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ABSTRACT

ON THE ALGEBRAIC STRUCTURE OF RELATIVE HAMILTONIAN

DIFFEOMORPHISM GROUP

Demir, Ali Sait

Ph. D., Department of Mathematics

Supervisor: Prof. Dr. Yıldıray Ozan

January 2008, 61 pages

Let M be smooth symplectic closed manifold and L a closed Lagrangian sub-

manifold of M. It was shown by Ozan that Ham(M,L): the relative Hamiltonian

diffeomorphisms on M fixing the Lagrangian submanifold L setwise is a subgroup

which is equal to the kernel of the restriction of the flux homomorphism to the

universal cover of the identity component of the relative symplectomorphisms.

In this thesis we show that Ham(M,L) is a non-simple perfect group, by

adopting a technique due to Thurston, Herman, and Banyaga. This technique

requires the diffeomorphism group be transitive where this property fails to exist

in our case.

Keywords: Hamiltonian Diffeomorphisms, nontransitive diffeomorphism groups,

Lagrangian submanifolds

iv



ÖZ

RÖLATİF HAMİLTON DİFEOMORFİZMALARIN CEBİRSEL YAPISI

Demir, Ali Sait

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Yıldıray Ozan

Ocak 2008, 61 sayfa

M simplektik bir manifold ve L, M’in kapalı bir Lagrange alt manifoldu olsun. L’i

kümece sabit brakan M üzerindeki Hamilton difeomorfizmalarının oluşturdug̃u

Ham(M,L) kümesinin, akı homomorfizmasının, rölatif simplektomorfizmaların

birim bileşenine kısıtlanışının çekirdek grubu oldug̃u Ozan tarafından 2005 yılında

gösterilmişti. Bu tezde, Ham(M,L) grubunun basit olmayan mükemmel bir

grup oldug̃u, Thurston, Herman ve Banyaga tarafından geliştirilmiş bir teknig̃in

uyarlanmasıyla gösterilmiştir. Teknik, grubun transitif olmasını gerektirirken

Ham(M,L) grubu transitif deg̃ildir.

Anahtar Kelimeler: Hamilton difeomorfizmaları, transitif olmayan gruplar, La-

grange alt manifoldları
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would like to express my appreciation to Prof. Dr. Turgut Önder, for initiating
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CHAPTER 1

INTRODUCTION

From the time that Poincare suggested the notion of a differentiable manifold as

the phase space in mechanics, there have been many developments in mathemat-

ical physics. The modeling for mechanics, consisting of a symplectic manifold to-

gether with a Hamiltonian vector field (or global system of differential equations

preserving the symplectic structure) replaced analytical methods by differential

topological ones in the study of the phase portrait. This modeling had its own

settings and developed the theory of Symplectic Topology.

Just as symplectic manifolds stood for configuration (or phase) spaces of

Hamiltonian Mechanical Systems, there are some infinite dimensional Lie groups

that take the roles of configuration spaces in fluid dynamics, plasma physics or

in quantization. In this respect diffeomorphism groups and their subgroups play

an important role in dynamical systems both as phase spaces and as symmetry

groups. For example the configuration space of a homogeneous ideal fluid con-

tained in a container M is Diff(M): the group of self diffeomorphisms on M ,

and if the fluid is incompressible it is Diffvol(M): the group of volume preserving

diffeomorphism of M to itself. Another set of examples come from the Maxwell-

Vlasov equations of plasma physics, which is an infinite dimensional system on

a space of symplectomorphisms.
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The study of diffeomorphism groups and some certain subgroups may be

classified in many different aspects. Most basically one can consider geometric

or algebraic properties or their homotopy types.

In this thesis we deal with some algebraic properties of a subgroup of the

diffeomorphism group; namely the relative Hamiltonian diffeomorphisms that

leave a lagrangian submanifold invariant on a closed symplectic manifold. The

main result of this thesis is that this group is perfect. We adopt a technique

due to Thurston, Herman and Banyaga that was used to show that some of

these groups are simple or at least perfect. We made inevitable modifications to

overcome the lack of some properties in the relative group.

1.1 From Perfectness to Simplicity

One of the main problems in the study of diffeomorphism groups is whether a

group of diffeomorphisms and/or its certain subgroups is perfect, simple. The

simplicity of the commutator subgroup [Diffr
0(M), Diffr

0(M)] of Diffr
0(M) was

shown by Epstein in 1970 [6]. Whether the group Diffr
0(M) is perfect is a harder

question and was shown for M = T n, r = ∞ by Herman in 1971 [8]. Then

Thurston used this result to generalize it for arbitrary manifolds [22]. He also

developed a machinery, now called the “Thurston tricks”, to yield the simplicity

of Diff∞0 (M). Here we will briefly explain this technique.

Remark 1.1. Although we consider closed manifolds, i.e. compact without

boundary, most of the results are valid on a non-compact manifold if one re-

places diffeomorphisms or isotopies by the compactly supported ones. We will

make it explicit if even such considerations are not sufficient.

We first start with some definitions. Let G ⊆ Diff∞(M) be a group of diffeo-

morphisms.
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Definition 1.2. 1. G is said to have the fragmentation property if for any

open cover U = {Ui}i∈I and any g ∈ G, there are g1, g2, ..., gs ∈ G with

supp(gk) ⊂ Ui(k) for k = 1, .., s where i(k) ∈ I and g = g1g2...gs.

2. G is said to be strongly n-fold transitive if given a pair (x1, ..., xn), (y1, ..., yn)

of distinct points on M , there exist n diffeomorphisms gi ∈ G such that

gi(xi) = yi, i = 1, .., n and supp(gi) ∩ supp(gj) = ∅ ,∀i 6= j.

3. The subgroup GU ⊆ G denotes the subgroup consisting of diffeomorphisms

which have compact support in the open subset U of M .

Theorem 1.3. [22](Thurston’s trick) Let G ⊆ Diff∞0 (M) be a group of diffeo-

morphisms which is strongly 2-fold transitive, has the fragmentation property and

such that GU is perfect for each open set U ⊂ M . Then G is simple.

Remark 1.4. 1. Since the original paper of Thurston is unpublished one can

find the proof of this theorem, for instance, in [2].

2. There is a more direct and shorter proof for the simplicity of Diffr
0(M), for

1 ≤ r ≤ ∞, due to Epstein and Mather [7, 12]. Since their method involves

shrinking and expanding volume of subsets , it can not be generalized to

volume-preserving and symplectic diffeomorphisms.

For the rest of this section let G denote the identity component of C∞ diffeo-

morphisms on a closed smooth manifold M , i.e. G = Diff∞0 (M). One can easily

verify that G is strongly 2-fold transitive and has the fragmentation property.

See [2]. As Theorem 1.3 suggests, to show the simplicity of G we need to show

perfectness of GU . We now briefly explain how GU is shown to be perfect. Recall

that the perfectness of a topological group G is equivalent to H1(G) being trivial,

in other words

H1(G) = G/[G, G] = 0 if and only if G is perfect.
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Let U be an open subset of a smooth manifold M such that Ū ⊂ V , where V

is the domain of a local chart φ : V → Rn. The conjugation of elements of GU

by the charts φ induces an isomorphism GU ≈ Diff∞0 (Rn). In other words the

local picture of diffeomorphism groups are the same as diffeomorphism group of

Rn. Moreover, this local picture is exactly the same picture of the whole group

of diffeomorphisms if one considers the abelianizations.

Lemma 1.5. (Deformation Lemma) Let U be an open subset of a smooth man-

ifold Mn such that Ū ⊂ V , where V is the domain of a local chart φ : V → Rn.

Then the inclusion GU ⊂ G induces an isomorphism: H1(GU) ≈ H1(G).

To conclude that Diff∞0 (Mn) is simple, as the above lemma suggests, we need

to find just one manifold for which Diff∞0 (Mn) is perfect. Herman’s result that

Diff∞0 (T n) is perfect proves that Diff∞0 (Mn) is simple. We will need a similar

result with Herman’s and come back to this again in the last chapter.

1.2 Main Results

Let (M, ω) be a connected, closed, symplectic manifold and L a closed Lagrangian

submanifold. Let Symp(M, L, ω) denote the subgroup of Symp(M,ω) consist-

ing of symplectomorphisms leaving the Lagrangian submanifold L invariant and

Symp0(M,L, ω) the path component of Symp(M, L, ω) containing the identity.

The relative symplectomorphism group was introduced by Ozan [16]. In this

paper he defined a relative version of the flux homomorphism:

Flux : S̃ymp0(M,L, ω) → H1(M,L,R)

and showed that its kernel gives the relative Hamiltonian group H̃am(M, L),

similar to the absolute case.

In this thesis, we will examine some topological and algebraic aspects of these

relative groups. The main result will be the perfectness of the group of relative

4



Hamiltonian diffeomorphism.

Theorem 1.6. Let M be a connected, closed, symplectic manifold, L ⊂ M a

connected, oriented Lagrangian submanifold such that M\L is connected. Then,

Ham(M, L) is a non-simple perfect group.

In the third chapter we analyze this group in detail. We outline some topo-

logical properties of this group first discovered by Ozan.

The relative versions of deformation lemma and the ideas to overcome the lack

of transitivity is explained in the fourth chapter. Mainly we prove

Theorem 1.7. The natural map ρ : BKerRU,U∩L −→ BHam(M, L) induces an

isomorphism

φ : H1(BKerRU,U∩L;Z) −→ H1(BHam(M,L);Z)

Here RU,U∩L denotes the Calabi homomorphism defined for open subsets of

closed manifolds, whose details are given in the third chapter. The topological

space BG of a group G will be reviewed in the appendix. We remark here the

relation H1(BG) ≈ G̃/[G̃, G̃] ≈ H1(G̃) and address the appendix for the details.

The last chapter involves a proof that Ham(T 2n, T n) is perfect. We adopt the

original proof of Herman’s for the absolute case. This is a fundamental step on

the way to perfectness of all relative Hamiltonian groups.

5



CHAPTER 2

PRELIMINARIES

In this chapter we recall some basic properties of classical diffeomorphism groups.

We follow mainly Banyaga [2] and Schmid [20].

2.1 The Lie group of Cr-diffeomorphisms

Let M, N be finite dimensional smooth manifolds. Denote by Cr(M,N) the space

of all Cr mappings f : M → N , for 1 ≤ r ≤ ∞. The topological and smooth

structure of the diffeomorphism groups are induced from those on Cr(M,M):

Cr automorphisms of the manifold. So we recall these structures on Cr(M,N)

first.

Definition 2.1. A Cr diffeomorphism of a smooth manifold M is an invertible

element φ ∈ Cr(M,M) such that φ−1 is a Cr map.

The set of all Cr diffeomorphisms is denoted by Diffr(M). The composition of

mappings in Cr(M,M) gives Diffr(M) a group structure and we have the natural

inclusions:

Diff1(M) ⊃ Diff2(M) ⊃ · · · ⊃ Diffr(M) ⊃ · · · ⊃ Diff∞(M)

where Diff∞(M) is the group of all C∞ diffeomorphisms. Indeed, Diffr(M) is a

topological group with compact open topology induced from Cr(M,M).
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2.1.1 The compact-open Cr topology

Let f ∈ Cr(M,N) with r ≤ ∞. Let (U, φ) and(V, ψ) be local charts of M and

N respectively such that f(K) ⊂ V , where K is some compact subset of U . For

ε ≥ 0 define N r(f, (U, φ), (V, ψ), ε, K) to be the set of all g ∈ Cr(M,N) such

that g(K) ⊂ V and if

f = ψfφ−1, g = ψgφ−1

then:

‖Dkf(x)−Dkg(x)‖ < ε

for all x ∈ φ(K) and 0 ≤ k ≤ r.

The sets N r(f, (U, φ), (V, ψ), ε, K) form a subbasis for a topology on Cr(M,N),

called the compact-open Cr topology. A neighborhood of f in this topology

is any finite intersection of the sets of type N r(f, (U, φ), (V, ψ), ε, K). The C∞

compact-open topology on C∞(M,N) is the topology induced by the inclusions

C∞(M, N) ⊂ Cr(M, N) for r finite.

The group Diffr(M) with this topology is a topological group. It is metrizable

and has a countable basis [10]. However, if M is not compact there is no control

of what happens at “infinity”. We have to restrict to mappings with compact

supports to overcome this difficulty. Then, the topology on the group Diffr
c(M) of

Cr diffeomorphisms with compact supports is given by the direct limit topology

induced from Cr
c (M, M) for r ≤ ∞.

2.1.2 Smooth structure on Diffr(M)

After the work of Arnold ([1]), showing that, if we assume that the group of

diffeomorphisms has the properties of a Lie group we can use these properties

to get a better understanding of hydrodynamics, people have tried to show that

7



Diffr(M) is an infinite dimensional Lie group. Especially Omori’s studies en-

lighted the theory in this direction. The details can be found in [2, 20].

Let f ∈ Cr(M, N) and γ : I ⊂ R → Cr(M,N) be a curve with γ(0) = f .

γ̇(0) will be a tangent vector to Cr(M,N) at the point f , i.e.

γ̇(0) =
dγ(t)

dt
|t=0 ∈ TfC

r(M,N).

This should be interpreted as follows: For each x ∈ M , let γx : I ⊂ R → N

be the curve in N given by γx(t) = γ(t)(x). Then γx(0) = f(x) and γ̇(0) ∈
Tf(x)N , in other words γ̇(0) is a tangent vector to N at the point f(x). Identify

γ̇(0) ≡ γ̇(0)(x); hence γ̇(0) can be regarded as a map γ̇(0) : M → TN such that

γ̇(0) ∈ Tf(x)N . This means γ̇(0) is a vector field along f . Thus the tangent space

of Cr(M,N) at f is

TfC
r(M, N) = {ξf ∈ C(M,TN) | τN ◦ ξf = f}.

Here τN : TN → N is the canonical projection. We can identify TfC
r(M,N)

with the space Γr(f ∗τN) of sections of the pull-back bundle f ∗τN ; i.e.

TfC
r(M, N) ∼= Γr(f ∗τN) which is an infinite dimensional vector space.

Remark 2.2. If r = ∞ then the space Γ∞(f ∗τN) of C∞ sections with the uniform

C∞-topology is a Frechet space; (a metrizable topological vector space), defined

by the sequence of seminorms (| |p)p∈N

|ξ|p =
max

0≤i≤p

0≤j≤p

sup
x∈Ui ‖Djξi(x)‖ < ∞.

Here ξi is the local representative of ξ ∈ Γ∞(f ∗τN) in a chart Ui of M . If

0 ≤ r < ∞ then Γr(f ∗τN) is a Banach space with norm ‖ξ‖ = max0≤p<r|ξ|p,
with |ξ|p as above. So to do analysis on Diff∞(M) one has to refine things. But

to a topologist this fact is not too much annoying. Structures in which a kind

of inverse function theorem works, namely Nash-Moser type implicit function

8



theorem, still do exist. Omori presents Diff∞(M) as an ILH (inverse limit of a

Hilbert space) manifold.

To define the local charts Φf : V(f) ⊂ Cr(M,N) −→ W ⊂ TfC
r(M,N)

around a neighborhood V(f) of f ∈ Cr(M,N) , we first start with choosing a

Riemannian metric g on N in order to get an exponential mapping expx : Ux ⊂
TxN → N on some neighborhood Ux of zero in TxN . For each vx ∈ TxN , there

is a unique geodesic αx through x whose tangent vector at x is vx, i.e. αx(0) = x

and α̇x(0) = vx. Then define

expx(vx) := αx(1), vx ∈ TxN

In general expx is a local diffeomorphism from a neighborhood of 0 ∈ TxN onto

a neighborhood of x ∈ N ; i.e. there is an open ball D
λ(x)
x ⊂ Ux centered at

0 with radius λ(x) onto an open neighborhood Nx of x in N . There exists a

δ(x) ≥ 0 such that Nx ⊂ B(x, δ(x)), where B(x, δ(x)) is the d-ball in N centered

at x with radius δ(x). Here d is the metric on N induced by the Riemannian

metric g. If N is compact, there exists a uniform δ and a uniform λ such that

for any x ∈ N expx(D
λ
x) ⊂ B(x, λ). Moreover expx can be extended to a map

exp : TN → N such that the map

Exp := (τN , exp) : TN → N ×N, Exp(vx) = (x, expx(vx))

is a diffeomorphism from a neighborhood O(0) of the zero section in TN onto a

neighborhood U(∆) of diagonal ∆ ⊂ N ×N .

Let V(f) = {g ∈ Cr(M,N)| supx∈N d(f(x), g(x)) ≤ δ}. This defines a C0

neighborhood of f . Note that if f is the identity map id : M → M then

V(idM) = {f ∈ Cr(M, M) | graph(f) ⊂ U(∆)}

For any g ∈ V(f), define Φf (g) ∈ TfC
r(M, N) by

Φf (g) = exp−1
f(x)(g(x)),

9



which is a bijection of V(f) with an open neighborhood W of 0 ∈ TfC
r(M,N),

for all x ∈ M . Its inverse is given by

exp : W ⊂ TfC
r(M, N) −→ Cr(M,N)

ρ 7−→ exp ◦ ρ

which is a homeomorphism, hence is a local chart. One can show that the

transition map between two overlapping charts is “smooth” [20].

Example 2.3. 1. For the case N = M and f = idM , TfC
r(M, N) is just

the set of Cr vector fields on M . Hence Diffr(M) is a smooth manifold

modeled on χr(M) of Cr vector fields on M which is a Banach space. If

r = ∞, Diff∞(M) is still a manifold on χ(M) of C∞ vector fields on M ,

however the latter is a Frechet space as we mentioned in Remark 2.2.

2. Let Rα ∈ Diff∞0 (T n) denote the rotation by α ∈ T n. If π : Rn → T n denotes

the covering map and β̃ ∈ Rn is a lift of β ∈ T n, then Rα(v) = π(α̃ + ṽ).

Let λ ∈ T n be close enough to α so that Rλ ∈ V(Rα). If ΦRα : V(Rα) →
TRαC∞(T n, T n) denotes the chart near Rα, then ΦRα(Rλ) : T n → Rn is the

map given by ΦRα(Rλ)(x) = x̃ + λ̃− α̃.

Proposition 2.4. Diffr(M) and Diffr
c(M) are locally contractible. Hence they

are locally connected by smooth arcs.

Although Diffr(M) is an infinite dimensional Lie group with Lie algebra

χr(M), the nice relations between a finite dimensional Lie group G and its Lie

algebra g may fail to exist for Diffr(M). For instance, the exponential mapping

is neither one-to-one nor onto near the identity. (See [2, pp.8-9] for examples).

It is still important to know the structure of the Lie algebra, because we can use

this knowledge to construct interesting 1-parameter groups inside the Lie group

and deduce information about the structure of the entire Lie group.

It is well-known that any C∞ vector field X on M with compact support

10



generates a flow φt ∈ Diff∞c (M). We get the family of diffeomorphisms φt as the

trajectories of the time-dependent differential equation:

d

dt
φt(x) = X(φt(x)), φ0(x) = x.

The diffeomorphism φ1 is called the time one map of the flow. The correspon-

dence X 7→ φ1 is a well defined map Exp : χc(M) → Diff∞c (M) called the

exponential map of the Lie group Diff∞c (M). When a smooth manifold M is

equipped with some interesting geometric structure, there exists a distinguished

class of vector fields which generate a local 1-parameter group of diffeomorphisms

preserving the structure. If M is oriented, for instance, Diff+(M) ⊂ Diff∞c (M) is

the subgroup of orientation preserving diffeomorphisms on M . For a fixed volume

form ω on M Diffω(M)c is the group of volume preserving diffeomorphisms with

compact support, i.e. Diffω(M)c = {φ ∈ Diff∞c (M)‖ φ∗ω = ω}. The group of

diffeomorphisms that preserve the symplectic structure on a symplectic manifold

M is the next important set of examples.

2.2 The Group of Symplectomorphisms

Let (M2n, ω) be a symplectic manifold, i.e. ω is a closed 2-form such that ωn (6= 0)

is a volume form on M . The group of symplectomorphisms

Symp(M,ω) = {φ ∈ Diff∞(M) | φ∗ω = ω}

is of fundamental importance for the study of Symplectic Topology (in addition

to its role in plasma physics). For example the symplectic rigidity theorem,

being the basis of symplectic topology, states that “Symp(M, ω) is C0-closed

in Diff(M)”. Or, for instance, one can consider the Arnold conjecture which

estimates bounds for the fixed points of Hamiltonian symplectomorphisms.
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2.2.1 Symplectic Manifolds

In this section we first recall some fundamentals of Symplectic Topology, basic

definitions and examples. For more details one can see McDuff and Salamon’s

book [14] or da Silva’s survey [5]. The followings are the classical examples of

symplectic manifolds.

Example 2.5. 1. Let M = R2n with the coordinates (x1, ..., xn, y1, ..., yn).

Then the 2-form defined by ωst =
∑n

i=1 dxi ∧ dyi is called the standard

symplectic form on R2n.

2. The 2-sphere S2, with the standard symplectic form on S2 is induced by the

standard inner (dot) and exterior (vector) products: ωp(u, v) :=< p, u ×
v >, for u, v ∈ TpS

2 = {p}⊥. This is the standard area form on S2

with total area 4π. In terms of cylindrical polar coordinates 0 ≤ θ < 2π

and −1 ≤ z ≤ 1 away from the poles, it is written ω = dθ ∧ dz. Since

[ω] ∈ H2(M,R) is a non-zero class for a symplectic manifold (M, ω), Sn is

symplectic only for n = 2.

3. (Cotangent Bundles) Let (U, x1, .., xn) be a coordinate chart of a smooth

manifold M such that (T ∗U, x1, .., xn, ξ1, .., ξn) becomes a coordinate chart

for T ∗M : the cotangent bundle of M . Then, if α =
∑n

i=1 ξidxi is the

Liouville 1-form, the canonical symplectic form on the cotangent bundle is

given by ωcan = −dα =
∑n

i=1 dxi ∧ dξi.

4. Let (M,ω) be a symplectic manifold. Then the product manifold M ×M

is also symplectic with the symplectic form (−ω)⊕ (ω).

Symplectic manifolds have special submanifolds that arise naturally both in

physics and geometry.

Definition 2.6. Ln ⊂ M2n is a Lagrangian submanifold of a symplectic manifold

12



(M,ω), if ω|TL = 0.

Example 2.7. 1. L = {(x1, .., xn, 0, .., 0) | xi ∈ R} ⊂ R2n is a Lagrangian

submanifold.

2. Any 1-dimensional submanifold of a symplectic surface is Lagrangian.

3. The zero section M0 = {(x, ξ) ∈ T ∗M | ξ = 0 in T ∗
xM} diffeomorphic to

M is a Lagrangian submanifold of the cotangent bundle of any smooth

manifold M . Hence any smooth manifold is a Lagrangian submanifold!

4. The diagonal ∆ = {(p, p) | p ∈ M} ⊂ (M ×M, (−ω)⊕ (ω)) diffeomorphic

to M is a Lagrangian submanifold. Indeed, this is a particular case of the

following, which is due to Weinstein.

Theorem 2.8. [23] Let (M,ω) be a symplectic manifold and ψ : M → M be a

diffeomorphism. Then ψ is a symplectomorphism if and only if its graph

graph(ψ) = {(p, ψ(p))| p ∈ M} ⊂ M ×M

is a Lagrangian submanifold of (M ×M, (−ω)⊕ (ω)).

Example 2.7.4 is the case ψ = idM of the above theorem. The following

result, due to Weinstein, classifies Lagrangian embeddings up to local symplec-

tomorphism.

Theorem 2.9. (Weinstein Tubular Neighborhood Theorem) Let (M, ω)

be a symplectic manifold, L a compact Lagrangian submanifold, ωcan the canoni-

cal symplectic form on T ∗L, i0 : L ↪→ T ∗L the Lagrangian embedding as the zero

section, and i : L ↪→ M the Lagrangian embedding given by the inclusion. Then

there are neighborhoods U0 of L in T ∗L, U of L in M , and a diffeomorphism

ϕ : U0 → U such that ϕ∗ω = ωcan and ϕ ◦ i0 = i.

13



2.2.2 Symplectic and Hamiltonian Diffeomorphisms

Symp(M,ω) is by definition equipped with C∞-topology and as first observed

by Weinstein in [23] it is locally path connected. Let Symp0(M, ω) denote the

path component of idM ∈ Symp(M,ω). For any ψ ∈ Symp0(M,ω), let ψt ∈
Symp(M,ω) for all t ∈ [0, 1], such that ψ0 = idM and ψ1 = ψ. There exists a

unique family of vector fields (corresponding to ψt)

Xt : M −→ TM such that
d

dt
ψt = Xt ◦ ψt. (2.1)

The vector fields Xt are called symplectic since they satisfy LXtω = 0, where

LXtω denotes the Lie derivative of the form ω along the vector field Xt. By

Cartan’s formula

LXtω = iXt(dω) + d(iXtω).

Hence Xt is a symplectic vector field if and only if iXtω is closed for all t. If

moreover iXtω is exact, that is to say iXtω = dHt, Ht : M → R a family of

smooth functions, then Xt are called Hamiltonian vector fields. In this case

the corresponding diffeomorphism ψ is called a Hamiltonian diffeomorphism and

H1 is a Hamiltonian for ψ. The Hamiltonian diffeomorphisms form a group

as a subgroup in the identity component of the group of symplectomorphisms,

Ham(M, ω) ⊆ Symp0(M, ω). Thus we have a sequence of groups and inclusions:

Ham(M) ↪→ Symp0(M) ↪→ Symp(M) ↪→ Diff∞(M)

The most important elementary theorems in Symplectic Topology, the Dar-

boux’s theorem and the Moser’s theorem, tell us the first observations about the

groups Ham(M) and Symp(M).

Theorem 2.10. (Darboux’s Theorem) Every symplectic form is locally dif-

feomorphic to the standard symplectic form ωst =
∑n

i=1 dxi ∧ dyi on R2n.
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Theorem 2.11. (Moser’s Theorem) Any path ωt, t ∈ [0, 1] of cohomologous

symplectic forms on a closed manifold M is induced by an isotopy Φt : M → M

of the underlying manifold, i.e. Φ∗
t (ωt) = ω0 Φ0 = id.

Since there are no local invariants of symplectic structures, by Darboux’s the-

orem, these groups are infinite dimensional. Due to Moser’s theorem Symp(M, ω)

and Ham(M,ω) depend only on the diffeomorphism class of the form ω. In fact

when ωt varies along a path of cohomologous forms the topological or algebraic

properties of these groups do not change .

2.2.3 Ham(M) and Flux Homomorphism

Since Hamiltonian diffeomorphisms can not be described as diffeomorphisms pre-

serving some certain structure, there are some complications that one encounters

while studying this group. For instance, it was not known until very recently

that the Flux conjecture is true:

Flux Conjecture: On a closed, symplectic manifold the limit of a C∞ conver-

gent sequence of Hamiltonian diffeomorphisms in Symp(M,ω) is a Hamiltonian

diffeomorphism.

The proof of this theorem is due to Ono [15]. There is a useful characterization

of Hamiltonian diffeomorphisms as the kernel of a group homomorphism and the

name of the above conjecture will now be appearent.

Definition 2.12. Let ψt, t ∈ [0, 1], be a loop of symplectomorphisms on a smooth

symplectic manifold M . Then the flux homomorphism F̃lux : S̃ymp0(M,ω) →
H1(M,R) is given by

F̃lux({ψt}) =

∫ 1

0

[iXtω]dt ∈ H1(M,R),

where Xt is defined by d
dt

ψt = Xt ◦ ψt.

Recall that the universal cover of a space is just the set of equivalence classes
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of paths in that space with fixed ends. The notation {ψt} denotes the equivalence

class of homotopic isotopies that have fixed ends ψ0 = id, ψ1 = ψ. Further, if

we let

Γ = F̃lux(π1(Symp0(M,ω))) ⊂ H1(M,R)

then, F̃lux induces a well defined homomorphism on Symp0(M, ω), also called

the Flux:

Flux : Symp0(M,ω) → H1(M,R)/Γ.

The group Γ is called the Flux group, and the flux conjecture is equivalent to Γ

being discrete [18]. The following theorem due to Banyaga exhibits the relation

between Ham(M) and the Flux homomorphism.

Theorem 2.13. Let ψ ∈ Symp0(M). Then ψ is a Hamiltonian symplectomor-

phism if and only if there exists a symplectic isotopy ψt ∈ Symp0(M), t ∈ [0, 1]

such that ψ0 = id, ψ1 = ψ, Flux({ψt}) = 0. Moreover, if Flux({ψt}) = 0 then

{ψt} is isotopic with fixed end points to a Hamiltonian isotopy.

2.2.4 Algebraic aspects of Symp(M,ω) and Ham(M, ω)

Theorem 2.13 gives first informations about the algebraic structure of

Symp0(M) and Ham(M). Symp0(M) can no longer be simple since Ham(M) is

a normal subgroup. Indeed Symp0(M) is not even perfect unless M is simply

connected. We have the following commutative diagram.

π1(Ham(M)) → π1(Symp0(M))
Flux−→ Γ

↓ ↓ ↓
H̃am(M) −→ S̃ymp0(M)

F̃lux−→ H1(M,R)

↓ ↓ ↓
Ham(M) −→ Symp0(M)

Flux−→ H1(M,R)/Γ
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In [3] Banyaga showed that Ham(M) is simple. Therefore any other “natural”

homomorphism from Symp0(M) to an arbitrary group G must factor through

the flux homomorphism. The proof relies on symplectic versions of Thurston’s

arguments that we introduced in the first chapter.
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CHAPTER 3

THE RELATIVE HAMILTONIANS

Let (M, ω) be a connected, closed symplectic manifold, L a Lagrangian subman-

ifold of M . We choose L to be connected so that the relative flux homomorphism

is onto:

Fluxrel : S̃ymp0(M, L, ω) → H1(M, L;R).

Here S̃ymp0(M,L, ω) is the universal cover of the identity component of the

group of symplectomorphisms of M that leave L setwise invariant. The Fluxrel

is defined as

Fluxrel({ ψ}) =

∫ 1

0

[iXtω]dt

where {ψt} ∈ S̃ymp0(M,L, ω) and Xt is the vector field given by

d

dt
ψt = Xt ◦ ψt.

Note that since ψt leaves L invariant, for any p ∈ L, Xt(p) ∈ TpL.

Remark 3.1. We use Flux for all versions of the flux homomorphisms, e.g.

absolute, relative. The homomorphism should be understood from the context. If

the symplectic form is once mentioned we generally drop ω in Symp0(M,L, ω)

etc. and write Symp0(M, L).

Notation: Let M be a manifold, L ⊂ M a submanifold. If f is meant to be a

map of M that leave L setwise invariant then we write f : (M, L) → (M,L).
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Let Ham(M, L) ⊂ Symp0(M,L) be the subgroup consisting of symplecto-

morphisms ψ such that there is a Hamiltonian isotopy ψt : (M,L) → (M, L),

t ∈ [0, 1] such that ψ0 = id, ψ1 = ψ; i.e. ψt is a Hamiltonian isotopy of M such

that ψt(L) = L for any t ∈ [0, 1]. So if Xt is the vector field associated to ψt we

have iXtω = dHt for Ht : M → R. Since L is Lagrangian (w|L = 0), Ht is locally

constant on L. We have the following characterization.

Theorem 3.2. [16] ψ ∈ Symp0(M,L) is a Hamiltonian symplectomorphism iff

there exists a symplectic isotopy ψt : [0, 1] → Symp0(M, L) such that ψ0 = id,

ψ1 = ψ and Flux({ψt}) = 0. Moreover, if Flux({ψt}) = 0 then {ψt} is isotopic

with fixed end points to a Hamiltonian isotopy through points in Symp0(M, L).

3.1 Relative Calabi Homomorphism

Let (M,ω) be a noncompact symplectic manifold. If hc(M) is the subalgebra of

hamiltonian vector fields with compact support then for each X ∈ hc(M) there

is a unique function fX with compact support such that

iXω = dfX .

Proposition 3.3. Let X ∈ hc(M), then X 7−→
∫

M

fX ·ωn is a surjective homo-

morphism of Lie algebras r : hc(M) → R.

The natural place of this infinitesimal version of the Calabi homomorphism

is the universal cover of the compactly supported Hamiltonian diffeomorphism.

Definition 3.4. Let (M, ω) be a non-compact symplectic manifold, H̃amc(M)

be the universal cover of the compactly supported Hamiltonian diffeomorphisms

on M . Then the Calabi homomorphism R̃ : H̃amc(M) → R is defined by

{φt} 7−→
∫ 1

0

∫

M

Htω
ndt,

where Ht is given by iXtω = dHt and d
dt

φt = Xt ◦ φt.
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Recall that an element {φt} of H̃amc(M) is an equivalence class of homotopic

Hamiltonian isotopies with fixed ends.

A local version of the Calabi homomorphism for compact manifolds may be

defined by the above formulation i.e.

R̃U : H̃amU(M)c → R.

Here H̃amU(M)c denotes the universal cover of the compactly supported Hamil-

tonian diffeomorphisms, whose supports are contained in a contractible open

subset U of M .

The relative Calabi diffeomorphism may be defined by the same formula. Let

(M2n, ω) be a noncompact symplectic manifold and Ln ⊂ M2n be a Lagrangian

submanifold i.e. ω|L = 0. If Hamc(M,L) is the group of Hamiltonian diffeomor-

phisms of M that leave L invariant, then

R̃rel : H̃amc(M,L) → R

{Φt} 7−→
∫ 1

0

∫

M

Htω
ndt

is the relative Calabi homomorphism. That this homomorphism is a well-defined

surjective homomorphism can be proved almost the same as the absolute case

(see, for example Banyaga [2, p.103]).

Similarly, the relative Calabi homomorphism can be defined for compact man-

ifolds. Namely, if H̃amU,U∩L(M, ω)c denotes the universal cover of Hamiltonian

diffeomorphisms supported in U that leave the Lagrangian submanifold L invari-

ant then

R̃U,U∩L : H̃amU,U∩L(M, ω) → R

{Φt} 7−→
∫ 1

0

∫

M

Ht(ω)ndt

is again a surjective homomorphism. (Here Ht is given by iΦ̇t
ω = dHt.)
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Remark 3.5. If R̃∗ : G̃∗ → R denotes versions of the Calabi homomorphisms

in the universal cover setting, then we can write the induced homomorphisms for

the underlying groups. Namely, if Λ denotes the image of π1(G∗) under R̃∗, then

R∗ : G∗ → R/Λ

is a well-defined homomorphism.

3.2 Relative Weinstein Charts

In order to show perfectness of in Ham(M, L), we first establish that it has the

fragmentation property. This needs some technical preperation. We first recall

the relative versions of Weinstein forms and charts.

Let ψ ∈ Symp0(M,L) be sufficiently C1-close to the identity. Then there

corresponds a closed 1-form σ = C(ψ) ∈ Ω1(M) defined by Ψ(graph(ψ)) =

graph(σ). Here Ψ : N (∆) → N (M0) is the symplectomorphism between the

tubular neighborhoods of the Lagrangian submanifolds diagonal (∆ ⊂ (M ×
M, (−ω) ⊕ ω)) and the zero section (M0 ⊂ (T ∗M,ωcan)) of the tangent bundle

with Ψ∗(ωcan) = (−ω)⊕ω. Note that since ψ ∈ Symp0(M, L) the corresponding

1-form vanish on TL, i.e. σ|TqL = 0 for any q ∈ L.

As a consequence we have the following due to Ozan:

Lemma 3.6. [16] If ψ ∈ Symp0(M,L, ω) is sufficiently C1-close to the identity

and σ = C(ψt) ∈ Ω′(M) then ψ ∈ Ham(M, L) iff [σ] ∈ Γ(M, L).

Γ(M, L) is the relative flux group defined as the image of the fundamental

group of Symp0(M, L, ω) under the flux homomorphism.

Γ(M, L) = F̃lux(π1(Symp0(M, L, ω))) ⊆ H1(M, L,R).

Definition 3.7. The correspondence

C : Symp0(M, L, ω) → Z1(M, L)

21



h 7−→ C(h)

is called a Weinstein chart of a neighborhood of idM ∈ Symp0(M,L, ω) into a

neighborhood of zero in the set of closed 1-forms that vanish on TL. The form

C(h) is called a Weinstein form.

With these definitions in mind we have the following.

Corollary 3.8. Let (M, ω) be a symplectic manifold, L a Lagrangian submani-

fold. Any h ∈ Ham(M,L) can be written as a finite product of hi ∈ Ham(M, L)

close enough to idM to be in the domain of the Weinstein chart and such that

their Weinstein forms are exact.

Proof. As the above lemma suggests, every smooth path ψt ∈ Ham(M,L) is

generated by Hamiltonian vector fields. Let ht be any isotopy in Ham(M,L) to

the identity such that d
dt

ht = Xt(ht) where iXtω = dft, h0 = idM , h1 = h and

ft : M → R are Hamiltonians for all t ∈ [0, 1]. Let N be an integer large enough

so that

Φi
t =

[
h(

N−i
N

)
t

]−1

h(
N−i+1

N

)
t

is in the domain of the Weinstein chart. If we let hi = Φi
1 then we have h =

hNhN−1...h1. The mapping t 7−→ [C(Φi
t)] is a continuous map of the interval

[0, 1] into the countable group Γ(M,L) [16]. Hence it must be constant. Thus

[C(Φi
t)] = 0. 2

3.3 The Fragmentation Lemma

We are ready to state the relative symplectic fragmentation lemma.

Lemma 3.9. Let U = (Uj)j∈I be an open cover of a compact, connected, sym-

plectic manifold (M, ω) and h be an element of Ham(M, L) for a Lagrangian

submanifold L of M . Then h can be written

h = h1h2...hN ,

22



where each hi ∈ Hamc(M, L), i = 1, .., N is supported in Uj(i) for some j(i) ∈ I.

Moreover, if M is compact , we may choose each hi such that RUi,Ui∩L(hi) = 0,

where we made the identification Uj(i) := Ui.

Proof. We use the notation of Corollary 3.8. By Corollary 3.8 any h ∈
Ham(M, L) can be written as h = h1...hN where each hi ∈ Ham(M,L) is close

to idM to be in the domain V of the Weinstein chart

C : V ⊂ Symp0(M,L) → C(V ) ⊂ Z1(M,L)

and such that C(hi) is exact.

Start with an open cover U = (Ui)i∈N of M and a partition of unity {λi}
subordinate to it. Let K be a compact subset of M containing the support of

h. Let Uk = {U0, ..., UN} be the finite subcover for K such that Ui ∩ Ui+1 6= ∅.
Then consider the functions

µ0 = 0 , µj =
∑
i≤j

λi

for j = 1, 2, ..., N . Note that for any x ∈ K µN(x) = 1 and µi(x) = µi−1(x) for

x /∈ Ui.

Let µ̃i be defined as in the Equation B.1. Since this operator is bounded

there is an open neighborhood V0 ⊂ V of id ∈ Sympc(M, L) with

µ̃i(C(h)) ∈ C(V ) = W for all i = 1, ..., N and h ∈ V0

We will fragment such h ∈ V0. Consider

ψi = C−1(µi(C̃(h))) ∈ Ham(M, L).

Note that ψi−1(x) = ψi(x) for x /∈ Ui since µi−1(x) = µi(x) in that case. There-

fore (ψ−1
i−1ψi)(x) = x if x /∈ Ui. Hence, hi = (ψi−1)

−1(ψi) is supported in Ui. On

K we have µN = 1, µ0 = 0, ψN = h, and ψ0 = id. Therefore

h = ψN = (ψ−1
0 ψ1)(ψ

−1
1 ψ2)...(ψ

−1
N−1ψN) = h1h2...hN .
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For the second statement define the isotopies hi
t = ψi−1(t)ψi(t) where ψi(t) =

C−1(t ˜µi(C(h))). A classical result due to Calabi states that the Lie algebra

of locally supported Hamiltonian diffeomorphisms is perfect [4]. Since for each

t, ḣi
t is a Hamiltonian vector field parallel to L, we can write ḣi

t as a sum of

commutators. In other words we have

ḣi
t =

∑
j

[Xji
t , Y ji

t ],

where Xji
t and Y ji

t are again Hamiltonian vector fields (not necessarily parallel to

L). By the cut-off lemma below Xji
t and Y ji

t can be chosen to vanish outside of

an open set whose closure contain Ui. If ui
t is the unique function supported in

Ui with i
ḣi

t
ω = dui

t then dui
t =

∑
j ω(Xji

t , Y ji
t ) since both functions above have

the same differential and both have compact supports. Therefore

∫

Ui

ui
tω

n =

∫

M

ui
tω

n =
∑

j

∫
ω(Xji

t , Y ji
t )ωn = 0

Therefore ∫ 1

0

∫

Ui

ui
tω

n = RUi,UK∩L(hi) = 0.

2

The cut-off lemma we used in the proof of the fragmentation lemma is as

follows.

Lemma 3.10. Let ϕt ∈ Ham(M, L) be an isotopy of a smooth symplectic mani-

fold (M, ω) leaving a Lagrangian submanifold L invariant. Let F ⊂ M be a closed

subset and U, V ⊂ M open subsets such that U ⊂ U ⊂ V with ∪t∈[0,1]ϕt(F ) ⊂ U .

Then there is an isotopy ϕt ∈ Symp(M, L) supported in V and coincides with ϕt

on U .

Proof. We choose a smooth function λt(x) = λ(x, t) which equals to 1 on

U × [0, 1], 0 outside of V × [0, 1]. Let ft denote the family of Hamiltonians

corresponding to ϕt, i.e. iϕ̇tω = dft. Define X(x, t) = X(λt·ft) +∂/∂t on M× [0, 1]
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where X(λt·ft) is the Hamiltonian vector field given by iX(λt·ft)
ω = d(λt · ft).The

desired isotopy is the integral curves of the vector field X(x, t). 2
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CHAPTER 4

THE DEFORMATION LEMMA

In this chapter, the main step in the proof of perfectness of Ham(M,L) will be

shown. Namely the Deformation Lemma will be proved. Roughly speaking, De-

formation Lemma says that the local picture of the Hamiltonian diffeomorphisms

is the same as the global one as far as the first homologies are concerned. Since

locally supported diffeomorphisms are the same for all manifolds we can con-

clude that Ham(M,L) is perfect for all M , if it is perfect for just one manifold.

We remark here that in the absolute case of the differential category, i.e. for

Diffr
0(M) Deformation Lemma is true for all levels of homology. See Mather for

proofs, [11] and [13].

The proof of deformation lemma needs some technical preparation.

Throughout this chapter we work with a closed, connected, symplectic mani-

fold M ; a closed, connected, oriented Lagrangian submanifold L ⊂ M such that

M\L is still connected. Note that, if M has dimension at least 4, then M\L is

connected for any Lagrangian submanifold L.

4.1 Transitivity properties

Since any element of Diffr(M, L) leaves L invariant, the groups Diffr(M, L),

Symp(M,L), or Ham(M,L) can not be transitive. Nevertheless, we have the
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following.

Lemma 4.1. Let M be a connected, closed, symplectic manifold, L ⊂ M a

connected, oriented Lagrangian submanifold such that M\L is connected. For

each x ∈ M\L and y ∈ M\L there exists an isotopy φt ∈ Ham(M, L) such that

φt(x) = y. Similarly for each x ∈ L and y ∈ L such φt exists.

Proof. First we assume x ∈ L and y ∈ L are arbitrarily close inside the domain

U of a Darboux chart ϕ : U → R2n. Let V be the vector V = ϕ(y)−ϕ(x) ∈ R2n

and h : M → R be the smooth function defined by dh = iV ω. Let U1 be an open

set such that U ⊂ U ⊂ U1. Choose a smooth function λ : R2n → R such that

λ|U = ||V || and λ|R2n\U1
= 0. Consider the map f = λh, which coincides with h

on U and 0 on R2n\U1. Then the desired isotopy φt is the image of the isotopy

that can be found by integrating the smooth family of the vector fields Xt where

X0 = 0 and X1 = Xf with df = iXf
ω under ϕ.

For the other case, i.e. for x, y /∈ L choose U such that U ∩ L = ∅, the

above arguments apply equally well. If the points x and y are apart, choose a

continuous path c : [0, 1] → M such that c(0) = x and c(1) = y. Subdivide [0, 1]

into subintervals [sk, sk+1], k = 1, ..., N so that each consecutive points c(sj) and

c(sj+1) are within the domain of a Darboux chart. Hence there is a hamiltonian

diffeomorphism hj isotopic to identity with support in a small neighborhood

of c(sj) and c(sj+1) such that hj(c(sj)) = c(sj+1). The diffeomorphism h =

hNhN−1...h1 maps x to y. 2

4.1.1 A Special Open Cover

With the above result in mind, the following crucial lemma will be a key in the

proof of the deformation lemma. Let SympU,U∩L denote the group of symplectic

diffeomorphisms that are supported on an open set U ⊂ M of a symplectic
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manifold M , leaving a Lagrangian submanifold L invariant.

Lemma 4.2. Let (M,ω) be a closed, connected, symplectic manifold, L an ori-

ented, connected Lagrangian submanifold such that M\L is connected, U ⊂ M

an embedded symplectic ball with L ∩ U 6= ∅. Then M has a finite open cover

V = {Vi} by balls such that if Vi ∩ Vj 6= ∅ then Vi ∩ Vj is diffeomorphic to a ball.

Furthermore, for each i and j there are symplectic isotopies φi
t ∈ Ham(M, L)

and H i,j
t ∈ SympU,U∩L such that φi

1(Vi) ⊂ U , H i,j
1 (φi

1(Vi ∩ Vj)) = φj
1(Vi ∩ Vj).

Note that if Vi∩L = ∅ then φi
t(Vi)∩L = ∅ and if Vi∩L 6= ∅ then φi

t(Vi)∩L 6= ∅.
In order to prove this lemma we need some results about isotopies of relative

symplectic embeddings.

Definition 4.3. An embedding f : M → M ′ of two symplectic manifolds

(M,ω), (M ′, ω′) is a symplectic embedding if f ∗ω′ = ω. Two such embeddings

f, f ′ are isotopic if there exists a smooth family ft : M → M ′ of symplectic

embeddings such that f = f0, f ′ = f1.

Let x1, y1, ..., xn, yn be coordinates on R2n and ωst denote the standard sym-

plectic structure ωst =
∑

dxi ∧ dyi. Then L = Rn given by y1 = y2 = ... = yn = 0

is a Lagrangian submanifold of (R2n, ωst).

Definition 4.4. Let Sp(2n) denote the group of symplectic matrices. It is well

known that this group is connected. Now let Sp(2n, n) ⊂ Sp(2n) be the subgroup

of symplectic transformations (R2n, L) → (R2n, L), where L is as above. A typical

element X of Sp(2n, n) is of the form:

X =


 A B

0 C


 .

Remark 4.5. The group Sp(2n, n) has two connected components. See Appendix

for a proof of this result. An element X ∈ Sp(2n, n) as above is in the identity

component if and only if det(A) > 0.
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It is a well known result that any symplectic embeddings of the unit ball into

Rn are isotopic. See [2] for instance. The relative version of this result is the

following.

Lemma 4.6. Let B be the unit ball in R2n equipped with the standard symplectic

structure ωst. Then any two symplectic embedding of the pairs (B, B ∩ L) into

(R2n, L) are isotopic through isotopies in Symp(R2n, L) if and only if the orien-

tations on B ∩ L induced by the embeddings and the orientations obtained from

the orientations of L are the same.

Proof. Let f : (B, B ∩ L) → (R2n, L) be a symplectic embedding. Assume

first that f(B) ∩ L 6= ∅. It suffices to show that f is isotopic to the natural

embedding i : B ↪→ R2n if and only if it preserves the orientation on L. Note

that, by setting f = T ◦ f , where T is the translation such that T (f(0)) = 0,

we can assume that f is isotopic to a symplectic embedding f which fixes the

origin. For each t ∈ [0, 1], let Rt(x) = tx, x ∈ R2n. If ω is the restriction of

ωst ∈ Ω2(R2n) into B∩L 6= ∅, then R∗
t ω = t2ω. Therefore, R−1

t ◦f ◦Rt : B → R2n

becomes a symplectic embedding for all t ∈ (0, 1]. We have

f
′
(0) = lim

t→0

f(tx)

t
= lim

t→0
(R−1

t ◦ f ◦Rt)(x)

Thus,

Ht =





R−1
t fRt 0 < t ≤ 1

f
′
(0) t = 0

is a continuous family of symplectic embeddings with H1 = f . Note that for

any x ∈ L and any t ∈ (0, 1] we have Ht(x) ∈ L. Hence H0 ∈ Sp(2n, n). Since

f preserves the orientation on L, H0 is in the identity component of Sp(2n, n).

Therefore there is a smooth path Gt ∈ Sp(2n, n) from id to H0. So composing

these isotopies and smoothing via change of parameters (see [2] proof of Corollary

1.2.2, page 5), if necessary, gives the desired isotopy.

29



If B ∩ L = ∅ then the result follows immediately from the absolute case. 2

Next, we show that the support of the isotopies between two symplectic

embeddings of the ball have some precision.

Lemma 4.7. Let V ⊂ Br/8 be an open convex subset of R2n, where Br/8 is the

ball centered at 0 with radius r/8. There is an ε > 0, such that if a symplectic

embedding h : (V, V ∩ L) → (Br/8, Br/8 ∩ L) satisfies

1− ε ≤ ||h′(x)(y)||
||y|| ≤ 1 + ε for all x, y ∈ V (4.1)

then there exists a symplectic isotopy Ht of R2n with support in Br and such that

H1|V = h.

Proof. We will prove the proposition for the case h(V )∩L 6= ∅ and make use

of the previous isotopy introduced for this case. If h(V ) ∩ L = ∅, then the proof

of the absolute version of this proposition works equally well. See [2], pp120-121.

Assume h(0) = 0. Mean value theorem and the condition (4.1) imply that

||h(tx)

t
|| ≤ ||x||(1 + ε) for all x ∈ V t ∈ [0, 1].

Thus h(tx)
t

∈ Br/4, for all x ∈ V, t ∈ (0, 1] and as a result h′(0)(V ) ∈ Br/4.

Due to inequality (4.1), h′(0) is close to U(2n, n) ⊂ Sp(2n, n): the maximal

compact subgroup of Sp(2n, n). Let p : T (U(2n, n)) → U(2n, n) be a C∞ tubu-

lar neighborhood around U(2n, n) in Sp(2n, n). Identifying T (U(2n, n)) with a

neighborhood of U(2n, n) in Sp(2n, n), we may think h′(0) ∈ T (U(2n, n)). We

can get an isotopy gt ∈ Sp(2n, n) from h′(0) to the identity, by composing the

paths at, bt, where at is the shortest ray joining h′(0) to p(h′(0)) in T (U(2n, n))

and bt joins p(h′(0)) to the identity in U(2n, n). This lets gt(V ) ⊂ Br/2. Let now

Gt be the isotopy from h to the identity obtained by composing the isotopy from

h to h′(0) of previous lemma and the path gt above. Let G̃t be the smoothing of

this isotopy via change of parameters. Clearly G̃t(V ) ⊂ Br/2.
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Figure 4.1: Isotopies carrying Wx

Now let Ht be the symplectic isotopy with compact support such that Ḣt =

u · ft where u is a smooth function equal to 1 on Br/2 and 0 outside of Br and ft

is a hamiltonian of the isotopy G̃t. Clearly supp(Ht) ⊂ Br and H1|V = h. 2

Proof. (of Lemma 4.2) We start with a choice of a hermitian metric g com-

patible with ω. Without loss of generality assume y, the center of U , is on L

(take a smaller ball inside U centered at a point on L if necessary). For each

x ∈ L there exists a symplectic isotopy Φx
t ∈ Ham(M, L) such that Φx

1(x) = y

by Lemma 4.1. Since M\L is connected, for any x ∈ M\L there is an isotopy

Ψx
t ∈ Ham(M,L) to a generic point z ∈ U\L with Ψx

1(x) = z, whose support is

away from L. Since these isotopies were constructed by successive compositions

of translations in local charts we may assume that the differentials dx(Φx
1) and

dx(Ψx
1) send the hermitian metric of TxM to that of TyM and TzM . Let x ∈ M

and Wxbe a geodesic ball centered at x with radius δx. We choose δx small enough

so that Φx
1(Wx) ⊂ U and Ψx

1(Wx) ⊂ U . Clearly Wx ∩Wx′ is diffeomorphic to an

open ball. For x ∈ M\L choose δx smaller, if necessary, so that Wx ∩ L = ∅.
Choose a coordinate system α : U → R2n such that dyα : TyM → R2n and

dzα : TzM → R2n give a hermitian frame (We can choose z close onough to y if

necessary). Then for any x ∈ M , dx(α◦Φx
1) : TxM → R2n (or dx(α◦Ψx

1)) becomes
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a hermitian frame. Note that, if x′ is close to x, then dx′(α ◦ Φx
1) : Tx′M → R2n

(or dx′(α ◦Ψx
1)) is still close to a hermitian map. Therefore, if Wx is sufficiently

small and p ∈ Wx ∩Wx′ , the mapping

fxx′(p) = d(α◦Φx
1 (p))(α · Φx′

1 · (Φx
1)
−1 · α−1)

(or fxx′(p) = d(α◦Ψx
1 (p))(α ·Ψx′

1 · (Ψx
1)
−1 · α−1)

is close to a hermitian map. To see this, note that for all x ∈ M , there is a

positive δ′x ≤ δx such that if r(Wx) ≤ δ′x for all u ∈ Wx ∩Wx′

1− ε ≤ ||fxx′(p)(u)||
||u|| ≤ 1 + ε.

The existence of such ε was shown in Lemma 4.7. We will construct the special

open cover out of such geodesic ball of radius less than δ′x.

Clearly, {Wx}x∈L is an open cover for the compact submanifold L. Then this has

a finite subcover {Wi}N
i=1 for L. Choose a tubular neighborhood V for L so that

V ⊂ ∪N
i=1Wi. Since M\V is also compact, we can let {Wi}K

i=N+1 to be the finite

subcover for M\V of {Wx}x∈M\L. Then the special open cover for M is {Wi}K
i=1.

Let xi denote the center of Wi and let φi
t be the symplectic isotopies corresponding

to the Wi such that φi
1(Wi) ⊂ U and let fij(p) be the change of coordinates

fij(p) = d(αφi
1(p))(α · φj

1 · (φi
1)
−1α−1).

We have three cases to consider depending on whether xi or xj belongs to L. For

the first case, let xi, xj ∈ M\L. See Figure 4.2.

Note that in this case, both φi
1(Wi ∩Wj) and φj

1(Wi ∩Wj) are diffeomorphic

to balls embedded inside a ball centered at z ∈ M away from L. Recall that by

Lemma 4.6 any two symplectic embeddings of the relative unit balls in R2n are

isotopic. Hence there is a symplectic isotopy H̃ ij
t ∈ Symp(R2n,Rn), such that

H̃ ij
1 (αφi

1(Wi∩Wj)) = αφj
1(Wi∩Wj). In other words H̃ ij

1 equals αφj
1(φ

i
1)
−1α−1 on
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Figure 4.2: Isotopies carrying Wi and Wj when xi, xj ∈ M\L

αφi
1(Wi∩Wj). The condition on fij(p) = d(αφi

1(p))(α ·φj
1 · (φi

1)
−1α−1) with Lemma

4.7, implies that H̃ ij
t can be assumed to be supported in α(U). Therefore setting

H ij
t = α−1H̃t

ij
α ∈ SympU,U∩L

gives the desired isotopy.
Next , consider xi ∈ M\L and xj ∈ L as in Figure 4.3.

Wi
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z

xj
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φi

t

φ
j

t

φ
j

1
(Wi ∩ Wj)

φi
1(Wi ∩ Wj)

L

U

y

Figure 4.3: Isotopies carrying Wi and Wj when xi ∈ M\L and xj ∈ L
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In this case, note that we have chosen Wi to be away from L hence Wi∩Wj is

also away from L. Since φj
t ∈ Ham(M,L) for all t, φj

1(Wi∩Wj) does not intersect

L and hence φi
1(Wi ∩Wj) and φj

1(Wi ∩Wj) can be contained in a ball V ⊂ U .

Now the isotopy of the previous case works equally well in this case.

The isotopies in the above two cases are the isotopies of the absolute version.

In other words, any isotopy of the symplectic embeddings of the unit balls φi
1(Wi∩

Wj) and φj
1(Wi∩Wj), one can construct the desired one, as long as it is supported

in a set not intersecting L.

Finally, consider the case in which xi, xj ∈ L. See the Figure 4.4 below. In

this case both φi
1(Wi∩Wj) and φj

1(Wi∩Wj) are in a ball centered at y, the center

of U .

Wi
Wj

xjxi

φi

t

φ
j

t

φ
j

1
(Wi ∩ Wj)

φi
1(Wi ∩ Wj)

L

U

y

Figure 4.4: Isotopies carrying Wi and Wj when xi, xj ∈ L

The isotopy will be constructed out of the isotopy of Lemma 4.6, namely

H̃ ij
t ∈ Symp(R2n,Rn). As in the previous cases, we let

H ij
t = α−1H̃t

ij
α ∈ SympU,U∩L.

This proves Lemma 4.2. 2
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4.2 Proof of Deformation Lemma

Let (M,ω) be a connected closed symplectic manifold, L ⊂ M a closed La-

grangian submanifold. Define a subcomplex BHam(M, L) of BSymp(M, L) as

usual: an n-simplex c of BHam(M,L) is a smooth map c : ∆n → Symp(M, L)

such that for any path γ : [0, 1] → ∆n, if c̃ = c ◦ γ, then ˙̃ct is a family of

Hamiltonian vector fields parallel to L. This implies that the class [c̃t] is an

element of Ham(M, L). Let U be a fixed embedded symplectic ball in M with

U∩L 6= ∅, and SympU,U∩L be the subgroup of Symp(M, L) consisting of elements

with compact supports in U and leaving U ∩L invariant. Similarly we define the

subcomplex BKerRU,U∩L of BSympU,U∩L: An n-simplex c of BKerRU,U∩L is a

smooth map c : ∆n → SympU,U∩L such that c◦γ(t) ∈ KerRU,U∩L for any smooth

map γ : [0, 1] → ∆n.

Definition 4.8. Support of an n-simplex c : ∆n → Diff(M), denoted by supp(c),

is the set {x ∈ M |c(σ)(x) 6= x for some σ ∈ ∆n}
We are ready to state the relative symplectic deformation lemma.

Remark 4.9. In what follows we work with an open cover U = {Ui} such that

if U1, U2 ∈ U are not disjoint then U1 ∪ U2 ⊂ Vi, where Vi is an element of the

special open cover V of Lemma 4.2. The existence of such Ui can be seen as

follows. Since V is an open cover for a compact manifold the Lebesgue number δ

of V is well defined. Let U = {Ui} be an open cover of M such that each Ui is a

ball of radius δ/2. Now if x ∈ U1 ∩ U2, we have U1 ∪ U2 ⊂ B(x, δ) ⊂ Vi.

Theorem 4.10. The natural map ρ : BKerRU,U∩L −→ BHam(M,L) induces an

isomorphism

ρ∗ : H1(BKerRU,U∩L;Z) −→ H1(BHam(M,L);Z)

Proof. To show the surjectivity of ρ∗ we let α ∈ H1(BHam(M, L),Z) be

represented by an isotopy Φt in Ham(M,L). Let V = {Vi} be the open cover in
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Lemma 4.2 so that there exist a diffeomorphism hi ∈ Ham(M, L) with hi(Vi) ⊂
U .

By the relative symplectic fragmentation lemma we can write Φt = Φ1
t . . . ΦN

t

where Φi
t ∈ Ham(M,L) is supported in Vi and RVi,Vi∩L(Φi

t) = 0 for all t ∈ [0, 1].

Note that RVi,Vi∩L(hiΦ
i
th
−1
i ) = 0.

Let βi ∈ H1(BKerRU,U∩L,Z) be the class of the isotopy hiΦ
i
th
−1
i . Then α =

ρ∗(β1 + β2 + . . . + βN) since Φi
t and hiΦ

i
th
−1
i are homologous in BHam(M, L) by

Proposition C.2.

For the injectivity we first divide ∆2 into m(m+1)
2

little squares and triangles

as in Figure 4.5 below. Let

µi1 =
∑
j≤i1

λj, 0 ≤ i1 ≤ m, µ0 = 0 (4.2)

µi2 =
∑
j≤i2

λj, 0 ≤ i2 ≤ m (4.3)

Here λi is a partition of unity subordinate to the cover of U of the Remark

4.9. Define a mapping f : ∆2 ×M → ∆2 ×M as follows: for 0 ≤ i1, i2 ≤ m and

x ∈ M

f
(
(
i1
m

,
i2
m

), x
)

=
((

µi1(x), µi1(x)
)
, x

)

If one defines

µs =
(−ms + (1 + i1)

)
µi1 + (ms− i1)µi1+1 (4.4)

µt =
(−mt + (1 + i2)

)
µi2 + (mt− i2)µi2+1 (4.5)

we see that

f̃(s, t) =
((

µs(x), µt(x)
)
, x

)

extends f linearly to all of ∆2 ×M for (s, t) ∈ ∆2, where

i1
m
≤ s ≤ i1 + 1

m
,

i2
m
≤ t ≤ i2 + 1

m
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(We use f again for the extension f̃ if it is understood from the context.) Let z

be a 1-cocycle of BKerRU,U∩L such that ρ∗([z]) = 0 ∈ H1(BHam(M, L),Z). This

implies that z bounds a 2-chain on BHam(M, L). For the injectivity we must

show that z bounds a 2-chain in BKerRU,U∩L.

Suppose z bounds the 2-chain c =
∑

j=1 cj, cj : ∆2 → Ham(M, L). We

can assume that each cj maps ∆2 inside a small neighborhood of idM . We can

do this by taking m large enough so that each subdivision is sufficiently small.

In that case by Corollary 3.8 the Weinstein form of each cj(σ) is exact (i.e.

[C(cj(σ))] = 0 ∀σ ∈ ∆2). Since C(cj(σ)) are exact 1-forms we can choose a

smooth family of functions uj(σ) such that

C(cj(σ)) = duj(σ) for all σ ∈ ∆2

as Palamodov’s theorem suggests (see Equation B.1 and remarks thereof). Con-

sider the 1-forms C(cj(σ)) as forms on ∆2 × M and define a 2-chain c̃(σ) =

C−1(f ∗C(cj(σ))). Here f is the map defined above. So if σ = (s, t) and

C(cj(s, t)) = duj(s, t) then f ∗C(cj(s, t)) = du(µs(x), µt(x)). Note that dcj = dc̃j.

Let’s denote the inclusion of Ki1i2×M or of Lik×M into ∆2×M by j, where

Ki1i2 is the little square and Liks are the little triangles in Figure 4.5. Define

cj
i1i2

to be the 2-chain

cj
i1i2

(σ) = C−1(j∗f ∗C(c(σ)))(C−1(j∗f ∗C(c(
i1
m

,
i2
m

))))−1

Similarly, define 2-chain cj
ik

. This gives c̃j =
∑

cj
i1i2

+ cj
ik

. Therefore

z = d(
∑

j

∑
i1,i2

cj
i1i2

+ cj
ik

).

The definition of f forces supp(cj
i1i2

) ⊂ Ui1+1 ∪ Ui2+1 and if Ui1+1 ∩ Ui2+1 =

∅ then dcj
i1i2

= 0. If we denote the subset of the 2-simplices cj
i1i2

such that

Ui1+1 ∩ Ui2+1 6= ∅ to which we add the simplices cj
ik

by {cj
i1i2
} then we see that
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Figure 4.5: Subdivision of ∆2

z = dc =
∑

cj
i1i2

. Therefore z bounds a 2-chain consisting of sum of 2-simplices

which have supports in the union of two intersecting open sets of the cover V of

Lemma 4.2. According to this lemma U has an open set containing Vk ∪ Vj if

Vk ∩ Vj 6= ∅. Hence z bounds a 2 chain c′ =
∑

c′i where supp(c′i) ⊂ Vl(i) = Vi.

For K = 0, 1, 2 let ∂K be the face operator so that

z = dc′ =
∑
K,j

(−1)KτK
j

where τK
j = ∂Kc′j. Let hK

j ∈ Ham(M,L) be such that hK
j (suppτK

j ) ⊂ U . Exis-

tence of such diffeomorphism are shown in Lemma 4.2. We may take hK
j = idM

if supp(τK
j ) ⊂ U . (U is the open set fixed since the beginning of the proof).

Let τj
K = hK

j τK
j (hK

j )−1, then supp(τj
K) ⊂ U and z =

∑
j,K(−1)Kτj

K . Since

C1(BG) is the free abelian group over 1−simplices the chain hK
j + τK

j − hK
j is

the same as τK
j

Let gj ∈ Ham(M,L) such that gj(Vj) ∈ U , whose existence is shown in
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Lemma 4.2. We need to show that

2∑
K=0

(−1)Kτj
K and d(gjc

′
jg
−1
j )

are homologous in BKerRU,U∩L to finish injectivity. Let h̃j

K
and g̃j be restrictions

of hK
j and gj to Vj. By Lemma 4.2 a diffeomorphism HK

j ∈ GU,U∩L such that

HK
j ◦ h̃j

K
(Vj) = g̃j(Vj)

exists. This yields

h̃j

K
τK
j (h̃j

K
)−1 = hK

j τK
j (hj

K)−1

and

gjτ
K
j g−1

j = g̃jτ
K
j g̃j

−1 = HK
j (h̃j

K
τK
j (h̃j

K
)−1)(HK

j )−1 = HK
j (τ̃j

K)(HK
j )−1

According to Proposition C.2, HK
j (τ̃j

K)(HK
j )−1 and τ̃j

K are homologous in

BKerRU,U∩L. Thus

d(gjc
′
jg
−1
j ) =

2∑
K=0

(−1)Kgjτ
K
j g−1

j

is homologous to
∑2

K=0(−1)K τ̃j
K .

2
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CHAPTER 5

THE RELATIVE HERMAN THEOREM

In order to prove the perfectness of the group of relative symplectic hamiltoni-

ans, we need to show that this is true at least for a manifold. As in the absolute

versions of both the smooth and the symplectic category the n-torus is the can-

didate. The aim of this chapter is to prove that Ham(T 2n, T n) is perfect. We will

adopt the proof for the absolute case due to Herman-Sergeraert and Banyaga.

Perfectness of Ham(T 2n, T n) needs the smooth version for the torus.

5.1 Relative Herman Theorem

Definition 5.1. A point γ = (γ1, ..., γn) ∈ Rn is said to satisfy the diophantine

condition if there exist c, d > 0 such that for any (k0, k1, ..., kn) ∈ Z× (Zn−{0})
we have ∣∣∣∣∣ko +

n∑
i=1

kiγi

∣∣∣∣∣ ≥
c

(
∑n

i=1 |ki|)d
.

We say that α ∈ T n satisfies a diophantine condition if some lift α̃ ∈ Rn satis-

fies a diophantine condition. The proof of the following theorem will be discussed

in the appendix. For the absolute version see [9]. Throughout this chapter, by an

element α ∈ (T 2n, T n) we mean that α is of the form α = (α1, 0, α3, o, ..., α2n−1, 0),

where αi ∈ S1
i of factors of T 2n = S1

1 × ....× S1
2n.
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Theorem 5.2. Let α ∈ (T 2n, T n) satisfy a diophantine condition. There is a

neighborhood U of the identity in Diff∞0 (T 2n, T n) and a smooth map s : U →
Diff∞0 (T 2n, T n)× (T 2n, T n) such that if

s(ϕ) = (ψ, λ), ϕ ∈ U

then

ϕ = RλψRαψ−1.

Therefore

ϕ = Rλ+αR−1
α ψRαψ−1 = Rλ+α[R−1

α , ψ].

This yields the Relative Herman theorem in the smooth category below.

Theorem 5.3. Diff∞0 (T 2n, T n) is perfect

Proof. By the above theorem any small diffeomorphism ϕ of the torus is the

composition of a rotation and a commutator. Hence it is enough to show that any

rotation is a product of commutators. Note that a rotation Rλ ∈ Diff∞0 (T 2n, T n)

means that Rλ ∈ Diff∞0 (T 2n) is a rotation with λ = (x1, 0, x3, 0, ..., x2n−1, 0) ∈
T 2n. So the proof of the absolute Herman theorem (see [2] for instance) works

perfectly well in the relative case. We include the proof of Herman for the sake

of completeness.

The natural embedding of S1 into T 2n = S1 × ...× S1 allows us to write any

rotation Rλ, λ ∈ T 2n as Rλ = Rλ1 ◦ ... ◦ Rλ2n , where λi ∈ S1. So it is enough to

show that rotations of circles are product of commutators.

If H is the group of biholomorpic transformations of the disk D = {Z ∈
C| ‖Z‖ < 1}, the Schwars lemma says any g ∈ H can be written as:

z 7→ g(z) =
α(z − a)

1− āz
, z ∈ ∆, α ∈ ∂D = S1, and a ∈ ∆.

Such g extends uniquely into a diffeomorhism of S1. Therefore we get an

injective homomorphism H ↪→ Diff∞0 (T 1). Note that H ≈ PSL(2,R) and hence
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H is perfect. For a = 0, g is just a rotation. Hence the group of rotations of

S1 injects into H and therefore any Rλ, λ ∈ S1 is a product of commutators in

H ↪→ Diff∞0 (T 2n, T n). 2

Remark 5.4. Rybicki showed that the above theorem is true for all (M, N),

where M is a smooth manifold and N ⊂ M a submanifold in [19].

5.2 Relative Flux of Torus (T 2n, T n)

Recall that the m-torus Tm is the quotient of Rm by Zm. Denote by p : Rm → Tm

the canonical projection. For each x ∈ Tm denote its lift in Rm by x̃ i.e. p(x̃) = x.

Then Rx(θ) = p(x̃ + θ̃) is the rotation by x, which is a symplectomorphim.

If x = (x1, 0, x3, 0, ..., x2n−1, 0) ∈ (T 2n, T n), then Rx ∈ Symp(T 2n, T n). Hence

(T 2n, T n) is a subgroup of Symp(T 2n, T n). In fact the natural map

j : (R2n,Rn) → S̃ymp(T 2n, T n)

given by x 7→ j(x) = Rp(tx) t ∈ [0, 1], covers the injection

(T 2n, T n) → Symp(T 2n, T n).

As was shown by Ozan the relative flux maps S̃ymp(T 2n, T n) surjectively

to H1(T 2n, T n,R) ∼= Rn and Γ(T 2n, T n) ⊂ H1(T 2n, T n,Z) ∼= Zn is a subgroup.

To see that Γ(T 2n, T n) = H1(T 2n, T n,Z) ∼= Zn, let x ∈ (R2n,Rn). Consider a

basis {c1, ..., cn} of H1(T
2n, T n,Z), where each ci is represented by the loops in

(T 2n, T n) which rotate each odd factor i.e. the projection on T 2n of the following

curves in R2n

ci(t) = (0, ..., 0, t, 0, ..., 0) i = 1, 3, ..., 2n− 1,

(t at the ith factor).

Then relative flux is given by
∫ 1

0

∫ 1

0

(ci ◦ j(tx))∗w dsdt
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where (ci ◦ (j(tx)))(s, t) = p(tx1 , ..., txi−1
, txi

+ s, txi+1
, ..., tx2n). Thus

F̃ lux(j(x)) = (0, x1, 0, x3, ..., 0, x2n−1) ∈ (R2n,Rn) ∼= Rn.

Proposition 5.5. The restriction of relative flux to

(T 2n, T n) ∼= T n ⊂ Sym(T 2n, T n) is the identity isomorphism J : T n → T n.

(R2n,Rn) ↪→S̃ymp(T 2n, T n)→ H1(T 2n, T n;Z)

↓ ↓ ↓

(T 2n, T n) ↪→Symp(T 2n, T n)→H1(T 2n, T n;Z)/Γ(T 2n, T n)

‖ ‖

T n −→ Rn/Zn = T n

The absolute version of the following theorem is due to Banyaga [2]. Now we

are ready to prove the main theorem of this section.

Theorem 5.6. H1(BHam(T 2n, T n,Z)) = 0.

Proof. We first show that

H̃am(T 2n, T n) = ker(Fluxrel) = [S̃ymp(T 2n, T n), S̃ymp(T 2n, T n)].

To do this we must establish H̃am(T 2n, T n) ⊂ [S̃ymp(T 2n, T n), S̃ymp(T 2n, T n)].

Let α ∈ (T 2n, T n) satisfying a diophantine condition. Then by Theorem 5.2 there

is a neighborhood V of the rotation Rα in Diff∞0 (T 2n, T n), being the domain of

a smooth map s : V → Diff∞0 (T 2n, T n) × (T 2n, T n), such that if Φ ∈ V and

s(Φ) = (ψ, β), then Φ = RβψRαψ−1. If {Φt} ∈ H̃am(T 2n, T n) such that Φt is

an isotopy in Ham(T 2n, T n), small enough to be in V , then there are smooth

families ψt ∈ Diff∞0 (T 2n, T n) and βt ∈ (T 2n, T n) satisfying

Φt = Rβt(φt)Rαψ−1
t .
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We have w = Φ∗
t w = (ψ−1

t )∗(R∗
α[(ψt)

∗w]), hence ψ∗t w = R∗
α(ψt)

∗w.

The diophantine condition on α implies that Rα is an irrational rotation and

hence has a dense orbit. Since ψ∗t w is invariant by this rotation with dense orbit

it must be a constant form, i.e.

wt = ψ∗t w =
∑
i≤j

at
ijdxi ∧ dxj

where at
ij’s are constant. Since wt and w have the same periods, at

ij = δij.

Hence (ψ−1
t )∗w = w and thus we see that ψt ∈ Symp(T 2n, T n). Since Φt ∈

Ham(T 2n, T n) we have

0 = Flux([Φt]) = Flux(Rβt)− Flux([ψt]) + Flux(Rα) + Flux([ψt])

= Flux(Rβt) + Flux(Rα) = j(βt + α) = βt + α.

Therefore βt = −α for all t hence Φt = R−1
α ψtRαψ−1

t . This shows that

H̃am(T 2n, T n) = [S̃ymp(T 2n, T n), S̃ymp(T 2n, T n)] and fixing the parameter t to

be 1 gives Ham(T 2n, T n) = [Symp(T 2n, T n), Symp(T 2n, T n)].

Consider the setting

bt = JF lux(ψt)

ut = −α + bt

ψ̄t = Rbt(ψt)
−1

ψ̂t = (Rbt)
−1ψt

With this we have

φt = Rutψ̂tR
−1
ut

ψ̄t

ψ̂t = Rbt(ψ̄t)
−1R−1

bt

Clearly ψ̂t is Hamiltonian. Therefore by fragmentation lemma there are relative

symplectic isotopies ψj
t , j = 1, ..., N supported in the ball Uj of any open cover
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U = {Ui} such that ψ̂t = ψ1
t ψ

2
t ...ψ

N
t . Then

φt = (
N∏

i=1

R−1
ut

ψi
tRut)(

N∏
i=1

Rbt(ψ
N+1−i
t )−1R−1

bt
)

There exists balls Bj and B′
j such that

Uj ∪R−1
ut

(Uj) ⊂ Bj, Uj ∪Rbt(Uj) ⊂ B′
j

since Rut and Rbt are close to the identity. By Lemma 3.10 there are relative

symplectic isotopies f i
t and gi

t supported in Dj and D′
j respectively and equal to

Rut on Bj and to Rbt on B′
j respectively. Recall that we require B̄j ⊂ DJ nd

B̄′
j ⊂ D′

j. Since supported in balls f i
t and gi

t are Hamiltonian indeed. This gives

R−1
ut

ψi
tRut = (f i

t )
−1

ψi
tf

i
t

since their supports are contained in R−1
ut

(Ui) = (f i
t )
−1(Ui), and the above dif-

feomorphisms coincide. Therefore,

φt = (
N∏

i=1

(f i
t )
−1

ψi
tf

i
t )(

N∏
i=1

(gN+1−i
t )−1(ψN+1−i

t )−1(gN+1−i
t )

Note that all the isotopies in above equation are Hamiltonian. Changing the

order of the terms in the final expression of φt results in idM . This means that

the image of φt in H1(H̃am(M,L)) by the canonical mapping

H̃am(T 2n, T n) → [H̃am(T 2n, T n), H̃am(T 2n, T n)] is trivial.

Thus H1(H̃am(T 2n, T n)) = 0.

Since H1(H̃am(T 2n, T n)) = H1(BHam(T 2n, T n),Z) the proof is complete. 2
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5.3 Proof of the Main Theorem

Ham(M, L) is not simple because of the following. Consider the sequence of

groups and homomorphisms:

0 −→ Kerϕ −→ Ham(M, L)
ϕ−→ Diff∞(L) −→ 0,

where ϕ is just restriction to L. Therefore Kerϕ consists of Hamiltonian diffeo-

morphisms of M that are identity when restricted to L. Clearly, Kerϕ is a closed

subgroup.

For the perfectness, we need to show that H1(Ham(M, L)) = 0, where M

is a connected, closed, symplectic manifold, L ⊂ M a connected, oriented

Lagrangian submanifold such that M\L is connected. This is equivalent to

H1(H̃am(M, L)) = 0, where H̃am(M,L) is the universal cover of Ham(M,L). As

noted in Appendix B, we have H1(BHam(M, L),Z) = H1(H̃am(M, L)). By the

Deformation Lemma 4.10 H1(BHam(M,L),Z) is the same for any (M, L) satis-

fying above properties. Hence, if H1(Ham(M, L)) = 0 for just one pair (M, L),

then it is true for all (M, L). Now the result follows from the Theorem 5.2.

Corollary 5.7. The commutator subgroup [Symp0(M,L), Symp0(M, L)] is per-

fect and equals to Ham(M,L).

Proof. [Symp0(M, L), Symp0(M, L)] ⊂ Ham(M,L), since

KerFluxrel = Ham(M, L). Since Ham(M, L) is perfect we have

Ham(M,L) = [Ham(M, L), Ham(M,L)] ⊂ [Symp0(M,L), Symp0(M,L)].

2

46



REFERENCES

[1] Arnold, V.I.,Sur la geometrie differentielle des groupes de Lie de dimension
infinite et ses applications a l’hydrodynamique des fluides parfaits, Ann. Inst.
Fourier, Grenoble, 16 (1966), 319-361.

[2] Banyaga, A., The Structure of Classical Diffeomorphism Groups, Kluwer.,
Dortrecht, 1997.

[3] Banyaga, A., Sur la structure du groupe des difféomorphismes qui preservent
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APPENDIX A

THE GROUP Sp(2n,n)

The aim of this chapter is to show that the group Sp(2n, n) of has two compo-

nents.

Let w = dx1 ∧ dy1 + ... + dxn ∧ dyn denote the standard symplectic bilinear

form on R2n. Let P be a typical element of Sp(2n, n).

P =


 A B

0 C


 .

Let (Px)i denote the ith component of the image of x = (x1, .., xn, y1, .., yn) ∈
R2n. Then (Px)1 = a11x1 + ... + an1xn,...,(Px)n = a1nx1 + ... + annxn (or Pxi =

Axi = a1ix1 + ... + anixn, for all i ∈ {1, 2, ..., n} and

(Py)1 = b11x1 + ... + bn1xn + c11y1 + ... + cn1yn,..., (Py)n = b1nx1 + ... + bnnxn +

c1ny1 + ... + cnnyn

(or, (Py)i = b1ix1 + ...+ bnixn + c1iy1 + ...+ cniyn, for all i ∈ {1, 2, ..., n}). We

calculate d(Px)k ∧ d(Py)k to check the conditions on P to be symplectic.

We have, d(Px)k ∧ d(Py)k =
n∑

i,j=1

(aikbjk)dxi ∧ dxj +
n∑

i,j=1

(aikcjk)dxi ∧ dyj

n∑

k=1

d(Px)k ∧ d(Py)k =
n∑

i,j,k=1

(aikbjk)dxi ∧ dxj +
n∑

i,j,k=1

(aikcjk)dxi ∧ dyj

Hence we must have, for fixed i < j,
n∑

k=1

(aikbjk − ajkbik)dxi ∧ dxj = 0
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for fixed i < j,
n∑

k=1

aikcjk = 0

for i = j,
n∑

k=1

aikcik = 1.

In other words,
n∑

k=1

aikcjk =





0 , i < j

1 , i = j
.

n∑

k=1

aikcjk = 0 and
n∑

k=1

aikcik = 1 for all i < j and all i respectively implies

that ACT = I and hence C = (AT )−1. Also,
n∑

k=1

(aikbjk−ajkbik) = 0 implies that

n∑

k=1

(aikb
T
kj − ajkb

T
ki) = 0. A ∈ GL(n,R)+(i.e. det A > 0).

(ABT )ij = (ABT )ji for all i, j, hence ABT is symmetric.

Thus,

P =


 A B

0 (AT )−1




is in Sp(2n, n) with ABT = BAT (If A is in O(n) then B = ABT A.)

Since A ∈ GL(n,R)+, let γ(t) ∈ GL(n,R)+, γ(0) = I, γ(1) = A. Let D = ABT

and note that since D is symmetric, tD is also symmetric for all t.

Let β = tDT (γ(t)−1)T , which gives β(0) = 0, β(1) = BAT (A−1)T = B. Hence

P (t) =


 γ(t) β(t)

0 (γ(t)T )−1




is in Sp(2n, n) for all t, and

P (0) = I2n =


 I 0

0 I


 ,
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P (1) = P =


 A B

0 (AT )−1


 .

Thus we have found a path from the identity matrix I to an arbitrary matrix

P ∈ Sp(2n, n) provided that its first n × n block matrix A has positive deter-

minant. This is equivalent that while P leaves a Lagrangian subspaces L ⊂ R2n

invariant, it does not change its orientation either. Therefore we have proved:

Proposition A.1. Sp(2n, n) has two components:

{ 
 A B

0 (AT )−1


 | det A > 0, ABT = BAT

}

and

{ 
 A B

0 (AT )−1


 | det A < 0, ABT = BAT

}
.
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APPENDIX B

PALAMADOV OPERATOR

The following arguments belong to Banyaga [2]. We include these into the thesis

for the sake of completeness.

Let f : M → R be a smooth function that is locally constant on the La-

grangian submanifold L of the symplectic manifold M . Denote the set of such

functions as C∞
L (M). Such f induces a continuous linear operator

f̃ : B1(M,L) → B1(M,L) as follows: A classical result due to Palamadov [17]

asserts that there is a continuous linear map σp : Bp(M) → ∧p−1(M) such that

ω = d(σp(ω)) for all ω ∈ Bp(M), where p = 0, 1, ..., dim M. In particular the case

p = 1 gives

σ : B1(M) → C∞(M).

If we denote the set of exact 1-forms that evaluates zero on TL by B1(M, L)

then the above map induces

σrel : B1(M, L) → C∞
L (M).

Then define the linear functional f̃ as

f̃(ξ) = d(fσrel(ξ)) (B.1)

Note that this operator is bounded.
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APPENDIX C

THE SIMPLICIAL SET BG

The Deformation Lemma is proved on a topological group BG constructed out

of a discrete group G. We include this section whose original is due to Banyaga

[2], to make the thesis a complete, readable manuscript.

Let G be a connected group. Define S(G), the singular complex of G as

S(G) = {Gn} where Gn is the set of continuous mappings f : ∆n → G. Here

∆n is the standard n-simplex in Rn. Then G acts on the right on S(G) by

(c, g) 7→ c ·g−1 where c ∈ Gn, (cg−1)(x) = c(x) ·g−1 x ∈ ∆n. The quotient space

BG = S(G)/G is a simplicial set whose n-simplices (BG)n can be identified with

continuous mappings c : ∆n → G with c(v0) = e, where e is the neuter element

of G. We have the usual face and the degeneracy operations :

∂i : (BG)n → (BG)n−1 si : (BG)n → (BG)n+1 0 ≤ i ≤ n

satisfying

∂i∂j = ∂j−1∂i i ≤ j

sisj = sj+1si i ≤ j

∂isj = sj−1∂i i ≤ j

∂jsj = id = ∂j+1sj i ≥ j + 1

BG is, moreover, a Kan complex: for any n + 1 n-simplices,

x0, · · · , xk−1, xk+1, · · · , xn+1 ∈ (BG)n such that ∂ixj = ∂j−1xi, i ≤ j, i 6= k, j 6=
k there exists an (n + 1)-simplex x such that ∂ix = xi, i 6= k. Two simplices

53



x, x′ ∈ (BG)n are said to be homotopic, x ∼ x′, if ∂ix = ∂x′ for 0 ≤ i ≤ n and

there exists an (n+1)-simplex y, called a homotopy between x and x′ such that

∂ny = x, ∂n+1y = x′ and ∂iy = sn−1∂ix = sn−1∂ix
′ for 0 ≤ i ≤ n. This is an equiv-

alence relation. If one denotes the unique element of (BG)0 with ∅ then BGn(∅)
to be the set of n-simplices of BG) which are homotopic to sn−1sn−2...s1s0(∅).
Denote this element again by ∅. The quotient group BGn(∅)/ ∼ is called the

nth homotopy group of BG and denoted by πn(BG, ∅). Since BG1(∅) = BG1

((BG)0 having a unique element), we have π1(BG, ∅) = (BG)1/ ∼. Recall that

σ1, σ2 : ∆1 = [0, 1] → G are homotopic if and only if there is a continuous map;

H : ∆2 → G with H(0) = e, ∂1H = σ1, ∂2H = σ2, ∂0 = ∅. The last equation

means that H is a homotopy between the paths σ1(t) and σ2(t) with fixed ex-

tremities σ1(0) = σ2(0) = e and σ1(1) = σ2(1). Indeed, for t in the face [1, 2] of

∆2, (∂0H)(t) = H(t)H(1−1) = e. In particular H(2) = H(1).

Proposition C.1. For any path connected topological group G, π1(BG) = G̃:

the universal covering of G.

The homology of BG is defined in a standard way: Let Cn(BG) be the free

abelian group generated by n-simplices. Define a differential

d =
n∑

i=0

(−1)i∂i : Cn(K) −→ Cn−1(K)

Then C(BG) = (⊕Cn(BG), d) is a chain complex whose homology is H∗(BG,Z).

H∗(BG,K) for any abelian group K is defined as the homology of C(BG)⊗K.

As usual we have H1(BG,Z) = π1(BG, ∅)/[π1(BG, ∅), π1(BG, ∅)] = H1(G̃) is

the abelianization of G̃. This means that a path h : [0, 1] → G with h(0) =

e determines the zero element in H1(BG,Z) if and only if h(t) is homotopic

relatively to ends to a path g(t) of the form g(t) = [u1(t), v1(t)]...[um(t), vm(t)],

where ui, vi are continuous paths in G starting at e. The following remark will

be used in the proof of the deformation lemma.
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Proposition C.2. If v : [0, 1] → G is a 1-simplex of BG, where G is a path

connected topological group, and g ∈ G then the 1-simplices Ig(v) : t 7→ g·v(t)·g−1

and v : t 7→ v(t) are homologous

Proof. Equivalently we show t 7→ g ·v(t) ·g−1 ·v(t)−1 = [g, v(t)] is homologous

to zero. Since G is path connected we consider the 1-simplex in G given by a

path from g to e, i.e. tv(t)] and t 7→ [gt, v(t)] are homologous. Define a homotopy

H(s,t), (s, t) ∈ [0, 1]× [0, 1] between them with fixed extremities. Setting H(s,t) =

[gs+t−st, v(t)] yields H(0,t) = [gt, v(t)], H(1,t) = [g, v(t)], H(s,0) = [gs, v(0)] =

[gs, e] = e, H(s,1) = [g, v(1)]. 2

Remark C.3. Let G be a topological group and Gδ be the underlying discrete

group (i.e. with discrete topology). Then i : Gδ → G identity map is continuous.

Since any continuous map can be turned into a fibration denote by Ḡ the homo-

topy fiber of this map. Then BḠ is nothing than the classifying space B(Ḡ) of

Ḡ. See [2] for a discussion.
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APPENDIX D

HERMAN-SERGERAERT THEOREM

In this section we include the proof of the relative Herman Sergeraert theorem,

which is exactly the same proof for the absolute case of Herman and Sergeraert.

We include this proof for the sake of completeness, following Banyaga’s book

[2]. The proof relies on Nash-Moser-Sergeraert implicit function theorem. The

details can be found in Sergeraert’s thesis [21]. The category in which the proof

works is called the “L category”.

Definition D.1. An object L is a quadriple (E, B, η, ρ) where

(i) E is a Frechet space and B is an open set of E.

(ii) η = (|, |i)i∈N is an increasing family of semi-norms defining the topology of

E.

(iii) ρ = ((St)t∈(0,∞)) is an increasing family of smoothing operators st : E → E

such that

|Stx|i+k ≤ tk|x|i

|x− Stx|i ≤ Cik|t|−k|x|i+k.

An object (E,B, η, ρ) simply denoted (E, η, ρ) is called an L-Frechet space. If η

and ρ are understood, we say simply that E is an L-Frechet space.

Definition D.2. Let (E,B, η, ρ) be an L-object and F1, ..., Fq, G L-Frechet

spaces. A mapping f : B × F1 × ... × Fq → G is called a Cr(0 ≤ r ≤ ∞)
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q − L-morphism if

(i) f is linear in the last q variables.

(ii) ∀k, 0 ≤ k ≤ r + 1, ∃dk > 0 (independent of i) such that ∀i ∈ N, the map

f : (B × F1 × ...× fq, | · |i+dk
) → (G, | · |i)

is Ck.

(iii) if dkf denotes the kth-derivative of f with respect to the first variable,

then

dkf : B × F1 × ...× Fq × Ek → G

satisfies

|(dkf)(x; y1, ..., yq, ..., x̃1, ..., x̃k)|i ≤ Ci,k(1 + |x|i+dk
)|y1|0...|yq|0|x̃1|0...|x̃k|0

+

q∑
i=1

|y1|0...|yi−1|0|yi|l+dk
|yi+1|0...|yq|0|x̃i|0...|x̃k|0

+
k∑

i=1

|yi|0...|yq|0|x̃i|0...|x̃i−1|0|x̃i|l+dk
...|x̃i+1|0|x̃k|0

where

x ∈ B, yi ∈ Fi, 1 ≤ l ≤ q, x̃i ∈ Ei, 1 ≤ l ≤ k.

An L−O-morphism is simply called an L-morphism. If in the definition above,

dk depends on i, we say that f is a weak-L-morphism.

Theorem D.3. [8] Let (E,B, η, ρ) be an L-object and F an L-Frechet space. Let

f : B → F be a Cr(2 ≤ r ≤ ∞) L-morphism. Let x0 ∈ B, y0 = f(x0). Assume

there exists Cp(0 ≤ p ≤ r − 1) 1 − L-morphism. L : B × F → E such that if

x ∈ B, y ∈ F , df(x, L(x, y)) = y. Then there exists an L-object (F,C, η̃, ρ̃) and

a Cp weak-L-morphism s : C → B such that f ◦ s = idC.

Remark D.4. Throughout this section we will use the identification

T n ≈ (T 2n, T n) i.e. an element α ∈ T n must be understood as an element of the
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form

α = (α1, 0, α2, 0, ..., α2n−1,0) ∈ (T 2n, T n) ≈ T n.

Proof. (of Theorem 5.2) In our situation we must show that the map

Φα : Diff∞0 (T 2n, T n)× T n → Diff∞0 (T 2n, T n)

(ψ, λ) 7−→ RλψRαψ−1

is a C∞ L-morphism between the C∞, L-groups Diff∞0 (T 2n, T n)× T n and

Diff∞0 (T 2n) and that its differential at (idT 2n , 0) has an inverse in the L-category.

Recall that α ∈ (T 2n, T n) satisfies a diophantine condition.

Writing φα and its differential in local coordinates near the identity in

Diff∞0 (T 2n, T n) we get

Φ̃α : X∞(T 2n, T n)× T n → TRαC∞((T 2n, T n), (T 2n, T n))

(ξ, λ) 7−→ (1 + ξ)−1 ◦Rα ◦ (1 + ξ) + λ− α

(1 + ξ), here denotes the diffeomorphim x 7−→ x + ξ(x) of R2n for ξ C1-small.

Denote by 1+µ its inverse (1+ξ)−1. One can verify that Φα is a C∞ L-morphism.

To show that its differential is invertible near id we first write its differential.

If dxf : TxM → Tf(x)N denotes the differential of f : M → N then for (ξ, λ) ∈
X∞(T 2n, T n)× T n one gets

d(ξ,λ)Φ̃α : X∞(T 2n, T n)× Rn → T (TRαC∞((T 2n, T n), (T 2n, T n)))

≈ T(Rα)(C
∞((T 2n, T n), (T 2n, T n)))

and for x ∈ (T 2n, T n), ξ̂ ∈ X∞(T 2n, T n), λ̂ ∈ Rn we have

((d(ξ, λ)Φα), ξ̂, λ̂)(x) = (d[(Rα◦(1+ξ))(x)](1 + µ))(ξ̂(x))

−(d[(Rα◦(1+ξ))(x)](1 + µ))(ξ̂(x))(ξ((1 + µ) ◦Rα ◦ (1 + ξ))(x)) + λ̂.
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In particular (dΦα)(0, 0)(ξ̂, λ̂) = ξ̂− (ξ̂ ◦Rα) + λ̂. To find an L-section of dΦ̂α in

a neighborhood of (0, 0) we have to solve for ξ̂, λ̂

dΦ̂α(ξ, λ)(ξ̂, λ̂) = η

for given ξ and η. To simplify this equation we multiply on the right by 1 + µ

and on the left by (d(1 + µ)) ◦ (1 + µ) ◦Rα. Setting

ξ̃ = ξ̂ ◦ (1 + µ)

η̃ = d(1 + µ) ◦ (1 + µ) ◦Rα ◦ η ◦ (1 + µ)

χ(ξ) = d(1 + µ) ◦ (1 + µ) ◦Rα

Then we have to solve

ξ̃ − ξ̃ ◦Rα = η̃ − χ(ξ) · λ̂

or ξ̃(x)− ξ̃(x + α) = η̃(x)− χ(ξ)(x) · λ̂
for all x = (x1, ..., xn) ∈ T n.

Consider the Haar measure dx on T n. The equality
∫

T n ξ̃(x)dx =
∫

T n ξ̃(x + α)dx gives
∫

T n

η̃(x)dx = (

∫

T n

χ(ξ̃)(x)dx) · λ̂.

Since ξ is C1-close to zero, the matrix A =
∫

T n x(ξ̃)dx is close to the identity, so

it is invertible. Thus we can get λ̂ = 1
A

∫
T n η̃(x)dx.

We will use the Fourier expansion of η̃(x)− χ(ξ)(x)dλ̂ =
∑

k∈Zn−{0}
bke

2iπ<k,x>

to compute the Fourier expansion of ξ̃(x) =
∑

k∈Zn−{0}
ake

2iπ<k,x>, where ak, bk ∈

Cn, a−k = āk; b−k = b̄k and x = (x1, ..., xn) ∈ Rn, k = (k1, ..., kn) ∈ Zn,

< x, k >=
∑n

i=1 kixi. The choice of λ̂ forces b0 to be zero. Plugging these into

the equation to solve we get a0 = 0 and ak = bk

1−e2iπ<k,α> , for k 6= 0. This with

the diophantine condition on α imply

|ak| ≤ C|bk||k|d,
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where C is a constant depending only on α. Let L2(T n, dx,Rn) denote the space

of mappings f : T n → Rn, which are square integrable with respect to the Haar

measure dx. Let ak(f) denote the kth Fourier coefficient of f ∈ L2(T n, dx,Rn).

For Cr maps from T n → Rn let

Hr(T n,Rn) = {f ∈ L2(T n, dx,Rn);
∑

k∈Zn

(1 + |k|2)n|ak(f)|2 < ∞}.

Let Cr
0(T

n,Rn) resp Hr
0(T

n,Rn) denote the subset consisting of elements with

a0(f) = 0. The inequality |ak| ≤ C|bk||k|d implies that the map

L :
∑

k∈Zn−{0}
bk(f)e2iπ<k,x> 7−→

∑

k∈Zn−{0}
(

bk(f)

1− e2iπ<k,x>
)e2iπ<k,x>

maps Hr
0(T

n,Rn) into Hr−d
0 (T n,Rn). Hence, by Sobolov embedding theorem L

maps Cr
0(T

n,Rn) into Cr−s
0 (T n,Rn) where s = d + bn/2c + 1. Hence, we have

solved for ak and got ξ̃.

This shows that the linear mapping L : Cr
0(T

n,Rn) → Cr−s
0 (T n,Rn) is a 1-

L-morphism. Now, Theorem D.3 implies that there exists a neighborhood U of

the rotation Rα in Diff∞0 (T 2n, T n) and a smooth map s : U → Diff∞0 (T 2n, T n)×
(T 2n, T n) such that φα ◦ s = id|U . 2
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