
EFFICIENT INDEX STRUCTURES FOR VIDEO DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESRA AÇAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2008

Approval of the thesis:

EFFICIENT INDEX STRUCTURES FOR VIDEO DATABASES

submitted by ESRA AÇAR in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay _____________________
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı _____________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu _____________________
Computer Engineering Dept., METU

Prof. Dr. Adnan Yazıcı _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar _____________________
Computer Engineering Dept., METU

Asst. Prof. Dr. Murat Koyuncu _____________________
Computer Engineering Dept., Atılım University

M.S. Serdar Arslan _____________________
Computer Center, METU

 Date: 29.01.2008

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Esra AÇAR

Signature :

iv

ABSTRACT

EFFICIENT INDEX STRUCTURES FOR VIDEO DATABASES

Açar, Esra

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan YAZICI

January 2008, 130 pages

Content-based retrieval of multimedia data has been still an active research area. The

efficient retrieval of video data is proven a difficult task for content-based video retrieval

systems. In this thesis study, a Content-Based Video Retrieval (CBVR) system that adapts

two different index structures, namely Slim-Tree and BitMatrix, for efficiently retrieving

videos based on low-level features such as color, texture, shape and motion is presented.

The system represents low-level features of video data with MPEG-7 Descriptors extracted

from video shots by using MPEG-7 reference software and stored in a native XML

database. The low-level descriptors used in the study are Color Layout (CL), Dominant

Color (DC), Edge Histogram (EH), Region Shape (RS) and Motion Activity (MA). Ordered

Weighted Averaging (OWA) operator in Slim-Tree and BitMatrix aggregates these features

to find final similarity between any two objects. The system supports three different types

of queries: exact match queries, k-NN queries and range queries. The experiments included

in this study are in terms of index construction, index update, query response time and

retrieval efficiency using ANMRR performance metric and precision/recall scores. The

experimental results show that using BitMatrix along with Ordered Weighted Averaging

method is superior in content-based video retrieval systems.

Keywords: Content-Based Video Retrieval, MPEG-7, Color Layout, Dominant Color,

Edge Histogram, Region Shape, Motion Activity, Slim-Tree, BitMatrix, Ordered Weighted

Averaging, XML Database

v

ÖZ

VİDEO VERİTABANLARI İÇİN ETKİLİ İNDEKS YAPILARI

Açar, Esra

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan YAZICI

Ocak 2008, 130 sayfa

İçerik-tabanlı multimedya erişimi halen aktif bir araştırma alanıdır. İçerik-tabanlı video

erişim sistemleri için video verisine hızlı ve verimli erişmenin zor bir işlem olduğu

kanıtlanmıştır. Bu tez çalışmasında, renk, doku, şekil ve hareket gibi alt-düzey özellikleri

temel alarak videolara etkili erişmek için Slim-Tree ve BitMatrix olarak adlandırılan iki

farklı indeks yapısını adapte eden bir İçerik-Tabanlı Video Erişim (ITVE) sistemi

sunulmaktadır. Sistem video verisine ait alt-düzey özelliklerini, MPEG-7 referans yazılımı

kullanılarak video parçalarından elde edilen ve XML bir veritabanında saklanan MPEG-7

tanımlayıcıları ile belirtmektedir. Çalışmada kullanılan alt-düzey tanımlayıcılar Renk Planı,

Baskın Renk, Kenar Dağılımı, Alan Şekli ve Hareket Aktivitesi’dir. Bu tanımlayıcılar

Sıralı Ağırlıklı Ortalama operatörü kullanılarak Slim-Tree ve BitMatrix yapılarında

herhangi iki nesne arasındaki benzerlik değerini bulmak için birleştirilir. ITVE sistemi tam

eşleme, k-NN ve alan sorguları olmak üzere üç farklı tip sorgulamayı destekler. Bu

çalışmada yer alan testler, indeks oluşturulması, indeks güncelleme, sorgu yanıt süresi ve

ANMRR performans metrik değeri ve doğruluk/geriçağrım değerleri kullanılarak erişim

etkinliğinin belirlenmesini kapsamaktadır. Yapılan testlerin sonuçları BitMatrix yapısının

Sıralı Ağırlıklı Ortalama metodu ile beraber kullanılması durumunun içerik-tabanlı video

erişim sistemlerinde en iyi sonucu vermekte olduğunu göstermektedir.

Anahtar Kelimeler: İçerik-Tabanlı Video Erişimi, MPEG-7, Renk Planı, Baskın Renk,

Kenar Dağılımı, Alan Şekli, Hareket Aktivitesi, Slim-Tree, BitMatrix, Sıralı Ağırlıklı

Ortalama, XML Veritabanı

vi

To My Family…

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis supervisor Prof. Dr. Adnan Yazıcı

for his valuable guidance, motivation and support throughout this thesis study.

My special thanks are to Serdar Arslan for his guidance, criticism and insight throughout

the research.

Finally, I want to send all my love to my family, Abdullah, Ceyda, Alpertan, Nurşen, Ural,

Yalın and Şeyda Açar and wish to thank them for their support throughout all these years.

viii

TABLE OF CONTENTS

ABSTRACT...IV

ÖZ..V

ACKNOWLEDGMENTS .. VII

TABLE OF CONTENTS... VIII

LIST OF TABLES...XI

LIST OF FIGURES.. XIII

LIST OF ABBREVIATIONS.. XXI

CHAPTERS

1 INTRODUCTION... 1

2 BACKGROUND ... 7

2.1 MPEG-7... 7

2.1.1 Introduction .. 7

2.1.2 Scope of MPEG-7 .. 8

2.1.3 MPEG-7 Visual Descriptors... 8

2.1.3.1 Color Descriptors ... 8

2.1.3.2 Texture Descriptors .. 9

2.1.3.3 Shape Descriptors... 10

2.1.3.4 Motion Descriptors... 11

2.2 Content-Based Video Retrieval ... 13

2.2.1 Video Database... 14

2.2.2 Low-level Features of Video.. 14

2.2.2.1 Color... 14

2.2.2.2 Texture ... 14

2.2.2.3 Shape .. 14

2.2.2.4 Motion .. 15

2.2.3 Similarity Measurement ... 15

ix

2.2.4 Video Indexing... 17

2.2.4.1 Overview of Some Multi-dimensional Index Structures.............. 18

2.2.5 Video Querying .. 21

2.2.6 Content-Based Video Retrieval Systems.. 22

2.2.6.1 VIRS... 22

2.2.6.2 BilVMS .. 23

2.2.6.3 MUVIS... 23

2.2.6.4 WebSEEk ... 23

2.2.6.5 QBIC: Query By Image and Video Content 23

2.2.6.6 Virage Video Engine.. 24

3 THE CONTENT-BASED RETRIEVAL SYSTEM ... 25

3.1 Overview of the Content-Based Retrieval (CBR) System... 25

3.2 Video Shot Detection and Keyframe Extraction ... 26

3.3 Feature Extraction.. 27

3.4 Raw Data and Feature Storage .. 27

3.5 Similarity Measurement... 27

3.5.1 Distance Function... 28

3.5.2 Ordered Weighted Averaging (OWA) Operator .. 30

3.6 Indexing ... 31

3.7 Querying Module... 32

4 SLIM-TREE .. 35

4.1 Introduction ... 35

4.2 Structure of Slim-Tree ... 36

4.3 Building the Slim-Tree .. 38

4.4 Querying the Slim-Tree ... 44

4.4.1 k-NN Query.. 45

4.4.2 Range Query... 48

5 BITMATRIX ... 51

5.1 Introduction ... 51

5.2 Building the BitMatrix... 51

5.3 Querying the BitMatrix.. 59

5.3.1 k-NN Query.. 59

5.3.1.1 Naïve Approach.. 59

x

5.3.1.2 Using Range Expansion Heuristic.. 64

5.3.2 Range Query... 66

6 IMPLEMENTATION... 68

6.1 Video Shot Detection and Keyframe Extraction ... 68

6.2 Feature Extraction.. 68

6.3 Raw Data and Feature Storage .. 73

6.4 Indexing ... 73

6.5 Querying Module... 75

7 PERFORMANCE TESTS.. 76

7.1 Building the Index Structures .. 76

7.1.1 Building the Index Structures for Images... 76

7.1.2 Building the Index Structures for Videos... 80

7.2 Updating the Index Structures ... 85

7.2.1 Updating the Index Structures for Images.. 85

7.2.2 Updating the Index Structures for Videos.. 93

7.3 Querying the Index Structures ... 102

7.3.1 Retrieval Efficiency.. 102

7.3.1.1 ANMRR ... 102

7.3.1.2 Precision and Recall ... 103

7.3.1.3 Results for Images.. 103

7.3.1.4 Results for Videos .. 104

7.3.2 k-NN Query.. 119

7.3.3 Range Query... 120

7.4 Discussion.. 122

8 CONCLUSIONS AND FUTURE WORK... 126

REFERENCES... 128

xi

LIST OF TABLES

Table 5.1 Resulting BitMatrix for Six Objects .. 53

Table 5.2 Resulting BitMatrix for the Six Video Shots ... 57

Table 5.3 Bitwise AND with Query Video Shot.. 62

Table 5.4 Resulting Bitmap Signatures and Cardinalities After Bitwise AND Operations. 62

Table 5.5 Cardinality Results After Bitwise AND Operations (Range-Expansion Applied)

... 66

Table 7.1 ANMRR Results for 100 Image Queries over 1000 Images.............................. 103

Table 7.2 Precision and Recall Values for 100 Image Queries over 1000 Images 104

Table 7.3 ANMRR Values of BitMatrix – Naïve Approach (ct = 2)................................. 105

Table 7.4 ANMRR Values of BitMatrix – Range Expansion (ct = 2, et = 0.1)................. 106

Table 7.5 ANMRR Values of BitMatrix – Naïve Approach (ct = 3)................................. 107

Table 7.6 ANMRR Values of BitMatrix – Range Expansion (ct = 3, et = 0.1)................. 107

Table 7.7 ANMRR Values of Slim-Tree ... 108

Table 7.8 ANMRR Values of Sequential Scan.. 109

Table 7.9 Precision and Recall Values of BitMatrix – Naïve Approach (ct = 2)............... 111

Table 7.10 Precision and Recall Values of BitMatrix – Range Expansion (ct = 2, et = 0.1)

... 112

Table 7.11 Precision and Recall Values of BitMatrix – Naïve Approach (ct = 3)............. 114

Table 7.12 Precision and Recall Values of BitMatrix – Range Expansion (ct = 3, et = 0.1)

... 114

Table 7.13 Precision and Recall Values of Slim-Tree ... 115

Table 7.14 Precision and Recall Values of Sequential Scan.. 117

xii

Table 7.15 Query Response Time and # of Distance Computations for 10-NN Queries over

1000 Images .. 119

Table 7.16 Query Response Time and # of Distance Computations for 10-NN Queries over

1000 Video Shots .. 120

Table 7.17 Query Response Time and # of Distance Computations for Range Queries over

1000 Images (r = 0.2) .. 121

Table 7.18 Query Response Time and # of Distance Computations for Range Queries over

1000 Video Shots (r = 0.2) .. 121

xiii

LIST OF FIGURES

Figure 2.1 Scope of MPEG-7 Standard.. 8

Figure 2.2 Typical Content-Based Video Retrieval System .. 13

Figure 2.3 Sample 2-dimensional Data Space ... 20

Figure 2.4 Geometrical Representation of KPYR.. 21

Figure 3.1 Block Diagram of the CBR System.. 25

Figure 3.2 Parsing Video Content for Indexing ... 26

Figure 4.1 Example Data Distribution and Covering Regions... 36

Figure 4.2 General Structure of Slim-Tree .. 37

Figure 4.3 Structure of Routing Object in Slim-Tree .. 38

Figure 4.4 Structure of Ground Object in Slim-Tree ... 38

Figure 4.5 Sample Split using MST... 40

Figure 4.6 Keyframes of Sample Seven Video Shots .. 41

Figure 4.7 Sample Distribution of Three Video Shots... 41

Figure 4.8 Corresponding Slim-Tree of Three Video Shots .. 42

Figure 4.9 Splitting Slim-Tree of Video Shots using MST.. 42

Figure 4.10 Resulting Slim-Tree of Four Video Shots after Split using MST..................... 43

Figure 4.11 Slim-Down Algorithm.. 44

Figure 4.12 Sample Slim-Tree of Seven Video Shots ... 44

Figure 4.13 Keyframe of Given Query Video Shot for Retrieval.. 45

Figure 5.1 Sample Clustering of Six Objects along FD1 and FD2 Dimensions 53

Figure 5.2 Keyframes of Sample Six Video Shots .. 55

Figure 5.3 Sample Clustering of Six Video Shots along CL and DC Dimensions 56

Figure 5.4 Sample Clustering of Same Six Video Shots along RS and EH Dimensions..... 56

xiv

Figure 5.5 Sample Clustering of Same Six Video Shots along MA Dimension.................. 56

Figure 5.6 Keyframe of Given Query Video Shot (qnaive) for k-NN Query using BitMatrix60

Figure 5.7 Clustering Results of Six Video Shots along CL and DC Dimensions 61

Figure 5.8 Clustering Results of Six Video Shots along RS and EH Dimensions............... 61

Figure 5.9 Clustering Results of Six Video Shots along MA Dimension............................ 61

Figure 5.10 Range-Expansion Heuristic .. 65

Figure 6.1 The Keyframe of a Sample Video Shot.. 69

Figure 6.2 Examples of (a) Low and (b) High Spatial Coherency....................................... 71

Figure 7.1 Construction Time of BitMatrix for Images as a Function of # of Images......... 77

Figure 7.2 # of Computed Distances for 100 Images as a Function of Minimum Utilization

... 77

Figure 7.3 Construction Time of Slim-Tree for 100 Images as a Function of Minimum

Utilization.. 78

Figure 7.4 # of Computed Distances for 300 Images as a Function of Minimum Utilization

... 78

Figure 7.5 Construction Time of Slim-Tree for 300 Images as a Function of Minimum

Utilization.. 78

Figure 7.6 # of Computed Distances for 500 Images as a Function of Minimum Utilization

... 79

Figure 7.7 Construction Time of Slim-Tree for 500 Images as a Function of Minimum

Utilization.. 79

Figure 7.8 # of Computed Distances for 700 Images as a Function of Minimum Utilization

... 79

Figure 7.9 Construction Time of Slim-Tree for 700 Images as a Function of Minimum

Utilization.. 80

xv

Figure 7.10 Construction Time of BitMatrix for Video Shots as a Function of # of Video

Shots .. 81

Figure 7.11 # of Computed Distances for 100 Video Shots as a Function of Minimum

Utilization.. 81

Figure 7.12 Construction Time of Slim-Tree for 100 Video Shots as a Function of

Minimum Utilization... 81

Figure 7.13 # of Computed Distances for 300 Video Shots as a Function of Minimum

Utilization.. 82

Figure 7.14 Construction Time of Slim-Tree for 300 Video Shots as a Function of

Minimum Utilization... 82

Figure 7.15 # of Computed Distances for 500 Video Shots as a Function of Minimum

Utilization.. 82

Figure 7.16 Construction Time of Slim-Tree for 500 Video Shots as a Function of

Minimum Utilization... 83

Figure 7.17 # of Computed Distances for 700 Video Shots as a Function of Minimum

Utilization.. 83

Figure 7.18 Construction Time of Slim-Tree for 700 Video Shots as a Function of

Minimum Utilization... 83

Figure 7.19 # of Computed Distances for 1000 Video Shots as a Function of Minimum

Utilization.. 84

Figure 7.20 Construction Time of Slim-Tree for 1000 Video Shots as a Function of

Minimum Utilization... 84

Figure 7.21 Total Insertion Time of BitMatrix for Images as a Function of # of Images.... 85

Figure 7.22 # of Computed Distances for 100 Image Insertions as a Function of Minimum

Utilization.. 86

xvi

Figure 7.23 Total Insertion Time of Slim-Tree for 100 Images as a Function of Minimum

Utilization.. 86

Figure 7.24 # of Computed Distances for 200 Image Insertions as a Function of Minimum

Utilization.. 86

Figure 7.25 Total Insertion Time of Slim-Tree for 200 Images as a Function of Minimum

Utilization.. 87

Figure 7.26 # of Computed Distances for 300 Image Insertions as a Function of Minimum

Utilization.. 87

Figure 7.27 Total Insertion Time of Slim-Tree for 300 Images as a Function of Minimum

Utilization.. 87

Figure 7.28 # of Computed Distances for 400 Image Insertions as a Function of Minimum

Utilization.. 88

Figure 7.29 Total Insertion Time of Slim-Tree for 400 Images as a Function of Minimum

Utilization.. 88

Figure 7.30 # of Computed Distances for 500 Image Insertions as a Function of Minimum

Utilization.. 88

Figure 7.31 Total Insertion Time of Slim-Tree for 500 Images as a Function of Minimum

Utilization.. 89

Figure 7.32 Total Deletion Time of BitMatrix for Image Deletions as a Function of # of

Images ... 89

Figure 7.33 # of Computed Distances for 100 Image Deletions as a Function of Minimum

Utilization.. 90

Figure 7.34 Total Deletion Time of Slim-Tree for 100 Images as a Function of Minimum

Utilization.. 90

Figure 7.35 # of Computed Distances for 200 Image Deletions as a Function of Minimum

Utilization.. 90

xvii

Figure 7.36 Total Deletion Time of Slim-Tree for 200 Images as a Function of Minimum

Utilization.. 91

Figure 7.37 # of Computed Distances for 300 Image Deletions as a Function of Minimum

Utilization.. 91

Figure 7.38 Total Deletion Time of Slim-Tree for 300 Images as a Function of Minimum

Utilization.. 91

Figure 7.39 # of Computed Distances for 400 Image Deletions as a Function of Minimum

Utilization.. 92

Figure 7.40 Total Deletion Time of Slim-Tree for 400 Images as a Function of Minimum

Utilization.. 92

Figure 7.41 # of Computed Distances for 500 Image Deletions as a Function of Minimum

Utilization.. 92

Figure 7.42 Total Deletion Time of Slim-Tree for 500 Images as a Function of Minimum

Utilization.. 93

Figure 7.43 Total Insertion Time of BitMatrix for Video Shots as a Function of # of Video

Shots .. 94

Figure 7.44 # of Computed Distances for 100 Video Shot Insertions as a Function of

Minimum Utilization... 94

Figure 7.45 Total Insertion Time of Slim-Tree for 100 Video Shots as a Function of

Minimum Utilization... 94

Figure 7.46 # of Computed Distances for 200 Video Shot Insertions as a Function of

Minimum Utilization... 95

Figure 7.47 Total Insertion Time of Slim-Tree for 200 Video Shots as a Function of

Minimum Utilization... 95

Figure 7.48 # of Computed Distances for 300 Video Shot Insertions as a Function of

Minimum Utilization... 95

xviii

Figure 7.49 Total Insertion Time of Slim-Tree for 300 Video Shots as a Function of

Minimum Utilization... 96

Figure 7.50 # of Computed Distances for 400 Video Shot Insertions as a Function of

Minimum Utilization... 96

Figure 7.51 Total Insertion Time of Slim-Tree for 400 Video Shots as a Function of

Minimum Utilization... 96

Figure 7.52 # of Computed Distances for 500 Video Shot Insertions as a Function of

Minimum Utilization... 97

Figure 7.53 Total Insertion Time of Slim-Tree for 500 Video Shots as a Function of

Minimum Utilization... 97

Figure 7.54 Total Deletion Time of BitMatrix for Video Shots as a Function of # of Video

Shots .. 98

Figure 7.55 # of Computed Distances for 100 Video Shot Deletions as a Function of

Minimum Utilization... 98

Figure 7.56 Total Deletion Time of Slim-Tree for 100 Video Shots as a Function of

Minimum Utilization... 98

Figure 7.57 # of Computed Distances for 200 Video Shot Deletions as a Function of

Minimum Utilization... 99

Figure 7.58 Total Deletion Time of Slim-Tree for 200 Video Shots as a Function of

Minimum Utilization... 99

Figure 7.59 # of Computed Distances for 300 Video Shot Deletions as a Function of

Minimum Utilization... 99

Figure 7.60 Total Deletion Time of Slim-Tree for 300 Video Shots as a Function of

Minimum Utilization... 100

Figure 7.61 # of Computed Distances for 400 Video Shot Deletions as a Function of

Minimum Utilization... 100

xix

Figure 7.62 Total Deletion Time of Slim-Tree for 400 Video Shots as a Function of

Minimum Utilization... 100

Figure 7.63 # of Computed Distances for 500 Video Shot Deletions as a Function of

Minimum Utilization... 101

Figure 7.64 Total Deletion Time of Slim-Tree for 500 Video Shots as a Function of

Minimum Utilization... 101

Figure 7.65 ANMRR Values of BitMatrix Using OWA and EQW................................... 105

Figure 7.66 ANMRR Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 2) ... 106

Figure 7.67 ANMRR Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 3) ... 107

Figure 7.68 ANMRR Values of Slim-Tree Using OWA and EQW 108

Figure 7.69 ANMRR Values of Sequential Scan Using OWA and EQW......................... 109

Figure 7.70 Comparison of ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan Using

OWA ... 109

Figure 7.71 Comparison of ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan Using

EQW.. 110

Figure 7.72 Precision Values of BitMatrix Using OWA and EQW 111

Figure 7.73 Recall Values of BitMatrix Using OWA and EQW....................................... 111

Figure 7.74 Precision Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 2) ... 112

Figure 7.75 Recall Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 2) ... 113

Figure 7.76 Precision Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 3) ... 113

xx

Figure 7.77 Recall Values of BitMatrix Using OWA – Naïve Approach and Range

Expansion (ct = 3) ... 114

Figure 7.78 Precision Values of Slim-Tree Using OWA and EQW.................................. 115

Figure 7.79 Recall Values of Slim-Tree Using OWA and EQW....................................... 115

Figure 7.80 Precision Values of Sequential Scan Using OWA and EQW 116

Figure 7.81 Recall Values of Sequential Scan Using OWA and EQW 116

Figure 7.82 Comparison of Precision Values of BitMatrix, Slim-Tree and Seq. Scan Using

OWA ... 117

Figure 7.83 Comparison of Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using

OWA ... 118

Figure 7.84 Comparison of Precision Values of BitMatrix, Slim-Tree and Seq. Scan Using

EQW.. 118

Figure 7.85 Comparison of Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using

EQW.. 119

xxi

LIST OF ABBREVIATIONS

ANMRR : Average Normalized Modified Retrieval Rank

ARFF : Attribute-Relation File Format

AV : Audio-Visual

AVR : Average Rank

CBR : Content-Based Retrieval

CBVR : Content-Based Video Retrieval

CL : Color Layout

ct : Cardinality Threshold

DB : Database

DC : Dominant Color

DDL : Description Definition Language

Ds : Descriptors

DSs : Description Schemes

EH : Edge Histogram

EQW : Equal Weighted

et : Expansion Threshold

HTD : Homogenous Texture Descriptor

k-NN : k Nearest Neighbor

MA : Motion Activity

MBR : Minimum Bounding Rectangle

MPEG : Moving Pictures Experts Group

MRR : Modified Retrieval Rank

NMRR : Normalized Modified Retrieval Rank

OWA : Ordered Weighted Averaging

QBE : Query-By-Example

QBIC : Query By Image Content

QBS : Query-By-Subject

RS : Region Shape

STRG : Spatio-Temporal Region Graph

TB : Texture Browsing

xxii

VS : Video Shot

XM : Experimentation Model

XML : Extensible Markup Language

XXL : Extensible and Flexible Library

1

CHAPTER 1

INTRODUCTION

Multimedia data are of high importance in many areas and the growth for multimedia

brings the need for more effective methods for content-based retrieval. The video is

different from other multimedia data. Because video is:

 Continuous: consists of sequential frames where each frame can be thought as an

image,

 Time dependant: it has a temporal aspect, and

 Heterogeneous: the richest type of media (image, audio and movement combined)

The content of video can be seen from three different perspectives [14]:

 Textual content: Data that is not directly concerned with the content of video data

but in some way related to it such as date, movie title, director etc. [14].

 Semantic content: The idea or knowledge that convey to human (usually

ambiguous, subjective, and context-dependant) when video is perceived by human.

 Audiovisual content: Low-level features of video such as color, texture, shape,

motion and audio.

Due to the complexity inherent to video data, content-based video retrieval requires

multidisciplinary research effort in areas such as image and video processing, machine

learning, data mining, computer vision, visual data modeling, human visual perception,

information retrieval and multimedia database systems.

Effective content-based indexing and retrieval of videos is proven be a difficult task in

content-based video retrieval systems, because of the complexity of video data. Hence, our

motivation in this thesis study is to construct a content-based video retrieval system that

2

utilizes Slim-Tree and adapts BitMatrix index structures along with OWA operator for

effective content-based video retrieval.

Three main issues discussed in content-based video retrieval systems are [45]: (1) how to

efficiently parse a sequential video stream into meaningful smaller video shots, (2) how to

compute the similarity between any two video shots more accurately, and (3) how to index

and retrieve video shots more effectively.

(1) Indexing low-level features of for example a one-hour length video does not make

sense, since the queries are usually made for more specific events that occur in

video such as video parts that anchorman/anchorwoman appears or that show

crowded places etc. Thus, in content-based video retrieval systems, sequential

video streams are broken into manageable units, namely video shots, whose content

is similar as a whole.

(2) Content-based video retrieval systems use distance functions to compute the

similarity between any two video shots. Hence, the distance functions used in the

system are important elements of the system for effective indexing and retrieval.

(3) Due to the complexity inherent to video data, when the number of dimensions of

feature vectors and/or the number of videos to be indexed increase, sequential scan

of the video database becomes inefficient in terms of query response times.

Therefore, efficient index structures that are scalable to large video databases and

support indexing of multi-dimensional feature vectors of video are needed.

In the literature, many techniques and systems have been proposed in the context of

multi-dimensional indexing. The common goal of these multi-dimensional indexing

methods is to divide the search space in a set of ranges and prune some of the

ranges at search time [1]. Metric-space methods such as studies introduced in [13]

and [3] index the relative distances between the multi-dimensional feature vectors

of objects, where vector-space methods such as studies introduced in [23], [24],

[25] and [26] directly index the multi-dimensional feature vectors. Studies

introduced in [19] and [22] propose mapping the multi-dimensional feature vectors

into one-dimensional space and then use one of the efficient methods for one-

dimensional indexing. Finally, studies introduced in [1], [20] and [21] state that

sequential scan is inevitable and propose using an approximation file for feature

vectors, pruning the approximations during queries based on their

3

minimum/maximum distance to the query object and computing the exact distances

between the query object and the remaining objects in the database.

Some of the proposed index structures such as M-Tree [13] and BitMatrix [1][2] are

used to index image data. The index structures used for efficient image indexing

may be candidates for video indexing. However, video data is more complex than

image data; in addition to still image features such as color, texture and shape,

video has also motion features. Thus, the time-dependant nature and the motion

properties of the video data are of considerable importance in choosing adequate

video indexing techniques. A multi-dimensional index structure that is adequate for

video shall be capable of expressing the motion features of video effectively.

Studies introduced in [12] and [41] show that combining multiple features in

content-based multimedia retrieval improves the query performance in terms of

retrieval efficiency. Hence, the index structure used for video indexing shall also be

able to combine the visual features of video data such as color, texture, shape and

motion to improve the quality of query results.

There are two main approaches in content-based video retrieval [14]:

 Low-level Systems that retrieves video data based on low-level features of video

such as color, texture, shape and motion. Studies introduced in [41] and [42] are

examples of this type of CBVR systems. In low-level systems, the content of low-

level descriptors that defines the low-level features of video such as color, texture,

shape and motion are the key factors for the retrieval efficiency of the system. For

example, a human percepts the objects firstly according to their shapes and if the

shape descriptor used in the system can define the shape of objects similar to the

perception of human, this increases the retrieval efficiency of the system. At this

point, a common format that provides fast and effective retrieval helps to represent

the low-level features of multimedia data. As a consequence, MPEG-7 [5], formally

known as Multimedia Content Description Interface, is introduced as an ISO/IEC

standard by MPEG (Moving Picture Experts Groups) for representing the audio-

visual content by using standard descriptors. MPEG-7 provides visual descriptors

for color, texture, shape and motion features of video that allow efficient content-

based retrieval of video data.

 High-level Systems that intent to manage video data as it is perceived by human. In

general, this type of systems defines a video data model that models the video

4

objects and the relations between them along the time axis and provides appropriate

query languages to query video data. Studies introduced in [14] and [15] are

examples of this type of CBVR systems. Low-level features of video data can be

extracted automatically. However, automatic object recognition, tracking and

classification are difficult problems. Hence, in high-level systems, the problem is

the mapping between the low-level features of video data and semantic concepts

appear in video. A simple way of this mapping is to annotate video manually.

However, since this solution needs human-interaction with the system, it is

inefficient for large video databases. Another way of this mapping may be using a

knowledge-based system. Thus, by using a knowledge database for content-based

video retrieval, the system can map high-level video query conditions such as

keywords on particular subject(s) to the low-level features of video such as color,

texture, shape and motion.

In this thesis study, we present a content-based retrieval system that utilizes Slim-Tree and

adapts BitMatrix along with OWA operator for effective content-based indexing and

retrieval of videos. The main contributions of this thesis study and the focused parts of a

content-based retrieval system are as follows:

1- Video Shot Detection and Keyframe Extraction – First issue to focus is the

segmentation of sequential video streams into video shots and the extraction of

keyframes for the video shots. In this study, video shot detection and keyframe

extraction are done by using IBM VideoAnnEx Annotation Tool [32]. These

video shots and keyframes are stored in the file system for further

processing.

2- Feature Extraction and Storage – Second issue to focus is the extraction process of

low-level features of video data. In order to describe the low-level features, we use

MPEG-7 visual descriptors. To describe the content of video data, the MPEG-7

visual descriptors used in this study are Color Layout (CL), Dominant Color (DC),

Edge Histogram (EH), Region Shape (RS) and Motion Activity (MA). To extract

the color, texture and shape low-level features of a video shot, keyframes of the

video shots are used, where for the extraction of motion low-level features of video

shots; video shots are used as a whole. These visual descriptors are extracted in

XML format by using MPEG-7 eXperimentation Model (XM) [27] and stored in a

5

native XML database system called Oracle Berkeley DB [28] for further processing

and retrieval.

3- Video Database Indexing – As mentioned before, sequential scan of the video

database becomes inefficient when the number of database objects and/or the

dimensions of the feature vectors increase. Thus, we need index structures for

effective retrieval in terms of time and efficiency. In this study, two index

structures, namely Slim-Tree [3] and BitMatrix [1][2] are presented in the system to

improve the query performance in terms of time and efficiency. Similarity

measurement for both structures is carried out by using a metric distance function

called Euclidean Distance.

In this study, BitMatrix is used for content-based video indexing for the first time.

BitMatrix clusters feature vectors to generate feature vector approximations that are

used for pruning during queries based on their minimum/maximum distance to the

query object. This pruning strategy based on clustering results increases the

retrieval performance of the system in terms of both time and retrieval efficiency.

In addition to BitMatrix adaptation, Slim-Tree that has better performance than M-

Tree according to performance tests in [3] is also utilized in the system by using an

API, namely XXL API [29].

4- Using Ordered Weighted Averaging (OWA) for Feature Aggregation – In general,

content-based retrieval systems combine features of video data by using fixed

weights for each future. Thus, features of all videos in the database are associated

with fixed weights during distance computation. However, when comparing two

videos one feature may be more distinctive than other features; therefore that

feature must be associated with higher weight. Thus, we adapt OWA [35] operator

to the system to associate variable weights with the low-level features of video data

(CL, DC, EH, RS and MA) when combining distance values of each feature into

one final distance between any two objects.

5- Query Module – In content-based video retrieval, the characteristics of video you

are looking for cannot be precisely defined, unlike in traditional SQL queries. Thus,

content-based video retrieval system shall support similarity queries on videos. In

this thesis study, Query-By-Example (QBE) paradigm is used for similarity queries

on video data; the system searches low-level visual features stored in XML

database to retrieve video shots that are similar to the given query video shot.

6

BitMatrix and Slim-Tree are used in the query module of the system to support

efficient exact match, k-NN and range queries.

The performance of these two index structures are evaluated in terms of index

construction and update time, query response time, retrieval efficiency and distance

computations during index construction/update and querying. The query

performance of these two index structures are also compared with Sequential Scan.

For the evaluation of the retrieval efficiency ANMRR metric [4] that is the

evaluation criteria for MPEG-7 visual descriptors and precision/recall scores are

used. From the experimental results, it can be stated that BitMatrix along with

OWA operator improves the query performance of the content-based retrieval

system in terms of both query response time and retrieval efficiency.

The rest of the thesis is organized as follows: Chapter 2 explains MPEG-7 standard in detail

and overviews content-based video retrieval. Chapter 3 presents our content-based retrieval

system. Chapter 4 discusses Slim-Tree and Chapter 5 discusses BitMatrix used in our

system. Chapter 6 gives the implementation details of our system. The performance

experiments of the content-based retrieval system are given and the results are discussed in

Chapter 7. Finally, Chapter 8 provides conclusions and gives future directions.

7

CHAPTER 2

BACKGROUND

The organization of this chapter is as follows: The first section gives an overview on

MPEG-7 [5] and visual descriptors introduced in MPEG-7. The second section overviews

low-level visual features of video, similarity measurement of video data, video indexing

and querying concepts in content-based video retrieval systems and discusses some of the

content-based video retrieval systems.

2.1 MPEG-7

In this section, a brief discussion on MPEG-7 standard and the visual descriptors introduced

by the standard is given.

2.1.1 Introduction

MPEG-7 [5], formally named as Multimedia Content Description Interface, is introduced as

an ISO/IEC standard by MPEG (Moving Picture Experts Groups) for representing the

audio-visual (AV) content. The scope of MPEG-7 is different from the prior standards

(MPEG-1, MPEG-2, and MPEG-4) which focus on the coding of the AV content. MPEG-7

bases on the description of multimedia content and does not standardize the way to obtain

these descriptions or to use them, but only standardize the descriptions and the way of

structuring them [5].

One of the goals of MPEG-7 is content-based retrieval of AV content. To achieve this goal,

MPEG-7 provides tools to describe the AV content. One of these description tools is the

MPEG-7 Visual Descriptors (Ds) which describe the low-level features such as color,

texture, shape and motion of the visual content. MPEG-7 also defines Description Schemes

(DSs) which specifies the available descriptors for the specified description and the

relations between the stated descriptors and/or between other DSs. In addition to Ds and

DSs, MPEG-7 provides the Description Definition Language (DDL), which enables users

8

to create their own Description Schemes and Descriptors. DDL contains the syntactic rules

to define and combine Description Schemes and Descriptors.

2.1.2 Scope of MPEG-7

Searching, filtering and browsing of the AV content are the candidate application areas of

MPEG-7 standard. As shown in Figure 2.1, the scope of MPEG-7 standard is to define the

representation of the AV content description. Briefly, any issue that tends to be application-

dependent is outside the scope of the standard such as feature extraction and search.

Figure 2.1 Scope of MPEG-7 Standard

2.1.3 MPEG-7 Visual Descriptors

MPEG-7 visual descriptors provide a standard description of visual content such as image

and video in searching, browsing and filtering applications. In the following paragraphs, the

basic MPEG-7 visual descriptors are described briefly.

2.1.3.1 Color Descriptors

There are seven color descriptors defined in MPEG-7 standard.

 Color Space: This descriptor represents the color space that is used in a specific

color descriptor (Color Layout, Scalable Color etc.). Color spaces supported by the

MPEG-7 standard are RGB, YCbCr, HSV, HMMD, Monochrome and Linear

transformation matrix with reference to RGB [4][8].

9

 Color Quantization: This descriptor specifies the quantization of the given color

space. Both Color Quantization and Color Space descriptors are used in

conjunction with the other color descriptors specified in the standard.

 Dominant Color: This descriptor is an effective and compact descriptor which

specifies the representative color(s) (up to 8) in a specified region or in a whole

image/frame with the percentage of each representative color in the defined color

space and a spatial coherency value. The compactness of the descriptor makes the

descriptor a good candidate for content-based indexing.

 Color Layout: This descriptor provides information about the spatial distribution of

color in a region/image/frame of interest. Discrete Cosine Transform (DCT) is

applied on a 2-D array of local representative colors in Y or Cb or Cr color space

[4] to represent the spatial color distribution in the frequency domain. The

descriptor is compact as the dominant color descriptor; hence, it is easy to index.

This descriptor is an efficient descriptor for image-to-image and video clip-to-video

clip matching [4].

 Scalable Color: This descriptor is a color histogram in HSV color space, encoded

using Haar transform [8].

 Color Structure: This descriptor captures both color content (similar to a color

histogram) and information about the structure of this content. The main

functionality of this descriptor is image-to-image matching.

 Group of Frames/Pictures (GoF/GoP) Color: This descriptor extends the scalable

color descriptor which is defined for a still image to a set of images or frames in a

video segment.

2.1.3.2 Texture Descriptors

There are three texture descriptors defined in MPEG-7 standard: Texture Browsing,

Homogenous Texture and Edge Histogram.

 Texture Browsing: This descriptor provides information about the regularity,

directionality and coarseness of the texture of an image/frame. Texture Browsing is

a compact descriptor. Since the texture may have more than one dominant

10

direction, only two dominant directions and related coarsenesses are allowed by the

descriptor in the standard.

This descriptor is useful for browsing applications and also can be used for fast and

accurate image retrieval in conjuction with Homogenous Texture Descriptor (HTD)

[8]. In the context of similarity retrieval, this descriptor can be first used to get

candidate images with similar textures, then HTD is used to precise the similarity

match among those candidate images. However, it is not recommended by the

MPEG-7 standard to use this descriptor in image’s texture similarity matching

alone because of its retrieval performance. In addition, it is recommended in [4] that

the descriptor is better to be used on homogeneously textured images (e.g.

textile/fabric patterns).

 Homogenous Texture: This descriptor characterizes the region texture in frequency

domain by using the mean energy and the energy deviation from a set of frequency

channels [4]. This descriptor is used in image/video retrieval. It is recommended in

[4] that the descriptor is better to be used on homogeneously textured images (e.g.

pattern on fabrics, aerial imagery, Internet images, and trademark images).

 Edge Histogram: This descriptor describes the spatial distribution of the edges in

an image/frame. Edges in the edge histogram are categorized as vertical, horizontal,

45° diagonal, 135° diagonal and isotropic. This descriptor is useful for image-to-

image matching. Since the computation of the edge histogram descriptor is easy

and straightforward, it is a good choice for image/video retrieval based on texture.

It is recommended in [4] that the descriptor is better to be used on non-

homogeneous regions (e.g. natural images, sketch images, clip art images). The

performance of the descriptor can be enhanced by using this descriptor in

conjunction with other visual features, such as color and shape.

2.1.3.3 Shape Descriptors

There are three shape descriptors defined in MPEG-7 standard: Contour Shape, Region

Shape and 3-D Shape.

 Contour Shape: This descriptor captures the shape properties of the contour of a

given object by using Curvature Scale Space (CSS) respresentation of the contour.

11

Objects for which characteristic shape features are contained in the contour are

described efficiently by this descriptor [9]. The descriptor is very efficient in

applications where high variability in the shape is expected, due to, e.g.,

deformations in the object (rigid or non-rigid) or perspective deformations [9].

 Region Shape: This descriptor captures the pixel distribution within a region.

Hence, this descriptor considers all pixels in the shape, not only the contour of the

object as the contour shape descriptor does. This descriptor can describe complex

objects consisting of multiple disconnected regions as well as simple objects with

or without holes [9]. The descriptor performs well for shapes where region-based

similarity is important (e.g. complex shapes that consist of several disjoint regions)

[4].

 3-D Shape: This descriptor expresses the geometrical attributes of the 3-D surfaces

of objects [4]. Hence, it is used for retrieval or browsing of 3-D objects based on

shape.

2.1.3.4 Motion Descriptors

There are four motion descriptors defined in MPEG-7 standard: Motion Activity, Motion

Trajectory, Camera Motion, and Parametric Motion.

 Motion Activity: A video sequence is perceived by human as being slow, fast etc in

terms of motion. For example, “a goal in a football match” is a fast video sequence,

where “news reader” video sequence is perceived as a slow one. This descriptor

[10] captures this intuitive notion of ‘intensity of action’ or ‘pace of action’ in a

video segment [4], and it is measured by using motion vectors of a video sequence.

This descriptor consists of the following attributes [10].

o Intensity of Activity – This part of the descriptor is expressed by a 3-bit

integer in the range, where “1” indicates low activity and “5” indicates high

activity [5][10]. Intensity is defined as the variance of motion vector

magnitudes over all frames in the video sequence [11].

o Direction of Activity – This part of the descriptor expresses the dominant

direction of the video sequence, if exists. It is expressed by a 3-bit integer

12

which indicates one of the eight equally spaced angles between 0 and 360

degrees [4].

o Spatial Distribution of Activity - This part of the descriptor expresses

whether the activity is distributed across many regions or restricted to one

region in the sequence [4]. For example, “a busy street” video sequence

will have many small active regions, where “news reader” sequence will

have only one active region.

o Temporal Distribution of Activity - This part of the descriptor expresses the

variation of the level of the activity over time [4]. It is actually a motion

activity histogram with respect to time. Each value in the histogram

indicates the relative percentage of the specified level of activity with

respect to whole video sequence.

The descriptor can be used to retrieve the video shots that are similar to the given

query video shot in terms of motion activity which is surely the supposed action. As

a result, in the result set of video shots, there can be video shots which are similar in

motion attributes but not in other characteristics (i.e. color, shape, texture). Hence,

motion descriptors must be used in combination with the other characteristics, such

as color, texture and shape to get more accurate retrieval results.

 Motion Trajectory: This descriptor describes the position of moving objects with

respect to time, where the object is defined as the key-point (usually the center of

mass) of a moving region whose trajectory is important for the specific application

[4]. The descriptor assumes that the spatio-temporal regions are already extracted

from the related video sequence. For example, this can be achieved by using alpha-

channels in MPEG-4 format. However, for the other video formats, a segmentation

process has to be done. Once the regions are extracted from the video content, the

extraction of this feature is quite easy and fast. This descriptor can be used in

similarity matching of video segments or high-level queries such as “retrieve

objects passing near a given area” or “retrieve objects moving faster than a given

speed” [4].

 Parametric Motion: This descriptor describes the 2-D geometric transformation of

a region that the descriptor is associated with over a specified time interval. 2-D

geometric transformation models defined in this descriptor are translational,

13

rotation, affine, planar perspective and parabolic [11]. The descriptor enables to

retrieve video objects of similar motions undergoing rotations or deformations that

are not captured by motion trajectory descriptor [4]. Although this descriptor is a

compact one, it is the most computationally complex motion descriptor of MPEG-7

standard.

 Camera Motion: This descriptor describes the 3-D camera motion parameters that

can be obtained from the capture devices and the descriptor consists of the types of

camera motions present in a given video sequence. By using this descriptor,

assumptions can be made on the correlation between the high-level characteristics

of the video sequence content and the motion of the camera [4].

2.2 Content-Based Video Retrieval

In Figure 2.2, a typical CBVR system that indexes video data based on its low-level

features is represented.

Figure 2.2 Typical Content-Based Video Retrieval System

14

2.2.1 Video Database

The raw video database contains video shots for the purpose of visual display. Unlike

traditional databases, a preprocessing step (i.e. feature extraction) is required for querying

the raw video database, because of the nature of video data. The video features database

stores needed visual features extracted from videos to support content-based video retrieval.

2.2.2 Low-level Features of Video

There are mainly four low-level features that may be used in content-based video retrieval:

color, texture, shape and motion.

2.2.2.1 Color

Color is an important visual attribute for human vision system [4] and independent of

related region’s size and orientation [12]. Thus, color feature is one of the most widely used

low-level feature in content-based video retrieval.

2.2.2.2 Texture

Texture has emerged as an important visual primitive for searching and browsing through

large collections of similar looking patterns [4]. Thus, texture feature is also a widely used

low-level feature and facilitates content-based video retrieval.

2.2.2.3 Shape

Shape feature is very powerful when used in similarity search and retrieval, since the shape

of objects is usually strogly linked to object functionality and identity [4]. Humans can

recognize characteristics objects solely from their shapes, and this property distinguishes

shape from other low-level features such as color and texture [4].

15

2.2.2.4 Motion

Motion feature is the key low-level feature in video indexing, since it provides the easiest

access to the temporal dimension of video [4]. Motion feature improves the performance of

content-based video retrieval when used with the other low-level features such as color,

texture and shape [4].

2.2.3 Similarity Measurement

Similarity between a query video and videos stored in video database is measured by

computing the distance between the low-level visual features of the related videos. The

similarity/distance measures are mathematical definitions of the similarity and the distance

measure(s) used in similarity matching of videos affect the retrieval performance. Thus, the

choice of using which distance measure is important. A distance measurement need not to

be metric. However, metric distances are decided to be used in this study. A metric distance

measure must satisfy the following properties [39]:

1. D(p, q) ≥ 0 (D(p, q) = 0 iff p = q),

2. D(p, q) = D(q, p), and

3. D(p, z) ≤ D(p, q) + D(q, z)

In metric spaces, what is actually measured is the distance between feature values [17][18],

so the distance function returns a dissimilarity value between any two objects, where high

distance corresponds to low similarity and low distance corresponds to high similarity.

In the literature, many distance measures have been proposed and some of most commonly

use distances are listed below [12][38]:

 Minkowski-form Distance: This distance is defined as:

1

0

1

d

i
iyix

p
yx,Dp

p
(1)

16

where x and y are feature vectors and d is feature dimension. This distance

measure is appropriate when each dimension of video feature vector is

independent of each other and is of equal importance.

 Weighted Minkowski-form Distance: This distance is defined as:

1

0

1

d

i
iyix

p
iwyx,Dp

p
(2)

With weighted version of Minkowski-form distance, each dimension of video

feature vector can be weighted by assigning different non-negative weights to

each dimension.

 Euclidean Distance: When p = 2 in the definition of Minkowski-form

distance, it is called as Euclidean distance and defined as:

1

0

2 2

1

2

d

i
iyixyx,D

(3)

 Weighted Euclidean Distance: When p = 2 in the definition of weighted

Minkowski-form distance, it is called as weighted Euclidean distance and

defined as:

1

0

2 2

1

2

d

i
iyixiwyx,D

(4)

 Manhattan Distance: When p = 1 in the definition of Minkowski-form

distance, it is called as Manhattan distance (i.e. city-block distance) and

defined as:

1

0
1

d

i
iyixyx,D (5)

 Chebychev Distance: When p = ∞ in the definition of Minkowski-form

distance, it is called as Chebychev distance and defined as:

17

 iyixyx,D
d

i

1

0
max (6)

 Mahalanobis Distance: This distance is defined as:

)(det
1

1

yxCyxCyx,D
Td (7)

where C is the covariance matrix of the feature vectors. This distance can be

used when each dimension of video feature vector is dependent to each other

and have different weights.

2.2.4 Video Indexing

Due to the complexity inherent to video data, when the number of dimensions of feature

vectors and/or the number of video objects to be indexed increase, sequential scan of the

feature vectors becomes inefficient in terms of response times of similarity queries. Many

techniques and systems have been proposed in the context of multi-dimensional indexing

that can be used to provide efficient content-based video retrieval. The common goal of

these multi-dimensional indexing methods is to divide the search space in a set of ranges

and prune some of them at search time [1].

Vector-space methods index the feature vectors of multi-dimensional data. These index

structures are based on a tree data structure with the data nodes in the leaves of the tree and

a cluster hierarchy is built on top [1]. There are mainly two data partitioning strategy in

vector-space methods [1]:

 Data Partitioning: This partitioning strategy uses minimum bounding

rectangles (MBR) such as R-tree, R*-tree, X-tree, bounding spheres such as

SS−tree, MBR and bounding spheres such as SR−Tree, generic minimum

bounding regions (hyper rectangle, cube, sphere) such as TV −tree [16].

 Space Partitioning: This partitioning strategy partitions the space rather

than the data. kDB−tree, Hybrid−tree and SH−tree are examples of this

type of index structures that use space partitioning [16].

Metric-space methods such as M-Tree [13] and Slim-Tree [3] index the multi-dimensional

data based on the relative distances between indexed objects, not based on the feature

18

vectors of the indexed objects as vector-space methods do. Metric-space methods are also

based on a tree data structure with the data nodes in the leaves of the tree and a cluster

hierarchy is built on top [1].

Single-Dimensional Mapping techniques such as Pyramid-Technique [19] and KPYR [22]

map the points in the multi-dimensional space to the single-dimensional values for which

efficient techniques exist [1].

Data Approximation Structures such as VA-File [21], OVA-File [20] and BitMatrix [1][2]

make the assumption that a sequential scan is inevitable and construct a vector of

approximations (VA-file), significantly smaller than the original data [1]. In the first step,

the approximations are pruned based on their minimum/maximum distance to the query

point and then for the remaining approximations, corresponding exact data points are

analyzed [1].

2.2.4.1 Overview of Some Multi-dimensional Index Structures

R-Tree [23] is a vector-space indexing method and partitions the data space by using

Minimum Bounding Rectangles (MBRs). This index structure has been originally designed

for spatial databases [16][23]. R-Tree is a tree structure which includes two types of nodes:

internal nodes that cover all MBRs in the lower level of the tree and leaf nodes that contain

MBRs of indexed objects and a pointer to the indexed object.

R*-Tree [24] is an extension of the R-Tree based on a careful study of the R-Tree

algorithms under various data distributions [16]. The objectives of R*-Tree are to minimize

overlap between nodes, the volume covered by internal nodes, and to maximize the storage

utilization [16].

R+-Tree [25] is an overlap-free variant of R-Tree [16]. The index structure of R+-Tree is as

R-Tree’s. However, R+-Tree introduces force-split strategy that propagates the split of

nodes downward except leaf nodes [25]. The basic idea is to reduce overlap between nodes,

but propagating split downwards may degrade the storage utilization.

R-Tree, R*-Tree and R+-Tree are originally designed for two-dimensional spatial objects,

but also have been used for multi-dimensional objects [16]. The basic problem of these

structures is the increasing overlap between nodes when used on multi-dimensional objects.

Thus, another index structure, X-Tree [26], based on R*-Tree is introduced that is originally

19

designed for multi-dimensional objects. X-Tree introduces a new split algorithm that

minimize overlaps between nodes and supernode concept that allows the extension of an

internal node of the tree to avoid split. The basic idea of minimizing overlap and supernode

concept is to keep the tree as hierarchical as possible and to avoid splits in the tree that

would result higher overlap [26].

As the dimensionality of the feature vectors of data objects increase, the performance of

multi-dimensional indexing methods such as R-Tree, R*-Tree, R+-Tree and X-Tree

degrades. The specified methods are outperformed by simple sequential scan if the number

of dimensions exceeds a certain value. To tackle this issue called as the curse of

dimensionality, Vector Approximation (VA-File) [21] method is proposed. The objective of

this method is to make the unavoidable sequential scan as fast as possible by using vector

approximations to compress the vector data. During k-NN similarity queries, entire VA-File

is scanned and vast majority of the vector data objects are filtered out based on the vector

approximations. Hence, the search space is reduced. After this filtering step, the remaining

vector data points are visited sequentially in increasing order of the distance to the query

vector data point.

A variant of VA-File, namely OVA-File [20] index structure aims an efficient solution for

content-based video indexing. It is basically based on VA-File. However, OVA-File is a

hierarchical index structure. It partitions the vector approximation file into slices such that

only a part of these slices are processed during k-NN queries. OVA-File is a dynamic and

balanced index structure. It handles the insertion of new vector approximations into file

efficiently.

In VA-File method since all approximation file is scanned sequentially, query time is

almost constant. The query time of OVA-File varies, since the size of the visited parts of an

OVA-File is different for different queries. Also in OVA-File, there is a tradeoff between

the query result quality and the query response time.

M-Tree [13] is a paged, dynamic and balanced metric tree. It does not need periodic

reorganization of the tree structure after some updates (i.e. insertions and/or deletions) on

the tree, since it organizes its structure during each insert or delete operation. It is proposed

to organize and search large data sets from a generic “metric space”, i.e. where object

proximity is only defined by a distance function satisfying the positivity, symmetry, and

triangle inequality postulates [13]. Since the design of M-tree is inspired by both principles

20

of metric trees and database access methods, performance optimization concerns both CPU

(distance computations) and I/O costs [13].

Pyramid-Technique [19] is an indexing method that maps the d-dimensional data space into

a 1-dimensional space and then uses B+-Tree index structure to index the 1-dimensional

data space.

Figure 2.3 Sample 2-dimensional Data Space

In Pyramid-Technique, d-dimensional space is partitioned into 2d pyramids. In Figure 2.3, a

sample 2-dimensional space and its partitioning into pyramids are given: 2-dimensional

space is partitioned into 4 pyramids. After data space is partitioned into pyramids, pyramid

value of each d-dimensional point, v is calculated as:

pv (v) = (i + h)

where i is the identifier of the pyramid where v is located and h is the height of v in its

pyramid. The pyramid values of d-dimensional points are then indexed by using one of the

one-dimensional index structures such as B+-Tree.

Although the Pyramid-Technique performs well for hypercube shaped range queries, for

very skewed queries or queries specifying only one attribute, the Pyramid-Technique

performs worse than the sequential scan [19]. The performance of Pyramid-Technique is

sensitive to the positions of the query hypercube; it is less effective for clustered data sets;

and it is inferior for partial range queries [20]. Thus, using sequential scan method on the

data space may be more effective in the stated cases.

KPYR [22] is an index structure which is basically proposed for video data. It uses a well

known clustering technique k-means to index multi-dimensional video data. The basic idea

is to cluster the data first into k clusters and then using Pyramid-Technique on each cluster

21

that is transformed into a hypercube to apply Pyramid-Technique. In Figure 2.4,

geometrical representation of KPYR is given.

Figure 2.4 Geometrical Representation of KPYR

As shown in Figure 2.4, 2-dimensional points are clustered into four cluster to apply

Pyramid-Technique on each cluster. The performance tests show that KPYR outperforms

Pyramid Technique and sequential scan for range queries under different workloads (i.e.

different data set sizes, dimensionality and selectivity) [22]. Further information about

performance tests can be found in [22].

STRG-Index [45] is a graph-based index structure and aims at representing spatial features

of video objects and temporal relationships between video objects. STRG-Index expresses

these spatio-temporal characteristics of video as Spatio-Temporal Region Graph (STRG).

An STRG represents the spatial relations between adjacent video objects and temporal

relationships between the corresponding video objects in two consecutive frames of video.

This index structure constructs foreground and background STRGs for a given video and

indexes these foreground and background STRGs using a tree structure where root nodes

contain background STRGs, leaf nodes contain foreground STRGs and internal nodes

contain representative foreground STRG for clustered foreground STRGs.

2.2.5 Video Querying

There are two principal ways for the representation of queries for video data, namely

Query-By-Example and Query-By-Subject [36]:

22

 Query-By-Example (QBE): This method allows an intuitive representation of

queries. A query may be represented by drawing a rough sketch, a rough painting

using colors or an motion trajectory of an object. Such representations for query

conditions for video data are better than keywords, since it is difficult to express

slight differences in color, texture shape and motion with keywords [36].

 Query-By-Subject (QBS): This method allows specifying a subjective description of

a query and in such cases knowledge is required to capture the semantic contents of

video data to interpret the query [36]. Extraction of semantic content from the raw

video data is proven be a difficult task. The simplest way of semantic content

management is to annotate video data with text [36]. However, since this

annotation with text requires human-interaction with the retrieval system, it is not

practical for large video databases. Another way is using a knowledge-based

system and by using the knowledge database interpreting video queries on

particular subject(s).

2.2.6 Content-Based Video Retrieval Systems

In the literature, many content-based video retrieval systems are presented. In this section,

we discuss some of these systems.

2.2.6.1 VIRS

VIRS [41] is a video/image retrieval system based on MPEG-7 visual descriptors. The

system uses Dominant Color, Color Layout and Color Structure, Homogeneous Texture,

Texture Browsing, Edge Histogram, Motion Activity, Motion Trajectory, Camera Motion

and Region Shape visual descriptors to describe the image/video content. The system

provides two types of query method [41]: one is Query-By-Example (QBE) method which

searches the similar images/videos with a sample, and the other is Query-By-Draw (QBD)

method which retrieves by rough sketch drawing. The system also supports giving various

weights to each feature used in querying.

23

2.2.6.2 BilVMS

BilVMS [42] is a state-of-art video management system that indexes the video data based

on MPEG-7 visual descriptors. The system is capable of temporally segmenting video into

shots, as well as obtaining a semantically meaningful group of shots, i.e. scenes [42].

BilVMS uses Dominant Color, Color Layout, Scalable Color, Color Structure,

Homogeneous Texture, Edge Histogram, Camera Motion and Motion Activity visual

descriptors to index video. The system uses the keyframes of video shots to represent the

still image visual features (i.e. visual features other than motion descriptors). In this study, a

number of semantic classes are defined and keyframes of video shots are assigned into

those semantic classes according to their MPEG-7 color and texture features [42]. The

system also includes videotext detection/recognition and face detection capabilities.

2.2.6.3 MUVIS

MUVIS [37] provides a framework for content-based indexing and querying multimedia

collections such as image, audio and video data. The system uses low-level features of

multimedia data for indexing and merges several features by weighted interpolation during

queries. Keyframes of video clips are used to represent the still image features of the video

clips.

2.2.6.4 WebSEEk

WebSEEk [40] is a cataloguing tool that allows content-based image and video

querying on the Web. WebSEEk uses several autonomous agents that collect, index

and assign image/video objects into defined subject classes. The system provides

querying the indexed images/videos by using keywords or visual content.

2.2.6.5 QBIC: Query By Image and Video Content

QBIC [44] is a system that provides content-based image and video retrieval. In

QBIC, firstly videos are broken into video shots and representative frames are

extracted for each video shot. These representative frames are used to describe the

still image features of the video shots. Further processing of video shots generates

24

motion objects, for example a car moving across the screen [44]. Queries are

allowed on objects (“Find images with a red, round object”), scenes (“Find images

that have approximately 30-percent red and contain a blue textured object”), shots

(“Find all shots panning from left to right”), or any combination [44]. In QBIC, the

similarity measurement between the features of images/videos is done by using

distance functions.

2.2.6.6 Virage Video Engine

Virage Video Engine [43] provides a framework and tools for content-based video

retrieval. The engine is a flexible platform-independent architecture which provides

support for processing multiple synchronized data streams like image sequences,

audio and closed captions and the architecture of the system allows for multi-modal

indexing and retrieval of video [43].

25

CHAPTER 3

THE CONTENT-BASED RETRIEVAL SYSTEM

In this chapter, our content-based retrieval system that adapts BitMatrix and utilizes Slim-

Tree index structures for efficiently retrieving images and videos based on low-level

descriptors is presented. The parts we focus during the content-based retrieval system

development are the detection of video shots and the selection of keyframes for the detected

video shots, low-level feature extraction and storage of images and video shots, indexing

and querying. These parts of the system are explained in detail in the following sections.

3.1 Overview of the Content-Based Retrieval (CBR) System

In Figure 3.1, the block diagram of our content-based retrieval system is represented.

Figure 3.1 Block Diagram of the CBR System

26

As seen from Figure 3.1, sequential video streams are broken into manageable units,

namely video shots and the keyframes of the video shots are extracted. The resulting video

shots, keyframes and also images are put into a pre-defined location on the file system.

After this step, the low-level features of video shots and images are extracted. The low-

level features extracted for video shots are Color Layout (CL), Dominant Color (DC), Edge

Histogram (EH), Region Shape (RS) and Motion Activity (MA). The still image features

such as Color Layout (CL), Dominant Color (DC), Edge Histogram (EH) and Region Shape

(RS) of video shots are extracted by using the related keyframes of the video shots. In our

system, one keyframe is used for each video shot to represent the still image features of the

video shots. The low-level features extracted for images are same as for video shots except

Motion Activity (MA). The generated low-level features of video shots and images are

stored in a native XML database. The video shots and images are indexed based on their

low-level features stored in the XML database by two different index structures, namely

Slim-Tree and BitMatrix. The retrieval engine uses these two index structures to retrieve

video shots and images based on their content.

Our content-based retrieval system is capable of indexing and retrieving both images and

video shots. However, our main focus is the content-based video retrieval. Thus, we explain

the parts of our system from this perspective. The parts of our content-based retrieval

system are discussed in detail, in the following sections.

3.2 Video Shot Detection and Keyframe Extraction

Before feature extraction process, firstly sequential video streams are broken into

manageable units, namely video shots, whose content is similar as a whole and the

keyframes of the video shots are detected. This process is briefly explained with Figure 3.2.

Figure 3.2 Parsing Video Content for Indexing

27

The keyframes of video shots are used to extract the still image features of the video shots

such as Color Layout (CL), Dominant Color (DC), Edge Histogram (EH) and Region Shape

(RS). To represent the still image features of a video shot, one or more keyframe can be

used. In this study, we use one keyframe for each video shot. Video shot detection and

keyframe extraction processes are done offline in the system. The detected video shots and

the extracted keyframes of the video shots are the input for feature extraction process of the

system.

3.3 Feature Extraction

In [33], the visual content descriptors, which are extracted with MPEG-7 Descriptors, are

analyzed from the statistical point of view. The main results show that the best descriptors

for combination are Color Layout (CL), Dominant Color (DC), Edge Histogram (EH) and

Texture Browsing (TB) and the others are highly dependent on these. In this study, we use

as color descriptor Color Layout (CL) and Dominant Color (DC); as texture descriptor

Edge Histogram (EH); as shape descriptor Region Shape (RS); and as motion descriptor

(only for video shots) Motion Activity (MA) defined in MPEG-7 Standard. These

descriptors are explained in detail, in Section 2.1.3. In our content-based retrieval system,

after video shots and keyframes are detected, visual features of video shots such as CL, DC,

EH, RS and MA are extracted and stored in XML format.

3.4 Raw Data and Feature Storage

The video shots and their related keyframes are stored in a pre-defined location on the file

system for further processing (i.e. low-level feature extraction). The generated XML files

that contain visual features of the video shots are stored in a native XML database. The

storage of extracted features into the XML database are done offline.

3.5 Similarity Measurement

In metric space structures, what is actually measured is the distance between feature values

[17][18]. The distance function that is used to measure similarity returns a dissimilarity

value between any two objects and high distance corresponds to low similarity, where low

distance corresponds to high similarity. Hence, in our system, similarity measurement

between any two video shots is carried out by using distance functions. In the following two

28

subsections, distance functions used for similarity measurement, OWA operator and its

usage in the system are discussed, respectively.

3.5.1 Distance Function

Commonly used distance functions are explained in Section 2.2.3. In this section, distance

functions used in the system are presented. Since the content of visual descriptors (i.e. CL,

DC, RS, EH and MA) used in the system is explained in Section 6.2, the meaning of

parameters used in distance functions are not specified in this section.

In this study, we use the following distance function for the Color Layout (CL) feature:

3

1

2

3

1

2

6

1

2

]['][

]['][

]['][

i

i

i
CL

iCrCoeffiCrCoeff

iCbCoeffiCbCoeff

iYCoeffiYCoeffD

(8)

Distance function for the Edge Histogram (EH) feature:

n

i
EH iBincountsiBincountsD

1

2])['][((9)

where n = 80.

Distance function for the Region Shape (RS) feature:

n

i
RS iMagntOfARTiMagntOfARTD

1

2])['][((10)

where n = 35.

Distance function for the Motion Activity (MA) feature:

29

 ' 2

5

1
'

2

'
2

'
2

'
2

onpaceOfMotionpaceOfMoti

i
itempParamitempParam

NlrNlrNmrNmrNsrNsrDMA

(11)

where

paceOfMotion is the motion intensity of video shot,

Nsr, Nmr and Nlr are the spatial distribution parameters, and

tempParam is the motion activity histogram.

Dominant Color (DC) distance function used in this study differs from other features’

distance computation. The distance function for DC is a fuzzy distance function which is

introduced in [34] and used in [12]. In the computation of DC distance, color similarity is

taken into account by applying Single Mode DC Search [34]. Firstly, the system evaluates

the differences between the color indexes of any two dominant colors of two video shots in

the defined color space which is RGB in this study. If differences are less than a pre-defined

threshold value which is 10 in this study, then color similarity is evaluated by using the

following function:

n

i
DC iColorValiColorValD

1

2])['][((12)

where n = 3. In the second phase, minimum percentage of the related dominant colors of

two video shots is normalized and multiplied by the color similarity and the resulting value

is extracted from one to get the final DC similarity of the related dominant colors of two

video shots. For all colors defined in first and second video shot, this process is applied and

the minimum DC similarity is treated as the overall DC distance between two video shots.

30

3.5.2 Ordered Weighted Averaging (OWA) Operator

An OWA operator [35] of dimension n is a mapping:

F : Rⁿ → R,
(13)

which has an associated weighting vector W

 T21 ...W nwww (14)

such that

n

i
iw

1

 = 1 (15)

where wi [0, 1] and where

n

i
iin bwaaF

1
1 ,..., (16)

where bi is the ith largest element of the collection of the aggregated objects a1,…,an. The

function value F(a1,…,an) determines the aggregated value of arguments, a1,…,an.

To compute the overall distance between two video shots, we compute CL, DC, EH, RS

and MA distances and apply normalization to each of them separately so that their range is

from ‘0’ (similar) to ‘1’ (dissimilar). After normalization of each feature’s distances, we

compute the overall distance value from CL, DC, EH, RS and MA distances by using the

OWA operator. From the definition of OWA operator, the overall distance is also in [0, 1].

Suppose that (d1, d2, d3, d4, d5) are the distance values for color layout, dominant color,

region shape, edge histogram and motion activity between any two video shots where d1

d2 d3 d4 d5. The OWA operator associated to the five nonnegative weights (w1,…,wn)

where wi Є [0,1] and w5 w4 w3 w2 w1. It should be noted that the weight wn is

linked to the greatest distance value, dn, and w1 is linked to the lowest distance value, d1, to

emphasize similarity between two objects. The final distance value between any two video

shots becomes:

n

i
ii dwD

1

(17)

where n = 5.

31

For example, for two video shots O1 and O2, we want to compute distance between them,

d(O1, O2), and assume that, for each feature, CL, DC, EH, RS and MA the normalized

distance values are; dDC(O1, O2) = 0.325, dCL(O1, O2) = 0.570, dEH(O1, O2) = 0.450, dRS(O1,

O2) = 0.250, dMA(O1, O2) = 0.32.

and the OWA weights are;

w1 = 0.3, w2 = 0.3, w3 = 0.2, w4 = 0.1, w5 = 0.1,

so w1 + w2 + w3 + w4 + w5 = 0.3+0.3+0.2+0.1+0.1 = 1,

then the overall distance is:

d(O1, O2) = F(dCL(O1, O2), dDC(O1, O2), dEH(O1, O2), dRS(O1, O2) , dMA(O1, O2))

= w1 * dRS(O1, O2) + w2 * dMA(O1, O2)

+ w3 * dDC(O1, O2) + w4 * dEH(O1, O2) + w5 * dCL (O1, O2)

=0.3*0.250+0.3*0.32+0.2*0.325+0.1*0.450+0.1*0.570

= 0.338.

Since there are five low-level features that represent the visual content of a video shot, the

system evaluates different distance values for each feature, by using distance functions and

combines these values into single value by using OWA operator. In this study, the weight

values of OWA operator for the video shots are {0.3, 0.3, 0.2 , 0.1, 0.1} and the weight

values of OWA operator for the images are {0.4, 0.3, 0.2, 0.1}.

3.6 Indexing

An ideal content-based video retrieval system shall be scalable to large video collections.

Thus, multi-dimensional index structures are needed to provide efficient content-based

video retrieval. The multi-dimensional index structures used in the system shall support

efficient k-NN and range queries.

For indexing the visual features of video shots, we utilize Slim-Tree [3] known as a

dynamic and balanced access structure and adapt BitMatrix [1][2] which is a highly

parametrizable structure in our content-based retrieval system. Slim-Tree and BitMatrix are

32

discussed in detail in Chapter 4 and Chapter 5, respectively. Thus, in this section we explain

briefly the construction of Slim-Tree and BitMatrix index structures in the content-based

retrieval system.

In our system, Slim-Tree is the index structure utilized to index the low-level features of the

video shots. Since Slim-Tree is a metric index structure, it needs distance functions that are

used during index construction/update and retrieval to measure the similarity of any two

video shots. Thus, the inputs for the construction of Slim-Tree are the low-level feature

values (i.e. color layout, dominant color, edge histogram, region shape and motion activity

descriptors) of the video shots and the distance functions to be used during index

construction. The distance functions provided to Slim-Tree are the ones that are explained

in Section 3.5.1.

We use a single Slim-Tree for indexing all the visual features of video shots together. When

a distance computation is necessary during index construction/update, our system computes

distance values of each visual feature seperately and combines these values into a single

distance value by using OWA operator.

In this study, BitMatrix is adapted to video databases for the first time. Unlike Slim-Tree,

BitMatrix does not need distance functions during index construction/update, since the

index construction/update are only based on the clustering results of low-level visual

features of video shots. Thus, the input for the construction of BitMatrix is the low-level

feature values (i.e. color layout, dominant color, edge histogram, region shape and motion

activity descriptors) of the video shots. We use a single BitMatrix for indexing all the visual

features of video shots together, as in Slim-Tree case.

3.7 Querying Module

Our content-based retrieval system uses Query-By-Example method. Hence, the system

needs low-level visual features of the query video shot for similarity searches. In our

system, we use the video shots whose low-level features are already extracted and stored in

the XML database as query video shots. Thus, the system fetches the low-level features of

the query video shot from the XML database during queries. To retrieve video shots, Slim-

Tree and BitMatrix index structures are used by the querying module of the system. Exact

match, k-NN and range queries are supported by the system. The stated queries are defined

as follows:

33

Range Query: Given a query object q D, where D is the search space (i.e. the domain of

indexed features of objects). Range query selects all indexed objects qj that are within a

specified distance (r(q)) from the query object, q. For example, a range query becomes:

“Find all video shots which are within 0.3 distance from given query video shot”

k-NN Query: Given an integer k and a query object q D, where D is the search space (i.e.

the domain of indexed features of objects) and k≥1. k-NN query selects the k indexed

objects that are closest (i.e. that have the shortest distances) to the query object, q. For

example, a k-NN query becomes:

“Find 20 nearest video shots to given query video shot”

Exact Match Query: Given a query object q D, where D is the search space (i.e. the

domain of indexed features of objects). Exact match query selects the indexed objects

whose distances are zero to the query object, q. Thus, an exact match query is actually a

range query whose radius (r(q)) is zero. An exact match query becomes:

“Find all video shots which are within 0 distance from given query video shot”

Querying on Slim-Tree and BitMatrix are discussed in detail in Chapter 4 and Chapter 5,

respectively. Thus, in this section we only give the inputs to Slim-Tree and BitMatrix index

structures for k-NN and range queries.

For k-NN query on Slim-Tree/BitMatrix, the inputs that shall be provided to the index

structure are:

 The number of nearest neighbour objects to retrieve, k

 Low-level visual features of the query video shot; color layout, dominant color,

region shape, edge histogram and motion activity,

 The distance function for each low-level visual feature, and

 OWA weights used for the aggregation of the distance values of low-level visual

features

For range query on Slim-Tree/BitMatrix, the inputs that shall be provided to the index

structure are:

34

 Radius of range query, r

 Low-level visual features of the query video shot; color layout, dominant color,

region shape, edge histogram and motion activity,

 The distance function for each low-level visual feature, and

 OWA weights used for the aggregation of the distance values of low-level visual

features

35

CHAPTER 4

SLIM-TREE

In this chapter, the index structure utilized in our content-based retrieval system,

namely Slim-Tree is discussed, in detail.

4.1 Introduction

Slim-Tree [3] is a paged, dynamic and balanced metric tree as M-Tree that is

mentioned in Section 2.2.4. As stated in [3], the design objective of Slim-Tree is to

reduce the overlap between the nodes in a metric tree, since the overlap between

nodes affects the performance of index structures. As the other proposed metric

trees, Slim-Tree partitions the search space using the relative distances between indexed

objects, not the complex features of objects. Minkowski-form distances (Manhattan

distance, Euclidean distance etc.) can be used to calculate the relative distances of the

objects. Slim-Tree differs from the previous proposed metric trees in the following ways

[3]:

 Minimal Spanning Tree (MST) split algorithm that performs faster than other split

algorithms without sacrificing search performance is introduced.

 A new algorithm that leads to considerably higher storage utilization is presented to

guide the selection of a subtree during an insertion of an object at an internal node.

 Slim-down algorithm is presented to make the metric tree tighter and faster in a

post-processing step.

36

4.2 Structure of Slim-Tree

In Slim-Tree, data is stored in the leaf nodes and a cluster hierarchy is built on top

as in other metric trees such as M-Tree [3]. An example view of the Slim-Tree index

structure is shown in Figure 4.1 and Figure 4.2.

Figure 4.1 Example Data Distribution and Covering Regions

37

Figure 4.2 General Structure of Slim-Tree

In Figure 4.1, we see thirty one indexed objects with six covering regions and Figure 4.2

shows the general tree structure built for indexed objects.

Slim-Tree has two types of nodes: internal node and leaf node. A leaf node stores

indexed database objects (i.e. ground objects) and an internal node stores routing

objects which are also database objects that routing role assigned by a specific split

policy.

The information about a routing object is as follows [13]:

 Or: (feature value of the) routing object,

 ptr(T(Or)): pointer to the root of T(Or), where T(Or) is a sub-tree,

 r(Or): covering radius of Or (i.e. the maximum of the distances to the child

objects),

 d(Or, P(Or)): distance of Or from its parent, where P(Or) is the parent of

routing object.

The graphical representation of a routing object of Slim-Tree is given in Figure 4.3:

38

Figure 4.3 Structure of Routing Object in Slim-Tree

The information about a ground object is as follows [13]:

 Oj: (feature value of the) ground object,

 oid(Oj): object identifier,

 d(Oj, P(Oj)): distance of Oj to its parent.

The graphical representation of a ground object of Slim-Tree is given in Figure 4.4:

Figure 4.4 Structure of Ground Object in Slim-Tree

4.3 Building the Slim-Tree

When inserting a new object into Slim-Tree, at each level of the current tree, Slim-

Tree tries to locate a node that covers the new object; if none qualifies, Slim-Tree

selects the node whose center is nearest to the new object; if more than one node

qualifies, and then Slim-Tree selects one of the candidate nodes by using

39

ChooseSubtree algorithm [3]. If the insertion of the new object causes an overflow

on a node, then a new node is created at the same level and the objects on the

overflowed node is splitted among these two nodes [3]. If the splitted node is the

root node, then a new root node is allocated and the tree grows one level [3].

Slim-Tree has three options for the ChooseSubtree algorithm [3]:

 Random: randomly choose one of the qualifying nodes,

 Mindist: Choose the node that has the minimum distance from the new

object and the center of the node,

 Minoccup: choose the node that has the minimum occupancy among the

qualifying ones.

Slim-Tree has three splitting algorithms [3]:

 Random: The two new center objects are randomly selected, and the existing

objects are distributed among them. Each object is stored in a new node that

has its center nearest this object, with respect to a minimum utilization of

each node.

 minMax: All possible pairs of objects are considered as potential

representatives. For each pair, a linear algorithm assigns the objects to one

of the representatives. The pair which minimizes the covering radius is

chosen.

 MST (Minimal Spanning Tree): The minimal spanning tree of the objects is

generated, and one of the longest arcs of the tree is dropped. MST algorithm

introduced in [3] is represented in Figure 4.5.

40

Figure 4.5 Sample Split using MST

As shown in Figure 4.5, during a split using MST in Slim-Tree, first the minimal

spanning tree of the node is built. Then the longest edge of the minimal spanning

tree is removed, the current connected objects are treated as two separate nodes and

the representative objects (i.e. the object whose maximum distance to all other

objects of the node is shortest) of the two nodes that are shown with red color are

determined. This algorithm does not guarantee that each node will have a minimum

percentage of objects [3]. Thus, as a solution to obtain more even distribution,

choosing the most appropriate edge (i.e. the one which causes the best even

distribution on other distributions) among the longest arcs is proposed in [3]. If no

such edge exists for such even distribution, then the longest edge is removed as

explained in Figure 4.5.

Since Slim-Tree is a metric tree, the relative distances between indexed objects are

calculated to construct the Slim-Tree. In our system, the distance values between the

low-level features (i.e. color layout, dominant color, region shape, edge histogram

and motion activity) of any two video shots in Slim-Tree are computed using

distance functions explained in Section 3.5.1, separately. These distance values are

merged into one final distance value by using OWA operator as explained in

Section 3.5.2.

Suppose that we construct a Slim-Tree using MST algorithm as split algorithm for seven

video shots whose keyframes are as given in Figure 4.6.

Node Before Split Nodes After SplitResulting MST

41

Figure 4.6 Keyframes of Sample Seven Video Shots

During the insertion of an index entry for a video shot into the Slim-Tree, distance

value between the video shot to be inserted and any video shot already in Slim-Tree

is computed. Assume that, three video shots vs1, vs2 and vs3 are already inserted

into Slim-Tree, their relative distances are d(v1, v2) = 0.149, d(v1, v3) = 0.324, d(v2,

v3) = 0.335, and the maximum capacity of a node is set to three. According to the

given distance values, suppose that the data distribution for the current Slim-Tree is

as in Figure 4.7 and the corresponding Slim-Tree representation is as in Figure 4.8.

Figure 4.7 Sample Distribution of Three Video Shots

42

Figure 4.8 Corresponding Slim-Tree of Three Video Shots

We try to insert vs4 to the Slim-Tree whose distribution is given in Figure 4.7. Since

the maximum capacity of a node is three, the insertion of vs4 causes a split. Distance

values are computed as d (vs4, vs1) = 0.338, d (vs4, vs2) = 0.351 and d (vs4, vs3) =

0.259 using low-level features of video shots. Then the splitting steps of our current

Slim-Tree are as follows:

Figure 4.9 Splitting Slim-Tree of Video Shots using MST

As shown in Figure 4.9, firstly minimal spanning tree for four video shots is

generated by computing distances between video shots. After minimal spanning tree

is generated, it is detected that the edge between vs1 and vs3 in MST has the

maximum distance value. Thus, vs1-vs3 edge is removed and currently connected

video shots are assigned to the same node. After insertion of vs4 and split operation

using MST, the resulting Slim-Tree structure becomes as follows:

43

Figure 4.10 Resulting Slim-Tree of Four Video Shots after Split using MST

Slim-Tree introduces a new algorithm namely Slim-down algorithm [3] to reduce

overlaps in an existing Slim-Tree in a post-processing step. The overlap in a metric

space can be explained as the number of objects in the corresponding sub-trees

which are covered by both nodes [3]. The Slim-down algorithm can be explained as

follows [3] and it is represented in Figure 4.11:

1. For each node in a specified level of the tree, find the farthest object from

the representative object.

2. Find a sibling node of the node, that also covers the farthest object. If such a

node exists and has room for the farthest object, remove the farthest object

from the node and insert into the sibling node and correct the radius of the

node which the farthest node is removed.

3. Apply Step 1-2 sequentially, over all nodes of a specified level of the tree. If

after a full round of the Step 1-2, an object moves from one node to another,

another full round of Step 1-2 must be reapplied for the specified level.

44

Figure 4.11 Slim-Down Algorithm

Suppose that we insert the remaining three video shots (vs5, vs6 and vs7) to the Slim-

Tree of four video shots mentioned above and our sample Slim-Tree that consists of

seven video shots becomes as shown in Figure 4.12. In Section 4.4, we use this

sample Slim-Tree of seven video shots to represent how k-NN and range queries are

performed on Slim-Tree for video shots.

Figure 4.12 Sample Slim-Tree of Seven Video Shots

4.4 Querying the Slim-Tree

Slim-Tree supports two main types of queries: k-NN (k-Nearest Neighbor) query

and range query. Since exact match query is a range query whose range radius is

zero, it is not mentioned explicitly.

Before After

45

4.4.1 k-NN Query

Slim-Tree uses the triangle inequality to prune some nodes during k-NN queries, as

other metric trees do. An example to the k-NN query of Slim-Tree is given below.

Suppose that a query video shot, q whose keyframe is represented in Figure 4.13 is

given to the system for retrieving the video shots which have the two closest

distances to the query object (i.e. we make a 2-NN query) and our current Slim-Tree

is the one given in Figure 4.12.

Figure 4.13 Keyframe of Given Query Video Shot for Retrieval

Firstly, the system computes the distances between the query video shot, q, and root

node entries of the Slim-Tree. The distance values between the low-level features

(i.e. color layout, dominant color, region shape, edge histogram and motion activity)

of a video shot on Slim-Tree and q are computed using distance functions explained

in Section 3.5.1, separately. These distance values are then merged into one distance

value by using OWA operator explained in Section 3.5.2. The resulting distance

value becomes the final distance value between the related video shot and q.

Suppose that we compute the final distances as:

d(q, VS-I) = 0.192

d(q, VS-II) = 0.278

d(q, VS-III) = 0.353

Hence, dk that is largest distance in current nearest neighbour objects becomes

0.278.

46

For the sub-tree of VS-I, the system decides whether to prune the sub-tree or not by

using triangle inequality. For the first child of sub-tree of VS-I, which is VS-1 and

equal to VS-I, triangle inequality is used to decide prune or not. If

|d(q, VS-I) – d(VS-I, VS-1)| > dk + r(VS-1)

then the sub-tree of VS-1 can be pruned from results.

d(VS-I, VS-1) = 0

|d(q, VS-I) – d(VS-I, VS-1)| > dk + r(VS-1)

|0.192 – 0| > 0.278 + 0.149

0.192 > 0.427 (not true)

So, d(q, vs-1) and d(q, vs-2) have to be calculated, which is equal to 0.192 and

0.205, respectively. d(q, vs-1) becomes our best-so-far and d(q, vs-2) becomes our

second-best-so-far. Since d(q, vs-2) is less than current dk, dk is updated as 0.205.

For the sub-tree of VS-II, the system decides whether to prune the sub-tree or not by

using triangle inequality. For the first child of VS-II, which is VS-4, triangle

inequality is used to decide prune or not. If

|d(q, VS-II) – d(VS-II, VS-4)| > dk + r(VS-4)

then the sub-tree of VS-4 can be pruned from results.

d(VS-II, VS-4) = 0.269

|d(q, VS-II) – d(VS-II, VS-4)| > dk + r(VS-4)

|0.278 – 0.269| > 0.205 + 0.0

0.009 > 0.205 (not true)

So, d(q, vs-4) has to be calculated, which is equal to 0.296. Since d(q, vs-4) is

greater than dk, then vs-4 is eliminated from the results.

47

For the second entry of sub-tree of VS-II, which is VS-7 and equal to VS-II, same

procedure is applied to decide pruning.

d(VS-II, VS-7) = 0.0

|d(q, VS-II) – d(VS-II, VS-7)| > dk + r(VS-7)

|0.278 – 0.0| > 0.205 + 0.058

0.278 > 0.263 (true)

So, the sub-tree of VS-7 can be pruned from results.

Finally, for the sub-tree of VS-III, the system decides whether to prune the sub-tree

or not by using triangle inequality. For the child of VS-III, which is VS-5 and equal

to VS-III, triangle inequality is used to decide prune or not. If

|d(q, VS-III) – d(VS-III, VS-5)| > dk + r(VS-5)

then the sub-tree of VS-5 can be pruned from results.

d(VS-III, VS-5) = 0

|d(q, VS-III) – d(VS-III, VS-5)| > dk + r(VS-5)

|0.353 – 0| > 0.205 + 0.228

0.353 > 0.433 (not true)

So, d(q, vs-5) and d(q, vs-6) have to be calculated, which is equal to 0.353 and

0.575, respectively. Since d(q, vs-5) and d(q, vs-6) are greater than dk, then vs-5 and

vs-6 are eliminated from the results.

As a result, vs-1 and vs-2 are returned to the user, since d(q, vs-1) and d(q, vs-2)

have the two smallest distances to the query video shot.

48

4.4.2 Range Query

Slim-Tree uses the triangle inequality to prune some nodes during range queries, as

other metric trees do. An example to the range query of Slim-Tree is given below.

Suppose that a query video shot, q whose keyframe is represented in Figure 4.13 is

given to the system for retrieving the video shots which have a distance from the

query video shot less than or equal 0.21 (r = 0.21) and our current Slim-Tree is the

one given in Figure 4.12.

Firstly, as in k-NN query of Slim-Tree, the system computes the distances between

the query video shot, q, and root node entries of the Slim-Tree. The distance value

between any node entry of Slim-Tree and q is computed as follows. The distance

values between the low-level features (i.e. color layout, dominant color, region

shape, edge histogram and motion activity) of a video shot on Slim-Tree and q are

computed using distance functions explained in Section 3.5.1, separately. These

distance values are then merged into one distance value by using OWA operator

explained in Section 3.5.2. The resulting distance value becomes the final distance

value between the related video shot and q. Suppose that the final distances are:

d(q, VS-I) = 0.192

d(q, VS-II) = 0.278

d(q, VS-III) = 0.353

For the sub-tree of VS-I, the system decides whether to prune the sub-tree or not by

using triangle inequality. For the first child of VS-I, which is VS-1 and equal to VS-

I, triangle inequality is used to decide prune or not. If

|d(q, VS-I) – d(VS-I, VS-1)| > r(q) + r(VS-1)

then the sub-tree of VS-1 can be pruned from results.

d(VS-I, VS-1) = 0

|d(q, VS-I) – d(VS-I, VS-1)| > r(q) + r(VS-1)

49

|0.192 – 0| > 0.21 + 0.149

0.192 > 0.359 (not true)

So, d(q, vs-1) and d(q, vs-2) have to be calculated, which is equal to 0.192 and

0.205, respectively. Since d(q, vs-1) and d(q, vs-2) are less than 0.21, then vs-1 and

vs-2 are added to the results.

For the sub-tree of VS-II, the system decides whether to prune the sub-tree or not by

using triangle inequality. For the first child of VS-II, which is VS-4, triangle

inequality is used to decide prune or not. If

|d(q, VS-II) – d(VS-II, VS-4)| > r(q) + r(VS-4)

then the sub-tree of VS-4 can be pruned from results.

d(VS-II, VS-4) = 0.269

|d(q, VS-II) – d(VS-II, VS-4)| > r(q) + r(VS-4)

|0.278 – 0.269| > 0.21 + 0.0

0.009 > 0.21 (not true)

So, d(q, vs-4) has to be calculated, which is equal to 0.296. Since d(q, vs-4) is

greater than 0.21, then vs-4 is eliminated from the results.

For the second entry of sub-tree of VS-II, which is VS-7 and equal to VS-II, same

procedure is applied to decide pruning.

d(VS-II, VS-7) = 0.0

|d(q, VS-II) – d(VS-II, VS-7)| > r(q) + r(VS-7)

|0.278 – 0.0| > 0.21 + 0.058

0.278 > 0.268 (true)

50

So, the sub-tree of VS-7 can be pruned from results without further processing (i.e.

distance computation)

Finally, for the sub-tree of VS-III, the system decides whether to prune the sub-tree

or not by using triangle inequality. For the child of VS-III, which is VS-5 and equal

to VS-III, triangle inequality is used to decide prune or not. If

|d(q, VS-III) – d(VS-III, VS-5)| > r(q) + r(VS-5)

then the sub-tree of VS-5 can be pruned from results.

d(VS-III, VS-5) = 0

|d(q, VS-III) – d(VS-III, VS-5)| > r(q) + r(VS-5)

|0.353 – 0| > 0.21 + 0.228

0.353 > 0.438 (not true)

So, d(q, vs-5) and d(q, vs-6) have to be calculated, which is equal to 0.353 and

0.575, respectively. Since d(q, vs-5) and d(q, vs-6) are greater than 0.21, then vs-5

and vs-6 are eliminated from the results.

As a result, vs-1 and vs-2 are returned to the user, since d(q, vs-1) and d(q, vs-2) are

less than 0.21.

51

CHAPTER 5

BITMATRIX

In this chapter, the index structure adapted to our content-based retrieval system, namely

BitMatrix is discussed, in detail.

5.1 Introduction

BitMatrix [1][2] is an index structure proposed for similarity searching of multimedia data

by using a data approximation approach. To index the low-level features of multimedia

data, BitMatrix uses a data approximation approach in the spirit of VA-File described in

Section 2.2.4. BitMatrix partitions each dimension D of feature vectors of multimedia data

into a set of ranges πD = {ri = [li, ui], i = 1 . . . kD}, where li and ui are the lower and upper

bound of range ri and assigns the multimedia object to the range where it belongs in the

related feature dimension.

Various partitioning schemes can be used to partition feature vectors of multimedia data

such as equi-width, equi-depth or k-means clustering. In equi-width clustering, the width of

each range in a dimension is equal to each other, where in equi-depth clustering, the number

of indexed objects in each range of a dimension is equal to each other. Finally, with k-

means clustering, a dimension is divided into a pre-defined number of ranges and the

indexed objects are assigned to an appropriate range. The generated approximations of

feature vectors of multimedia data are used during queries to prune the search space

effectively with a sequential analysis.

5.2 Building the BitMatrix

Before the discussion on building BitMatrix, we give some definitions that exist in

BitMatrix terminology.

52

Bitmap Signature [1] – Given a partitioning scheme such as equi-width, equi-depth or k-

means clustering, an object’s bitmap signature is a bit string of length

N

D
Dk

1
, where N is

the number of dimensions and kD is the number of ranges for a specific dimension D. For

each dimension D, the signature contains 1 for the range where the object belongs and 0 for

the other ranges. Suppose that there are two feature dimensions that are clustered. First

dimension is clustered into three and second dimension is clustered into four dimensions,

then the bitmap signature of an object, o1 becomes 0010001 if the object is in the thirth

cluster of first dimension and in the fourth cluster of the second dimension.

Cardinality of Bitmap Signature [1] – The number of bits set to 1 in the bitmap signature of

an object. The cardinality of the bitmap signature of the object o1 given as an example

above is 2.

Bitmatrix [1] – The index structure that contains bitmap signatures of each indexed object

that are arranged as lines in a matrix structure. An example BitMatrix of six objects is given

in Table 5.1.

The first step to build a BitMatrix is clustering feature vectors of multimedia objects to be

indexed along each dimension D into kd ranges. Each feature dimension is clustered

seperately by using a clustering algorithm such as k-means. After each feature dimension of

multimedia objects is clustered, bitmap signature of each multimedia object is computed by

using the clustering results and put into the BitMatrix.

Algorithm-1: Build BitMatrix Algorithm - Generic

INPUT: Number of Feature Dimensions – N
 Number of Objects - M
 Feature Vectors of Objects - FeatureVectors[N][M]

OUTPUT: Bitmap signatures of the Objects, BitMatrix.

Begin

Initialize BM to empty BitMatrix with M rows and

N

D
Dk

1
 columns

for int i = 1 to N
 Apply clustering algorithm on FeatureVectors[i] to divide FeatureVectors[i] into ki ranges
 for int j = 1 to M
 Assign 1 for the range where FeatureVectors[i][j] belongs in BM
 Assign 0 for the other ranges in BM
 end for
end for
return BM

End

53

Figure 5.1 Sample Clustering of Six Objects along FD1 and FD2 Dimensions

Suppose that, we have six multimedia objects to be indexed along their two dimensions,

namely FD1 and FD2. We can think these two dimensions for example, color and texture

feature dimensions of images or color and motion feature dimensions of videos etc. Figure

5.1 represents the clustering results of the feature vectors of these six multimedia objects.

As seen from Figure 5.1, objects are clustered into three ranges along FD1 and into four

ranges along FD2. According to these clustering results, the resulting BitMatrix index

structure is as follows:

Table 5.1 Resulting BitMatrix for Six Objects

FD1 FD2

0 1 2 0 1 2 3
obj1 0 0 1 1 0 0 0
obj2 0 0 1 0 0 1 0
obj3 0 1 0 0 1 0 0
obj4 1 0 0 0 0 1 0
obj5 0 1 0 0 0 0 1
obj6 0 1 0 0 0 0 1

The algorithm for the construction of BitMatrix for video shots in our CBR system is given

below.

54

As explained in Algorithm-2, using k-means clustering algorithm the system clusters low-

level visual features (i.e. color layout, dominant color, edge histogram, region shape and

motion activity) of video shots seperately into a pre-defined number of clusters to construct

Algorithm-2: Build BitMatrix for Video Shots Algorithm

INPUT: XML database environment to connect – Path2DBEnv
OUTPUT: Bitmap signatures of the video shots in specified XML database, BitMatrix.

Begin
 Initialize BM to empty BitMatrix

Fetch ColorLayout, DominantColor, RegionShape, EdgeHistogram and MotionActivity
descriptors of Video Shots from XML DB

 Assign number of video shots to M

 Cluster ColorLayout descriptors using k-means algorithm

for int j = 1 to M
 Assign 1 for the range where ColorLayout[j] belongs in BM
 Assign 0 for the other ranges in BM

 end for

 Cluster DominantColor descriptors using k-means algorithm
for int j = 1 to M
 Assign 1 for the range where DominantColor[j] belongs in BM
 Assign 0 for the other ranges in BM

 end for

 Cluster RegionShape descriptors using k-means algorithm
for int j = 1 to M

 Assign 1 for the range where RegionShape[j] belongs in BM
 Assign 0 for the other ranges in BM

 end for

 Cluster EdgeHistogram descriptors using k-means algorithm
for int j = 1 to M
 Assign 1 for the range where EdgeHistogram[j] belongs in BM
 Assign 0 for the other ranges in BM

 end for

 Cluster MotionActivity descriptors using k-means algorithm
for int j = 1 to M

 Assign 1 for the range where MotionActivity[j] belongs in BM
 Assign 0 for the other ranges in BM

 end for

return BM
End

55

BitMatrix for video shots. BitMatrix index structure is then generated by using clustering

results of each low-level feature.

To clarify the adaptation of BitMatrix for indexing low-level feature vectors of video shots,

a sample BitMatrix built operation for six video shots is explained in the following section.

The keyframes for the six video shots are as follows:

Figure 5.2 Keyframes of Sample Six Video Shots

Clustering results of six video shots along five dimensions are given in Figure 5.3, Figure

5.4 and Figure 5.5. The resulting BitMatrix index structure is given in Table 5.2. The five

dimensions used for clustering video shots are Color Layout (CL), Dominant Color (DC),

Region Shape (RS), Edge Histogram (EH) and Motion Activity (MA) low-level descriptors

of video shots.

56

Figure 5.3 Sample Clustering of Six Video Shots along CL and DC Dimensions

Figure 5.4 Sample Clustering of Same Six Video Shots along RS and EH Dimensions

Figure 5.5 Sample Clustering of Same Six Video Shots along MA Dimension

57

As seen from Figure 5.3, Figure 5.4 and Figure 5.5, six video shots are clustered into eight

ranges along CL and DC, into four ranges along RS and EH and into five ranges along MA

dimension.

Table 5.2 Resulting BitMatrix for the Six Video Shots

As seen from the sample BitMatrix (Table 5.2), bitmap signature of an indexed object

contains “1” for the range where the object belongs and “0” for the other ranges. In

addition, it is seen from Table 5.2 that the size of BitMatrix index grows linearly with the

number of indexed objects and with the dimensionality.

To insert an object into BitMatrix, firstly the bitmap signature of the object to be indexed is

computed by using clustering. The resulting bitmap signature of the object is added to the

end of BitMatrix as a new line.

Algorithm-3: Insert into BitMatrix Algorithm

INPUT: Number of Feature Dimensions – N
 Feature Vectors of Object to be inserted – FeatureVectors[N]
 Current BitMatrix – BM

OUTPUT: Updated BitMatrix.

Begin
for int i = 1 to N

Apply clustering algorithm on FeatureVectors[i] to find the range that FeatureVectors[i]
belongs

 Assign 1 for the range where FeatureVectors[i] belongs in BM
 Assign 0 for the other ranges in BM
end for
return BM

End

58

To delete an object from BitMatrix, firstly the bitmap signature of the object to be deleted is

located on BitMatrix. The row that contains the bitmap signature is deleted from the

BitMatrix. To locate the row index of the bitmap signature of an object, a mapping between

the indexed objects and related bitmap signatures is needed. In our system, we provide this

mapping by using the name of the indexed video shots, since the name of the video shots

implicitly includes the row index of the related bitmap signature (e.g. 250.mpg is a video

shot at 250th row on BitMatrix).

To update an object on BitMatrix, firstly the bitmap signature of the object to be updated is

located on BitMatrix. The row that contains the bitmap signature is updated with the new

bitmap signature of the object on the BitMatrix using clustering. In our system, the mapping

between the indexed objects and related bitmap signatures are provided by using the name

of the indexed video shots as in deletion case.

Algorithm-5: Update Bitmap Signature Algorithm

INPUT: Number of Feature Dimensions – N
 Feature Vectors of Object to be updated – FeatureVectors[N]
 Current BitMatrix – BM
 Index of Object in BM – index

OUTPUT: Updated BitMatrix.

Begin
for int i = 1 to N

Apply clustering algorithm on FeatureVectors[i] to find the range that FeatureVectors[i]
belongs

 Assign 1 for the range where FeatureVectors[i] belongs in BM
 Assign 0 for the other ranges in BM
end for
return BM

End

Algorithm-4: Delete from BitMatrix Algorithm

INPUT: Current BitMatrix – BM
Index of Object to be deleted in BM – index

OUTPUT: Success/Failure.

Begin
bool result = Remove bitmap signature from BM using index
return result

End

59

5.3 Querying the BitMatrix

BitMatrix supports two main types of queries: k-NN (k-Nearest Neighbor) query and range

query. Since exact match query is a range query whose range radius is zero, it is not

mentioned explicitly.

5.3.1 k-NN Query

5.3.1.1 Naïve Approach

Algorithm-6: k-NN Query on BitMatrix (Naïve Approach)
INPUT: Number of Feature Dimensions – N

Number of Objects – M
Feature Vectors of Indexed Objects – ObjectFeatureVectors[M][N]
Feature Vectors of Query Object – QFeatureVector[N]
Current BitMatrix – BM
Cardinality Threshold – ct
Number of Nearest Neighbour to Return - k

OUTPUT: k nearest neighbour objects of the query object.

Begin
 Initialize BS to empty bitmap signature

Initialize DistanceFeatureList to empty list
Initialize RemainingObjects to empty list

for int i = 1 to N
Apply clustering algorithm on QFeatureVector[i] to find the range that QFeatureVector[i]
belongs

 Assign 1 for the range where QFeatureVector[i] belongs in BS
 Assign 0 for the other ranges in BS
end for

for int i = 1 to BM.length
 ResultingBitmapSignature = Perform Bitwise AND between BS and BM[i]
 cardinality = Compute the cardinality of ResultingBitmapSignature
 if cardinality > ct then
 Add ObjectFeatureVectors[i] to RemainingObjects
 endif
end for

for int i = 1 to RemainingObjects.length
 distance = Compute exact distance between ObjectFeatureVectors[i] and QFeatureVector[N]
 Add distance and ObjectFeatureVectors[i] to DistanceFeatureList
end for

Sort DistanceFeatureList in Ascending Order according to distance values
return DistanceFeatureList.subList(1, k)

End

60

k-NN query on BitMatrix using naïve approach [1] can be explained as follows. Given a

query object, q with feature vectors QFeatureVector[N] where N is the number of feature

dimensions. Firstly, we obtain the bitmap signature of q using QFeatureVector[N] (i.e. for

each feature dimension D, find the range in which the QFeatureVector[D] lies). Iterate

through the bitmap signatures on BitMatrix performing bitwise AND with the query

object’s bitmap signature. If the cardinality of a resulting bitwise ANDed bitmap signature

is above the pre-defined cardinality threshold (ct), the related object is retained for the next

phase. In the next phase, feature vectors of the remaining objects are accessed. For each

remaining object, the exact distance to the query object is computed using feature vectors.

Finally, k objects that are closest to the query object are returned as the results.

5.3.1.1.1 Retrieval of Video Shots using Naïve Approach

In this section, it is explained how k-NN query on BitMatrix using naïve approach is

performed for video shots. Suppose that, we are given a video shot (qnaive) whose keyframe

is as follows:

Figure 5.6 Keyframe of Given Query Video Shot (qnaive) for k-NN Query using
BitMatrix

Also, suppose that our current BitMatrix is the BitMatrix for the six video shots given in

Table 5.2 and we make 2-NN query. Firstly, we compute the bitmap signature of the given

query video shot (qnaive) and find the bitmap signature of qnaive as

10000000000000100001010001000. The elimination phase of the k-NN query on

BitMatrix using naïve approach is as follows.

61

Figure 5.7 Clustering Results of Six Video Shots along CL and DC Dimensions

Figure 5.8 Clustering Results of Six Video Shots along RS and EH Dimensions

Figure 5.9 Clustering Results of Six Video Shots along MA Dimension

62

Table 5.3 Bitwise AND with Query Video Shot

vs1 vs2 vs3 vs4 vs5 vs6 qnaive

0 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 1 0 1 1 0

CL

7 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0
3 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1

DC

7 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0
2 0 1 1 1 0 0 0

RS

3 1 0 0 0 0 0 1
0 0 0 0 0 1 1 0
1 1 1 0 1 0 0 1
2 0 0 0 0 0 0 0

EH

3 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 1
2 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0

MA

4 0 0 0 0 1 1 0

Table 5.4 Resulting Bitmap Signatures and Cardinalities After Bitwise AND
Operations

qnaive

&
vs1

qnaive

&
vs2

qnaive

&
vs3

qnaive

&
vs4

qnaive

&
vs5

qnaive

&
vs6

0 1 1 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

CL

7 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0

DC

6 0 0 0 0 0 0

63

qnaive

&
vs1

qnaive

&
vs2

qnaive

&
vs3

qnaive

&
vs4

qnaive

&
vs5

qnaive

&
vs6

7 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0

RS

3 1 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 0 1 0 0
2 0 0 0 0 0 0

EH

3 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 1 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0

MA

4 0 0 0 0 0 0
Cardinality 3 2 0 2 0 0

After the bitmap signature of qnaive is computed, the bitmap signature of qnaive is bitwise

ANDed with the bitmap signatures of video shots on BitMatrix as shown in Table 5.3 and

Table 5.4. Table 5.4 shows the cardinality results after bitwise AND operations. Suppose

that the cardinality threshold is set to two, then vs1, vs2 and vs4 are retained to the last phase

(i.e. exact distance computation phase) of the k-NN search algorithm.

In the exact distance computation phase, we compute the distances between the low-level

features (i.e. color layout, dominant color, region shape, edge histogram and motion

activity) of vs1, vs2 and vs4 and the qnaive’s corresponding features using distance functions

explained in Section 3.5.1. For each low-level feature, distance value between a video shot

(vs1, vs2 or vs4) and qnaive is computed, seperately. These distance values are merged into

one distance value by using OWA operator explained in Section 3.5.2. The resulting

distance value becomes the final distance value between the video shot (vs1, vs2 or vs4) and

qnaive. Finally, we find the exact distances as follows:

d(qnaive, vs1) = 0.192

d(qnaive, vs2) = 0.205

d(qnaive, vs4) = 0.296

Since we make 2-NN query, then vs1 and vs2 are returned as results.

64

5.3.1.2 Using Range Expansion Heuristic

The naïve approach sometimes may eliminate objects that happens to be one of the nearest

neighbors in a k-NN search [1]. This effect, known as the edge-effect appears because for

all dimensions D, only the objects in the same range as query object’s are considered [1].

Thus, in order to reduce the edge-effect, range-expansion [1] heuristic is applied to the

naïve approach. The heuristic modifies the elimination phase of the naïve approach as

follows:

Assume that a query object, q, lies in range ri for dimension i and qi represents the feature

vector of the query object for dimension i. The expansion takes place to the left if qi - lri < eti

Algorithm-7: k-NN Query on BitMatrix (Range Expansion Applied)
INPUT: Number of Feature Dimensions – N

Number of Objects – M
Feature Vectors of Indexed Objects – ObjectFeatureVectors[M][N]
Feature Vectors of Query Object – QFeatureVector[N]
Current BitMatrix – BM
Cardinality Threshold – ct
Number of Nearest Neighbour to Return - k

OUTPUT: k nearest neighbour objects of the query object.

Begin
 … // Same as in naïve approach

for int i = 1 to N
Apply clustering algorithm on QFeatureVector[i] to find the range, ri, that QFeatureVector[i]
belongs

Assign 1 for the range where QFeatureVector[i] belongs in BS
Assign 0 for the other ranges in BS

//Apply range expansion heuristic
lri = lower bound of ri

uri = upper bound of ri

eti = expansion threshold for ith dimension

 if QFeatureVector[i] - lri < eti * (uri - lri) then
 Assign 1 for the range ri-1 in BS
 endif

 if QFeatureVector[i] - uri < eti * (uri - lri) then
 Assign 1 for the range ri+1 in BS
 endif
end for
… // Same as in naïve approach

End

65

* (uri - lri) or to the right if qi - uri < eti * (uri - lri), where uri and lri are the upper and lower

bounds of the ri
th range for dimension i respectively and eti is the expansion threshold [1]

value for dimension i that can be in range [0, 0.5].

Figure 5.10 Range-Expansion Heuristic

In Figure 5.10, et1 is the expansion threshold of D1 and et2 is the expansion threshold of D2.

If the query object, q is closer to the right/left edge of the range of a dimension than the pre-

defined expansion threshold (et1/et2) of the related dimension (D1/D2), then it’s bitmap

signature is expanded to the right/left (i.e. the range right/left next to it also set to 1),

respectively.

5.3.1.2.1 Retrieval of Video Shots using Range Expansion

Range expansion heuristic is applied in our content-based retrieval system for videos. k-NN

search using range expansion is explained in this section to show the effects of using this

heuristic for videos. Suppose that, we are given the video shot, qexp whose keyframe is

given in Figure 5.6 and our current BitMatrix is the BitMatrix for the six video shots given

in Table 5.2. Also, suppose that we make 2-NN query again and qexp is close to the left edge

of its range than etRS in Region Shape (RS) dimension, where etRS is the expansion threshold

for dimension RS.

Firstly, we compute the bitmap signature of the qexp and find the bitmap signature of qexp as

10000000000000100011010001000. The elimination phase of the k-NN query on

BitMatrix using range expansion is as follows:

66

Table 5.5 Cardinality Results After Bitwise AND Operations (Range-Expansion
Applied)

vs1 vs2 vs3 vs4 vs5 vs6 qexp

0 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 1 0 1 1 0

CL

7 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0
3 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1

DC

7 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0
2 0 1 1 1 0 0 1

RS

3 1 0 0 0 0 0 1
0 0 0 0 0 1 1 0
1 1 1 0 1 0 0 1
2 0 0 0 0 0 0 0

EH

3 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 1
2 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0

MA

4 0 0 0 0 1 1 0
Cardinality 3 3 1 3 0 0

Suppose that the cardinality threshold is set to three and we use naive approach, then only

vs1 is retained to the last phase (i.e. exact distance computation phase) of the k-NN search

algorithm and vs2 that is also similar to qexp is eliminated. But, if we use range expansion

heuristic, then the cardinality of vs2 also becomes 3 as shown in Table 5.5 and is retained to

the exact distance computation phase of the k-NN search. The exact distance computation

phase of the k-NN search using range expansion heuristic is carried out as explained in

Section 5.3.1.1.1.

5.3.2 Range Query

Since range query is very similar to k-NN query for BitMatrix and k-NN query algorithms

are discussed in Section 5.3.1 in detail, we do not give further explanation on range query

of BitMatrix other than its basic algorithm. The only part that changes in a range query is

colored with red in Algorithm-8. Algorithm-8 gives range query using naive approach.

67

However, range expansion heuristic can also be applied on range query, since the

elimination step of both k-NN query and range query is same.

As a final word on BitMatrix, we can say that BitMatrix is a highly parametrizable index

structure and therefore there is a tradeoff between precision and speed that is controlled by

various parameters such as cardinality threshold and expansion threshold.

Algorithm-8: Range Query on BitMatrix (Naïve Approach)
INPUT: Number of Feature Dimensions – N

Number of Objects – M
Feature Vectors of Indexed Objects – ObjectFeatureVectors[M][N]
Feature Vectors of Query Object – QFeatureVector[N]
Current BitMatrix – BM
Cardinality Threshold – ct
Range radius - r

OUTPUT: Neighbour objects whose distances are smaller than or equal to r to the query object.

Begin
 Initialize BS to empty bitmap signature

Initialize RemainingObjects to empty list
Initialize ResultSet to empty list

for int i = 1 to N
Apply clustering algorithm on QFeatureVector[i] to find the range that QFeatureVector[i]
belongs

 Assign 1 for the range where QFeatureVector[i] belongs in BS
 Assign 0 for the other ranges in BS
end for

for int i = 1 to BM.length
 ResultingBitmapSignature = Perform Bitwise AND between BS and BM[i]
 cardinality = Compute the cardinality of ResultingBitmapSignature
 if cardinality > ct then
 Add ObjectFeatureVectors[i] to RemainingObjects
 endif
end for

for int i = 1 to RemainingObjects.length
 distance = Compute exact distance between ObjectFeatureVectors[i] and QFeatureVector[N]
 if distance <= r then
 Add RemainingObjects[i] to ResultSet
 endif
end for

return ResultSet
End

68

CHAPTER 6

IMPLEMENTATION

In this chapter, the implementation details of our content-based retrieval system introduced

in Chapter 3 and tools/APIs used during the implementation are discussed, in detail.

6.1 Video Shot Detection and Keyframe Extraction

In this study, we use IBM VideoAnnEx Annotation Tool [32] for the detection of the video

shots in given sequential video streams and for the extraction of the keyframes for each

video shot. The tool segments a video sequence into its shots by detecting scene cuts,

dissolutions and fading. Also, the tool is able to extract keyframes for the detected video

shots. In this study, we use one keyframe to represent the still image low-level features (i.e.

color layout, dominant color, region shape and edge histogram) of each detected video shot,

since IBM VideoAnnEx Annotation Tool provides one keyframe for each video shot.

6.2 Feature Extraction

Low-level features of video shots (i.e. color layout, dominant color, edge histogram, region

shape and motion activity) are extracted and stored in XML format by using MPEG-7

Reference Software (eXperimentation Model - XM) [27] that provides the extraction of the

low-level features of multimedia data and stores them in XML format.

The XM Software is the simulation platform for the MPEG-7 Standard and contains two

types of applications: server applications and client applications. Server applications create

the descriptor (D) or description scheme (DS) such as Color Layout descriptor, Dominant

Color descriptor etc. By using server applications of XM, visual features of multimedia data

can be automatically extracted and stored in XML files. Client applications use these

extracted Ds or DSs for searching or filtering multimedia data.

69

Sample XML files generated by using XM software are given in the following section.

Figure 6.1 The Keyframe of a Sample Video Shot

Generated XML Document for Color Layout of the keyframe given in Figure 6.1:

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <Mpeg7 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type = "DescriptorCollectionType">

...
<Image name = "5.jpg">

<Descriptor xsi:type = "ColorLayoutType">
<YDCCoeff>36</YDCCoeff>
<CbDCCoeff>13</CbDCCoeff>
<CrDCCoeff>38</CrDCCoeff>
<YACCoeff5>15 6 10 17 16 </YACCoeff5>
<CbACCoeff2>16 25 </CbACCoeff2>
<CrACCoeff2>16 10 </CrACCoeff2>

</Descriptor>
</Image>

...
 </DescriptionUnit>
 </Mpeg7>

The meanings of tags are:

Image tag with its name attribute specifies the name of the keyframe of a video shot. Color

Layout descriptor or any other descriptor defined in MPEG-7 Standard does not contain this

tag. Thus, this tag is added into descriptors by using the modified MPEG-7 XM version

which is used in [12].

YDCCoeff and YACCoeff represent the DCT coefficients values for the Y component of

YCbCr color space.

70

CbDCCoeff and CbACCoeff represent the DCT coefficients values for the Cb component

of YCbCr color space.

CrDCCoeff and CrACCoeff represent the DCT coefficients values for the Cr component of

YCbCr color space.

Generated XML Document for Dominant Color of the keyframe given in Figure 6.1:

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <Mpeg7 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type = "DescriptorCollectionType">

...
<Image name = "5.jpg">
 <Descriptor size = "5" xsi:type = "DominantColorType">
 <ColorSpace type = "RGB" colorReferenceFlag = "false"/>

 <ColorQuantization>
<Component>R</Component>

 <NumOfBins>256</NumOfBins>
 <Component>G</Component>

<NumOfBins>256</NumOfBins>
<Component>B</Component>
<NumOfBins>256</NumOfBins>

 </ColorQuantization>
 <SpatialCoherency>5</SpatialCoherency>
 <Values>

<Percentage>5</Percentage>
<ColorValueIndex>41 43 34 </ColorValueIndex>
<ColorVariance>1 0 1 </ColorVariance>

 </Values>
 <Values>

<Percentage>2</Percentage>
<ColorValueIndex>195 199 181 </ColorValueIndex>
<ColorVariance>1 0 1 </ColorVariance>

 </Values>
 <Values>

<Percentage>18</Percentage>
<ColorValueIndex>202 184 116 </ColorValueIndex>
<ColorVariance>1 0 0 </ColorVariance>

 </Values>
 <Values>

<Percentage>3</Percentage>
<ColorValueIndex>73 92 78 </ColorValueIndex>
<ColorVariance>1 1 0 </ColorVariance>

 </Values>
 <Values>

<Percentage>2</Percentage>
<ColorValueIndex>119 111 76 </ColorValueIndex>
<ColorVariance>1 0 1 </ColorVariance>

 </Values>
 </Descriptor>

 </Image>
...

 </DescriptionUnit>
 </Mpeg7>

71

The meanings of tags are:

Image tag with its name attribute specifies the name of the keyframe of a video shot.

Size attribute in Descriptor tag specifies the number of dominant colors in the region.

SpatialCoherency tag specifies the spatial coherency of dominant colors of a region of

interest. Examples of low and high spatial coherency are given in Figure 6.2.

Figure 6.2 Examples of (a) Low and (b) High Spatial Coherency

Percentage tag specifies the percentage of pixels associated with a dominant color.

ColorVariance tag specifies the color variance of a dominant color.

ColorValueIndex tag specifies the value of dominant color in the specified color space,

which is RGB for our study.

Generated XML Document for Edge Histogram of the keyframe given in Figure 6.1:

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <Mpeg7 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type = "DescriptorCollectionType">

...
<Image name = "5.jpg">

<Descriptor xsi:type = "EdgeHistogramType">
<BinCounts>2 6 5 6 4 2 5 4 5 5 3 4 4
5 5 4 3 2 6 5 5 4 6 5 1 3 4 5 5 4
1 5 3 6 4 5 4 4 2 2 0 6 3 1 3 2 5
3 2 5 2 4 4 4 5 2 5 2 5 5 0 6 4 5
4 4 2 6 4 5 0 5 2 2 4 2 6 4 5 4
</BinCounts>

</Descriptor>
</Image>

...
 </DescriptionUnit>
 </Mpeg7>

As explained in Section 2.1.3.2, Edge Histogram descriptor categorizes the edges of a

region of interest (i.e. image or keyframe) into five types. The region of interest is divided

(a) (b)

72

into 16 sub-images and the number of edge types is counted for each sub-image that result

80 bincounts as shown in the sample Edge Histogram descriptor above.

Generated XML Document for Region Shape of the keyframe given in Figure 6.1:

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <Mpeg7 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type = "DescriptorCollectionType">

...
<Image name = "5.jpg">

<Descriptor xsi:type = "RegionShapeType">
<MagnitudeOfART>14 15 13 14 8 15 11 15 15
7 15 13 10 14 15 11 14 12 4 11 15 12
11 8 4 12 4 2 7 12 5 11 13 8 11
</MagnitudeOfART>

</Descriptor>
</Image>
...

 </DescriptionUnit>
 </Mpeg7>

MagnitudeOfART tag specifies the magnitude of 35 Angular Radial Transform (ART

coefficients that describe the shape.

Generated XML Document for Motion Activity of the sample video shot whose keyframe

is given in Figure 6.1:

<?xml version='1.0' encoding='ISO-8859-1' ?>
 <Mpeg7 xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
 <DescriptionUnit xsi:type = "DescriptorCollectionType">

...
<Image name = "5.mpg">

<Descriptor xsi:type="MotionActivity">
<Intensity>4</Intensity>
<DominantDirection>0</DominantDirection>
<SpatialParameters>

<Nsr>38</Nsr>
<Nmr>4</Nmr>
<Nlr>1</Nlr>

</SpatialParameters>
<SpaLocNumber/>
<SpatialLocalizationParameters/>
<TemporalParameters>7 8 7 31 8
</TemporalParameters>

</Descriptor>
</Image>
...

 </DescriptionUnit>
 </Mpeg7>

Detailed explanation of Motion Activity descriptor is given in Section 2.1.3.4.

73

6.3 Raw Data and Feature Storage

As stated in Chapter 3, the video shots and their related keyframes are stored in a pre-

defined location on the file system for further processing (i.e. low-level feature extraction).

Video shots are stored in mpg format, where their related keyframes are stored in jpg

format.

We store extracted low-level features of video shots in the XML database, namely Oracle

Berkeley DB [28]. In Oracle Berkeley DB, CL, DC, EH and RS features of the keyframes

of video shots and MA features of video shots are stored, within a seperate XML file for

each visual feature. Oracle Berkeley DB is an open source native XML database that

provides Java and C++ APIs for the integration of applications with a fast, reliable and

scalable XML database. By using Java API of the XML database, we make XPath queries

over Oracle Berkeley DB to get the visual features of video shots stored in the database.

6.4 Indexing

In our content-based retrieval system, Slim-Tree is implemented by using XXL (eXtensible

and fleXible Library for data processing) API [29]. XXL API is a high-level, extensible and

flexible, platform independent Java API for data processing and database purposes. XXL

API provides a collection of easy-to-use index structures and query operators facilitating

the performance evaluation of index structures.

To construct Slim-Tree, we provide the distance functions given in Section 3.5.1 and the

feature values (i.e. color layout, dominant color, edge histogram, region shape and motion

activity descriptors) of the video shots to XXL API. Color layout, dominant color, region

shape, edge histogram and motion activity low-level descriptors of video shots are fetched

from the XML database using XPath queries. Then using XXL API, Slim-Tree is

constructed with Minimal Spanning Tree (MST) split strategy and Mindist sub-tree

choosing strategy. The details of MST split strategy and Mindist sub-tree choosing strategy

is discussed in Chapter 4.

For BitMatrix implementation, Weka API [30] is used to cluster the low-level visual

features of video shots and Colt API [31] is used to hold the constructed BitMatrix and to

make operations on the BitMatrix such as taking the intersection of two bitmap signatures

during similarity queries. Algorithms for BitMatrix construction/update is given in Chapter

74

5. Thus, here we briefly explain how we construct BitMatrix index structure for video

shots.

To construct BitMatrix, firstly color layout, dominant color, region shape, edge histogram

and motion activity low-level descriptors of video shots are fetched from the XML database

using XPath queries. After fetching low-level descriptors from the XML database, an

Attribute-Relation File Format (ARFF) file is created for each feature (i.e. CL, DC, EH, RS

and MA), seperately. The ARFF files are used by the Weka API during clustering, and they

are the files that define the attributes of the video data to be clustered and that contain the

related feature values of the video shots. Sample ARFF file for the CL feature is given in

the following section to clarify the content of an ARFF file.

@relation ColorLayout

@attribute YDCCoeff numeric

@attribute CbDCCoeff numeric

@attribute CrDCCoeff numeric

@attribute YACCoeff1 numeric

@attribute YACCoeff2 numeric

@attribute YACCoeff3 numeric

@attribute YACCoeff4 numeric

@attribute YACCoeff5 numeric

@attribute CbACCoeff1 numeric

@attribute CbACCoeff2 numeric

@attribute CrACCoeff1 numeric

@attribute CrACCoeff2 numeric

@data

17,22,40,12,22,14,15,18,16,14,21,16

...

As seen from the sample ARFF file, first the CL attributes to be used in clustering are

defined, then the CL feature values of the video shots are given. The attributes defined in

the ARFF file are the attributes of features to be used in the distance computation of video

shots.

In this study, since the nature of the feature values (i.e. the defined range of the feature

values) are known, k-means clustering algorithm of the Weka API is used as the clustering

algorithm. The k-means algorithm clusters n objects based on attributes into k partitions,

where k < n. The aim of the algorithm is to minimize total intra-cluster variance. In this

study, after the construction of the input ARFF files for clustering, video shots are clustered

using k-means algorithm into pre-defined number of clusters according to their CL, DC,

EH, RS and MA values, seperately. After this clustering step, for each video shot the

75

bitmap signature is constructed by using the clustering results of CL, DC, EH, RS and MA

features. Finally, the resulting BitMatrix that contains all the bitmap signatures for video

shots in the data set is built using these bitmap signatures.

6.5 Querying Module

As stated in Chapter 3, the system uses two index structures, namely Slim-Tree and

BitMatrix for content-based retrieval. Content-based retrieval methods implemented for

Slim-Tree can be summarized as follows. Low-level feature descriptors (i.e. Color Layout,

Dominant Color, Edge Histogram, Region Shape and Motion Activity) of the query video

shot are fetched from the XML database using XPath queries. Then, the query methods

defined in XXL API are used to compare the low-level features of the query video shot with

the video shots in the current Slim-Tree by computing distance values as defined in Section

3.5. The input to the XXL API is the type of query (exact match, k-NN or range query),

feature values of the query video shot, and distance functions and OWA weights to be used.

Retrieval results are returned according to query type.

Content-based retrieval methods implemented for BitMatrix can be summarized as follows.

Low-level feature descriptors (i.e. Color Layout, Dominant Color, Edge Histogram, Region

Shape and Motion Activity) of the query video shot are fetched from the XML database

using XPath queries. Then, by using Weka API the bitmap signature of the query video shot

is generated with the fetched low-level features. The bitmap signature of the query video

shot is bitwise ANDed with bitmap signatures of all video shots on the current BitMatrix. If

the cardinality threshold is above 2 (i.e. two compared video shots are in the same range of

at least two feature dimensions), then the video shot on the current BitMatrix is retained for

further processing. Visual feature values (i.e. Color Layout, Dominant Color, Edge

Histogram, Region Shape and Motion Activity) of the remaining video shots are accessed

and exact distances between the query video shot and video shots on the current BitMatrix

are computed as defined in Section 3.5, sequentially. Retrieval results are returned

according to query type.

For both index structures, if the query is an exact match/range query then the video shots

which have less distance value than range radius that is zero for exact match are returned.

Otherwise, the query is a k-NN query and the most k similar video shots to the query video

shot are ranked and returned.

76

CHAPTER 7

PERFORMANCE TESTS

Video shots from MPEG-7 test set and random video shots from Web were used to test the

performance of our content-based video retrieval system. Index construction tests were

done over video databases that contain 100, 300, 500, 700 and 1000 video shots to evaluate

the number of distance computations and construction times of the index structures. Tests

on insert/delete operations of index structures were done by using 100, 200, 300, 400 and

500 video shots and the number of distance computations and insertion/deletion times were

evaluated. Our system also was tested by k-NN and range query paradigm. With these tests,

the number of distance computations and query response times were examined. In addition,

retrieval efficiency of the system was evaluated by using Average Normalized Modified

Retrieval Rank (ANMRR) metric [4] and precision/recall values. We also applied some

tests on Corel Database [46] images similar to the tests done on video data to

evaluate the performance of Slim-Tree and BitMatrix index structures on images.

7.1 Building the Index Structures

In this section, the performance of building BitMatrix and Slim-Tree index structures are

evaluated over images and videos, respectively.

7.1.1 Building the Index Structures for Images

For image databases, BitMatrix and Slim-Tree index structures were constructed by using

two different approaches: one is giving equal weights to each image feature (i.e. color,

texture and shape) during distance computation of any two images, and the other is using

OWA operators to give weights to each image feature in distance computation of any two

images. Used weights of OWA operator for images are {0.4, 0.3, 0.2, 0.1} and these

weights are used throughout the whole performance tests on images.

77

Tests were performed for three different minimum utilization values (only applicable to

Slim-Tree) and four different databases were used. The results are shown in the following

figures.

construction time of BitMatrix

1375

1141

859

350

1391

1125

348

876

0

200

400

600

800

1000

1200

1400

1600

100 300 500 700

of images

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

BM with OWA

BM with EQW

Figure 7.1 Construction Time of BitMatrix for Images as a Function of # of Images

computed distances for 100 images

3061
3090

3275

3016

2888

3144

2600

2700

2800

2900

3000

3100

3200

3300

3400

0,3 0,5 0,7

minimum utilization

o

f
co

m
p

u
te

d
 d

is
ta

n
ce

s

ST with OWA

ST with EQW

Figure 7.2 # of Computed Distances for 100 Images as a Function of Minimum
Utilization

78

construction time of Slim-Tree for 100 images

230,25229,33

239,33

230,5

223,67

234,67

215

220

225

230

235

240

245

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.3 Construction Time of Slim-Tree for 100 Images as a Function of Minimum
Utilization

computed distances for 300 images

13472

11837 11907

1169311472

13065

10000

10500

11000

11500

12000

12500

13000

13500

14000

0,3 0,5 0,7

minimum utilization

o

f
co

m
p

u
te

d
 d

is
ta

n
ce

s

ST with OWA

ST with EQW

Figure 7.4 # of Computed Distances for 300 Images as a Function of Minimum
Utilization

construction time of Slim-Tree for 300 images

477

521

484

476,5

505,33

469

440

450

460

470

480

490

500

510

520

530

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.5 Construction Time of Slim-Tree for 300 Images as a Function of Minimum
Utilization

79

computed distances for 500 images

21840
22321

23524

23856

22960 22932

20500

21000

21500

22000

22500

23000

23500

24000

24500

0,3 0,5 0,7

minimum utilization

o

f
co

m
p

u
te

d
 d

is
ta

n
ce

s

ST with OWA

ST with EQW

Figure 7.6 # of Computed Distances for 500 Images as a Function of Minimum
Utilization

construction time of Slim-Tree for 500 images

750758

786,67

796,67

773,5 781

720

730

740

750

760

770

780

790

800

810

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.7 Construction Time of Slim-Tree for 500 Images as a Function of Minimum
Utilization

computed distances for 700 images

32240

33048

35482

33635

33945

35825

30000

31000

32000

33000

34000

35000

36000

37000

0,3 0,5 0,7

minimum utilization

o

f
co

m
p

u
te

d
 d

is
ta

n
ce

s

ST with OWA

ST with EQW

Figure 7.8 # of Computed Distances for 700 Images as a Function of Minimum
Utilization

80

construction time of Slim-Tree for 700 images

1078
1047,5

1000

1062

1070,5

1093,5

940

960

980

1000

1020

1040

1060

1080

1100

1120

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.9 Construction Time of Slim-Tree for 700 Images as a Function of Minimum
Utilization

As seen from the index construction test results of images (from Figure 7.1 to Figure 7.9),

we can say that BitMatrix index construction time is worse than Slim-Tree’s because of the

clustering process during BitMatrix index construction and this clustering time increases as

the number of images is increased as expected. Using OWA operator does not affect the

BitMatrix index construction performance, since there is no distance computation during

BitMatrix construction. In addition, Slim-Tree with OWA performs better than Slim-Tree

with EQW in terms of number of distance computations and elapsed time for index

construction as the number of images increase.

7.1.2 Building the Index Structures for Videos

For videos, BitMatrix and Slim-Tree index structures were constructed by using two

different approaches as for images. First approach gives equal weights to each video feature

(i.e. color, texture, shape and motion) during distance computation of any two video shots;

and the other approach uses OWA operators to give weights to each feature of a video shot

in distance computation of any two video shots. Used weights of OWA operator for videos

are {0.3, 0.3, 0.2, 0.1, 0.1} and these weights are used throughout the whole performance

tests on videos.

Tests were performed for three different minimum utilization values (only applicable to

Slim-Tree) and five different databases were used. The results are shown in the following

figures.

81

construction time of BitMatrix for video shots

3640

1516

1390

1110

359
375

1125
1375 1610

3619

0

500

1000

1500

2000

2500

3000

3500

4000

100 300 500 700 1000

of video shots

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

BM with OWA

BM with EQW

Figure 7.10 Construction Time of BitMatrix for Video Shots as a Function of # of
Video Shots

computed distances for 100 video shots

30652927

3532

29272943 2865

0

500

1000

1500

2000

2500

3000

3500

4000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.11 # of Computed Distances for 100 Video Shots as a Function of Minimum
Utilization

construction time of Slim-Tree for 100 video shots

234

240235

266

230

234

210

220

230

240

250

260

270

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.12 Construction Time of Slim-Tree for 100 Video Shots as a Function of
Minimum Utilization

82

computed distances for 300 video shots

12689

11803

12389

11068

1290812829

10000

10500

11000

11500

12000

12500

13000

13500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.13 # of Computed Distances for 300 Video Shots as a Function of Minimum
Utilization

construction time of Slim-Tree for 300 video shots

584

635

594

625

641
630

550
560
570
580
590
600
610
620
630
640
650

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.14 Construction Time of Slim-Tree for 300 Video Shots as a Function of
Minimum Utilization

computed distances for 500 video shots

23760

22091

24092 24058

21361

23565

19500
20000
20500
21000
21500
22000
22500
23000
23500
24000
24500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.15 # of Computed Distances for 500 Video Shots as a Function of Minimum
Utilization

83

construction time of Slim-Tree for 500 video shots

969
954

875

984

860

953

780
800
820
840
860
880
900
920
940
960
980

1000

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.16 Construction Time of Slim-Tree for 500 Video Shots as a Function of
Minimum Utilization

computed distances for 700 video shots

36643

33595

36958

35873

32778

35982

30000

31000

32000

33000

34000

35000

36000

37000

38000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.17 # of Computed Distances for 700 Video Shots as a Function of Minimum
Utilization

construction time of Slim-Tree for 700 video shots

1390

1250

1359

1344

1210

1328

1100

1150

1200

1250

1300

1350

1400

1450

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.18 Construction Time of Slim-Tree for 700 Video Shots as a Function of
Minimum Utilization

84

computed distances for 1000 video shots

51388

48561

49470

52769

51812

52336

46000

47000

48000

49000

50000

51000

52000

53000

54000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.19 # of Computed Distances for 1000 Video Shots as a Function of Minimum
Utilization

construction time of Slim-Tree for 1000 video shots

1719

1875

17951765

1860

1844

1600

1650

1700

1750

1800

1850

1900

0,3 0,5 0,7

minimum utilization

co
n

st
ru

ct
io

n
 t

im
e

(i
n

 m
s)

ST with OWA

ST with EQW

Figure 7.20 Construction Time of Slim-Tree for 1000 Video Shots as a Function of
Minimum Utilization

As seen from the index construction test results of video shots (from Figure 7.10 to Figure

7.20), as in images we can say that BitMatrix index construction time is worse than Slim-

Tree because of the clustering process during BitMatrix index construction and this

clustering time increases as the number of video shots is increased as expected. Also, using

OWA operator does not affect the BitMatrix index construction performance, since there is

no distance computation during BitMatrix construction. In addition, Slim-Tree with OWA

generally performs better than Slim-Tree with EQW in terms of number of distance

computations and elapsed time for index construction with high minimum utilization values

such as 0.7. The index construction test results of video shots for Slim-Tree are different

from the index construction test results of images, since for video shots in addition to color,

85

texture and shape features, motion feature is indexed by Slim-Tree and different weights are

used in OWA operator.

7.2 Updating the Index Structures

In this section, update performances of BitMatrix and Slim-Tree index structures are

evaluated over images and videos, respectively.

7.2.1 Updating the Index Structures for Images

Tests were performed for three different minimum utilization values (only applicable to

Slim-Tree) and a database of 1000 Corel images was used. The results are shown in the

following figures.

insertion time of BitMatrix for images

60,834

47,575

35,945

24,905

12,243

59,092

48,127

34,95

24,01

12,252
0

10

20

30

40

50

60

70

100 200 300 400 500

of images

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

BM with OWA

BM with EQW

Figure 7.21 Total Insertion Time of BitMatrix for Images as a Function of # of Images

86

computed distances for 100 images

6522

5869

5594
55215890

5952

5000

5200

5400

5600

5800

6000

6200

6400

6600

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.22 # of Computed Distances for 100 Image Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 100 images

162,27984

148,10374 142,936043

140,64917

149,515647
153,144604

125

130

135

140

145

150

155

160

165

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.23 Total Insertion Time of Slim-Tree for 100 Images as a Function of
Minimum Utilization

computed distances for 200 images

12748

11213

11149

11680

11474

11162

10000

10500

11000

11500

12000

12500

13000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.24 # of Computed Distances for 200 Image Insertions as a Function of
Minimum Utilization

87

insertion time of Slim-Tree for 200 images

283,66286276,843284

295,505153

277,691443

318,467572

292,388288

250

260

270

280

290

300

310

320

330

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.25 Total Insertion Time of Slim-Tree for 200 Images as a Function of
Minimum Utilization

computed distances for 300 images

18253

17098

16948

1762017653

18116

16000

16500

17000

17500

18000

18500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.26 # of Computed Distances for 300 Image Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 300 images

431,424676

440,945982
443,555251

440,461372

457,083791
459,042974

415
420
425
430
435
440
445
450
455
460
465

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.27 Total Insertion Time of Slim-Tree for 300 Images as a Function of
Minimum Utilization

88

computed distances for 400 images

24268

23536

23967

23519
23447

24333

23000

23200

23400

23600

23800

24000

24200

24400

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.28 # of Computed Distances for 400 Image Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 400 images

617,015013

606,545788

594,683572
584,383213

614,404905
597,652214

560

570

580

590

600

610

620

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.29 Total Insertion Time of Slim-Tree for 400 Images as a Function of
Minimum Utilization

computed distances for 500 images

30359

29413

2949229503

30110

30999

28500

29000

29500

30000

30500

31000

31500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.30 # of Computed Distances for 500 Image Insertions as a Function of
Minimum Utilization

89

insertion time of Slim-Tree for 500 images

776,155629

750,13891

734,420163

744,908084

763,444232
768,061016

710

720

730

740

750

760

770

780

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.31 Total Insertion Time of Slim-Tree for 500 Images as a Function of
Minimum Utilization

As seen from the insertion test results of index structures (from Figure 7.21 to Figure

7.31), insertion performance of BitMatrix is better than Slim-Tree using OWA or EQW.

The reason for this result is doing no distance computation during insertion into BitMatrix,

only low-level features of the image to be inserted are clustered to generate the bitmap

signature and the related bitmap signature is inserted into BitMatrix. As in BitMatrix

construction, the BitMatrix insertion time increases as the number of processed objects is

increased and using OWA or EQW does not affect the insertion times as expected. In

addition, for images the insertion performance of Slim-Tree with OWA is better than Slim-

Tree with EQW in terms of the number of distance computations and elapsed times.

deletion time of BitMatrix for images

1,511098

0,484416

0,766021

1,014372
1,255182

1,5144461,302681

1,020523

0,769939

0,49532

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

100 200 300 400 500

of images

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

BM with OWA

BM with EQW

Figure 7.32 Total Deletion Time of BitMatrix for Image Deletions as a Function of # of
Images

90

computed distances for 100 images

31524

15884
17273

24819
1770017800

0

5000

10000

15000

20000

25000

30000

35000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.33 # of Computed Distances for 100 Image Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 100 images

652,7257

455,90935
411,864633

815,692773

457,387181466,623276

0

100

200

300

400

500

600

700

800

900

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.34 Total Deletion Time of Slim-Tree for 100 Images as a Function of
Minimum Utilization

computed distances for 200 images

32299
35532

57492

36047

69425

35263

0

10000

20000

30000

40000

50000

60000

70000

80000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.35 # of Computed Distances for 200 Image Deletions as a Function of
Minimum Utilization

91

deletion time of Slim-Tree for 200 images

1508,317397

911,908089
805,990154

1776,738108

958,765429948,561893

0
200
400
600
800

1000
1200
1400

1600
1800
2000

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.36 Total Deletion Time of Slim-Tree for 200 Images as a Function of
Minimum Utilization

computed distances for 300 images

89131

53126

48147

101843

5404352026

0

20000

40000

60000

80000

100000

120000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.37 # of Computed Distances for 300 Image Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 300 images

1242,276886

1347,769067

2357,873137

2658,724508

1396,114316
1361,204568

0

500

1000

1500

2000

2500

3000

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.38 Total Deletion Time of Slim-Tree for 300 Images as a Function of
Minimum Utilization

92

computed distances for 400 images

133227

121567

6191858851

7257470126

0

20000

40000

60000

80000

100000

120000

140000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.39 # of Computed Distances for 400 Image Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 400 images

3291,889889

1606,272582
1464,627213

3652,462792

1894,873229 1963,346446

0

500

1000

1500

2000

2500

3000

3500

4000

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.40 Total Deletion Time of Slim-Tree for 400 Images as a Function of
Minimum Utilization

computed distances for 500 images

153647

7993180798

164268

8705285936

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.41 # of Computed Distances for 500 Image Deletions as a Function of
Minimum Utilization

93

deletion time of Slim-Tree for 500 images

4125,052499

2073,2478532092,689426

4281,226238

2302,0045732210,811165

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.42 Total Deletion Time of Slim-Tree for 500 Images as a Function of
Minimum Utilization

As seen from the deletion test results of index structures (from Figure 7.32 to Figure 7.42),

deletion performance of BitMatrix is much better than Slim-Tree using OWA or EQW. The

reason for this result is doing no distance computation during deletion, only related bitmap

signature is deleted from BitMatrix. As in BitMatrix construction, the BitMatrix deletion

time increases as the number of processed objects is increased and using OWA or EQW

does not affect the deletion times as expected. In addition, for images the deletion

performance of Slim-Tree with OWA is better than Slim-Tree with EQW in terms of the

number of distance computations and elapsed times.

7.2.2 Updating the Index Structures for Videos

Tests were performed for three different minimum utilization values (only applicable to

Slim-Tree) and a database of 1000 video shots from MPEG-7 test set and random video

shots from Web was used. The results are shown in the following figures.

94

insertion time of BitMatrix for video shots

65,008

50,943

39,937

25,747

13,721

65,132

50,674

39,354

25,843

13,127

0

10

20

30

40

50

60

70

100 200 300 400 500

of video shots

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

BM with OWA

BM with EQW

Figure 7.43 Total Insertion Time of BitMatrix for Video Shots as a Function of # of
Video Shots

computed distances for 100 video shots

58465963
5956

59965985

6411

5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.44 # of Computed Distances for 100 Video Shot Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 100 video shots

160,778
162,784161,85

163,974163,262

167,897

156

158

160

162

164

166

168

170

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.45 Total Insertion Time of Slim-Tree for 100 Video Shots as a Function of
Minimum Utilization

95

computed distances for 200 video shots

13186

11553

12043 12115

11025

12880

9500

10000

10500

11000

11500

12000

12500

13000

13500

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.46 # of Computed Distances for 200 Video Shot Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 200 video shots

305,232

323,011

345,656

319,935

313,93

330,826

280

290

300

310

320

330

340

350

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.47 Total Insertion Time of Slim-Tree for 200 Video Shots as a Function of
Minimum Utilization

computed distances for 300 video shots

17365

18299

19382

17484
17144

19130

16000

16500

17000

17500

18000

18500

19000

19500

20000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.48 # of Computed Distances for 300 Video Shot Insertions as a Function of
Minimum Utilization

96

insertion time of Slim-Tree for 300 video shots

468,016

483,098

501,339

471,683

487,858

467,747

450

460

470

480

490

500

510

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.49 Total Insertion Time of Slim-Tree for 300 Video Shots as a Function of
Minimum Utilization

computed distances for 400 video shots

23266

24398
25153

23945

23403

26335

21500
22000
22500
23000
23500
24000
24500
25000
25500
26000
26500
27000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.50 # of Computed Distances for 400 Video Shot Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 400 video shots

645,28

640,39

653,54

673,354

642,012

691,244

610

620

630

640

650

660

670

680

690

700

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.51 Total Insertion Time of Slim-Tree for 400 Video Shots as a Function of
Minimum Utilization

97

computed distances for 500 video shots

30182

29496

30243

31773

29337

32311

27500
28000
28500
29000
29500
30000
30500
31000
31500
32000
32500
33000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.52 # of Computed Distances for 500 Video Shot Insertions as a Function of
Minimum Utilization

insertion time of Slim-Tree for 500 video shots

798,349

807,91

821,057

805,107

795,523

875,894

740

760

780

800

820

840

860

880

900

0,3 0,5 0,7

minimum utilization

to
ta

l
in

se
rt

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.53 Total Insertion Time of Slim-Tree for 500 Video Shots as a Function of
Minimum Utilization

As seen from the insertion test results of index structures (from Figure 7.43 to Figure

7.53), insertion performance of BitMatrix for video shots is completely parallel to the

performance of BitMatrix for images. BitMatrix performs better than Slim-Tree using

OWA or EQW. The BitMatrix insertion time increases as the number of processed objects

is increased and using OWA or EQW does not affect the insertion times as expected. Slim-

Tree with OWA performs better than Slim-Tree with EQW in terms of number of distance

computations and elapsed time with high minimum utilization values such as 0.7. This

result for Slim-Tree is different from the results of images, since for video shots in addition

to color, texture and shape features, motion feature is indexed by Slim-Tree and different

weights are used in OWA operator.

98

deletion time of BitMatrix for video shots

1,552

1,314

1,057

0,783

0,481

1,581

1,347

1,042

0,792

0,473

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

100 200 300 400 500

of video shots

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

BM with OWA

BM with EQW

Figure 7.54 Total Deletion Time of BitMatrix for Video Shots as a Function of # of
Video Shots

computed distances for 100 video shots

28391

14477

9386

25850

10435

12743

0

5000

10000

15000

20000

25000

30000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.55 # of Computed Distances for 100 Video Shot Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 100 video shots

809,02

275,762

414,433

775,259

313,284

363,786

0

100

200

300

400

500

600

700

800

900

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.56 Total Deletion Time of Slim-Tree for 100 Video Shots as a Function of
Minimum Utilization

99

computed distances for 200 video shots

55005

60590

2622725139

2934331792

0

10000

20000

30000

40000

50000

60000

70000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.57 # of Computed Distances for 200 Video Shot Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 200 video shots

1828,471

741,457694,717

1550,8

832,709876,189

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.58 Total Deletion Time of Slim-Tree for 200 Video Shots as a Function of
Minimum Utilization

computed distances for 300 video shots

28391

14477

9386

25850

10435

12743

0

5000

10000

15000

20000

25000

30000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.59 # of Computed Distances for 300 Video Shot Deletions as a Function of
Minimum Utilization

100

deletion time of Slim-Tree for 300 video shots

2574,078

1101,125952,134

1225,105 1112,945

2517,557

0

500

1000

1500

2000

2500

3000

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.60 Total Deletion Time of Slim-Tree for 300 Video Shots as a Function of
Minimum Utilization

computed distances for 400 video shots

52297 57249

114786

116123

5671963317

0

20000

40000

60000

80000

100000

120000

140000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.61 # of Computed Distances for 400 Video Shot Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 400 video shots

3274,361

3068,686

1613,479

1460,764 1531,034

1747,588

0

500

1000

1500

2000

2500

3000

3500

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.62 Total Deletion Time of Slim-Tree for 400 Video Shots as a Function of
Minimum Utilization

101

computed distances for 500 video shots

145180

72993

68437

144331

72550

78395

0

20000

40000

60000

80000

100000

120000

140000

160000

0,3 0,5 0,7

minimum utilization

to
ta

l

o
f

co
m

p
u

te
d

 d
is

ta
n

ce
s

ST with OWA

ST with EQW

Figure 7.63 # of Computed Distances for 500 Video Shot Deletions as a Function of
Minimum Utilization

deletion time of Slim-Tree for 500 video shots

4152,059

2012,307

1775,452 2009,153

4096,794

2150

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0,3 0,5 0,7

minimum utilization

to
ta

l
d

el
et

io
n

 t
im

e
(i

n
 m

s)

ST with OWA

ST with EQW

Figure 7.64 Total Deletion Time of Slim-Tree for 500 Video Shots as a Function of
Minimum Utilization

As seen from the deletion test results of index structures (from Figure 7.54 to Figure

7.64), deletion performance of BitMatrix for video shots is completely parallel to the

performance of BitMatrix for images. BitMatrix performs much better than Slim-Tree using

OWA or EQW. Slim-Tree with OWA performs better than Slim-Tree with EQW in terms

of number of distance computations and elapsed time for deletion with low minimum

utilization values such as 0.3 contrary to insertion test results of Slim-Tree for video shots.

This result for Slim-Tree is also different from the results of images, since for video shots

in addition to color, texture and shape features, motion feature is indexed by Slim-Tree and

different weights are used in OWA operator.

102

7.3 Querying the Index Structures

7.3.1 Retrieval Efficiency

The retrieval efficiency of the system was evaluated by using Average Normalized

Modified Retrieval Rank (ANMRR) metric [4] and precision/recall values.

7.3.1.1 ANMRR

ANMRR can be defined as follows [4]:

NG(q) : the number of the ground truth objects (expected result objects) for a query q.

K(q) = min(4 * NG(q), 2 * max{NG(q)} of all q’s)

Rank(k): the rank of an object k in retrieval results and is defined as:

Rank (k), if Rank(k) ≤ K(q)
Rank(k) =

1.25 * K(q), if Rank(k) >K(q)

Using the definition of Rank (k), Average Rank (AVR) for query q is defined as:

)(

1

)(
)(

1
)(

qNG

k

kRank
qNG

qAVR (18)

AVR(q) depends on the size of the ground truth, NG(q). To reduce the influences of NG(q),

Modified Retrieval Rank (MRR) is defined that is as follows:

)(1*5.0)()(qNGqAVRqMRR (19)

MRR(q) is always greater than or equal to zero. However, MRR(q)’s upper bound is still

dependent on NG(q). This leads to definition of Normalized Modified Retrieval Rank

(NMRR) that is defined as:

)(1*5.0)(*25.1

)(
)(

qNGqK

qMRR
qNMRR

 (20)

103

NMRR(q) is in range [0-1], 0 indicates whole ground truth found where 1 indicates no

object in the ground truth found. By using NMRR values of all q’s, we get the Average

Normalized Modified Retrieval Rank (ANMRR) that is used as the evaluation criteria for

MPEG-7 visual descriptors. ANMRR is defined as:

NQ

q

qNMRR
NQ

ANMRR
1

)(
1

(21)

where NQ is the number of queries.

7.3.1.2 Precision and Recall

In this study, precision is computed as the fraction of the retrieved objects that are relevant

(i.e. in the ground truth of the query object) and can be defined as:

retrieved

retrievedrelevant
P

 (22)

In this study, recall is computed as the fraction of the relevant (i.e. in the ground truth of the

query object) objects that are successfully retrieved and can be defined as:

relevant

retrievedrelevant
R

 (23)

7.3.1.3 Results for Images

We performed 100 queries over an image database of 1000 Corel images for the two types

(i.e. using EQW and OWA approaches for similarity measurement) of BitMatrix and Slim-

Tree and computed the ANMRR values of BitMatrix and Slim-Tree using OWA/EQW. We

also computed the ANMRR values for Sequential Scan in order to compare with the

ANMRR values of BitMatrix and Slim-Tree. The results are shown in Table 7.1.

Table 7.1 ANMRR Results for 100 Image Queries over 1000 Images

OWA EQW

BitMatrix 0.245247 0.254097

SlimTree 0.26793 0.27053

Sequential Scan 0.2802 0.28131

104

As seen from Table 7.1, BitMatrix using OWA has the best ANMRR values, Slim-Tree

using OWA has better ANMRR values than Slim-Tree using EQW and finally both

BitMatrix and Slim-Tree using OWA/EQW have better ANMRR values than Sequential

Scan using OWA/EQW. In addition to ANMRR, precision/recall values of the two types

(i.e. using EQW and OWA approaches for similarity measurement) of BitMatrix and Slim-

Tree were computed. As in ANMRR, precision/recall values for Sequential Scan were

computed in order to compare with the precision/recall values of BitMatrix and Slim-Tree.

In precision/recall tests, we retrieved top twenty objects that are similar to the query object.

The results are shown in Table 7.2.

Table 7.2 Precision and Recall Values for 100 Image Queries over 1000 Images

Precision Recall

OWA EQW OWA EQW

BitMatrix 0.328 0.3182 0.8062 0.784

SlimTree 0,3191 0,3178 0.7916 0.776

Seq. Scan 0,3183 0,3175 0.7889 0.7748

As seen from Table 7.2, BitMatrix using OWA has the best precision/recall values, Slim-

Tree using OWA has better precision/recall values than Slim-Tree using EQW and finally

both BitMatrix and Slim-Tree using OWA/EQW have better precision/recall values than

Sequential Scan using OWA/EQW.

7.3.1.4 Results for Videos

We performed 50, 100, 150, 200, 250 and 300 queries over a video database of 1000 video

shots for the two types (i.e. using EQW and OWA approaches for similarity measurement)

of BitMatrix and Slim-Tree and computed the ANMRR values of BitMatrix and Slim-Tree

using OWA/EQW. We also computed the ANMRR values for Sequential Scan in order to

compare with the ANMRR values of BitMatrix and Slim-Tree. Figure 7.65 shows the

effects of using OWA on the ANMRR values of BitMatrix and Table 7.3 gives the

ANMRR values of queries for BitMatrix.

105

ANMRR Values of BitMatrix

0,275
0,28

0,285
0,29

0,295
0,3

0,305
0,31

0,315
0,32

0,325

50 100 150 200 250 300

of queries

A
N

M
R

R

BM with OWA

BM with EQW

Figure 7.65 ANMRR Values of BitMatrix Using OWA and EQW

Table 7.3 ANMRR Values of BitMatrix – Naïve Approach (ct = 2)

BitMatrix with OWA BitMatrix with EQW
50 0.295754 0.301393
100 0.291802 0.294951
150 0.31097 0.315452
200 0.313773 0.316939
250 0.316788 0.318805
300 0.319192 0.322388

As seen from Figure 7.65 and Table 7.3, BitMatrix using OWA with naïve approach has

better ANMRR values than BitMatrix using EQW with naïve approach. We also performed

tests to compare the ANMRR values of naïve and range expansion approaches of

BitMatrix. The comparison of ANMRR values of BitMatrix using OWA/EQW with naïve

and range expansion approach is given in Figure 7.66. The ANMRR values of BitMatrix

with range expansion approach are given in Table 7.4 (cardinality threshold = 2, expansion

threshold = 0.1).

106

ANMRR Values of BitMatrix using Naive Appr. and Range
Expansion (ct = 2, et = 0.1)

0,27

0,28

0,29

0,3

0,31

0,32

0,33

50 100 150 200 250 300

of queries

A
N

M
R

R

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.66 ANMRR Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 2)

Table 7.4 ANMRR Values of BitMatrix – Range Expansion (ct = 2, et = 0.1)

BitMatrix with OWA BitMatrix with EQW
50 0.294215 0.299403
100 0.289775 0.293164
150 0.309366 0.314013
200 0.313198 0.316568
250 0.31705 0.319197
300 0.320372 0.323361

As seen from Figure 7.66, Table 7.3 and Table 7.4, when cardinality threshold is 2,

BitMatrix using OWA/EQW with naïve approach has similar ANMRR values with

BitMatrix using OWA/EQW with range expansion approach. Thus, we performed further

tests on ANMRR values of BitMatrix by increasing the cardinality threshold (i.e. by setting

cardinality threshold to 3) to see the effects of using range expansion on BitMatrix. The

ANMRR values of BitMatrix using OWA/EQW with naïve and range expansion approach

are given in Table 7.5 and Table 7.6, respectively. The comparison of ANMRR values of

BitMatrix using OWA/EQW with naïve and range expansion approach is given in Figure

7.67.

107

ANMRR Values of BitMatrix using Naive Appr. and Range Expansion
(ct = 3, et = 0.1)

0,37
0,38
0,39
0,4

0,41
0,42
0,43
0,44
0,45
0,46
0,47

50 100 150 200 250 300

of queries

A
N

M
R

R

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.67 ANMRR Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 3)

Table 7.5 ANMRR Values of BitMatrix – Naïve Approach (ct = 3)

BitMatrix with OWA BitMatrix with EQW
50 0.430675 0.431778
100 0.417294 0.417188
150 0.457496 0.458333
200 0.443897 0.444409
250 0.45081 0.45122
300 0.458243 0.458704

Table 7.6 ANMRR Values of BitMatrix – Range Expansion (ct = 3, et = 0.1)

BitMatrix with OWA BitMatrix with EQW
50 0.416481 0.417411
100 0.405159 0.404812
150 0.448641 0.449302
200 0.437284 0.437693
250 0.442351 0.442614
300 0.449962 0.450245

As seen from Figure 7.67, Table 7.5 and Table 7.6, when cardinality threshold is 3,

BitMatrix using OWA/EQW with range expansion approach has better ANMRR values

than BitMatrix using OWA/EQW with naïve approach. It is also observed that when

cardinality threshold is increased, the difference between the ANMRR values of BitMatrix

using OWA and EQW becomes smaller. In addition, when the cardinality threshold is

increased, the ANMRR values of BitMatrix also increase. Since, BitMatrix eliminates the

related video shots with the unrelated ones because of the high cardinality threshold value.

108

Figure 7.68 shows the effects of using OWA on the ANMRR values of Slim-Tree and

Table 7.7 gives the ANMRR values of queries for Slim-Tree. As seen from Figure 7.68 and

Table 7.7, Slim-Tree using OWA has better ANMRR values than Slim-Tree using EQW.

ANMRR Values of Slim-Tree

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0,36

50 100 150 200 250 300

of queries

A
N

M
R

R

ST with OWA

ST with EQW

Figure 7.68 ANMRR Values of Slim-Tree Using OWA and EQW

Table 7.7 ANMRR Values of Slim-Tree

Slim-Tree with OWA Slim-Tree with EQW
50 0.311452 0.328292
100 0.310823 0.326989
150 0.31365 0.332285
200 0.324042 0.343846
250 0.329454 0.346372
300 0.333784 0.350626

Figure 7.69 shows the effects of using OWA on the ANMRR values of Sequential Scan and

Table 7.8 gives the ANMRR values of queries for Sequential Scan. As seen from Figure

7.68 and Table 7.8, parallel to the results of BitMatrix and Slim-Tree, Sequential Scan

using OWA has better ANMRR values than Sequential Scan using EQW.

109

ANMRR Values of Sequential Scan

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0,36

50 100 150 200 250 300

of queries

A
N

M
R

R

SS with OWA

SS with EQW

Figure 7.69 ANMRR Values of Sequential Scan Using OWA and EQW

Table 7.8 ANMRR Values of Sequential Scan

Seq. Scan with OWA Seq. Scan with EQW
50 0.311456 0.328292
100 0.310825 0.326989
150 0.313664 0.332285
200 0.324053 0.343846
250 0.329465 0.346372
300 0.333806 0.350626

Figure 7.70 shows the comparison of the ANMRR values of BitMatrix, Slim-Tree and

Sequential Scan using OWA.

ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan Using
OWA

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,34

50 100 150 200 250 300

of queries

A
N

M
R

R BM with OWA

ST with OWA

SS with OWA

Figure 7.70 Comparison of ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan
Using OWA

110

As seen from Figure 7.70, BitMatrix using OWA has the best ANMRR values when

compared to Slim-Tree and Sequential Scan using OWA. It is also observed that Slim-Tree

and Sequential Scan using OWA have similar ANMRR values.

Figure 7.71 shows the comparison of the ANMRR values of BitMatrix, Slim-Tree and

Sequential Scan using EQW.

ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan Using
EQW

0,26
0,27
0,28
0,29
0,3

0,31
0,32
0,33
0,34
0,35
0,36

50 100 150 200 250 300

of queries

A
N

M
R

R BM with EQW

ST with EQW

SS with EQW

Figure 7.71 Comparison of ANMRR Values of BitMatrix, Slim-Tree and Seq. Scan
Using EQW

As seen from Figure 7.71, parallel to the comparison results of ANMRR values in Figure

7.70 , BitMatrix using EQW has the best ANMRR values when compared to Slim-Tree and

Sequential Scan using EQW. It is also observed that Slim-Tree and Sequential Scan using

EQW have similar ANMRR values.

In addition to ANMRR, precision/recall values of the two types (i.e. using EQW and OWA

approaches for similarity measurement) of BitMatrix and Slim-Tree were computed. As in

ANMRR, precision/recall values for Sequential Scan were computed in order to compare

with the precision/recall values of BitMatrix and Slim-Tree. In precision/recall tests, we

retrieved top fifty objects that are similar to the query object.

Figure 7.72 and Figure 7.73 show the effects of using OWA on the precision/recall values

of BitMatrix and Table 7.9 gives the precision/recall values of queries for BitMatrix.

111

Precision Values of BitMatrix

0,59

0,6

0,61

0,62

0,63

0,64

0,65

0,66

0,67

 50 100 150 200 250 300

of queries

p
re

ci
si

o
n

BM with OWA

BM with EQW

Figure 7.72 Precision Values of BitMatrix Using OWA and EQW

Recall Values of BitMatrix

0,4

0,41

0,42

0,43

0,44

0,45

0,46

50 100 150 200 250 300

of queries

re
ca

ll BM with OWA

BM with EQW

Figure 7.73 Recall Values of BitMatrix Using OWA and EQW

Table 7.9 Precision and Recall Values of BitMatrix – Naïve Approach (ct = 2)

BitMatrix with OWA BitMatrix with EQW
Precision Recall Precision Recall

50 0.658 0.452473 0.644 0.440539
100 0.659 0.443858 0.6486 0.434844
150 0.6476 0.439659 0.634 0.429024
200 0.6339 0.43134 0.6205 0.422008
250 0.63072 0.428816 0.61904 0.420355
300 0.627867 0.430305 0.6154 0.421297

As seen from Figure 7.72, Figure 7.73 and Table 7.9, BitMatrix using OWA with naïve

approach has better precision/recall values than BitMatrix using EQW with naïve approach.

We also performed tests to compare the precision/recall values of naïve and range

expansion approaches of BitMatrix. The comparisons of precision/recall values of

112

BitMatrix using OWA/EQW with naïve and range expansion approach are given in Figure

7.74 and Figure 7.75, respectively. The precision/recall values of BitMatrix with range

expansion approach are given in Table 7.10 (cardinality threshold = 2, expansion threshold

= 0.1).

Table 7.10 Precision and Recall Values of BitMatrix – Range Expansion (ct = 2, et =
0.1)

BitMatrix with OWA BitMatrix with EQW
Precision Recall Precision Recall

50 0.6596 0.453395 0.6456 0.441409
100 0.6594 0.445437 0.6488 0.435814
150 0.647733 0.440926 0.634 0.429865
200 0.6336 0.431873 0.6205 0.422638
250 0.63048 0.429232 0.61864 0.42061
300 0.628 0.430807 0.614867 0.421339

Precision Values of BitMatrix using Naive Appr. and Range
Expansion (ct = 2, et = 0.1)

0,59

0,6

0,61

0,62

0,63

0,64

0,65

0,66

0,67

50 100 150 200 250 300

of queries

p
re

ci
si

o
n

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.74 Precision Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 2)

113

Recall Values of BitMatrix using Naive Appr. and Range
Expansion (ct = 2, et = 0.1)

0,4

0,41

0,42

0,43

0,44

0,45

0,46

50 100 150 200 250 300

of queries

re
ca

ll

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.75 Recall Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 2)

As seen from Table 7.9, Table 7.10, Figure 7.74 and Figure 7.75, when cardinality

threshold is 2, BitMatrix using OWA/EQW with naïve approach has similar precision/recall

values with BitMatrix using OWA/EQW with range expansion approach. Thus, we

performed further tests on precision/recall values of BitMatrix by increasing the cardinality

threshold (i.e. by setting cardinality threshold to 3) to see the effects of using range

expansion on BitMatrix. The precision/recall values of BitMatrix using OWA/EQW with

naïve and range expansion approach are given in Table 7.11 and Table 7.12, respectively.

The comparisons of precision/recall values of BitMatrix using OWA/EQW with naïve and

range expansion approach are given in Figure 7.76 and Figure 7.77.

Precision Values of BitMatrix using Naive Appr. and Range
Expansion (ct = 3, et = 0.1)

0,55
0,56
0,57
0,58
0,59
0,6

0,61
0,62
0,63
0,64

50 100 150 200 250 300

of queries

p
re

ci
si

o
n

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.76 Precision Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 3)

114

Recall Values of BitMatrix using Naive Appr. and Range
Expansion (ct = 3, et = 0.1)

0,37
0,375
0,38

0,385
0,39

0,395
0,4

0,405
0,41

0,415

50 100 150 200 250 300

of queries

re
ca

ll

BM with OWA - Naive

BM with EQW - Naive

BM with OWA - Range
Expansion

BM with EQW - Range
Expansion

Figure 7.77 Recall Values of BitMatrix Using OWA – Naïve Approach and Range
Expansion (ct = 3)

Table 7.11 Precision and Recall Values of BitMatrix – Naïve Approach (ct = 3)

BitMatrix with OWA BitMatrix with EQW
Precision Recall Precision Recall

50 0.6056 0.403722 0.5992 0.399537
100 0.6228 0.405767 0.6204 0.404031
150 0.5824 0.388315 0.582533 0.387853
200 0.5897 0.389327 0.5891 0.388539
250 0.5904 0.385684 0.59056 0.385409
300 0.589533 0.388373 0.589133 0.387773

Table 7.12 Precision and Recall Values of BitMatrix – Range Expansion (ct = 3, et =
0.1)

BitMatrix with OWA BitMatrix with EQW
Precision Recall Precision Recall

50 0.6184 0.411789 0.6128 0.408039
100 0.6318 0.412475 0.6298 0.410929
150 0.587733 0.392131 0.587733 0.391828
200 0.5927 0.391673 0.5918 0.390918
250 0.59584 0.389404 0.596 0.389306
300 0.593867 0.391406 0.5942 0.391441

As seen from Figure 7.76 and Figure 7.77, when cardinality threshold is 3, BitMatrix using

OWA/EQW with range expansion approach has better precision/recall values than

BitMatrix using OWA/EQW with naïve approach. It is also observed that when cardinality

threshold is increased, the difference between precision/recall values of BitMatrix using

OWA and EQW becomes smaller. In addition, when the cardinality threshold is increased,

115

the precision/recall values of BitMatrix decrease. Since, BitMatrix eliminates the related

video shots with the unrelated ones because of the high cardinality threshold value.

Figure 7.78 and Figure 7.79 show the effects of using OWA on the precision/recall values

of Slim-Tree and Table 7.13 gives the precision/recall values of queries for Slim-Tree. As

seen from Figure 7.78, Figure 7.79 and Table 7.13, Slim-Tree using OWA has better

precision/recall values than Slim-Tree using EQW.

Precision Values of Slim-Tree

0,56
0,57
0,58
0,59
0,6

0,61
0,62
0,63
0,64
0,65
0,66
0,67

 50 100 150 200 250 300

of queries

p
re

ci
si

o
n

ST with OWA

ST with EQW

Figure 7.78 Precision Values of Slim-Tree Using OWA and EQW

Recall Values of Slim-Tree

0,39

0,4

0,41

0,42

0,43

0,44

0,45

0,46

50 100 150 200 250 300

of queries

re
ca

ll ST with OWA

ST with EQW

Figure 7.79 Recall Values of Slim-Tree Using OWA and EQW

Table 7.13 Precision and Recall Values of Slim-Tree

Slim-Tree with OWA Slim-Tree with EQW
Precision Recall Precision Recall

50 0.6584 0.453267 0.6392 0.433943
100 0.658 0.447122 0.6408 0.430566
150 0.648533 0.443234 0.630267 0.42781

116

Slim-Tree with OWA Slim-Tree with EQW
Precision Recall Precision Recall

200 0.6308 0.433044 0.609 0.417407
250 0.62576 0.430396 0.60352 0.414003
300 0.620533 0.430418 0.596533 0.412515

Figure 7.80 and Figure 7.81 show the effects of using OWA on the precision/recall values

of Sequential Scan and Table 7.14 gives the precision/recall values of queries for Sequential

Scan. As seen from Figure 7.80, Figure 7.81 and Table 7.14, parallel to the results of

BitMatrix and Slim-Tree, Sequential Scan using OWA has better precision/recall values

than Sequential Scan using EQW.

Precision Values of Sequential Scan

0,56
0,57
0,58
0,59
0,6

0,61
0,62
0,63
0,64
0,65
0,66
0,67

 50 100 150 200 250 300

of queries

p
re

ci
si

o
n

SS with OWA

SS with EQW

Figure 7.80 Precision Values of Sequential Scan Using OWA and EQW

Recall Values of Sequential Scan

0,39

0,4

0,41

0,42

0,43

0,44

0,45

0,46

50 100 150 200 250 300

of queries

re
ca

ll SS with OWA

SS with EQW

Figure 7.81 Recall Values of Sequential Scan Using OWA and EQW

117

Table 7.14 Precision and Recall Values of Sequential Scan

Seq. Scan with OWA Seq. Scan with EQW
Precision Recall Precision Recall

50 0.6584 0.453267 0.6392 0.433943
100 0.658 0.447122 0.6408 0.430566
150 0.6484 0.443162 0.630267 0.42781
200 0.6307 0.43299 0.609 0.417407
250 0.62568 0.430353 0.60352 0.414003
300 0.620333 0.430292 0.596533 0.412515

Figure 7.82 and Figure 7.83 show the comparison of the precision/recall values of

BitMatrix, Slim-Tree and Sequential Scan using OWA. As seen from Figure 7.82 and

Figure 7.83, BitMatrix, Slim-Tree and Sequential Scan using OWA have similar

precision/recall values, except that the precision values of BitMatrix become better for 200,

250 and 300 queries and the recall values of BitMatrix are a bit smaller than Slim-Tree and

Sequential Scan.

Precision Values of BitMatrix, Slim-Tree and Seq. Scan Using
OWA

0,6

0,61

0,62

0,63

0,64

0,65

0,66

0,67

50 100 150 200 250 300

of queries

p
re

ci
si

o
n BM with OWA

ST with OWA

SS with OWA

Figure 7.82 Comparison of Precision Values of BitMatrix, Slim-Tree and Seq. Scan
Using OWA

118

Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using OWA

0,415

0,42

0,425

0,43

0,435

0,44

0,445

0,45

0,455

0,46

 50 100 150 200 250 300

of queries

re
ca

ll

BM with OWA

ST with OWA

SS with OWA

Figure 7.83 Comparison of Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using
OWA

Figure 7.84 and Figure 7.85 show the comparison of the precision/recall values of

BitMatrix, Slim-Tree and Sequential Scan using EQW. As seen from Figure 7.84 and

Figure 7.85, BitMatrix using EQW has better precision/recall values when compared to

Slim-Tree and Sequential Scan using EQW. It is also observed that Slim-Tree and

Sequential Scan using EQW have similar precision/recall values.

Precision Values of BitMatrix, Slim-Tree and Seq. Scan Using
EQW

0,57
0,58
0,59
0,6

0,61
0,62
0,63
0,64
0,65
0,66

50 100 150 200 250 300

of queries

p
re

ci
si

o
n BM with EQW

ST with EQW

SS with EQW

Figure 7.84 Comparison of Precision Values of BitMatrix, Slim-Tree and Seq. Scan
Using EQW

119

Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using EQW

0,395
0,4

0,405
0,41

0,415
0,42

0,425
0,43

0,435
0,44

0,445

50 100 150 200 250 300

of queries

re
ca

ll

BM with EQW

ST with EQW

SS with EQW

Figure 7.85 Comparison of Recall Values of BitMatrix, Slim-Tree and Seq. Scan Using
EQW

7.3.2 k-NN Query

To evaluate the efficiency of k-NN queries by using BitMatrix, Slim-Tree and Sequential

Scan, firstly we performed 1000 queries to retrieve the top ten images (10-NN query) over

an image database of 1000 images. Table 7.15 reports the retrieval times and number of

distance computations of each structure for k-Nearest Neighbor (k-NN) queries.

Table 7.15 Query Response Time and # of Distance Computations for 10-NN Queries
over 1000 Images

of Dist. Comp. Resp. Time (ms)
Index Structure

Storage
utilization min max min Max

BitMatrix with OWA N/A 71 366 2.764 15.74

BitMatrix with EQW N/A 71 366 2.833 15.588

SlimTree with OWA 0.7 499 997 14.853 39.709

SlimTree with EQW 0.7 578 1000 15.363 40.009

Seq. Scan with OWA N/A 1000 1000 26.4 43.692

Seq. Scan with EQW N/A 1000 1000 26.459 43.064

In addition, to evaluate the efficiency of k-NN queries by using BitMatrix, Slim-Tree and

Sequential Scan, we also performed 1000 queries to retrieve the top ten video shots (10-NN

query) over an video database of 1000 video shots. Table 7.16 reports the retrieval times

120

and number of distance computations of each structure for k-Nearest Neighbor (k-NN)

queries.

Table 7.16 Query Response Time and # of Distance Computations for 10-NN Queries
over 1000 Video Shots

of Dist. Comp. Resp. Time (ms)
Index Structure

Storage
utilization min max min Max

BitMatrix with OWA
(Naïve)

N/A 123 438 5.021 19.815

BitMatrix with EQW
(Naïve)

N/A 123 438 5.129 20.155

BitMatrix with OWA
(Range Expansion)

N/A 123 592 5.013 20.671

BitMatrix with EQW
(Range Expansion)

N/A 123 592 4.937 20.585

SlimTree with OWA 0.7 432 985 13.42 46.277

SlimTree with EQW 0.7 646 1000 20.534 45.62

Seq. Scan with OWA N/A 1000 1000 26.023 45.49

Seq. Scan with EQW N/A 1000 1000 25.983 44.447

As seen from the results reported in Table 7.15 and Table 7.16, BitMatrix using

OWA/EQW makes less distance computations than Slim-Tree and Sequential Scan using

OWA/EQW. It is observed from the results that using range expansion on BitMatrix causes

more distance computations when compared to naive approach, since range expansion

approach eliminates less objects before distance computations. It is also observed from the

results that Slim-Tree using OWA makes less distance computations than Slim-Tree using

EQW, where BitMatrix using OWA makes same number of distance computations as

BitMatrix using EQW. In addition, Slim-Tree and BitMatrix make less distance

computations than Sequential Scan.

7.3.3 Range Query

To evaluate the efficiency of range queries by using BitMatrix, Slim-Tree and Sequential

Scan, firstly we performed 1000 queries where radius was 0.2 over an image database of

1000 images. Table 7.17 reports the retrieval times and number of distance computations of

each structure for range queries where r=0.2.

121

Table 7.17 Query Response Time and # of Distance Computations for Range Queries
over 1000 Images (r = 0.2)

of Dist.
Comp.

Response Time
(ms)Index Structure

Storage
utilization

min max min max

BitMatrix with
OWA

N/A 71 366 2.725 15.554

BitMatrix with
EQW

N/A 71 366 2.924 15.501

SlimTree with
OWA

0.7 494 1066 15.241 50.606

SlimTree with
EQW

0.7 485 1055 14.452 50.689

Seq. Scan with
OWA

N/A 1000 1000 25.382 44.413

Seq. Scan with
EQW

N/A 1000 1000 25.176 44.23

As seen from the results reported in Table 7.17, BitMatrix using OWA/EQW makes less

distance computations than Slim-Tree and Sequential Scan using OWA/EQW. Slim-Tree

using OWA and EQW make similar number of distance computations for range queries. In

addition, Slim-Tree (in general) and BitMatrix make less distance computations than

Sequential Scan. To evaluate the efficiency of range queries by using BitMatrix, Slim-Tree

and Sequential Scan, we also performed 1000 queries where radius was 0.2 over a video

database of 1000 video shots. Table 7.18 reports the retrieval times and number of distance

computations of each structure for range queries where r=0.2.

Table 7.18 Query Response Time and # of Distance Computations for Range Queries
over 1000 Video Shots (r = 0.2)

of Dist.
Comp.

Response Time
(ms)Index Structure

Storage
utilization

min max min max

BitMatrix with
OWA

(Naïve)

N/A 123 438 5.045 18.017

BitMatrix with
EQW

(Naïve)

N/A 123 438 4.799 19.619

122

of Dist.
Comp.

Response Time
(ms)Index Structure

Storage
utilization

min max min max

BitMatrix with
OWA

(Range Expansion)

N/A 123 592 4.804 20.811

BitMatrix with
EQW

(Range Expansion)

N/A 123 592 4.794 20.538

SlimTree with
OWA

0.7 519 972 15.146 43.777

SlimTree with
EQW

0.7 615 963 17.438 42.474

Seq. Scan with
OWA

N/A 1000 1000 25.878 39.941

Seq. Scan with
EQW

N/A 1000 1000 25.237 38.326

The results reported in Table 7.18 are parallel to the results of k-NN queries of video shots

given in Table 7.16.

7.4 Discussion

In this study, we designed and implemented a content-based video retrieval system that

evaluates the similarity of video shots using low-level features (i.e. color, texture, shape and

motion). The system includes two different index structures, namely BitMatrix and Slim-

Tree for efficient content-based retrieval. Performance tests on building, updating and

querying index structures were applied. We performed tests both for image and video

retrieval and the test results are summarized in the following paragraphs.

During construction/update of Slim-Tree, the number of distance computations and the

elapsed times are the key indicators for the evaluation of the effectiveness of Slim-Tree

construction/update. Thus, performance tests on building and updating Slim-Tree contains

the number of distance computations and elapsed times for Slim-Tree using OWA and

EQW.

During construction/update of BitMatrix, the elapsed times for clustering visual features to

generate bitmap signatures is the key indicator for the evaluation of the effectiveness of

123

BitMatrix construction/update. There is no distance computation during construction

/update of BitMatrix, only clustering visual features is performed to generate bitmap

signatures. Thus, performance tests on building and updating BitMatrix contains only the

elapsed times for Bit-Matrix using OWA and EQW.

We computed the number of distance computations (only for Slim-Tree) and the index

construction times of Slim-Tree and BitMatrix for 100, 300, 500, 700 and 1000 video shots

and also for 100, 300, 500 and 700 images. Test results for video shots are given in Section

7.1.2 and for images are given in Section 7.1.1.

As seen from the figures in Section 7.1.2, for video shots using OWA on Slim-Tree

generally provides an improvement on the number of distance computations and elapsed

times for index construction with high minimum utilization values such as 0.7. For

example, the number of distance computations for the construction of Slim-Tree using

OWA of 1000 video shots with 0.7 as minimum utilization value was 51388 and the index

construction time was 1795 ms, where the number of distance computations and index

construction time of Slim-Tree using EQW with the same minimum utilization value (0.7)

were 51812 and 1875 ms, respectively. As seen from the figures in Section 7.1.1, for

images using OWA on Slim-Tree provides an improvement on the number of distance

computations and elapsed times for index construction when the number of indexed objects

is increased such as 500 and 700 images.

Also, as seen in Figure 7.1 and Figure 7.10, BitMatrix construction time was higher than

Slim-Tree using OWA/EQW. The reason for this result was the clustering time of visual

features of images/video shots and this clustering time increased as the number of indexed

objects increased. Using OWA or EQW on BitMatrix did not affect the index construction

times as expected.

We computed the number of distance computations (only for Slim-Tree) and the index

update times of Slim-Tree and BitMatrix for 100, 200, 300, 400 and 500 image/video shot

insertion/deletion into/from an image/video database of 1000 images/video shots. Test

results for video shots are given in Section 7.2.2 and for images are given in Section 7.2.1.

As seen from the figures in Section 7.2.2, for the insertion of video shots as in index

construction tests, using OWA on Slim-Tree provides an improvement on the number of

distance computations and index update times with high minimum utilization values such as

0.7. For example, during 300 video shot insertions, the number of distance computations for

124

the Slim-Tree using OWA with 0.7 as minimum utilization value was 17365 and the update

time was 468.016 ms, where the number of distance computations and update time of Slim-

Tree using EQW with the same minimum utilization value (0.7) were 17484 and 471.683,

respectively. For the deletion of video shots, contrary to construction/insertion test results

using OWA on Slim-Tree with low minimum utilization values such as 0.3 gave better

results than Slim-Tree using EQW in terms of the number of distance computations and

update times. For images as seen from the figures in Section 7.2.1, using OWA on Slim-

Tree provides an improvement on the number of distance computations and index update

times.

As seen in Figure 7.21, Figure 7.32, Figure 7.43 and Figure 7.54, unlike the index

construction test results, BitMatrix update time is much lower than Slim-Tree using

OWA/EQW. The reasons for insertion test results are doing no distance computation and

only generating the bitmap signature of the indexed objects during the insertions into

BitMatrix. The reasons for deletion test results are doing no distance computation and only

removing the bitmap signature of the deleted objects during the deletions from BitMatrix.

As in BitMatrix construction, the index update times increase as the number of

inserted/deleted objects increase. Using OWA or EQW on BitMatrix did not affect the

update times as expected.

Query performances of Slim-Tree and BitMatrix were evaluated by using k-NN and range

queries. Effects of range expansion approach on the query performance of BitMatrix are

examined and the results are discussed in Section 7.3, in detail. For Slim-Tree, as in index

construction and update, the number of distance computations and elapsed times were used;

for BitMatrix the number of distance computations was evaluated in addition to query

elapsed time.

We performed 1000 k-NN queries that retrieve the top ten images/video shots that are most

similar to the query image/video shot over an image/video database of 1000 images/video

shots. The results shown in Table 7.15 and Table 7.16 depict that BitMatrix and Slim-Tree

make less distance computations than Sequential Scan and BitMatrix performs better than

Slim-Tree in terms of distance computations and query elapsed time. This is because

BitMatrix eliminates some images/video shots based on the bitmap signatures of those

images/video shots that are generated by using the clustering results of visual features

before making distance computations during k-NN queries. The results in Table 7.15 and

Table 7.16 also depict that using OWA on Slim-Tree improves the k-NN query

performance in terms of distance computations and query elapsed time. Using OWA on

125

BitMatrix does not affect the k-NN query performance in terms of distance computations

and query elapsed time as expected. Because, the number of distance computations and so

the query elapsed time are only dependent on the elimination step of images/video shots

that is same for both BitMatrix using OWA and EQW.

We performed 1000 range queries that retrieve images/video shots whose distance were

within 0.2 to the query image/video shot over an image/video database of 1000

images/video shots. The results shown in Table 7.17 and Table 7.18 depict that BitMatrix

performs better than Slim-Tree and Sequential Scan in terms of distance computations and

query elapsed time as in k-NN queries. Parallel to k-NN query results, using OWA on Slim-

Tree improves the range query performance in terms of distance computations and query

elapsed time. Also, Slim-Tree makes less distance computations than Sequential Scan.

However, as seen from results in Table 7.17, Slim-Tree can make more distance

computations than Sequential Scan for some of the 1000 range queries. A final observation

for queries on BitMatrix is the type of query (k-NN or range) does not affect the number of

distance computations as expected, since the number of distance computations only

depends on the elimination step of images/video shots that is same for both k-NN and range

queries on BitMatrix.

For the evaluation of the retrieval efficiency of BitMatrix and Slim-Tree, ANMRR and

precision/recall values of BitMatrix and Slim-Tree were computed and compared with

Sequential Scan. The results are reported in Section 7.3.1.3 and 7.3.1.4. From the test

results, we observed that BitMatrix with OWA adapted has the best results. This is because

of the elimination step of images/video shots according to their clustering results of visual

features before making further process for queries and giving different weights to each low-

level feature by using OWA operator. The results also show that index structures with

OWA adapted outperform the same structures that have equal weighted aggregation in

terms of retrieval efficiency, since by using OWA the most relevant visual feature of an

object is treated as the main feature (i.e. given the biggest weight) for similarity

measurement with a query object. This approach yields better performance according to

equal weighted similarity measurement method.

126

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this study, we designed and implemented a content-based retrieval system that utilizes

Slim-Tree and adapts BitMatrix along with OWA to improve the query performance in

terms of time and retrieval efficiency based on low-level descriptors such as color, texture,

shape and motion. To the best of our knowledge, BitMatrix is adapted into a content-based

retrieval system for efficient video indexing for the first time.

Before low-level feature extraction of videos, by using IBM VideoAnnEx Annotation Tool,

sequential video streams are broken into several manageable video shots and a keyframe

for each video shot is extracted. The extracted keyframes of the video shots are used for the

extraction of still image features of a video shot such as color, texture and shape, and all

frames in a video shot are used to extract the motion features of the video shot. To represent

the low-level features of video data, we use MPEG-7 descriptors: Color Layout, Dominant

Color, Edge Histogram, Region Shape and Motion Activity. These descriptors are extracted

by using MPEG-7 XM software and stored in a native XML database, namely Oracle

Berkeley DB.

In general, content-based retrieval systems combine features of video data by using fixed

weights for each feature. Thus, features of all videos in the database are associated with

fixed weights during distance computation. However, when comparing two videos one

feature may be more distinctive than other features; therefore that feature must be

associated with higher weight. Hence, during distance computations on Slim-Tree and

BitMatrix, we use OWA operators to aggregate the distance of each visual feature of any

two video shots into a single distance value.

Our system supports exact match, k-NN and range querying of images/video shots by using

QBE paradigm. The query performance of the system is tested both on Corel images and on

MPEG-7 video test set. From the test results, we observe that BitMatrix with OWA adapted

has the best results in terms of time and retrieval efficiency.

127

Our system does not include the indexing and retrieval of audio objects. Evaluating the

retrieval performance of BitMatrix and Slim-Tree index structures of the system for audio

objects may be a future direction.

Evaluating the effects of using MPEG-7 motion descriptors other than Motion Activity in

the retrieval system is another future direction. The system also does not include face

recognition that can be used in content-based image/video retrieval. MPEG-7 provides a

face descriptor to retrieve face images similar to a query face image. Thus, another future

direction is the integration of face descriptor into the system.

BitMatrix that is adapted to the system is a highly parametrizable index structure. In this

study, we use the naïve approach and range expansion heuristic introduced in [1]. Thus,

integrating subspace selection approach introduced in [1] and the evaluation of the effects

using different cardinality/expansion threshold values on BitMatrix can be stated as future

directions. Finally, another future direction may be the parallel processing of BitMatrix

index structure by breaking BitMatrix into parts.

128

REFERENCES

[1] Calistru C., C. Riberio, G. David, “Multidimensional Descriptor Indexing: Exploring
the BitMatrix”, pp. 401-410, CIVR’06, 2006.

[2] Gonalves B., C. Calistru, C. Riberio, G. David, “An Evaluation Framework for
Multidimensional Multimedia Descriptor Indexing”, ICDE’07 MDDM Workshop,
IEEE, 2007.

[3] Traina Jr. C., A. Traina, B. Seeger and C. Faloutsos, “Slim-trees: High Performance
Metric Trees Minimizing Overlap Between Nodes”, In EDBT 2000, pp. 51-65,
Konstanz, Germany, Mar. 2000.

[4] Manjunath B.S., P. Salembier, T. Sikora, “Introduction to MPEG-7:Multimedia
Content Description Interface”, J.W.& Sons, 2002.

[5] “MPEG-7 Overview (ver. 9)”, Int. Org. Stanart., ISO/IEC JTC1/SC29/WG11, May
2003.

[6] Sikora T., “The MPEG-7 Visual Standard for Content Description - An Overview”,
IEEE Transactions on Circuits and Systems for Video Technology, v. 11, No. 6, June
2001.

[7] Chang S., T. Sikora, and A. Puri, “Overview of the MPEG-7 Standard”, IEEE
Transactions on Circuits and Systems for Video Technology, v. 11, No. 6, June 2001.

[8] Manjunath B., J. Ohm, V. Vasudevan, A. Yamada, “Color and Texture Descriptors”,
IEEE Transactions on Circuits and Systems for Video Technology, v.11, No. 6, June
2001.

[9] Bober M., “MPEG-7 Visual Shape Descriptors”, IEEE Transactions on Circuits and
Systems for Video Technology, v.11, No.6, June 2001.

[10] Jeannin S., A. Divakaran, “MPEG-7 Visual Motion Descriptors”, IEEE Transactions on
Circuits and Systems for Video Technology, v.11, No.6, June 2001.

[11] Divakaran A., An “Overview of MPEG-7 Motion Descriptors and Their Applications”,
W. Sharbek, editor, CAIP 2001, Lecture Notes in Computer Science 2124, pages 29-40,
Warsaw, Poland, September 2001.

[12] Arslan S., “An XML Based Content-Based Image Retrieval System With Mpeg-7
Descriptors”, M.Sc. Thesis, Department of Computer Engineering, METU, Ankara,
Turkey, December 2004.

[13] Ciaccia P., M. Patella, and P. Zezula. “M-tree: An efficient access method for similarity
search in metric spaces”, In Proceedings of the 23rd VLDB International Conference,
pp. 426-435, Athens, Greece, August 1997.

129

[14] Hacid M., C. Decleir, and J. Kouloumdjian, “A Database Approach for Modeling and
Querying Video Data”, IEEE Transactions on Knowledge and Data Engineering, v. 12,
No. 5, September/October 2000.

[15] Ekin A., A. Murat Tekalp, and R. Mehrotra, “Integrated Semantic-Syntactic Video
Modeling for Search and Browsing”, IEEE Transactions on Multimedia, v. 6, No. 6,
December 2004.

[16] Böhm C., S. Berchtold, and D. Keim, “Searching in High-Dimensional Spaces – Index
Structures for Improving the Performance of Multimedia Databases”, ACM Computing
Surveys, v. 33, No. 3, pp. 322-373, September 2001.

[17] Chavez E., G. Navarro, R. B. Yates, J. L. Marroquin, “Searching in Metric Spaces”,
ACM Comp. Surv., Vol. 33, No. 3,, pp. 273–321, 2001.

[18] Gaede V., O. Gunther, “Multidimensional Access Methods”, ACM Computing Surveys
v.30, No.2, 1998.

[19] Berchtold S., C. Böhm, H. Kriegel, “The Pyramid-Technique: Towards Breaking the
Curse of Dimensionality”, Proc. Int. Conf. On Management of Data, ACM SIGMOD,
1998.

[20] Lu H., Chin B. C. Ooi, H. T. Shen, and X. Xue, “Hierarchical Indexing Structure for
Efficient Similarity Search in Video Retrieval”, IEEE Transactions on Knowledge and
Data Engineering, v. 18, No. 11, November 2006.

[21] Weber R., H. Schek, and S. Blott, “A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces”, Proceedings of the 24th

VLDB Conference, 1998.

[22] Urruty T., F. Belkouch, C. Djeraba, “KPYR: An Efficient Indexing Method”, IEEE,
2005.

[23] Guttman A., “R-Trees: A Dynamic Index Structures for Spatial Searching”, ACM,
1984.

[24] Beckmann N., H. Kriegel, R. Schneider, and B. Seeger, “The R*-Tree: An Efficient and
Robust Access Method for Points and Rectangles”, ACM, 1990.

[25] Sellis T., N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A Dynamic Index for
Multi-dimensional Objects”, In Proc. 13th International Conference on Very Large
Databases, pp. 507-518, 1987.

[26] Berchtold S., D. Keim, and H. Kriegel, “The X-Tree: An Index Structure for High-
Dimensional Data”, Proceedings of the 22nd VLDB Conference, 1996.

[27] MPEG-7 XM Homepage, http://www.lis.e-technik.tu-muenchen.de/research/bv/topics/
mmdb/mpeg7.html, Last date accessed: September, 2007.

[28] Oracle Berkeley XML DB Homepage, http://www.oracle.com/database/berkeley-
db.html, Last date accessed: January, 2008.

130

[29] XXL Homepage, http://dbs.mathematik.uni-marburg.de/?search=Research_Projects_
XXL, Last date accessed: January, 2008.

[30] Weka Homepage, http://www.cs.waikato.ac.nz/ml/weka/, Last date accessed: January,
2008.

[31] Colt Project Homepage, http://dsd.lbl.gov/~hoschek/colt/, Last date accessed: January,
2008.

[32] VideoAnnEx: IBM Video Annotation Tool, http://www.research.ibm.com/
VideoAnnEx/, Last date accessed: October, 2007.

[33] Eidenberger H., “How good are the visual MPEG-7 features”, Proc. of the 5th ACM
SIGMM Int. WS on Mm. info. retrieval, pp.130-137, Berkeley, 2003.

[34] Guner K. K., “MPEG-7 Compliant ORDBMS Based Image Storage and Retrieval
System”, MS Thesis, Middle East Technical University, January 2004.

[35] Yager R.R., “On ordered weighted averaging aggregation operators in multi-criteria
decision making”, IEEE Trans. Sys. Man Cyb. 18, pp. 183-190, 1988.

[36] Yoshitaka A., T. Ichikawa, “A Survey on Content-Based Retrieval for Multimedia
Databases”, IEEE Transactions on Knowledge and Data Engineering, v.11 No.1, 1999.

[37] MUVIS Project Homepage, http://muvis.cs.tut.fi/, Last date accessed: January, 2008.

[38] Zhang D., G. Lu, “Evaluation of Similarity Measurement for Image Retrieval”, IEEE
International Conference Neural Networks & Signal Processing, December 2003.

[39] Gonzalez R., R. Woods, “Digital Image Processing”, Prentice-Hall, 2002.

[40] WebSEEk Homepage, http://persia.ee.columbia.edu:8008/, Last date accessed: January,
2008.

[41] Lee J., H. Kim, and W. Kim, “Video/Image Retrieval System based on MPEG-7”,
IEEE, 2003.

[42] Esen E., Ö. Önür, M. Soysal, Y. Yasaroglu, S. Tekinalp, and A. Aydin Alatan, “A
MPEG-7 compliant Video Management System: BilVMS”, Proc. of 4th European
Workshop on Image Analysis for Multimedia Interactive Services, April 2003.

[43] Hampapur A., A. Gupta, B. Horowitz, C. Shu, C. Fuller, J. Bach, M. Gorkani, R. Jain,
“Virage Video Engine”, Proc. SPIE Vol. 3022, p. 188-198, January 1997.

[44] Flickner M., H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J.
Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by Image and Video
Content: The QBIC System”, IEEE, 1995.

[45] Lee J., J. Oh, S. Hwang, “STRG-Index: Spatio-Temporal Region Graph Indexing for
Large Video Databases”, ACM SIGMOD, June 2005.

[46] Corel Database, http://www.corel.com, Last date accessed: January, 2008.

