
ACCELERATED RAY TRACING USING PROGRAMMABLE GRAPHICS

PIPELINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

�. ALPHAN ES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JANUARY 2008

Approval of the thesis

ACCELERATED RAY TRACING USING PROGRAMMABLE
GRAPHICS PIPELINES

submitted by �. Alphan Es in partial full�llment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural And Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department,Computer Engineering

Assoc. Prof. Dr. Veysi �³ler
Supervisor,Computer Engineering, METU

Examining Committee Members:

Prof.Dr. �smail Hakk� Toroslu
Computer Engineering, METU

Assoc. Prof. Dr. Veysi �³ler
Computer Engineering, METU

Assoc. Prof. Dr. U§ur Güdükbay
Computer Engineering, Bilkent University

Assoc. Prof. Dr. Halit O§uztüzün
Computer Engineering, METU

Assist. Prof. Dr. �lkay Ulusoy
Electrical and Electronics Engineering, METU

Date:

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : �. Alphan Es

Signature :

iii

ABSTRACT

ACCELERATED RAY TRACING USING PROGRAMMABLE GRAPHICS PIPELINES

Es, �. Alphan

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Veysi �³ler

January 2008, 127 pages

The graphics hardware have evolved from simple feed forward triangle rasterization devices

to �exible, programmable, and powerful parallel processors. This evolution allows the re-

searchers to use graphics processing units (GPU) for both general purpose computations

and advanced graphics rendering. Sophisticated GPUs hold great opportunities for the

acceleration of computationally expensive photorealistic rendering methods. Rendering of

photorealistic images in real-time is a challenge. In this work, we investigate e�cient ways

to utilize GPUs for real-time photorealistic rendering. Speci�cally, we studied uniform grid

based ray tracing acceleration methods and GPU friendly traversal algorithms. We show that

our method is faster than or competitive to other GPU based ray tracing acceleration tech-

niques. The proposed approach is also applicable to the fast rendering of volumetric data.

Additionally, we devised GPU based solutions for real-time stereoscopic image generation

which can be used in companion with GPU based ray tracers.

Keywords: GPU, ray tracing, volume visualization, stereoscopic rendering.

iv

ÖZ

PROGRAMLANAB�L�R GRAF�K ��LEMC�LER� �LE HIZLANDIRILMI� I�IN �ZLEME

Es, �. Alphan

Doktora, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Doç. Dr. Veysi �³ler

Ocak 2008, 127 sayfa

Gra�k donan�mlar� zamanla sadece yollanan üçgenleri çizen basit cihazlardan; çok yönlü,

programlanabilir ve güçlü paralel i³lemcilerine dönü³tüler. Bu evrimle³me gra�k hesaplama

ünitelerinin (GPU) genel amaçl� hesaplamalarda oldu§u kadar, ileri görüntü sentezleme

hesaplamalar�nda kullan�lmas�na da olanak tan�d�. So�stike GPUlar yüksek hesaplama gücü

gerektiren foto gerçekçi görüntü üretiminin h�zland�r�lmas� konusunda pek çok olanak sun-

maktad�rlar. Foto gerçekçi görüntülerin gerçek zamanda hesaplanmas� henüz çözüme kavu³-

turulmam�³ bir aland�r. Bu çal�³mada, GPUlar�n gerçek zamanl� foto gerçekçi görüntü üreti-

minde etkin kullan�m�na yönelik yöntemler ara³t�r�lm�³t�r. Özellikle düzgün �zgaralama veri

yap�s� ile, çok kullan�lan bir foto gerçekçi görüntü hesaplama yöntemi olan �³�n izlemenin

GPU üzerinde h�zland�r�lmas� ele al�nm�³t�r. Tezde, geli³tirdi§imiz GPU tabanl� �³�n izleme

metodunun di§er GPU tabanl� yöntemlere göre kar³�la³t�r�labilir veya pek çok sahne için

daha h�zl� performans sergiledi§i gösterilmi³tir. Yine bu metodun hacimsel verilerin h�zl�

görüntülenmesinde de kullan�labilece§i gösterilmi³tir. Ek olarak, GPU tabanl� h�zl� stereo

görüntü üretimi yöntemleri geli³tirilmi³ ve bu yöntemlerin GPU tabanl� �³�n izleyicilerle etkin

bir ³ekilde kullan�labilece§i gösterilmi³tir.

Anahtar Kelimeler: GPU, �³�n izleme, hacimsel görüntüleme, stereo görüntü üretimi.

v

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc. Prof. Dr. Veysi

�³ler for his guidance, advice, criticism, encouragements and insight throughout the research.

The author would also like to thank Hacer Yal�m Kele³ for her valuable cooperation

during the thesis.

vi

To My Family

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vi

DEDICATON . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER

1 INTRODUCTION 1

1.1 Goals and Contributions . 3

1.2 Photorealistic Rendering . 4

1.2.1 Global Illumination . 4

1.2.2 Ray Tracing . 6

1.3 Outline . 10

2 GPU BASED REAL-TIME PHOTOREALISM 11

2.1 The Rendering Pipeline . 12

2.1.1 GPU Pipelines . 14

2.1.2 GPU as a Parallel Stream Processor 16

2.1.3 High Level Programming Languages for GPU 18

2.2 Rasterization Based Photorealistic Rendering Methods on GPU 19

2.3 GPU Based Ray-tracing . 25

2.3.1 Organization of a GPU Ray Tracer 28

viii

3 EACD ACCELERATION STRUCTURE FOR GPU BASED RAY TRACING 33

3.1 Accelerated Ray Tracer . 35

3.2 Accelerated Traversal Kernels . 40

3.2.1 DDA Traversal . 40

3.2.2 PC Traversal . 42

3.2.3 Anisotropic Chessboard Distance Traversal 42

3.2.4 Minimum Branching ACD Traversal Algorithm 43

3.2.5 Extended Anisotropic Chessboard Distance Traversal 47

3.3 Construction of The Acceleration Grid . 48

3.3.1 Creation of ACD Grid . 48

3.3.2 Extending ACD to EACD . 49

3.4 Results and Discussion . 51

3.4.1 Branching vs. Non-Branching Kernel Implementation 52

3.4.2 Fragment Processor Utilization . 54

3.4.3 Timing Results . 56

3.4.4 Comparison to Other GPU Ray Tracers 58

4 EACD BASED REAL-TIME VOLUME RENDERING ON GPU 69

4.1 Volume Ray Casting . 70

4.1.1 Homogeneous Space Ray Integration 71

4.2 Distance Based Homogeneous Region Leaping 72

4.3 EACD Ray Casting . 73

4.3.1 Implementation . 74

4.3.2 Construction of Homogeneous EACD Regions 76

4.4 Results And Discussion . 77

5 GPU ACCELERATED STEREOSCOPIC RAYTRACING 81

5.1 Previous Work . 82

5.2 The Ray Tracer . 83

5.3 Stereoscopic Ray Tracing by Reprojection 84

5.4 GPU Based Stereoscopic Reprojection . 87

5.4.1 CPU Created Gather Table . 89

5.4.2 Two-Pass GPU Gather Table . 90

5.4.3 One-Pass GPU Gather Table . 91

5.5 Results and Discussion . 92

ix

5.5.1 Missing Object Problem in Reprojections 92

5.5.2 Reprojections of Re�ections and Refractions 93

6 CONCLUSION 96

REFERENCES . 99

APPENDIX

A SHADER SOURCE CODES 109

A.1 Grid based ray traversal source codes . 109

A.1.1 Cg source code for branching DDA ray traversal 109

A.1.2 Cg source code for multi-pass DDA ray traversal 110

A.1.3 Cg source code for branching PC ray traversal 111

A.1.4 Cg source code for multi-pass PC ray traversal 112

A.1.5 Cg source code for branching ACD/EACD ray traversal 114

A.1.6 Cg source code for multi-pass ACD/EACD ray traversal 115

A.1.7 Cg source code for intersector kernel (for ACD/EACD traversal) . . 117

A.2 Direct volume rendering source code . 118

A.2.1 Volume rendering with ACD/EACD 119

A.3 Stereo reprojection source codes . 121

A.3.1 CG source code for the stereo reprojection with two-pass gather table

generation . 121

A.3.2 GLSL source code for the reprojection with one-pass gather table

generation . 123

VITA . 125

x

LIST OF FIGURES

FIGURES

Figure 1.1 (a) Image from the viewpoint of the camera. (b) Same scene showing

some of the light paths passing through the camera. Blue line denotes

the path LDE, green denotes LDSDE and the white denotes LSE. . . . 5

Figure 1.2 Ray traced images . 7

Figure 1.3 Recursive ray tracing algorithm . 8

Figure 1.4 Path traced image of a simple scene . 9

Figure 2.1 Standart graphics pipeline for rasterization based rendering. 13

Figure 2.2 GPU graphics pipeline. Green boxes denote user programmable sec-

tions of the pipeline. 14

Figure 2.3 Internal structure of a GPU. 16

Figure 2.4 (a) Stream processing, (b) Stream processing on the GPU. Green boxes

are kernels. 17

Figure 2.5 Planar re�ections. 20

Figure 2.6 Approximate re�ections on curved surfaces with cube mapping. 21

Figure 2.7 Transformation steps for projective texturing. 22

Figure 2.8 Projecting texturing to simulate (a) shadows and (b) spotlight region. . 22

Figure 2.9 (a) Shadow mapping. (b) Close-up view of the shadow mapping artifacts. 23

Figure 2.10 (a) Standart OpenGL shading. (b) Projective texturing added to im-

prove spotlight borders. (c) Shadow mapping applied. (d) Re�ections

added. 26

xi

Figure 2.11 Examples of three di�erent data structures for storing the triangle ver-

tices. (a) All triange vertices are stored in a single texture, in which

three consequtive vertices de�ne a triangle. (b) Vertices of the triangles

put to di�erent textures separated by corners. (c) Indexed access to

vertex data. 29

Figure 2.12 An example organization of the scene database and the acceleration

structure. 3D grid texture (acceleration structure) points to triangle

lists. Elements of triangle lists are triangle indices which point to tri-

angle coordinates and normals. Each texel of the material id texture

points to material information for the corresponding triangle. 30

Figure 2.13 Each screen pixel corresponds to a ray. Origin and direction textures

are used to de�ne a ray. 31

Figure 3.1 (a) Ray tracing kernels (b) Ray state transition diagram. 37

Figure 3.2 Input/outputs of the ray tracer kernels. 38

Figure 3.3 DDA traversal loop . 41

Figure 3.4 PC traversal loop . 43

Figure 3.5 Apex voxels and the intersection lines of a rectangular region depending

on the ray direction. 44

Figure 3.6 ACD traversal loop . 46

Figure 3.7 EACD traversal loop . 47

Figure 3.8 (a) CD acceleration grid has single isotropic distance value per voxel (b)

ACD acceleration grid stores a distance value for each direction quad-

rant. Only the (+x,+y) quadrant values are shown (�rst and second

values are the macro distances along +x and +y axes respectively) (c)

EACD acceleration grid stores di�erent distance values for each primary

axis. (d),(e) and (f) demonstrates CD, ACD, and EACD traversals of

an example ray. EACD traversal signi�cantly reduces the number of

traversal steps in this situation. 48

xii

Figure 3.9 (a) ACD kernels for 2D. (b) Creation of the ACD grid for upper-left

quadrant. The upper-left ACD kernel of (a) is applied from top-left to

bottom-right. Yellow box denotes current voxel. Green frame is the

covered region by the kernel. (b) Kernel is overlaid and added with

the region. (c) Minimum of the sums is selected as the distance value.

Note that, distance of the non-empty voxels (gray boxes) are initialized

to 0, while empty voxels are initialized to ∞ prior to kernel application. 50

Figure 3.10 Finding the EACD macro region for the lower left cell. Only (+x,+y)

direction quadrant is shown (octant for 3D). Arrows denote the orien-

tation of the distance values (a) is the base ACD grid. (b) and (c) are

the axial distance grids along +x and +y directions respectively. (d) is

the resulting EACD distances. 51

Figure 3.11 (a) Number of active rays per pass (b) Traversal time per pass (c)

Average ray traversal time per pass. 53

Figure 3.12 Ray casted bunny image (a) after 16 trace steps (b) after all trace steps

completed. Note that 99.5% of the rays are already terminated in (a)

and the most of the image is rendered. Grid resolution is 128x128x128. 55

Figure 3.13 Illustration of the traversal step counts for (a) DDA, (b) PC, (c) ACD

and (d) EACD. Brightness of the image is set to 170% and contrast is

set to 155% for better visual clarity. 57

Figure 3.14 (a) Bunny (69451 tris) (b) Jacks (24528 tris) (c) Sphere�ake (88562

tris) (d) Tree (67454 tris) (e) Lattice (125388 tris). 63

Figure 4.1 ACD and EACD sample points are aligned with the primitive sample

points of a primitive ray caster. In the shown case, homogeneous region

leaping requires just 2 samples as opposed to 9 samples needed by a

primitive ray caster. 73

Figure 4.2 Cg like pseudo-code for the EACD volume ray casting. Note that most

of the operations work on vectors. 75

Figure 4.3 Tested volume datasets (a)engine, (b) mrbrain, (c) teapot 77

Figure 4.4 Illustration of loop counts for (a)Ray caster, (b)PC, (c)ACD, (d)EACD.

Brightness and contrast is adjusted for visual clarity. Darker regions

indicate lower loop counts. 79

xiii

Figure 4.5 Teapot images rendered with ACD using di�erent segmentation thresh-

olds. (a)To:0.01, Ta:3, (b)To:0.02, Ta:3, (c)To:0.1, Ta:3, (d)To:0.01,

Ta:1, (e)To:0.01, Ta:10, (f)To:0.01, Ta:20 80

Figure 5.1 Kernels for the ray tracer. 83

Figure 5.2 2D illustration of stereoscopic perspective projection. e is eye separa-

tion distance. d is focal length. Point A is behind the projection plane,

thus projects to positive parallax. C is in front of the projection plane

which projects to negative parallax. Since B is on the projection plane,

it is projected to zero parallax. 85

Figure 5.3 Reprojection problems. (a) Overlapped pixel and (b,c) bad pixel prob-

lems. 86

Figure 5.4 Stereoscopic reprojection algorithm . 88

Figure 5.5 Two-Pass GPU based gather table creation. VP denotes data processed

by vertex processors, while FP denotes data processed by fragment

processors. oldR and R holds for prev_right_pixel and right_pixel

respectively as calculated in Figure 5.4. 90

Figure 5.6 One-Pass GPU based gather table creation. GP denotes parts of data

processed by geometry processors, while FP refers to fragment processing. 91

Figure 5.7 Anaglyph rendering of a dynamically animated scene (a) both eyes

separately rendered, (b) right eye reprojected from the left eye's image. 95

xiv

LIST OF TABLES

TABLES

Table 3.1 Instruction counts of the traverser kernels. In the cells, �rst number

is the fragment program instruction count (including texture lookups).

Second number is the texture lookup count. 52

Table 3.2 Average data dependent branching per ray for the traversal kernels. . . . 60

Table 3.3 Time results in milliseconds of non-branching kernel implementations

(grid size is 128x128x128). 60

Table 3.4 Ray casting time results in milliseconds (grid size is 32x32x32). Frame

is the total rendering time. 61

Table 3.5 Ray casting time results in milliseconds (grid size is 64x64x64). Frame

is the total rendering time. 61

Table 3.6 Ray casting time results in milliseconds (grid size is 128x128x128). Frame

is the total rendering time. 62

Table 3.7 Ray tracing time results of the bunny scene in milliseconds (grid size is

128x128x128). 64

Table 3.8 Ray tracing time results of the tree scene in milliseconds (grid size is

128x128x 128). 65

Table 3.9 Ray tracing time results of the jacks scene in milliseconds (grid size is

128x128x128). 66

Table 3.10Ray tracing time results of lattice scene in milliseconds (grid size is

128x128x128). 67

Table 3.11Ray tracing time results of the sphere�ake scene in milliseconds (grid

size is 128x128x128). 68

xv

Table 4.1 Performance results of the ray casting methods. Results are in mil-

liseconds. Last column is the speedup achieved by EACD compared to

primitive ray casting. 78

Table 5.1 Frame times of Monoscopic (MONO), Separate stereoscopic (SS), Re-

projected with CPU based gather table (RCPU), Reprojected with two

pass GPU based gather table (RGPU2), and Reprojected with one-pass

GPU based gather table (RGPU1). Visible: Visible surface ray tracing,

FullRT: Full ray tracing with maximum ray depth of 3. Times are in

milliseconds. 93

Table 5.2 Gather table creation times. 93

xvi

CHAPTER 1

INTRODUCTION

The rendering research can be crudely categorized into two classes, photorealistic render-

ing and real-time rendering. This distinction makes sense because high quality rendering

methods are generally o�ine and computationally very expensive, while real-time rendering

solutions are fast but not photorealistic in most cases. The ideal case is to have photorealism

in real-time.

Photorealistic rendering is the synthesis of realistic images, where a computer-generated

image looks like a snapshot of the real world. The goal is to model a visually correct light

distribution in synthetic environments. This involves simulation of sophisticated radiance

transfers between the surfaces and the participating media to capture correct inter-re�ections

between the objects. Although very accurate physical simulation of light is quite demand-

ing and not practical for most applications, a careful approximation of the light behavior is

generally enough for creating visually convincing images. Photorealistic rendering involves

solving global illumination which computes direct and indirect light distribution in an en-

vironment. In order to capture the e�ects of global illumination, di�erent methods have

been devised such as ray tracing, path tracing, radiosity, photon mapping and their variants.

These methods can produce very realistic images by solving the global illumination partly or

completely. However, since obtaining an adequate image quality can be very time consum-

ing and therefore non-interactive, these methods are generally referred as o�ine rendering

methods.

On the other extent, in real-time rendering, images are generated immediately. Each

frame is rendered while a user watches or performs fast interaction in real-time. This gives

a sense of motion in an interactive manner which is referred to as motion realism. A system

should preferably display more than 30 Hz (30 frames per second) for comfortable sense of

motion and a frame rate of at least 60 Hz should be targeted for good immersion. In order to

1

obtain such frame rates, a real-time rendering system mostly takes the advantage of dedicated

graphics hardware. Fast and realistic real-time rendering is at the heart of a virtual reality

system, which is widely used for training and simulations, such as pilot training with visual

�ight simulation or driver education through vehicle simulation, architectural walkthroughs,

product design, military combat simulations, complicated surgery training, and so on.

The ultimate goal of real-time rendering is to combine photorealism and motion realism

together. Since solving global illumination is slow, traditional real-time rendering relies

on simpli�ed light interaction models, therefore generates simpli�ed reality. In most cases

the simpli�cations will make the virtual world look computer-generated, unrealistic and

plastic-like, making it harder for a user to project herself into the virtual world. Even small

inaccuracies such as missing shadows or re�ections may distract the human visual system

and destroy the sense of reality. Furthermore, e�ects like re�ections and shadows are critical

visual cues. The human mind intuitively uses these cues to estimate position, size, distance

and shape of objects. Ignoring these e�ects in an interactive real-time rendering system

makes it harder for a user to navigate and interact with the environment which results in a

less realistic experience.

There is a lot of research in the real-time photorealistic image synthesis. A part of the

research is focused on making use of the hardware resources as e�cient as possible. It is

shown that, by using specialized data structures, algorithms and memory access patterns

in accordance with the underlying hardware, the rendering can be accelerated by an order

of magnitude. Therefore, besides using algorithmically optimized acceleration structures,

traversal algorithms, light transport computations, sampling techniques, etc.; it's also very

important to develop speci�c methods for making e�cient use of the hardware.

Graphics processing units (GPU) found in the graphics cards are used to accelerate

graphics drawing operations in real-time rendering tasks. Almost all virtual reality systems,

games and other applications which require real-time rendering employ GPUs for fast image

generation. Early GPUs were generally only capable of scan converting and shading triangles,

where shading is based on simple local illumination models. The graphics pipeline of such

hardware is also called �xed function pipeline, since they are not programmable and process

the geometry with some �xed chain of operations. Modern GPUs, on the other hand, are

very �exible and programmable processors. Graphics rendering heavily depends on parallel

arithmetic calculations. Therefore, graphic hardwares are designed accordingly. GPUs are

massively parallel processors and very powerful in terms of arithmetic operations. There are

hundreds of parallel processing units on a modern GPU. As of today, consumer level graphics

2

cards are capable of performing around 1 TFLOPS (trillions of �oating point operations

per second), which is far beyond the reach of a CPU. Enormous arithmetical power and

increasing �exibility hold great opportunities for using GPUs in non-rasterization based

complex photorealistic rendering techniques including ray tracing.

Based on these observations, the motivation, goals and the contributions of this thesis

are given in the next section.

1.1 Goals and Contributions

Particle or ray tracing is at the core of many photorealistic rendering techniques. Therefore

in this work we focused on accelerating ray tracing which can be used as a tool for fast

photorealistic rendering. Increasing �exibility and arithmetic power of the GPUs found in

contemporary graphics cards make them good candidates to be used in acceleration of com-

putationally expensive ray tracing. The aim of this work is to investigate e�cient methods

for GPU based ray tracing in order to achieve real-time rendering of photorealistic images.

In order to reach this goal, the architectural constraints and powerful aspects of the GPU

should be taken into account. In other terms, data structures and algorithms should be

revised accordingly or new techniques conforming to the GPU programming model should

be developed.

Our �rst goal is to accelerate ray tracing using programmable graphics pipelines by de-

veloping GPU friendly techniques. To be more speci�c, we studied distance transformation

grids based acceleration structures. We aim interactive frame rates for at least moderately

complex scenes. As the �rst contribution, we devised a novel acceleration structure based

on distance transformation grids called as the extended anisotropic chessboard distance

(EACD), and developed an e�cient GPU friendly ray traversal algorithm running on this

acceleration structure. GPU friendly implementations of some well-known grid based accel-

eration techniques and their comparison were also given in the thesis as other contributions.

Real-time volume rendering has many uses in medicine, geography, and many other �elds

that require fast visualization of volumetric data. Our second goal is to devise a GPU based

real-time volume ray caster. Connected to this goal, we extended the EACD ray traversal

algorithm for real-time volume rendering and employed homogeneous region encoding to

visualize data in real-time as the second main contribution.

The third goal is to develop a fast GPU based stereoscopic ray tracing technique to be

used in conjunction with GPU based ray tracers and volume ray casters. Therefore, as the

3

third contribution, we devised GPU accelerated stereoscopic reprojection methods.

Ultimately as an outcome of this work and other works similar to this one, we believe

that with the methods making e�cient use of the GPU, the gap between high quality pho-

torealistic rendering and lower quality real-time rendering will get closer.

1.2 Photorealistic Rendering

In this section, a quick overview of some widely used photorealistic rendering methods are

given. The purpose is to make the reader aware of the well-known techniques. Among the

techniques, ray tracing is explained in greater detail since this thesis is focused on fast ray

tracing with GPUs.

1.2.1 Global Illumination

Global illumination methods synthesize photorealistic images by simulating the light behav-

ior. Being di�erent from local shading techniques, global illumination takes the light inter-

action between all surfaces of an environment into account. It solves light transportation

and thus can simulate re�ections, refractions, shadows, caustics and other related physical

phenomena. Light transfer can be calculated mathematically using the well known rendering

equation (1.1) [49]. Although the rendering equation has some shortcomings such as omit-

ting the participating media or sub-surface scattering, it is considered as the mathematical

foundation for the global illumination algorithms [22].

Lo(x′ → x) = Le(x′ → x) +
∫

S
fr(x′′ → x′ → x)Li(x′′ → x′)V (x′, x′′)G(x′, x′′)dA′′ (1.1)

The rendering equation is a Fredholm integral of second type. It states that the outgoing

radiance Lo from the point x′ to the x is the sum of emitted radiance Le and the integral

over the set of all surface points S of incoming radiances Li from the point x′′ times the

surface BRDF (Bidirectional Re�ectance Distribution Function) fr times the visibility V

and the geometry G terms. The integral part calculates the re�ected radiance. Note that

this is a recursive equation: in order to �nd out the re�ected radiance it's required to solve

the incoming radiance which is computed using the same equation.

When talking about global illumination and thus the light transport, it is useful to

describe the type of surface re�ections along the path. Heckbert introduced a well known

4

Figure 1.1: (a) Image from the viewpoint of the camera. (b) Same scene showing some of

the light paths passing through the camera. Blue line denotes the path LDE, green denotes

LDSDE and the white denotes LSE.

notation to describe a light path with the points it passes through [41]. In his notation a

light can pass through the following points:

L point on a light source

E the eye

D point where ray is re�ected di�usely

S point where ray is re�ected specularly

Important light paths can be described using this notation. Figure 1.1 demonstrates some

of the possible light paths. For instance, a path starting from the light source and re�ected

di�usely twice and reaching the eye is denoted by LDDE. Any number of di�use and specular

re�ections may occur along the path. To simplify the notation regular expressions can be

used, where: (k)+ means one or more, (k)* means zero or more, (k)? means zero or one of

k event and (k|k') means either a k or k' event.

Ray tracing, radiosity, photon mapping and path tracing are well known and widely

used photorealistic rendering techniques. Not all of these techniques provide full global

illumination, since each can handle certain types of light interactions. For instance classic

ray tracing can simulate specular re�ections from mirror like surfaces but can not handle

di�use re�ections. On the other hand, radiosity can render only di�use re�ections but can

not cope with the specularly re�ected lights. Similarly photon mapping is not e�cient in

rendering of specular re�ections. Sometimes these techniques are combined to have a more

complete solution.

5

Radiosity methods can compute light transfer between di�use surfaces [33]. It assumes

that all surfaces are perfect Lambertian (di�use) and solves the radiosity values of all surfaces.

It is a geometry based method, which means that the radiosity solution is calculated once,

independent from the eye location. Calculated radiosity values are then used for rendering

the images (as long as lights and surfaces do not move relative to each other). Rendering is

done by interpolating the calculated radiosity values with a simple shading method such as

Gouraud (taking the values as the intensity or color). Radiosity considers LD*E light paths.

Specular re�ections can not be calculated e�ciently with radiosity. Therefore it can be used

in conjunction with ray tracing for specular surfaces.

Photon mapping is another global illumination method such that it can be used to

simulate caustics, translucency, participating media, soft shadows, di�use re�ections [47]. It

is a two pass method. In the �rst pass, photons emitted from the light sources are traced.

This step is very similar to ray tracing essentially, and same acceleration techniques can be

used for tracing photons. When a photon hits a surface, it's intersection position, energy and

incoming direction is stored in a spatial data structure called photon map. Then, the photon

is re�ected to a direction computed according to the BRDF of the surface. In the second

pass, the photon map is used to estimate the density of the photons at surface locations

by using nearest N photons. This gives the estimation of the illumination on the location.

By using the calculated photon density, radiance of the point is estimated. The rendering

equation can be divided into emission, direct illumination, specular re�ection, caustics and

indirect illumination terms. Photon map can be used as the auxiliary data structure for

other techniques, or can be used to calculate some terms of the rendering equation. For

instance, in a path tracer it can be used for importance sampling. Since direct illumination

and specular or glossy re�ections require too many photons, those terms can be rendered by

ray tracing in another pass.

1.2.2 Ray Tracing

Ray tracing is a well known photorealistic image synthesis method [5, 97]. It can accurately

simulate re�ections, refractions, shadows and other various light phenomena by tracing re-

�ected or emitted ray trajectories. High quality and believable images of virtual environ-

ments can be rendered using ray tracing as demonstrated in Figure 1.2. In Whitted style ray

tracing (also known as the classic ray tracing) [97], eye rays are generated and traced through

the scene. Upon a surface hit, shadow rays for each light source and re�ection/refraction rays

are generated depending on the material properties of the surface. The material properties

6

Figure 1.2: Ray traced images

include surface re�ectivity and refractivity information. Using the Heckbert's light transport

notation ray tracing can follow LD?S*E paths. Rays are typically traced beginning from the

eye. For each pixel, a ray from the eye to the pixel location is �red. Therefore the path

can be translated as follows: rays coming from the eye can be re�ected zero or more times

specularly and afterward can be re�ected zero or once di�usely through the light source. In

other words, classic ray tracing works backwards from the eye to the light source. It makes

sense because there are in�nite number of light bounces and paths in the real world but

only the paths reaching to the eye contribute to the synthesized image. Ray tracing is view

dependent, which means the image has to be rendered from scratch if the view position or

direction is changed.

The C like pseudo code of the classic recursive ray tracing algorithm is given in Figure 1.3.

As seen in the �gure, ray tracing is a recursive technique. It follows specularly re�ected and

refracted ray paths and builds a ray tree. At each bounce the contribution of the surface to

the image is computed and accumulated to the color of the corresponding screen pixel. If a

7

rayTrace()

{

for (each pixel)

{

ray = fireRay(eye_position, getPixelPosition(pixel));

pixel_color = trace(ray);

}

}

color trace(ray)

{

color = black;

nearest_object = NULL; nearest_distance = BIG_VALUE;

for (each object) // find the nearest intersect ion
{

point = insersect(ray,object);

if (distance(getOrigin(ray),point) < nearest_distance)

{

nearest_object = object;

nearest_point = point;

nearest_normal = computeNormal(object,point);

}

}

if (nearest_object)

color = shade(ray,nearest_point,nearest_normal,getMaterial(nearest_object));

return color;

}

color shade(ray, point, normal, material)

{

color = black;

for (each light) // loca l i l lumination & shadowing
{

shadow_ray = fireRay(point,getPosition(light));

point_is_lit = true;

for (each object)

{

intersection_point = insersect(shadow_ray,object);

if (distance(point,intersection_point)<distance(point,getPosition(light))

{point_is_lit = false; break;}

}

if (point_is_lit)

color = color + locaIllumination(light,ray,point,normal,material);

}

if (isReflective(material)) // re f l e c t i ons
{

reflection_ray = reflectRay(ray,point,normal);

color = color + getReflectivity(material) * trace(reflection_ray);

}

if (isTransparent(material)) // re fract ions
{

refraction_ray = refractRay(ray,point,normal,getIndexOfRefraction(material));

color = color + getRefractivity(material) * trace(refraction_ray);

}

return color;

}

Figure 1.3: Recursive ray tracing algorithm

8

Figure 1.4: Path traced image of a simple scene

ray hits a di�use surface, only direct lighting is accounted; otherwise new rays are spawned

to trace the re�ection and refraction paths. When a ray hits a di�use surface, misses all

surfaces, or if the recursion depth is greater than a threshold the ray is terminated. Other

termination criteria are also possible.

In the same paper that Kajiya introduced the rendering equation [49], he also proposed

a method called path tracing to solve the equation. Path tracing makes use of ray tracing to

compute the light transportation. It can simulate all possible light paths which is described

as L(S|D)*E. That means it can correctly render di�use and specular re�ections, refractions,

caustics, soft shadows, glossiness and other physical events. Some of these e�ects are visible

on the path-traced image of a very simple scene as shown in Figure 1.4.

Because the rendering equation involves complex recursive integrals, analytic solution

is not possible except for the simplest scenes. Instead, path tracing uses Monte Carlo in-

tegration methods to compute the radiance values falling onto the pixels. Simply stated,

Monte Carlo methods try to estimate the solution using probability theory and stochastic

sampling. As a result, the path tracing relies on high number of ray paths to estimate the

radiance. Since the number of paths to be traced are in�nite, path-tracing tends to generate

high frequency noise in the image due to the undersampling of ray paths. Depending on

the surface and scene characteristics, typically 100 to 10000 paths per pixel (or even more)

should be traced for satisfactory results. In Figure 1.4 although 400 rays are �red for each

pixel, there is still visible noise. Especially di�use surfaces only and smooth light variations

9

can be rendered using less number of paths per pixel. Di�erent sampling techniques (strat-

i�ed, quasi random, metropolis etc.) have been proposed in order to reduce variance for

faster convergence to the solution.

Path tracing employs ray tracing for stochastic sampling of light paths. Since our work

accelerates ray tracing on the GPU, it can also be used for the acceleration of path tracing.

1.3 Outline

The rest of the thesis is organized as follows: GPU based photorealistic rendering techniques

are discussed in Chapter 2. Background information about programmable graphics archi-

tectures and rasterization based realistic rendering research on the GPU are given in this

chapter. Additionally, basic organization of a GPU based ray tracer is introduced in the

chapter.

Our EACD based ray tracing acceleration technique is given in Chapter 3. Additionally,

we devised e�cient GPU speci�c versions of previously known grid based acceleration meth-

ods. Our technique is compared to these known methods experimentally. We also compare

our work to the other GPU ray tracers.

The following chapter is an extension of the work introduced in Chapter 3. Real-time

volume rendering by using EACD is explained in this chapter. Our method uses distance

transformations and homogeneous region encoding to accelerate volume ray casting. We

tested the renderer by using some of the well known volume dataset and compared the

results to other grid based volume ray casters.

In Chapter 5 GPU based stereoscopic ray tracing is introduced. The stereoscopic image is

generated by reprojecting the image of one eye to the other one. We devised a GPU friendly

solution to the reprojection problem. The solution is especially well suited to GPU based

ray tracers, since no CPU intervention is necessary during the reprojections. We tested the

method with our GPU based real-time ray tracer in a dynamically animated scene.

In the last section conclusions and possible future work about GPU based ray tracing is

given.

10

CHAPTER 2

GPU BASED REAL-TIME

PHOTOREALISM

Early GPUs could only scan convert simple primitives with some limited adjustable set-

tings. However, during the last decade they evolved into programmable parallel processors

speci�cally tailored for rasterization based graphics rendering. The increased speed and pro-

grammability of modern GPUs made it possible to render more realistic images of complex

scenes in real-time. GPU based rendering research has been shifted from fast rasterization

of triangles to a more physically accurate simulation of light and increasing the level of real-

ism. Nowadays, rendering photorealistic images in interactive rates with graphics hardware

attracts great deal of attention. As mentioned in the �rst chapter, realistic rendering is very

important in real-time applications such as virtual reality, visual simulations, training, video

games and other �elds that require accurate simulation of real world phenomena. GPU

based photorealistic rendering techniques are brie�y reviewed in this chapter. While doing

this we did not make a comprehensive review. Instead, we mentioned some basic techniques

in order to give a background on the topic.

Besides the rasterization, GPUs are especially good at arithmetically intense operations.

As of date, graphics boards are able to perform arithmetical computations at the speed of 1

TFLOPS (trillions of �oating point operations per second) [66]. The processing units inside

the GPUs are light weight with limited capabilities, and are optimized for graphics pro-

cessing. However, the simplicity of the processing units and the parallel nature of graphics

rendering makes it possible to use many of these units concurrently. Consequently, modern

GPUs are massively parallel processors. They can handle thousands of threads very e�-

ciently. Moreover, due to the architectural di�erences from the CPU, GPU performance has

been typically doubled every six to twelve months. This is a much steep acceleration rate

11

than Moore`s law of eighteen months which is still valid for CPUs.

On the other hand, GPU based general purpose processing has some important restric-

tions. Limited input/output registers, ine�cient random memory access, inability to write

dynamic memory locations, lack of a sophisticated branch prediction units, limited recursion

capabilities are some of the major di�culties. In order to utilize computational units of a

GPU as much as possible, all of these limitations should be considered and speci�c methods

conforming to the GPU processing model should be developed. The reader may refer to

[34, 71, 20] for more details on GPU programming.

There are also some additional restrictions and overheads imposed by the graphics APIs.

The communication between CPU and GPU, or in other words CPU intervention, should

be avoided as much as possible. Excessive API calls and (relatively) slow data transfers

between the host system and the graphics card results in under utilization of the GPU.

The rest of this chapter is divided into three sections. The graphics pipeline and pro-

grammable graphics architectures are overviewed in the �rst section. The next section

describes interactive realistic rendering by means of traditional GPU rasterization. Basic

constructs and previous work on GPU based ray tracing is given in the last section.

2.1 The Rendering Pipeline

A 3D virtual environment, also referred to as scene, basically consists of object, light and

camera descriptions. There are many ways to model objects in 3D. One popular way is to use

triangle meshes to represent object surfaces. Other methods include volumetric modeling,

implicit modeling, splines, blobs etc. Refer to [27] for more on modeling objects for graphics

rendering. All other representations should be converted to triangles, lines or points before

rasterized by the GPU. Triangle meshes are easy to represent and relatively cheap to render.

Triangle meshes consist of vertex data and the connectivity information which is used to as-

semble triangles from the vertex stream. Each vertex is associated with a position attribute.

There may be other attributes that can be associated with the vertex such as normals, color,

texture coordinates etc. Primitives can be associated with shading related information such

as materials and textures. This information is used to determine the �nal color of the surface

by employing a shading method. Shading process makes use of textures, lights, fog, basic

surface colors, opacity and other information to determine the ultimate color of the surface

pixels.

The graphics pipeline is a chain of processes which takes the scene data from the appli-

12

Figure 2.1: Standart graphics pipeline for rasterization based rendering.

cation at the front, and produces the rendered image at the end. The processes inside the

pipeline may be di�erent for di�erent rendering techniques. For example ray tracing has a

very di�erent set of operations performed in the pipeline from that of a z-bu�ered Gouraud

shaded rendering architecture; such as, ray tracing does not have a projection transformation

step or a frustum clipping phase.

The traditional pipeline for a rasterization based rendering is given in Figure 2.1. Each

triangle sent to the pipeline is exposed to a series of computations. At the end of the pipeline

the triangle is either rasterized or rejected (and not rasterized). In the �gure, dbTraversal

phase consists of feeding the pipeline with triangles to be rendered. Vertices are stored in a

local coordinate system for each object. Modeling transformation transforms the object ge-

ometry from the local coordinates to the world coordinates. Culling phase eliminates unseen

triangles. Lighting phase determines the color of vertices by using the shading parameters

with an illumination model. This way of computing colors of the vertices is called per vertex

lighting. When the objects are modeled coarsely, visual artifacts such as mach banding may

occur in per vertex lighting technique. The next phase of the pipeline is viewing transfor-

mation, which transforms the scene in world coordinates to the viewing coordinates of the

observer. Clipping is done against the view frustum in the next phase. Projection transfor-

mation transforms 3D geometry into 2D by projecting the vertex coordinates to the view

plane. For z-bu�ering, vertex depth information (z coordinate) is retained during the trans-

formation. In the rasterization phase, triangles are scan converted which is the operation of

13

Figure 2.2: GPU graphics pipeline. Green boxes denote user programmable sections of the

pipeline.

computing the screen pixels of the projected triangles. The output of the pipeline is rendered

pixels. Rendered pixels are then sent to frame bu�er for displaying, or to an o�screen bu�er

in order to be used later.

2.1.1 GPU Pipelines

Figure 2.2 shows how graphics processors implement the traditional graphics pipeline. As

you can see, it is very similar to the traditional pipeline. Typically multiple pipelines run in

parallel on a GPU, so that multiple pixels can be rendered simultaneously.

In a �xed function pipeline (i.e. not programmable) only way of controlling the operations

is to set some states or registers before sending triangles. The state adjustments make

some certain decisions along the pipeline. For example, if triangles are to be lit, lighting

computation state should be enabled, the light position and other parameters should be

initialized, and a couple of material attributes should be set prior to the rendering. Generally,

material attributes can not be anything more than di�use, specular, emission, ambient colors,

14

transparency, glossiness and a combination of image textures. Moreover, shading type is

generally limited to �at or Gouraud (interpolated vertex colors). In order to overcome

some limitations imposed by the �xed function pipelines to an extent, multi-pass rendering

methods can be used. Multi-texturing capabilities (mapping two or more textures at once

with a user de�ned blending function) and register combiners found in graphics hardware

further remedies the problem. Early GPUs had �xed function pipelines only.

In order to overcome the limitations imposed by �xed function operations, some parts

of the pipeline were replaced by programmable processing units. This kind of GPU pipeline

is known as the programmable pipeline. Modern GPU architectures have programmable

pipelines. In Figure 2.2 green parts of the pipeline denote the programmable sections. The

operations listed inside the boxes, which were performed by the �xed function pipeline

previously, can be programmed by the user. This makes it possible to employ di�erent

illumination models, texturing, shading techniques, deformations etc. By the addition of

geometry processors on the latest GPU architectures, it is also possible to discard geometric

primitives sent to the pipeline or to create completely new primitives on the �y.

Note that, "fragment shader", "fragment program" or "pixel shader" are just di�erent

names of the same thing; programs executed by fragment processing units, and will be

used interchangeably. A fragment is a rendered pixel or sub-pixel that has the potential

of modifying the value of the corresponding image pixel. More than one fragments can

contribute to the same pixel. Pixels represent the �nal values as seen on the screen. Similarly,

the terms "vertex program"/"vertex shader" and "geometry program"/"geometry shader"

points to the programs executed by vertex and geometry processing units respectively.

Figure 2.3 shows the hardware structures implementing the pipeline. Green boxes handle

the corresponding programmable parts of the pipeline. Vertex processors typically transform

vertex information and send the processed vertices through the pipeline, while geometry

processors are like vertex processors; in addition they can generate or discard geometric

primitives. Along the pipeline the geometry is scan converted to fragments by rasterization.

All of the processors can read data from textures (1, 2 or 3D images). There are hundreds

of vertex, geometry and fragment processing units on a modern GPU. Vertex and fragment

processors were di�erent processors with di�erent capabilities up the latest generation (and

there were no geometry processors). On the latest generations, all of the processors have

identical capabilities, and they are assigned to the pipeline stages on demand. This is

known as uni�ed shader architecture. With this architecture, there is a departure from

the pipeline organization on the hardware level. However, since graphics rendering requires

15

Figure 2.3: Internal structure of a GPU.

certain operations to be done in certain order, the pipelined organization is still provided by

the drivers. For general purpose computations, the pipeline organization may be bypassed

if required.

2.1.2 GPU as a Parallel Stream Processor

Inside the GPU, there are many streaming processors running in parallel. Therefore, GPUs

are an implementation of parallel stream processing. A stream can be described as an ordered

set of data. Streams are processed by functions called as kernels, generally by executing a

series of instructions for each element in sequence. Kernels accept a number of input streams

and generate one or more output streams. A number of kernels can be chained to accomplish

complex operations. Stream processing favors arithmetic intensity, data parallelism, high

compute-to-bandwidth ratio, data locality and infrequent global data access [70]. Especially

16

Figure 2.4: (a) Stream processing, (b) Stream processing on the GPU. Green boxes are

kernels.

media and graphics applications are good candidates for e�cient stream processing.

Figure 2.4 depicts the rendering pipeline as stream processing elements. In the context

of graphics rendering, elements of the input stream may include of vertex attributes (posi-

tion, normal, color, etc.), texture elements (i.e. texels), fragments (pixel candidates) and the

output is the stream of geometry or fragments. The streaming processors inside the GPU

execute vertex, geometry and fragment programs (kernels). These kernels can process multi-

ple streams and output multiple streams. The output streams of the geometry program can

be circulated to feed the pipeline on the subsequent passes. Modern GPUs allow early frag-

ment culling based on the outcome of the stencil or depth tests. Leveraging early fragment

culling facilitates killing fragments before reaching the fragment processor, and thus saves

processing power. Therefore, early fragment culling can be used for e�cient computational

masking. Later on the pipeline, fragment programs process the rasterized fragment stream

and send the processed fragments to the raster operations units for the �nal composition.

Fragment processors can write output values to textures (render to texture), so that the

computed values can be used as input to the subsequent kernel passes. However, an output

value can only be written to a single memory location (a pixel) de�ned by the position of

17

the projected geometry, and it is not possible to change this location within the fragment

program. This restriction makes it hard to implement e�cient scattering operations on the

GPU.

Vertex, geometry and fragment kernels are executed in sequence and once on a rendering

pass. For example, in order to process a stream by two di�erent fragment programs, it

should be rendered once with the �rst program and then the output of the �rst pass should

be processed by the second program.

Despite the di�culties of GPU based general purpose programming, carefully designed

algorithms can greatly bene�t from the power of the hardware. Future GPUs are expected

to evolve into more CPU like devices with more generic instruction sets, better addressing

capabilities, richer registers and data types while keeping their high speed parallel computing

advantages.

2.1.3 High Level Programming Languages for GPU

GPUs can be programmed using the shading language provided by the graphics API such

as Direct3D [14] or OpenGL [35]. In addition to low level and high level shading languages

provided by these APIs, there are several other GPU languages and libraries for program-

ming. For most of the time, it is advisable to use high level languages since compliers can

optimize the generated code according to the target GPU architecture. In this section, some

of the well known GPU programming technologies are brie�y described.

Mark et al. [60] explain a C like high level programming language called Cg (C for graph-

ics). Cg supports both of the major 3D graphics APIs (OpenGL and Direct3D). Independent

from Cg, these APIs have their own high level shading languages also. Direct3D's high level

shading language (HLSL) [14] and OpenGL shading language (GLSL) [80] are very similar

to each other and indeed have the same roots with Cg. A Cg tutorial in can be found in

[26]. In this work, we used Cg for the majority of GPU programming while some minor code

sections were implemented with GLSL.

Another GPU programming language worth attention is Brook for GPU[53]. It is a

compiler and runtime implementation of the Brook stream program language for modern

graphics hardware. Brook for GPU's main goal is to provide high level programming facilities

for general purpose computation on the GPU. Brook is an extension to standard ANSI C. It

incorporates the ideas of data parallel and arithmetic intensive computation into a familiar

and e�cient language. Brook3D back end compiler supports DirectX and OpenGL shader

language pro�les to create GPU programs. Brook runtime library takes the responsibility of

18

managing bu�ers, textures and other daunting tasks of GPU based programming. A similar

programming language is Sh [46]. Sh is a high-level meta programming language. It acts as

a language embedded in C++.

CUDA is a computing architecture, which enables more direct access to the NVIDIA

GPUs [67]. CUDA provides a new programming interface and uses standard C language

for software development. It has a standalone runtime driver which inter-operates with

Direct3D and OpenGL graphics drivers. It has native multi GPU support to be able to

instrument more than one GPUs plugged in a computer system. CUDA technology can

process thousands of threads concurrently.

AMD's CTM (Close To the Metal) Device [18] consists of an array of parallel �oating

point processors and supporting components to feed the array. It facilitates low level access

to the AMD GPUs. Similar to CUDA, the motivation is to utilize GPU power as much as

possible without API overheads and di�culties of the shader oriented pipeline programming.

2.2 Rasterization Based Photorealistic Rendering Methods on

GPU

Real-time realistic rendering on the GPU is one of the hot research areas in computer graph-

ics. As an early work, Diefenbach described some methods to utilize traditional graphics

pipeline to generate global illumination e�ects in his PhD thesis [21]. Nielsen [64] explained

additional and improved methods. Great deal of related real-time rendering research is sum-

marized in [3]. There are numerous work in the literature about rasterization based realistic

rendering. In the rest of this section, we summarize several basic and popular ones among

these techniques. Note that, none of these techniques can handle global illumination e�ects

to the full extent. Instead, each work provides solutions to a small subset of global illumina-

tion e�ects such as re�ections, refractions, caustics or shadows individually. Several of these

methods should be combined to obtain a realistic image.

Re�ections/Refractions

Planar re�ections can be rendered with rasterization in real-time as decribed in [21, 61].

For this purpose, it is possible to use environment maps or to render a mirrored duplicate

of the scene. Scene duplication is adequate if the re�ector surface is perfectly �at. It

requires one rendering pass for all surfaces those lay on the same re�ection plane. In order

to create mirrored scene duplicate, the camera view matrix is multiplied by a re�ection

19

Figure 2.5: Planar re�ections.

matrix. For correct lighting, the light positions and directions should also be re�ected. The

view transformation matrix M for the mirroring is prepared as follows:

F = R(n, (0, 0, 1))T (−c) (2.1)

M = FS(1, 1,−1)F−1

In 2.1, c is a point on the re�ector surface and n is the normal of the re�ector surface,

T is the translation matrix, S is the scaling matrix, and R is the rotation matrix that maps

the surface normal to Z axis (assuming row major matrices and column vectors). The scene

is mirrored by this re�ection matrix and clipped against the plane of the re�ector surface.

This is required otherwise the objects behind the re�ector surface are drawn incorrectly in

front of the re�ector when the mirrored duplicate of the scene is rendered. The re�ected

scene is either rendered on top of the original re�ector surface using stencil bu�ers or can be

rendered to an o� screen re�ection bu�er and then blended with the re�ector surface. The

rendered image of the re�ected scene is then mapped to the re�ector surface using projective

texturing. It is also possible to project the re�ector surface coordinates to the screen space

and calculate the corresponding texture coordinates. In this case, the surface is rendered

as a 2D polygon with 2D texture coordinates in screen space and the rendered image is

pasted onto this polygon. Planar refractions basically use the same method; only the view

20

Figure 2.6: Approximate re�ections on curved surfaces with cube mapping.

transformation matrix is altered according to the refracted scene.

It is also possible to render approximate curved re�ections by rasterization based ren-

dering [7, 69]. For curved re�ections and refractions, typically the environment surrounding

the re�ective surface is rendered to the faces of a cube map texture. Then the cube texture

is used as the enviroment map. A simple scene using this technique is shown in Figure 2.6.

Projective Texturing

Projective texturing is not a light e�ect but is a useful technique to simulate shadows and

light patterns. Projective texture mapping for real-time rendering is �rst described in [83].

In OpenGL, texture coordinates are transformed by a texture transformation matrix just like

vertex positions are transformed by a model-view matrix. If automatic texture coordinate

generation is activated, texture coordinates are automatically calculated and assigned to

vertices based on object space or world space vertex positions. Projective texturing uses

automatic coordinate generation and modi�es the texture transformation matrix. As a

result, the texture is mapped on the surfaces just like as if the image is projected by a slide

projector.

Figure 2.7 illustrates the transformation steps in projective texturing. As seen in the

�gure, the steps are similar to the steps of the view-projection transformation for the cam-

era. As a result of projection transformation, polygons far away from the projector will

cover smaller texture area (since the texture coordinates are scaled by the inverse projector

21

Figure 2.7: Transformation steps for projective texturing.

Figure 2.8: Projecting texturing to simulate (a) shadows and (b) spotlight region.

distance). So, as the distance from the projector increases, the projected texture image gets

bigger. Projective texturing can be used for many di�erent purposes including shadows,

re�ections, illumination, slide projector e�ects and reprojecting the photographs of objects

onto scene geometry. Shadow and spotlight e�ects rendered by projective texturing are

shown in Figure 2.8.

Shadows

In rasterization based real-time rendering, majority of the shadow techniques are variations

of either shadow volumes (geometry based) or shadow mapping (image based) techniques.

Shadow mapping is an image based shadowing technique as described in [98]. It is a multipass

technique, in which scene must be rendered twice for each shadow casting lights. In the �rst

pass, shadow map is generated. In this pass, whole scene is rendered from the view point of

the light. Because only depth values are needed, only depth bu�er is enabled and captured

in this pass. As a result of this pass, the depth bu�er contains the distance information

22

Figure 2.9: (a) Shadow mapping. (b) Close-up view of the shadow mapping artifacts.

between the light source and the points seen by the light. In the second pass, scene is

rendered normally from the view point of the camera. In this pass, shadows are overlaid to

the scene by using projective texturing. During this operation, depth values of the pixels

being rasterized are transformed into the view space of the light and compared to the depth

values captured in the �rst pass. If the captured depth value is lower than the transformed

depth value of the pixel, the pixel is considered as in shadow. Figure 2.9 demonstrates

shadows rendered with the shadow mapping technique. Most of the graphics accelerators

have built-in support for shadow mapping.

Depth map should be created and projected for each shadow caster light source. A

major problem with shadow mapping is aliasing. Because the shadow map is projected

using perspective projection, projected pixels gets bigger as they get far away from the

light. This produces large aliasing e�ects for distant pixels especially when the camera is

close to the distant shadowed pixels. The aliasing e�ect is demonstrated in Figure 2.9-

b. Classic texture �ltering methods does not work for shadow mapping because bilinear,

trilinear or anisotropic �ltering of depth values invalidates the distance information and

results in shadow artifacts. Other �ltering methods such as percentage closer �ltering can

be utilized for shadow maps [76]. Most graphics accelerators support percentage closer

�ltering in hardware. It is also possible to use fragment programs for shadow �ltering.

On the other hand, since there is a limit for the dimensions of the depth texture, aliasing

may still occur (due to undersampling of depth information). Several methods have been

23

developed to minimize the aliasing problem. Stamminger et al. [85] modi�es the projective

transformation matrix of the depth maps to obtain higher sampling rate where the viewpoint

is near to shadowed pixels. There are lots of tecniques developed to eliminate aliasing. Some

of them includes using additional geometry on object silhouettes to smooth the shadow

borders, �ltering shadow images, or using hybrid of shadow mapping and shadow volumes.

Another problem is depth bu�er precision. For large scenes, 16bits or 24bits of depth

resolution, which is standart for most graphics hardware, may not be enough. To minimize

the problem, near and far clip planes of the light frustum can be relocated so that they

tightly con�ne the scene geometry inside the frustum. A bias factor that changes the vertex

depth values without changing the projected screen coordinates can also help to avoid the

problem [76, 99].

Shadow volumes, another popular approach for rasterization based real-time shadows,

was �rst described by Crow [15]. Unlike shadow mapping, it is a geometry based method.

Precise shadows without aliasing problems can be rendered using shadow mapping. The

idea is to create shadow volumes by projecting the light to each vertex of the shadow casting

object. Pixels falling inside the shadow volume is considered as occluded from the light

source. In order to create shadow volumes, front facing and back facing polygons with

respect to the light source are grouped. The silhouette edges which separate front facing

polygon groups from the back facing polygon groups are extruded along the direction away

from the light source.

Heidman described utilizing stencil bu�ers to render shadow volumes on the graphics

hardware [42]. Shadow volumes are generally rendered with this technique on the GPU. He

proposed rendering front facing shadow volume surfaces and back facing ones in separate

passes. In this case, the number of front facing surfaces in front of an object is greater than

the number of back facing surfaces, if the object is in shadow. In order to count front facing

and back facing surfaces he used the stencil bu�er. When a front facing pixel is rendered,

the stencil value of the pixel is incremented by one. Similarly it is decremented by one when

a back facing pixel is rendered. After the stencil bu�er is �lled, the scene is rendered by

masking out the pixels with positive stencil values (i.e. shadowed areas are not drawn). This

method is also known as depth pass shadow testing since it alters stencil values only for the

pixels passing the depth test (the pixels in front of the object). Heidmann's method has

some problems when the eye itself is in a shadow volume. In this case all stencil values are

biased by -1 since the camera sees only the back facing surfaces of the enclosing volume. This

bias results in incorrect shadow rendering since it inverts the shadowed regions. Bilodeau

24

and Songy developed another shadow volume technique which works correctly for all camera

positions [6]. Instead of counting the shadow surfaces in front of the object, they counted

the surfaces behind the object. Therefore this method is also known as depth fail shadow

testing.

Shadow volumes reuqire huge pixel �ll rate because shadow volumes cover most of the

screen with high depth complexity. Another problem is that, sharp egdes shadows which

looks unrealistic in most cases. In the literature, lots of newer techniques were proposed for

realistic smooth borders and for reducing the required �ll rate by optimizing the shadow

volumes. Prior to the programmable vertex processors, geometry of shadow volumes were

created using CPU and then rendered with the hardware using stencil bu�ers. However with

the current graphics cards, it is possible to create silhouette edges on the �y by the GPU.

Figure 2.10 demonstrates projective texturing, shadow and re�ection e�ects combined on

a single image. Inclusion of these light e�ects greatly contribute to the realism of the image.

2.3 GPU Based Ray-tracing

Ray tracing is computationally expensive, and thus considered as an o�-line rendering

method until recently. However, it has some important advantages which can not be over-

looked. Logarithmic complexity and automatic occlusion culling, parallel scalability, coher-

ence, e�cient shading, correct and easy rendering of specular re�ections and transmission

e�ects are built-in capabilities for a typical ray tracer. Lately, with the advent of more capa-

ble hardware, interactive ray tracing research gained more popularity. Wald et al. [93] discuss

interactive ray tracing, and conclude that especially for geometrically complex environments

rendering speed is comparable to that of the traditional rasterizer hardware. Ray tracing is

expected to be a viable alternative to raster based graphics rendering in the not so distant

future [45]. Some of the recent works focused on accelerating ray tracing algorithmically

[77, 91], while some others centered upon specialized ray tracing processors [38, 81, 82, 100].

Utilizing graphics processors of the commodity graphics cards for ray tracing is another

research area drawing increasing amount of attention. Originally, graphics processors are

meant to rasterize and shade simple primitives such as triangles or lines. However today's

graphics processors are programmable parallel processors. Huge processing power and steep

acceleration rate in speed led many researchers to develop GPU speci�c solutions to known

problems. Many graphics and non-graphics related problems were successfully mapped to

the GPU programming model [34]. Among these, GPU based ray tracing acceleration is

25

Figure 2.10: (a) Standart OpenGL shading. (b) Projective texturing added to improve

spotlight borders. (c) Shadow mapping applied. (d) Re�ections added.

relatively new. In [11, 74, 73] it is shown how to use GPU for ray tracing computations.

Karlsson et al. [50] have implemented a ray tracer that runs fully on GPU utilizing empty

space skipping data structures, while Weiskopf et al. [94] have developed a GPU based

non-linear ray tracer.

One of the �rst works on GPU based ray tracing is proposed by Purcell et al. [74]. They

implemented a complete ray tracer on a GPU simulator. Their implementation relied on

assumptions about speci�c GPU capabilities, which are available or can be easily emulated

by current GPUs. Their ray tracer works on triangle meshes using uniform voxel grid accel-

eration structure. They demonstrated that a GPU based ray tracer could prove to be faster

than CPU based implementations. They also concluded that GPU assisted ray tracer could

be competitive with traditionally accelerated rendering of rasterizing hardware.

26

Carr et al. [11] used GPU as a co-processor for accelerating ray-triangle intersection

tests. They conceptualize programmable pixel processors as crossbars. They did not use an

acceleration structure on the GPU and test every triangle with every ray using the crossbar.

Triangle information is sent to the crossbar within the vertex attributes of screen sized

quads. In their work, strong points of CPU and GPU are emphasized and consequently only

intersection tests, where GPU is strong, are handled by the graphics hardware. They group

rays using CPU and send them as batches to the GPU for ray-intersection tests, and process

the results using CPU. They achieved 34% speedup using GPU aided ray tracing over pure

CPU implementation.

Purcell et al. [75] used a modi�ed photon mapping algorithm fully running on GPU.

Note that "fully" does not mean that the entire program works on GPU. CPU assistance is

inevitable in bu�er handling and communications, initialization, memory management and

some other API stu�. Although interactive feedback rates achieved for small viewports and

very simple scenes, their method is progressive can not converge to the full rendering in

real-time. They did not use triangle meshes. Instead, their test scenes were composed of

several geometric primitives which are very fast to ray trace.

Foley et al. [28] implemented kD tree acceleration structure for ray tracing on GPU.

They devised two kD tree traversal method suitable for the GPU. Among these, kD-restart

method eliminates the stack operations. As a result, in order to continue the traversal with

next tree leaf, the search is simply restarted from the root. The other variant is called as

kD-bactrack. This variant modi�es kD-restart to maintains linear worst-case bounds during

leaf search. In order to achieve this, the bounding box and the link to the parent are stored

for each node. By this way, the search is restarted from the closest ancestor containing the

next traversal point, instead of starting from the root node. They identify data recirculation

(necessity to reload intermediate values for each kernel run), and poor load balancing (low

GPU utilization when small number of fragments are processed) as the main bottlenecks of

a GPU based ray tracer.

In a recent paper Horn et al. [44] optimized the kD-restart algorithm, by introducing

packetization, push-down and short-stack concepts. Packetization processes rays as groups

(ray packets) by taking the advantage of four-wide SIMD instructions of the GPU. Push-

down localizes the rays into sub-trees and restrarts the leaf searches from the root of the

sub-tree. Short-stack is a small, �xed depth stack implementation. They used a single pass

kernel rather than multi pass, and reported an order of magnitude faster performance than

the original kD-restart algorithm.

27

Popov et al. [72] proposed another kD tree acceleration method. Similar to [44] they

used ray packets to better exploit the parallelism of the GPU. In order to remove stacks,

they used a kD tree with ropes and extended the search algorithm to handle ray packets.

Ropes link each leaf node to the smallest node which enclose all possible adjacent nodes via

each of the six faces of the node.

Bounding volume hierarchy (BVH) based methods were also successfully used for ray

tracing on GPU. Among them Thrane and Simonsen [87] implemented a GPU based ray

tracer by using a couple of di�erent BVH construction criteria. They interleave scene data

with the acceleration structure and proposed a stackless traversal on the volume hierarchy.

Carr et al. [12] used BVH data structure to accelerate animated scenes on the GPU.

Their method is based on geometry images [36], in which geometry information is mapped

to a 2D image. They utilize GPU to create volume hierarchies in real time by creating image

pyramids from geometry images. Their method allows for real time ray tracing of animated

scenes with deformable objects.

In a recent paper Günther et al. [32] extended BVH traversals to handle ray packets.

They proposed a fast CPU based BVH construction algorithm which utilizes surface area

heuristic by using streamed binning. Their GPU based ray tracer can handle large scenes.

In the paper they demonstrated GPU based ray tracing on a large scene which consists of

12.7 million triangles.

Roger et al. [79] used a hybrid technique and rendered the primary rays with rasteriza-

tion, while utilized ray tracing for the secondary rays. Their method is based on ray-space

hierarchy and applicable to animated scenes. Instead of rebuilding or updating the scene

hierarchy, ray-space hierarchy is built on the GPU for every frame. Traversal is also done on

the GPU. They also propose fast stream reduction methods to prune empty branches after

traversing the hierarchy levels.

2.3.1 Organization of a GPU Ray Tracer

The data structures of a GPU based ray tracer are encoded as 1D, 2D or 3D textures

with various color formats, vertex streams or pixel bu�ers. The data typically include object

database, textures and other material information, intermediate and �nal values, color bu�ers

and acceleration structures. GPU constant registers are also used to transfer lightweight data

such as light positions, scene information, number of objects etc.

Triangle meshes are very capable in modeling almost all kinds of virtual environments.

Most GPU ray tracers use triangle meshes for the scene description. All three vertex co-

28

Figure 2.11: Examples of three di�erent data structures for storing the triangle vertices. (a)

All triange vertices are stored in a single texture, in which three consequtive vertices de�ne

a triangle. (b) Vertices of the triangles put to di�erent textures separated by corners. (c)

Indexed access to vertex data.

ordinates of a triangle may be stored in a single texture, or three di�erent textures may

be used for each of the vertices. Vertex normals, texture coordinates and other vertex at-

tributes may be stored similarly. Figure 2.11 shows three di�erent con�gurations for storing

the triangle vertices. Other con�gurations are also possible. In the �gure, RGB32F denotes

Red-Green-Blue color format with single precision �oating point components. RG16 denotes

Red-Green color format with 16-bit integer components (other two component formats may

also be used). Note that, 16 bits is enough to index 22×16 vertices. V1..Vm are the vertex

coordinates and T1..Tn denote triangles. vi1..vim are vertex indices of the triangles. Each

of these con�gurations has strong and weak points. Figure 2.11-a and b, consume more

memory than c. However, c requires indirect access (dependent texture reads), which slows

down reading of vertex coordinates. For simple scenes, a 1D texture may be enough to keep

the scene vertices. In this case, vertices are indexed with a single index parameter instead

of two. For larger scenes, 2D or 3D textures can be used. In this case, two or three indices

(one for each dimension) can be used as in Figure 2.11-c. Alternatively a single number can

be used which will eventually be decomposed into two or three indices. In c, two values

(i, j) are used for indexing the vertices therefore two component texture format, RG16, is

used. Other primitive types such as planes, spheres, etc. may be modelled with a number

of parameters describing the geometry (origin, axis, radius, dimensions etc.) and stored in

textures similarly.

29

Figure 2.12: An example organization of the scene database and the acceleration structure.

3D grid texture (acceleration structure) points to triangle lists. Elements of triangle lists are

triangle indices which point to triangle coordinates and normals. Each texel of the material

id texture points to material information for the corresponding triangle.

Material information of the primitives (triangles, spheres, etc.) may be stored in another

texture. In that case, for each primitive a material id (index to the material) is stored in a

material index texture. Material parameters such as di�use, specular, re�ection colors can

be kept in a material texture.

The acceleration structure, if any used, is embedded into one or more textures. Most

of the major acceleration structures were implemented and shown to work with varying

e�ciencies on the GPU. For 3D grids, 3D textures or 2D encoding of the volume via 2D

textures may be used. 3D grid structure for GPUs was �rst used in [74]. In this structure,

voxels point to triangle lists, and triangle lists point to individual triangles as shown in

Figure 2.12. In our ray tracer we chose this organization to store 3D grids. The acceleration

structure is created by CPU in a preprocessing step, however it is also possible to make use

of GPU for this job. For the encoding of other acceleration structures such as kD trees or

30

Figure 2.13: Each screen pixel corresponds to a ray. Origin and direction textures are used

to de�ne a ray.

bounding volume hierarchies the reader may refer to [12, 28, 32, 72, 87, 91].

Rays can be represented by two textures. One of the textures keeps the ray origin

coordinates, and the other one keeps the ray direction vectors. As shown in Figure 2.13

each screen pixel corresponds to the ray passing through that pixel. In order to process rays

by using a fragment program; the fragment program is loaded to the GPU and a screen

sized quad is drawn to the screen. During scan conversion one fragment is generated for

each pixel, and the fragment program is run for each one of them. Fragment program reads

the ray information by fetching the corresponding texels of the ray textures. After rays are

processed, results are written to a screen sized output bu�er. If more than one passes are

required, the output values can be used as the input for the next pass. By this way, multiple

fragment programs (kernels) may be chained to perform complex operations on rays.

Tracing a ray or a couple of rays at a time is suitable for CPU. However such an action

will quickly nullify the speed advantage of the GPU because of the overheads incurred with

excessive amounts of kernel executions and under-utilization of GPU processors. For a

good GPU utilization, rays should be packed to be processed as big chunks. Ray tracing

is a recursive operation which creates ray trees: When a ray hits a surface, shadow rays

are created and traced toward the light source. If the ray is not intercepted by a surface

along the way, the intermediate (local) shading result is calculated using an illumination

model (such as phong illumination). Local illumination should be computed for each light

source. Then re�ection and refraction rays are �red and their results are accumulated to

the partial result according to the surface re�ectivity and refractivity. Shading procedure

31

for a classic recursive ray tracer is given in Figure 1.3 (shade procedure). However, GPUs

do not support recursive functions. Therefore in order to avoid recursive function calls, and

to conserve coherency and parallelism as much as possible, rays can be traced as blocks

(whole screen can be taken as a big block). When a group of ray is intersected to a set of

surfaces, they are shaded and accumulated to the �nal result as in blocks. Then secondary

ray blocks (re�ection, refraction and shadow rays) can be �red. In other words, before the

shading procedure begins for a block ray, re�ection or refraction rays are �red and traced

in block-level recursive manner. When secondary rays conclude, results are accumulated

backwards. The intermediate values during shading are kept in a block-level stack until all

child nodes of the ray tree is traversed.

In the next chapter, our EACD based GPU ray tracer is explained in detail.

32

CHAPTER 3

EACD ACCELERATION STRUCTURE

FOR GPU BASED RAY TRACING

In recent years, there have been several studies on mapping ray tracing to the GPU. Since

graphics processors are not designed to process complex data structures, it is crucial to

explore data structures and algorithms for e�cient stream processing. In particular ray

traversal is one of the major bottlenecks in ray tracing and direct volume rendering methods.

In this chapter we focused on the e�cient regular grid based ray traversals on GPU. A new

empty space skipping traversal method is introduced. Our method extends the anisotropic

chessboard distance structure (ACD) and employs a GPU friendly traversal algorithm with

minimal dynamic branching. Additionally, several previous techniques have been redesigned

and adapted to the stream processing model for the comparison. We experimentally show

that our traversal method is competitive to other acceleration structures and considerably

faster and better suited to the GPU than other grid based techniques.

Ray traversal is one of the most time consuming parts in ray tracing [47] and direct

volume rendering methods [57]. Many acceleration structures have been proposed in the

past. Havran explains and compares many of these traversal techniques in detail [39]. Be-

cause GPUs are parallel stream processors they favor simple localized data access, exploit-

ing instruction level parallelism and arithmetically intensive kernels for maximum e�ciency

[70]. GPU friendly data structures and algorithms should conform to the stream processing

model for e�cient processing. 3D regular grid based methods are ideal for hardware stream

processing, as they can be represented and accessed e�ciently by using 3D texturing capa-

bilities of the GPU. Moreover, traversal algorithms running on them are relatively simple

and can be made �t into the GPU programming model with some modi�cations. Some

of the fastest known grid based algorithms use distance transformations to accelerate ray

33

traversals [13, 84, 101]. A number of these techniques were developed for ray casting based

direct volume rendering. Essentially, distance based methods utilize distance �elds calcu-

lated in a preprocessing stage. Distances to the nearest objects are stored in the distance

�eld. Distances can be calculated using di�erent metrics such as Euclidian (3.1), city block

(3.2) or chessboard (3.3):

Disteuclidian(δx, δy, δz) =
√
δ2
x + δ2

y + δ2
z (3.1)

Distcityblock(δx, δy, δz) = |δx|+ |δy|+ |δz| (3.2)

Distchessboard(δx, δy, δz) = max(|δx| , |δy| , |δz|) (3.3)

where, (δx, δy, δz) is a vector between two voxels (in our case, it is a 3D vector between

a voxel and the nearest non-empty voxel). Distance based algorithms accelerate traversals

by skipping empty regions with the information encoded in distance �elds. It is worth men-

tioning here that there are some works not relying on distance �elds yet can skip macro

(empty) regions [19]. We focused on accelerating ray traversals using regular grids and dis-

tance transformations. Our ray tracer completely runs on the GPU and uses GPU friendly

data structures and algorithms. Firstly, we introduce a new chessboard distance metric

based traversal algorithm. Sramek and Kaufman's [84] acceleration data structure is ex-

tended and a GPU based minimum branching traversal algorithm is devised, which we call

as extended anisotropic chessboard distance (EACD) traversal. Secondly the previous grid

based traversal algorithms are redesigned to �t the parallel stream processing model of GPU.

The methods presented also suit well to the streaming SIMD model of the modern CPUs.

Finally, e�cient implementations and comparisons between the GPU speci�c versions of the

regular grid based traversal techniques are demonstrated.

In this work, three of the previously known traversal methods were adapted to GPU.

These methods include Amanatides and Woo's [4] Digital Di�erential Analyzer (DDA) based

ray traverser, Cohen and She�er's [13] proximity clouds (PC) and Sramek and Kaufman's

[84] anisotropic chessboard distance (ACD) based ray traverser. We choose these techniques

because �rstly all of them work on grids. Secondly they cover both empty space skipping

and non-empty space skipping traversals. In DDA based traversal methods, grid is traversed

in a face connected cell incremental fashion. That is one of the neighboring cells is chosen

for the next traversal step. Distance �eld methods (PC, ACD) on the other hand, can skip

range of empty cells in big steps. This way, a more inclusive comparison between our method

and the previous works is made possible.

34

In particular Amanatides and Woo's algorithm [4] is a variant of 3D-DDA. It is simpler

and requires fewer operations than Fujimoto et al.'s original 3D DDA algorithm [29]. It does

not perform empty space skipping. On the other hand we show that it can be implemented

on GPU very e�ciently using SIMD operations and without data dependent branching inside

the traversal loop. Cohen et al.'s [13] proximity clouds utilizes 3D distance �elds, which can

be represented with 3D textures. The traversal algorithm is not complex. The simplicity

of data structure and the traversal algorithm make it a good candidate for stream process-

ing. Non-synthetically generated scenes generally contain empty spaces between the objects.

Proximity clouds can skip empty regions in big steps to accelerate traversals. In order not

to miss any possible intersections, it switches to face connected cell incremental stepping

mode, when a ray is in close proximity to an object. The switching requirement is one of

the biggest drawbacks of this method when adapted to GPU since it implies data dependent

branching. It is possible to use di�erent distance metrics in proximity clouds such as chess-

board, city-block or Euclidian. We have used city-block metric since the distance �elds can

be created quickly and it results in longer traversal steps. Refer to [13] for a discussion of

using di�erent distance metrics.

Sramek et al.'s method [84], anisotropic chessboard distance traversal, is based on chess-

board distance metric. Their algorithm is better than proximity clouds in some aspects,

such that switching to face connected incremental cell stepping mode is not required and a

ray can skip the whole empty region which it resides in. The original implementation can

handle not only regular and Cartesian grids but also rectilinear grids. In our work, we have

developed a di�erent and GPU friendly traversal algorithm utilizing ACD grids.

In the next section, the overview of our accelerated GPU based ray tracer is given. In

the following sections, you can �nd e�cient GPU based redesign and implementations of

the previous algorithms. Afterward, our GPU based minimal branching chessboard distance

traversal algorithm (EACD) and the underlying data structure is explained in detail. Then

the test results are presented with a discussion.

3.1 Accelerated Ray Tracer

We implemented a Whitted style [97] ray tracer with full shadow, re�ection and refraction

e�ects in order to compare the traversal methods studied in this work. Basic constructs of

our ray tracer are similar to Purcell et al.'s work [74]. Di�erently, we utilize depth bu�er

for early fragment culling and use a secondary grid as the acceleration structure. Data

35

layout and bu�er semantics are designed in such a way that memory I/O is minimized and

more work is done per byte read or written. Where required, data packing is used to save

bandwidth. The implementation of the system is done with OpenGL and Cg [60].

Triangle meshes are used for scene description. The scene database is stored in 2D

textures. The database consists of vertex coordinates and normals, connectivity information

and shader parameters. Two indices (2D texture space coordinates) are used for indexing

triangles in the database. 2D indexing makes sense and allows us to address data directly

without index to texture coordinate conversions.

The grids are stored as 3D textures. We refer to the grid that keeps the scene partitioning

information as the partition grid. Partition grid texture has 2-component 16-bit color format

which points to a triangle list. If the voxel is empty, index is set to (-1,-1). Triangle lists

further point to triangle indices. Finally, triangle vertices are accessed using the triangle

indices. Aside from the partition grid, another grid called as the acceleration grid is utilized

for the traversals. Acceleration grids have lower component resolution (maximum 8 bits/color

channel) to reduce the memory size and bandwidth requirements.

An o�-screen rendering context (PBu�er) with six render bu�ers and a depth bu�er is

used for the kernel I/O. 4-component 32-bit �oating point color format is used for the render

bu�ers. The system relies on early z-culling by means of depth bounds testing for compu-

tational masking. In the course of tracing, rays are given states and speci�c kernels operate

only on the rays of a given speci�c state. Possible states for the rays are creating, traversing,

intersecting, intersected or shaded and out. Ray state values are kept in the depth bu�er for

e�cient masking. In the GPU that we used, it is required to create and modify depth bu�er

with LESS, or GREATER depth test function. Additionally, the test direction should not be

changed for the subsequent rendering passes. Otherwise, depth bu�er optimization breaks

down and early fragment culling does not work.

As depicted in Figure 3.1, the system consists of �ve main kernels with a couple of

smaller kernels for ray counting, intersection position/normal calculation, and depth mask

modi�cation. Additionally, there is a kernel to �re shadow rays which is very similar to the

eye ray generator kernel. A single run of the traversal kernel followed by the intersection

kernel is called as a trace step.

Prior to the rendering, ray states are initialized by setting depth bu�er to 1 (creating

state) and depth test function is set to LESS. Therefore, in order to be able to write new ray

states, monotonically decreasing values are assigned to traversing and intersecting states in

each trace step. Only the rays with the greatest state value are processed by the next kernel.

36

Figure 3.1: (a) Ray tracing kernels (b) Ray state transition diagram.

For the trace step n, where n ≥ 0, the state value of ray R is calculated as below:

statevalue (n) =

1 if R is being created

0.9− 2δn if R is traversing

0.9− 2δn− δ if R is intersecting

0.1 if R is intersected or shaded

0 if R is out

For δ, we use 0.0001 which is su�ciently small to generate enough unique decreasing

values for the traversing and intersecting states. After a main kernel, another kernel is run

to write the new state values to the depth bu�er, according to the output of the previous

kernel.

Figure 3.2 shows detailed input/output streams of the main kernels. As seen in the �gure,

ray generator kernel creates eye ray origins and directions as two output streams. Eye rays

are clipped against the bounding box of the scene. Since our traverser kernels require voxel

indices for some computations, rays hitting the scene bounding box are transformed from

the world space to the grid space (with unit voxel dimensions). This way, the integer part

of the coordinates directly gives the current voxel index. Transformed rays are stored in

a di�erent bu�er. Grid space rays are used by the traverser kernels. On the other hand,

the intersector kernel uses the world space rays since the scene database is stored in world

coordinates. After eye rays are generated, depth is set to out state for out-of-scene rays and

37

Figure 3.2: Input/outputs of the ray tracer kernels.

to traversing state for remaining rays.

The second kernel, which is the main focus of this work, is the traverser. Traversal

algorithms are implemented by the traverser kernels. Dynamic loop statements are used

inside the intersector and traversal kernels. Traversal loops are repeated until a non-empty

voxel is found or the ray gets out of the scene. There are two variants of traverser kernels.

One of them is executed in the �rst trace step, while the other one is called in the subsequent

trace steps. The only di�erence between the two is that the �rst one begins with checking

if the ray starts in an empty voxel and loops until a non-empty voxel is found. The other

kernel steps a single voxel �rst and then loops until a non-empty voxel is found. The output

of the traverser kernel is used by the intersector kernel or again by the traverser kernel in

the next trace step. Output values are slightly di�erent for each traversal method. As is

common to all kernels, the index of the current voxel and parametric distance value to the

voxel boundary (used during intersection tests) is written to the output stream. When the

traverser kernel is done, depth bu�er is modi�ed so that the rays in non-empty voxels are

set to intersecting state, while the remaining rays are set to out state. Then the rays in

intersecting state are counted. If the count is zero, the shader kernel is called. Otherwise,

the execution continues with the intersector kernel.

The third kernel is the intersector kernel, which is employed to perform ray-triangle

intersection tests for the rays in intersecting state. The intersector reads traverser outputs

38

and accesses the voxel triangles from the scene database. Möller and Trumbore's ray-triangle

intersection algorithm is used for intersection test [63]. The output of the kernel is the

barycentric coordinates of the intersection point if there is a hit. Otherwise, no output is

created. The depth value is set to intersected state for intersected rays, or traversing state for

the other rays. Note that the state value of the traversing state is calculated by incrementing

the trace step count by one, so that the traverser kernel in the next step can process them.

The execution continues with the traverser kernel if there are still some non-intersected rays.

The fourth main kernel is the shader/accumulator kernel, which performs shading cal-

culations for the intersected rays. Shader kernel is executed once for each light source and

the resulting color values are combined with the intermediate shading results of previous

passes. Prior to the shader kernel, intersection positions and normals are calculated by us-

ing the results of the intersector kernel. A simple Phong shader is used for the rendering,

although it is straightforward to implement more complex shaders. If shadowing is enabled,

some extra steps are necessary before executing the shader kernel in order to determine

shadowed pixels. These extra steps constitute what we call as the shadow pass. In shadow

pass, secondary rays are �red (shadow rays) from the intersection positions toward the light

position. The shadow rays are traversed to test if there is an intersection along the path. If

an intersection is found, the point in consideration is not visible to the light and thus marked

as shadowed (tagged as intersected). Shadow pass is nearly identical to casting of eye rays.

Almost the same traversal and intersector kernels with minimal modi�cations aimed for per-

formance optimizations are used for shadow pass. Ultimately, before executing the shader

kernel all bu�ers keeping information about the rays and intersection results are saved to

o� line bu�ers. Afterward, shadow pass is realized for each light source. At the end of the

shadow pass, the pixels tagged as intersected state are said to be in shadow with respect to

the current light source. Shader kernel gets the shadow results along with other parameters

and illuminates pixels accordingly.

The kernels described up to this point are enough to realize a basic ray caster with

shadowing. A basic ray caster considers eye rays only. On the other hand, it is possible to

extend the system to perform full ray tracing. In full ray tracing, new rays for re�ection and

refraction are generated at the intersection points and traced recursively. However, GPUs

do not support recursion. In order to facilitate recursion on GPU, we implemented a bu�er

stack class. The bu�er stack operates on a whole draw bu�er instead of simple data types

and has a typical stack interface. It stores the bu�er contents in textures. Bu�ers keeping

the current ray states and the intersection results are pushed into stacks before starting a

39

new re�ection or refraction pass. When the pass is �nished, old bu�ers are popped from the

stacks. Thus, the recursion is realized in bu�er level instead of ray level. Ray re�ector kernel

is used to �re re�ection or refraction rays. The kernel calculates the re�ection or refraction

directions and generates new rays from the current intersection points toward the calculated

directions. Similar to the ray generator kernel, new rays are tagged as traversing state. As

stated before, prior to the re�ector kernel, current contents of the bu�ers are pushed into

bu�er stacks. Then, re�ection (or refraction) pass takes place. At this point, as shown in

Figure 3.1-a, tracing is continued from the traverser kernel using the re�ection (or refraction)

rays instead of the eye rays. The recursion continues until a user de�ned recursion depth is

reached.

3.2 Accelerated Traversal Kernels

During the implementation of the traversal algorithms we tried to vectorize instructions,

minimize required intermediate states, minimize data dependent branching and provide bal-

ance between the memory and arithmetic operations. Firstly, e�cient GPU implementations

of the previous DDA and PC traversal algorithms will be presented. Next, GPU based min-

imal branching ACD and EACD traversal algorithms and the related data structures will be

introduced.

3.2.1 DDA Traversal

DDA performs face connected cell incremental stepping and does not bene�t from empty

space skipping. The original algorithm requires two �oating point comparisons and one

�oating point addition at each step. Although it is possible to port the algorithm directly to

the GPU, this results in under utilization of GPU. Operations are scalar and data dependent

�ow control is used heavily to avoid �oating point arithmetic. CPUs are fairly optimized for

e�cient �ow control and branching, on the other hand they are relatively weak on intense

�oating point arithmetic compared to GPUs. We have redesigned the algorithm to use vector

operations as much as possible. We also removed the data dependent �ow control from the

loop body.

In the original algorithm there are several comparison instructions to determine the step

direction. Consequently, there are four main code paths in the loop body. Moreover in each

path, ray is tested if it is inside the grid boundaries or not. In order to eliminate �ow control,

vectorized conditional set instructions are used. Because most GPUs are based on SIMD

40

// while voxel i s empty & inside the grid
while (voxel == 0)

{

// find minimum parametric distance
tmin = min(t.x, min(t.y,t.z));

// determine the step direction
incr.xyz = (t.xyz == tmin.xxx);

// advance
t.xyz += tStep*incr;

voxelIdx.xyz += cellStep *incr;

// read next voxel
voxel = tex3D(texAccelGrid, voxelIdx*invGridSize).a;

}

Figure 3.3: DDA traversal loop

architecture, making the comparisons in a single vector instruction instead of several scalar

instructions separated with di�erent control paths will results in more e�cient operation.

Moreover, the ray-box containment tests are postponed and uni�ed with the loop control

statement. To achieve this, border color of the acceleration grid texture is set to a speci�c

OUT value and texture wrap mode is set to CLAMP_TO_BORDER. Hence, if an out-of-grid voxel

is sampled, the sampler returns with the OUT value. Mono 8-bit color format is su�cient

for the acceleration grid. We assign 1 for non-empty voxels and 0 for empty voxels. Border

color (e.g. OUT value) is set to 0.5. As a result, box containment tests are eliminated and

traversal loop continues until the voxel value is non-zero.

Parametric ray equations are used during the traversals. Throughout the context, vectors

are shown in uppercase, while vector components are given in lowercase. A point on a ray

R can be calculated as: R(t) = O+Dt, where O is the origin, D is the direction vector and

t ≥ 0 is the parameter of the ray. The Cg code of the traversal loop is given in Figure 3.3.

Some variables should be initialized prior to the loop in the setup phase. Among these,

voxelidx is the current voxel the ray is in. cellStep is a 3-vector denoting the increment

to the next voxel in major axis directions, which is calculated as sgn(D), where sgn() is the

signum function. tStep is the vector of signed parametric distances required to cross a whole

voxel, which is calculated as sgn(D)/D. invGridSize is the reciprocal vector of the grid

dimensions. It is used to convert integer voxel indices into [0,1] ranged texture coordinates.

Finally, texAccelGrid is the acceleration grid texture. Note that 1/D may produce �oating

point specials ±∞, which can cause NAN (not-a-number) result in the subsequent operations

[65]. To prevent errors 1/D can be clamped to [−Γ,+Γ] range, where Γ is a su�ciently big

number.

41

3.2.2 PC Traversal

In the original algorithm distance information is stored in the background (empty) voxels.

Instead, we keep distance values in the acceleration grid. Acceleration grid has 2-component

(luminance-alpha) 8-bit texture format, capable of representing the maximum distance value

of 255. Distances are measured using city block metric. Luminance component is set to the

distance value, while alpha is set to the voxel status (empty or non-empty). Similarly to the

DDA traversal, alpha component is set to 0 for empty and 1 for non-empty voxels, while

alpha of the border color is set to 0.5. Because distances are calculated from the voxel

centers, rays may miss non-empty voxels if they advance as much as the distance value.

Distance values are subtracted by 1 and stored as subtracted to prevent this situation.

PC traversal requires switching between DDA and space skipping. In the original algo-

rithm traversal in skip mode continues in a loop until a ray is close to a non-empty voxel.

Then face connected traversal continues until the ray is no longer in vicinity of a non-empty

voxel. In this case two inner loops within a bigger loop are required. We found that replac-

ing inner loops with an if statement is more e�cient as it requires less �ow control. In each

step the distance value is checked: If it is 0, DDA steps are taken; otherwise, PC stepping

is performed. You can see our GPU implementation of PC traversal in Figure 3.4. In the

�gure, invD is reciprocal of ray direction D. invGridSize, cellStep and tStep are the same

as in DDA. tStart is the initial parametric distance to voxel borders from the origin. Calcu-

lation of tStart is explained in the next section. Lastly C is the distance function constant

as stated in [13]. Note that since the texture sampler normalizes the color values into [0,1]

range, it is required to scale and round samples to recover the integer values. However, latest

GPUs support integer numbers. So, the algorithm can be altered and an integer component

texture format may be used for reading integer distance values without any conversion.

3.2.3 Anisotropic Chessboard Distance Traversal

Sramek and Kaufmann [84] use chessboard metric for the distance computations. Their

chessboard distance traversal method has a couple of advantages over the proximity clouds:

Firstly, switching between the stepping modes is not necessary. Secondly, an empty region

can be skipped to the full extent, thus it is not necessary to subtract distance values by one

as in PC. Their algorithm can also work on rectilinear grids with some additional costs. They

observed that in distance based traversals, ray steps get shorter as the ray gets closer to the

objects, and many small steps are taken until the ray gets far away from the close vicinity.

42

// while voxel i s empty & inside the grid
while (voxel.a == 0)

{

// I f c lose to non−empty voxels , then DDA stepping
if (voxel.r == 0)

{

// same as DDA
tmin = min(t.x, min(t.y,t.z));

incr.xyz = (t.xyz == tmin.xxx);

t.xyz += tStep*incr;

voxelIdx.xyz += cellStep*incr;

// update ray position
pos.xyz = O+t*D;

}

else { // otherwise PC stepping
// convert distance to integer
dist = round(voxel.r * 255);

// advance
pos.xyz += C*dist;

voxelIdx.xyz = floor(pos);

// update ray parameter
t.xyz = tStart + cell*invD;

}

// read next voxel
voxel = tex3D(texAccelGrid, voxelIdx*invGridSize);

}

Figure 3.4: PC traversal loop

To alleviate this problem, they propose using anisotropic empty regions depending on the ray

directions. Rays are classi�ed by the component sign of their directions (±x,±y,±z) giving

8 direction octants. Thus in ACD, instead of a single symmetric distance, 8 empty region

distances are computed and the appropriate value to be used is determined by the component

signs of the ray direction. Anisotropic distance calculation requires applying small kernels

over the grid in 8 passes (one pass for each direction octant). Note that although these 8

macro regions around a voxel form an anisotropic shape, each octant de�nes a cubic region

individually in the grid space (assuming unit voxel dimensions).

The original algorithm divides a traversal step into slave steps and a master step, and uses

data dependent branching to choose appropriate steps to minimize arithmetic operations.

Although this approach may be good for CPUs it decreases the intensity of arithmetic

operations, increases �ow controls and ultimately results in poor GPU utilization.

3.2.4 Minimum Branching ACD Traversal Algorithm

In this part, we will introduce our GPU based traversal algorithm for anisotropic chessboard

distance transformation grids. In essence, the traversal algorithm is similar to the DDA. For

43

Figure 3.5: Apex voxels and the intersection lines of a rectangular region depending on the

ray direction.

the sake of simplicity and conciseness, the algorithm will be explained in 2D without loss of

generality. It is straightforward to extend the operations into 3D.

The acceleration grid G has dimensions w × h ∈ Z+. A voxel V ∈ G is identi�ed by the

indices i, j where i, j ∈ Z and 0 ≤ i < w, 0 ≤ j < h. V stores the chessboard distance to the

nearest full voxel. So V (i, j) = ∆ = (δx, δy). If δx = δy distances along x and y directions

are equal. The parametric equation of a ray R can be decomposed into x and y components

as:

rx(t) = ox + dxt

ry(t) = oy + dyt

We traverse empty regions in a face connected fashion. Therefore it is required to deter-

mine the set of lines (planes) for the region that the ray is possibly intersecting. Intersection

lines depend on the ray direction as depicted in Figure 3.5. The corner voxel inside the

region which is adjacent to the both intersection lines is called the apex voxel. Given a voxel

Vi,j and a direction D, the intersection line set L is de�ned as,

L(i, j) = {x = Lx(i), y = Ly(j)} , where

Lx(i) = i+ sat(sgn(dx)),

Ly(j) = j + sat(sgn(dj)),

(3.4)

Where sat (saturate) function clamps values to [0,1] range. Note that since sat can be

applied as an instruction modi�er, it can be executed without performance penalty. If the

44

ray is currently in voxel Vi,j and the distance vector is ∆, the indices of the apex voxel ia

,ja for the macro region are calculated as:

(ia, ja) = sgn(D)(∆− (1, 1)) + (i, j) (3.5)

Substituting 3.5 into 3.4, we get the intersection line equations for the region:

x = Lx(ia) = i+ sgn(dx)(δx − 1) + sat(sgn(dx))

y = Ly(ja) = j + sgn(dy)(δy − 1) + sat(sgn(dy))

The parametric distances to the intersection points on the intersection lines are:

(tx, ty) =
L(i, j)−O

D

tx =
i+ sgn(dx)(δx − 1) + sat(sgn(dx))− ox

dx
(3.6)

ty =
j + sgn(dy)(δy − 1) + sat(sgn(dy))− ox

dy

The parametric distance tmin for ray's next position:

tmin = min(tx, ty)

Then next position of the ray can be calculated as:

P = R(tmin) = ε+O +Dtmin, (3.7)

ε = sgn(D) ∗ 0.0001

And the voxel indices for the new position are:

(i, j) = (bpxc, bpyc)

Unfortunately, current GPUs have questionable arithmetic precision [43]. Therefore we

found that adding ε to position is required to avoid �oating point round-o� problems. Oth-

erwise ray may get stuck and never advance to the next voxel due to the precision errors. On

the other hand, using ε may result in skipping some non-empty voxels when a ray traverses

very close to voxel corners. In order to ensure that no triangles are skipped in the inter-

section tests, we use slightly expanded (±10−6) voxel borders for triangle-box containment

tests during scene partitioning.

Some of the operations in above equations can be taken out of the loop body and done

in the traversal setup. In order to avoid decrementing δx, δy by 1 each time during the

45

traversal, we store them pre-subtracted in the acceleration grid. The 3.6 can be rewritten

as:

T = Tstart + T∆ (3.8)

Tstart =

(
sat(sgn(dx))− ox

dx
,
sat(sgn(dy))− oy

dy

)

T∆ =

(
ia
dx
,
ja
dy

)
Where the apex voxel indices (ia, ja) are (assuming distance values are pre-subtracted):

(ia, ja) = (i+ sgn(dx)(δx), j + sgn(dy)(δy)) (3.9)

// while voxel i s empty & inside the grid
while(voxel.a == 0)

{

// compute signed distance
dist.xyz = round(sgnScaled*voxel.r);

// find apex voxel
apexVoxel.xyz = (voxelIdx + dist);

// compute tmin
t.xyz = tStart + apexVoxel*invD;

tmin = min(t.x, min(t.y,t.z));

// advance
pos.xyz = oEps+tmin*D;

// find voxel indices
voxelIdx.xyz = floor(pos);

// read next voxel
voxel = tex3D(texGrid, voxelIdx*invGridSize+offs);

}

Figure 3.6: ACD traversal loop

Tstart is computed once in the traversal setup, whereas T∆ is computed inside the loop.

The Cg code for the traversal loop is given in Figure 3.6. Texture format for the acceler-

ation grid is 2-component 8-bit (luminance-alpha). The semantics of the components are

similar to the PC traversal. To be able to store 8 distance values per voxel, the size of

the acceleration grid is twice as big as the partition grid. It can be considered as voxels

are divided into 8 sub-voxels and each sub-voxel keeps the distance information of a spe-

ci�c direction octant. A factor and an o�set is used to access to the appropriate sub-voxel.

invGridSize is the mentioned factor and offs is the mentioned o�set value. offs is calcu-

lated as (invGridSize/2)∗ (sat(−sgn(D)). dist is the signed distance value and apexVoxel

46

is the indices of the apex voxel as in 3.9. sgnScaled is calculated in traversal setup as

255 ∗ sgn(D). oEps is pre-calculated as ε+O of 3.7. Tstart is denoted by tStart.

3.2.5 Extended Anisotropic Chessboard Distance Traversal

Even though ACD traversal reduces the number of ray steps considerably, it is possible to

improve the structure further for faster traversals. As expressed in the previous section ACD

uses a single distance value for each direction octant. Instead we allow di�erent distance

values along x, y and z axes. That is three values are de�ned for each octant. As illustrated

in Figure 3.8 this facilitates non-cubic macro regions, and rays can traverse with greater steps

especially in long thin or narrow empty spaces or in close object vicinities. The traversal is

almost the same as the explained ACD traversal algorithm. The only di�erence is instead

of a single distance value for all axes, 3 distance values are used representing the distances

along the major axes. A 4-component texture format (red-green-blue-alpha) is used for the

data, where red-green-blue components store distance values and alpha component keeps the

voxel type information (empty or non-empty). EACD traversal code is given in Figure 3.7.

// while voxel i s empty & inside the grid
while(voxel.a == 0)

{

// compute signed distance
dist.xyz = round(sgnScaled*voxel.rgb);

// find apex voxel
apexVoxel.xyz = (voxelIdx + dist);

// compute tmin
t.xyz = tStart + apexVoxel*invD;

tmin = min(t.x, min(t.y,t.z));

// advance
pos.xyz = oEps+tmin*D;

// find voxel indices
voxelIdx.xyz = floor(pos);

// read next voxel
voxel = tex3D(texGrid, voxelIdx*invGridSize+offs);

}

Figure 3.7: EACD traversal loop

The memory cost of the acceleration grid for EACD is three times as much as the ACD.

In order to reduce this cost, a packed color format (RGB5A1) is used for the grid texture.

This format can represent the distance ranges of up to 32 voxels along each axis.

47

Figure 3.8: (a) CD acceleration grid has single isotropic distance value per voxel (b) ACD

acceleration grid stores a distance value for each direction quadrant. Only the (+x,+y)

quadrant values are shown (�rst and second values are the macro distances along +x and

+y axes respectively) (c) EACD acceleration grid stores di�erent distance values for each

primary axis. (d),(e) and (f) demonstrates CD, ACD, and EACD traversals of an example

ray. EACD traversal signi�cantly reduces the number of traversal steps in this situation.

3.3 Construction of The Acceleration Grid

Construction of EACD grid can be carried out in di�erent ways. We use a heuristic with a

simple greedy search. The heuristic strives to �nd the largest empty region by extending the

ACD regions. Finding the largest non-cubic empty regions can be a very time consuming

process. Therefore, instead of searching the largest empty spaces from scratch, we make use

of ACD acceleration grid and extend regions along the main axes. Consequently, building

the EACD grid involves two phases: Creating ACD grid and extending to EACD grid.

3.3.1 Creation of ACD Grid

The strategy to create distance transformation is based on the idea of propagating local

distances over the grid cells [8]. Firstly, the cell contents of the distance map are initialized

48

to in�nity for empty voxels, and to zero for non-empty voxels. Then a kernel, as shown in

Figure 3.9-a, is overlaid onto each cell of the map in a speci�c direction (such as beginning

from bottom-left to top-right). Each element of the mask is summed with the value of the

corresponding cell of the distance map. The resulting value of the cell is the minimum of

these sums and the initial value of the cell. Figure 3.9, depicts these steps for a single

voxel. Generation of anisotropic chessboard distance maps involves applying eight di�erent

masks to the grid data beginning from one of the corners toward the opposite diagonal corner.

Consequently, eight kernels are applied to the volumetric grid, and one (anisotropic) distance

map is created for each direction octant. These eight maps are interleaved into a single big

grid with eight times the size. The computational complexity of ACD transformation is

O(n), where n is the number of voxels. Our single threaded non-optimized ACD creation

implementation took 12 secs on a 2.4GHz Intel Q6600 processor for the whole grid. It is

possible to create the octant maps in parallel to cut this time down.

3.3.2 Extending ACD to EACD

Before searching empty ACD regions to extend them to EACD, we create six axial dis-

tance �elds representing distances to the nearest full voxels along the ±x, ±y and ±z axis

directions. Similar to the ACD grid, the auxiliary grid distances are computed in linear time.

Using the auxiliary axial distance grids we determine, in a greedy manner, how much a

cubic ACD region can be extended. This operation is done for all empty voxels of the ACD

grid. The extension is carried as follows: Border voxels of the empty region are walked and

maximum possible extension along the main axes is computed. The region is then extended

along the axis giving the maximum volume. This step is repeated once more, for one of

the remaining two axes which results in a larger volume. Figure 3.10 depicts computing

EACD macro region for an empty grid cell (corresponds to an empty voxel) in 2D. Our

single threaded non-optimized EACD creation implementation took 370 secs on a 2.4GHz

Intel Q6600 processor for the whole grid (for maximum region size of 32×32×32). This �gure

includes both ACD and EACD creation times. Again, it is possible to speed up the grid

creation with parallel processing.

Note that the empty regions de�ned around a voxel by EACD is always larger than or

equal to the regions de�ned by ACD. This is because of the fact that EACD starts with

ACD and extends the regions along the main axes. Larger regions results in longer ray steps

during the traversal. Especially if a region is extended along the same axes with the ray

direction (i.e. the axes de�ned by component signs of the ray direction), the longer ray steps

49

Figure 3.9: (a) ACD kernels for 2D. (b) Creation of the ACD grid for upper-left quadrant.

The upper-left ACD kernel of (a) is applied from top-left to bottom-right. Yellow box denotes

current voxel. Green frame is the covered region by the kernel. (b) Kernel is overlaid and

added with the region. (c) Minimum of the sums is selected as the distance value. Note

that, distance of the non-empty voxels (gray boxes) are initialized to 0, while empty voxels

are initialized to ∞ prior to kernel application.

are possible. In any case, the length of the ray steps will always be greater or equal within

EACD regions. If a lower precision color format is used, like RGB5A1 as we did in our tests,

the maximum representable distance value is clamped. This a�ects the maximum size of the

empty regions. However, this will not be a problem if the scene does not have very large

empty regions. In this case a higher precision color format may be used, such as RGBA8, at

the cost of greater memory consumption.

50

Figure 3.10: Finding the EACD macro region for the lower left cell. Only (+x,+y) direction

quadrant is shown (octant for 3D). Arrows denote the orientation of the distance values (a)

is the base ACD grid. (b) and (c) are the axial distance grids along +x and +y directions

respectively. (d) is the resulting EACD distances.

3.4 Results and Discussion

In order to test the traversal algorithms, some of SPD and the 70K Stanford bunny models

were used [37, 89]. Ground plane in some SPD models was reduced in size to make better

use of the grid space. The rendered images are shown in Figure 3.14. Tests were performed

on a 580 MHz Nvidia GeForce 7800GTX graphics board with 512MB of memory. Release

93.71 drivers and Cg toolkit 1.4 were used. The resolution is 512×512 for all of the images.

In order to collect the rendering statistics, we implemented additional versions of the

traverser kernels. The additional versions count the number of loops and the number of

texture lookups performed. The collected values are written to a secondary color bu�er

(by using multiple render targets), without a�ecting the main rendering operation. After a

fragment program is executed, its counter values are read from the bu�er. This way, we are

able to determine loop counts, the number of texture accesses and approximate bandwidth

requirements of each kernel, per pass basis. Execution times, on the other hand, are taken

by the original versions of the kernels.

Among the results, the traverser kernel performances are focused in particular since

51

we propose a new traversal algorithm. In a ray tracer, the total rendering time also greatly

depends on the intersection testing times. On the other hand, in direct volume rendering [57]

there are no intersection tests and the main determining factor of rendering performance is

the traversal part. The traversal methods explained here can be applied to volume rendering

easily as shown in our previous work [24].

3.4.1 Branching vs. Non-Branching Kernel Implementation

Data dependent branching is used for the loop bodies of the traverser kernels . The other way

of implementing the kernels might be to use multi-pass (non-branching) rendering to simulate

data dependent loops. Both approaches have some advantages and disadvantages. Note that,

multi-pass approach may be the only option for GPUs not supporting dynamic branching.

To compare the performances of branching and multi-pass approaches, we eliminated the

dynamic loop instructions and built non-branching versions of the traverser kernels.

Table 3.1: Instruction counts of the traverser kernels. In the cells, �rst number is the

fragment program instruction count (including texture lookups). Second number is the

texture lookup count.

EACD ACD PC DDA

Setup/Write 32/4 32/4 34/4 20/2

Loop 16/1 16/1 25/1 12/1

Traverser kernels include a setup phase and a write phase in addition to the loop body.

Setup phase consists of a number of texture fetches to reload last ray position and direction

possibly with some data unpacking. Additionally, initial and �nal values of some variables

should be computed in the setup and write phases. As shown in Table 3.1 the majority

of kernels consist of setup/write phases. The number of instructions and texture fetches

are given in the table. Note that the instruction count is not the only factor determining

the performance. In a multi-pass implementation, setup/write phases may consume more

bandwidth and computational power than the looping implementation since the kernels are

called more times. This is especially true for DDA, which has to carry out possibly many

small steps, and thus needs many rendering passes. Space skipping techniques su�er less from

this condition, as they require less number of traversal passes. Another problem with the

multi-pass implementation is that, depending on the number of passes, the overhead of API

52

Figure 3.11: (a) Number of active rays per pass (b) Traversal time per pass (c) Average ray

traversal time per pass.

calls (kernel switching, state settings, etc.), and some necessary bu�er operations, such as

modi�cation of depth bu�er and depth queries, negatively impacts the overall performance.

Especially for the latest generation of GPUs, excessive API calls may be a bottleneck in a

multi-pass implementation.

However, data dependent branching is not cheap and can easily results in under utilization

of GPU due to deep pipelining and SIMD style parallelism. GPU process fragments as small

groups. Fragment processing units of modern GPUs support SIMD style branching: If

some of the fragments in a group take a branch while the remaining fragments take another

branch, both branches are executed. Therefore all running fragments in the group should

follow the same execution path for the highest performance. The group in this context is

a rectangular block of fragments. As the block size in which all fragments follow the same

execution path grows, the branching performance increases. There is an optimal block size

for the best branching performance. The block size depends on the GPU model. Refer to

53

[54] for dynamic branching benchmarks of di�erent GPUs with respect to varying block sizes.

Unfortunately it is hard to make all fragments of a block to follow the same execution path,

since the neighboring rays gradually loose coherency and tend to choose di�erent paths

during rendering. One way to overcome this problem is to reduce the frequency of data

dependent branching. Table 3.2 shows the average number of branching performed by scene

rays. Clearly, empty space skipping greatly helps to reduce the branching frequency. The

table can also be interpreted as how quickly rays completed the traversal. It is observed that

EACD has lower branching frequency and thus requires less traversal steps compared to the

other methods.

In non-branching approach, it is very costly to wait for all rays to reach non-empty voxels

before the intersection test, which results in large number of traversal passes. Instead, we

employed a simple heuristic similar to Purcell et al. [74]; if 20% of the traversing rays

require intersection, traversal is interrupted and the intersector kernel is run. This cuts

down the number of traversal steps and the traversal times greatly, although increases the

total intersection times. For the best results, this heuristic should be �ne tuned for each

scene and even for di�erent camera setups. DDA bene�ts largely from the �ne tuned multi-

pass approach due to high branching frequency. EACD, on the other hand, issued slightly

worse and sometimes slightly better rendering times. In order to evaluate non-branching

kernels, ray casting traversal times for all test scenes are given in Table 3.3. These �gures

can be compared to the results of the branching kernels given in Table 3.6. Test results

demonstrate that empty space skipping techniques are better than DDA both in multi-pass

and branching approaches, and EACD gives the best performance compared to other space

skipping techniques.

3.4.2 Fragment Processor Utilization

In order to bene�t from the computational power of GPU, fragment processors should be

utilized as much as possible. Crudely, utilization can be expressed as the ratio of the number

of processed fragments over the number of rasterized fragments. Throughout the execution,

the number of active rays to be processed decreases in each trace step, which means that

the utilization drops in each subsequent step. Although there is a decline in the utilization,

early rejection of the fragments before reaching the shader unit greatly helps to keep the

fragment processors busy with useful fragments. Consequently the performance drop is not

as sharp as expected for the most of the rendering. We check this situation by measuring

the average traversal time per ray in each pass. Figure 3.11 graphs the per-pass results for

54

Figure 3.12: Ray casted bunny image (a) after 16 trace steps (b) after all trace steps com-

pleted. Note that 99.5% of the rays are already terminated in (a) and the most of the image

is rendered. Grid resolution is 128x128x128.

the bunny scene. In the graphs, as the number of active rays decreases in each step, the

processing time decreases in a similar shape. Average time per ray is calculated for each

step by dividing the total step time to the number of active rays in that step. The "time

per ray" graph shows that for the majority of the rays (>98%) time spent is well below

100 nanoseconds. Especially, after around step 20 e�ciency declines quickly. In fact, this

is expected because the timings include not only the kernel processing time but also API

and CPU overheads. Moreover, even if there is just a single active ray left, a screen sized

quad is rasterized. Therefore, when the number of active rays is low enough, the mentioned

overheads devastate the fragment processing time. However, only a small fraction of the rays

su�er from this condition.

In an animation sequence, one possible way to reduce the overheads incurred in the

later trace steps might be to cut rendering when the percentage of active rays is lower

than a de�ned threshold. For example, in the bunny scene, 99.5% of the rays are already

terminated in step 16. Our other test scenes behave similarly. Figure 3.12 shows the image

rendered immediately after step 16. For this image, the partial render time is 65% of the

full rendering time (using EACD). When the camera stops moving, the rest of the image

can be rendered progressively. It is also possible to approximate the un�nished pixels of

the partially rendered image by applying simple image reconstruction �lters. On the other

hand, this kind of rendering is reasonable for �ne grid resolutions. In low resolutions, partial

55

rendering saves less time and exhibits more artifacts. This is because of the fact that the

number of trace steps is already low and the artifacts due to the un�nished parts become

more apparent since the voxel sizes are bigger.

3.4.3 Timing Results

The traversal algorithms were tested using several grid resolutions. In order to rule out

external factors a�ecting the measurements as much as possible (such as �le access, back-

ground processes etc.); each test was run many times and the minimum of the timing results

is taken. Figure 3.13 illustrates the amount of ray traversal steps taken by each algorithm

for the bunny scene. In the images, brighter pixels represent greater traversal step counts.

As clearly seen in Figure 3.13, DDA requires the greatest number of steps among all, since

it steps only one voxel at a time regardless of the empty regions. PC on the other hand can

skip isotropic macro regions in larger steps, while it behaves similarly to DDA in the vicinity

of non-empty voxels. ACD performs better than PC in the close proximity of non-empty

voxels. This is because of anisotropic macro regions and the fact that rays can take bigger

steps according to their directions. EACD performs the best among all the methods. The

average traversal loop count (data dependent branching performed) per fragment is 34.6,

4.43, 2.56 and 1.94 for DDA, PC, ACD and EACD, respectively, for this particular scene.

Thus, although DDA has the least expensive kernel it should loop many more times than

space skipping techniques, resulting in much longer execution.

Tables 3.4, 3.5 and 3.6 show that the ray casting speedup due to EACD is as much as

870%, 358% and 170% compared to DDA, PC and ACD respectively. The speedup increases

especially for the scenes where rays have to pass thru non-cubic empty regions. Since both

ACD and EACD use the same algorithm essentially, their performances should be similar in

the worst case. On the other hand, maximum distance limit imposed by the low precision

texture format may prevent full speedup possible with EACD. This is especially apparent in

the tree scene with 128x128x128 grid dimensions, where there are large empty regions around

the object. It is possible to use a higher precision texture format to alleviate this problem,

if GPU has enough memory space. In the sphere�ake scene, model �lls the grid space

more fully and there are many narrow, non-cubic empty spaces where rays can pass thru.

Therefore the EACD performance is better compared to the tree scene. As an empty space

skipping technique, PC traversal does not perform as fast as EACD and ACD. This is largely

due to the longer loop body with relatively higher data dependent branching frequency and

shorter ray steps. Despite the fairly e�cient loop body, DDA has almost always the worst

56

Figure 3.13: Illustration of the traversal step counts for (a) DDA, (b) PC, (c) ACD and (d)

EACD. Brightness of the image is set to 170% and contrast is set to 155% for better visual

clarity.

performance. Especially in �ner grid resolutions DDA can not match the traversal speed of

EACD and ACD.

We also compared ray tracing performances of the kernels with varying number of lights

and trace depths. The lattice scene is used for the ray tracing tests since majority of the

re�ected rays stay inside the object and keeps bouncing. Additionally, small curved surfaces

re�ect rays to di�erent directions lowering the ray coherence rapidly. Test results are given

in Tables 3.7, 3.8, 3.9, 3.10 and 3.11, for bunny, tree, jacks, lattice and sphere�ake scenes

correspondingly. In the tables, frame is the total rendering time. The ray tracing setups

are; Ray Cast (eye rays without shadows), Ray Cast 1-2SH (eye rays + one and two lights

with shadows), Ray Trace 1-3R (eye rays + re�ections of depth 1 to 3, without shadows),

Ray Trace 1-3R/2SH (eye rays + re�ections of depth 1 to 3 + two lights with shadows). As

seen in the tables, re�ected rays cause greater performance hit than shadow rays. This is

because of the fact that re�ected rays tend to loose coherence rapidly, while shadow rays are

more coherent since they are directed to a single point in space (toward the position of the

light source). Tables reveal that the performance gap between EACD and other techniques

broadens as the coherency gets lost. This is expected since EACD can reach to non-empty

57

voxels with less number of steps and thus requires less data dependent branching operations.

We measured the traversal times with frame sizes of 256×256 and 1024×1024 in addition

to 512×512. When the frame resolution is increased 4 times (doubled along each dimension),

traversal is slowed down by around 2 times for all methods. This is most probably the result

of increasing ray coherency and GPU utilization, and relatively decreasing API overheads,

as the frame size grows.

Additionally, the stall rate of fragment processors due to waiting for texture units is

measured using NVPerfKit [68]. NVPerfKit is a tool giving access to some low level GPU

performance counters. Stalls due to texture sampling may occur if too many incoherent

texture lookups are performed. For ray traced lattice scene, average stall rate is 1.77%,

1.20%, 0.89% and 0.24% for EACD, ACD, PC and DDA kernels, respectively. Ultimately,

fragment processor stalls due to texture access do not cause a bottleneck on the system.

Ray-triangle intersection testing is the most time consuming part for EACD and ACD

based acceleration. Increasing the grid resolution is a way to reduce the number of inter-

section tests and thus the total rendering time. However for DDA, in most cases traversal

is already the most time consuming part. Therefore, increasing the grid resolution will not

improve the overall performance in most of the test scenes since it will largely increase the

traversal times. Similar situation holds for the PC traversal. The only exception to this

observation is the tree scene. This scene has highly non-uniform triangle distribution; most

of the triangles are grouped inside a small number of voxels around the branch tips. This

is a typical weakness of the grid based scene partitioning structures. In case of ACD and

EACD traversals, increasing the grid resolution will help to improve the performance for all

of the test scenes. The problem for these techniques is that, the acceleration structure is 8

to 24 times as big as it is for PC and DDA. The limit for the maximum grid resolution for

ACD and EACD was 256×256×256 in our test hardware.

3.4.4 Comparison to Other GPU Ray Tracers

Since we focused on grid based acceleration techniques in this work, non-grid based GPU ray

tracing techniques have not been implemented. However, we rendered ray casted images of

70K bunny with one light source on a GPU similar to the other works for a rough comparison.

Note that all methods compared below uses the same bunny model. As reported in [12],

Thrane and Simonsen's BVH implementation [87] obtained 257 ms (GeForce6800 Ultra),

while Carr et al.'s geometry images based BVH technique [12] has an estimated frame time

of 360 ms (X800 XT PE). Two kD tree based methods as described in [28] rendered the scene

58

in 690 ms using the backtrack algorithm, and 701 ms using the restart algorithm (X800 XT

PE). As for the comparison, we measured 141 ms without shadows and 216 ms with shadows

on the average, using EACD (GeForce 6800 Ultra, grid size 128×128×96). From the results

we conclude that grid based empty space skipping methods, especially EACD and ACD, is

very competitive or better than other techniques for bunny like scenes. Additionally, from

the test results EACD and ACD are also competitive at scenes with large empty spaces

and moderately even triangle density in non-empty voxels. Purcell's grid based ray tracer is

similar to our non-branching DDA implementation [74]. Our implementation has dynamic

loops for the intersection tests and use depth bu�er for early fragment culling; otherwise the

two are almost identical. Therefore non-branching DDA results given in Table 3.3 may be

used for a comparison to EACD.

EACD and ACD seem to be suitable for static scenes since they require a time consum-

ing pre-processing stage. Other techniques also su�er from this situation at varying degrees.

Among the compared GPU based ray tracers, only Carr et al. [12] focused on animated

scenes. It is still possible to use grid based methods hierarchically for non-deforming or ar-

ticulated model animations, where each model has its own grid. Rays entering the bounding

volume of a model may be transformed into the grid space of the object and traced locally.

For deformable animations, the acceleration structure should be reconstructed. Wald et al.

describe a ray tracer using similar approach [90]. Additionally, in a recent work Wald et al.

showed that uniform grids can be used for ray tracing of dynamic scenes [92]. We think that

it may be an interesting future work to study e�cient ways to create the ACD and EACD

acceleration grids, either fully or partially, for animated scenes.

59

Table 3.2: Average data dependent branching per ray for the traversal kernels.

EACD ACD PC DDA

Bunny 32×32×32 2.45 3.6 7.12 16.58

64×64×64 2.98 4.32 7.9 33.39

128×128×128 3.75 4.96 8.54 67.01

Tree 32×32×32 2.4 4.15 11.73 34.62

64×64×64 2.47 4.47 12.64 69.41

128×128×128 3.35 4.74 13.3 139.1

Jacks 32×32×32 3.91 4.77 12.36 21.99

64×64×64 4.09 5.64 14.58 44.2

128×128×128 4.62 6.19 14.57 88.63

Lattice 32×32×32 1.96 2.91 7.36 7.31

64×64×64 3.38 4.91 13.01 15.06

128×128×128 3.91 5.8 17.08 30.52

Sphere�ake 32×32×32 2.87 4.41 11.08 21.21

64×64×64 3.2 5.08 13.15 42.84

128×128×128 3.56 5.51 14.69 86.12

Table 3.3: Time results in milliseconds of non-branching kernel implementations (grid size

is 128x128x128).

EACD ACD PC DDA

Bunny Traverse 22.15 23.05 28.13 100.58

Frame 71.08 73.43 80.04 152.69

Tree Traverse 18.25 19.2 32.01 181.7

Frame 202.59 209.09 292.68 413.85

Jacks Traverse 17.89 20.77 32.56 132.02

Frame 70.69 83.89 118.07 197.25

Lattice Traverse 25.17 29.04 39.31 53.27

Frame 94.51 106.42 154.79 198.37

Sphere�ake Traverse 18.32 20.12 29.09 88.69

Frame 77.98 83.44 111.95 187.69

60

Table 3.4: Ray casting time results in milliseconds (grid size is 32x32x32). Frame is the total

rendering time.

EACD ACD PC DDA

Bunny Traverse 8.43 11.79 18.38 17.86

Frame 100.31 103.76 112.73 112.22

Tree Traverse 9.02 11.84 23.43 26.01

Frame 172.29 174.37 195.45 196.81

Jacks Traverse 15.6 20.72 35.45 29.58

Frame 162.85 167.79 189.93 184.2

Lattice Traverse 14.93 19.56 24.36 17.37

Frame 258.66 262.97 276.8 269.12

Sphere�ake Traverse 11.03 14.18 26.41 28.97

Frame 208.24 210.58 231.43 244.6x5

Table 3.5: Ray casting time results in milliseconds (grid size is 64x64x64). Frame is the total

rendering time.

EACD ACD PC DDA

Bunny Traverse 12.06 18.43 30.04 40.38

Frame 62.7 70.73 84.42 93.79

Tree Traverse 10.4 21.78 38.83 60.84

Frame 182.35 186.38 215.52 233.99

Jacks Traverse 18.49 28.97 59.02 67.1

Frame 102.4 113.41 147.14 155.03

Lattice Traverse 22.36 29.05 57.62 47.28

Frame 126.36 136.62 171.01 159.12

Sphere�ake Traverse 15.13 20.85 43.24 52.79

Frame 128.72 135 160.8 175.37

61

Table 3.6: Ray casting time results in milliseconds (grid size is 128x128x128). Frame is the

total rendering time.

EACD ACD PC DDA

Bunny Traverse 21.64 36.73 62.38 114.25

Frame 70.37 86.46 149 165.2

Tree Traverse 14.96 19.89 46.8 130.38

Frame 196.61 204.68 235.35 317.18

Jacks Traverse 24.48 41.77 84.56 165.3

Frame 76.45 94.2 139.22 235.69

Lattice Traverse 29.7 40.08 106.56 126.65

Frame 95.05 105.74 173.86 193.79

Sphere�ake Traverse 22.73 32.99 73.5 136

Frame 86 96.52 138.82 207.43

62

Figure 3.14: (a) Bunny (69451 tris) (b) Jacks (24528 tris) (c) Sphere�ake (88562 tris) (d)

Tree (67454 tris) (e) Lattice (125388 tris).

63

Table 3.7: Ray tracing time results of the bunny scene in milliseconds (grid size is

128x128x128).

EACD ACD PC DDA

Ray Cast Traverse 21.64 36.73 62.38 114.25

Frame 70.37 86.46 149 165.2

Ray Cast 1SH Traverse 46.34 78.07 141.25 332.82

Frame 146.49 178.13 245.1 436.84

Ray Cast 2SH Traverse 55.44 92.27 167.31 410.52

Frame 174.95 212.66 291.29 536.62

Ray Trace 1R Traverse 61.14 99.49 181.97 446.92

Frame 201.15 232.49 320.02 586.68

Ray Trace 2R Traverse 41.93 66.38 116.06 329.65

Frame 132.29 156.76 208.38 422.86

Ray Trace 3R Traverse 76.4 121.55 219.44 617.12

Frame 236.96 282.76 383.46 783.61

Ray Trace 1R/2SH Traverse 91.5 143.52 256.9 614.38

Frame 284.98 337.78 453.64 780.88

Ray Trace 2R/2SH Traverse 104.66 158.53 283.7 779.2

Frame 324.27 379.61 511.96 1008.14

Ray Trace 3R/2SH Traverse 35.21 57.23 97.98 264.36

Frame 111.18 136.44 178.43 347.72

64

Table 3.8: Ray tracing time results of the tree scene in milliseconds (grid size is 128x128x

128).

EACD ACD PC DDA

Ray Cast Traverse 14.96 19.89 46.8 130.38

Frame 196.61 204.68 235.35 317.18

Ray Cast 1SH Traverse 36.9 50.4 122.5 366.9

Frame 523.47 536.86 629.77 880

Ray Cast 2SH Traverse 42.83 59.22 152.44 424.25

Frame 620.23 637.16 756.93 1028.88

Ray Trace 1R Traverse 49.37 63.76 167.6 441.11

Frame 660.18 673.95 810.93 1069.44

Ray Trace 2R Traverse 27.41 33.6 92.53 241.3

Frame 281.92 294.32 357.8 515.68

Ray Trace 3R Traverse 56.53 71.9 201.91 532.68

Frame 697.52 712.68 864.63 1199

Ray Trace 1R/2SH Traverse 66.84 84.62 243.86 600.87

Frame 817.93 829.77 1020.77 1383.74

Ray Trace 2R/2SH Traverse 73.92 92.27 265 625.3

Frame 874.88 892.15 1091 1452.4

Ray Trace 3R/2SH Traverse 22.38 27.48 69.51 197.56

Frame 260.86 269.57 322.09 447.96

65

Table 3.9: Ray tracing time results of the jacks scene in milliseconds (grid size is

128x128x128).

EACD ACD PC DDA

Ray Cast Traverse 24.48 41.77 84.56 165.3

Frame 76.45 94.2 139.22 235.69

Ray Cast 1SH Traverse 90.47 150.66 361.86 992.87

Frame 275.29 336.61 558.2 1210.93

Ray Cast 2SH Traverse 169.4 273.73 712.29 1916.47

Frame 512.24 617.97 1073.25 2284.95

Ray Trace 1R Traverse 244.2 382.67 1035.23 2773.18

Frame 738.44 876.76 1555.87 3302.26

Ray Trace 2R Traverse 108.39 155.01 453.1 1225.79

Frame 308.67 355.24 661.82 1440.68

Ray Trace 3R Traverse 280.16 407.31 1187.6 3176.85

Frame 794.56 919.97 1725.13 3723.64

Ray Trace 1R/2SH Traverse 452.35 659.12 1924.38 5089.12

Frame 1283.88 1492.31 2791.01 5972.57

Ray Trace 2R/2SH Traverse 616.42 889.5 2620.76 6883.32

Frame 1751.88 2029.11 3802.17 8090.64

Ray Trace 3R/2SH Traverse 75.47 110.97 320.68 836.04

Frame 223.39 263.04 496.35 1002.48

66

Table 3.10: Ray tracing time results of lattice scene in milliseconds (grid size is 128x128x128).

EACD ACD PC DDA

Ray Cast Traverse 29.7 40.08 106.56 126.65

Frame 95.05 105.74 173.86 193.79

Ray Cast 1SH Traverse 66.89 92.35 258.15 626.84

Frame 205 232.76 435.91 802.52

Ray Cast 2SH Traverse 87.46 125.26 304.67 905.74

Frame 270.92 308.56 493.49 1096.98

Ray Trace 1R Traverse 105.32 170.4 408 970.69

Frame 345.6 409.65 655.17 1219.13

Ray Trace 2R Traverse 192.26 330.05 760.25 2108.27

Frame 649.02 787.97 1227.54 2590.06

Ray Trace 3R Traverse 244.39 421.22 961.26 2788.76

Frame 833.21 1009.53 1562.62 3409.25

Ray Trace 1R/2SH Traverse 248.41 387.05 915.503 2873.38

Frame 801.2 936.01 1474.3 3444.19

Ray Trace 2R/2SH Traverse 424.17 684.23 1592.51 5141

Frame 1397.1 1651.37 2582.13 6151

Ray Trace 3R/2SH Traverse 545.32 888.03 2049 6741

Frame 1816.2 2149.33 3327.42 8051

67

Table 3.11: Ray tracing time results of the sphere�ake scene in milliseconds (grid size is

128x128x128).

EACD ACD PC DDA

Ray Cast Traverse 22.73 32.99 73.5 136

Frame 86 96.52 138.82 207.43

Ray Cast 1SH Traverse 69.58 111.8 263.91 577.31

Frame 273.08 315.11 474.62 797.99

Ray Cast 2SH Traverse 130.33 224.74 642.73 1222.3

Frame 514.87 609.88 1050.92 1655.98

Ray Trace 1R Traverse 200.98 347.93 1189.58 1993.6

Frame 794.53 941.85 1810.6 2655.78

Ray Trace 2R Traverse 70.08 93.29 275.09 501.7

Frame 252.52 276.25 462.15 700.77

Ray Trace 3R Traverse 182.08 261.77 906.39 1582.4

Frame 682.43 764.48 1424.56 2127.98

Ray Trace 1R/2SH Traverse 319.69 478.58 1879.42 2967.79

Frame 1205.23 1364.74 2795.56 3949.25

Ray Trace 2R/2SH Traverse 453.74 691.19 2948.48 4363.91

Frame 1718.93 1956.45 4253.4 5749.95

Ray Trace 3R/2SH Traverse 51.95 68.27 200.05 353.35

Frame 190.06 206.98 379 497.69

68

CHAPTER 4

EACD BASED REAL-TIME VOLUME

RENDERING ON GPU

Direct volume rendering methods generate images directly from the volume data without

converting it to geometric surface information. Ray casting, splatting [96], shear warp [55]

and texture mapping are among the well known volume rendering techniques. In this chapter,

accelerated volume ray casting by using our EACD acceleration structure is introduced. A

primitive ray caster sweeps the volume through the rays by sampling data at constant ray

steps even if the region being traversed is empty. Distance �eld methods (PC, ACD, and

EACD) on the other hand, can skip groups of empty voxels in big steps. In this context, we

extended ACD/EACD ray traversals to facilitate the skipping of not only empty spaces but

also any homogeneous regions in the volume. During the classi�cation of volume data to form

homogeneous regions, we impose some error thresholds. These thresholds are determined

experimentally in such a way that, a human eye can not capture the image artifacts caused

because of passing over minor di�erences of the data in homogeneous regions.

Some of the early acceleration methods used hierarchical data structures such as kD trees

[86] and octrees [57] to skip empty regions of volume data. Several other works extended the

usage of hierarchical data structures so as to provide acceleration of rendering homogeneous

regions as well as empty regions [17, 56]. Some other techniques explored other forms of

encoding schemes such as look-aside bu�ers, proximity clouds [13], and shell encoding [88]

to skip empty spaces. On the other hand, recent algorithms and data structures were pro-

posed in order to take advantage of internal parallelism and to utilize the dedicated graphics

hardware as much as possible[58, 59, 52].

Specialized capabilities of the graphics hardware are extensively used for accelerating

volume rendering. Especially, fast texture mapping and �ltering facilities of the GPU are

69

frequently employed for real-time volume visualization. In the texture mapping approach,

image is rendered by mapping 3D volume slices to the screen aligned planes. Cullip and

Neumann's [16] and Cabral's [10] work used this method to accelerate volume rendering.

Similarly, Van Gelder and Kim [31] shade the volume data with directional lighting and ren-

der the pre-lit data with 3D texturing on hardware. Westerman and Eartl [95] used graphics

hardware to shade and render volume data on the �y with ray casting. Meiÿner et al. [62]

introduced a method, where shading and classi�cation of the interpolated data is done by the

graphics hardware. Rezk-Salama et al. [78] used �xed function graphics pipelines with multi

texturing to render volume data. Engel et al. [23] utilized programmable graphics pipelines

for per-pixel lighting with pre-integration. With the advent of programmable GPUs, faster

ray traversal methods with empty space skipping and early ray termination had become

possible [58, 59, 52, 51].

In this work, we focused on using distance encoding schemes and GPU friendly ray

traversals to make e�cient use of the programmable graphics hardware. Our method bene�ts

from homogeneous region skipping and integration by using EACD acceleration structure.

The remainder of the chapter is organized as follows: Volume ray casting and factorization of

the ray integral that we used during homogeneous space leaping is given in the �rst section.

Distance based homogeneous region skipping technique is explained in the second section.

Next, our EACD based direct volume renderer is introduced. The test results are presented

and discussed in the last section.

4.1 Volume Ray Casting

Raw 3D volume data contains scalar density values in each grid voxel. Optical parameters

have to be determined for each voxel in order to display interaction of light with the volume

densities and to obtain realistic-looking rendering results. This is performed in a preprocess-

ing step by applying a transfer function, which maps density values in each voxel to opacity

and color values. In this work, we used the classi�cation method proposed by Mark Levoy

[57]. In addition to opacity and color information, approximate surface gradients are also

determined with this classi�cation method. As a result, we use opacity and approximate

surface gradients for the optical properties.

During the traversal, ray is sampled trough the ray direction from front-to-back viewing

order with a constant step size. At each sample point, the e�ects of the optical properties

are integrated with the e�ects of the incoming sample's optical properties to obtain the

70

accumulated color and opacity values trough that ray. This operation is achieved with the

well known numerical solution for the ray integral (equation (4.1)).

Cr = C1α1 + (1− α1)C2

αr = α1 + (1− α1)α2

(4.1)

4.1.1 Homogeneous Space Ray Integration

The sampling and reconstruction operation is the most time-consuming part during the ray

traversal. In order to minimize this cost, our method tries to group large number of voxels

with similar optical properties to form homogeneous region by using EACD encoding. There

is no need to sample and compose data multiple times for a ray segment inside a homogeneous

region. Our method exploits the ray integral factorization method as described in [30]. By

this way, we make only one fetch operation to obtain the optical properties of the whole

homogeneous span. These properties are then used to calculate accumulated color and

opacity values for the entire span. Ray integral factorization along a ray is expressed as in

equation (4.2).

Cr =
n∑

i=1

[
Ciαi

i−1∏
j=1

(1− αj)

]

=
m∑

i=1

[
Ciαi

i−1∏
j=1

(1− αj)

]
+[

m∏
k=1

(1− αk)
]

n∑
i=m+1

[
Ciαi

i−1∏
j=m+1

(1− αj)

]

where,m ∈ [1, n]

(4.2)

According to this factorization, when a ray enters into a homogeneous region and passes

through n samples until exiting the region, color and alpha values inside the region are

accumulated according to equation (4.3).

Cri = C(1− (1− α)n)

αri = 1− (1− α)n
(4.3)

where, Cri and αri are the accumulated color and opacity values respectively for the

homogeneous region i, with n samples. The �nal accumulated color of the ray is computed

using regular ray integration formula (4.4).

Cfinal =
k∑

i=1

Cri

i−1∏
j=1

(1− αrj)

 (4.4)

71

According to equation 4.4, k is the number of regions located in sequence through the

ray direction.

4.2 Distance Based Homogeneous Region Leaping

Distance based methods compute the distance values to the nearest non-empty voxel from

each of the voxels. In homogeneous region encoding, the distance value represents the dis-

tance from the voxel to the nearest neighboring region. Thus, instead of empty/non-empty

type, there is same-region/di�erent-region type of classi�cation. This type of classi�cation

essentially a�ects the computation of distance �elds and the traversal algorithm itself.

Previous work on distance �elds based volume ray casting basically rely on proximity

clouds (PC). Cohen et al.'s PC [13] utilize isotropic 3D distance �eld. Isotropy comes from

the fact that a single distance value is computed per voxel, representing the maximum

interval that a ray can advance regardless of the direction. When Euclidian metric is used,

the distance value represents the radius of the homogeneous region centered in the voxel. In

the original method, distance values are stored in background (empty) voxels. On the other

hand, we do not classify voxels as empty or non-empty. In homogeneous region encoding,

there are simply regions with similar optical properties. Therefore we use a secondary 3D

grid for keeping the values of the distance �eld. Each voxel has a corresponding distance

value. In the vicinity of a di�erent region, the PC traversal switches to the primitive ray

casting with constant stepping mode.

Sramek and Kaufmann's [84] anisotropic chessboard distance traversal method (ACD)

does not need to switch between the stepping modes. In the original algorithm, empty

regions (background voxels) can be skipped fully. The authors demonstrated the technique

with a volume renderer. Their algorithm can work not only for regular voxels but also for

rectilinear voxels with some additional cost. In ACD, instead of a single isotropic distance,

eight distance values are stored to de�ne the extents of empty regions. The appropriate

distance value (region size) to be used is determined by the component signs of the ray

direction. As explained in Chapter 3 we devised a GPU friendly ray traversal technique by

using homogeneous ACD regions. Both ACD and EACD volume renderers use the same

algorithm with a minor di�erence. The details of the algorithm are given in the next section.

In this work, we use the same homogeneous ray integration for all of the methods. The

ray integration within the homogeneous segment of ray is performed with the factorization

method explained in Section 4.1.1. Number of points sampled by the ray in this region (n),

72

Figure 4.1: ACD and EACD sample points are aligned with the primitive sample points of a

primitive ray caster. In the shown case, homogeneous region leaping requires just 2 samples

as opposed to 9 samples needed by a primitive ray caster.

is calculated as the ceiling of the ratio of the distance value to the constant step size. For

each method, both the volume data and the distance �eld are represented by 3D textures

located on the GPU memory. Inside a homogeneous region, a ray can step forward as long

as the distance value of the current voxel.

4.3 EACD Ray Casting

Note that, although eight distance values form an anisotropic shape around the voxel in

ACD, the homogeneous regions de�ned by each of these values is cubic (assuming unit voxel

dimensions). EACD extends this structure in such a way that it allows the de�nition of

non-cubic homogeneous regions. We observe that non-cubic regions may reduce number of

traversal steps considerably as shown in Figure 4.1.

The original traversal algorithm we developed in [25] and detailed in Chapter 3 essentially

addresses ray tracing. The ray traversal algorithm is adapted for volume ray casting. In

ray tracing, rays skip empty regions fully through the border of the next region. In order to

�nd next position, the ray is intersected with the border planes de�ned by the homogeneous

region. The intersection point giving the minimum parametric distance is selected as the

next ray position.

On the other hand, volume ray casting with homogeneous region leaping require some

adjustments to this algorithm. The image rendered with EACD should be no di�erent than

the image of primitive ray caster. For that reason, contrary to [25], the next position of

a ray during the traversal is aligned with the sample points of the primitive ray caster s

73

shown in Figure 4.1. The aligned position can be computed by dividing the homogeneous

region distance to the constant ray step size. The ceiling of this division gives how many

samples a ray can safely skip. The ray is advanced by the number of ray step times the

constant step size. This scheme works even if the homogeneous region is only one voxel.

Note that, we use point sampling (nearest neighbor) instead of trilinear �ltering. In case of

trilinear �ltering, opacity and normal values may change in the border voxels of a region due

to the interpolation. Since the optical properties of inner voxels are very similar, fetching

one sample from this region is still su�cient for the ray integral factorization.

4.3.1 Implementation

The algorithm is relized using OpenGL 2.0 and Cg 1.4 toolkit [60] with FP40 pro�le. Our

GPU allows for dynamic branching and long kernels. Therefore, the whole ray casting

operation can be executed within a single fragment program.

The volume data contains a normal and opacity value for each voxel. Data is stored as

a 4-component 16-bit �oating point formatted 3D texture. Similarly, the distance �eld is

stored in another 3D texture. In order to reduce memory requirements, 16- bit packed color

format (3×5 bits RGB, 1 bit alpha) is used for EACD texture. Since EACD and ACD utilize

di�erent distance values for each direction octant, the distance �eld texture is enlarged by a

factor of 2 along each direction. As a result, for each data voxel, there are 8 corresponding

ACD/EACD voxels.

Prior to ray casting, a ray generator program is run to create and clip rays to the bounding

box of the scene. As for the output, ray generator creates ray origin and direction textures.

Rays intersecting the scene are then transformed into the volume coordinate space (integer

coordinate values de�ne voxel corners). By this way, the voxel indices of a point can be

easily computed by taking the �oor of its coordinates.

The Cg like pseudo-code for the EACD volume ray casting kernel is given in Fig-

ure 4.2. Variable types are explicitly given in order to reveal the vectorized operations

in the algorithm. The code does not include any data dependent branching inside the main

traversal loop. ACD traversal is almost identical to EACD. The only di�erence is that;

instead of three distance values, one value is fetched from the distance texture. In the

pseudo-code, tex_direction, tex_origin are 2D ray textures created by the ray generator.

tex_volume is the 3D volume data texture which contains voxel normals and opacity values,

while tex_distance is the 3D distance �eld texture as explained previously in this section.

ray_idx is the ray index which is actually 2D texture coordinates to the ray textures. t_step

74

float4 RayCast(Sampler2D tex_direction, tex_origin,

Sampler3D tex_volume, tex_distance,

float2 ray_idx,

float t_step,

shadingParameters shading_param)

{

//read ray data
float3 D_ray = tex2D(tex_direction,ray_idx);

float3 O_ray = tex2D(tex_origin,ray_idx);

// i n i t i a l i z e f i na l color
float3 C_final = 0;

float A_final = 0;

//loop while the ray i s not fu l ly opqaue or ins ide the volume
while(A_final<1 && isInVolume(O_ray))

{

//read voxel data
int3 vox_coords = floor(O_ray);

float3 normal = tex3D(tex_volume,toTexCoords(vox_coords)).rgb;

float A_sample = tex3D(tex_volume,toTexCoords(vox_coords)).a;

//read the appropriate distance value based on the ray direction
int3 distance = tex3D(tex_distance,getDistanceVoxelCoords(O_ray,D_ray));

int3 region_borders = computeRegionBorders(vox_coords,distance);

//compute ray/region border intersect ions
float3 t_borders = intersectRayWithRegionBorders(O_ray,D_ray,region_borders);

// find the minimum parametric distance
float t_distance = min(t_borders.x, min(t_borders.y,t_borders.z));

//compute the number of ray steps
int n = ceil(t_distance/t_step);

//compute the integrated region color and alpha
float A_region = (1-pow(1-A_sample,n));

float3 C_region = A_region* shade(O_ray,D_ray,normal,shading_param);

//accumulate color & alpha
C_final += C_region*(1-A_final);

A_final += A_region*(1-A_final);

//advance ray
O_ray += D_ray*(n*t_step);

}

return float4(C_final, A_final);

}

Figure 4.2: Cg like pseudo-code for the EACD volume ray casting. Note that most of the

operations work on vectors.

75

is the parametric distance for the constant ray step. A primitive ray caster always moves rays

by this distance in each step. Finally shading_param is the structure keeping the shading

parameters such as light position, di�use and specular colors as well as the material colors.

The output of the kernel is the accumulated color of the ray.

This code needs some minor adjustments for trilinear �ltering. In that case, the calcu-

lation of the number of ray steps should be altered in such a way that, the ray should take

constant step in border voxels (voxels neighboring to a di�erent region). Border voxels can

be easily determined by looking at the distance value (i.e. if any component of the distance

vector is 0, it is considered as the border voxel). The resulting code should be like below:

n = IsBorderVoxel(distance) ? 1 : �oor(tdistance / tstep)

4.3.2 Construction of Homogeneous EACD Regions

Construction of homogeneous EACD regions is almost identical to the one described in

Section 3.3. Therefore, we only brie�y describe the operation and give the di�erences in this

section.

A heuristic with a simple greedy search is used in order to create EACD grid. The

heuristic is based on �nding the largest homogeneous region per voxel basis. We rely on

the ACD grid and extend regions along the main axes to construct the homogeneous EACD

regions. As a result, building the acceleration structure involves two phases. In the �rst phase

ACD homogeneous regions are created. Firstly, the distance values of the cells are initialized

to in�nity. Then, ACD kernels are applied as described in Figure 3.9. In this procedure, the

distance value of the overlaid element is computed using the following algorithm:

Dist(Vi,j,k due to Vx,y,z) = Dist(Vi,j,k) ,if inSameGroup(Vx,y,z,Vi,j,k,To,Ta)

0 ,otherwise

Where Vx,y,z are the voxel coordinates of the current center voxel and Vi,j,k are the voxel

coordinates for the overlaid element. Function inSameGroup reads the opacities and the

surface gradients of Vx,y,z and Vi,j,k. Vi,j,k is classi�ed as belonging to a di�erent region

than Vx,y,z, if the opacity di�erence is greater than the opacity threshold, To, or the angle

di�erence is greater than the angle threshold, Ta. We give a di�erent id to each separate

region. As a result, we do not classify regions as empty or non-empty, as in case of ray

tracing of geometric data. Instead, regions are arranged as the groups of voxels with similar

optical properties (i.e., voxels with the same region id).

76

Figure 4.3: Tested volume datasets (a)engine, (b) mrbrain, (c) teapot

In the second phase, we �rst create six axial distance grids representing the range of voxels

belonging to the same group in line along the ±x, ±y and ±z axis directions. In order to

de�ne EACD homogeneous regions, we determine how much the cubic homogeneous regions

can be extended by using the auxiliary axial distance grids and ACD �eld in a greedy manner.

This operation is done for each voxel. The extension procedure is carried as follows: Border

voxels of the homogeneous ACD regions are scanned and maximum possible extensions along

the main axes are computed. The cubic region is then extended along the axis giving the

maximum volume. This step is repeated once more, for one of the remaining two axes which

is giving the maximum volume.

If tri-linear interpolation is to be be used during rendering, region grouping operation

requires a minor modi�cation. In this case, border voxels are marked prior to the creation

of ACD grid. During the region classi�cation, voxels marked as the border voxels are always

considered as belonging to a di�erent region.

4.4 Results And Discussion

A number of well known volume datasets were used for testing the algorithm. The rendered

images are shown in Figure 4.3. Tests were run on a 512MB GeForce7800 GTX graphics

board. The frame size for the rendered images is 512×512.

As seen in Table 4.1, the speedup compared to ACD is around 25%, while it is as much

as 700% compared to the primitive ray caster. EACD is especially advantageous over ACD

if the volume is composed of many non cubic homogeneous regions. Since both ACD and

EACD use the same algorithm essentially, their performances should be equal in the worst

case (assuming memory bandwidth is not the bottleneck). On the other hand, for EACD,

77

Table 4.1: Performance results of the ray casting methods. Results are in milliseconds. Last

column is the speedup achieved by EACD compared to primitive ray casting.

Data R.Cast PC ACD EACD Speedup

engine 183 83 42 33 554%

mrbrain 206 101 51 41 502%

teapot 346 121 62 49 706%

maximum distance limit of 32 (due 5 bits imposed by the low precision distance texture

format) may cause some performance penalty in very large homogeneous regions. But none

of the volume datasets we experimented on revealed such a problem. As an empty space

skipping technique, PC traversal does not perform as fast as EACD or ACD. This is largely

the result of shorter ray steps caused by the isotropic regions. The loop body of the primitive

ray caster is fairly tight and e�cient. However, it performs the worst compared to region

leaping methods, since it needs to sample many more points .

Figure 4.4 illustrates the average number of loops performed per ray to complete the

rendering. Brighter regions indicate higher loop counts. It is clearly seen from the image

that ACD and EACD require considerably lower loop counts than PC. Among all methods,

EACD can pass through the volume with the least average number of loops. EACD traversal

step counts are generally 10% to 30% lower than ACD.

The opacity and angle thresholds To and Ta are used to control the size of homogeneous

regions. As threshold values increase, larger homogeneous regions are formed and larger

optical variation within the regions is allowed. Although the rendering speed increases due

to larger regions, it causes more artifacts on the rendered image. The To and Ta parameters

can be adjusted to compromise between the image quality and rendering time. Note that if

the volume data has many empty regions, huge speedup may be achieved even for the low

values of the parameters. Figure 4.5 shows the images rendered with several di�erent To

and Ta threshold values.

The problem of ACD and EACD is, the acceleration structure is eight times as big as it

is for PC and for a primitive ray caster. Since the maximum allowed 3D texture resolution

is 5123 in our test hardware, the largest dimensions of the volume data can be 2563. As the

size of the local graphics memory enlarge and hardware capabilities enhance, this will be less

of a concern. As of date, the latest GPUs can utilize 3D textures with the dimensions of as

big as 20483. This is 64 times greater than the testing hardware. Still, a better solution to

78

Figure 4.4: Illustration of loop counts for (a)Ray caster, (b)PC, (c)ACD, (d)EACD. Bright-

ness and contrast is adjusted for visual clarity. Darker regions indicate lower loop counts.

79

Figure 4.5: Teapot images rendered with ACD using di�erent segmentation thresholds.

(a)To:0.01, Ta:3, (b)To:0.02, Ta:3, (c)To:0.1, Ta:3, (d)To:0.01, Ta:1, (e)To:0.01, Ta:10,

(f)To:0.01, Ta:20

this problem may be to explore hybrid partitioning structures or using some GPU friendly

data compression method.

80

CHAPTER 5

GPU ACCELERATED STEREOSCOPIC

RAYTRACING

Giving the sense of depth from two dimensional pictures is a well studied problem in virtual

reality. Among the solutions, using a pair of images prepared for each eye (stereoscopic) is

the most widely used technique due to the simplicity and e�ectiveness. Today, majority of

the virtual reality applications depends on stereoscopic images. In real life a pair of cameras,

one for left eye and one for right eye, are used for capturing stereo images. Analogously, in

virtual reality two virtual cameras are used and the scene is rendered from their viewpoints

for the stereoscopic vision.

Rendering a scene twice, and thus doubling the frame time is the major drawback of

stereoscopic rendering. If the scene is complex or expensive rendering methods are used,

doubling the frame time might not be feasible. Especially in virtual reality, where convincing

images should be rendered in interactive rates, slow frame rates may destroy the sense of

immersion experienced by the user. Similarly, o�ine rendering applications may su�er from

the same problem, where time required to render stereoscopic frames separately may be

infeasible due to time or budget constraints.

In this chapter we focused on e�cient stereoscopic ray tracing on the GPU. In order to

demonstrate the technique, we developed a Whitted style brute force recursive ray tracer that

fully runs on the GPU. The utilized stereoscopic reprojection method is based on Adelson

and Hodges' work [1]. However, although their reprojection algorithm is suitable for CPUs;

it includes several di�culties and ine�ciencies for GPU rendering. In this chapter, we

show how the reprojection technique can be mapped to the parallel streaming model of the

GPU e�ciently. Note that although it is possible to use the introduced method for o�ine

rendering, our main concern is GPU based real-time stereoscopic ray tracing.

81

The rest of the chapter is organized as follows: In the second section, related previous

work is given. In the third section, we brie�y describe the GPU based ray tracing. Image

reprojection is explained in the fourth section. The following section describes how the

problem is e�ciently mapped to GPU programming model. Additionally, several variations

of the technique are described. Test results and discussion are given in the sixth section.

5.1 Previous Work

Image reprojection is a kind of image based rendering technique. Essentially, a rendered or

captured image from a certain viewpoint is used as the reference image; and the pixels of the

reference image are reprojected onto the image plane of another viewpoint to generate the

image from that viewpoint. By utilizing the image space temporal coherence, reprojection

can be used in conjunction with ray tracing to accelerate the rendering the frames of an

animation sequence. Stereoscopic rendering may be thought as a special kind of a two-frame

animation sequence; in which only the viewpoint is shifted slightly for the second eye while

the rest of the scene remains still. Therefore reprojection is well suited to the rendering of

stereoscopic images. Since reprojection time is constant and does not depend on the scene

complexity, proper reprojections can save huge amount of time during the rendering of the

second image.

In this chapter, we limit our scope to the ray tracing of stereo image pairs. Badt was

the �rst to use pixel reprojection to accelerate ray tracing of animation sequence [48]. In

his work, �rst hit positions of the eye rays are preserved and projected to the viewpoint

of the next frame. Then, the projected image is searched by using a 5×5 box �lter for

possible problems, and only the areas considered to be suspicious are ray traced. His method

can be used to render the stereoscopic images. Similarly, Adelson and Hodges [1] used

reprojection to build warped image of the right eye from the left eye image. However,

instead of blocks, they search possible reprojection errors by scan line order. Their method

guarantees to detect problematic reprojections. Only those problematic spans are ray traced

for the right eye. They reported that, up to 93% of the left eye pixels can be successfully

reprojected to the right eye without further need to ray trace. Later on, they proposed

another algorithm that can accelerate the ray tracing not only of stereoscopic images but

also of generic animation sequences by using reprojections [2]. On the other hand, the

algorithm requires a space partitioning structure or bounding volumes, and restricted to

convex objects. In a more recent work, Havran et al. exploited temporal coherence to speed

82

Figure 5.1: Kernels for the ray tracer.

up rendering of ray casted walkthroughs [40]. Their work can handle generic animation

frames with di�erent viewpoints. They classify possible reprojection errors and propose

methods for veri�cation of each kind of error.

5.2 The Ray Tracer

In order to test stereoscopic image generation, we implemented a GPU based ray tracer.

Beacuse the aim of this chapter is to devise e�cient GPU based reprojection methods; no

acceleration structures or advanced shading methods are implemented. The ray tracer only

supports spheres, in�nite planes, point light sources and phong shading. However extending

it to support other types of primitives, light models and shading methods is straightforward.

The kernel �ow of the ray tracer is given in Figure 5.1, which is very similar to the

kernels of our EACD ray tracer (see Chapter 3). However, since no acceleration structure is

employed, traverser and intersector kernels are uni�ed to one kernel. As seen in the �gure

there are �ve main kernels. All of these kernels are executed by the fragment processors. All

kernels write their output to screen sized textures. By this way, the output of a kernel can be

used by subsequent kernels. Each pixel of the texture represents a ray and keeps information

of the ray passing through that pixel. The kernels operate on every pixel (i.e. every ray) of

the screen. In order to execute a fragment program on all pixels (rays) a screen sized quad

83

is sent to the GPU. The rasterizer scan converts the quad, and generates a fragment to be

processed by the fragment processors, for each screen pixel.

Kernels are very similar to the ones described in Chapter 3. The �rst kernel is Eye-

ray generator. It generates eye rays passing through the pixel centers by using the view

projection matrix of the camera. As the output, ray origin and ray direction textures are

generated. These textures are used by the subsequent kernels to read the corresponding

ray information. The second kernel is Traverser/Intersector. It is responsible for ray-object

intersection testing. Scene database is sent in a scene database texture. This texture keeps

sphere positions, radii and corresponding material information. Since no acceleration struc-

ture is employed, all rays are tested against all spheres. The output of this kernel is written

to intersection position and normal textures. The third kernel, Shadow Intersector, gets the

intersection results of Traverser/Intersector along with a light position, and tests if the in-

tersected position is in shadow with respect to the light source. The shadow test results are

written to a shadow texture. Pixel value of the shadow texture is 1 if the intersected position

is in shadow or 0 otherwise. The next kernel is Shader/Accumulator. It uses shadow tex-

ture, intersection position and normal textures, material information, and light parameters

to illuminate pixels. The results are accumulated to a color bu�er texture, which represents

the �nal rendered image. Note that, Shadow Intersector and Shader/Accumulator kernels

should be called once for each light source. The last kernel is Re�ector/Refractor. Based

on the material properties of the intersected positions, it re�ects or refracts rays. All ray

tracing operations are done over the whole screen in parallel. Therefore, during ray tracing a

texture stack which stores previous results is used to create bu�er trees instead of ray trees:

Intersection and ray information textures are pushed to the stack before Re�ector/Refractor

kernel takes place. Re�ector/Refractor writes the re�ected or refracted ray information to

the ray information textures, and the execution continues with Traverser/Intersector. Old

textures are popped from the stack when the re�ected rays are shaded and done.

5.3 Stereoscopic Ray Tracing by Reprojection

In order to obtain a stereo image pair, viewpoints are o�set laterally from each other (shifted

horizontally). For obtaining geometrically correct stereo pairs, view directions (camera-

target vectors) should be parallel. For a balanced stereoscopic view, it is required to locate

projection plane in zero parallax. That is, any geometry residing on the projection plane

should project to the same screen location for both left and right eyes. As shown in Figure 5.2,

84

Figure 5.2: 2D illustration of stereoscopic perspective projection. e is eye separation distance.

d is focal length. Point A is behind the projection plane, thus projects to positive parallax.

C is in front of the projection plane which projects to negative parallax. Since B is on the

projection plane, it is projected to zero parallax.

any geometry closer than the projection plane will project to negative parallax, while the

geometry behind the projection plane will project to positive parallax. In order to create the

view-projection matrices, right and left eye positions are o�set laterally from each other and

their view frustums are corrected asymmetrically so that viewports fully overlap each other

at the focal length. This kind of stereoscopic camera setup is known as o�-axis projection.

Note that o�-axis projection does not introduce vertical parallax.

An OpenGL implementation of the o�-axis stereo projection is given in [9]. For the

sake of brevity we omit the derivation of the matrices and assume that the image of the

left eye is rendered by using Mleft, while the right eye is rendered by using Mright, which

are world-to-screen space transformation matrices for left and right eyes respectively. It is

possible to �nd the reprojected right image location of a pixel, when the depth of the pixel (z

distance from the viewpoint) is known. The reader can refer to [1] for the derivation of the

reprojection equation. Similarly, a pixel can be reprojected onto right eye by using Mright

if the 3D world coordinates of the point is known. Since world positions of the intersected

pixels are already known in the left image, we simply transform these positions by Mright to

calculate reprojected pixel locations on the right image.

On the other hand reprojection can cause some image artifacts. As described in [1] three

types of pixel errors are possible. These are overlapped pixels, missing pixels and bad pixels.

85

Figure 5.3: Reprojection problems. (a) Overlapped pixel and (b,c) bad pixel problems.

Overlapped pixel problem occurs when multiple reprojections are done onto the same pixel.

The correct reprojection value should be resolved in this case. Adelson and Hodges show that

this problem can be easily solved if reprojections are done beginning from the leftmost pixel

to the right, and overwriting any previous reprojections. That is, only the last value is kept

in case of multiple reprojections. The missing pixel problem happens when no reprojections

are done onto some of the pixels. Since there is no information on those pixels, they should

be ray traced to �ll the missing values. Bad pixel problem occurs if two adjacent pixels on a

scanline are reprojected to the screen locations more than one pixel away from each other.

In this case, there is a gap of at least one pixel long between the reprojected locations. The

validity of the values on these gaps are questionable, and therefore they should be ray traced.

Overlapped and bad pixel problems are illustrated in Figure 5.3. In Figure 5.3-a, intersection

positions which project to di�erent locations on left eye are reprojected to the same pixel on

right eye, and constitute overlapped pixel problem. Figures 5.3-b and 5.3-c depict bad pixel

problem. Adjacent pixels of left eye are reprojected to non-adjacent positions leaving a gap.

In Figure 5.3-b object A should be seen through this gap, while in Figure 5.3-c it is blocked

by object D and should not be seen. However one can not determine if object A is seen or

not through the gap just by looking at the reprojection. For that reason, the values on the

gap are considered as invalid.

In order to rule out reprojection errors, left image is ray traced by scan line order, left

to right fashion. Status of all right image pixels are set to NO_HIT initially. As left image

pixels are ray traced, they are reprojected to the right image. Reprojected pixels in the right

image are marked as HIT. If gaps are detected between any adjacent reprojected locations,

the gap is marked as NO_HIT. After a scan line is done, pixels marked as NO_HIT are ray

86

traced for the right image. The modi�ed pseudo code of the algorithm is given in Figure 5.4.

Note that, this algorithm can generate correct reprojections for visible surface ray tracing.

However, it is not possible to reproject re�ected/refracted pixels properly with this method.

5.4 GPU Based Stereoscopic Reprojection

Our GPU based stereoscopic reprojection takes place after Shader kernel is run. Intersection

positions, normals and per-light shadow information are reprojected to be able to shade right

pixels accurately. Especially for specular surfaces, slight variation of eye position may change

the shading obviously. Therefore, instead of simply copying color values of the left image,

new color values are calculated from scratch. In the current implementation only eye rays and

the corresponding shadow rays are considered for reprojection. Re�ection/refraction passes

are not reprojected, but ray traced from scratch for both eyes. If the scene is not highly

re�ective this is not a big problem, since only a small and decreasing amount of rays are

re�ected. We propose an approximate solution to the reprojection of re�ection/refractions

in the discussion section at the end of this chapter.

Original stereoscopic reprojection algorithm given in Figure 5.4 includes some problems

for GPU based ray tracing. Firstly, it requires strict ordering of rendered pixels (left to

right fashion). However, GPUs do not guarantee the processing order of the rasterized

pixels if they belong to the same primitive. Therefore, the algorithm should be modi�ed

for parallel rendering of rays. Secondly, the screen location of the pixels should be altered

dynamically during reprojection, which is a dynamic scattering problem. Moreover in case

of bad pixels, more than one reprojected pixels should be marked as NO_HIT. However,

the fragment processors of GPUs can only write to a single screen location. Eventually,

stereoscopic reprojection maps to one-to-many dynamic scattering problem.

In order to solve the �rst problem, reprojection phase is separated from the ray tracing

phase: Whole screen is ray traced in the �rst pass, and then reprojected in a second pass.

Left to right ordering of reprojections are guaranteed in the second pass by sending a point

or line primitive for each pixel from left to right.

In order to solve the reprojection problem, we transformed scattering operation (writing

to multiple computed addresses) to gather operation (reading from multiple computed ad-

dresses). Note that, GPUs can read from multiple arbitrary texture locations without any

limitation. To facilitate scatter-to-gather transformation, dynamic scattering operation is

decomposed into to three phases. In the �rst phase, screen locations of reprojections are

87

for(scan_line=0; scan_line<screen_height; ++scan_line)

{

//clear hit status
for{pixel=0; pixel<screen_width; ++pixel}

hitStatus[pixel] = NO_HIT;

//ray trace l e f t eye & reproject to right eye
prev_right_pixel = -1;

for(pixel=0; pixel<screen_width; ++pixel)

{

//ray trace l e f t image pixe ls
ray = fireRay(left_eye_position,scan_line,pixel);

traceResult = traceRay(ray);

int_pos = getIntersectionPosition(traceResult);

int_normal = getIntersectionNormal(traceResult);

setLeftColor(scan_line,pixel, shade(int_pos,int_normal,left_eye_pos,

light_params));

//compute the reprojected pixel posit ion on the right image
right_pixel = projectToRightEye(getIntersectionPosition(traceResult),

M_right);

if (right_pixel < screen_width)

{

//handle reprojection problems
if (prev_right_pixel-right_pixel > 1)

for (invalid=prev_right_pixel; invalid<right_pixel; ++invalid)

hitStatus[invalid] = NO_HIT;

hitStatus[right_pixel] = HIT;

//shade the reporjected right pixel
setRightColor(scan_line,right_pixel, shade(int_pos,int_normal,

right_eye_pos,light_params));

prev_right_pixel = right_pixel;

}

else

prev_right_pixel = screen_width-1;

}

//ray trace the remaining right image pixe ls
for{pixel=0; pixel<screen_width; ++pixel}

if (hitStatus[pixel] == NO_HIT)

{

ray = fireRay(right_eye_position,scan_line,pixel);

traceResult = traceRay(ray);

int_pos = getIntersectionPosition(traceResult);

int_normal = getIntersectionNormal(traceResult);

setRightColor(scan_line,pixel, shade(int_pos,int_normal,

right_eye_pos,light_params));

}

}

Figure 5.4: Stereoscopic reprojection algorithm

88

calculated and written to a scatter table. In the second pass, a point or a zero length line

is sent to pipeline for each pixel and repositioned according to the scatter table. As a result

of this phase a gather table is created. Gather table keeps the original pixel locations (prior

to the reprojection) so that the correct left eye information can be copied to right; and the

information of whether the reprojection is valid (HIT) or not (NO_HIT). In the third phase,

intersection positions, normals and shadow results are reprojected to right eye by using the

created gather table. Scatter and gather tables are actually 2D textures. The third phase

is always performed on GPU. However, in order to create the gather table we devised three

methods. One of them uses CPU to create the table, while other two create it fully on GPU.

As demonstrated in the section, full GPU approach performs an order of magnitude faster

than CPU.

The third phase is always performed on GPU. However, in order to create the gather

table, we followed three approaches. One of the approaches uses CPU to create the table,

while two others create the table fully on GPU. As demonstrated in the test results, full

GPU approach performs much faster than CPU method.

5.4.1 CPU Created Gather Table

A naive way to attack the scattering problem is to transfer left image data from the GPU

memory to CPU memory and to perform reprojections on the CPU. Since CPU can write

to arbitrary memory locations without any problem, multiple dynamic scattering is trivial

to implement. The reprojected values can then be sent back to GPU memory. However,

this approach is sub-optimal. Transferring data between the GPU and CPU memory is

(relatively) slow, and should be minimized. Time required for frequent transfers may pose

a bottleneck and can increase frame time considerably. Reprojection of the intersection

positions, normals and shadow results requires all of these data to be transferred to CPU

memory and then sent back to the GPU memory after reprojection.

So as to reduce memory transfers, CPU only reads intersection positions from the GPU

memory, creates gather table and sends the table back to the GPU. That is, in case of CPU

based reprojections; �rst phase (scatter table creation) is skipped, and second phase (gather

table creation) is carried out by the CPU.

89

Figure 5.5: Two-Pass GPU based gather table creation. VP denotes data processed by vertex

processors, while FP denotes data processed by fragment processors. oldR and R holds for

prev_right_pixel and right_pixel respectively as calculated in Figure 5.4.

5.4.2 Two-Pass GPU Gather Table

Two-pass GPU based gather table creation consists of the �rst two phases of scatter-to-gather

transformation as described above. In the �rst pass, a scatter texture is generated by means

of a fragment program. A screen sized quad is sent to the GPU so that all image pixels are

processed in this pass. As shown in Figure 5.5, scatter texture is an RGB texture; where

red keeps the x component of the reprojected screen coordinates of the previous pixel, green

keeps the x component of the reprojected screen coordinates of the current pixel and blue

keeps the di�erence between the two. In the second pass, zero-length line primitives are sent

to the pipeline for each screen pixel (from left to right fashion). A vertex program processes

these lines by relocating line start and end positions according to the scatter texture. At

the same, time a fragment program writes the gather texture according to the information

coming from the relocated line stream. Contrary to the CPU based approach, this method

fully runs on the GPU, and does not require expensive CPU-GPU data transfers. Note that,

90

Figure 5.6: One-Pass GPU based gather table creation. GP denotes parts of data processed

by geometry processors, while FP refers to fragment processing.

used vertex program should be kept simple (it relocates vertices just by looking up the scatter

table in our implementation), since it is executed for both vertices of the line primitives (i.e.

run twice for each pixel). It is the main reason why relocations are calculated in a previous

pass by the fragment processors (i.e., for processing each pixel once). Moreover, fragment

processors can run much faster than vertex processors on the majority of GPUs.

5.4.3 One-Pass GPU Gather Table

This method also runs fully on the GPU. This time, geometry processors found on the

latest GPU generation are utilized. By using geometry processors, �rst phase (scatter table

generation) can be skipped. Since geometry processors can emit new geometry (line strips

in our case) to the pipeline with dynamically computed positions, scatter texture is not

necessary. Namely, geometry processors can directly generate relocated line primitives. As

illustrated in Figure 5.6, geometry program gets a point primitive instead of a line, and

spawns a new, relocated line for each point.

Similar to the two-pass gather table generation, vertex processors could be used instead

of geometry processors in this method. However, since vertex processors need a line primitive

for each pixel, this would double the relocation calculation time. Especially for the previous

GPU generations, where vertex processors are not as powerful as fragment processors and

there are no geometry processors, two-pass approach should be used.

91

5.5 Results and Discussion

We tested the reprojection techniques on our GPU based interactive ray tracer. Since the

reprojection accelerates visible surface ray tracing (eye rays and the corresponding shadow

rays), we tested the scene with and without re�ections. There are 100 animated sphere

primitives and four light sources in the test scene. 46 of the objects are re�ective. The

scene database is written into a 2D texture and updated each frame. Stereoscopic anaglyph

rendering of the test scene is shown in Figure 5.7. The test platform consists of an Intel

Core2Duo 2.4 GHz CPU and nVidia 8800GTX GPU with release 162.18 graphics drivers.

OpenGL is used for the implementation. Vertex and fragment programs are implemented

by using Cg shading language, while geometry programs are implemented with OpenGL

shading language. The scene was tested at three di�erent frame sizes.

The separate and reprojected stereoscopic rendering results are given in Table 5.1. Note

that reprojection saves signi�cant amount of time on the right image. Especially in low

resolutions, RGPU1 and RGPU2 results are very close. The gather table creation times for

reprojection methods are listed in Table 5.2. Obviously, GPU based gather table creation

is more than 10 times faster than CPU. GPU based one-pass and two-pass approaches

performed almost identically. However, at high frame resolutions, one-pass GPU gather

table method is faster than the two-pass method. That is because of the fact that, at

high resolutions, large number of points are processed twice by GPU in two-pass method

(line primitive instead of point primitive for each pixel) which may overwhelm the vertex

processors.

5.5.1 Missing Object Problem in Reprojections

The stereoscopic reprojection algorithm guarantees the correct image if all points seen by

the right eye are also seen by the left eye. However, there may be some cases such that an

object, or a part of it, is only visible to right eye. In this case, since there is no information

in the left image about the object, it cannot be reprojected to the right eye. A GPU friendly

approach to solve this problem is to determine objects which are intersected by the viewing

frustum of the right eye but not by the viewing frustum of the left eye. If such objects

are found, they are drawn on the screen by traditional rasterization based rendering after

the reprojection in order to mark their screen area as NO_HIT. Rasterization is very fast

on GPUs (much faster than ray casting), and a simple fragment program to mark pixels is

enough during the drawing operation. The bounding volumes or convex hull of the objects

92

can be used instead of the original model if the object is complex.

Table 5.1: Frame times of Monoscopic (MONO), Separate stereoscopic (SS), Reprojected

with CPU based gather table (RCPU), Reprojected with two pass GPU based gather table

(RGPU2), and Reprojected with one-pass GPU based gather table (RGPU1). Visible: Vis-

ible surface ray tracing, FullRT: Full ray tracing with maximum ray depth of 3. Times are

in milliseconds.
Frame Size MONO SS RCPU RGPU1 RGPU2

1024×768 Visible 147 294 250 175 186

Full RT 194 388 345 271 282

800×600 Visible 91 181 154 109 108

Full RT 120 242 216 172 171

640×480 Visible 58 116 99 70 70

Full RT 79 161 145 116 115

Table 5.2: Gather table creation times.
Frame Size RCPU RGPU1 RGPU2

1024×768 60 15.5 5.1

800×600 36 1.87 3.2

640×480 22 1.2 2

5.5.2 Reprojections of Re�ections and Refractions

Current method cannot handle reprojections of re�ected and refracted pixels. If the scene is

mostly di�use and open environment this may not be a big problem, since most of the rays

can terminate or escape from the scene immediately. On the other hand it is possible to

generate approximate reprojections for these secondary rays by employing some heuristics.

Reprojection of re�ected/refracted pixels can be done right after the re�ection/refraction

pass �nishes. Along with other information, re�ected/refracted ray directions can also be

reprojected and compared to real re�ection/refraction directions. If the angle between the

real and reprojected directions is less than a user de�ned threshold, reprojected color value

93

may be used; otherwise the pixel is marked as NO_HIT. It is also possible to alter the threshold

value adaptively, such that rays closer to the eye are given tighter threshold. Similarly, as

the ray depth increases the threshold can be relaxed.

94

Figure 5.7: Anaglyph rendering of a dynamically animated scene (a) both eyes separately

rendered, (b) right eye reprojected from the left eye's image.

95

CHAPTER 6

CONCLUSION

Real-time photorealistic rendering has broad application areas and an active research area

with many problems remains to be solved. There are several approaches for the solution in-

cluding processor speci�c optimizations, using rasterization based methods, employing better

acceleration structures, building custom hardware and so on. Rasterization rendering with

�xed function lighting and shading methods fall short for photorealism in most cases. Real-

time photorealism requires fast algorithms for shadows, re�ections, refractions, illumination

and means to combine all of these e�ects e�ciently. Particle based rendering methods such

as ray tracing, path tracing or photon mapping provide an extensive solution to the global il-

lumination problem and can generate realistic images. However, these methods require huge

processing power. Considering the enormous arithmetical power of GPUs, we focused on ef-

�ciently utilizing the computational resources of GPU to accelerate ray tracing for real-time

photorealistic rendering purposes.

It is crucial to explore e�cient data structures and algorithms conforming to the par-

allel stream processing model to make best possible use of the graphics hardware. In this

thesis, we used GPUs found on the commodity graphics cards to accelerate ray tracing. We

devised and developed GPU speci�c solutions for fast ray tracing, volume rendering and

stereoscopic image generation. The proposed EACD grids based acceleration of ray tracing

and stereoscopic rendering can be used in virtual reality and other real-time applications.

Firstly, we studied regular grid based traversal techniques and introduced a GPU based

traversal algorithm based on our extended anisotropic chessboard distance transformations.

In order to compare the performance, e�cient GPU implementations of some of the pre-

viously known traversal techniques have also been given. It is shown that the introduced

traversal algorithm is several times faster than DDA, and considerably faster than other

regular grid based empty space skipping methods. In addition, our algorithm suits well to

96

the modern CPU architectures which support streaming parallel instructions. Therefore,

presented methods can be ported to SIMD capable CPUs with some minor modi�cations.

Our EACD based traversal algorithm requires minimum number of dynamic branching op-

erations making it very e�cient for the modern GPU architectures. As demonstrated by the

test results, the ray traversal part is not the bottleneck in most cases when EACD is used.

In general, especially for EACD and ACD, the main determining factor of the performance

is time spent for the intersection tests. Time required for the intersection tests can be re-

duced by using �ner grid subdivisions. Size of the graphics memory de�nes the limit on the

maximum grid dimensions. A possible way to overcome this problem is to use hierarchical

EACD grids. Hierarchical structure can eliminate the two major problematic points of the

method including long preprocessing times and large memory consumption. We consider

exploring hybrid or hierarchical EACD acceleration methods as a valuable future work.

Our EACD ray tracer uses multiple kernel passes for traversal and intersections. However,

with the increased capabilities of the latest graphics hardware and development tools, it is

possible to unify intersection and traversal kernels into a single kernel. This is expected

to increase the performance because of the fact that; unnecessary I/O operations to send

intermediate values between kernels, ray counting operations, and excessive API overheads

due to multiple kernel passes will be eliminated. We left the implementation of this approach

as a possible future work.

EACD acceleration structure is also suitable for direct volume visualization; since there

are no triangle intersection tests, and ray traversal is one of most time consuming part of

the rendering. Consequently in the second work, we used EACD based homogeneous region

skipping to accelerate volume ray casting. In this technique, we exploited the coherency

existing in most of the scienti�c volume data. Ray traversal through the empty regions and

homogeneous regions is achieved e�ciently with our method. Within a homogeneous region,

ray integral is calculated in a single step using a factorization method. In order to compare

the performance of our method, e�cient GPU versions of some of the previously known

ray casting techniques were also implemented. It is shown that the EACD based traversal

algorithm is several times faster than a primitive volume ray caster, and considerably faster

than other distance grids based homogeneous region leaping methods.

As the third work, we devised a GPU friendly solution to stereoscopic ray tracing. Real-

time visual realism and real-time stereoscopic image generation are two important require-

ments of interactive virtual reality applications. In the method, the ray traced image of the

left eye is reprojected to right eye and only suspicious areas are re-rendered for the right

97

eye. The technique is based on a previous work of Adelson and Hodges [1]. However e�-

cient mapping of the stereo reprojections to GPU programming model requires attention.

We proposed pure GPU and hybrid CPU-GPU solutions to the reprojection problem. As

shown experimentally, pure GPU methods can generate stereo images more e�ciently than

the hybrid one. In the context, we also discussed possible extensions for the reprojection

technique to handle re�ections and refractions, and proposed a GPU based method to solve

missing object problem that may occur during the reprojections.

There are many possible research paths to further accelerate our GPU based ray tracing.

For instance, coherence is one of the key elements for high performance rendering. We think

that it is worthwhile to research on increasing the level of ray coherency in GPU ray tracers.

Rendering a scene as small tiles instead of a whole bu�er, or compacting/reordering rays for

better coherency may help to increase the performance. Similarly, processing ray packets

instead of single rays may utilize SIMD units better, while increasing compute to bandwidth

ratio. Our work relies on the pipelined architecture on GPUs. On the other hand, some newly

emerged programming interfaces and technologies such as CUDA and CTM have di�erent

approach. These new technologies depart from pipelines and favor uni�ed processing model

with huge amounts of threads. Employing these new technologies can make more e�cient

use of the GPU resources and thus worths great deal of attention.

GPUs are becoming more parallel, powerful and �exible processors. We strongly believe

that with increasing �exibility, programmability and processing power, GPUs have great

potential for achieving the goal of real-time photorealistic ray tracing.

98

REFERENCES

[1] Stephen J. Adelson and Larry F. Hodges. Visible surface ray-tracing of stereoscopic

images. In ACM-SE 30: Proceedings of the 30th annual Southeast regional conference,

pages 148�156, New York, NY, USA, 1992. ACM Press.

[2] Stephen J. Adelson and Larry F. Hodges. Generating Exact Ray-Traced Animation

Frames by Reprojection. IEEE Comput. Graph. Appl., 15(3):43�52, 1995.

[3] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering (Second Edition). AK

Peters, Ltd., 2002.

[4] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing.

In Eurographics '87, pages 3�10, Amsterdam, North-Holland, 1987. Elsevier Science

Publishers.

[5] Arthur Appel. Some techniques for shading machine renderings of solids. In AFIPS

1968 Spring Joint Computer Conf., volume 32, pages 37�45, Washington, D.C, 1968.

Thompson Books.

[6] William Bilodeau, Michael Songy (Inventors), and Creative Tech Ltd (Applicant).

US6384822: Method for rendering shadows using a shadow volume and a stencil bu�er.

US Patent, 1999.

[7] James F. Blinn and Martin E. Newell. Texture and re�ection in computer generated

images. Commun. ACM, 19(10):542�547, 1976.

[8] Gunilla Borgefors. Distance transformations in digital images. Comput. Vision Graph.

Image Process., 34(3):344�371, 1986.

[9] Paul Bourke. Calculating Stereo Pairs. http://local.wasp.uwa.edu.au/ pbourke/projec-

tion/stereorender/, Last visited January 2008.

99

[10] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomo-

graphic reconstruction using texture mapping hardware. In VVS '94: Proceedings of

the 1994 symposium on Volume visualization, pages 91�98, New York, NY, USA, 1994.

ACM.

[11] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In HWWS '02:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-

ware, pages 37�46, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Associ-

ation.

[12] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU ray

tracing of dynamic meshes using geometry images. In GI '06: Proceedings of Graph-

ics Interface 2006, pages 203�209, Toronto, Ont., Canada, Canada, 2006. Canadian

Information Processing Society.

[13] Daniel Cohen and Zvi She�er. Proximity clouds - an acceleration technique for 3D

grid traversal. The Visual Computer, 11(1):27�38, 1994.

[14] Microsoft Corp. DirectX Resource Center. http://msdn2.microsoft.com/en-

us/directx/default.aspx, Last visited January 2008.

[15] Franklin C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH '77: Pro-

ceedings of the 4th annual conference on Computer graphics and interactive techniques,

pages 242�248, New York, NY, USA, 1977. ACM Press.

[16] Timothy J. Cullip and Ulrich Neumann. Accelerating Volume Reconstruction With

3D Texture Hardware. Technical report, University of North Carolina at Chapel Hill,

Chapel Hill, NC, USA, 1994.

[17] John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing. In VVS '92:

Proceedings of the 1992 workshop on Volume visualization, pages 91�98, New York,

NY, USA, 1992. ACM Press.

[18] Advanced Micro Devices. ATI CTM Guide Technical Reference Manual.

http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf, Last

visited January 2008.

[19] Olivier Devillers. The Macro-Regions: An E�cient Space Subdivision Structure for

Ray Tracing. In Eurographics '89, pages 27�38. Elsevier / North-Holland, 1989.

100

[20] Mike Dickheiser. Game Programming Gems 6. Delmar Cengage Learning, 2006.

[21] Paul J. Diefenbach. Pipeline Rendering: Interaction and Realism through Hardware-

Based Multi-Pass Rendering. PhD thesis, The University of Pennsylvania., 1996.

[22] Philip Dutre, Philippe Bekaert, and Kavita Bala. Advanced Global Illumination. AK

Peters, Ltd., 2003.

[23] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading. In HWWS '01: Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9�16,

New York, NY, USA, 2001. ACM.

[24] Alphan Es, Hacer Yal�m Kele³, and Veysi �³ler. Accelerated Volume Rendering with

Homogeneous Region Encoding using Extended Anisotropic Chessboard Distance on

GPU. In EGPGV '06 Proceedings, pages 67�73, 2006.

[25] Alphan Es and Veysi �³ler. Acceleration of Regular Grid Traversals Using Extended

Chessboard Distance Transformation on GPU. In CAD-CG '05: Proceedings of the

Ninth International Conference on Computer Aided Design and Computer Graphics

(CAD-CG'05), pages 434�441, Washington, DC, USA, 2005. IEEE Computer Society.

[26] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The De�nitive Guide to

Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003.

[27] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer

Graphics: Principles and Practice in C (2nd Edition). Addison-Wesley Professional,

1995.

[28] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a GPU raytracer.

In HWWS '05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware, pages 15�22, New York, NY, USA, 2005. ACM Press.

[29] A. Fujimoto, Takayuki Tanaka, and K. Iwata. ARTS: accelerated ray-tracing system.

In Tutorial: computer graphics; image synthesis, pages 148�159, New York, NY, USA,

1988. Computer Science Press, Inc.

101

[30] Ping-Fu Fung and Pheng-Ann Heng. E�cient Volume Rendering by IsoRegion Leaping

Acceleration. In Proc. Of The Sixth International Conference in Central Europe on

Computer Graphics and Visualization'98, 1998.

[31] Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via three-

dimensional textures. In VVS '96: Proceedings of the 1996 symposium on Volume

visualization, pages 23��, Piscataway, NJ, USA, 1996. IEEE Press.

[32] Johannes Günther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek. Real-

time Ray Tracing on GPU with BVH-based Packet Traversal. In Proceedings of the

IEEE/Eurographics Symposium on Interactive Ray Tracing 2007, pages 113�118, 2007.

[33] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile.

Modeling the interaction of light between di�use surfaces. In SIGGRAPH '84: Proceed-

ings of the 11th annual conference on Computer graphics and interactive techniques,

pages 213�222, New York, NY, USA, 1984. ACM Press.

[34] GPGPU. GPGPU General-Purpose Computation Using Graphics Hardware.

http://www.gpgpu.org, Last visited January 2008.

[35] Silicon Graphics. OpenGL: Home Page. http://www.sgi.com/products/software/opengl/,

Last visited January 2008.

[36] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In SIGGRAPH

'02: Proceedings of the 29th annual conference on Computer graphics and interactive

techniques, pages 355�361, New York, NY, USA, 2002. ACM.

[37] Eric Haines. The standard procedural databases (SPD).

http://tog.acm.org/resources/SPD/, Last visited January 2008.

[38] Daniel Hall. The AR350: Today's ray trace rendering processor. In ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware - Hot 3D Presentations,

2001.

[39] Vlastimil Havran. Heuristic ray shooting algorithms. PhD thesis, Department of Com-

puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical

University in Prague, 2000.

102

[40] Vlastimil Havran, J. Bittner, and Hans-Peter Seidel. Exploiting temporal coherence

in ray casted walkthroughs. In SCCG '03: Proceedings of the 19th spring conference

on Computer graphics, pages 149�155, New York, NY, USA, 2003. ACM Press.

[41] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. SIGGRAPH

Comput. Graph., 24(4):145�154, 1990.

[42] Tim Heidmann. Real Shadows, Real Time. Iris Universe, 18:23�31, 1991.

[43] Karl Hillesland and Anselmo Lastra. GPU �oating-point paranoia. In Proceedings of

GP2, 2004.

[44] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. Interactive

k-d tree GPU raytracing. In I3D '07: Proceedings of the 2007 symposium on Interactive

3D graphics and games, pages 167�174, New York, NY, USA, 2007. ACM.

[45] Jim Hurley. Ray tracing goes mainstream. Intel Technology Journal, 9(2):99�108,

2005.

[46] RapidMind Inc. Sh: A high-level metaprogramming language for modern GPUs.

http://www.libsh.org/, Last visited January 2008.

[47] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. A. K. Peters,

Ltd., Natick, MA, USA, 2001.

[48] Sig Badt Jr. Two Algorithms for Taking Advantage of Temporal Coherence In Ray

Tracing. The Visual Computer, 4(3):123�132, 1998.

[49] James T. Kajiya. The rendering equation. In SIGGRAPH '86: Proceedings of the 13th

annual conference on Computer graphics and interactive techniques, pages 143�150,

New York, NY, USA, 1986. ACM Press.

[50] Filip Karlsson and Carl Johan Ljungstedt. Ray tracing fully implemented on pro-

grammable graphics hardware. Master's thesis, Chalmers Univ. of Technology, 2004.

[51] Hacer Yal?m Kele?, Alphan Es, and Veysi ??ler. Acceleration of direct volume ren-

dering with programmable graphics hardware. The Visual Computer, 23(1):15�24,

2007.

[52] J. Kruger and R. Westermann. Acceleration Techniques for GPU-based Volume Ren-

dering. In VIS '03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), pages

287�292, Washington, DC, USA, 2003. IEEE Computer Society.

103

[53] Stanford Computer Graphics Laboratory. BrookGPU.

http://graphics.stanford.edu/projects/brookgpu/, Last visited January 2008.

[54] Stanford Computer Graphics Laboratory. GPU Bench.

http://graphics.stanford.edu/projects/gpubench/, Last visited January 2008.

[55] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp fac-

torization of the viewing transformation. In SIGGRAPH '94: Proceedings of the 21st

annual conference on Computer graphics and interactive techniques, pages 451�458,

New York, NY, USA, 1994. ACM Press.

[56] David Laur and Pat Hanrahan. Hierarchical Splatting: A Progressive Re�nement

Algorithm for Volume Rendering. SIGGRAPH Comput. Graph., 25(4):285�288, 1991.

[57] Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl.,

8(3):29�37, 1988.

[58] Wei Li and Arie Kaufman. Texture Partitioning and Packing for Accelerating Texture-

Based Volume Rendering. In Graphics Interface, pages 81�88. A K Peters, 2003.

[59] Wei Li, Klaus Mueller, and Arie Kaufman. Empty Space Skipping and Occlusion Clip-

ping for Texture-based Volume Rendering. In VIS '03: Proceedings of the 14th IEEE

Visualization 2003 (VIS'03), page 42, Washington, DC, USA, 2003. IEEE Computer

Society.

[60] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: a system

for programming graphics hardware in a C-like language. In SIGGRAPH '03: ACM

SIGGRAPH 2003 Papers, pages 896�907, New York, NY, USA, 2003. ACM Press.

[61] Tom McReynolds and David Blythe. Advanced Graphics Program-

ming Techniques Using OpenGL, (SIGGRAPH `99 Course Notes).

http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/notes.html,

Last visited January 2008.

[62] Michael Meiÿner, Ulrich Ho�mann, and Wolfgang Straÿer. Enabling classi�cation and

shading for 3D texture mapping based volume rendering using OpenGL and extensions.

In VIS '99: Proceedings of the conference on Visualization '99, pages 207�214, Los

Alamitos, CA, USA, 1999. IEEE Computer Society Press.

104

[63] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. J.

Graph. Tools, 2(1):21�28, 1997.

[64] Kasper H. Nielsen. Real-time hardware-based photorealistic rendering. Master's thesis,

Informatics and Mathematical Modelling, The Technical University of Denmark, 2000.

[65] nVidia. Floating point specials,. http://download.nvidia.com/developer/Papers/2005/

FP_Specials/FP_Specials.pdf, Last visited January 2008.

[66] nVidia. GeForce 8 Series. http://www.nvidia.com/page/geforce8.html, Last visited

January 2008.

[67] nVidia. NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html, Last visited

January 2008.

[68] nVidia. NVPerfKit. http://developer.nvidia.com/object/nvperfkit_home.html, Last vis-

ited January 2008.

[69] Eyal Ofek and Ari Rappoport. Interactive re�ections on curved objects. In SIGGRAPH

'98: Proceedings of the 25th annual conference on Computer graphics and interactive

techniques, New York, NY, USA, 1998. ACM Press.

[70] John D. Owens. Streaming architectures and technology trends. Addison-Wesley, 2005.

[71] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-

Wesley Professional, 2005.

[72] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek. Stackless

KD-Tree Traversal for High Performance GPU Ray Tracing. Computer Graphics

Forum (Proceedings of Eurographics), 26(3):415�424, 2007.

[73] Timothy J. Purcell. Ray tracing on a stream processor. PhD thesis, Stanford University,

2004.

[74] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on

programmable graphics hardware. In SIGGRAPH '02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 703�712, New York,

NY, USA, 2002. ACM Press.

105

[75] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat

Hanrahan. Photon mapping on programmable graphics hardware. In SIGGRAPH '05:

ACM SIGGRAPH 2005 Courses, page 258, New York, NY, USA, 2005. ACM Press.

[76] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shad-

ows with depth maps. In SIGGRAPH '87: Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, pages 283�291, New York, NY, USA,

1987. ACM Press.

[77] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algo-

rithm. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 1176�1185, New

York, NY, USA, 2005. ACM Press.

[78] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume

on standard PC graphics hardware using multi-textures and multi-stage rasterization.

In HWWS '00: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware, pages 109�118, New York, NY, USA, 2000. ACM.

[79] David Roger, Ulf Assarsson, and Nicolas Holzschuch. Whitted Ray-Tracing for Dy-

namic Scenes using a Ray-Space Hierarchy on the GPU. In Rendering Techniques 2007

(Proceedings of the Eurographics Symposium on Rendering), pages 99�110, 2007.

[80] Randi J. Rost. OpenGL(R) Shading Language (2nd Edition). Addison-Wesley Profes-

sional, 2005.

[81] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR: a hardware architecture

for ray tracing. In HWWS '02: Proceedings of the ACM SIGGRAPH/EUROGRAPH-

ICS conference on Graphics hardware, pages 27�36, Aire-la-Ville, Switzerland, Switzer-

land, 2002. Eurographics Association.

[82] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and Philipp Slusallek.

Realtime ray tracing of dynamic scenes on an FPGA chip. In HWWS '04: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages

95�106, New York, NY, USA, 2004. ACM Press.

[83] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast

shadows and lighting e�ects using texture mapping. SIGGRAPH Comput. Graph.,

26(2):249�252, 1992.

106

[84] Milos Sramek and Arie Kaufman. Fast ray-tracing of rectilinear volume data using

distance transforms. IEEE Transactions on Visualization and Computer Graphics,

6(3):236�252, 2000.

[85] Marc Stamminger and George Drettakis. Perspective shadow maps. In SIGGRAPH

'02: Proceedings of the 29th annual conference on Computer graphics and interactive

techniques, pages 557�562, New York, NY, USA, 2002. ACM Press.

[86] K. R. Subramanian and Donald S. Fussell. Applying space subdivision techniques to

volume rendering. In VIS '90: Proceedings of the 1st conference on Visualization '90,

pages 150�159, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[87] Niels Thrane and Lars Ole Simonsen. A comparison of acceleration structures for

GPU. Master's thesis, University of Aarhus, Denmark, 2005.

[88] Jayaram K. Udupa and Dewey Odhner. Shell rendering. IEEE Comput. Graph. Appl.,

13(6):58�67, 1993.

[89] Stanford University. The Stanford 3D Scanning Repository.

http://graphics.stanford.edu/data/3Dscanrep/, Last visited January 2008.

[90] Ingo Wald, Carsten Benthin, and Philipp Slusallek. A simple and practical method for

interactive ray tracing of dynamic scenes. Technical report, Saarland University, 2002.

[91] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray tracing deformable scenes using

dynamic bounding volume hierarchies. ACM Transactions on Graphics, 26(1):6, 2007.

[92] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G. Parker. Ray

tracing animated scenes using coherent grid traversal. ACM Transactions on Graphics,

25(3):485�493, 2006.

[93] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive Ren-

dering with Coherent Ray Tracing. Comput. Graph. Forum (EG 2001 Proceedings),

20(3):153�164, 2001.

[94] Daniel Weiskopf, Tobias Schafhitzel, and Thomas Ertl. GPU-based nonlinear ray

tracing. Comput. Graph. Forum, 23:625�634, 2004.

[95] Rüdiger Westermann and Thomas Ertl. E�ciently using graphics hardware in volume

rendering applications. In SIGGRAPH '98: Proceedings of the 25th annual conference

107

on Computer graphics and interactive techniques, pages 169�177, New York, NY, USA,

1998. ACM.

[96] Lee A. Westover. Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm.

PhD thesis, Univ. of North Carolina at Chapel Hill, Chapel Hill, N.C., 1991.

[97] Turner Whitted. An improved illumination model for shaded display. Commun. ACM,

23(6):343�349, 1980.

[98] Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH '78: Pro-

ceedings of the 5th annual conference on Computer graphics and interactive techniques,

pages 270�274, New York, NY, USA, 1978. ACM Press.

[99] Andrew Woo. The shadow depth map revisited. In Graphics Gems III, pages 338�342.

Academic Press Professional, Inc., San Diego, CA, USA, 1992.

[100] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: a programmable ray pro-

cessing unit for realtime ray tracing. ACM Trans. Graph., 24(3):434�444, 2005.

[101] K.J. Zuiderveld, A.H.J. Koning, and M.A. Viergever. Acceleration of ray-casting using

3D distance transforms. In Visualization in Biomedical Computing II, Proc. SPIE

1808, pages 324�335, 1992.

108

APPENDIX A

SHADER SOURCE CODES

A.1 Grid based ray traversal source codes

#define O_EPS 0.0001f

#define T_INT_EPS 0.0001f

#define STATIC_TRAVERSE_STEPS 0

#define INTERSECT_RAY 0

#define OUT_RAY -1

#define EMPTY_VOX -2

A.1.1 Cg source code for branching DDA ray traversal

// Continue traversal unti l a non−empty voxel i s found
void stepTraverse(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s
#ifdef DEPTH_OUT

out float oDepth : DEPTH, // depth buffer
uniform float outCode, // depth value for ouf of scene rays
uniform float intersectCode, // depth value for rays to be tested
#endif

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions
uniform float3 cellSize, // s ize of a c e l l
uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)

)

{

// setup
float3 d = texRECT(texRayD, rayIdx).xyz;

float3 sign_d = sign(d);

float3 cellStep = sign_d;

float3 tStep = sign_d*(cellSize/d);

float4 tttCell = texRECT(texCellIdx, rayIdx);

float4 cellStat = unpack_4ubyte(tttCell.w);

float3 ttt = tttCell.xyz;

float3 cell = round(cellStat.xyz*255);

float4 gridSample;

float3 incr;

109

// loop body
do

{

float tmin = min(ttt.x, min(ttt.y,ttt.z));

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

cell += cellStep*incr;

gridSample = tex3D(texGrid, cell*invNumCells);

} while(gridSample.w==0); // loop unti l a non−empty voxel found
// or the ray i s out of scene

// write resu l t s
float fPacked = pack_4ubyte(float4(cell/255.0));

#ifdef DEPTH_OUT

oDepth = gridSample.w == 1 ? outCode : intersectCode;

#else

if (gridSample.w == 1) ttt.x = -1; // depth wi l l be modified
// accordingly by the next kernel

#endif

oCellIdxT = float4(ttt, fPacked);

}

A.1.2 Cg source code for multi-pass DDA ray traversal

// Perform one or a predefined number of traversal steps
void

stepTraverseMP(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions

uniform float3 cellSize, // s ize of a c e l l
uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)

)

{

// setup
float3 d = texRECT(texRayD, rayIdx).xyz;

float3 sign_d = sign(d);

float3 cellStep = sign_d;

float3 tStep = sign_d*(cellSize/d);

float4 tttCell = texRECT(texCellIdx, rayIdx);

float4 cellStat = unpack_4ubyte(tttCell.w);

float3 ttt = tttCell.xyz;

float3 cell = round(cellStat.xyz*255);

float4 gridSample;

float3 incr;

// 1 traversal step
float tmin = min(ttt.x, min(ttt.y,ttt.z));

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

110

cell += cellStep*incr;

gridSample = tex3D(texGrid, cell*invNumCells);

//additional traversal steps i f desired (s tat i c loop unrolled by compiler)
for (int loops=0;loops<STATIC_TRAVERSE_STEPS-1;++loops)

if (gridSample.w == 0)

{

float tmin = min(ttt.x, min(ttt.y,ttt.z));

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

cell += cellStep*incr;

gridSample = tex3D(texGrid, cell*invNumCells);

}

float fCode = INTERSECT_RAY; // output value for intersect ion
if (gridSample.w == 1) fCode = OUT_RAY; // , or for out of scene
else if (gridSample.w == 0) fCode = EMPTY_VOX; // , or for empty voxel
float fPacked = pack_4ubyte(float4(cell/255,fCode/255.0f));

if (gridSample.w == 1) ttt.x = -1;

oCellIdxT = float4(ttt, fPacked);

}

A.1.3 Cg source code for branching PC ray traversal

// Continue traversal unti l a non−empty voxel i s found
void

stepTraverse(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s
#ifdef DEPTH_OUT

out float oDepth : DEPTH, // depth buffer
uniform float outCode, // depth value for ouf of scene rays
uniform float intersectCode, // depth value for rays to be tested
#endif

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions

uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)
)

{

// setup phase
float3 o = texRECT(texRayO, rayIdx).xyz;

float3 d = texRECT(texRayD, rayIdx).xyz;

float3 invD = 1/d;

float3 sign_d = sign(d);

float3 sign_d_epsilon = sign_d*O_EPS;

// read previous traversal status
float4 tttCell = texRECT(texCellIdx, rayIdx);

float4 cellStat = unpack_4ubyte(tttCell.w);

float3 cell = round(cellStat.xyz*255);

// dda related
float3 cellStep = sign_d;

float3 tStep = sign_d*invD;

111

float3 pos = min(tttCell.x, min(tttCell.y, tttCell.z))*d+o;

// proximity clouds related
float3 abs_d = abs(d);

float3 tttBegin = (saturate(sign_d+sign_d_epsilon+float3(1,1,1)) -o) * invD;

float D = abs_d.x+abs_d.y+abs_d.z;

float3 C = d/D;

// temporaries
float pd;

float3 ttt = tttCell.xyz;

float4 gridSample = tex3D(texGrid, cell*invNumCells);

// loop body
do

{

if (gridSample.x == 0)// close to a non−empty voxel −> dda
{

float tmin = min(ttt.x, min(ttt.y,ttt.z));

float3 incr;

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

cell += cellStep*incr;

pos = o+tmin*d;

}

else // otherwise −> proximity clouds
{

pd = round(gridSample.x * 255);

pos += C*pd;

cell = floor(pos);

ttt = tttBegin + cell*invD;

}

gridSample = tex3D(texGrid, cell*invNumCells);

} while(gridSample.w==0); // loop unti l a non−empty voxel found
// or the ray i s out of scene

// write resu l t s
float fPacked = pack_4ubyte(float4((cell)/255.0));

#ifdef DEPTH_OUT

oDepth = gridSample.w == 1 ? outCode : intersectCode;

#else

ttt.x = (gridSample.w == 1) ? -1 : ttt.x; // depth wi l l be modified
// accordingly by the next kernel

#endif

oCellIdxT = float4(ttt, fPacked);

}

A.1.4 Cg source code for multi-pass PC ray traversal

// Perform one or a predefined number of traversal steps
void

stepTraverseMP(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins

112

uniform samplerRECT texRayD, // ray direct ions

uniform float3 cellSize, // s ize of a c e l l
uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)

)

{

// setup phase
float3 o = texRECT(texRayO, rayIdx).xyz;

float3 d = texRECT(texRayD, rayIdx).xyz;

float3 invD = 1/d;

float3 sign_d = sign(d);

float3 sign_d_epsilon = sign_d*O_EPS;

// read previous traversal status
float4 tttCell = texRECT(texCellIdx, rayIdx);

float4 cellStat = unpack_4ubyte(tttCell.w);

float3 cell = round(cellStat.xyz*255);

// dda related
float3 cellStep = sign_d;

float3 tStep = sign_d*invD;

float3 pos = min(tttCell.x, min(tttCell.y, tttCell.z))*d+o;

// proximity clouds related
float3 abs_d = abs(d);

float3 tttBegin = (saturate(sign_d+sign_d_epsilon+float3(1,1,1)) -o) * invD;

float D = abs_d.x+abs_d.y+abs_d.z;

float3 C = d/D;

// temporaries
float pd;

float3 ttt = tttCell.xyz;

float4 gridSample = tex3D(texGrid, cell*invNumCells);

// 1 traversal step
if (gridSample.x == 0) // close to a non−empty voxel −> dda
{

float tmin = min(ttt.x, min(ttt.y,ttt.z));

float3 incr;

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

cell += cellStep*incr;

pos = o+tmin*d;

}

else // otherwise −> proximity clouds
{

pd = round(gridSample.x * 255);

pos += C*pd;

cell = floor(pos);

ttt = tttBegin + cell*invD;

}

gridSample = tex3D(texGrid, cell*invNumCells);

// additional traversal steps i f desired (s tat i c loop unrolled by compiler)
for (int loops=0;loops<STATIC_TRAVERSE_STEPS-1;++loops)

if(gridSample.w == 0)

{

if (gridSample.x == 0)// close to a non−empty voxel −> dda
{

113

float tmin = min(ttt.x, min(ttt.y,ttt.z));

float3 incr;

incr.x = (ttt.x == tmin);

incr.y = (ttt.y == tmin);

incr.z = (ttt.z == tmin);

ttt += tStep*incr;

cell += cellStep*incr;

pos = o+tmin*d;

}

else // otherwise −> proximity clouds
{

pd = round(gridSample.x * 255);

pos += C*pd;

cell = floor(pos);

ttt = tttBegin + cell*invD;

}

gridSample = tex3D(texGrid, cell*invNumCells);

}

float fCode = INTERSECT_RAY; // output value for intersect ion
if (gridSample.w == 1) fCode = OUT_RAY; // , or for out of scene
else if (gridSample.w == 0) fCode = EMPTY_VOX; // , or for empty voxel
float fPacked = pack_4ubyte(float4(cell/255,fCode/255.0f));

oCellIdxT = float4(ttt, fPacked);

}

A.1.5 Cg source code for branching ACD/EACD ray traversal

// Continue traversal unti l a non−empty voxel i s found
void

stepTraverse(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s
#ifdef DEPTH_OUT

out float oDepth : DEPTH, // depth buffer
uniform float outCode, // depth value for ouf of scene rays
uniform float intersectCode, // depth value for rays to be tested
#endif

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions

uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)
uniform float3 halfInvNumCells // 0.5 ∗ invNumCells
uniform float3 rangeScale, // scale required to expand (0 , ,1)

// distance to integer
{

// setup phase −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
float3 o = texRECT(texRayO, rayIdx).xyz;

float3 d = texRECT(texRayD, rayIdx);

// read previous traversal status
float4 cellw = texRECT(texCellIdx, rayIdx);

// compute constants
float3 invD = (1/d);

float3 sgn = sign(fixed3(d));

float3 sgnScaled = rangeScale*sgn;

float3 offs = saturate(-sgn)*halfInvNumCells;

float3 oEps = o + sgn*O_EPS;

float3 tttBegin = (saturate(sgn) -o) *invD;

114

// advance to the next voxel
float3 cell = floor(oEps+(cellw.w + T_INT_EPS)*d);

// read voxel
float4 gridSample = tex3D(texGrid, cell*invNumCells+offs);

// loop body
float4 ttt;

while(gridSample.w==0)// loop unti l non−empty voxel or out of scene
// i s reached

{

// find border c e l l (apex voxel)
#ifdef EACD_MODE // −> EACD

float3 range = round(sgnScaled*gridSample.xyz);

#else // −> ACD
float3 range = round(sgnScaled*gridSample.x);

#endif

float3 borderCell = (cell+range);

// compute parameteric ray distance to the apex voxel borders
ttt.xyz = tttBegin + borderCell*invD;

ttt.w = min(ttt.x, min(ttt.y,ttt.z));

// compute indices fo the next voxel
float3 oNew = oEps+ttt.w*d;

cell = floor(oNew);

// read voxel
gridSample = tex3D(texGrid, cell*invNumCells+offs);

}

// parametric ray distance to the nearest voxel border (for intersect ion tests)
ttt.xyz = tttBegin + cell*invD;

ttt.w = min(ttt.x, min(ttt.y,ttt.z));

// write resu l t s
#ifdef DEPTH_OUT

oCellIdxT = float4(cell, ttt.w);

oDepth = gridSample.w < 1 ? outCode : intersectCode;

#else

oCellIdxT = float4(cell, (gridSample.w < 1) ? -1 : ttt.w);// depth wi l l be set
// accordingly
// by the next kernel

#endif

}

A.1.6 Cg source code for multi-pass ACD/EACD ray traversal

// Perform one or a predefined number of traversal steps
void

stepTraverseMP(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions

uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)
uniform float3 halfInvNumCells // 0.5 ∗ invNumCells

115

uniform float3 rangeScale, // scale required to expand (0 , ,1)
)

{

// setup phase
float3 o = texRECT(texRayO, rayIdx).xyz;

float3 d = texRECT(texRayD, rayIdx);

// read previous traversal status
float4 cellw = texRECT(texCellIdx, rayIdx);

// compute constants
float3 invD = (1/d);

fixed3 sgn = sign(fixed3(d));

half3 sgnScaled = rangeScale*sgn;

half3 offs = saturate(-sgn)*halfInvNumCells;

float3 oEps = o + sgn*O_EPS;

float3 tttBegin = (saturate(sgn) -o) *invD;

// advance to the next voxel
half3 cell;

if (cellw.w>0)

cell = floor(oEps+(cellw.w + T_INT_EPS)*d);

else

cell = cellw.xyz;

// read voxel
fixed4 gridSample = tex3D(texGrid, cell*invNumCells+offs);

float4 ttt;

// One or more traversal steps i f desired (s tat i c loop unrolled by compiler)
for (int loops=0;loops<STATIC_TRAVERSE_STEPS;++loops)

if(gridSample.w==0)

{

// find border c e l l (apex voxel)
#ifdef EACD_MODE// −> EACD

float3 range = round(sgnScaled*gridSample.xyz);

#else // −> ACD
float3 range = round(sgnScaled*gridSample.x);

#endif

half3 borderCell = (cell+range);

// compute parameteric ray distance to the apex voxel borders
ttt.xyz = tttBegin + borderCell*invD;

ttt.w = min(ttt.x, min(ttt.y,ttt.z));

// advance to the next voxel
float3 cell = floor(oEps+(cellw.w + T_INT_EPS)*d);

// read voxel
float4 gridSample = tex3D(texGrid, cell*invNumCells+offs);

}

// parametric ray distance to the nearest voxel border (for intersect ion tests)
ttt.xyz = tttBegin + cell*invD;

ttt.w = min(ttt.x, min(ttt.y,ttt.z));

// write resu l t s
oCellIdxT = float4(cell,ttt.w);

if (gridSample.w == 0) oCellIdxT.w = EMPTY_VOX; // mark as empty voxel ,
else if (gridSample.w < 0.9) oCellIdxT.w = OUT_RAY; // or as the ray i s out

}

116

A.1.7 Cg source code for intersector kernel (for ACD/EACD traversal)

// Triangle l i s t − ray intersect ion tests
void

intersectTriList(

float2 rayIdx : WPOS, // ray index
out float4 oCellIdxT : COLOR, // resu l t s
#ifdef DEPTH_OUT

out float oDepth : DEPTH, // depth buffer
uniform float traverseCode, // depth value for ray miss
uniform float intersectedCode,// depth value for ray hit
#endif

uniform sampler3D texGrid, // accel . grid
uniform samplerRECT texCellIdx, // last ray posit ions (c e l l idx)
uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions

uniform samplerRECT texTriList, // tr iangle l i s t
uniform samplerRECT texTriV0, // 1st tr iangle vert ices
uniform samplerRECT texTriV1, // 2nd tr iangle vert ices
uniform samplerRECT texTriV2, // 3rd tr iangle vert ices

uniform float3 invNumCells // inv . Number of c e l l s : 1/(W,H,D)
)

{

// setup phase
float3 rayD = texRECT(texRayD, rayTexIdx).xyz;

float3 rayO = texRECT(texRayO, rayTexIdx).xyz;

// read ray traversal status (voxel indices , max allowed parametric distance)
float4 traverseSample = texRECT(texCellIdx,rayTexIdx);

// compute voxel index to tr iangle l i s t texture (scene database)
float3 voxTexCoord = traverseSample.xyz;

float2 triListIdx = tex3D(texGrid, voxTexCoord*invNumCells).xw;

float2 triListIdxRECT = triListIdx * 65535 + float2(0.5f, 0.5f);

// in i t other variables
float4 baryTMin = traverseSample.wwww + float4(0,0,0.00001f,0);

float4 baryT;

float2 nearestTriIdx = float2(-1,-1);

float3 v1,v2,v3;

float2 triangleIdx;

float3 EPSILON = float3(0.00001f, -0.00001f, 1.00001f);

float3 qvec, pvec, tvec;

float det;

float3 edge1, edge2;

half2 triListIdxRECT_H = triListIdxRECT;

float fCnt = texRECT(texTriList, triListIdxRECT_H).x;

fCnt = round(fCnt*65535.0f);

half fCntH = fCnt + triListIdxRECT.x;

// ray − tr iangle l i s t intersect ion test loop
do

{

// read next tr iangle
triListIdxRECT_H.x++;

triangleIdx = texRECT(texTriList, triListIdxRECT_H).xw;

float2 triangleIdxRECT = triangleIdx * 65536.0f;

// read vertex data

117

v1 = texRECT(texTriV0, triangleIdxRECT.xy).xyz;

v2 = texRECT(texTriV1, triangleIdxRECT.xy).xyz;

v3 = texRECT(texTriV2, triangleIdxRECT.xy).xyz;

// Möller−Trumbore intersect ion test
edge1 = v2-v1;

edge2 = v3-v1;

pvec = cross(rayD,edge2);

det = dot(edge1,pvec);

tvec = rayO - v1;

qvec = cross(tvec,edge1);

baryT.xyz = float3(dot(tvec, pvec), dot(rayD, qvec), dot(edge2,qvec))/det;

// test intersect ion result
if (baryT.z≤ baryTMin.z &&

baryT.z>EPSILON.x &&

baryT.x>=0 && baryT.y>=0 &&

baryT.x+baryT.y≤ EPSILON.z)

{

baryTMin = baryT; // a valid intersect ion i s found −>
nearestTriIdx = triangleIdx; // update intersect ion result

}

} while (triListIdxRECT_H.x<fCntH); // loop unti l a l l t r iangles tested

// write intersect ion resu l t s
oBaryI = float4(baryTMin.xy, nearestTriIdx.xy*65535);

#ifdef DEPTH_OUT

oDepth = nearestTriIdx.y < 0 ? traverseCode : intersectedCode;

#endif

}

A.2 Direct volume rendering source code

struct BBox

{

float3 min; // in World Coordinate System (WCS)
float3 max; // in WCS
float3 size; // in WCS
float3 invSize; // in WCS

float3 cellSize; // in WCS
float3 invCellSize ; // in WCS
float3 numCells; // in WCS
float3 invNumCells; // in WCS

float3 worldToTexCoord(float3 posWorld)

{

return (posWorld-min)*invSize;

}

};

// l ight information
struct Light

{

float3 position; // in WCS
float3 positionGrid; // in grid coords (0 , .wxHxD)
float3 ambient; // l ight ambient color
float3 diffuse; // l ight d i f fuse color
float3 specular; // l ight specular color

};

118

// volume material properties
struct Material

{

float3 ambient; // surface ambient color
float3 diffuse; // surface d i f fuse color
float3 specular; // surface specular color
float glossiness; // surface g loss iness

};

// phong il lumination function
float3 phong(

Material mat,

Light light,

float3 N,

float3 L,

float3 E

)

{

if (dot(N,E)<0) N = -N;

float fD = dot(N,L);

float3 A = mat.ambient * light.ambient;

float3 C = A;

if (fD>0)

{

float3 D = mat.diffuse*light.diffuse*dot(N,L);

float3 R = 2*dot(L,N)*N-L;

float3 S = mat.specular *

light,specular*pow(saturate(dot(E,R)),mat.glossiness);

C += D+S;

}

return C;

}

// output reg i s te r s
struct FragOut

{

float4 color: COLOR0;

#ifdef STATS

float4 stats: COLOR1;

#endif

};

A.2.1 Volume rendering with ACD/EACD

FragOut

render(

uniform samplerRECT texRayO, // ray or ig ins
uniform samplerRECT texRayD, // ray direct ions
uniform sampler3D texDist, // EACD grid
uniform sampler3D texVol, // volume data
varying float2 texRayID: TEXCOORD0,// ray index

uniform float stepDelta, // min ray step distance
uniform float invStepDelta, // 1/stepDelta
uniform float3 rangeScale, // scale to expand 0 . .1 to

// integer
uniform BBox box, // volume bounding box coords
uniform float3 eyePosGrid, // eye position
uniform Material mat, // volume material
uniform Light light, // l ight information
uniform float maxLoopCnt

119

)

{

FragOut returnVal; // define output reg i s te r s

// read ray orig in
float4 Ow = texRECT(texRayO, texRayID).xyzw;

// in i t f i na l color value
float4 C = float4(0,0,0,0);

// Continue i f the ray i s ins ide the BBox
if (Ow.w != 0)

{

// Find ray voxel & read ray direction
float3 O = (Ow.xyz-box.min)*box.invCellSize;

float4 Dw = texRECT(texRayD, texRayID).xyzw;

float3 D = Dw.xyz*box.invCellSize;

float fMaxDist = Dw.w;

// compute constants
float3 invD = (1/D);

half3 sgn = sign(half3(D));

half3 sgnScaled = rangeScale*sgn;

float3 offs = saturate(-sgn)*box.invNumCells*0.5f;

float3 oEps = O + sgn*0.00001f;

float3 tttBegin = (saturate(sgn) - O) *invD;

half3 cell = floor(oEps);

float4 ttt;

float tNow = 0;

// read the distance from EACD grid
half4 gridSample = tex3D(texDist, cell*box.invNumCells+offs);

// loop unti l opacity of the f ina l color i s >= 1
while(C,a < 1)

{

half4 C2 = tex3D(texVol, (O)*box.invNumCells); // real volume data

float numSteps = 1;

{

#ifdef EACD_MODE // −> EACD
half3 range = round(sgnScaled*gridSample.xyz);

#else // −> ACD
half3 range = round(sgnScaled*gridSample,a);

#endif

// find border c e l l (apex voxel)
half3 borderCell = (cell+range);

// compute parameteric ray distance to the nearest apex border
ttt.xyz = tttBegin + borderCell*invD;

ttt.w = min(ttt.x, min(ttt.y,ttt.z));

// compute the number of ray steps to skip the distance
numSteps = ceil((ttt.w - tNow)*invStepDelta);

}

tNow += numSteps*stepDelta;

float numSamples = numSteps;

float B = 1-C2,a;

120

half3 N = normalize(C2.rgb);

half3 L = normalize(light.positionGrid - O);

half3 E = normalize(eyePosGrid - O);

float rgnAlpha = (1-pow(B,numSamples));

float3 rgnColor = (phong(mat, light, N, L, E))*rgnAlpha;

C.rgb = C.rgb + rgnColor*(1-C.a);

C.a = C.a + rgnAlpha*(1-C.a);

// skip distance and anvance to the next voxel
O = oEps + tNow*D;

if (! (all(O>=float3(0,0,0)) && all(O<box.numCells))) break;

// read next voxel
cell = floor(O);

gridSample = tex3D(texDist, cell*box.invNumCells+offs);

}

}

// write resu l t s
returnVal.color = C;

return returnVal;

}

A.3 Stereo reprojection source codes

A.3.1 CG source code for the stereo reprojection with two-pass gather

table generation

// PASS1:
// Scatter phase of two−pass stereo reprojection :
// fragment program to create relocation texture
void

stereoScatter(

float2 texCoord : TEXCOORD0, // texture coords of this pixel
out float4 oColor : COLOR, // scatter info buffer
uniform sampler2D texPos, // pixel world coords
uniform float screenWidth, // width . .
uniform float halfScreenWidth, // and half width of the screen
uniform float2 invTexSize, // 1/(bufferSize . x , bufferSize . y)
uniform float4x4 matRight // right eye reprojection matrix

)

{

float3 point = tex2D(texPos, texCoord).xyz; // world coords of the pixel
float mask = tex2D(texPos, texCoord).a; // 0 : inval id point
float4 transPos = mul(matRight, float4(point,1)); // reproject to right eye
float newPos = transPos.x/transPos.w; // project to c l ip coords
newPos = (newPos+1) * halfScreenWidth; // convert to screen coords
newPos = int(newPos);

// world coords of the previous pixel
float3 pointPrev = tex2D(texPos, texCoord-float2(invTexSize.x.0)).xyz;

// i s i t valid , our out of scene point ?
float maskPrev = tex2D(texPos, texCoord-float2(invTexSize.x.0)).a;

// reproject to right eye
float4 transPosPrev = mul(matRight, float4(pointPrev,1));

// convert to screen coords

121

float newPosPrev = transPosPrev.x/transPosPrev.w;

newPosPrev = (newPosPrev+1) * halfScreenWidth;

newPosPrev = int(newPosPrev);

float2 lineInfo;

float len;

bool prevValid = (maskPrev>=0);

if (prevValid && newPos>newPosPrev+1)

{

lineInfo = float2(newPosPrev, newPos+1); // bad pixel range
len = newPosPrev-newPos;

}

else

{

lineInfo = float2(newPos, newPos+1); // valid reprojection
len = 1;

}

// remove out−of−screen l ine s (make zero−length)
if (newPos<0 || newPos>screenWidth) lineInfo = float2(0,0);

// write scatter info to buffer
oColor = float4(lineInfo.x,lineInfo.y, lineInfo.y-lineInfo.x,0);

}

// PASS2:
// Gather phase of two−pass stereo reprojection :
// Vertex program to create relocation texture
// Gets l ine primitives and transforms them to reprojected spans
// by using the resu l t s of stereoScatter () .
void

stereoGatherVP(

float2 pixelPos: TEXCOORD0, // texture coords of this pixel
float3 pos : POSITION, // c l ip coords of the pixel

uniform float invHalfScreenWidth, // half screen width
uniform sampler2D texReloc, // scatter info texture
out float4 oPos : POSITION, // scattered c l ip coords

// (to stereoGatherFP)
out float3 oTex0 : TEXCOORD0 // relocation info (to stereoGatherFP)

)

{

float4 reloc = tex2D(texReloc, pixelPos); // read relocation info

oPos.zw = float2(0,1); //
oPos.xy = pos.xy; // in i t output c l ip coords
oPos.x = (pos.z)==0 ? reloc.x : reloc.y; // i f the f i r s t point of the l ine ,

// set span start to x
// otherwise set span end to x

oPos.x = (oPos.x)*invHalfScreenWidth - 1.0f;// convert to c l ip coords

oTex0.xy = pixelPos; // address of the source pixel
oTex0.z = reloc.z; // length of the span (in pixe ls)

}

// Gather phase of two−pass stereo reprojection :
// Fragment program to create relocation texture
void

stereoGatherFP(

float3 texCoord0 : TEXCOORD0,// (from stereoGatherVP)

122

out float4 oRelocInfo : COLOR) // relocation info buffer
{

oRelocInfo = float4(texCoord0, 1); // get relocation info
// from stereoGatherVP

oRelocInfo.z = texCoord0.z>1.01f ? 0 // keep old values
// (possible reprojection problem)

: 1; // reproject (reprojection valid)
}

// PASS3:
// Pixel peprojection by using relocation texture
// (same for one−pass and two−pass methods)
void

stereoRelocate(

float2 wpos : TEXCOORD0,// texture coords of the pixel
out float4 oColor : COLOR, // reprojected pixe ls

uniform sampler2D texRelocInfo, // relocation info (from previos pass)
uniform sampler2D texBuffer, // source pixe ls (to be reprojected)
uniform float2 invScreenSize // 1/(screenSize . x , screenSize . y)

)

{

float4 texCoord = tex2D(texRelocInfo, wpos); // read relocation info
if (texCoord.z > 0) // i f reprojection i s valid ,

oColor = tex2D(texBuffer, texCoord.xy); // reprojected pixel =
// source pixel

else // otherwise ,
discard; // do not reproject

}

A.3.2 GLSL source code for the reprojection with one-pass gather table

generation

// PASS1:
// Vertex program to create relocation texture
void main()

{

gl_Position = gl_Vertex; // pass thru the vertex
}

// Geometry program to create relocation texture
// Works on point primitives instead of l ine primitives
#version 120

#extension GL_EXT_geometry_shader4 : enable

uniform vec2 invScreenSize; // 1/(screenSize . x , screenSize . y)
uniform float invHalfScreenWidth; // 2/(screenSize . x , screenSize . y)
uniform vec2 invTexSize; // 1/(bufferSize . x , bufferSize . y)
uniform float screenWidth; // width of the screen (screenSize . x)
uniform float halfScreenWidth; // half width of the screen (0.5∗ screenSize . x)
uniform mat4 matRight; // right eye reprojection matrix
uniform sampler2D texPos; // pixel world coordinates

void main(void)

{

// last two coords keep the tex coords of the current pixel
vec2 texCoord = gl_PositionIn[0].zw;

// read world coords of the pixel

123

vec3 point = texture2D(texPos, texCoord).xyz;

// convert to screen coords
vec4 transPos = matRight * vec4(point,1);

float newPos = transPos.x/transPos.w;

newPos = (newPos+1) * halfScreenWidth;

newPos = int(newPos);

// read world coords of the previous pixel
vec3 pointPrev = texture2D(texPos, texCoord-vec2(invTexSize.x.0)).xyz;

// valid or out of scene point ?
float maskPrev = texture2D(texPos, texCoord-vec2(invTexSize.x.0)).a;

// reproject previous pixel
vec4 transPosPrev= matRight * vec4(pointPrev,1);

// convert to screen coords
float newPosPrev = transPosPrev.x/transPosPrev.w;

newPosPrev = (newPosPrev+1) * halfScreenWidth;

newPosPrev = int(newPosPrev);

vec2 lineInfo;

bool prevValid = (maskPrev>=0);

float len;

if (prevValid && newPos>newPosPrev+1) // bad pixel range
{

lineInfo = vec2(newPosPrev, newPos+1);

len = newPos-newPosPrev;

}

else // valid reprojection
{

lineInfo = vec2(newPos, newPos+1);

len = 1;

}

// generate l ine primitive
lineInfo = lineInfo*invHalfScreenWidth;

gl_TexCoord[0] = vec4(texCoord.xy,len,1);

gl_Position = vec4(lineInfo.x-1, gl_PositionIn[0].y, 0,1);

EmitVertex();

gl_Position = vec4(lineInfo.y-1, gl_PositionIn[0].y, 0,1);

EmitVertex();

EndPrimitive();

}

// Fragment program to create relocation texture
// same as stereoGatherFP()
void main()

{

// get relocation info (coming from the above geometry program)
gl_FragColor = vec4(gl_TexCoord[0].xyz,1);

gl_FragColor.z = gl_TexCoord[0].z>1.01 ? 0 // keep (inval id)
: 1.0;// reproject

}

// PASS2:
// Pixel peprojection by using relocation texture
// (exactly same as stereoRelocate ())

124

VITA

PERSONAL INFORMATION

Surname, Name: Es, �. Alphan

Nationality: Turkish (TC)

Date and Place of Birth: February 14, 1975, Ankara

Marital Status: Single

Phone: +90 312 2101050 - 1186

Fax: +90 312 2101315

email: alphan.es@gmail.com

EDUCATION

Degree Institution Year of Graduation

MS METU,Computer Engineering 2000

BS Ege University, Computer Engineering 1996

High School Bursa Erkek 1991

WORK EXPERIENCE

Year Place Enrollment

1997- Present TÜB�TAK UZAY Chief Researcher

1995 July Ege University Intern Engineering Student

1994 July B�SA� Intern Engineering Student

FOREIGN LANGUAGES

English

125

PUBLICATIONS

Journals

1. Alphan Es and Veysi �³ler, "Accelerated Regular Grid Traversals Using Extended

Anisotropic Chessboard Distance Fields on a Parallel Stream Processor ", Journal

of Parallel and Distributed Computing, 67(11):1201-1217, 2007.

2. Hacer Yal�m Kele³, Alphan Es, and Veysi �³ler, "Acceleration of Direct Volume Ren-

dering with Programmable Graphics Hardware", The Visual Computer, 23(1):15-24,

2007.

3. Tülin Taner, Semra Ciger, Hakan El, Derya Germeç, and Alphan Es , "Evaluation of

dental arch width and form changes after orthodontic treatment and retention with

a new computerized method", American Journal of Orthodontics and Dentofacial Or-

thopedics, 126(4):464-475, 2004.

International Conferences

1. Alphan Es and Veysi �³ler, "GPU Based Stereoscopic Ray Tracing", Proc. of ISCIS

07, 2007. (best paper award).

2. Alphan Es, Hacer Yal�m Kele³, and Veysi �³ler, "Accelerated Volume Rendering with

Homogeneous Region Encoding using Extended Anisotropic Chessboard Distance on

GPU", Proc. of EGPGV'06, pp.67-73, 2006.

3. Ali Telli and Alphan Es, "Link Analysis For BILSAT-1", Proc. of IEEE Aerospace

Conference, pp. 6-, 2006.

4. Ali Telli and Alphan Es, "Visualization of Global BILSAT-1 VHF Frequency Usage",

Proc. of RAST 2005, pp. 456-460, 2005.

5. Alphan Es and Veysi �³ler, "Acceleration of Regular Grid Traversals Using Extended

Chessboard Distance Transformation on GPU", Proc. of CAD/CG 2005, pp. 434-441,

2005.

6. Ali Telli and Alphan Es, "Global BILSAT-1 VHF Frequency Usage Visualization",

Proc. of ICSSC 2005, 2005.

7. Alphan Es and Veysi �³ler, "Three Dimensional Computer Animation For Presenting

Weather Forecast", Proc. of WSCG'99, 1999.

126

8. Alphan Es and Veysi �³ler, "Simpli�cation of Triangular Meshes Using Iterative Edge

Contractions", Proc. of ISCIS-99, 1999.

National Conferences

1. Alphan Es and Veysi �³ler, "Üç Boyutlu Bilgisayar Animasyonu ile Hava Tahmininin

Sunulmas�", (in Turkish), Proc. of Bilisim-98, 1998.

2. Alphan Es, Erdem Ayvaz and Veysi �³ler "Internette 3. Boyut Teknolojisi", (in Turk-

ish), Proc. of INET-TR 97, 1997.

HOBBIES

Playing music, painting, 3D modeling and digital sculpting, architecture, movies, ten-

nis.

127

