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ABSTRACT

ENTANGLEMENT MEASURES

Uyanık, Kıvanç

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Yusuf İpekoğlu

February 2008, 40 pages

Being a puzzling feature of quantum mechanics, entanglement caused many debates since the

infancy days of quantum theory. But it is the last two decades that it has started to be seen

as a resource for physical tasks which are not possible or extremely infeasible to be done

classically. Popular examples are quantum cryptography - secure communication based on

laws of physics - and quantum computation - an exponential speedup for factoring large in-

tegers. On the other hand, with current technological restrictions it seems to be difficult to

preserve specific entangled states and to distribute them among distant parties. Therefore a

precise measurement of quantum entanglement is necessary. In this thesis, common bipartite

and multipartite entanglement measures in the literature are reviewed. Mathematical defini-

tions, proofs of satisfaction of basic axioms and significant properties for each are given as

far as possible. For Tangle and Geometric Measure of Entanglement, which is a multipartite

measure, results of numerical calculations for some specific states are shown.

Keywords: Entanglement, Entanglement Measures, Quantum Information, Quantum Compu-

tation
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ÖZ

DOLANIKLIK ÖLÇÜTLERI

Uyanık, Kıvanç

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Dr. Yusuf İpekoğlu

Şubat 2008, 40 sayfa

Kuvantum mekaniğinin şaşırtıcı özelliklerinden biri olan dolanıklık kuvantum teorisinin ilk

günlerinden beri tartışmalara yol açmıştır. Ancak son yirmi yılda klasik olarak yapılamayacak

ya da yapılması teknik olarak mümkün olmayan işler için bir kaynak olarak görülmeye başlanmıştır.

Bunların popüler örnekleri arasında kuvantum şifreleme - güvenliği fizik yasalarına dayalı

şifreleme - ve kuvantum hesaplama - çok büyük tamsayıların çarpanlara ayrılmasında üstel

hızlanma - sayılabilir. Diğer taraftan şu anki teknolojik kısıtlamalarla parçacıkların özel

dolanık hallerinin saklanması ve birbirinden uzak alıcılara gönderilmesi çok zor görünmektedir.

Bu yüzden dolanıklık ölçümünün tam bir tanımı gereklidir. Bu tezde yaygın iki parçalı

ve çok parçalı dolanıklık ölçütleri incelenmiştir. Matematiksel tanımlar verilmiş, mümkün

olduğunca temel aksiyomların sağlandığı gösterilmiş ve önemli özelliklerine değinilmiştir.

Çok parçalı ölçütlerden Tangle ve Geometrik Dolanıklık Ölçütü için bazı özel örneklerde

sayısal hesaplamaların sonuçları gösterilmiştir.

Anahtar Kelimeler: Dolanıklık, Dolanıklık Ölçütleri, Kuvantum İnformasyon, Kuvantum

Hesaplama
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CHAPTER 1

INTRODUCTION

1.1 History of Quantum Entanglement and Quantum Information and Com-

putation Science

In the beginning of the twentieth century the nonintuitive characteristics of quantum mechan-

ics forced physicists to revise their understanding of nature. One of the central problems goes

back to those early days of discussions. In their famous paper, Einstein Podolsky and Rosen

drew attention to one of the puzzling features of quantum mechanics[1]. It is possible that ob-

servation on one part of a composite quantum system would immediately affect the other part

even if these subsystems are separated millions of light-years apart. This nonlocal property

lead EPR to question whether quantum mechanical description of the nature is complete; in

other words, is there another complete theory underlying quantum mechanics?

In 1964 John Bell showed that quantum mechanics and local hidden variable theories provide

different predictions for the thought experiments like the ones Einstein originally proposed[2].

In fact, he found that hidden variable theories are more restrictive on the statistical outcomes

of an “entangled” state, whereas quantum mechanics is free of these extra constraints[3].

This conclusion, which is mathematically described as “Bell Inequalities”, stimulated real

experimenters to test which idea explains the Nature better.

Until Aspect made a convincing experiment in 1982 showing that Bell inequalities are vio-

lated [4, 5, 6] this debate had continued on a theoretical ground. To date, many other experi-

ments confirming Aspect’s results have been carried out .

Although it is not a direct consequence of entanglement only, the progress related to quan-

tum computation is worth mentioning. Feynman’s idea to use individual quantum systems
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for computational tasks happens to occur in the same time period[7]. He pointed out that

classical computers are insufficient in the “computational power in a reasonable time” sense

to simulate quantum mechanical systems, thus he suggested to build up computers working

with quantum mechanical principles instead. In 1985, Deutsch wrote a paper pointing out

quantum parallelism - inherent parallel computational power of quantum computers [8]. The

two famous algorithms that can work on these quantum computers if it is possible to build

one are by Shor[9] and Grover [10]. Shor’s algorithm is able to factorize large integers which

would be a breakthrough in RSA cryptology since this protocol depends on the asymmetry

in complexities of the following two tasks: multiplication of two large primes, and finding

prime factors of a large integer. No classical algorithm is known up to now that does not re-

quire exponential time for the second task. Unlike Shor’s, Grover’s algorithm is not bringing

an exponential speedup, however it has significant implications in database searching. With

this algorithm, it is possible to search an element from an unordered set of N elements in

O(
√

N) time, which seems to be quite counter-intuitive.

Before passing to the Quantum Information side of the story, we need to recall Shannon’s re-

sults which founded a basis for classical information theory[11]. The noiseless channel coding

theorem and The noisy channel coding theorem successfully answer the questions concerning

information capacity requirements for noiseless channels and the amount of information that

can be transmitted through a noisy channel. The quantum part comes into the picture with

Schumacher’s analogue of the noiseless coding theorem[12]. Unfortunately a quantum noisy

channel coding theorem is still missing[13].

Important physical applications can be listed as superdense coding, teleportation and quantum

cryptography. It was shown by Bennett and Wiesner that two parties initially possessing an

entangled pair can send only one bit of quantum information to transmit two bits of classical

information[14]. This is what is called superdense coding. Also it is possible to transmit a

quantum state of a single particle. Bennett et al. showed that this is possible without knowing

the state at hand[15]. The last application, quantum cryptography has already begun to be

commercialized. Bennett and Brassard designed the BB84 protocol for establishing secure

quantum communication[16]. Security of the BB84 protocol depends on laws of physics, thus

as far as our knowledge about quantum mechanics is correct, it is unbreakable. We believe that

using quantumness of nature in computation we will be able to make the current commercial

cryptography fail. It is quite ironic that we are able to employ quantum cryptography as a
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reliable substitute for it.

1.2 Motivation

Quantum Entanglement is one of the essential resources for the tasks of communication and

computation whose main examples were given in the previous section. Since it is a resource

(e.g. like energy) we have to quantify it. The problem starts with a fact: the interaction

with the environment affects quantum states irreversibly. One can generate EPR pairs and

distribute them to distant parties for communication or any other task like quantum teleporta-

tion. However, coupling to the environment (decoherence), noise in the quantum channels or

any other practical reasons prevent us from keeping these pairs ideal. In the end the distant

parties would possess some states still containing entanglement but not the original EPR pairs.

Even though they don’t have the ideal pairs, is it possible to perform the desired tasks with the

states in hand? Or what tasks can they perform? If the answer is not definite, then what is the

probability to do a certain task? Or is it possible to calculate this probability? Can we make

local operations and use classical communication channels to distill these states to obtain the

ones we need to perform certain tasks? A precise quantification of entanglement would be a

great help to answer these kinds of questions. Even if we understand bipartite entanglement

(entanglement between only two parties) well, it seems to be that there will be much more to

explore about multipartite entanglement and entanglement in infinite dimensional systems.

Despite the fact that the motivation for measuring quantum entanglement is concentrated

around quantum information tasks, it is possible for it to be beneficial for other areas of

physics. A proper measurement theory of multipartite entanglement would be a helpful math-

ematical tool for open problems like quantification of correlations in quantum many body

systems[17].

Bell inequalities may be counted as the first quantification of entanglement. If a state violates

Bell inequalities more than another, then it can be said that this state is more entangled. Con-

trarily, not all the entangled states violate Bell inequalities [18]. Having a rich mathematical

structure and being a resource for great technological implications, measuring entanglement

became an interesting problem. The theory of entanglement measures has developed in vari-

ous ways. Mainly, one can split into two categories: geometric measures mostly concentrating
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on mathematical features of quantum states and operational measures focusing on the appli-

cability of a quantum state to perform certain tasks [19].

In the next section, we will continue the introduction by giving basic definitions and postulates

needed for further definitions, proofs and calculations in chapter 2 and chapter 3. In chapter

2, we give definitions of common bipartite entanglement measures. We examine them from

different perspectives such as how they satisfy basic axioms of Quantum Information, their

computational complexity or what are the useful upper or lower bounds to them. Since the

theory of “bipartite measures” seems to be almost complete, while discussing the bipartite

setting, we have gone over these measures aiming to capture the ideas underlying the past

work. Unlike the bipartite setting, the characterization of multipartite entanglement is a highly

nontrivial problem. In addition to some of those that we have conducted in bipartite case, we

also examine proposed multipartite measures in the literature by evaluating them numerically

for special states.

1.3 Basic Definitions and Postulates

One of the postulates of Quantum mechanics describes how to deal with composite systems:

The state space of a composite physical system is the tensor product of the state

spaces of the component physical systems. If the i’th of n components is prepared

in the state |ψi〉 then the joint system is in the state |ψ1〉 ⊗ |ψ2〉 ⊗ ... ⊗ |ψn〉[13].

Immediately we can consider a state like |ψ〉 = 1√
2
(|00〉 + |11〉) where the total system is a

composition of two 2-level systems (for example two spin 1/2 systems). Here |00〉 and |11〉

are the short forms of |0〉 ⊗ |0〉 and |1〉 ⊗ |1〉. However it can be shown that there is no solution

for the complex coefficients if we want to write this state as a tensor product of two component

states. Now we are ready to give the definition of entanglement:

Definition 1.3.1 A state is called separable if it can be written as a tensor product of two

component states. It is called entangled otherwise.

These definitions of separable and entangled states are given only for pure states, however our

physical problems will mostly force us to work with mixed states[20]. So the definitions of
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pure and mixed states are as follows:

Definition 1.3.2 Given an ensemble of quantum states of a system, (i.e. given arbitrary - need

not to be orthogonal - quantum states |ψi〉 with certain probabilities pi), if all the states in the

ensemble can be characterized by only one quantum state, it is called a pure state, if it is a

collection of different quantum states with relative probabilities it is called a mixed state[21].

To deal with these statistical terms in a better way, an equivalent formalism of quantum me-

chanics - the density matrix or the density operator formalism - is introduced[13]. A density

operator ρ is defined as follows:

ρ ≡
∑

i

pi|ψi〉〈ψi| (1.1)

where the summation is over all the states |ψi〉 in the ensemble with corresponding probabil-

ities pi. All the information about the ensemble that can be obtained with measurements

can be extracted from the density matrix[21]. A density operator satisfies the following

properties[13, 21]:

1. ρ is hermitian

2. trρ = 1

3. ρ is positive semidefinite.

The trace of the square of the density matrix informs us about whether it corresponds to a

pure or a mixed state: Let ρ be a density operator. Then tr(ρ2) ≤ 1, with equality if and only if

ρ characterizes a pure state[13, 21]. An important benefit of the density operator formalism is

that it becomes a useful tool for describing subsystems of a composite quantum system[13].

Definition 1.3.3 Let us have a physical system composed of subsystems A and B, whose joint

state is described by the density matrix ρAB. Then the reduced density matrix of the subsystem

A is defined by

ρA = trB(ρAB) (1.2)

where trB (partial trace) is a linear mapping from operators to operators defined as

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|tr(|b1〉〈b2|) (1.3)
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where |a1〉 and |a2〉 are any two vectors in the state space of A, and |b1〉 and |b2〉 are any two

vectors in the state space of B.

Extension of this definition linearly to all states and to higher dimensions is straightforward.

Equipped with the tools we needed, we can continue with a definition of entanglement mea-

sure. There are different ways to define an entanglement measure but a reasonable approach

is given in [17]. Here, we follow the idea given in this reference:

Definition 1.3.4 An entanglement measure is a mapping E from the set of density matrices

into positive real numbers:

ρ −→ E(ρ) ∈ R+.

In the bipartite setting, for convenience, this quantity is often normalized to 1 for maximally

entangled states which are defined as

|ψ+〉 =
|00〉 + |11〉 + .. + |d − 1, d − 1〉

√
d

where d is the dimension of the component systems. This definition of maximally entangled

states follows from Nielsen’s majorization theorem[22]. That is, it is not possible to transform

any state with local operations and classical communication(LOCC) to this state, however the

reverse is always possible.

Any entanglement measure must be equal to zero for separable states:

E(ρseparable) = 0.

Entanglement measures are not allowed to increase under LOCC. One can mathematically

describe any LOCC operation with generalized measurements Ai, where the only condition

on these operators is 1 ∑
i A†i Ai = 1n×n :

E(ρ) ≥
∑

i

piE

 AiρA†i
tr(AiρA†i )


where pi is the probability of obtaining outcome i

pi = tr(AiρA†i ).

1( † ) symbol denotes the Hermitian conjugate (Hermitian adjoint), and it is also denoted by( ∗ ) symbol.
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The operators satisfying
∑

i A†i Ai = 1n×n are also called Kraus operators.

To call a quantity an entanglement measure we need one extra condition: for a pure state

|ψ〉 E(|ψ〉〈ψ|) should be reduced to entropy of entanglement, which we will define in the next

chapter

E(|ψ〉〈ψ|) = S (trB(|ψ〉〈ψ|))

where S (ρ) = −tr(ρ log2 ρ) is the von Neumann Entropy.

A quantity satisfying these conditions is called an entanglement measure.

There is a very similar term entanglement monotone in the literature and these are often used

interchangeably. Instead of the last condition, Vidal makes another requirement[23]:

Decrease in the information about the system can not increase an entanglement monotone:

for any ensemble {qi, ρi}

E(
∑

i

qiρi) ≤
∑

i

qiE(ρi).
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CHAPTER 2

BIPARTITE ENTANGLEMENT MEASURES

The most basic quantum system that demonstrates various aspects of entanglement is a bipar-

tite system. Thus, most of the entanglement measures that has been suggested is a result of a

attempts to measure how much entanglement is contained in a bipartite system. This question

is rephrased in many different forms, like how much non-local resource can we extract from

an entangled state asymptotically, or how much gold standard Bell states does one need to use

to create a desired state, or what is the distance from the quantum state that we consider to the

set of separable states, etc., each leading to a different kind of definition of measure. In this

chapter, we will review the most featured ones, proving some of the key properties that these

measures possess.

2.1 Entropy of Entanglement

For a bipartite pure state |ψ〉, its entropy of entanglement is defined as the von Neumann

Entropy, S (ρ), of the density matrix which is obtained by taking a partial trace over either one

of the subsystems.

E(ψ) ≡ S (σ) = −tr(σ log2(σ)) where σ = trB(|ψ〉〈ψ|) = trA(|ψ〉〈ψ|). (2.1)

In fact, a unitarily invariant, concave function h(σ) of the partial trace σ = trB(|ψ〉〈ψ|) is an

entanglement monotone[23].

2.2 Entanglement Cost

The motivation behind how entanglement cost is defined is to quantify how much resource

- it is the maximally entangled Bell states in this case - that we need to use if we want to

8



prepare a given mixed state. Entanglement cost is defined as the minimum of the ratio of the

number of maximally entangled input states over the number of the output states we want to

produce over all LOCC(Local Operations and Classical Communication) protocols when the

number of output states is going to infinity. Formal definition includes infimum instead of

minimum:[24, 25]

EC(ρ) ≡ inf
{λLOCC}

lim
nρ→∞

nin
|φ+〉

nout
ρ

(2.2)

where |φ+〉 ≡ 1√
2
(|00〉 + |11〉) and nin

|φ+〉
is the number of the input state |φ+〉 and nout

ρ is the

number of an output state ρ.

Since it involves a minimization over all possible LOCC protocols, this quantity is too difficult

to compute, however it may be the case that another entanglement measure having a closed

formula for bipartite pure states, entanglement of formation, which we will define later, may

be equal to entanglement cost[17].

2.3 Entanglement of Distillation

Entanglement of Distillation or distillable entanglement quantifies how much non-local re-

source we can extract from a given state using LOCC only. It is defined as the ratio of the

number of maximally entangled output states over the number of given input states maximized

over all LOCC protocols when the number of input states is going to infinity: [24, 25]

ED(ρ) ≡ sup
{λLOCC}

lim
nρ→∞

nout
|φ+〉

nin
ρ

(2.3)

where |φ+〉 ≡ 1√
2
(|00〉 + |11〉) and nout

|φ+〉
is the number of the output state |φ+〉 and nin

ρ is the

number of an input state ρ.

Despite its significance, entanglement of distillation is also not easy to compute as it can be

seen from the definition. Finding better bounds to distillable entanglement and developing

techniques or algorithms to decide whether a state is distillable are still open problems[17].

Entanglement cost and entanglement of distillation are extremal measures in the sense that

all entanglement measures should lie between these two. An elementary proof of this fact is

given in [26] and it is further improved in [27].
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2.4 Entanglement of Formation

Entanglement of formation is defined as the minimum of the average entropy of entanglement

over all pure state decompositions[24, 25].

EF(ρ) ≡ inf
{decomp.}

∑
i

piS (σi) where σi = trB(|ψi〉〈ψi|) (2.4)

At the time this thesis is being written, computation of the extremal measures given above are

extremely difficult, however this is not the case for entanglement of formation. Wootters gave

an exact formula to evaluate entanglement of formation for bipartite mixed states, defining a

new quantity, concurrence, which is also an entanglement monotone itself [28]. It is still not

known whether EF(ρ) is additive, however if this is the case, this will make the computation

of entanglement cost much easier. It will then follow that

EF(ρ) = E∞F (ρ) = EC(ρ) (2.5)

where the regularized version of entanglement of formation is defined as [17]

E∞F (ρ) ≡ lim
n→∞

EF(ρ⊗n)
n

(2.6)

and a rigorous proof of the second equality 2.5 is given in ref.[29]

The exact formula by Wootters is given below

EF(ρ) = h(
1 +

√
1 −C2(ρ)
2

) (2.7)

where h(x) is defined as

h(x) ≡ −x log2 x − (1 − x) log2(1 − x) (2.8)

and the concurrence for two qubits is defined as

C(ρ) ≡ max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (2.9)

where λi’s are the eigenvalues of

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) (2.10)

in a decreasing order and ρ∗ is the complex conjugate(not the hermitian conjugate) of ρ, σy is

the Pauli matrix σy =
( 0 −i

i 0
)

[28].
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2.5 Relative Entropy of Entanglement

Classical relative entropy is a measure of the distance between two probability distributions,

namely it is the measure of the inefficiency of assuming the probability distribution to be {qi}

when the true distribution is {pi}[30]:

D(pi‖qi) ≡
∑

i

pi log2(
pi

qi
) (2.11)

The quantum version is [31, 32]

S (ρ‖σ) ≡ tr(ρ log2(ρ) − ρ log2(σ)) (2.12)

and the relative entropy of entanglement with respect to a set T introduced by Vedral et al. as

an entanglement measure [33, 34]

ER(ρ) ≡ inf
σ∈T

S (ρ‖σ) = inf
σ∈T

tr{ρ log2(ρ) − ρ log2(σ)} (2.13)

where it measures the distance between the quantum state ρ and a set T . Basically this set

can be chosen to be the set of separable states as it was done in the references [33, 34],

however there are other options depending upon what we are calling free states [17]. Note

that even though we said that quantum relative entropy measures the distance between two

states, neither it nor its classical analog satisfies the metric property; i.e. S (ρ‖σ) , S (σ‖ρ)

[30, 33].

Quantum relative entropy is bounded from above by entanglement cost [35] and from below

by distillable entanglement [36].

Like distillable entanglement, relative entropy of entanglement requires a minimization over

a high dimensional space, thus it is difficult to compute.

2.6 Squashed Entanglement

Squashed entanglement is defined as [37, 38, 39]

Esq(ρAB) ≡
1
2

inf
{ρABE }

I(A; B|E) (2.14)

where the infimum is taken over all extensions ρABE satisfying ρAB = trE(ρABE). I(A; B|E),

the quantum conditional mutual information [40] of ρABE , which takes place in the formula,
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is given as

I(A; B|E) ≡ S (ρAE) + S (ρBE) − S (ρABE) − S (ρE), (2.15)

and as previously defined in (2.1) S (ρAB) is the von Neumann entropy of the joint state,

S (ρAB) ≡ −tr(ρAB log2(ρAB)). One desired property of being an entanglement measure is

being equal to the entropy of entanglement for pure states. Here it can be easily proven [39]

that this is the case: Let ρAB = |ψ〉〈ψ| be a pure state. Any extension of ρAB should be

separable: ρABE = ρAB ⊗ ρE . It follows from the additivity of von Neumann entropy that,

1
2 I(A; B|E) = 1

2 {S (ρA) + S (ρE) + S (ρB) + S (ρE) − S (ρAB) − S (ρE) − S (ρE)}

= 1
2 (S (ρA) + S (ρB)) = S (ρA) = E(ψ)

Proof of the squashed entanglement being an entanglement monotone is as follows. In [23]

it has been shown that the following two conditions for a mapping µ(ρ) to be, on average,

non-increasing under local transformations are necessary and sufficient:

1. For any quantum state ρ and local, trace preserving, completely positive quantum opera-

tions Ei,k performed by either of the observers i,

µ(ρ) ≥
∑

k

pkµ(ρk), (2.16)

where

pk = tr(Ek(ρ)) and ρk =
1
pk
Ek(ρ). (2.17)

2. Decrease in the information about the system can not increase an entanglement monotone:

for any ensemble {qi, ρi}

µ(
∑

i

piρi) ≤
∑

i

piµ(ρi) (2.18)

Proof of statement 2 is given as follows: Consider an ensemble with k elements {pi, ρ
AB
i },

let ρABE
i be arbitrary extensions of ρAB

i . To form a mixture of these k states having a formal

extension define

τABEE′ ≡
∑

i

piρ
ABE
i ⊗ |iE′〉〈iE′ | (2.19)

where the mixture state is τAB =
∑

i piρ
AB
i . Note that without loss of generality, extensions

can be defined on identical systems E. Up to now, quantum mutual conditional information

12



I(A; B|E) was defined on a single arbitrary underlying density operator, henceforth whenever

needed, underlying density matrices will be denoted by a subscript such as I(A; B|E)ρi .

To prove statement 2 showing equality 2.20 below would be sufficient. Since the extensions

ρABE
i are arbitrary, one can choose the minimizing ones, so the left hand side would be equal

to twice the sum of the squashed entanglements of the density matrices in the ensemble. Also

it is guaranteed that I(A; B|EE′)τ ≥ 2Esq(τAB) by definition.∑
i

piI(A; B|E)ρi = I(A; B|EE′)τ (2.20)

Writing the definitions and using the additivity property of von Neumann entropy, we will

prove equation 2.20:∑
i

piI(A; B|E)ρi =
∑

i

pi{S (ρAE
i ) + S (ρBE

i ) − S (ρABE
i ) − S (ρE

i )}

=
∑

i

piS (ρAE
i ) +

∑
i

piS (ρBE
i ) −

∑
i

piS (ρABE
i ) −

∑
i

piS (ρE
i )

=
∑

i

piS (ρAEE′
i ) +

∑
i

piS (ρBEE′
i ) −

∑
i

piS (ρABEE′
i )−

∑
i

piS (ρEE′
i )

= S (τAEE′) + S (τBEE′) + S (τABEE′) + S (τEE′)

= I(A; B|EE′)τ

(2.21)

For the proof of the first condition, the reader may refer to the original paper [39].

Another important property of the squashed entanglement is that it is bounded from above by

the entanglement of formation:

Esq(ρAB) ≤ EF(ρAB). (2.22)

Here, we will add more explanatory steps to the proof which is given in [39]. Let {pk, |ψk〉} be

a pure state ensemble of ρAB, ∑
k

pk|ψ
AB
k 〉〈ψ

AB
k | = ρ

AB. (2.23)

Consider an arbitrary extension of ρAB:

ρABE ≡
∑

k

pk|ψ
AB
k 〉〈ψ

AB
k | ⊗ |k〉〈k|

E , (2.24)

it follows then
1
2

I(A; B|E) =
∑

k

pkS (σA
k ) (2.25)
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where σA
k ≡ trB(|ψAB

k 〉〈ψ
AB
k |). To show the last equality, we first start with the definition of

I(A; B|E)

I(A; B|E) = S (ρAE) + S (ρBE) − S (ρABE) − S (ρE).

Evaluating these entropies one by one

ρAE = −trB(
∑

k

pk|ψ
AB
k 〉〈ψ

AB
k | ⊗ |k〉〈k|

E)

=
∑

k

pktrB(|ψAB
k 〉〈ψ

AB
k | ⊗ |k〉〈k|

E))

=
∑

k

pktrB(|ψAB
k 〉〈ψ

AB
k |) ⊗ |k〉〈k|

E

=
∑

k

pkσ
A
k ⊗ |k〉〈k|

E

The von Neumann entropy of ρAE is a function of its eigenvalues. Let λA
k,i be the i’th eigen-

value of the k’th reduced density operator σA
k . From the definition of the extension ρABE ,

eigenvalues of ρAE are found to be the probability weighted composition of these λA
k,i :

λAE
k,i = pkλ

A
k,i.

The von Neumann entropy of ρAE and, by symmetry, of ρBE are found to be:

S (ρBE) = S (ρAE) = −
∑
k,i

λAE
k,i log2 λ

AE
k,i

= −
∑
k,i

pkλ
A
k,i log2 pkλ

A
k,i

= −
∑
k,i

pkλ
A
k,i(log2 λ

A
k,i + log2 pk)

= −
∑
k,i

pkλ
A
k,i log2 λ

A
k,i −

∑
i

λA
k,i

∑
k

pk log2 pk

= −
∑
k,i

pkλ
A
k,i log2 λ

A
k,i −

∑
k

pk log2 pk.

By a reasoning similar to above, the entropies of the other terms are found to be

S (ρABE) = S (ρE) = −
∑

k

pklog2 pk, (2.26)

thus we have proven the desired equality

1
2

I(A; B|E) = −
∑
k,i

pkλ
A
k,i log2 λ

A
k,i

= −
∑
k,i

pkλ
A
k,i log2 λ

A
k,i

=
∑

k

pkS (σA
k ).

(2.27)
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Therefore, both of them being evaluated for the same quantity 1
2 I(A; B|E), we have seen that

the only difference between entanglement of formation and squashed entanglement is that

EF(ρ) can be regarded as an infimum over a certain class of extensions and Esq(ρ) is an

infimum over all extensions of ρAB, so EF(ρAB) is smaller than or equal to Esq(ρAB) .

Now we will follow some basic steps to show that the entanglement cost is an upper bound

for squashed entanglement, under the assumption that the squashed entanglement is additive.

Esq(ρAB) ≤ EC(ρAB) (2.28)

As it was mentioned before (eqn. 2.5), equality of entanglement cost and regularized entan-

glement of formation has been proved [29]. Accepting squashed entanglement as an additive

entanglement measure, one will immediately see that

EC(ρAB) = lim
n→∞

1
n

EF((ρAB)⊗n) ≤ lim
n→∞

1
n

EF((ρAB)⊗n) = Esq(ρAB). (2.29)

As it is bounded from above by the entanglement cost, it is also shown to be bounded from

below by the distillable entanglement [39].

2.7 Negativity and Logarithmic Negativity

Before attempting to measure how much entanglement a state contains, one naturally tries to

answer the question if a state is separable or not. It has been shown that a state is separable if

and only if the partial transpose of its density matrix ρ with respect to either of its subsystems

is also a positive operator [41, 42]. Since partial transposition of a density matrix with respect

to one subsystem is the transpose of its partial transpose with respect to the other subsystem,

the spectra of the partially transposed states are the same. Partial transposition with respect to

subsystem B of a bipartite state ρ ≡
∑
ρi j,kl|i〉〈 j| ⊗ |k〉〈l| is defined as

ρTB ≡
∑
i, j,k,l

ρi j,kl|i〉〈 j| ⊗ |l〉〈k| (2.30)

where the state ρ is expanded in a given local orthonormal basis. However this criterion is

shown to be valid only for 2 × 2 and 2 × 3 systems [42]. From this statement, we understand

that if a bipartite state is separable, the eigenvalues of the partial transposed density matrix

are all non-negative. For the inseparable case however, some of the eigenvalues are negative.
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The idea is to use the sum of these negative eigenvalues to quantify entanglement, or in other

words to measure how much the given state fails to satisfy Peres’ criterion [41]. For this

purpose negativity is defined as twice the sum of the negative negative eigenvalues of the

partial transposed density matrix [43]

EN(ρ) ≡
∑

i

|λTB
i | − 1 (2.31)

where the λTB
i are the eigenvalues of the partial transpose ρTB . A mathematically equivalent

definition is given in [17, 44] as

EN(ρ) ≡ ‖ρTB‖ − 1 (2.32)

where ‖X‖ ≡ tr
√

X†X is the trace norm.

Negativity is shown to be an entanglement monotone in several papers [44, 45, 46, 47]. Here,

we will briefly present the proof of Eisert [44]. Since separable states do satisfy Peres’ crite-

rion and the partial transposes of these states have no vanishing eigenvalues, we only need to

check two conditions: eqn.(2.16) and eqn.(2.18). The second condition (eqn.2.18) is satisfied,

because the trace norm satisfies the triangle inequality. We can show this by using corollary

3.4.3 in [48] The trace norm can be equivalently defined as the sum of absolute values of the

eigenvalues. Since the sum of the k largest eigenvalues is a convex function [48],∑
λ(A+B)↓

i ≤
∑

λA↓
i +

∑
λB↓, (2.33)

the sum of the inequalities for positive eigenvalues of the original matrix and the negated

matrix leads to the triangle inequality for the trace norm.

To prove the first condition, consider the generalized measurements represented by the Kraus

operators {Ai}, which can be applied by party A on her subsystem. Being Kraus operators,

Ai’s satisfy
k∑
i

A†i Ai = 1A (2.34)

and the final states are of the form

ρi =
AiρA†i

pi
(2.35)

with

pi = tr(AiρA†i ).

Let

ρTB = ρTB
+ + ρ

TB
− (2.36)
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be the Hahn - Jordan Decomposition of the partially transposed state ρ [49]. By definition of

the decomposition, both ρTB
+ and ρTB

− are positive and Hermitian. Then

k∑
i

piEN(ρi) =
k∑
i

pi

‖(AiρA†i )TB‖

pi
− 1

 = k∑
i

‖Aiρ
TB A†i ‖ − 1. (2.37)

Definition of negativity gives the first equality, and the second equality follows from the fact

that partial transposition with respect to party B has no effect on the operations applied by

party A. For each i = 1, .., k, the triangle inequality of trace norm and the positivity and

Hermiticity of ρTB
+ and ρTB

− imply

‖Ai(ρ
TB
+ − ρ

TB
− )A†i ‖ ≤ ‖Aiρ

TB
+ A†i ‖ + ‖Aiρ

TB
− A†i ‖ = tr(Aiρ

TB
+ A†i ) + tr(Aiρ

TB
− A†i )

= tr(Aiρ
TB
+ A†i + Aiρ

TB
− A†i )

= tr(Ai(ρ
TB
+ + ρ

TB
− )A†i )

(2.38)

Then, using equation 2.34 we obtain

k∑
i

tr(Ai(ρ
TB
+ + ρ

TB
− )A†i ) = tr(ρTB

+ + ρ
TB
− ) (2.39)

Finally,

k∑
i

piEN(ρi) ≤ tr(ρTB
+ + ρ

TB
− ) − 1 = ‖ρTB‖ − 1 = EN(ρ) (2.40)

Unlike the other measures that we have reviewed except entanglement of formation, negativ-

ity does not require a computationally difficult minimization procedure on a high dimensional

space [44]. This makes negativity a useful entanglement monotone even though it does not

agree with von Neumann entropy evaluated on pure states. Negativity is a convex entangle-

ment monotone but it is not additive. One can consider the logarithm of the trace norm and

define logarithmic negativity [50]

ELN(ρ) ≡ log2 ‖ρ
TB‖ (2.41)
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in order to overcome this difficulty[47]. This monotone is, by construction, additive:

ELN(ρ ⊗ ρ) = log2

(
tr

√
[(ρ ⊗ ρ)TB]†[(ρ ⊗ ρ)TB]

)
= log2

(
tr

√
(ρTB ⊗ ρTB)†(ρTB ⊗ ρTB)

)
= log2

(
tr

√
((ρTB)†ρTB) ⊗ ((ρTB)†ρTB)

)
= log2

(
tr

√
((ρTB)†ρTB) ⊗

√
((ρTB)†ρTB)

)
= log2

(tr √((ρTB)†ρTB)
)2

= 2 log2 ELN(ρ).

However it is not convex, so does not satisfy equation 2.18. Thus, it was believed not to

be an entanglement monotone. On the other hand, in [47] a proof of logarithmic negativity

being an entanglement monotone despite its non-convexity is given by discussing the relation-

ship between convexity requirements and physical operations regarding loss of information

highlighting the importance of continuity.

Although it is only an entanglement monotone (not an entanglement measure), their ease of

calculation for a given state make negativity and logarithmic negativity very advantageous.

Furthermore, logarithmic negativity is shown to be an upper bound for distillable entangle-

ment, ED(ρ) ≤ ELN(ρ), and for the teleportation capacity of quantum channels [46].

2.8 Robustness of Entanglement

A different idea to quantify entanglement is to measure how much an entangled state can

endure mixing separable states. The minimum amount of a suitable separable state that should

be mixed with the given density matrix to make the combination separable is defined as the

robustness of entanglement[51] of that density matrix. The state which has to be mixed in

order to destroy entanglement can be chosen from different sets each leading to a different

kind of robustness measure, such as generalized robustness, random robustness or Schmidt

robustness[19].

Let us first define the relative robustness of one state with respect to another. Given a state ρ,

the minimum positive real number s such that one obtains a separable state, ρ+s , after mixing
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with an appropriate density operator ρ−s

ρ+s ≡
1

1 + s
(ρ + sρ−s ) (2.42)

is defined as the relative robustness R(ρ||ρ−s ) of ρ with respect to the state ρ−s . Why it has been

defined in this way will become clear soon. If we impose the condition that ρ−s is separable, we

obtain the original definition of Vidal and Tarrach [51]. They also defined random robustness

by setting ρ−s to be the normalized maximally mixed state

ρ−s =
1
n
1n×n (2.43)

where n is the dimension of the Hilbert Space. One can remove the restriction on the density

matrix ρ−s to be separable and consider the most general case since it is possible to obtain

separable states by mixing entangled states. This case is studied independently by Harrow

and Nielsen [52] and Steiner [53]. They showed that generalized robustness (also known

as global robustness) and robustness give the same value. In a recent work, Robustness is

generalized one step further to Schmidt-k robustness by restricting ρ−s to the set of Schmidt-k

rank states [19].

Before showing that robustness is an entanglement monotone, for simplification, introducing

the concept of pseudomixtures would be useful [51, 54]. Writing equation (2.42) in terms of

ρ−s and ρ+s , we obtain a decomposition for ρ

ρ = (1 + s)ρ+s − sρ−s . (2.44)

Here it should be noted that, s being a positive real number, equation (2.44) does not rep-

resent a physical decomposition. In the original case of Vidal and Tarrach these states are

emphasized to be local[51].

To show that the robustness of entanglement is an entanglement monotone, again we have

to prove that it satisfies the monotonicity conditions, namely, equation (2.16) and equation

(2.18) [23] It is enough to show the convexity of a mixture of two states [51] since it can be

extended to the case of more than two states by induction. Let ρ be a mixture of two states

and p ∈ (0, 1) be the mixing probability

ρ = pρ1 + (1 − p)ρ2. (2.45)
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Let ρ1 and ρ2 have optimal decompositions

ρ1 = [1 + R(ρ1)]ρ+s,1 − R(ρ)ρ−s,1 (2.46a)

ρ2 = [1 + R(ρ2)]ρ+s,2 − R(ρ)ρ−s,2 (2.46b)

Substituting equations 2.46a and 2.46b into equation 2.45 we get:

ρ = p{[1 + R(ρ1)]ρ+s,1 − R(ρ1)ρ−s,1} + (1 − p){[1 + R(ρ2)]ρ+s,2 − R(ρ2)ρ−s,2}

= p[1 + R(ρ1)]ρ+s,1 + (1 − p)[1 + R(ρ2)]ρ+s,2 − pR(ρ1)ρ−s,1 − (1 − p)R(ρ2)ρ−s,2

= (1 + t)
p[1 + R(ρ1)]ρ+s,1 + (1 − p)[1 + R(ρ2)]ρ+s,2

p[1 + R(ρ1)] + (1 − p)[1 + R(ρ2)]
− t

pR(ρ1)ρ−s,1 + pR(ρ2)ρ−s,2
pR(ρ1) + (1 − p)R(ρ2)

= (1 + t)r+s − tr−s

where r+s , r−s and t are defined as

r+s =
p[1 + R(ρ1)]ρ+s,1 + (1 − p)[1 + R(ρ2)]ρ+s,2

1 + pR(ρ1) + (1 − p)R(ρ2)

r−s =
pR(ρ1)ρ−s,1 + pR(ρ2)ρ−s,2
pR(ρ1) + (1 − p)R(ρ2)

t = pR(ρ1) + (1 − p)R(ρ2).

Thus we have obtained a decomposition with a distance t not necessarily being optimal:

R(ρ) ≤ t

R(ρ) ≤ pR(ρ1) + (1 − p)R(ρ2)

Next, we have to prove that robustness does not increase under local trace preserving quantum

operations. These operations can be represented by generalized local measurements which

satisfy equation (2.34):
k∑
i

A†i Ai = 1A

Let the initial state ρ have an optimal pseudomixture

ρ = [1 + R(ρ)]ρ+s − R(ρ)ρ−s (2.47)

and let us apply general local measurements on this state

ρk =
AkρA†k

tr(AkρA†k)
=

[1 + R(ρ)]Akρ
+
s A†k − R(ρ)Akρ

−
s A†k

tr(AkρA†k)
. (2.48)

Here, separable states ρ+s and ρ−s remain separable under local measurements Ak, so it is

possible to obtain a not necessarily optimal pseudomixture for each k. Normalizing these
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separable states one would have

ρk =
[1 + R(ρ)]tr(Akρ

+
s A†k)

tr(AkρA†k)

Akρ
+
s A†k

tr(Akρ
+
s A†k)

−
R(ρ)tr(Akρ

−
s A†k)

tr(AkρA†k)

Akρ
−
s A†k

tr(Akρ
−
s A†k)

= (1 + τ)
Akρ

+
s A†k

tr(Akρ
+
s A†k)

− τ
Akρ

−
s A†k

tr(Akρ
−
s A†k)

.

(2.49)

Considering optimal pseudomixtures for each ρk, one would obtain the following inequalities

without solving for τ explicitly:

R(ρk) ≤
R(ρ)tr(Akρ

−
s A†k)

tr(AkρA†k)
(2.50)

thus, ∑
k

pkR(ρk) ≤
∑

k

R(ρ)tr(Akρ
−
s A†k)

∑
k

pkR(ρk) ≤
∑

k

R(ρ)tr(A†k Akρ
−
s )

∑
k

pkR(ρk) ≤ R(ρ)tr(1Aρ
−
s )

∑
k

pkR(ρk) ≤ R(ρ),

(2.51)

and the proof is complete.

Relative robustness has the nice property that it is convex over the set of separable states [51].

R(ρ||
∑

i

piρs,i) ≤
∑

i

piR(ρ||ρs,i) (2.52)

Even though most of the measures defined up to now require a minimization over a space,

inequality (2.52) distinguishes robustness of entanglement in such a way that a numerical

calculation to minimize robustness of entanglement would not suffer from the local minima

problem.

As an important note, for two party pure states, the robustness of entanglement is evaluated

as [51]

R(|ψ〉) =

∑
i

λi

2

− 1 (2.53)

where λi are the Schmidt coefficients of |ψ〉:

|ψ〉 =
∑

i

λi|i〉 ⊗ |i〉.
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CHAPTER 3

MULTIPARTITE ENTANGLEMENT MEASURES

It is natural to consider the many party extensions of bipartite entanglement. However, most

of the measures that are defined for bipartite systems are inadequate for the multipartite set-

ting. For entanglement cost and distillable entanglement, a standard of entanglement like

Bell states is missing. One can extend the definition of the relative entropy of entanglement,

negativity or robustness, but these suffer from the problem of defining suitable unentangled

sets. One obtains different multipartite measures for each of these definitions capturing dif-

ferent aspects of multipartite entanglement. In this chapter we will continue with analyzing

multipartite entanglement measures.

3.1 Entanglement Cost and Distillable Entanglement

In the bipartite case, entanglement cost was defined as the minimum asymptotical rate of

transforming maximally entangled Bell states into the state we wish for using only local op-

erations and classical communication. Its dual measure, distillable entanglement was the

maximum LOCC conversion rate from the state in hand to the gold standard Bell states in the

asymptotic limit. A direct generalization to multiparty setting for both measures lacks a com-

mon standard of entangled states like Bell states. Bell states possessed the essential property

that it was possible to convert them to any desired state [22]. On the other hand, for the entan-

glement shared by more then two parties there are more then one distinct classes of entangle-

ment for which conversion of states from one class to another is not possible even with a small

probability. The simplest example is given by Dur et al. [55]. |GHZ〉 ≡ 1/
√

2(|000〉 + |111〉)

and |W〉 ≡ 1/
√

3(|001〉+ |010〉+ |100〉) states are the representatives of two distinct classes of

tripartite entanglement.
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One may continue to employ Bell states as a target for distilling multipartite states or one

may aim for multipartite entangled states such as |GHZ〉 state [56] or |W〉 state. Similarly, it

is possible to start with a representative of any class of entangled states as a resource or as a

target to distill. Each of these quantities would give rise to a measure that reveals a different

entanglement characteristics [17].

3.2 Tangle

Many new features appear when one increases the size of a quantum system from two to

three. One of them is the monogamy of entanglement, which can be described as follows: the

amount of entanglement between party A and party B is reduced if one tries to increase the

amount of entanglement between party A and a third party C. This property is intrinsically

quantum, unlike the classical case in which one can correlate as many systems as desired to

add to an already correlated system [57]. Coffman, Kundu and Wootters provided a quan-

titative expression of this property and obtained a locally invariant measure called residual

entanglement or 3-tangle [58] to measure genuine 3-partite entanglement [57]. They ob-

served that concurrences (eqn.2.9) for reduced density matrices of a 3-partite system satisfy

the inequality

C2(ρAB) +C2(ρAC) ≤ C2(ρA(BC)) (3.1)

which leads to the definition of 3-tangle

τABC ≡ τA(BC) − τAB − τAC (3.2)

where τAB, τAC and τA(BC) are 2-tangles (squared concurrences).

For the well known GHZ state [59], this measure is equal to 1 since

τABC(|GHZ〉) = τA(BC)(|GHZ〉) − τAB(|GHZ〉) − τAC(|GHZ〉)

= C2
A(BC)(|GHZ〉) −C2

AB(|GHZ〉) −C2
AC(|GHZ〉)

= 1 − 0 − 0.
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Figure 3.1: Upper view of the tangle of |GW(θ, φ)〉 on a Bloch sphere. The vector k̂ represents
the |GHZ〉 state and the vector −k̂ represents the |W〉 state.

Figure 3.2: Lower view of tangle of the |GW(θ, φ)〉 on a Bloch sphere. The vector k̂ represents
the |GHZ〉 state and the vector −k̂ represents the |W〉 state.
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On the other hand, for the W-state [55] it is evaluated as

τABC(|W〉) = τA(BC)(|W〉) − τAB(|W〉) − τAC(|W〉)

= C2
A(BC)(|W〉) −C2

AB(|W〉) −C2
AC(|W〉)

=
8
9
−

4
9
−

4
9

= 0.

Finally, consider the superpositions of the |GHZ〉 and |W〉 states:

|GW(θ, φ)〉 ≡ cos(θ/2)|GHZ〉 + sin(θ/2)eiφ|W〉. (3.3)

The values of tangle are plotted on the surface of a Bloch sphere and shown in two different

views of the sphere in figures 3.1 and 3.2. The values of tangle are evaluated by a function

included in the QLIB package [60] running on MATLAB. These results are consistent with

the results shown in a recent paper by Lohmayer et al. [61].

An n-qubit generalization of the 3-tangle (n-tangle) is defined, proved to be an entanglement

monotone and shown to be equal to the square of a generalized concurrence for even n in [58].

However, the n-tangle is not a quantifier of genuine n-partite entanglement. A geometrical ap-

proach to generalize tangle and concurrence to multi-qubits using hyperdeterminants is given

by Miyake [62]. He showed that the absolute value of the higher order hyperdeterminants are

also entanglement monotones[63].

Generalization to the mixed states is done by convex roof extension [57, 58],

τ(ρ) = inf
S ρ

{
∑

i

piτ(|ψi〉)} (3.4)

where S ρ is the set of all possible realizations ρ =
∑

i pi|ψi〉〈ψi| of the mixed state character-

ized by the density operator ρ.

3.3 Relative Entropy of Entanglement

In the bipartite case, the relative entropy of entanglement of a state was defined as its minimum

distance to a disentangled set. The most general choice for this set was the set of separable

states. The idea for the bipartite case can be directly generalized to the multipartite case [33].

ER(ρ) ≡ inf
σ∈T

S (ρ‖σ) = inf
σ∈T

tr{ρ log2(ρ) − ρ log2(σ)} (3.5)
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where T is the set of n-partite fully separable states [34, 35]

σ =
∑

i

siσ
A
i ⊗ σ

B
i ⊗ ... ⊗ σ

Z
i . (3.6)

This set can also be selected as the set of mixtures of k-partite entangled states where k < n

[33, 35]. The simplest example of this is for tripartite states and the states are of the form

σ =
∑

i

siσ
AB
i σC

i + tiσAC
i σB

i + uiσ
BC
i σA

i . (3.7)

In the latter case the measure will be sensitive to truly n-partite entanglement whereas in the

former case it can confuse n-partite entanglement with combinations of k-partite entangle-

ments [3]. Of course one can evaluate the relative entropy distance with respect to any convex

set such as PPT states or non-distillable states[3].

As we mentioned in chapter 2, computing the relative entropy of entanglement requires to

solve a difficult optimization problem. In the multipartite case, its complexity even increases

with the number of subsystems [33].

For the |GHZ〉 like pure states relative entropy of entanglement is evaluated as[17]

ER(α|000〉 + β|111〉) = −|α|2 log2 |α|
2 − |β|2 log2 |β|

2

and for the |W〉 states [64]

ER((|001〉 + |010〉 + |100〉)/
√

3) = log2(9/4).

3.4 Geometric Measure of Entanglement

Another quantification that can be seen as a distance based measure is the geometric measure

of entanglement. This distance is “geometric” in the sense that this measure is defined first

by Shimony [65] as the maximum angle between a bipartite pure state |ψ〉 and a separable

state. This definition is generalized to n-partite pure states by Barnum and Linden [66] and

extended to multipartite mixed states by Wei and Goldbart [67]. Formally, the distance from

the state |ψ〉 to a separable state |φ〉 is minimized

d = min ||ψ〉 − |φ〉| (3.8)
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Figure 3.3: Geometric measure of entanglement of
√

s|W〉 +
√

1 − s|W̃〉 vs. s.

Eventually it boils down to finding the maximal angle between these states as we follow the

derivation in Wei and Goldbart’s paper [67]

Λmax = max
φ
|〈φ||ψ〉| (3.9)

where Λmax, which they call the entanglement eigenvalue, corresponds to the cosine of the

maximal angle. For future purposes, geometric measure is defined as the sine of this angle:

EG(orEsin2) ≡ 1 − Λ2
max (3.10)

If one tries to make this minimization for the bipartite case, finding Λmax would correspond

to the largest Schmidt coefficient of the state |ψ〉[65].

Even though finding the maximum angle for a given multipartite state is a nonlinear problem

with no general analytical solution found so far, some symmetric cases enable us to evaluate

the geometric measure on these states. For example, to evaluate permutation symmetric states,

(i.e. the states |ψ〉 =
∑

i1..in χi1..in |i1〉
1|i2〉2..|in〉n whose coefficients χi1..in are invariant under

permutations of ik’s) following Wei and Goldbart’s reasonable assumption that the closest

separable state |φ〉 would also possess a symmetry. They assumed that |φ〉 is of the form

|φ〉 ≡ ⊗n
k=1

∑
l

cl|il〉k
 (3.11)

thus the minimization task greatly simplifies. To give examples, the geometric measure of

entanglement of the |GHZ〉 state for any dimension is found to be 1/2 and of |W〉 state is 5/9

[67]. Considering superpositions of these states does not break the permutation symmetry.
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Figure 3.4: Upper view of geometric measure of entanglement of |GW(θ, φ)〉 on a Bloch
sphere. The vector k̂ represents the |GHZ〉 state and −k̂ vector represents |W〉 state. Colors are
adjusted by interpolating between the maximum value and the minimum value of E to give a
high contrast.

Figure 3.5: Lower view of the geometric measure of entanglement of |GW(θ, φ)〉 on a Bloch
sphere. The vector k̂ represents the |GHZ〉 state and the vector −k̂ represents the |W〉 state.
Colors are adjusted by interpolating between the maximum value and the minimum value of
E to give a high contrast.
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First let’s define the |W̃〉 state as

|W̃〉 ≡ (|110〉 + |101〉 + |011〉)/
√

3 (3.12)

Any superposition of |W〉 and |W̃〉 is of the form

|WW̃(θ, φ)〉 ≡ cos(θ/2)|W〉 + sin(θ/2)eiφ|W̃〉 (3.13)

Observing that the result is φ independent [67] and solving the equation for θ, we can obtain

the entanglement value for a θ corresponding to the angle of superposition of the given state.

In figure 3.3 geometric measure of entanglement versus cosine square of the superposition

angle (
√

s = cos(θ/2)) is given.

This result is consistent with the one in the Wei’s paper [67]. In the next example, the values

of geometric measure of entanglement is illustrated before is the superposition of |GHZ〉 and

|W〉 states (eqn. 3.3):

|GW(θ, φ)〉 ≡ cos(θ/2)|GHZ〉 + sin(θ/2)eiφ|W〉.

In Wei’s paper the entanglement characteristics is given again as an E vs. s graph with random

φ values[67]. Here we give the same result by coloring the surface of a bloch sphere spanned

by the |GHZ〉 and the |W〉 states in figures 3.4 and 3.5.

Here, it is interesting to observe the parallelism between tangle and the geometric measure

of entanglement. Numerical results in [61, 67] and our results show that both are symmetric

with respect to φ −→ φ+ 2π/3 transformation. This can be derived from the invariance under

the transformation given in eqns. 3.14a and 3.14b applied to all three qubits[67].

|0〉 −→ |0〉, (3.14a)

|1〉 −→ ei 2kπ
3 |1〉 (3.14b)

where k = 1, 2 or 3. As one can predict, extension to mixed states is given by convex roof

extension:

EG(ρ) ≡ inf
pi,|ψi〉

∑
i

piEG(|ψi〉) (3.15)

where the minimization is over all possible decompositions ρ =
∑

i pi|ψi〉〈ψi|. Wei and Gold-

bart also proved that this convex hull construction to be an entanglement monotone satisfying
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the essential conditions [23, 67]. Although it is relatively easy to find analytic formulas for

some special states such as symmetric, antisymmetric pure states [68] and Werner states [69],

no analytical formula for the most general case is given in the literature up to date. Still, it

can be evaluated with numerical computation methods.

3.5 Entanglement of Assistance and Localizable Entanglement

Consider three observers Alice, Bob and Charlie possessing the pure state |GHZ〉 = 1√
3
(|000〉+

|111〉) such that as seen by Alice and Bob the state is described by the density matrix ρAB =

trC(|GHZ〉〈GHZ|) = 1
21. If Charlie makes a measurement in the |±〉 = 1√

2
(|0〉 ± |1〉) basis

on his local subsystem and inform Alice and Bob about his result, this process would im-

mediately turn the completely separable state Alice and Bob have into one of the maximally

entangled states (|00〉+ |11〉)/
√

2 or (|00〉 − |11〉)/
√

2. DiVincenzo et al. made use of this fact

to quantify entanglement; they call this the entanglement of assistance (EoA) between Alice

and Bob [70].

Entanglement of assistance is defined for a pure tripartite state of parties A, B and C, as the

maximum average bipartite entanglement that could be obtained for A and B, after C helping

them by performing a local measurement on his subsystem and report his outcome to the

others [70]. Let us denote the pure state they possess by |ψABC〉 and let {pi, |ψ
AB
i 〉} be an

ensemble constituting ρAB:

ρAB =
∑

i

pi|ψ
AB〉〈ψAB|. (3.16)

Following the definition of entanglement of assistance one naturally aims to maximize the

average bipartite entanglement. Moreover this maximization can be given directly as the

formula for this quantity[70]:

EA(|ψABC〉 = EA(ρAB) ≡ sup
{pAB

i ,|ψAB
i 〉}

∑
i

piS (|ψAB
i 〉〈ψ

AB
i |), (3.17)

where S (ρ) is the von Neumann Entropy defined for the bipartite pure state entanglement. We

are able to write eqn. 3.17, because as a result of the Hughstone-Jozsa-Wootters theorem [71]

one can be sure that C can find an appropriate basis to make measurements such that the state

obtained by A and B after C’s measurements is ψAB
i with probability pi [13].

Entanglement of assistance is defined for three parties, one of which is the “assistant” who
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tries to choose the most efficient basis to make measurements in order to maximize the entan-

glement between the other parties. If more than one “assistants” are considered, one comes

up with localizable entanglement (LO)[72]. Localizable entanglement is the maximal entan-

glement that two parties can obtain by the help of n other parties performing only LOCC

operations on their particles.

Both entanglement of assistance and localizable entanglement are not LOCC monotones.

Gour and Spekkens showed that, including classical data transfer from A and B to the other

parties may increase these quantities deterministically [73]. Thus, they generalized EOA

and LE further to entanglement of collaboration and collaborative localizable entanglement

respectively where the definitions of the generalized version include two sided classical com-

munication between all parties.

Here will be presented a simplified proof of how collaboration with A and B increases EOA

[73]. Suppose A, B and C possess the state of dimensions 4 × 4 × 2

|φABC〉 =
[(|00〉 + |11〉)|0〉 + (|00〉 − i|11〉)|0〉 + (|22〉 + |33〉)| + i〉 + (|22〉 − |33〉)| − i〉]

2
√

2
,

(3.18)

where | ± i〉 ≡ (|0〉 ± i|1〉) /
√

2. First, A makes a measurement with operators |0〉〈0| + |1〉〈1|

and |2〉〈2| + |3〉〈3| and sends her result to C. C, then, depending on the outcome, makes a

measurement in the |0〉, |1〉 or | + i〉, | − i〉 basis. In each of the cases A and B are left with a

maximally entangled state, hence the entanglement of collaboration of this state is 2.

Let us now try to evaluate the entanglement of assistance of this state. The state |φABC〉 can

be written as

|φABC〉 =
1

2
√

2

(
(|00〉 + |11〉 +

√
2|22〉)|0〉 + (|00〉 − i|11〉 + i

√
2|33〉)|1〉

)
=

1

2
√

2
(|α〉|0〉 + |β〉|1〉) .

(3.19)

Thus, tracing out C, the state that A and B would be left with is an equal mixture of |α〉 and

|β〉. By the Hughstone-Jozsa-Wootters theorem [71], we have a unitary freedom to mix the

states in the ensemble.That is, if there is any linear combination a|α〉+b|β〉, with normalization

on a, b ∈ C, that gives a maximal bipartite entanglement, then C can choose an appropriate

basis for his measurements to leave A and B with that pure state with a nonzero probability p.

However it can be shown that no such combination would give a maximally entangled state

like the previous collaborative case [73].
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For a|α〉 + b|β〉 to be maximally entangled, the magnitudes of its Schmidt coefficients should

be equal [22]. In our case, the linear combination is already Schmidt decomposed

a
(
|00〉 + |11〉 +

√
2|22〉

)
+ b

(
|00〉 − i|11〉 + i

√
2|33〉

)
=

(a + b)|00〉 + (a − ib)|11〉 +
√

2a|22〉 + i
√

2b|33〉
(3.20)

So, equating magnitudes we get

|a + b| = |a − ib| =
√

2|a| =
√

2|b| (3.21)

with the normalization condition

|a|2 + |b|2 = 1. (3.22)

One can easily show that this set of equations has no solutions for complex a and b.

The definition of Entanglement of Collaboration includes all possible local measurements and

classical communication between all parties to maximize the value so it is an entanglement

monotone [17]. There are other possible modifications to make entanglement of assistance an

entanglement monotone. The regularized version of entanglement of assistance

E∞A (|ψABC〉) ≡ lim
n→∞

EA
(
|ψABC〉

⊗n)
n

(3.23)

is shown to become an entanglement monotone [74, 75, 76], even though it is not a monotone

for finite n [73]. Also, one can replace entropy of entanglement with concurrence and define

concurrence of assistance [77] as

CA(|ψABC〉) ≡ sup
{pAB

i ,|ψAB
i 〉}

∑
i

piC(|ψAB
i 〉) (3.24)

where the concurrence of a pure state can be given as [57]

C(|φAB〉) = 2
√

det ρA. (3.25)

Here ρA is the marginal density matrix of the pure state |φAB〉〈φAB|. Defining assistance this

way rewards us with an explicit formula for two qubits [77]:

CA(|ψABC〉) = F(ρAB, ρ̃AB) (3.26)

where Fidelity F(ρ, σ) is defined as

F(ρ, σ) ≡ tr
√
ρ1/2σρ1/2

and tilde ( ˜ ) operation is the same spin flip operation that we used in eqn.(2.10)of Wootters

[28]:

ρ̃ ≡ (σy ⊗ σy)ρ∗(σy ⊗ σy) (3.27)
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CHAPTER 4

CONCLUSION

Despite the recent progress after the pioneering papers by Bennett et al. [78, 79, 24], there is

still much to be explored about entanglement. How to measure the amount of entanglement

that a given state possesses is an important question that has been attempted to be answered

from different points of view. A convenient measure (or multiple measures in some cases)

capturing the essential characteristic features of entanglement would be useful for evaluating

probabilities of transformation of states, calculating the amount of non-local resources that

we have in hand, or calculating quantum channel capacities. In this thesis, we have tried to

review the most common entanglement measures briefly.

For bipartite pure states, the measure of entanglement is well established. This is mostly be-

cause any bipartite state can be Schmidt decomposed. Thereafter, von Neumann entropy gives

the exact information content of entanglement. However, while considering mixed states, op-

timization of construction, extraction or manipulation of nonlocal resources is not straight-

forward. This leads to two types of entanglement measures: geometrical or operational [19].

Geometric measures are mostly related with the distance to a set of states like separable states

or PPT states. On the other hand operational measures find their meaning in physical oper-

ations such as state transformations. Among the ones we have studied, relative entropy of

entanglement, robustness, geometric measure and negativity might be counted as the former

type whereas entanglement of distillation and entanglement cost can be included in the latter

type.

Many applications in the field quantum information and computation require the treatment

of entangled states shared by more than two parties. Unfortunately, it is not possible to give

direct generalizations of all the approaches we reviewed for the bipartite case to the n-partite

case. Absence of a standard maximum entangled state like Bell states is one of the problems
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that one encounters at first. Another difficulty is the characterization of the genuine n-partite

entanglement. One might be interested in the maximum amount of entanglement that can

be distilled in EPR pairs or one may only be interested in the entanglement between all the

parties involved. Therefore a single measure of multipartite entanglement even for pure states

is not likely to appear.

We tried to present most of the promising entanglement measures for bipartite mixed states in

Chapter 2, and for multipartite states in Chapter 3. The measures existing in the literature are

not limited to the ones that are analyzed here. Among those, Schmidt measure [44], hyper-

determinants [80, 62] and the multipartite version of squashed entanglement[81, 82] might

be added to our list at a first glance. A pure geometric view like Miyake’s hyperdeterminants

may be also helpful in understanding entanglement. Although a new entanglement measure is

not introduced in Mosseri and Dandoloff’s paper [83], their approach generalizing the Bloch

sphere to two dimensions using Hopf fibrations and making use of quaternions to simplify

calculations is noteworthy. This approach is further explored for three dimensions in another

article [84].

In Table 4.1, a summary of the properties of bipartite measures are given. One can see from

the table that there seems to be a tradeoff between the satisfaction of desired properties and the

ease of calculation. The first five measures satisfy most of the properties, but up to now, for

only entanglement of formation of two qubits, a simple formula has been found [28]. It seems

that to evaluate the other four, one needs to solve a difficult optimization problem. On the

contrary, negativity requires a one step calculation and robustness has some good properties

simplifying numerical calculations.

We hope that this thesis was helpful for both the readers aiming to get a feeling about entan-

glement measures and for the ones who will continue their research on this topic. The major

open problems in this area require mostly sophisticated mathematics, however both analytical

and numerical calculations of some measures or at least lower or upper bounds to these will

be beneficial. Setting aside negativity and entanglement of formation, a closed formula has

not been found yet for any of these measures. Having a clear operational meaning and being

an extremal measure, entanglement cost is shown to be equal to entanglement of formation

depending on the additivity conjecture of entanglement of formation[29]. Thus, proving this

conjecture would be great help. Considering multipartite entanglement, a complete charac-
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terization is still missing [17]. Absence of a single state of entanglement standard creates

difficulties in extending the definitions of entanglement cost and distillable entanglement to

the multipartite case. For specific target states, optimum distillation protocols are present in

the literature, however it would be better to have more general results [17].

Table 4.1: A summary of properties

Additivity Convexity Continuity Reduces to Entropy Easy to Calculate
ECost YES YES ? YES NO
EDist YES NO? ? YES NO
EForm ? YES YES YES Easy for 2 qubits
ERel NO YES YES YES NO
ES q YES YES YES YES NO
ENeg NO1 YES1 ? NO YES
ERob NO2 ? ? NO Relatively Easy

Measuring entanglement is more or less related to defining invariants in the state space of

quantum systems. However, mixed states or multipartite pure states have a nontrivial ge-

ometry. Understanding geometry of quantum states would be a great advancement in both

visualization of problems and obtaining more general results. The interested reader may find

the book by Bengtsson useful [85].

1One can define Logarithmic Negativity but then this quantity fails to be convex[50]
2Robustness itself is not additive however a function of it can be additive [51]
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[43] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of
separable states,” Phys. Rev. A 58 (1998), no. 2, 883–892.

[44] J. Eisert, “Entanglement in quantum information theory,” arXiv:quant-ph/0610253.

[45] J. Lee, M. S. Kim, Y. J. Park, and S. Lee, “Partial teleportation of entanglement in a
noisy environment,” Journal of Modern Optics 47 (2000), no. 12, 2151–2164.

[46] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65
(2002), no. 3, 032314.

[47] M. B. Plenio, “Logarithmic Negativity: A Full Entanglement Monotone That is not
Convex,” Physical Review Letters 95 (2005), no. 9, 090503.

[48] R. A. Horn and C. R. Johnson, “Topics in Matrix Analysis”. Cambridge University
Press, 1991.

[49] R. Bhatia, “Matrix Analysis”. Springer, 1996.

[50] J. Eisert and M. B. Plenio, “A comparison of entanglement measures,” Journal of
Modern Optics 46 (1999) 145.

[51] G. Vidal and R. Tarrach, “Robustness of entanglement,” Phys. Rev. A 59 (1999), no. 1,
141–155.

[52] A. W. Harrow and M. A. Nielsen, “Robustness of quantum gates in the presence of
noise,” Phys. Rev. A 68 (2003), no. 1, 012308.

38



[53] M. Steiner, “Generalized robustness of entanglement,” Phys. Rev. A 67 (2003), no. 5,
054305.

[54] A. Sanpera, R. Tarrach, and G. Vidal, “Local description of quantum inseparability,”
Phys. Rev. A 58 (1998), no. 2, 826–830.

[55] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent
ways,” Phys. Rev. A 62 (2000), no. 6, 062314.

[56] M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle
entanglement purification protocols,” Phys. Rev. A 57 (1998), no. 6, R4075–R4078.

[57] V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A
61 (2000), no. 5, 052306.

[58] A. Wong and N. Christensen, “Potential multiparticle entanglement measure,” Phys.
Rev. A 63 (2001), no. 4, 044301.

[59] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem
without inequalities,” American Journal of Physics 58 (1990), no. 12, 1131–1143.

[60] S. Machnes, “QLib - A Matlab Package for Quantum Information Theory Calculations
with Applications,” arXiv:quant-ph/0708.0478.

[61] R. Lohmayer, A. Osterloh, J. Siewert, and A. Uhlmann, “Entangled Three-Qubit States
without Concurrence and Three-Tangle,” Physical Review Letters 97 (2006), no. 26,
260502.

[62] A. Miyake, “Classification of multipartite entangled states by multidimensional
determinants,” Phys. Rev. A 67 (2003), no. 1, 012108.

[63] A. Miyake, “Multipartite Entanglement under Stochastic Local Operations and
Classical Communication,” International Journal of Quantum Information 2 (2004) 65.

[64] M. B. Plenio and V. Vedral, “Bounds on relative entropy of entanglement for
multi-party systems,” Journal of Physics A: Mathematical and General 34 (2001),
no. 35, 6997–7002.

[65] A. Shimony, “Degree of Entanglement,” in Fundamental Problems in Quantum
Theory, D. M. Greenberger and A. Zelinger, eds., volume 755 of New York Academy
Sciences Annals, pp. 675–679. 1995.

[66] H. Barnum and N. Linden, “Monotones and invariants for multi-particle quantum
states,” Journal of Physics A: Mathematical and General 34 (2001), no. 35, 6787–6805.

[67] T.-C. Wei and P. M. Goldbart, “Geometric measure of entanglement and applications to
bipartite and multipartite quantum states,” Phys. Rev. A 68 (2003), no. 4, 042307.

[68] S. Bravyi, “Entanglement entropy of multipartite pure states,” Phys. Rev. A 67 (2003),
no. 1, 012313.

[69] R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model,” Phys. Rev. A 40 (1989), no. 8, 4277–4281.

[70] D. P. DiVincenzo et al., “Entanglement of Assistance,” arXiv:quant-ph/9803033.

39



[71] W. K. W. Lane P. Hughston, Richard Jozsa, “A complete classification of quantum
ensembles having a given density matrix,” Physics Letters A 183 (1993) 14–18.

[72] F. Verstraete, M. Popp, and J. I. Cirac, “Entanglement versus Correlations in Spin
Systems,” Phys. Rev. Lett. 92 (2004), no. 2, 027901.

[73] G. Gour and R. W. Spekkens, “Entanglement of assistance is not a bipartite measure
nor a tripartite monotone,” Physical Review A (Atomic, Molecular, and Optical
Physics) 73 (2006), no. 6, 062331.

[74] J. A. Smolin, F. Verstraete, and A. Winter, “Entanglement of assistance and multipartite
state distillation,” Physical Review A (Atomic, Molecular, and Optical Physics) 72
(2005), no. 5, 052317.

[75] M. Horodecki, J. Oppenheim, and A. Winter, “Partial quantum information,” Nature
436 (2005) 673–676.

[76] M. Horodecki, J. Oppenheim, and A. Winter, “Quantum state merging and negative
information,” Communications in Mathematical Physics 269 (2006) 107.

[77] T. Laustsen, F. Verstraete, and S. J. van Enk, “Local vs. Joint Measurements for the
Entanglement of Assistance,” Quantum Information and Computation 3 (2003) 64.

[78] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K.
Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy
Channels,” Phys. Rev. Lett. 76 (1996), no. 5, 722–725.

[79] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial
entanglement by local operations,” Phys. Rev. A 53 (1996), no. 4, 2046–2052.

[80] A. Miyake and M. Wadati, “Multipartite Entanglement and Hyperdeterminants,”
Quantum Information and Computation 2 (2002) 540, arXiv:quant-ph/0212146.

[81] D. Avis, P. Hayden, and I. Savov, “Distributed Compression and Multiparty Squashed
Entanglement,” arXiv:quant-ph/0707.2792.

[82] D. Yang, K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, and W. Song,
“Squashed entanglement for multipartite states and entanglement measures based on
the mixed convex roof,” arXiv:quant-ph/0704.2236.

[83] R. Mosseri and R. Dandoloff, “Geometry of entangled states, Bloch spheres and Hopf
fibrations,” Journal of Physics A: Mathematical and General 34 (2001), no. 47,
10243–10252.

[84] B. A. Bernevig and H.-D. Chen, “Geometry of the three-qubit state, entanglement and
division algebras,” Journal of Physics A: Mathematical and General 36 (2003), no. 30,
8325–8339.

[85] I. Bengtsson and K. Zyczkowski, “Geometry of quantum states : an introduction to
quantum entanglement”. Cambridge University Press, Cambridge, New York, 2006.

40


