra of signal and noise do unavoidably overlap and that 

outside the region where they overlap, i.e. on intervals of high frequency, noise 

dominates the spectrum. Figure 1 shows power spectra of typical gait signal and 

noise. 
 
 
 

 
 

Figure 1. Power spectra of typical gait signal (solid line) and noise (dotted line) (Wood, 1982). 
 
 
 

It is this nature that renders the art of filtering a highly problematic process. For 

demonstration purposes, a displacement signal contaminated by noise is considered 

here. The magnitude of high frequency noise is negligible as compared to that of the 

signal. Such a situation might be represented as below: 

( ) ( ) ( )sin 0.01sin 20y t ωt ωt= + . 

When differentiated twice, the expression for the acceleration signal becomes: 
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( ) ( ) ( )2 2sin 4 sin 20y t ω ωt ω ωt= − −�� . 

As seen, the result is dominated by amplified noise and the obtained signal is far 

from the original acceleration. Figure 2 illustrates this amplification phenomenon. It 

is therefore apparent that high frequency noise present in acquired data must be 

suppressed before any further signal processing. 

 
 
 

 
 

Figure 2. Comparison of clean and contaminated signals. Displacement signals are deliberately 
shifted for the sake of visual intelligibility. 

 
 
 

Complete elimination of noise from contaminated measurement is very difficult, if 

not impossible; yet, significant noise suppression can be achieved by convenient 

signal conditioning. The theoretical precision limit attainable by any smoothing and 

differentiation technique is (Lanshammar, 1982b): 

( )
2 2 1

2

2 1

k

k
s

σ ωσ
f π k

+

≥
+

. 

Here, σk and σ are the standard deviations of noise in kth and 0th derivatives, 

respectively; ω is the bandwidth of the signal; and fs is the sampling frequency. It is 

immediately seen that noise contribution in derivatives can be suppressed more 
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when signals are sampled at higher rates4. This naturally necessitates more 

expensive equipment. Even if such acquisition systems are affordable, it is subject 

to questioning how a reduction in sampling interval affects the amount of noise 

passed to signals (Woltring, 1995). Therefore, the best way to make sure that least 

possible amount of noise leaks to higher derivatives seems to be applying efficient 

noise reduction after data have been acquired. Therefore, researchers have resorted 

to various filtering techniques in the history of biomechanics. 

2.3.1. Conventional Tools 

These are methods that have been used since the beginning of biomechanical 

studies by researchers who sought quick solutions to eliminate unwanted 

components inherent in captured biomechanical signals. An extensive review of 

these techniques is available in Wood (1982). Conventional tools for smoothing can 

be examined under four main groups described below. 

Polynomials: Fitting of polynomials to signals in least squares sense has been one 

of the most useful tools in experimental data analysis. A single, global polynomial 

can be utilized to represent the entire signal (Wood, 1982) or multiple, local 

polynomials can be fitted to a number of successive data points (Lanshammar, 

1982b). The derivative can then be obtained by analytical differentiation. 

Polynomial fitting is definitely a useful approach when the aim is to gain 

preliminary insight into some behaviour; however, it lacks flexibility; that is, as the 

name implies, it is confined to a certain, predefined mathematical form. Whenever 

the phenomena under investigation dictate signals of polynomial nature, such as the 

trajectory of a falling object, least squares polynomial fitting is a natural candidate 

for data representation. Since this is seldom the case in reality, even if polynomials 

may still be used to represent the original signals themselves, derivative calculations 

following polynomial fitting could lead to detrimental results as it tends to over-

smooth inputs (Simons and Yang, 1991). 

                                                      
4 The lower limit for the sampling rate a signal must be sampled at is twice the highest frequency 

component present in the signal, as dictated by the sampling theorem (Nyquist, 1928; Shannon 
1949). 
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Smoothing Splines: The need for more flexible functional representations which can 

accommodate time-varying curvatures better than polynomial functions do, led 

researchers to explore spline functions (Wood, 1982). When globally viewed, a 

spline function is a single continuous function whereas it is actually a combination 

of a number of different polynomials. It can either be made to pass through data 

points or, by adjusting its least squares constraint (smoothing factor), it is possible 

to obtain smooth versions of contaminated signals. As splines are mathematical 

functions, their derivatives are analytically available. 

Fourier Analysis: Representing a signal as a sum of trigonometric functions enables 

the user to gain insight into the frequency domain characteristics of any occurrence. 

Such representation of digital data is made possible by discrete Fourier transform 

(Cooley and Tukey, 1965), which is a powerful tool that transforms signals in time 

domain into their spectral counterparts. Digital filtering in frequency domain can be 

achieved by application of various windowing techniques (Gold and Rader, 1969; 

Wood, 1982). A detailed account of windows used in harmonic analysis can be 

found in Harris (1978). While harmonic analysis may be used as a forerunner of 

digital filter design, it also provides economic means of storing data since complete 

time history can be represented by a few Fourier coefficients (Wood, 1982). As is 

the case with polynomials and splines, Fourier series representation provides 

analytical derivatives. 

Digital Filters: Digital filtering may indicate any form of digital signal processing. 

In the current narrow context, the term refers to discrete-time low-pass smoothing, 

which has been an essential tool in biomechanics (Robertson and Dowling, 2003). 

Digital filters may either be recursive or non-recursive, the difference being in that 

the recursive filters use not only raw but also filtered data points to filter raw data 

points. Recursive filters consequently have more memory than non-recursive ones, 

which combine only raw data points in calculations. Since non-recursive filters 

usually require many coefficients, recursive formulation is often preferred (Wood, 

1982). It should be noted that data need to be fed both in forward and backward 

directions to recursive digital filters for phase shift elimination. Another problem 

inherent in recursive filtering is the need for previously filtered data points, which 
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are not available in the beginning of the process. Several approaches are available to 

overcome this difficulty. Initial values may be assumed zero, filtering may be 

initiated from a sufficient number of points ahead, or padding techniques may be 

applied (Derrick, 1998; Giakas et al., 1998; Smith, 1989; Vint and Hinrichs, 1996). 

Unlike the three methods above, digital filtering does not yield analytical results; 

time series it provides must be numerically differentiated to obtain signal 

derivatives. First or second order central differences are generally preferred for 

derivative calculation. 

Each filtering technique briefly described above has its own key parameter that 

influences its smoothing behaviour. In spline filtering, a smoothing factor should be 

selected and for frequency domain methods, shape of the window should be 

determined (Woltring, 1985). As for digital filtering, one must decide on the cut-off 

frequency. The former parameters, namely the smoothing factor and the window 

type, are equivalents of the latter. It was indeed shown that spline smoothing and 

digital filtering were identical for special cases of these two methods (Craven and 

Wahba, 1979). And since digital filters are often derived by analogy to continuous 

forms, the link between frequency domain windows and cut-off frequency is 

obvious. The key point here is that there are many algorithms which in theory lead 

to identical filters (Gold and Rader, 1969). 

2.3.2. Automatic Determination of Filter Parameters 

As mentioned above, estimating derivatives of noisy data is an ill-posed problem, 

meaning that the estimation process is quite sensitive to errors in measurements; 

that is why acceleration patterns obtained by differentiation could be totally 

different while estimated displacement data produced by various filter 

configurations might be virtually identical (Woltring, 1985). This indicates that if 

kinetic analysis of motion is to be performed, filter parameters must be sufficiently 

well adjusted. If performed manually, such adjustment procedure is based on trial 

and error as the operator must evaluate the outputs before proceeding; moreover, it 

potentially leads to non-homogeneous results because subjective user opinion is 

employed in the process (D’Amico and Ferrigno, 1990). To be able to avoid manual 
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adjustment of filter parameters, several automatic filtering techniques were 

developed. These techniques estimate optimal filtering parameters based usually on 

statistical or power spectrum information of signals (Giakas and Baltzopoulos, 

1997a).  

One popular technique is generalized cross-validation which provides an estimate 

for the smoothing parameter to be used with splines (Craven and Wahba, 1979; 

Dohrmann et al. 1988). A second spline method is least squares cubic splines that, 

as obvious from its name, combines the concepts of least-squares and splines 

(Simons and Yang, 1991). Another technique is the use of regularized Fourier series 

that makes use of the periodogram of the data sequence (Hatze, 1981). The method 

called model-based bandwidth-selection allows automatic shaping of filter windows 

(D’Amico and Ferrigno, 1990). The technique of residual analysis (Winter, 1990) 

and the works of Capello et al. (1996) and Yu et al. (1999) describe how to define 

the optimal cut-off frequency to be used with Butterworth digital filter5. A 

comparative assessment of these automatic filtering techniques was performed by 

Giakas and Baltzopoulos (1997a). Their results show that bandwidth-selection 

followed by Butterworth filtering and spline methods perform best with walking 

data. They conclude by stating that there is no optimal solution for biomechanical 

data filtering and limitations of each method and signal characteristics in time and 

frequency domains should be examined. 

2.3.3. The Concept of Non-stationary Signals 

Although it is not entirely incorrect to claim that an automatic filtering technique 

can handle the smoothing process in an optimal manner, it is only as efficient as the 

conventional method it improves. The main assumption that the conventional 

methods are based upon is that signals to be processed are stationary (Woltring, 

1990, 1995). This might be valid for various applications; but, is not always the 

case for gait analysis. In spite of the fact that gait signals are mostly contained 

within a relatively narrow band of frequencies (Angeloni et al., 1994; Winter, 

                                                      
5 Butterworth filters (Butterworth, 1930), introduced to the field of biomechanics by Winter et al. in 

1974, find wide acceptance owing to their simplicity and acceptable performance. 
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1990), force transients associated with impacts tend to violate this basic assumption 

(Woltring, 1990, 1995). In typical gait, as an example, an ankle marker comes to 

rest soon after heel-strike, stays nearly motionless until heel-off, after which it 

swings in the air. In other words, in certain portions of the gait cycle, the signal 

contains more high-frequency components than others, meaning that its power 

changes in time; that is why it would be incorrect to regard it as stationary. Another 

example is running, which unquestionably involves impacts. As demonstrated by 

van den Bogert and de Koning (1996), conventional filtering overlooks the correct, 

non-stationary nature of this phenomenon, which, in turn, results in unacceptable 

errors in inverse dynamics results. 

The discussion above dictates that filters which aim to smooth non-stationary 

signals must accommodate time dependent changes in signal structure. This issue 

was previously addressed by Dowling (1985) and Lanshammar (1982a): to be able 

to have effective noise removal while preserving the correct acceleration pattern, it 

is necessary to change the filtering method according to the interval being 

processed. It should hence be noted that usefulness of conventional filters against 

non-stationary signals is quite limited since they cannot always accommodate 

changes in local signal structure regardless of them being optimized or not. 

2.3.4. Advanced Tools 

Based on such inadequacy of conventional filters, new filtering methods were 

introduced to the field. These were all adapted from existing techniques and are said 

to able to process non-stationary signals. The first of such studies employed wavelet 

transform, which can be described as an alternative to Fourier transform (Ismail and 

Asfour, 1999). The results greatly varied depending on the selected mother wavelet 

function and decomposition level. Another method involves the use of Wigner 

function (Georgakis et al., 2002a; Giakas et al., 2000). The method effectively 

represents the signal in both time and frequency domain; however, it impractically 

requires five parameters to be defined, one of which is the time of impact. For low-

impact signals, the procedure was shown to yield inferior results compared to 

conventional filtering even when the parameter selection is automated (Georgakis et 
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al., 2002b). Thirdly, singular spectrum analysis based on multivariate statistics was 

proposed (Alonso et al., 2005a). The algorithm decomposes the original signal into 

components of decreasing weight. A window length and number of components to 

be used for reconstructing the decomposed signal must be determined, which is a 

manual process. The last technique is the usage of Hodrick-Prescott filter which is a 

standard tool used to decompose a macroeconomic time series into non-stationary 

and stationary components (Alonso et al., 2005b). Smoothing with this filter, which 

requires a single parameter to be set, was shown to yield similar results to those of 

generalized cross-validated quintic spline method. 

These methods are certainly promising. Respective publications reveal that they 

almost always perform better than conventional filters, especially in case of non-

stationary signals. However, these are not yet fully established and need further 

improvement in the sense that selections of their parameters need to be settled on 

more solid basis. Only one of them is said to be automatic. So, it would be difficult 

for a user to tune their parameters if he/she is not acquainted with what constitutes 

the technical base behind these filters. 

A part of this thesis work is devoted to a new filtering technique introduced by Erer 

(2007)6, which is a modified, adaptive version of the Butterworth digital filter. 

Applied to benchmark data, the adaptive filter was shown to produce best results 

found in the literature. Unlike advanced filters, this method remains within the 

bounds of classical digital filtering approach while it can handle non-stationary 

data, unlike conventional filters. After lower and upper bounds for cut-off 

frequencies are specified by the user, this semi-automatic algorithm determines how 

individual cut-off frequencies are varied throughout the data sequence based on 

estimated velocity and acceleration information7. In other words, the filter has a 

                                                      
6 The corresponding article can be found in Appendix F. 
7 Most automatic filtering techniques based on digital filtering retrieve information only from 
displacement data (Giakas and Baltzopoulos, 1997b). 
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variable cut-off frequency distribution defined for each data point. Since the 

distribution is determined by local signal characteristics, the filter is able to adapt 

itself to changes in frequency content. 
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CHAPTER 3 
 
 

A BRIEF OVERVIEW OF THE METU GAIT ANALYSIS SYSTEM 
 
 
 

The METU Gait Analysis Laboratory (Figure 3), located at the Department of 

Mechanical Engineering, is the first gait analysis laboratory of Turkey. The METU 

Gait Analysis System, a.k.a. Kiss, is a non-commercial system which is equipped 

with six cameras and two force plates for data acquisition purposes. The system has 

the necessary software programs that operate during and after the data acquisition 

process. The final outputs of the system are kinematic and kinetic data which enable 

assessment and interpretation of gait patterns on quantitative bases. 
 
 
 

 
 

Figure 3. Overview of the laboratory. 
 
 
 

This chapter concentrates on some components of the METU Gait Analysis System 

that are relevant to the scope of this work. More detailed discussions on various 
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aspects of the system can be found elsewhere (Afşar, 2001; Civek, 2006; Güler, 

1998; Kafalı, 2007; Karpat, 2000; Shafiq, 1998; Söylemez, 2002). 

3.1. Collection of Data 

All data collection routines during any Kiss experiment are governed by a program 

called Kiss-DAQ. The standard collection protocol is composed of two main parts: 

the static trial and the dynamic trial. During both of the trials, images of a number 

of reflective markers attached to various landmarks on lower extremities are 

captured at 508 Hz by default. Considering the low-pass nature of human gait, this 

value may safely be accepted to be more than twice of the highest frequency value 

possible for human gait. So, the sampling theorem (Nyquist, 1928; Shannon, 1949) 

is not violated. 

The static trial requires the subject to stand still for a specified duration so that data 

required for further calculations can be obtained with high reliability. The dynamic 

trial, on the other hand, is the phase of the experiment where the subject actually 

walks. During the dynamic trial, force plate data (the default sampling frequency is 

500 Hz) synchronized with camera images are collected. Marker configurations for 

the static and dynamic trials are respectively seen in Figure 4 and Figure 5. 
 
 
 

 
 

Figure 4. The static trial (adapted from Kafalı (2007)). 

                                                      
8 A discussion on the fact that this value is only the apparent sampling frequency is available below. 
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Figure 5. The dynamic trial (adapted from Kafalı (2007)). 
 
 
 

The static trial is practised to be able to relate technical reference frames observed 

in the dynamic trial to non-observable anatomical reference frames. It involves 

employment of 19 markers, 13 of which are those used in the dynamic trial. Extra 

information supplied by the remaining 6 markers enables hip, knee and ankle joint 

centres to be estimated. It is thereafter possible to construct the assumedly constant 

transformation matrices that are used to obtain anatomical reference frames from 

technical ones. Supplied with such crucial transformation data from the static trial, 

dynamic trial data are processed to obtain kinematic (angles) and kinetic (moments, 

powers) joint variables. 

3.2. Processing of Data 

After image data are acquired, static and dynamic marker trajectories are extracted 

via the program Motion Tracking. It should be noted that this trajectory extraction is 

partly a manual process, which requires user proficiency. Force plate data become 

readily available after the acquisition process and do not need post-processing. 

Before the trajectories and force plate data are fed into Kiss-GAIT, the gait analysis 

program of Kiss, they must be packed together with the experimental setup file by 

the intermediate piece of code named BVD Filer. 

 
 
 



 24

 
 

Figure 6. A screenshot from Kiss-GAIT. 
 
 
 

As inputs, Kiss-GAIT accepts the data package mentioned above and the subject’s 

anthropometric data, i.e. weight and height of the subject and several distances 

measured on the subject. The analysis process needs to be initiated with user 

specification of the gait events which are heel-strikes and toe-offs. The gait events 

can be specified making use of the walking stick-man animation and ground 

reactions plots, as seen in Figure 6. After this manual step, the code is ready for 

automatic calculation several gait variables: time distance parameters, joint angles, 

joint moments and joint powers. Sample outputs of Kiss-GAIT are included in 

Appendix E. 

Because the primary aim of this thesis study is to develop a computer code to assess 

inverse dynamics model of Kiss, it is convenient here to present some key points in 

calculation routines of Kiss-GAIT that are unjustified. The thing that complicates 

the issue is the absence of a complete reference about these routines. The 

information below was extracted partly from the dissertation of Güler (1998), partly 

from the source code of Kiss-GAIT, and partly through personal communication. 
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3.2.1. Question Marks on Calculation Routines of Kiss-GAIT 

Kiss-GAIT initiates the mathematical manipulation of marker trajectories by 

employing a digital filter for noise suppression purposes. The filter is a dual pass 

second-order Butterworth filter9 whose cut-off frequency was found (through 

inverse solution of filter coefficients) to be equal to 11.1 Hz. This; however, is only 

the first part of a dual smoothing process. Filtered marker trajectories are used in 

the construction of anatomical reference frames. These frames are then utilized to 

obtain joint angles. At this point, the second smoothing process is applied. 9th order 

polynomials are fitted in least-squares sense to joint angle histories such that each 

time point in a series is assigned a polynomial whose coefficients are determined 

using 41 (20 on either side) data points. Obviously, first and last 20 data values 

remain unchanged. This dual smoothing approach certainly yields smooth (probably 

over-smooth) patterns. However, it is not clear why such a method was preferred; a 

single smoothing process having solid spectral background should be sufficient 

most of the time.  

Figure 7 demonstrates that Kiss-GAIT introduces temporal shift in the course of this 

dual processing. The raw angle is the sagittal plane hip joint angle derived after the 

first filtering process and integrated velocity refers to the same angle calculated by 

integrating the joint angular velocity which is obtained after the second filtering 

process. The reason why the program behaves so is unknown. 

 
 
 

 
 

Figure 7. Time shift introduced by Kiss-GAIT. 
 

                                                      
9 A detailed account for the second-order Butterworth filter is presented in Chapter 5. 
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Another unjustified action of Kiss-GAIT is how it calculates joint kinematics. The 

program feeds the Newton-Euler (N-E) equations with kinematic variables obtained 

with a recursive algorithm that suits best for robot manipulators (Fu et al., 1987). In 

fact, the joint model used by Kiss gives the impression that such an approach is the 

direct way for kinematic calculations. However, the computational burden can be 

decreased by utilizing the obvious method which is calculating kinematic variables 

directly from marker data10. Furthermore, the assumption of Kiss-GAIT that the 

pelvis frame remains parallel to the global frame is needles, if not intolerably 

wrong. The angular velocity of the pelvis segment can indeed be calculated using 

the pelvis-to-global transformation matrix. 

A third problematic issue is the BSIP estimation method of Kiss-GAIT. The source 

code reveals some regression equations which are not the ones presented by Güler 

(1998). The origin of these equations is unknown. Instead of relying on such 

untrustworthy information, usage of the aforementioned regression equations (de 

Leva, 1996) is adopted in this work. 

3.3. Mathematical Joint Model 

Kiss adopts a three degree-of-freedom joint model to express joint variables. The 

rotation sequence between a proximal and a distal segment is defined as shown in 

Figure 8. Such a sequence can be represented by the Hartenberg-Denavit (H-D) 

convention (Özgören, 2004). Unit vectors of the frames defined by the H-D 

representation are also given in the figure. 

In this convention, Frame 0 is attached to the proximal and Frame 3 is attached to 

the distal segment. There are two more segments which only virtually exist (d1 = d2 

= 0). Having Frame 1 and Frame 2 attached on, they only facilitate the 

mathematical solution of joint variables. Table 1 summarizes the variables of the H-

D convention valid for this specific case11. 

                                                      
10 Chapter 6 includes a step-by-step definition of this algorithm. 
11 Assuming that the proximal segment is the stationary base with respect to which the other 

segments rotate through three angles may facilitate understanding of the rotating sequence. 
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Figure 8. Joint model used by Kiss. 
 
 
 

Table 1. H-D parameters of the joint model. [F: frame number, θ: rotation about 3uG , α: rotation 

about 1uG , d: offset in direction of 3uG , a: offset in direction of 1uG ] 
 

F 1 2 3
θ joint var. joint var. joint var. 
α -π/2 -π/2 -π/2
d -d1 -d2 -d3
a 0 0 0

 
 

The distal-to-proximal transformation matrix ( ),ˆ p dC 12 that transforms vector 

quantities expressed in the distal frame (Frame 3) into their equivalents in the 

proximal frame (Frame 0) is expressed in terms of exponential rotation matrices as: 

( ) 1 1 1
3 1 3 2 3 3, 2 2 2ˆ

π π πu u up d u θ u θ u θC e e e e e e
− − −

=
G G GG G G

. 

When written in open form, the expression becomes: 

                                                      
12 The hat indicates a square matrix. 
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( )
1 2 3 1 3 1 2 1 2 3 1 3 11 12 13

,
1 2 3 1 3 1 2 1 2 3 1 3 21 22 23

2 3 2 2 3 31 32 33

ˆ p d

cθ cθ cθ sθ sθ cθ sθ cθ cθ sθ sθ cθ C C C
C sθ cθ cθ cθ sθ sθ sθ sθ cθ sθ cθ cθ C C C

sθ cθ cθ sθ sθ C C C

+ − +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

, 

where s and c stand for sine and cosine functions, respectively. The transformation 

matrix above is obtained through multiplication of two transformation matrices 

derived using marker trajectories. The multiplication is: 

( ) ( ) ( ), , ,ˆ ˆ ˆp d p g g dC C C= . 

The above expression states that the distal-to-proximal transformation matrix is 

obtained when the transpose of the proximal-to-global13 transformation matrix is 

pre-multiplied with the distal-to-global transformation matrix. 

Once the transformation matrix between the segments is available, the three joint 

angles may then be solved for as below: 

( )
( )
( )

1 2 22 12

2 32

3 2 33 31

atan , ,

acos ,

atan , .

θ C C

θ C

θ C C

=

=

= −

 

This inverse kinematics solution cannot be applied for θ2 = 0 and θ2 = π. Such a 

configuration implies the distal segment becoming horizontal, i.e. parallel to the 

ground, which is obviously never realized during human gait. 

It should finally be noted that all three angles are π/2 for an ideal upright posture 

and their clinical equivalents for joints on either side of the human body are: 

• θ1 : Flexion (both for right and left sides), 

• θ2 : Abduction / Adduction (right / left), 

• θ3 : External / Internal Rotation (right / left). 

3.4. Extent of Noise in Kiss 

Like all data acquisition systems, Kiss-DAQ is only able to capture contaminated 

versions of signals instead of the signals themselves. It is well known that noise 

                                                      
13 The laboratory frame is the global frame. 
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present in acquired data may adversely affect final outputs if not dealt with 

properly; and, the first condition of being able to take proper measures is being 

aware of the extent of noise contamination in recorded data. This section, therefore, 

aims to shed some light upon time and frequency domain behaviours of Kiss marker 

and force plate signals. Data investigated here are from one specific gait trial; 

however, unless the system configuration is modified, generalized conclusions 

about the extent of noise in Kiss may be drawn based on the results. 

 
 
 

 
 

Figure 9. Time and frequency domain behaviours of displacement signal of a stationary marker. 
 
 
 

The first column of plots in Figure 9 show recorded global coordinates of a 

stationary marker; coordinates of a marker placed on the second metatarsal recorded 

during a static trial to be more specific. It is seen that the measurements are 

contaminated by certain amount of noise as expected (the corresponding standard 

deviations can be found in Table 2). The issue which is of particular importance; 

however, is that y coordinates behave markedly different than x and z coordinates 

do. It seems that measurements in y axis contain not only random noise but also 

certain type of systematic error that manifests itself as harmonic noise contribution. 

When examined closely, it is seen that the spikes seen in y coordinates are 
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positioned exactly 0.04 s apart (positive-to-positive or negative-to-negative peak 

distance) from each other, which indicates a frequency of 25 Hz. This is the result 

of separate usage of even and odd fields of camera images (Karpat, 2000; Shafiq et 

al., 2000); as a result, it is a deliberate contribution for rather than contamination. 

The natural price paid for such an action is a decrease in visual smoothness of 

trajectory curves. Other than that, the modification is harmless as it introduces 

harmonic components oscillating exactly at a certain frequency which can easily be 

dealt with by filtering. The phenomenon is also clearly visible in the provided 

spectral density plots. The components located at 25 Hz dominate the spectrum for 

all coordinates, not only for y coordinates. The reason why this effect is more 

pronounced in y axis can be attributed to the location where the static trial is 

executed; tracking qualities of Kiss vary depending on where in the calibration 

volume a marker is positioned (Karpat, 2000). 

The situation is not different for a dynamic marker trajectory. Figure 10 shows 

trajectory components of the same metatarsal marker during gait. Since the range of 

x coordinates is large, the effect of noise is not seen at this scale. On the other hand, 

for y and x readings, whose ranges of values are at the same order of magnitude, 

noise contamination is visible. As in the case of static data, oscillations at 25 Hz are 

most apparent in y axis. 

Figure 11 presents spectral densities of the trajectory components. Dominated by 

the frequency content of the motion itself, the 25 Hz contributions are not 

prominent for x and z axes. On the contrary, data in y axis are visibly affected in 

spite of their relatively (with respect to data in other axes) higher harmonic content. 
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Figure 10. Trajectory components of a metatarsal marker. 
 
 
 

 
 

Figure 11. Spectral contents of trajectory components of a metatarsal marker 
 
 
 

Although they are visually dominated by the oscillations at 25 Hz, it needs to be 

indicated that effects of random noise in measurements are still the most detrimental 

constituents considering the differentiation process that is applied on marker 

trajectories. A separate investigation of effects of random noise is very difficult, if 

not impossible14, here since these two types of errors are superposed in the 

measurements. 

                                                      
14 An ideal filter approximation with a cut-off frequency of less than 25 Hz might be tried; however, 

the action may not be justified due ringing effects the filter will produce. 
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It might be subject to question how the above demonstrated contamination in Kiss 

influences its marker tracking accuracy. A simple test is to track two markers the 

distance between which is known. Without the need for specialized setup, such a 

test can be performed using standard static and dynamic trial data. An ankle marker 

is assumed to be located both on the foot and shank segments since it is placed on 

the joint between. Thus, the distance between an ankle marker and a metatarsal 

marker on the same foot is nearly constant during gait. Likewise, the distance of a 

knee marker to an ankle marker on the same shank is assumed to remain the same 

throughout the whole gait cycle. Successful approximations to these distance values 

can be extracted from static trial coordinates and the dynamic accuracy of the 

system may then be judged accordingly. Such an assumption is likely to hold 

because the static trial gives the opportunity of recording marker coordinates while 

they are almost motionless; the averaging process should effectively eliminate the 

random noise in readings. Moreover, it is known that marker tracking performance 

of Kiss at the centre of the calibration volume, which is where static trials are 

executed, is acceptable (Karpat, 2000). 

Time variations of calculated distances between the markers are shown in Figure 

12. What is immediately seen is that the dynamic accuracy of the system is worse 

than its static accuracy (mean and standard deviation values of the curves are 

presented in Table 2). Another important issue regarding dynamic accuracy, which 

is obvious in the estimation of the distance between the knee and ankle markers, is 

that estimation patterns are sensitive to the gait phase the subject is in. The interval 

approximately between 1 and 1.35 s corresponds to the swing phase of gait. During 

this phase, the ankle marker gains considerably higher velocity values compared to 

those of the knee marker. The poorness of estimation during this interval implies 

that fast moving markers are relatively difficult to be tracked by Kiss. Since the 

relative velocity between the ankle and metatarsal markers does not increase as 

much, the distance between them is estimated more consistently. It should finally be 

noted that the reasoning above neglects skin induced deviations of markers, which 

may not be altogether negligible (Afşar, 2001). 
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Figure 12. Estimated distances between markers from static and dynamic data. 
 
 
 

Table 2 serves as a performance summary of marker tracking capabilities of Kiss. 

Although the specific values presented here are valid only for the data set examined 

here, browsing through Kiss database showed consistent behaviour among all sets 

acquired with the same (default) system configuration15. As mentioned above, the 

assumption with which the table was filled in is that mean values of static 

measurements include negligible error in representing actual values. As also 

illustrated in Figure 9 and Figure 12, standard deviation of static marker coordinates 

is highest for y axis and static estimation accuracy of Kiss is quite better than its 

dynamic accuracy. 

 
 
 
 
 
 
 
 
 

                                                      
15 There are some data sets which exhibit different characteristics. They were produced with a 

problematic system configuration that caused the images to be taken at 25 Hz; synchronization 
failure between force plate and marker data is inevitable. 
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Table 2. Mean and standard deviation values of estimations. 
 

 Reference Estimated 

x Coordinate (Static) 000.00 000.00 ±  0.77 

y Coordinate (Static) 000.00 000.00 ±  2.87 

z Coordinate (Static) 000.00 000.00 ±  0.54 

Distance on Foot (Static) 157.59 157.59 ±  1.04 

Distance on Foot (Dynamic) 157. 59 156.44 ±  3.96 

Distance on Shank (Static) 470.79 470.79 ±  0.49 

Distance on Shank (Dynamic) 470.79 468.70 ±  5.50 

 
 
 

Unlike marker data, force plate data do not undergo the differentiation process. This 

means that noise levels in ground reactions are not as critical as those in marker 

trajectories since they are not amplified during calculations. Moreover, it is most of 

the time true that force plate measurements are far accurate than marker 

coordinates. Based on these facts and knowing that calibrated force plates provide 

consistent readings, it may not be necessary to investigate ground reaction signals; 

nonetheless, out of a sense of completeness, time and frequency domain behaviours 

of a typical vertical ground reaction force signal is presented in Figure 13. Besides 

being contaminated by random noise and illustrating typical low-pass 

characteristics consistent with the nature of human gait, local spikes present at 50 

Hz and at its integer multiples (harmonics) are distinguished at once. This is nothing 

but the disturbance coming from power lines, which dominates the spectrum when 

the force plate is not trod on. This already insignificant error source becomes 

altogether negligible after force plate signals are downsampled to 50 Hz, which is 

the frequency at which marker coordinates are sampled. 
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Figure 13. Time and frequency domain behaviours of typical vertical reaction force. 
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CHAPTER 4 
 
 

ABOUT SPECTRAL BEHAVIOURS OF REPRESENTATIVE DATA 
 
 
 

Gait data, which are among the most studied biomechanical signals, possess low-

pass characteristics, meaning that no appreciable components exist above a certain 

frequency limit (D’Amico and Ferrigno, 1990; Lanshammar, 1982b; Wood, 1982). 

It should also be noted that depending on gait speed and on which portion of lower 

extremity the information belongs to, frequency contents of signals may exhibit 

non-stationary features (Woltring, 1990, 1995). As stated previously, this fact 

complicates the filtering process necessary to be applied to acquired data before 

further processing. The quality of calculated acceleration signals are directly 

determined by the quality of the preferred filtering technique. 

It is customary in gait analysis to test smoothing and differentiation techniques on 

benchmark data, which are assumed to represent biomechanical signals, readily 

available in the literature to be able to assess their effectiveness. 

4.1. Power Characteristics of Representative Data 

In this section, four benchmark signals from literature and several gait signals 

provided by KISS are examined from a spectral point of view. None of the 

benchmark signals was produced by gait; however, three of them are clearly more 

challenging since their frequency contents extend to frequency values far higher 

than those of any possible gait signal; and furthermore, they involve impacts, i.e. 

severe accelerations of short duration, of varying degrees accompanied by 

negligible acceleration intervals. In theory, therefore, any filtering technique able to 

process these non-stationary data should also conveniently handle gait signals. It is 

common that the first step of filter design is to gain insight into spectral behaviour 
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of data to be filtered. So, frequency contents of all these sample signals, benchmark 

and gait, are investigated here using frequency domain methods. 

Three of the benchmark studies are experimental and one is a simulation study. In 

experimental studies, along with observed displacements, accelerations were also 

captured with accelerometers. On the other hand, gait displacement data were 

provided by KISS and unfortunately, corresponding acceleration histories are not 

available. A workaround to this problem might be conventional low-pass filtering of 

displacement signals (Giakas and Baltzopoulos, 1997b) so that accelerations yielded 

by double differentiation represent the actual occurrence within reasonable bounds. 

This, however, brings about the possibility of elimination of high frequency 

components present in original signals. As the primary aim of this section is to 

correctly evaluate frequency contents, such an approach is considered to be 

inappropriate. An alternative is to fit global functions to displacement signals and 

then to obtain reference accelerations by analytical differentiation, rather than 

numeric differentiation that would be necessary with the other option. There are 

nonetheless complications associated with the latter approach: not every signal is 

possible to be fitted well with analytical functions, at least not without great effort16. 

Therefore, only a few number of gait signals, for which analytical fits were 

coincidentally applicable, are presented here. 

The issue is demonstrated with the help of two types of graphs drawn by making 

use of methods established in frequency domain. Firstly, spectral density plots 

(using the built-in MATLAB function pwelch) of displacement and acceleration 

signals are provided to illustrate their low-pass characteristics. The key parameter to 

be considered in this case is the frequency value below which almost all (e.g. 99 %) 

power of the signal is contained. The second tool utilized is a method that can be 

best described as a running, or windowed, fast Fourier transform process. The 

results are presented in figures, where each value on the vertical axis is a measure of 

the total power (sum of harmonic magnitudes) of a window whose centre is the 

corresponding point on the horizontal axis. Window length was manually adjusted 

                                                      
16 If it was so, the art of smoothing and differentiation would become obsolete! 
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for each plot to ensure visual intelligibility. This approach is useful in visualizing 

frequency content as a function of time so that any non-stationary nature of an 

acceleration signal is revealed. Although the technique is powerful, it exhibits some 

undesired behaviour. There is always an anti-peak between two peaks. These anti-

peaks should not be regarded as indicators of low power. They merely correspond 

to intervals around local acceleration extrema. 

Pezzack et al.'s Data: The angular displacement signal is a modified version of the 

experimental data provided by Pezzack et al. (1977). The experiment was 

conducted with an aluminium arm free to rotate in horizontal plane. The authors 

state that the abduction-adduction tasks performed by the arm are similar to angular 

movement patterns of body segments. The displacement and acceleration signals 

were recorded respectively with a potentiometer and an accelerometer. Lanshammar 

(1982a) later found this angular displacement signal to be too clean to test filtering 

techniques and he presented a more contaminated version of the signal, which is 

examined here. The sampling interval is 0.0201 s. The contaminated displacement 

and the recorded acceleration are seen in Figure 14. 

 
 
 

 
 

Figure 14. Time variations of the displacement and acceleration signals (Pezzack et al.'s data). 
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Figure 15 shows frequency spectra of the displacement and acceleration signals. 99 

% of the power of the displacement signal is contained within an interval of 2.4 Hz 

wide while the corresponding value for the acceleration is 6.8 Hz. 

 
 
 

 
 

Figure 15. Power spectra of the displacement and acceleration signals (Pezzack et al.'s data). 
 
 
 

Figure 16 clearly displays how the power of the acceleration signal increases after 

1.5th second, which is an expected result because this interval involves a rather 

quick angular movement. 
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Figure 16. A measure of the power of the acceleration signal as a function of time (Pezzack et al.'s 
data). 

 
Dowling's Data: Another angular displacement signal is the one provided by 

Dowling (1985). This is a good example of signals which conventional filtering 

techniques fail to handle properly. In the corresponding work, the horizontal 

pendulum experiment involved impact with a barrier, which is why the data are 

highly non-stationary. As was the practice of Pezzack et al. (1977), the 

displacement was captured with a potentiometer and the acceleration with an 

accelerometer (Figure 17). The sampling frequency is 512 Hz. 

 
 
 

 
 

Figure 17. Time variations of the displacement and acceleration signals (Dowling's data). 
 
 
 

As seen in Figure 18, the 99 % power limit for the acceleration signal (97.3 Hz) is 

far higher than the one for the displacement (5.3 Hz). This difference is directly 

caused by the short interval of severe acceleration caused by the impact. 
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Figure 18. Power spectra of the displacement and acceleration signals (Dowling's data). 
 
 
 

A representation of how the power of the acceleration signal changes in time is 

given in Figure 19. The rapid rise and fall in the neighbourhood of the impact 

(around 0.4th second) dominates the plot. 

 
 
 

 
 

Figure 19. A measure of the power of the acceleration signal as a function of time (Dowling's data). 
 
 
 

Foot Impact Data: This is one (S3) of the non-stationary signals experimentally 

obtained by Georgakis et al. (2002a). The data represent horizontal displacement 

that involves impact with an obstacle. The displacement signal was recorded with 
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cameras tracking reflective markers and the acceleration signal was obtained with 

an accelerometer. Figure 20 shows these signals. The sampling rates are 1000 Hz. 

 
 
 

 
 

Figure 20. Time variations of the displacement and acceleration signals (foot impact data). 
 
 
 

 
 

Figure 21. Power spectra of the displacement and acceleration signals (foot impact data). 
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Figure 21 shows similar trends to those of Dowling’s and running simulation data. 

In this case, the difference between the limiting values (8 vs. 158 Hz) is the greatest 

among the signals examined in this study. 

The impact occurs just after 0.2nd second as presented in Figure 22. What is at once 

seen is that only the impact is effective throughout the entire acceleration power 

history. 

 
 
 

 
 

Figure 22. A measure of the power of the acceleration signal as a function of time (foot impact data). 
 
 
 

Running Simulation Data: Vertical position history of the ankle resulting from a 

running simulation done by van den Bogert and de Koning (1996) is a challenging 

signal to test filters. The 10,000 Hz data were downsampled to 500 Hz to have a 

more realistic sampling rate and numerically differentiated to have the reference 

acceleration signal. Figure 23 shows how the displacement and acceleration signals 

vary in time. Since the application under investigation is running, a very short, yet 

high magnitude acceleration period exists due to heel strike. 

As is the case with the previous example, the frequency limits of the displacement 

and acceleration signals are quite apart as can be seen in Figure 24. Almost all of 

the power of the displacement is contained in 10 Hz whereas this value is 86 Hz for 

the acceleration. 
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Figure 23. Time variations of the displacement and acceleration signals (running simulation data). 
 
 

Figure 25 illustrates the expected non-stationary behaviour of the acceleration 

signal. The power experiences a rapid up and down movement after the heel strike 

(0.3rd second). 

 
 
 

 
 

Figure 24. Power spectra of the displacement and acceleration signals (running simulation data). 
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Figure 25. A measure of the power of the acceleration signal as a function of time (running 
simulation data). 

 
 
 

The following three are artificial signals created by manipulating signals of 

biomechanical origin, which are vertical displacements of markers placed on several 

landmarks (ASIS, knee, second metatarsal) of lower extremity. The original signals 

were recorded at 50 Hz during an experiment with KISS and the reference signals 

were obtained by applying analytical fits using MATLAB’s Curve Fitting Tool. The 

resulting signals were differentiated to get the reference accelerations. 

ASIS Marker Data: An eighth order Fourier fit was suitable for the ASIS (Anterior 

Superior Iliac Spine) marker. The displacement and acceleration curves are plotted 

in Figure 26. 

Spectral densities of the displacement and acceleration signals are given in Figure 

27. The values that mark up to which frequency 99 % of power is contained are 2.3 

and 4.5 Hz, which indicates a rather small difference when compared to other data 

investigated above. 

As for the temporal power content of the acceleration, the patterns in Figure 28 

imply a rather uniform distribution; in other words, the data are stationary. 
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Figure 26. Time variations of the displacement and acceleration signals (ASIS marker data). 
 
 
 

 
 

Figure 27. Power spectra of the displacement and acceleration signals (ASIS marker data). 
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Figure 28. A measure of the power of the acceleration signal as a function of time (ASIS marker 
data). 

 
 
 

Knee Marker Data: In this case, a sum of eight sine functions was appropriate for 

obtaining the reference signals from the displacement history of the knee marker. 

These signals can be seen in Figure 29. 

 
 
 

 
 

Figure 29. Time variations of the displacement and acceleration signals (knee marker data). 
 
 
 

Figure 30 displays spectral density plots of the displacement and acceleration 

signals. The frequency values are 2.3 and 5 Hz, the difference between being a little 

larger than that of ASIS marker data. 
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Figure 30. Power spectra of the displacement and acceleration signals (knee marker data). 
 
 
 

When Figure 31 is examined, it might be concluded that neither the acceleration 

signal can be considered stationary nor it is appreciably non-stationary. The power 

content exhibits variations; yet, the changes are gradual. 

 
 
 

 
 

Figure 31. A measure of the power of the acceleration signal as a function of time (knee marker 
data). 

 
 
 

Metatarsal Marker Data: For an accurate representation of the kinematics of the 

metatarsal marker, an eighth term Gaussian fit was necessary. Figure 32 shows the 

quality of the fit and the second derivative of the fit. 
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As seen in Figure 33, the frequency values indicating 99 % coverage of the total 

power are 4.3 and 8.5 Hz, respectively for the displacement and the acceleration 

signals. The difference between the values is the greatest among the gait signals 

presented here. 

 
 
 

 
 

Figure 32. Time variations of the displacement and acceleration signals (metatarsal marker data). 
 
 
 

Figure 34 shows the non-stationary nature of the acceleration signal. This is an 

expected result for a marker located on the foot, which is a segment that comes into 

contact with the ground after heel strike (impact) and leaves the ground with toe off. 
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Figure 33. Power spectra of the displacement and acceleration signals (metatarsal marker data). 
 
 
 

 
 

Figure 34. A measure of the power of the acceleration signal as a function of time (metatarsal marker 
data). 

 
 
 

4.2. Discussion on the Results 

One implication of the above investigation on frequency contents of various signals 

is that data from the literature can be used as representatives of gait data for the 

purpose of testing smoothing and differentiation routines. Like gait data, these are 

all band-limited; that is, no significant harmonic components are present in their 

power spectra above certain frequency limits. The other common feature is the 

variation of signal power in time. Such non-stationary natures have been 

demonstrated above in the second derivative level and it is true that benchmark 
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signals possess more power than typical gait data do. Moreover, noise levels found 

in experimental benchmark data may be accepted to be within bounds that may be 

faced during any gait trial. 
 

When spectral density plots are examined, it is always seen that the frequency value 

at which an acceleration signal reaches 99 % of its total power is always higher than 

the value for the corresponding displacement signal. Amplifying nature of the 

differentiation process is the mathematical answer here. However, the relative 

magnitude of these two frequencies is different for each displacement-acceleration 

couple. There is a positive correlation between the difference of these values and 

the severity of impact involved in the physical occurrence. This fact is illustrated 

below. The curves in Figure 35 depict spectral densities of modified accelerations 

of Dowling's and running simulation data. The modification was such that impact 

intervals were manually removed from respective acceleration histories17. The result 

is dramatic reduction in limiting frequency values. 

 
 
 

 
 

Figure 35. Power spectra of the modified Dowling’s and running simulation data. 
 
 

                                                      
17 Foot impact data is not considered since no meaningful signal would remain if its peak 

acceleration signal was removed. 
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Here, the conclusion to be arrived is that the difference between the limiting 

frequency values for a signal and its second derivative is governed by the level of 

(non-)stationarity of the data. Whereas the difference is fairly low for relatively 

stationary signals such as Pezzack's and ASIS marker data, this value can reach to 

considerable amounts when non-stationary signals are concerned. 

The discussion above has implications in filtering applications. The frequency value 

below which a tolerably low amount of information is contained directly takes part 

in filter window shaping, namely in determination of filter cut-off frequency. It is 

the primary aim of a filtering process to suppress noise as much as possible while 

preserving useful signal information. Here, the adjective useful must be well 

defined. In other words, the question to be answered is what percent of the signal is 

to be kept as it is, away from the attenuation interval. 

If the cut-off frequency is selected as the value below which, for instance, 99 % of 

the power of the signal is contained, the problem that follows is the need to specify 

the derivative level whose information content is to be conserved. It has indeed 

been shown above that frequency, i.e. cut-off frequency, requirements of different 

derivative levels could be considerably different. This issue was previously raised 

by Giakas and Baltzopoulos (1997b). The authors assert that different cut-off 

strategies should be adopted depending on the derivative level the researcher is 

interested in. 

The results obtained in this chapter show that cut-off requirements of non-stationary 

acceleration signals are likely to be unreasonably high. Utilizing a high cut-off 

frequency enables peak accelerations to be accurately estimated; but, this 

constitutes serious complications on intervals where signal power is lower; that is, 

where relative noise power is higher. The existence of such unfavourable 

phenomenon is the foundation the next chapter is constructed upon. 
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CHAPTER 5 
 
 

ABOUT THE SECOND ORDER BUTTERWORTH FILTER 
 
 
 

Butterworth filters are characterized by flat magnitude response curves in pass-band 

unlike other types of filters such as Bessel or Chebyshev. They may be of any 

desired order; yet, second order Butterworth filters have been commonly used in 

biomechanics for smoothing purposes (Robertson and Dowling, 2003). This is why 

this chapter focuses only on the second order Butterworth filter. 

5.1. Continuous Formulation 

A second order transfer function is represented in s domain as: 
2
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The transfer function characterizes a Butterworth filter if the damping ratio ζ 

happens to be √2/2. This underdamped system is given as: 
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Here, ωc, which replaces the natural frequency ωn, is the cut-off frequency that 

indicates the frequency value at which transition from pass-band to stop-band 

occurs. Magnitude and phase responses of the filter can be shown to be: 

( )
4
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1

B r
r

=
+

μ  and ( ) ( )2
2arctan 2 ,1B r r r= − −φ , 

where r is the frequency ratio defined as ω/ωc. 

It is theoretically true that all harmonic components (except for the harmonic 

located at zero frequency value) of an incoming signal are attenuated by the filter. 

The level of attenuation directly depends on relative location of each individual 
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component with respect to the cut-off frequency value. Magnitude and phase 

response functions are plotted in Figure 36. It is seen that components in the pass-

band (r ≤ 1) are not attenuated more than √2/2 times their original magnitudes while 

those that are in the stop-band (r ≥ 1) are suppressed more and more as the 

frequency ratio increases. As for the phase response, the lag created by the filter 

increases with r, being 45° when r equals 1. 

 
 
 

 
 

Figure 36. Magnitude and phase responses of a second order Butterworth filter. 
 
 
 

Magnitude and phase behaviour of the filter can be demonstrated by means of an 

online processing example. A sine wave oscillating at 10 rad/s was passed through a 

second order Butterworth filter with a cut-off frequency of 10 rad/s, in which case r 

is equal to 1. Simulation results are presented in Figure 37, where attenuation and 

phase shift values are indicated. Values of the output magnitude and phase shift, 

from corresponding response functions, are: 

1 0.707
2B = =μ  and ( )2arctan 2,0 0.157 

2
B

B t s= − = ⇒ Δ = =
φπφ
ω

. 
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Figure 37. Effects of the Butterworth filter on a harmonic signal oscillating at the same frequency of 
the filter's cut-off frequency. 

 
 
 

This example gives an idea as to how the Butterworth filter works; however, the 

attenuation and the phase lag created by the filter are at excessive levels, caused by 

the selected cut-off frequency, which should normally be higher than the highest 

frequency component present in a signal. Such results are generally not acceptable 

in filtering applications because the aim of filtering is to obtain a clean version of a 

contaminated signal. Therefore, the output of a filtering process must deviate as 

little as possible from the original signal that represents the actual phenomenon. 

Such a result is only possible with a filter whose magnitude response approximates 

1 in the pass-band and 0 in the stop band; and furthermore, the phase lag inevitably 

created by the filter should be negligible. Since a second order Butterworth filter 

provides a flat magnitude response, attenuation of useful harmonics is avoidable 

with a correct selection of ωc
18. Although the phase response of the filter is not very 

acceptable, this is only important in online data processing and has no significance 

in offline processing as is made clear in the next section. 

It is now convenient to present another example that demonstrates the usage of a 

Butterworth filter as a noise suppressing tool, which is its intended purpose. The 

sine wave used in the first example was contaminated with Gaussian noise of 

magnitude 0.02. In a real application there is no option but to work only on the 

contaminated data. However, since this is a simulated example, the signal and the 

                                                      
18 This necessitates at least approximate knowledge of the frequency content of the signal to be 

filtered. 
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artificial noise may be processed separately and then added19. The corresponding 

Simulink diagram is presented in Figure 38 to provide a visual understanding of the 

whole process. 

 
 
 

 
 

Figure 38. Simulink diagram of an online filtering simulation. 
 
 
 

The cut-off frequency is 30 rad/s, which indicates an r value of 1/3. The filtered 

signal is expected to have a magnitude of 0.994 and to lag 0.049 s behind. These 

values are slightly violated because the behaviour of a filter on a contaminated 

signal only approximates its behaviour on a clean signal. In Figure 39, it is seen that 

the direct output of the filter seems to be sufficiently smooth; yet, its second 

derivative proves otherwise. The differentiation process acts as a high pass filter 

and amplifies the suppressed noise. A lower cut-off selection would yield better 

noise suppression, but the price to be paid is more signal attenuation and more 

phase lag. As mentioned before, the latter disadvantage disappears in offline 

filtering. 

 
 
 

                                                      
19 Filtering allows superposition as it is a linear operation. 



 57

 
 

Figure 39. Zeroth and. second derivatives of the signals. 
 
 
 

 
 

Figure 40. Zeroth and second derivatives of the noise signals. 
 
 
 

Better insight into filtering might be gained by examining how noise is affected by 

the filtering operation. Figure 40 shows the zeroth and the second derivatives of the 

filtered noise. The noise itself is also included. Its second derivative is not given as 

it would not be visually meaningful due to excessively oscillatory patterns. It is 
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obvious that filtering has significant effects on noise; however, it may not output 

desired results in the second derivative level. 

The continuous formulation given in this section is not useful if data are defined in 

discrete time steps, which is the usual form for digitally acquired signals. The next 

section is about the regular digital formulation of the Butterworth filter. 

5.2. Regular Digital Formulation 

A filter defined in Laplace (s) domain can be converted to its equivalent in discrete 

time domain through the bilinear transformation (Oppenheim and Schafer, 1989). 

The details are provided in Appendix A. 

For a second order filter, the bilinear transformation results in the recursive 

equation below: 

( )1 2 1 1 2 22k k k k k ky b x x x a y a y− − − −= + + − − . 

This equation defines a second order digital filter in discrete time domain. It shows 

that filtered data points yk are determined using both previously filtered and raw 

data points xk, where k is point index. 

In offline processing, which is the kind of processing executed after data 

acquisition, the phase lag created by the filter can be avoided by feeding the signal 

in both forward and backward directions (dual pass). This practice; however, results 

in a fourth order filter. Because the filter order is changed, the coefficients provided 

by the bilinear transformation become invalid; they must accordingly be adjusted to 

be able to keep the desired, effective cut-off frequency unchanged. The formulation 

to calculate second order Butterworth filter coefficients correctly for multiple passes 

is presented in Appendix B (Robertson and Dowling, 2003). 

5.3. The Need for an Advanced Formulation 

Based on the discussion in the previous chapter, it should be expected that a 

Butterworth filter would fail in processing non-stationary signals, the degree of 

failure being positively correlated with the level of non-stationarity. 
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Before continuing with an example of such failure, it is convenient to underline that 

all derivative calculations in this study were performed with second order central 

differences (Chapra and Canale, 2002) and as a quantitative indicator of failure, 

Root Mean Squared Error (RMSE) was used. Mathematical definitions are 

presented in Appendix B. 

Failure of the regular Butterworth filter can be demonstrated by making use of the 

highly non-stationary Dowling's data. Figure 41 shows acceleration histories 

derived after Butterworth filtering the noisy displacement data with cut-off 

frequency values of 4, 12, 20 and 28 Hz. The respective RMSE values are 41.9, 

26.0, 22.0 and 33.8 rad/s2. As both qualitatively and quantitatively obvious, none of 

the curves is able to accurately represent the actual acceleration signal. The output 

of the filter with 12 Hz cut-off is seen to approximate the overall behaviour the 

most smoothly; yet, it disturbingly fails around the impact interval. On the other 

hand, a cut-off frequency of 28 Hz is able to closely replicate the peak acceleration; 

however, the rest of the output is far from being smooth; intolerable oscillations 

arise due to unsuccessful noise suppression. 

 
 
 

 
 

Figure 41. Results of double differentiation of Dowling's displacement signal after filtering it with 
regular Butterworth filters using increasing cut-off frequencies. 
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If the researcher intends to settle for a moderate result which neither produces 

severe oscillations nor highly underestimates extreme accelerations, an intermediate 

cut-off value, which in the case of Dowling's data is around 20 Hz, should be 

employed. However, a superior approach would be to process signal segments 

separately rather than to handle the whole signal at the same time. It is obvious from 

the above discussion that different intervals in Dowling's data require different cut-

off frequencies. This requirement can manually be satisfied by dividing the signal 

into sections as practised by Dowling in his representative work (1985). There are 

two swing phases at the beginning and at the end separated by an impact phase 

followed by an interval of motionlessness. An RMSE of 14.1 rad/s2 was achieved 

when cut-off frequency values of 8, 12 and 32 Hz were respectively assigned to 

motionless, swing and impact phases. The result is similar to what was obtained by 

Dowling. He reported an RMSE value less than 14 rad/s2. The small difference can 

be attributed to the preferred filtering techniques. Dowling used cubic splines and 

the Butterworth filter in a combined manner whereas the current study employs 

only the Butterworth filter. 

 
 
 

 
 

Figure 42. Acceleration response of the regular Butterworth filter applied to the manually segmented 
Dowling's displacement signal. 

 
 
 

The segmentation procedure is definitely superior to the classical approach; 

nevertheless, it requires certain amount of labour and subjective user decision is 

involved in the process when performed manually. Also, the method may suffer 

from the presence of inconsistency between segments because they are processed 
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separately as though they were not contained in the same signal. Such inconsistency 

is visible in Figure 42 where there are jumps at the beginning and the end of the 

impact interval, caused by the large difference between the cut-off values on either 

side of the transition points. 

5.4. Adaptive Digital Formulation 

The preceding section shows that neither low nor high cut-off frequencies lead to 

satisfactory acceleration estimates when non-stationary data are concerned. Manual 

segmentation could solve the problem; but, an automatic solution is necessary to 

overcome the difficulties associated with the involvement of user intervention. 

Instead of segmenting signals at discrete points, an alternative, automatic approach 

may be to vary Butterworth cut-off frequencies according to some proper criterion, 

which should be closely related to local acceleration as it is the acceleration that 

determines cut-off requirements as demonstrated above. A filter realized in such a 

way might be called an adaptive Butterworth filter.  

At this point, it is proposed that the cut-off frequency distribution be a function of 

the point which is being processed. One possible solution is: 

fk = f1 + f2ck. 

Cut-off frequencies, fk, assume values between f1 and f1 + f2, which denote the 

minimum and maximum frequency values to be used in the filtering process. Vector 

c should be formed such that it leads to cut-off frequencies that are closely 

correlated to local acceleration values. After exhaustive tests on benchmark data, its 

formulation was empirically determined as: 

dk = velk + acck, 

ck = dk + max(d). 

vel and acc are normalized (ranging between 0 and 1) first and second derivatives of 

the displacement data derived after filtering the signal. The criterion cannot be 

solely based on acceleration values because a certain degree of smoothness in the 

distribution of frequencies is required. Hence, cut-off values of points that have low 
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accelerations but appreciable velocities (e.g. inflection points) are increased by 

making use of their velocity values. Filtering process needs to be initiated by 

prefiltering the signal using a regular Butterworth filter with a cut-off frequency fp, 

after which the calculation of the adaptive cut-off frequencies follows. 

Experimentation with the new filter indicated that iteration increases the 

performance as it allows the cut-off frequencies to be determined from improved 

(derived after adaptive filtering) velocity and acceleration estimates; however, it 

may tend to distort the smooth variation of the frequency distribution. Hence, low-

pass filtering of f is necessary if the adaptive filter is to be used in an iterative 

manner. This filtering is done by employing an adaptive Butterworth filter that uses 

the elements of f as its own cut-off frequencies. In other words, f is filtered with 

itself, resulting in fs. Adaptive filtering of the frequency distribution does not only 

eliminate the need for a constant cut-off value to be selected by the user, it also 

renders the total filtering process nearly insensitive to the choice of the prefiltering 

cut-off; fp may safely be set equal to f1 + f2. It should be noted here that this filtering 

routine causes the actual limits to be somewhat different from (generally lower 

than) f1 and f1 + f2. 

As for the final step, the output of the adaptive filter should be one last time passed 

through a standard Butterworth filter with a cut-off higher than or equal to the 

highest element of fs. This represents a finishing process, smoothing out small 

irregularities caused by the adaptive usage of the filter. Obviously, the result is an 

increase in the filter order. 

 
 
 

 
 

Figure 43. Steps in the application of the adaptive Butterworth filter. 
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Figure 43 summarizes all the steps described above. All four filter passes are single 

dual pass and raw data are padded as described by Derrick (1998) to facilitate 

processing of end regions. The padding is achieved by mirroring left and right 

halves of a signal. Figure 44 illustrates this padding routine. Padding signals in such 

a manner imposes zero acceleration values at boundaries, making it useful for 

decreasing end point errors whenever acceleration values at the boundaries are 

negligible. However, it should be noted that the procedure certainly leads to large 

end point errors if this is not the case. 

 
 
 

 
 

Figure 44. Padding procedure applied to signals before adaptive Butterworth filtering. 
 
 
 

MATLAB code of the adaptive Butterworth filter is included in Appendix D. 

5.5. Performance Assessment of the Adaptive Butterworth Filter 

This section aims to reveal the superiority of the adaptive formulation over the 

regular one. The demonstration is done by processing sample signals with both 

Butterworth filters and then to compare their results with actual acceleration curves. 

Displacement signals, which are direct outputs of the filters, are not evaluated here 

as they do not yield as valuable information about filter performances as 

acceleration signals do. 

The sample signals are those introduced in the previous chapter, namely four 

benchmark signals from literature and three artificial gait signals obtained by 

manipulating marker trajectories captured by KISS. Of the seven displacement 
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signals, only three (Pezzack et al.'s, Dowling's and foot impact signals) were 

acquired during actual experiments, implying that they are readily contaminated by 

noise. The remaining four (running simulation and three marker signals); however, 

are free of noise, which is why they were artificially contaminated with Gaussian 

noise. This way, 100 different noisy signals were obtained for each of the four 

signals. The standard deviation of the random numbers added to running simulation 

displacement signal is 0.5 mm, which is within the range used by Giakas and 

Baltzopoulos (1997b). As for the standard deviation of the contamination in marker 

displacements, it was selected to be 1.5 mm on the assumption that such a value 

was representative of the noise level in KISS. 

The whole assessment routine is based on selection of suitable filter parameters 

with trial and error. Parameters that minimized acceleration errors for each signal 

were determined through experimentation. Here, it should be noted that initial and 

final two points of acceleration histories were excluded in performance assessments 

as it is a known fact that acceleration values at signal ends are bound to deviate 

from reference values. This phenomenon is referred to as end point error. The 

padding method described above eliminates end point errors only if actual 

acceleration boundaries are zero. Since this is often not the case, RMSE calculations 

were not performed on entire lengths of the calculated acceleration signals. Such an 

approach is not considered inappropriate because measures against end point error 

are out of the scope of the current study. 

Table 3 shows these parameters along with the RMSE values they yielded20. Values 

of standard deviation of errors, are also included whenever applicable to show that 

both filters operate in a consistent manner. A quick examination of error values 

indicate that the adaptive Butterworth filter always performed better than the 

regular Butterworth filter. 

Here, it should be noted that initial and final two points of acceleration histories 

were excluded in performance assessments as it is a known fact that acceleration 

values at signal ends are bound to deviate from reference values. This phenomenon 
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is referred to as end point error. The padding method described above eliminates 

end point errors only if actual acceleration boundaries are zero. Since this is often 

not the case, RMSE calculations were not performed on entire lengths of the 

calculated acceleration signals. Such an approach is not considered inappropriate 

because measures against end point error are out of the scope of the current study. 

 
 
 

Table 3. Performance comparison of the regular and adaptive Butterworth filter formulations. [fc: 
Cut-off frequency of the regular filter (Hz). f1: Minimum cut-off frequency used by the adaptive 

filter (Hz). f1 + f2: Maximum cut-off frequency used by the adaptive filter (Hz). # Iter.: Number of 
iterations in adaptive filtering. RMSE: Root Mean Squared Error between the actual acceleration 

signal and the second derivative of the filter output (rad/s2 or m/s2).] 
 

 Regular Adaptive 
Data fc RMSE f1 f1 + f2 # Iter. RMSE 

Pezzack et al.'s 6.1 4.39 3.5 7.5 2 3.99 
Dowling's 18.6 21.88 6.4 27.4 6 12.67 

Foot Impact 75.5 6.58 8.0 84.2 5 3.65 
Running Sim. 29.6 5.17 ±  0.26 10.4 39.3 3 3.81 ±  0.26 
ASIS Marker 4.0 0.22 ±  0.04 - - - - 
Knee Marker 5.3 0.49 ±  0.06 3.6 6.4 3 0.45 ±  0.06 
Meta. Marker 8.0 1.18 ±  0.14 3.2 9.6 3 0.91 ±  0.12 

 
 
 

Table 3 serves as a quantitative performance summary for the two filter 

formulations. Means of visual investigation of how the filters performed on each 

test signal is presented in what follows. The figures are organized in such a way that 

each first subfigure shows how cut-off frequencies used in adaptive filtering process 

are distributed and in each second subfigure; actual, regularly filtered and 

adaptively filtered acceleration histories are plotted21. 

 
Pezzack et al.'s Data: In Figure 45, it is seen that higher cut-off values are 

synchronized with the quicker swing interval, as expected. Due to the low dynamic 

range (f2 - f1); however, the effectiveness of such a correct distribution remains 

                                                                                                                                                    
20 For artificial data, each RMSE value is the mean of all errors. 
21 For the running simulation and the three gait signals, the presented acceleration curves are those 

whose RMSE values are very close to the corresponding mean RMSE values. 
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rather limited. As a result, outputs of the regular and adaptive filters do not differ 

much form each other. 

 
 
 

 
 

Figure 45. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (Pezzack et al.'s data). 

 
 
 

Dowling's Data: Figure 46 reveals that highest frequency values are assigned to the 

points of impact phase. For the neighbouring region, the cut-off stays almost 

constant around the lower limit as this is an interval where there is almost no 

displacement. Beyond these points, the filter again adjusts itself to the changes in 

the signal structure, raising frequency values. Since in this case, the dynamic range 

is sufficiently high, the agreement between the reference acceleration and the 

adaptive filter output is very good except for slight discrepancies. On the other 

hand, the regular filter is seen to dramatically underestimate the peak acceleration. 

It also fails in the stationary parts of the signal, producing intolerable oscillation 

patterns. 
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Figure 46. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (Dowling's data). 

 
 
 

Foot Impact Data: As shown in Figure 47, highest frequency values are again 

assigned to points that have the highest acceleration values. The figure also shows 

that both filters are able to provide acceptable estimates, the adaptive one being 

slightly more successful. It might be surprising that the regular Butterworth filter 

does not fail to process such a non-stationary signal. The rather clean nature of the 

recorded displacement signal is the explanation why. 

Running Simulation Data: In spite of the fact that Figure 48 illustrates the 

acceptable performance of the adaptive filter, it also indicates that adaptive cut-off 

frequencies are not distributed quite as would be expected. Maximum cut-off values 

are not assigned to points around the highest acceleration interval. Both filters are 

seen to underestimate the peak acceleration; nonetheless, the adaptive filter clearly 

provides a better match. 
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Figure 47. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (foot impact data). 

 
 
 

 
 

Figure 48. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (running simulation data). 

 
 
 

ASIS Marker Data: Because the data is quite stationary, there is no point in 

resorting to adaptive filtering. As Figure 49 shows, the regular Butterworth filter 

can handle the task. 
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Figure 49. Variations of the actual and estimated acceleration signals (ASIS marker data). 
 
 
 

Knee Marker Data: As evident from Figure 50, the regular and adaptive 

formulations perform equivalently. Although adaptive cut-off frequencies visibly 

vary in harmony with the frequency content of the signal, they have almost no 

effect due to the low dynamic range. 

 
 
 

 
 

Figure 50. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (knee marker data). 
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Metatarsal Marker Data: The cut-off frequency distribution plotted in Figure 51 

illustrates the non-stationary nature of the data. Unlike the previous case, the 

dynamic range is high enough to result in improved acceleration estimation. As 

seen, intervals of negligible acceleration are accurately replicated by the adaptive 

filter whereas the regular filter results in oscillations. 

 
 
 

 
 

Figure 51. Distribution of the adaptive cut-off frequencies; variations of the actual and estimated 
acceleration signals (metatarsal marker data). 

 
 
 

5.6. Comments on the Performance 

Among all test signals the adaptive Butterworth filter was experimented upon, the 

filter's performance on the running simulation data is somewhat disturbing. Fairly 

high, prolonged acceleration period near the end of the signal causes simultaneous 

high velocity values. Because of this, highest cut-off values are assigned to this 

portion of the signal instead of the short interval where the peak acceleration 

happens to be. This is responsible for the underestimated peak acceleration; f2 

cannot be raised without causing the acceleration output of this period to get out of 

control. A similar behaviour can also be seen in the filtering of Dowling's data, but 

is not as pronounced. After the first half of the signal, the velocity reaches its 
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maximum value accompanied by some moderate amount of acceleration. However, 

the peak acceleration value here is so dominant that the maximum cut-off frequency 

is correctly positioned. The effect is nonetheless visible: There are some unwanted 

deviations in the interval of positive maximum acceleration. In the case of filtering 

the foot impact data, the highest velocity values occur before the impact and 

although these are low in a global view, they consequently give rise to 

unnecessarily high frequency values, which, however, does not affect the output 

acceleration much. There are no such considerations for Pezzack et al.'s and the 

three gait experiment data. Velocity histories of the signals (except for the ASIS 

Marker) derived by integrating acceleration histories can be seen in Figure 52. 

In Figure 53, error variations versus number of iterations are plotted for each test 

signal. All settle to a constant error value except for the running simulation error, 

which remains bounded around a nearly constant average error. Convergence is 

quick; usually in the order of a few iterations. The curves never settle to the 

minimum error value possible, which means that more number of iterations does 

not mean a better result. 

 
 
 



 72

 
 

Figure 52. Velocity histories of test data. 
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Figure 53. Effect of number of iterations on RMSE. 
 
 
 

5.7. Discussion on Practical Aspects 

Even if one happens to choose the so-called optimal cut-off frequency (Capello et 

al., 1996; Yu et al., 1999; Giakas and Baltzopoulos, 1997a), conventional 

Butterworth filtering either fails in catching extreme accelerations or is unable to 

eliminate noise when the signal is not stationary. As demonstrated by van den 

Bogert and de Koning (1996) making use of the running activity, which 

unquestionably involves impacts, unacceptable errors in intersegmental loads are 

likely to arise if the correct nature of the phenomenon under investigation is 
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overlooked. The proposed filter exploits signal features, making it possible for the 

Butterworth filter to accommodate changes in local frequency content so that errors 

arising from improper filtering are eliminated as much as possible. The method 

involves setting upper and lower limits instead of using a single cut-off frequency. 

Hence, some means of estimating optimal values for these limits would be 

extremely useful in the absence of reference acceleration signals. 

Based on the results presented above, the proposed filter is not expected to work 

well with signals that have extended acceleration intervals, such as the vertical 

trajectory of a falling object which is under the continuous action of gravity. In such 

a case, the cut-off value will theoretically increase linearly over time as the velocity 

of the object rises. This weakness of the adaptive filter is a natural consequence of 

the criterion that is used in the calculation of the cut-off frequencies. The velocity 

affects the calculation being as dominant as the acceleration. The weight of the 

velocity might be decreased in various ways; yet, this adds another filter parameter 

to be determined by the user and furthermore, runs with such configurations did not 

produce superior results. 

The idea of employing variable cut-off frequencies is promising; however, because 

of the continuously changing coefficients of the adaptive filter, final acceleration 

can easily assume a highly oscillatory pattern, especially when the dynamic range f2 

- f1 is too high, if filtering of the cut-off frequencies and postfiltering of the already 

smoothed data are not executed. Moreover, Butterworth filters have defined 

attenuation behaviours in frequency domain as shown in the beginning of this 

chapter. Whether such a definition is possible for the modified version is a question 

which might be the subject of another study. Nonetheless, the good performance of 

the filter renders such issues less urgent. 

The adaptive filter is expected to perform better with an improved and presumably 

more complex criterion for determining cut-off frequencies. The current one 

combines only the velocity and acceleration characteristics of the signal. Higher 

derivatives or the displacement data itself might contribute to the formation of a 

superior formulation. This remains an open question. 
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As for the implementation of the adaptive Butterworth filter into gait analysis 

applications, the experimentation done here on three representative signals suggests 

that the new filtering technique is not absolutely necessary for smoothing marker 

trajectories. Nevertheless, the filter gains some usefulness in smoothing signals 

which belong to distal segments, e.g. trajectories of markers placed on foot, owing 

to non-stationary natures of such signals. As illustrated above with the metatarsal 

marker data, the filter prevents oscillatory acceleration patterns in intervals when 

markers are at rest. However, this advantage is likely to disappear when kinetic 

analysis of gait is concerned. Ground reactions are involved in the calculation of 

forces and moments acting on segments. As the gait to be analyzed gets slower and 

slower, inertial terms become more dominated by ground reactions. The natural 

consequence of this is the insensitivity of calculated intersegmental loads to the 

applied smoothing technique. 

The reasoning above does not mean that the usage of the adaptive Butterworth filter 

is not preferable for gait analysis. Results obtained here imply that it almost always 

performs better than the regular filter. Since it may not always be possible or 

desirable to control the gait speed, having ready a superior tool for analysis of quick 

gait is valuable. It should also be noted that usage of the adaptive filter in 

processing of slow gait does not have any downsides; the only concern would be to 

waste most of the filter's potential. 

Based on this discussion, the adaptive Butterworth filter was found suitable to be 

integrated into KissGait-M. The results above show that 3 iterations produce 

successful, if not optimal, results for gait data. As for the cut-off frequency limits, it 

seems reasonable not to keep f1 below 3.5 or 4 Hz while having f2 around 6 Hz at 

the foot and to decrease it gradually to 0 (this forms a regular filter) as the progress 

is made towards the pelvis. An experienced operator should be able to adjust these 

values depending upon the gait speed of the subject. 
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CHAPTER 6 
 
 

KissGaitM: A GAIT ANALYSIS TOOL DEVELOPED IN MATLAB 
 
 
 

This chapter is reserved for KissGaitM, a gait analysis tool that makes use of the 

flexible programming medium provided by MATLAB, which the M at the end 

stands for. 

The graphical user interface of KissGaitM is composed of two windows. The first 

one, which is shown in Figure 54, is where gait data to be analyzed and the filtering 

method to be applied on dynamic marker trajectories are selected. 

 
 
 

 
 

Figure 54. KissGaitM input window. 
 
 
 

The second window is the main window of KissGaitM (Figure 55). As is done in 

Kiss-GAIT, the operator manually marks the gait events based on the visual 

information provided by the stick-man animation and ground reaction forces. With 

the gait events specified, KissGaitM can calculate and plot joint variables, which 

are joint angles, moments and powers. Sample plots are available in Appendix E. It 



 77

is also possible to see the time-distance parameters. Moreover, the code lets the user 

to save any variable such as marker trajectories, segment angular velocities, joint 

moments, etc. for further analysis. 

One important property of KissGaitM is that it does not require to be compiled as it 

runs under MATLAB. This feature makes the code easily accessible, allowing 

modifications to be made according to user needs, thus enabling a flexible 

programming environment. 

 
 
 

 
 

Figure 55. KissGaitM main window. 
 
 
 

Figure 56 shows a simplified flowchart of KissGaitM. The code is based on the 

formulation given by Söylemez (2002), which is the area labelled as Unmodified. 
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Not to fill the text with repetitions, only a very brief account of this portion is given 

below. 

Firstly, static shot data from 19 markers are manipulated so as to establish dynamic 

trial relationships between segment reference frames and marker trajectories. The 

process is initiated by constructing technical reference frames using positions of 

markers that are also present in dynamic trial. After centres of hip, knee and ankle 

joints are calculated with the help of markers that are not present in dynamic trial, 

anatomical reference frames are formed. Then, transformation matrices that define 

angular relationships between technical and anatomical reference frames for static 

shot are obtained. These constant matrices are assumed to be also valid during 

dynamic trial between technical and anatomical reference frames. Based on this key 

assumption, the second task is to construct anatomical reference frames that define 

orientations of segments with respect to the laboratory reference frame during the 

gait cycle. As is done with static shot data, marker positions (13 markers in this 

case) are used to construct technical reference frames. Mathematical representations 

of these technical frames are multiplied by the constant transformation matrices 

mentioned above to get anatomical reference frames. Joint angles can finally be 

calculated using the Hartenberg-Denavit (H-D) convention described in Chapter 3. 

 
 
 

 
 

Figure 56. Flowchart of KissGaitM. 
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Components Modified by this new version of Kiss-GAIT are discussed below in 

detail. 

6.1. Processing of Marker Trajectories 

Unlike Kiss-GAIT, which applies a double smoothing process; one to raw marker 

trajectories and the other during the calculation of joint angles, KissGaitM avoids 

such redundancy by filtering only raw marker trajectories before any subsequent 

processing. The operator is free to choose between regular and adaptive Butterworth 

filtering, the default setting being the regular filter. The option of no filtering is also 

available in order to facilitate understanding as to how filtering affects final outputs. 

In Table 4, default values of the filter parameters used by KissGaitM are given. 

These values are applied only to vertical marker trajectories and were determined 

based on the results of the previous chapter, also making use of test results 

performed on data from various gait trials. It is clear how the cut-off frequencies 

change in positive correlation with distance from the trunk; or in other words, in 

accordance with the expected frequency contents of trajectories during gait. All 

horizontal marker trajectories are smoothed by a regular Butterworth filter with a 

cut-off frequency of 3.2 Hz. 

 
 
 

Table 4. Default filter parameters used by KissGaitM. 
 

 Regular Adaptive 
Marker fc f1 f2 Iter. #

ASIS 4.0 - - - 
Sacrum 4.0 - - - 
Thigh 4.4 - - - 
Knee 5.2 3.6 2.8 3 
Shank 6.0 3.6 3.6 3 
Ankle 7.2 3.2 6.4 3 
Meta. 7.2 3.2 6.4 3 
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Figure 57 illustrates how filtering choice affects the trajectory of an ankle marker. 

Although it is not correct to evaluate filter performances in the zeroth derivative 

level, it is clearly seen in the close-up how the regular filter outperforms the 

adaptive one around the local maxima and how the adaptive filter smooths the 

motionless interval better than the regular one. This trade-off is more apparent in 

the acceleration plot. The adaptive filter underestimates the regions around 10th and 

75th data points while it predicts zero acceleration values for the motionless interval 

as it should be. 

 
 
 

 
 

Figure 57. Variations of the displacement and acceleration signals of an ankle marker. 
 
 
 

Judging from the overall patterns, it seems that the final decision could be in favour 

of the regular filter. Nonetheless, as demonstrated in the previous chapter, this is 
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only so for this specific marker trajectory or for gait trajectories in general. 

Therefore, the user is advised to be careful in filter selection when analysing other 

activities such as running or jumping. 

6.2. Processing of Force Plate Data 

The acquired force plate data must be processed before being used in kinetic 

calculations. There are three processes as described below. 

6.2.1. Bias Removal 

Outputs of the force plates involve constant biases, i.e. shifts in the vertical axis, 

due to calibration errors. No matter how small they are compared to maximum 

reaction values, they should be removed for better kinetic calculations. 

Figure 58 shows a biased vertical reaction force. As seen in the zoomed interval, the 

reading is around -6 N whereas the actual value is exactly 0 because no forcing acts 

on the force plate. A manual processing can always compensate the shift; but, the 

compensation procedure can be made entirely automatic by employing histograms. 

In the figure, the histogram (with 500 bins) of the reaction force is also plotted. As 

seen, most of the data points in the signal are valued around -6 N, which indicates 

with high reliability the bias value. KissGaitM automatically removes biases in 

force plate signals by subtracting the constant values specified by this probabilistic 

technique. 

6.2.2. Low-Pass Filtering 

Even if it is true that outputs of the force plates are cleaner than marker trajectories 

and they do not undergo the differentiation process, they still might need to be 

filtered as a precaution against outliers in the signals. 
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Figure 58. Time variation and histogram of a biased vertical ground reaction force signal. 
 
 
 

Since force signals involve rapid transitions, a critically damped filter, which does 

not over- or undershoot signals, is expected to perform better on this kind of data 

than a Butterworth filter, which is underdamped (Robertson and Dowling, 200322).  

Responses of the Butterworth and critically damped filters are plotted in Figure 59. 

It is seen that the output of the critically damped filter follows the original signal 

better. 

 
 
 

 
 

Figure 59. Performances of a Butterworth and a critically damped filter on a vertical ground reaction 
force signal. 

 
 

                                                      
22 The authors state that a critically damped filter is weaker in noise suppression than a   Butterworth 

filter of the same order and that the Butterworth filter might still be the better choice for data to be 
differentiated. 
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A second order critically damped digital low-pass filter (single dual pass) is coded 

in KissGaitM for smoothing of force plate data. The code calculates the filter 

coefficients as given by Robertson and Dowling (2003). The default cut-off 

frequency of the filter is 30 Hz, a value high enough not to cause any information 

loss as far as human gait is concerned. 

6.2.3. Downsampling 

Kiss-DAQ does not sample images and force plate signals at the same rate. As is the 

usual practice in gait analysis, marker trajectories are sampled at a lower rate than 

force plate signals are23. Therefore, ground reactions must be downsampled before 

continuing with kinetic calculations. 

The downsampling procedure KissGaitM utilizes is as given below: 
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Here, L is the length of the original signal R and c is the ratio of sampling 

frequencies, which is greater than unity. After the length l of the downsampled 

signal r is calculated, j values corresponding to each i value can be computed. ith 

sample of r then becomes jth sample in R. 

To give an example, when R has 100 data points and c is 10, the number of 

elements in r is calculated to be 11. Then, the sets of indexes become: 

1 2 3 4 5 6 7 8 9 10 11
1 11 21 31 41 51 60 70 80 90 100

i
j

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
. 

It should be noted that the intervals over which the original and downsampled 

signals span may not be exactly equal, as in this case. 

                                                      
23 Default sampling rates of cameras and force plates are 50 and 500 Hz, respectively. 
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6.3. Inverse Dynamics Computations 

With known ground reactions, the solution of equations of motion is initiated from 

the most distal segment, recursively progressing up to adjacent segments until 

finally, the forces and moments acting on the desired joint are obtained. 

6.3.1. Equations of Motion 

The N-E equations of motion are (the derivation is given in Appendix C): 

Σ ,

Σ .
G

G G G

F ma

M J α ω J ω

=

= + ×

G G
G � �G G Gi i

 

The first equation defines how the sum of forces ΣF
G

 on a rigid body is calculated, 

knowing its mass m and the acceleration vector GaG  of its centre of gravity. The 

second equation is the rotational extension of the first one. It says that if the angular 

velocity and acceleration vectors (ωG  and αG , respectively) of the body along with its 

inertia dyadic GJ
�

 about the centre of gravity are known, the sum of moments Σ GM
G

 

about the centre of gravity can be calculated. 

The lower extremity of human body may be approximated as a series of rigid links 

connected to each other. Figure 60 shows the free-body diagram of such a link. The 

link is attached to proximal and distal links with joints located at both ends. pF
G

 and 

pM
G

, and, dF
G

 and dM
G

 denote the forces and moments acting on the proximal and 

distal joints, respectively while mgG  is the weight of the body. Vectors prG  and dr
G  

respectively define the locations of the proximal and distal joints with respect to the 

centre of gravity G. The equations of motion can be written as: 

Σ ,
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Figure 60. Free-body diagram of a body segment. 
 
 
 

Assuming that only pF
G

 and pM
G

 are unknown, the equations may be rewritten as: 

( ) ,

.
p G d

p G G p p d d d

F m a g F

M J α ω J ω r F M r F

= − +

= + × − × − − ×

G GG G
G G G G� �G G G G Gi i

 

As stated above, inertial and kinematic quantities must be known before the 

equations of motion can be solved. 

6.3.2. Calculation of BSIP 

Kiss accounts for the inertial effects created by the shank and thigh segments while 

it assumes that mass of the foot is negligible24. Table 5 includes the constants for 

males and females used by KissGaitM for BSIP calculation (de Leva, 1996). 

Segment masses are expressed as percent fractions of total body mass while centre 

of gravity positions and radii of gyration are expressed as percent fractions of 

segment lengths. Here, the length of a segment is defined as the distance between its 

proximal and distal joints25. It should be noted that centres of gravity are closer to 

                                                      
24 For slow gait, this approach is acceptable; however, it might be unjustifiable in case of fast gait 

(Woltring, 1985). 
25 Distance information is extracted from marker data. 
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proximal joints and when squared and multiplied with segment masses, frontal (x), 

transverse (y) and sagittal (z) radii of gyration form symmetric (no off-diagonal 

terms) inertia matrices about centres of gravity. 

 
 
 

Table 5. BSIP estimation constants given as percents of body mass and segment lengths for males / 
females (de Leva, 1996). 

 

 Mass cg Position 
Sagittal 

Radius of 
Gyration 

Frontal 
Radius of 
Gyration 

Transverse 
Radius of 
Gyration 

Shank 4.33 / 4.81 43.95 / 43.52 25.1 / 26.7 24.6 / 26.3 10.2 / 9.2 

Thigh 14.16 / 14.78 40.95 / 36.12 32.9 / 36.9 32.9 / 36.4 14.9 / 16.2 
 

6.3.3. Calculation of Kinematic Quantities 

For inverse dynamics calculations26, the angular velocity and acceleration vectors 

(ωG  and αG , respectively) of the body along with the linear acceleration vector GaG  of 

its centre of gravity are required. As none of these are directly measured, they have 

to be estimated using marker trajectories. 

The transformation matrix between the inertial frame (the global or the laboratory 

frame) and a segment frame provides orientation (angular position) information of 

the segment the reference frame is attached to. The columns of this transformation 

matrix are the unit vectors of the segment frame as expressed in the global frame. 

Any vector quantity expressed in the segment frame can be transformed by the 

transformation matrix to its expression in the global frame. The relation between the 

angular velocity vector and the transformation matrix is given as: 

ˆ ˆ Tω CC= �� . 

The equation above states that the skew-symmetric matrix ω�  of the angular 

velocity is obtained when the time derivative Ĉ�  (the hat indicates a square matrix) 

                                                      
26 The notation used here can be found in Özgören (2004). 
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of the transformation matrix Ĉ  is multiplied by its transpose. The skew-symmetric, 

or cross product, matrix is defined as below: 

3 2

3 1

2 1

0
0

0

ω ω
ω ω ω

ω ω

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

� . 

The expression for the angular velocity vector is then: 

[ ]1 2 3
Tω ω ω ω= . 

It is important here to notice that the over-bar indicates a column vector and ω1, ω2 

and ω3 are the components of the angular velocity vector as observed from the 

global frame. Now that the angular velocity is available, the angular acceleration is 

obtained simply by numerical differentiation: 

α ω= � . 

As for the linear acceleration vector GaG , it is obtained by double numerical 

differentiation of the position vector of the centre of gravity. The position vector is 

obtained by linearly combining the positions of the proximal and distal joint 

centres, respectively denoted as pG  and d
G

. Hence, the expression of the acceleration 

vector of the centre of gravity as observed from the global frame is: 

( )1Ga c p cd= − + ���� . 

Constant c is found from Table 5. For instance, it takes the value of 0.4395 for the 

shank of a male subject. 

It should finally be noted that the expression for the inertia dyadic GJ
�

 in the global 

frame is not constant due to the orientation difference between the global and 

anatomical reference frames. Since the equations of motion are solved in the global 

frame, the anatomical frame expression ˆ
GJ  of the inertia dyadic must be 

transformed into its equivalent in the global frame. The transformation is: ˆ ˆˆ T
GCJ C . 

ˆ
GJ  is calculated using Table 5, which dictates that the inertia matrix is a diagonal 
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matrix. After the transformation; however, the inertia matrix is no longer diagonal 

unless the two frames are parallel. 

6.3.4. Calculation of Kinetic Quantities 

Vector forms of the equations of motion assume are as given below: 

( )1 ,

ˆ ˆ ˆ ˆˆ ˆ .

p d

T T
p G G p p d d d

F m c p cd g F

M CJ C α ωCJ C ω r F M r F

⎡ ⎤= − + − +⎣ ⎦

= + − − −

����

� � �
 

These equations yield a three element force and a three element moment acting on 

the distal joint, where the elements are expressed in the laboratory frame. g  is 

taken to be [0 -9.81 0]T m/s2. 

Accepting marker trajectories and force plate data as inputs, KissGaitM computes 

the forces and moments in ankle, knee and hip joints. As the foot segment is 

assumed to be massless, ankle joint forces are nothing but those that are exerted by 

the force plate. Ankle moments; however, are calculated by taking into account the 

distance between the centre of the force plate and the ankle joint centre as the 

moment arm. The ankle joint is the distal joint of the shank. Knowing the forces and 

moments at the distal joint, those at the proximal joint, which is the knee joint, can 

be calculated using the formulation presented above. The recursion continues for 

the thigh segment in the same manner. This time, the knee joint is the distal joint 

and the hip joint is the proximal one. 

It should be underlined that moments produced by this algorithm are global 

reference frame representations of three dimensional vectors. These need to be 

converted into some form that is more meaningful from a clinical point of view. 

This purpose can be achieved by expressing the moments in anatomical reference 

frames, the relative angular motions of which are the actual cause behind the 

movement. Unit vectors defined by the H-D convention are natural candidates for 

such a representation. Lower extremity joint moments27 (Ti) and unit vectors ( ( )1iu −G ) 

they act about are illustrated in Figure 61. One important point is that hip and knee 

                                                      
27 The term torque might be a better choice; however, the clinical convention states otherwise. 
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joint moments are resolved in reference frames defined by the H-D convention 

whereas ankle joint moments are expressed in the orthogonal shank frame28. 

Accordingly, joint moments are calculated as: 

( ) ( )

( ) ( )

( ) ( )

1 1
, 3 , 3

2 2
, 1 , 1

3 3
, 2 , 2

for 1,2,...,7

for 8

for 9

i iT
d i d i

i iT
i d i d i

i iT
d i d i

M u M u i

T M u M u i

M u M u i

− −

− −

− −

⎧ = =
⎪⎪= = =⎨
⎪ = =⎪⎩

G Gi
G Gi
G Gi

. 

Here, ,d iM
G

 is the moment vector acting on the corresponding segment at its distal 

joint. More specifically, ,d iM
G

 is the moment exerted on the thigh by the pelvis for i 

= 1, 2, 3; it is the moment exerted on the shank by the thigh for i = 4, 5, 6; and the 

moment exerted on the foot by the shank for i = 7, 8, 9. 

In this convention, right and left sides of the lower extremity are assigned reference 

frames which are directionally equivalent, i.e. their third unit vectors ( ( )0
3uG , ( )3

3uG , ( )6
3uG ) 

are directed towards (nearly) the same direction (+z) at all times. As a result, joint 

moments thus obtained may not be easy to interpret clinically. KissGaitM converts 

them into representations consistent with the literature (Schache and Baker, 2007). 

This conversion is explained for in Table 6. It is seen that sagittal plane (extension / 

flexion) moments have the same sign while frontal (abduction / valgus / inversion) 

and transverse (internal rotation) plane moments have opposite signs. 

 
 
 

                                                      
28 This is because of the fact that Kiss does not define a H-D transformation between the shank and 

the foot. 



 90

 
 

Figure 61. Kinetic model of the lower extremity. 
 
 
 

Table 6. Clinical interpretation of joint moments. 
 

Moment Right Left 
Hip Extension -T1 -T1 
Hip Abduction T2 -T2 

Hip Internal Rotation -T3 T3 
Knee Extension T4 T4 

Knee Valgus T5 -T5 
Knee Internal Rotation -T6 T6 
Ankle Plantarflexion -T7 -T7 

Ankle Inversion T8 -T8 
Ankle Internal Rotation T9 -T9 
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The last set of kinetic variables KissGaitM calculates is joint powers, which provide 

additional information on how joints are actuated. Power variation in a joint 

throughout the gait cycle can be calculated by a simple dot product of the moment 

vector acting on the joint and the relative angular velocity vector between the two 

segments connected by the joint. However, such a calculation yields total joint 

power instead of individual components corresponding to axes defined by the H-D 

convention. Denoting the relative angular velocity with ΔωG , which is distal 

segment velocity minus proximal segment velocity, expressions for the joint powers 

(Pi) that are consistent with the moment definitions become: 
( ) ( )

( ) ( )

( ) ( )

1 1
3 3

2 2
3 3

3 3
3 3

Δ Δ  for 1,2,...,7

Δ Δ  for 8

Δ Δ  for 9

i iT
i i i i

i iT
i i i i i

i iT
i i i i

T ω u T ω u i

P T ω u T ω u i

T ω u T ω u i

− −

− −

− −

⎧ = =
⎪⎪= = =⎨
⎪ = =⎪⎩

G Gi
G Gi
G Gi

.  

In the equations above, ( )1
3

i
iω u −G Gi  (i = 1, 2, …, 6) is nothing but the derivative iθ�  of 

the H-D joint variable θi. A positive value indicates mechanical power generation 

while a negative one indicates mechanical power consumption. 

6.4. Kinematic and Kinetic Results Produced by KissGaitM 

To assess the reliability of its results, KissGaitM was tested on gait data acquired in 

METU Gait Analysis Laboratory. Caused by unavailability of additional sources 

that allow a complete analysis29, only 9 data sets were used. The data sets belong to 

3 healthy male subjects, each of which were asked 3 times to walk on the walkway 

at self selected speeds. The mean height and mass of the subjects are respectively 

180.3 cm and 70.3 kg, the mean age being unknown; but, likely to be not more than 

25. Calculations were performed as explained above. Each sub-figure in the figures 

below contains information from 9 x 2 (right and left sides) moment histories. 

                                                      
29 There are many data sets available which allow only kinematic analysis due to synchronization 

problems between cameras and force plates. 
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6.4.1. Joint Angles 

Curves of mean and standard deviation values of joint angles are presented in 

Figure 62. These are H-D joint variables rather than their clinical equivalents. Such 

a presentation is thought to be more convenient in this text since joint powers are 

defined in terms of rates of these angles. It is seen that only the sagittal plane angles 

θ1, θ4, θ7 and the frontal plane hip joint angle θ2 exhibit consistent patterns for all 

subjects. The remaining angles either display entirely inconsistent patterns around 

toe-off (θ5, θ8, θ9) or their standard deviations are at unacceptable levels (θ3, θ6). 

Only the angles that possess consistent patterns throughout the entire gait cycle (θ1, 

θ4, θ7, θ2) are in harmony with data in the literature (Kadaba et al., 1990). Kinematic 

results provided here bolster the conclusions arrived by Güler (1998): angles in the 

frontal (except θ2) and transverse planes are more prone to errors than sagittal plane 

angles, the reason probably being their relatively low dynamic ranges. In other 

words, the signal-to-noise ratio is lower for these angles. 

It is true that the joint angle curves plotted above are smoother than normal outputs 

of KissGaitM. The reason for this appearance is the averaging of data among 

subjects, which acts as a low-pass filter. An example of actual angle plots produced 

by the program KissGaitM is provided in Appendix E. 

6.4.2. Joint Moments 

The obtained joint moment patterns are plotted in Figure 63. The curves present the 

means and standard deviations of joint moment histories in each of the sagittal, 

frontal and transverse planes. 
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Figure 62. Means (solid lines) and standard deviations (dotted lines) of joint angles produced by KissGaitM.
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It is immediately striking that standard deviations tend to disappear after toe-off. 

This is a clear indication of the fact that individual differences drop to a minimum 

when the foot leaves the ground. Therefore, investigation of stance phase kinetics 

may be claimed to contain more valuable information as far as normal human gait is 

concerned. It is also true that almost all standard deviations reach their maximal 

values approximately at the end of the first half of the gait cycle. This implies that 

individual differences are pronounced the most when the foot initiates the process 

of leaving the ground. This point in the gait cycle directly corresponds to the second 

local maximum of the vertical ground reaction force (Figure 64). 

Moment results presented here are consistent with the literature (Chester and 

Wrigley, 2007; Eng and Winter, 1995; Liu and Lockhart, 2006; Schache and Baker, 

2007) except for the swing phase. Slight inconsistencies in this phase of gait are 

directly attributed to the assumption in Kiss that the foot segment is massless30. 

Among all results, only the ankle inversion moment displays some strange 

behaviour; it is clearly seen that all standard deviations except that of the ankle 

inversion moment follow their mean curves within reasonable bounds. As shown by 

Schache and Baker (2007), this is the result of expressing the ankle inversion 

moment in the proximal segment (the shank) anatomical reference frame. If the 

transformation matrix between the shank and foot segments were defined using the 

H-D convention, it would then be possible to obtain consistent results for the ankle 

inversion moment. Plantarflexion and internal rotation moments in the ankle joint 

are also expressed in the shank reference frame; however, they characteristically do 

not exhibit inconsistent variations (Schache and Baker, 2007). 

 

                                                      
30 Visual comparison with literature data indeed reveals that this assumption does not lead to 

intolerably adverse effects as long as the researcher is aware of it. 
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Figure 63. Means (solid lines) and standard deviations (dotted lines) of joint moments produced by KissGaitM.
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Figure 64. Typical vertical ground reaction force distribution over the gait cycle. 
 
 
 

One final note about the joint moment curves plotted above is that they are 

considerably smooth. It should not be concluded that KissGaitM is able to produce 

such smooth patterns; the reason for this appearance is, again, the averaging process 

among subjects. An example of actual moment outputs of KissGaitM is provided in 

Appendix E. 

6.4.3. Joint Powers 

The mean and standard deviation curves of joint powers produced by KissGaitM are 

given in Figure 65. 

As seen, power standard deviations decrease after toe-off, consistent with those of 

joint moment curves. Before toe-off; however, they tend to deviate from mean 

curves more than moments do. While the deviations for ankle plantarflexion and hip 

abduction are at tolerable levels, they exceed visual tolerance limits for hip 

extension, and become disturbing for knee extension. The immediate conclusion 

should not be that Kiss, and consequently KissGaitM, cannot produce meaningful 

joint power results. Even with few experimental data sets, the patterns exhibit 

consistency with power curves from the literature (Eng and Winter, 1995; Vardaxis 

et al., 1998) except for, again, the swing phase. Considering that literature data 

show some visible discrepancy among themselves, the results presented here may 

be said to be acceptable. Nonetheless, care must be taken when interpreting joint 

power curves produced by KissGaitM. 
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Figure 65. Means (solid lines) and standard deviations (dotted lines) of joint powers produced by KissGaitM.
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Like the angle and moment patterns above, the power curves vary quite smoothly. 

An example of actual power outputs of KissGaitM is provided in Appendix E. 

6.5. Sensitivity of Kinetic Results to BSIP Estimation and Filtering 

Methods 

Valuable insight into what role BSIP estimation methods play in kinetic estimations 

might be gained by carrying out an inverse dynamics analysis routine where 

segment masses are set to zero, and than to compare the results with those of 

another routine where BSIP are estimated. 

 
 
 

 
 

Figure 66. Sagittal plane joint moments and powers calculated by including (solid lines) and 
excluding (dotted lines) inertial effects. 

 
 
 

Such a comparison is given below. Figure 66 shows a subject's sagittal plane joint 

moments and powers estimated with inertial effects are both included and excluded. 

The figure does not contain ankle joint kinetic variables since the foot is already 

assumed massless in Kiss. Apart from the natural fact that all kinetic variables 

during the swing phase are calculated to be zero by the latter routine, it is seen that 

discrepancies are not distinguishable for the knee joint, which is somewhat 
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surprising. There are, however, visible deviations in the patterns for the hip joint. 

The immediate conclusion is certainly not that static analysis is sufficient. Solving 

static equilibrium equations may only be justified when the gait speed is so slow 

that inertial effects are safely neglected. The presented results only imply that 

accuracy needed in BSIP estimations might not be critical for gait analysis. Of 

course, the condition is that the estimation technique produces reasonable estimates. 
 
 
 

 
 

Figure 67. Resulting sagittal plane joint moments and powers after regular filtering (solid lines) and 
adaptive filtering (dotted lines). 

 
 
 

Performance difference, demonstrated in the previous chapter, between the regular 

and adaptive filters is not effective in inverse dynamics calculations. Figure 67 

clearly illustrates this fact. Moment and power results derived after regular and 

adaptive filtering of marker data yielded results with no appreciable differences. 

This originates from the dominancy of ground reactions in human gait, which is 

further evidenced by the fact that static analysis results only fail in the hip. It can be 

concluded that the choice of filtering method is not critical for kinetic analysis of 

normal human gait provided that sufficient noise suppression is achieved. However, 

when jerky, pathological gait is to be analyzed, the adaptive Butterworth filter 

might prove its usefulness. 
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6.6. Comparison of Kinetic Results between KissGaitM and Kiss-GAIT 

The same gait data, kinetic analysis results of which as produced by KissGaitM are 

presented above, were analyzed using Kiss-GAIT. In Figure 68, joint moment 

results of both tools are plotted, where the ankle inversion moment is missing 

because it is not calculated by Kiss-GAIT. The resemblance of the curves suggests 

that there is negligible difference between the outputs. Moreover, deviations 

between the results increase after toe-off since Kiss-GAIT does not perform bias 

removal on force plate data. 

Acceptable differences in joint moment patterns disappear when it comes to joint 

power curves as seen in Figure 69, where only sagittal plane and the hip frontal 

plane power curves are plotted as only these are calculated by Kiss-GAIT. There are 

significant deviations between the results of the two gait analysis tools. While 

sagittal plane powers show some harmony, the frontal plane hip moment results are 

only vaguely related. 

Employment of different BSIP estimation techniques and downsampling procedures 

of force plate data and probably a few more unknown factors are certainly effective 

in the deviations of moment and power patterns presented above. Besides all these, 

the fact that power results are not consistent while moment results imply the 

existence of a crucial factor: angular rates calculated by the programs 

unquestionably differ. Figure 70 exhibits this phenomenon. 

As shown in Chapter 3, smoothing and differentiation routines of Kiss-GAIT are 

unreliable; joint angles and rates are not even consistent within themselves. Hence, 

results, especially power results, as presented by KissGaitM are likely to be more 

accurate. 
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Figure 68. Joint moment outputs of KissGaitM (solid lines) and Kiss-GAIT (dotted lines). 
 
 
 

 
 

Figure 69. Joint power outputs of KissGaitM (solid lines) and Kiss-GAIT (dotted lines). 
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Figure 70. Joint angular rates as calculated by KissGaitM (solid lines) and Kiss-GAIT (dotted lines). 
 



 

 103

 
 
 

CHAPTER 7 
 
 

DISCUSSIONS AND CONCLUSIONS 
 
 
 

7.1. General Remarks 

 
This thesis work provides an assessment of kinetic analysis capabilities of the 

METU Gait Analysis System and suggests several software based improvements, 

which are finally implemented in the developed gait analysis program named 

KissGaitM. 

The work is composed of two main parts the first one of which focuses on the 

second order Butterworth filter, which, owing to the acceptable quality of its 

outputs, has been widely utilized in biomechanical applications. Proper filtering of 

experimental data is an essential process especially if subsequent differentiation is 

to follow. Judging from a gait analysis point of view, it can easily be concluded for 

normal gait that owing to dominancy of ground reactions, filter performance is not a 

critical factor for final kinetic results, provided that outputs of a selected smoothing 

and differentiation technique remains within reasonable bounds; that is, it should be 

guaranteed that no harmful amount of noise leaks to derivatives. The fair 

performance of the Butterworth digital filter in smoothing noisy gait marker data is 

demonstrated in this text. Nonetheless, such a conclusion is not possible to uphold 

for other applications such as running or jumping that have significantly varying 

frequency contents. Consideration of activities other than gait may seem strange, 

especially in a work committed to gait analysis. However, it should be noted that 

results in this study indicate that the regular Butterworth filter is likely to be unable 

to process gait signals that have pronounced impact intervals. It is not uncommon in 

a gait analysis laboratory to conduct experiments in which data from jerky, 

pathological gait are examined or in which subjects are instructed to walk faster 
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than their normal gait for any reason. Such cases necessitate usage of advanced 

tools that can handle non-stationarities inherent in the signals. Being aware of this 

fact, the Butterworth filter was modified during the course of the study. The 

modified version is an adaptive formulation which adjusts filter coefficients based 

on the local frequency content of the signal being processed. This work confirms 

that the adaptive formulation almost always performs better than the regular 

formulation. The performance enhancement is due to the adaptive cut-off frequency 

distribution, which is obtained through fusion of information from first and second 

derivative levels. Nonetheless, it is true that the adaptive filter does not all the time 

yield completely satisfying outputs. As demonstrated, it tends to produce 

oscillations when data involve extended acceleration intervals. It is convenient to 

repeat here that some other, superior criterion for calculating cut-off frequencies is 

likely to improve the performance of the adaptive filter. The criterion presented in 

this text is sufficient to give clues as to how powerful the concept of adaptively 

using cut-off frequencies of the Butterworth filter is. This issue is advised to be 

further investigated to see whether any other criterion is able to outperform the 

current one, which already yields impressive results. 

The second part of the thesis is essentially related to the reformulation of the inverse 

dynamics algorithm of Kiss. As known, the N-E equations of motion need to be fed 

with kinematic variables, a task which Kiss-GAIT realizes by adopting the recursive 

approach of forward progression of kinematics31. This approach is suitable for robot 

manipulators with numerous components; however, it is hardly appropriate for 

calculating kinematic variables of lower extremity. This state of inappropriateness 

does not mean that the formulation leads to incorrect results. Rather, it stems from 

the fact that it is an indirect approach and the corresponding computer code is in a 

form which may not be easily interpreted by someone who is not acquainted with 

conventions used in robotics. As a result, there is a non-recursive kinematic 

formulation present in KissGaitM which calculates kinematic variables directly 

from marker data without firstly obtaining joint angles. There are some other 

improvements in the calculation routine the most important of which is the 

                                                      
31 A recursive kinematic formulation is not the prerequisite of a recursive N-E formulation. 
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implementation of a consistent smoothing and differentiation algorithm. Kiss-GAIT 

uses an unjustified dual smoothing process; and furthermore, it introduces artificial 

temporal shifts in calculated derivatives. Such incompatibility of kinematic 

variables is directly reflected to calculated kinetic variables, especially to joint 

powers which are obtained by multiplication of joint moments with angular rates. 

The digital Butterworth filter, regular or adaptive, is a suitable tool for noise 

suppression purposes. Naturally, KissGaitM is equipped with a smoothing and 

differentiation algorithm that uses second order Butterworth filters along with 

subsequent application of numerical differentiation. The last modification for better 

kinetic results is how force plate data are processed. In addition to the required 

downsampling process, bias removal and filtering processes are applied to ground 

reaction signals by KissGaitM so as to improve their reliability. 

The presented kinetic results of KissGaitM are in general agreement with data from 

the literature. Especially, when joint moment results are evaluated, it can readily be 

concluded that outputs (tracked marker trajectories and measured ground reactions) 

of Kiss-DAQ as accepted by KissGaitM are of sufficient quality. However, it is 

seen that kinematic results are far from being satisfactory. This unquestionably 

implies problems related to processing of acquired marker trajectories or to 

trajectories themselves. Either case is bound to lead to poor kinematic accuracy. 

The reason for acceptable moment patterns in the presence of low quality kinematic 

data is nothing but the dominancy of ground reactions in normal human gait, which 

is illustrated by performing kinetic analyses with and without inertial effects 

included. The fact that no significant deviations are observed between the cases is a 

clear evidence of ground reaction dominancy. As for joint power results, some other 

point of view should be adopted when assessing them. Power patterns in the 

literature show variations between studies, unlike moment patterns. This may imply 

that normative power patterns do not exist, which is somewhat unlikely. Another 

explanation, which is more likely, is that powers are more sensitive to estimated 

kinematic variables than moments. It should be expected that extents of systematic 

and non-systematic errors that contaminate motion data captured by different 

systems are different; which, in turn, severely affects estimated kinematic variables, 
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especially in first and second derivative levels. Noting that joint power is defined as 

joint moment multiplied by joint velocity, it would not be unexpected that accuracy 

in powers does not match accuracy in moments. In the light of the discussion above, 

it can be concluded that joint moment outputs of KissGaitM are expected to be 

reliable while its joint power outputs should be approached with care. 

7.2. Suggestions for Further Research 

The phenomenon of the presence of unreliable kinematic results of Kiss in frontal 

and transverse planes still remains inexplicable after this thesis study. Expecting 

consistent results, Kafalı (2007) found significant deviations in kinematic quantities 

when obtained through different analysis protocols and using different hip joint 

centre estimation methods. Along with conclusions of Güler (1998) about low 

signal-to-noise ratios preventing angles in frontal and transverse planes from being 

correctly estimated, this implies that kinematic results are sensitive also to analysis 

methodology as well as to accuracy of marker trajectories. Consequently, any error 

caused by incompatible marker placement is expected to propagate into kinematic 

results. A thorough investigation of the issue is required. A couple of suggestions 

on what can be done so as to gain insight into the problem are presented below: 

• Several tests may be conducted using apparatus that to some extent 

simulates relative rotations of lower body segments. Calculation of joint 

angles via captured marker coordinates needs to replicate the known rotation 

angles in this case. A simple robot arm or a multi-axis turn table can be 

utilized for the purpose. It should be noted that such tests would be free of 

skin artefacts. 

• Gait trials that involve direct gyro measurement of angular velocities of 

body segments would be extremely useful for validation of angular velocity 

results derived from marker data. 

The kinetic results of the system will certainly be improved if the following are put 

into practice: 

• Compared to kinetic patterns from discrete trials, it is shown in this work 

that smoother patterns are obtained when data are averaged among subjects. 
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A similar effect can be achieved for a single gait trial with two couples of 

force plates instead of one couple. This way, more accurate, and 

consequently smoother, results are guaranteed. 

• This work shows the assumption of the negligibility of inertial effects of the 

foot segment to be acceptably valid for analysis of normal gait. This 

assumption; however, does not provide oversimplification in the analysis 

routine. Considering that it is likely to come across cases (i.e. pathological 

or fast gait) where the assumption fails, it is suggested that the foot segment 

be not bypassed when performing kinetic calculations. 

Evaluation of marker tracking capabilities of Kiss was performed previously 

(Karpat, 2000). The corresponding study also contains results of free-falling marker 

experiments. The aim of such experiments is to find out whether the gravitational 

acceleration can be correctly estimated from marker data. However, if a second 

order polynomial is fitted to a marker trajectory, as is presented in the mentioned 

study, the data happens to be forced into the correct mathematical form. It is 

therefore not surprising for such cases that reasonable acceleration estimates are 

obtained. A superior way to assess both the tracking accuracy and the quality of 

signal processing (smoothing and differentiation) algorithms is to record 

accelerations of tracked markers that perform predetermined or random movements. 

This can be done by attaching a marker to an accelerometer unit, which might be a 

commercial product. As for the problem of synchronization of the displacement and 

acceleration signals, it can be overcome by having the marker and the accelerometer 

unit to start from rest. 
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APPENDIX A 
 
 

THE BILINEAR TRANSFORMATION 
 
 
 

An nth order filter has the following transfer function in z domain: 
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A filter defined in s domain can be converted to its equivalent in z domain through 

bilinear transformation (Oppenheim and Schafer, 1989). The first step is to perform 

the substitution below: 
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where fs is the sampling frequency in Hertz whereas the filter cut-off ωc is 

expressed in radians per second. The constant f̂  accounts for the phenomenon 

called frequency warping. It converges to 2 if fs is much larger than ωc. After this 

substitution, the transfer function of a second order filter takes the form below: 
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Rearrangement results in: 
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The following equations yield the digital filter coefficients: 
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APPENDIX B 
 
 

SOME NUMERICAL METHODS USED IN THE WORK 
 
 
 

B.1. Coefficients for the Second-Order Digital Butterworth Filter 

Coefficients for a second-order digital Butterworth filter with cut-off frequency ωc 

are calculated as shown below (Robertson and Dowling, 2003): 

4

1ˆ tan
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, ( )1

1 22 1a b K −= − , ( )2 14 1a b a= − − . 

In the equations above, m and fs are respectively the number of passes and the 

sampling frequency of the digital signal to be filtered. It should be noted that for a 

zero-lag dual (forwards / backwards) pass, m is equal to 2. Such a practice results in 

an equivalent of a fourth-order filter. 

B.2. Second-Order Central Difference Formulae 

The central difference equations are (Chapra and Canale, 2002): 
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In the equations above, k is point index, fs is sampling frequency, y� and y��  

respectively represent first and second derivatives. 
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B.3. Root Mean Squared Error 

The Root Mean Squared Error can be defined as: 

 
( )2

1

ˆ
RMSE

N

k k
k

x x

N
=

−
=
∑

. 

Here, x is the signal to be compared to the reference signal x̂ . k is the point index 

and N is the total number of points. A value closer to zero indicates better 

agreement between the signals. 
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APPENDIX C 
 
 

THE NEWTON-EULER EQUATIONS OF MOTION 
 
 
 

Linear and angular momenta of a rigid body are respectively defined as: 

,

.
G

G G

P mv

H J ω

=

=

G G
G � Gi

 

To express in words; the linear momentum P
G

 is equal to the multiplication of the 

mass m with the linear velocity vector GvG  of the centre of mass, the angular 

momentum (about the centre of mass) GH
G

 is the dot product of the inertia tensor 

GJ
�

 with the angular velocity vector ωG . 

Time rates of change of momenta are equal to the forcing on the body: 

( )
( )

Σ ,

Σ .

i

i G

F D P

M D H

=

=

G G

G G  

ΣF
G

 and ΣM
G

 are the net force and net moment vectors acting on the body while Di 

denotes the time derivative (with respect to an inertial reference frame) operator. 

The derivative of the linear momentum is simply: 

( )i G GD P mv ma= =
G G G� , 

where GaG  is the acceleration of the mass centre. The derivative expression of the 

angular momentum is not that straightforward as it includes two terms which 

continuously change in time. Taking the derivative with respect to the body frame 

rather than the inertial frame simplifies the process because the inertia tensor is 

constant in the body frame: 
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( ) ( ) .i G b G G G GD H D H ω H J α ω J ω= + × = + ×
G G G � �G G G Gi i  

This practice, as seen, results in the additional term Gω H×
GG  as required by the 

transport theorem. αG  is the angular acceleration vector and Db denotes the time 

derivative operation with respect to the body frame. 

Finally, the Newton-Euler equations of motion are: 
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APPENDIX D 
 
 

MATLAB CODE OF THE ADAPTIVE BUTTERWORTH FILTER 
 
 
 

function [out1,out2,out3]=adaptiveB(in,fs,f1,f2,iter) 
% out1: filtered signal 
% out2: estimated velocity 
% out3: estimated acceleration 
% in: signal to be filtered (row vector) 
% fs: sampling frequency (Hz) 
% f1: lower cut-off frequency (Hz) 
% f1+f2: upper cut-off frequency (Hz) 
% iter: # of iterations 
  
[padded,half]=pad(in); % padding 
  
y=regular(padded,fs,(f1+f2)); % prefiltering 
  
for k=1:iter 
  
    [vel,acc]=differ(y,fs); % differentiation 
    vel=abs(vel/max(abs(vel(half+1:half+length(in))))); 
    acc=abs(acc/max(abs(acc(half+1:half+length(in))))); 
  
    cri=vel+acc; cri=cri/max(cri); % criterion 
  
    fc=f1+cri*f2; % cut-off frequencies 
  
    ffc=adaptive(fc,fs,fc); % adaptive filtering of cut-off frequencies 
  
    y=adaptive(padded,fs,ffc); % adaptive filtering 
  
    y=regular(y,fs,max(ffc)); % postfiltering 
  
end 
  
[yy,yyy]=differ(y,fs);  % differentiation 
  
out1=y(half+1:half+length(in)); % extraction of region of interest 
out2=yy(half+1:half+length(in)); % extraction of region of interest 
out3=yyy(half+1:half+length(in)); % extraction of region of interest 
  
% subfunctions_____________________________________________________________ 
  
function [out1,out2]=pad(in) 
  
lng=length(in); 
  
a=in(1:floor(lng/2)); % split into two 
b=in(floor(lng/2)+1:lng); 
a=-a(length(a):-1:1)+2*in(1); % reflect & invert 
b=-b(length(b):-1:1)+2*in(lng); 
out1=[a(1:end-1) in b(2:end)]; 
out2=length(a(1:end-1)); 
  
  
function out=regular(in,fs,fc) 
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lng=length(in); 
  
f=fc/((2^(1/2)-1)^0.25); 
w=tan(pi*f/fs); 
K1=2^0.5*w; 
K2=w^2; 
a=K2/(1+K1+K2); 
b1=2*a*(1/K2-1); 
b2=1-(4*a+b1); 
  
x=zeros(1,lng); x(1)=in(1); x(2)=in(2); 
for k=3:lng 
    x(k)=a*(in(k)+2*in(k-1)+in(k-2))+b1*x(k-1)+b2*x(k-2); 
end 
y=zeros(1,lng); y(lng)=x(lng); y(lng-1)=x(lng-1); 
for k=lng-2:-1:1 
    y(k)=a*(x(k)+2*x(k+1)+x(k+2))+b1*y(k+1)+b2*y(k+2); 
end 
  
out=y; 
  
  
function out=adaptive(in,fs,fc) 
  
lng=length(in); 
f=zeros(1,lng); w=zeros(1,lng); K1=zeros(1,lng); K2=zeros(1,lng); 
a=zeros(1,lng); b1=zeros(1,lng); b2=zeros(1,lng); 
  
for i=1:lng 
    f(i)=fc(i)/((2^(1/2)-1)^0.25); 
    w(i)=tan(pi*f(i)/fs); 
    K1(i)=2^0.5*w(i); 
    K2(i)=w(i)^2; 
    a(i)=K2(i)/(1+K1(i)+K2(i)); 
    b1(i)=2*a(i)*(1/K2(i)-1); 
    b2(i)=1-(4*a(i)+b1(i)); 
end 
  
x=zeros(1,lng); x(1)=in(1); x(2)=in(2); 
for k=3:lng 
    x(k)=a(k)*(in(k)+2*in(k-1)+in(k-2))+b1(k)*x(k-1)+b2(k)*x(k-2); 
end 
y=zeros(1,lng); y(lng)=x(lng); y(lng-1)=x(lng-1); 
for k=lng-2:-1:1 
    y(k)=a(k)*(x(k)+2*x(k+1)+x(k+2))+b1(k)*y(k+1)+b2(k)*y(k+2); 
end 
  
out=y; 
  
  
function [out1,out2]=differ(in,fs) 
  
lng=length(in); 
out1=zeros(1,lng); out2=zeros(1,lng); 
  
for i=3:lng-2 
    out1(i)=(-in(i+2)+8*in(i+1)-8*in(i-1)+in(i-2))/(12/fs); 
    out2(i)=(-in(i+2)+16*in(i+1)-30*in(i)+16*in(i-1)-in(i-2))/(12/fs^2); 
end 
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APPENDIX E 
 
 

SAMPLE OUTPUTS OF KISS-GAIT AND KISSGAITM 
 
 
 

 
 

Figure 71. Sample joint angle plots of Kiss-GAIT. 
 
 
 

 
 

Figure 72. Sample joint moment plots of Kiss-GAIT. 
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Figure 73. Sample joint power plots of Kiss-GAIT. 
 
 
 

 
 

Figure 74. Sample joint angle plots of KissGaitM. 
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Figure 75. Sample joint moment plots of KissGaitM. 
 
 
 

 
 

Figure 76. Sample joint power plots of KissGaitM. 
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