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ABSTRACT 

 
 

OPTIMIZATION OF MULTIRESERVOIR SYSTEMS BY GENETIC 
ALGORITHM 

 
 
 

Hınçal, Onur 

Ph.D., Department of Civil Engineering 

Supervisor      : Assist. Prof. Dr. A.Burcu Altan Sakarya 

Co-Supervisor: Prof. Dr. A. Metin Ger 

 

January 2008, 85 pages 
 
 
 
Application of optimization techniques for determining the optimal operating policy 

for reservoirs is a major title in water resources planning and management. Genetic 

algorithms, ruled by evolution techniques, have become popular for solving 

optimization problems in diversified fields of science. The main aim of this research 

was to explore the efficiency and effectiveness of the applicability of genetic 

algorithm in optimization of multi-reservoirs. A computer code has been constructed 

for this purpose and verified by means of a reference problem with a known global 

optimum. Three reservoirs in the Colorado River Storage Project were optimized for 

maximization of energy production. Besides, a real-time approach utilizing a blend 

of online and a posteriori data was proposed. The results achieved were compared to 

the real operational data and genetic algorithms were found to be effective, 

competitive and can be utilized as an alternative technique to other traditional 

optimization techniques.  
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ÖZ 

 
 

ÇOK REZERVUARLI SİSTEMLERİN GENETİK ALGORİTMA İLE 
OPTİMİZASYONU 

 
 
 
 

Hınçal, Onur 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi          : Yrd.Doç.Dr. A.Burcu Altan Sakarya 

Ortak Tez Yöneticisi: Prof. Dr. A.Metin Ger 

 
Ocak 2008, 85 sayfa 

 
 
Rezervuarlar için optimal işletme politikasını belirlemek üzere optimizasyon 

tekniklerinin uygulanması, su kaynakları planlaması ve yönetiminin önemli bir 

konusudur. Evrim teknikleriyle yönetilen genetik algoritma, bilimin çeşitli 

alanlarındaki optimizasyon problemlerini çözmek için gözde hale gelmiştir. Bu 

araştırmanın ana hedefi, genetik algoritmanın çoklu rezervuarların optimizasyonunda 

uygulanabilirliğinin verimliliği ve yararlılığını keşfetmekti. Bu amaçla, bir bilgisayar 

kodu oluşturuldu ve bilinen global optimuma sahip olan bir referans problem 

aracılığıyla doğrulandı. Colorado Nehri Depolama Projesi’nde yer alan üç rezervuar, 

enerji maksimizasyonu için optimize edildi. Bunun yanında, güncel ve geçmiş 

verilerin harmanını kullanan bir gerçek zamanlı yaklaşım önerildi. Elde edilen 

sonuçlar, gerçek işletme verileriyle karşılaştırıldı ve genetik algoritmaların etkili, 

rekabet edebilir olduğu ve diğer geleneksel optimizasyon tekniklerine alternatif bir 

teknik olarak kullanılabileceği tespit edildi. 

 

Anahtar Kelimeler: Genetik Algoritma, Optimizasyon, Rezervuarlar, Gerçek zamanlı 
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CHAPTERS1 
 
 

1. INTRODUCTION 
 
 
 
This chapter gives the description of the problem, an overview on water resources 

systems, objectives of this research, road map and a brief outline of this thesis. 

1.1 Problem Description 

For 5,000 years dams have served mankind, ensuring an adequate supply of water by 

storing water in times of surplus and releasing it in times of scarcity. Today there are 

more than 45,000 large dams in the world contributing to the management of scarce 

water resources and mitigating devastating floods and catastrophic droughts. 

Dams regulate the natural runoff with its seasonal variations and climatic 

irregularities to meet the pattern of demand for irrigated agriculture, power 

generation, domestic and industrial supply and navigation. They also provide 

recreation, attract tourism, aquaculture and fisheries, and can enhance environmental 

conditions. Dams contribute greatly to the world’s food production in providing 

water for irrigation. Many of them generate electricity, clean renewable energy 

without CO2 emissions. 

In spite of the large investments made in dams and reservoirs worldwide, many are 

still operated on the basis of experience, rules of thumb or static rules established at 

the time of construction. Even small improvements in the operating policies can lead 

to large benefits for many consumers. 

Optimization of reservoir operation is an area that has attracted extensive research 

over the years. Optimization in design, planning and implementation of water 

resources systems have always been an intensive research area. Optimization of 
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water resources systems is related not only to the physical structures and their 

functional characteristics but also the criteria by which the system is operated.  

There are many decision making problems in the world, which have many 

constraints. A reservoir operation problem can be considered as a decision making 

problem. Optimizing reservoir operations incorporate allocation of resources, 

development of stream flow regulation strategies, operating rules and real-time 

release decisions in its bodily constitution. A reservoir regulation plan, which is 

sometimes referred to as operating procedure or release policy is a group of rules 

quantifying the amount of water to be stored, released or withdrawn from a reservoir 

or system of reservoirs under various conditions. This study intended to build an 

operational model to ease the decisions about the optimal volumes to be stored or 

released from the reservoirs in question, i.e. the operational decisions. 

Multi-reservoir operation/management planning is a complex task involving many 

variables, objectives, and decisions. The complexities of the multiple reservoir 

system compel that the release decisions are determined by means of optimization or 

simulation models. Most of the optimization methods are constructed upon the basis 

of mathematical modeling. So far, optimization methods have been implemented for 

both planning purposes and for real time operation. Real time reservoir operation 

deals with the optimal operation of an existing reservoir system and decisions about 

releases have to be made in reasonably short time periods. In determining optimal 

policy, storages for the ending time of period optimized are necessarily to meet the 

required target ending minimum storages at this time point. This system state is 

desired to be applicable to satisfactory future operations. In other words, it is desired 

to establish the optimum release policy over the release periods specified, which 

shall result in a set of target ending minimum storages in the final policy period that 

makes sure of being adequate for future system operations.  

In a typical manner, the optimization model deals with constraints such as: continuity 

equation, maximum and minimum storages in the reservoirs, maximum and 

minimum releases from the reservoirs and some case-specific obligations.  
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The most commonly accepted objectives are the optimality of the water supply for 

irrigation, industrial and domestic use, hydropower generation, water quality 

improvement, recreation, fish and wildlife enhancement, flood control and 

navigation. 

1.2 Definition of Water Resources Systems 

A dam is a barrier built across a watercourse for impounding water. By erecting 

dams, humans can obstruct and control the flow of water in a basin. A reservoir is an 

artificial lake, usually the result of a dam, where water is collected and stored in 

quantity for various uses. The major function of reservoirs is to smooth out the 

variability of surface water flow through control and regulation and make water 

available in case of necessity.  

Reservoir is one of the major storage zones of water and forms a crucial part of water 

resources management. Water resource systems should be designed and operated for 

the most effective and efficient achievement of overall objectives.  

One of the most important uses of reservoirs is to produce electricity. In this case a 

hydroelectric power plant is provided near the reservoir. The quantity of energy 

produced by a hydropower plant depends both on the flow through the turbines and 

the water head. The water head is the difference between upstream water elevation 

and tailwater elevation, which are the reservoir levels respectively in front of the 

intake and at the exit of the draft tube. 

Several objectives have been considered in the optimization models of water 

resources systems in the previous researches. Those objectives were set down in the 

state of the art review of Ralph and Wurbs (1993) as follows: 

- Economic benefits and costs 

 maximize water supply and/or hydroelectric power revenues 

 minimize the cost of meeting electric-power commitments 
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 minimize economic losses due to water shortages 

 minimize the cost of pumping water in a distribution system 

 minimize the damage associated with a specified flood event 

 maximize net benefits of multi-purpose operations 

- Water availability and reliability 

 maximize firm yield, yields for specified reliabilities, or reliabilities 

for specified demands 

 minimize shortage frequencies and/or volumes 

 minimize shortage indices, such as the sum of the squared 

deviations between target and actual diversions 

 maximize the minimum streamflow 

 maximize reservoir storage at the end of the optimization horizon 

 minimize spills or evaporation losses 

 minimize average monthly storage fluctuations 

 maximize the length of the navigation season 

- Hydroelectric power generation 

 maximize firm energy 

 maximize average annual energy 

 minimize energy shortages or energy shortage indices 

 maximize the potential energy of water stored in the system 

As can be inferred from the above listed objectives, there is a broad range of benefits 

to be accomplished from the water resources systems.  

One of the most important benefits of the water resources systems is the generation 

of hydroelectric power. The objective function employed in this study is the 

maximization of the energy to be produced by the system.  

Besides, this study considers a set of reservoirs as a system rather than individually. 

Dealing with the set of reservoirs jointly, the main purpose was to obtain a greater 

benefit than that is obtained dealing with this set of reservoirs individually. 
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Figure 1.1 indicates the model of a single reservoir operation optimization problem. 

Sn, In and Rn are defined as the storage, inflow and release variables at the nth stage, 

respectively, where the stage parameter n implies the time duration from the first 

stage to the nth stage. 

 

 
 

Figure 1.1 Illustration of a single reservoir model 

 

Controlled inflows into a reservoir include all releases from adjacent upstream 

reservoirs on the same river or its tributaries. Uncontrolled or natural inflows include 

all other inflows from surface runoffs, streams and undammed rivers. Water may 

flow out of a reservoir through various outlets such as derivations (to draw water for 

irrigation or other consumption), spillways (for flood protection) and penstocks (to 

produce electricity). Also, there may be water losses due to evaporation and seepage 

into the ground.  

Water is a storable commodity, so there is a continuous process of deciding whether 

to release it now, or to store it and release it at a later time, where the time frame for 

these decisions can range from minutes to months. 
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Reservoir operation rule is defined as a function of values of the state vector which 

quantifies the amount of reservoir release for each time increment considered. 

Generally speaking, the optimization problem takes the following form 

Objective Function: 

Maximization of the Energy to be produced 

Constraints: 

- Continuity equation be satisfied, 

- Storage be within the upper and lower bounds, 

- Releases be within the upper and lower bounds, 

- Final end storages be satisfied. 

1.3 Research Objectives 

The main objectives of the research are: 

- Comprehensive examination of genetic algorithm, its mechanism, applications,  

- Construction of a computer code for the optimization of a multi-reservoir system 

management by making use of genetic algorithm, 

- Verification of the built code by implementing the code to a previously solved 

well-known model, 

- Real case study; implementing the code developed to a real case, a multi-

reservoir system under operation, 

- Creating a real time approach using Genetic Algorithm for the optimization of 

operation policy of multi-reservoir systems.  

1.4 Research Plan 

The initial phase of the research comprised a thorough search and study with regards 

to the past researches in the fields of water resources systems, optimization of those 

systems and genetic algorithm and its applications.  
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Afterwards, the multi-reservoir system optimization problem formulated as a 

mathematical model incorporating the decision variables, objective function and the 

constraints. Following the extensive study on genetic algorithm and its applications 

in optimization problems, genetic algorithm aiming to optimize the mathematical 

problem under consideration has been constructed and configured including all the 

necessary operators, the conditional statements in order to meet the constraints and 

most importantly to find out the optimum solution remaining in strict compliance 

with the objective function specified. Then, the computer code in which the above 

mentioned stages are all embedded and employed, has been developed in Fortran 

Language. Pursuing configuration of the code, a verification process has been 

administered by making use of the four reservoir problem having a known global 

optimum solution which has already been adopted as a reference problem in past 

researches focusing on optimal reservoir system operation. A sensitivity analysis has 

been applied to the optimization problem in order to evaluate the effects of the 

variables employed in the genetic algorithm optimization technique proposed.  

A real case study followed this verification stage. A multi-reservoir system in the 

United States has been picked out as a real case. The data pertaining to the multi-

reservoir system have been acquired, a real-time optimization has been applied and 

the real case study has been performed onto this system.  

1.5 Outline of the Thesis 

The literature review has been carried out with regards to the previous researches 

concerning the water resources systems management; optimization and genetic 

algorithm topics have been studied and compiled in Chapter 2, Literature Review.  

Problem definition of multi-reservoir operation in water resources systems has 

thoroughly been investigated and an introductory chapter including the definition of 

the problem considered in this research has been given in Chapter 3, Problem 

Definition. 
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Genetic algorithms which constitute a vital component in this study has been 

examined in detail and presented circumstantially, the coding mechanism, constraint 

handling mechanism, fitness function, selection mechanism, selection operators, 

crossover mechanism and mutation mechanism have all been presented in detail in 

Chapter 4, Genetic Algorithm. 

Chapter 5 includes the construction and verification of computer code developed in 

the aim of performing the optimization of multi-reservoirs in water resources 

systems. The algorithm and steps of the code which is intended to be applicable in 

general rather than being peculiar to a particular problem have also been mentioned. 

The four reservoir problem of Heidari et al. (1971), having a known global optimum 

has been examined and the performance of the computer code constructed has been 

tested with this example. Furthermore, the results obtained by making use of the 

computer code constructed have been compared to the known global optimum.  

Moreover, a sensitivity analysis has been performed to see the influence of the 

genetic algorithm parameters of the problem on the optimum solution. 

Chapter 6 gives a real time approach for determination of optimal reservoir release 

policy by Genetic Algorithm, which is proposed originally in this research. Colorado 

River Storage Project, a three-reservoir system, all of which is under operation for 

the purpose of producing hydroelectric energy has been optimized by making use of 

the data attained. The results achieved after optimization of the multi-reservoir 

system in the CRSP are examined and presented. 

This last chapter, Chapter 7, incorporating summary, conclusion and 

recommendations is followed by “References” and “Appendices”. 
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CHAPTER 2 
 
 

2. LITERATURE REVIEW 
 
 
 
This chapter presents a literature survey focused on genetic algorithms and 

optimization in water resources problems. 

Several approaches have been developed for optimization of reservoir operations, 

defining reservoir operating rules and many different techniques have been studied 

with regards to this optimization problem. Numerous optimization models have been 

proposed and reviewed by many scientists.  

Historical background of reservoir operation optimization techniques has been given 

below. 

For a long period, dynamic programming (Bellman, 1957), has a powerful approach 

in the optimization of reservoir operation. The prime advantage of dynamic 

programming is its ability to deal with complex objective functions without 

difficulty. Furthermore, constraints in the optimization problem can easily be 

embedded into dynamic programming. Young (1967) developed optimal operating 

rules for a single reservoir using dynamic programming. Larson (1968) proposed a 

study embracing a four-reservoir problem by making use of incremental dynamic 

programming. He also studied dynamic programming successive approximation 

technique in the optimization of reservoir systems, then Trott and Yeh (1973) used 

the successive approximation technique together with incremental dynamic 

programming. Hall et al. (1969), using a different form of incremental dynamic 

programming, studied a two-reservoir system. Heidari et al. (1971) developed a 

model, setting off from the proposal of incremental dynamic programming, which is 

called discrete differential dynamic programming. A procedure incorporating a 
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combination of both linear programming and dynamic programming optimization of 

a multiple reservoir system has been put forth by Becker and Yeh (1974). Procedure 

suggested by Becker and Yeh (1974) has also been used by Takeuchi and Moreau 

(1974), Yeh et al. (1979), Yeh and Becker (1982), and Marino and Mohammadi 

(1983). Howson and Sancho (1975) generated a progressive optimality algorithm for 

optimization of reservoir operation policies. Loucks and Dorfman (1975) showed 

that chance constrained models on reservoir planning and operation are overly 

conservative and generate operational rules that exceed the prescribed reliability 

levels. Murray and Yakowitz (1979) have developed an effective technique, 

differential dynamic programming, for optimization of multi-reservoir systems, 

without any requirement for discretization state and decision variables. Extensive 

review of dynamic programming applications to reservoir systems is available in the 

studies of Yakowitz (1982) and Yeh (1985). Braga et al. (1991) applied a stochastic 

approach to the multi-reservoir system of the Companhia Energetica de Sao Paulo, 

Brazil, but attempted to account for spatial correlation of inflows. Ko et al. (1992) 

compared epsilon-constraint method and weighting method for multi-objective 

evaluation of the Han River Reservoir system in Korea. Karamouz et al. (1992) 

applied discrete dynamic programming to a multiple site reservoir system in the 

Gunpowder River Basin near Baltimore. Wurbs (1993) describes several 

computational models that can be used in the analysis of water resource systems. 

Crawley and Dandy (1993) applied separable programming to the multi-reservoir 

Metropolitan Adelaide water supply system in Australia. A stochastic dynamic 

programming approach is proposed by Archibald et al. (1997) whereby a sequence of 

three-dimensional stochastic dynamic programming problems are solved, with states 

representing the current reservoir, aggregate states of upstream reservoirs, and an 

approximation of the downstream reservoir. Ahmed and Lansey (2001) proposed a 

method based on the parameter iteration method of Gal (1979) involving quadratic 

approximation of future benefits and parameterization of operating policies for 

hydropower systems. Labadie (2004) performed an extensive compilation on the 

optimal operation of multi-reservoir models. Liu et al. (2006) proposed and used the 

dynamic programming neural-network simplex (DPNS) model in order to derive 

refill operating rules in reservoir planning and management.  
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Genetic algorithm was firstly developed by Holland, J. (1975) over the course of the 

1960s and 1970s and finally popularized by one of his students, David Goldberg, 

who was able to solve a difficult problem involving the control of gas pipeline 

transmission for his dissertation (Goldberg, 1989). Holland was the first to try to 

develop a theoretical basis for genetic algorithms through his schema theorem. The 

work of De Jong (1975) showed the usefulness of the genetic algorithm for function 

optimization and made the first concerted effort to find optimized genetic algorithm 

parameters. 

Genetic algorithm applications in diversified fields of science are mentioned below. 

Goldberg and Kuo (1987) developed a study for pipeline optimization by making use 

of genetic algorithms. Pioneers of genetic algorithm, Goldberg (1989) and 

Michalewicz (1992) presented satisfying introductions and several papers give 

general overviews of genetic algorithm. Genetic algorithm has been applied to many 

real life optimization problems by several researchers. Wang (1991) applied a 

genetic algorithm to the calibration of a conceptual rainfall-runoff model. Murphy et 

al. (1993) developed a methodology for optimizing a water supply network using 

genetic algorithm, having an objective of finding the combination of pipe sizes 

minimizing the cost of the system. Ritzel et al. (1994) solved a multi-objective 

ground-water pollution problem using a genetic algorithm, considering reliability and 

cost of a hydraulic containment system. McKinney and Lin (1994) also solved a 

ground-water management model by incorporating groundwater simulation models 

into a genetic algorithm. Simpson et al. (1994) studied pipe network optimization 

comparing nonlinear programming and genetic algorithm. Cieniawski et al. (1995) 

studied the multi-objective optimal location of a network of ground-water monitoring 

wells under conditions of uncertainty by benefiting from genetic algorithm. Davidson 

and Goulter (1995) used genetic algorithms to optimize the layout of rectilinear 

branched distribution (natural gas/water) systems. A study similar to that of Wang 

(1991), for the automatic calibration of conceptual rainfall-runoff models, has been 
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reported by Francini (1996), who made use of a genetic algorithm combined with a 

local search method; sequential quadratic programming. Genetic algorithm has been 

developed by Dandy et al. (1996) for cost optimization of pipenetworks. Soh and 

Yang (1996) used genetic algorithms in combination with fuzzy logic for structural 

shape optimization problems. Feng et al. (1997) applied genetic algorithm to the 

problem of cost-time trade-offs in construction projects. Halhal et al. (1997) applied 

genetic algorithm to a network rehabilitation problem having multiple objectives. A 

methodology based on genetic algorithms has been developed by Li and Love (1998) 

for optimizing the layout of construction site level facilities. Wang and Zheng (2002) 

studied on  job shop scheduling with a modified genetic algorithm. Wei et al. (2005) 

employed genetic algorithm in their research aiming optimization of truss size and 

shaping with frequency constraints.  

Genetic algorithms have many applications in reservoir systems optimization. 

Researches concerning the application of genetic algorithm in optimization of 

reservoir operation are summarized below. 

Esat and Hall (1994) applied a genetic algorithm to the four-reservoir problem. The 

objective of this problem was to maximize the benefits from power generation and 

irrigation water supply, having constraints on both storages and releases from the 

reservoirs. The study of Esat and Hall indicated that genetic algorithms constitute a 

significant potential in reservoir operation, and their study clearly put forward the 

fact that genetic algorithms have superiorities over standard dynamic programming 

techniques in many aspects. Fahmy et al. (1994) applied genetic algorithm to a 

reservoir system, and compared performance of the genetic algorithm approach with 

that of dynamic programming. Raman and Chandramouli (1996) used an artificial 

neural network for inferring optimal release rules conditioned on initial storage, 

inflows, and demands. Results of a deterministic DP model for the Aliyar reservoir in 

Tamil Nadu, India for 20 years of bimonthly data serve as a training set for the 

artificial neural network. The training of an artificial neural network is an 

optimization process, usually by a gradient-type back propagation procedure, which 

determines the values of the weights on all interconnections that best explain the 
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input-output relationship. Oliveira and Loucks (1997) used a genetic algorithm to 

evaluate operating rules for multireservoir systems and indicated that optimum 

reservoir operating policies can be determined by means of genetic algorithms. Cai et 

al. (2001) describe an application of genetic algorithms to solving large-scale 

nonlinear reservoir operation problems over multiple periods. In this study, the 

genetic algorithm only optimizes over a limited number of complicating or coupling 

variables such that when fixed, allow decomposition of the original problem into 

many small linear programming problems. Chandramouli and Raman (2001) 

extended the study of Raman and Chandramouli (1996), developing operating rules 

for multireservoir systems. Sharif and Wardlaw (2000) presented a real case study in 

Brantas Basin in Indonesia for the optimization of the system using genetic 

algorithm. Ahmed and Sarma (2005) presented a genetic algorithm model for finding 

the optimal operating policy of a multi-purpose reservoir, located on the river 

Pagladia, a major tributary of the river Brahmaputra.  

 



 14

 

CHAPTER 3 
 
 

3. PROBLEM DEFINITION 
 
 
 
This chapter covers definition of the problem of this study intending to determine the 

optimal operating policy for multi-reservoir systems. 

The purpose of optimal operating policy is to specify how water is managed 

throughout the system. Optimal operating policy serves to reach maximum benefit 

from the system satisfying the flow requirements and system demands. In this study, 

benefit is considered to be the energy gained throughout the system. Operating policy 

shows variation from time to time. Operating policy is composed of decision 

variables which are the releases from each reservoir location at each time interval. 

Optimization aims to find out optimum combination of releases which will lead to 

generate maximum energy throughout the system. There are upper and lower 

boundaries for releases and storages. Besides, the storages at the end of periods 

considered are to be equal to or above the target ending minimum storages. These 

limitations form the constraints of the problem. Another constraint of the problem is 

that continuity equation is to be satisfied throughout the whole system. This is 

realized by computing storages utilizing continuity equation; hence it is satisfied as a 

matter of fact. 

Generally expressing the optimization function: 

The objective, Maximization of Total Energy Produced 

Which is subject to:  

Continuity equation is satisfied, which is: 
n
t

n
t

n
t

n
t RISS −+=+1  3.1 

where n
tS , n

tI  and n
tR  are the storage, inflow and releases for the nth reservoir at the 

tth time step.  
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Storages will be below maximum and above minimum storages, which is: 

max,1,min, itii SSS ≤≤ +     for t = 1,…,T     3.2 

Releases will be equal to or below maximum and equal to or above minimum 

releases, which is: 

max,,min, itii RRR ≤≤    for t=1,…,T 3.3 

Ending storage will be equal to or above the target ending minimum storages, which 

is: 

TiTi dS ,, ≥  3.4 

where n
Tid ,  is the target ending minimum storage for the ith reservoir at the Tth time 

step and T is the ending time for the problem under consideration. 

Continuity equation is readily satisfied since the storages are computed by making 

use of continuity equation given in Equation 3.1.  

Releases are the decision variables in the problem. Decision variables exist in the 

composition of the individuals of the population in Genetic Algorithm. Constraints of 

releases are identified during generation of initial population and as a matter of fact 

they are satisfied. Generation of initial population is mentioned thoroughly in “5.2 

Generation of Initial Population”.  

Other constraints are embedded into the objective function as a penalty function. 

Thus, constrained optimization problem takes the form of an unconstrained 

optimization problem. The purpose lying beneath the fact that constraint problem is 

transformed into an unconstrained problem is to be able to handle the problem by 

means of Genetic Algorithm.  

Objective function incorporating the terms penalizing the constraint violations takes 

the following form: 

( )∑∑
= =

J

i

N

t
tiEnergy

1 1
,  3.5 
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If max, SS ti > , then the penalty term  

( )[ ]∑∑
= =

−
J

i

N

t
tii SSc

1 0

2
,max,1  is introduced into Equation 3.5 

If min, SS ti < , then the penalty term  

( )[ ]∑∑
= =

−
J

i

N

t
tii SSc

1 0

2
,min,2  is introduced into Equation 3.5 

If TTi dS <, ,then the penalty term  

( )[ ]∑
=

−
J

i
TiTi Sdc

1

2
,,3  is introduced into Equation 3.5 

where the deviations from maximum, minimum storages and target ending minimum 

storages are penalized by square of deviation from constraints. c1, c2 and c3 are 

constants. Those constants act as a tuner of the weight of the penalty term in order 

for them to be in the order of the benefit terms. 

The optimization problem, the objective function and constraints of which are given 

above are adapted into the genetic algorithm. Genetic algorithm will thoroughly be 

mentioned in the following chapter. 
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CHAPTER 4 
 
 

4. GENETIC ALGORITHMS 
 
 
 
Chapter 4 gives an overview of genetic algorithms, its working mechanism and 

components; i.e. coding, constraint handling, fitness, genetic operators; i.e. selection, 

crossover and mutation. 

Genetic algorithm is a search algorithm based on mechanics of natural selection and 

natural genetics (Goldberg, 1989). Concisely stated, a genetic algorithm is a 

programming technique that mimics biological evolution as a problem-solving 

strategy. Genetic algorithms represent a popular approach to optimization, especially 

as it relates to the global optimization problem of finding the best solution among 

multiple local optima. As the name implies, genetic algorithm is based on principles 

of natural evolution and survival of the fittest. In genetic algorithms, a population of 

candidate solutions to the problem is employed. Genetic algorithms simultaneously 

consider multiple candidate solutions to the problem and proceed by moving this 

population of solutions toward a global optimum. In a genetic algorithm, an initial 

population is generated randomly and this population is exposed to genetic operators. 

By means of those operators, population evolves and optimum solution is achieved.  

Most of the early work in the field came from those in the fields of computer science 

and artificial intelligence. More recently, interest has extended to essentially all 

branches of business, engineering, and science where search and optimization are of 

interest. The widespread interest in genetic algorithms appears to be due to the 

success in solving many difficult optimization problems.  

Genetic algorithm has a main generational process cycle. This cycle is driven mainly 

by generation number. Within this cycle, an initial population is created; each 
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individual is coded so as to be represented numerically; then each individual of 

population is assigned a fitness value. Fitness value is a parameter with respect to 

which each individual is evaluated whether or not to live in subsequent generations. 

Evaluation and selection of individual which will be awarded to live in subsequent 

generations are handled by means of genetic operators, selection, crossover and 

mutation.  

Genetic algorithm begins, like other optimization algorithms, by defining decision 

variables and objective function. It ends like other optimization algorithms too, by 

testing for convergence. Nevertheless, it is quite different than the others with 

regards to the steps taking place in the process. 

Because of the nature of the algorithm, a special terminology is used in genetic 

algorithms. Genetic algorithms start by generation of an initial population which is 

constituted by individuals called chromosomes (or also referred to as string). In other 

words, genetic algorithm begins by defining a chromosome or an array of variable 

values to be optimized. These variables are called the decision variables which has 

an active role in calculation of objective function value.  

Population size depends on the nature of the problem, but typically contains several 

hundreds or thousands of possible solutions. Traditionally, the population is 

generated randomly, covering the entire range of possible solutions (the search 

space). Given upper and lower bounds for each chromosome, they are created 

randomly so as to remain within its upper and lower constraints. The principle is to 

maintain a population of chromosomes, which represent candidate solutions to the 

problem that evolves over time through a process of competition and controlled 

variation. Each chromosome in the population has an assigned fitness to determine 

which chromosomes are used to form new ones in the competition process which is 

called selection. The new ones are created using genetic operators such as crossover 

and mutation.  
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This algorithm is repeated sequentially until stopping criterion is achieved. The 

stopping criterion of a genetic algorithm is governed either by number of generations 

or the rate of change in the objective function value. Fitness values are expected to 

improve indicating creation of better individuals in new generations. 

It is expected that most of the fitness values of the later generations will be improved 

after a number of iterations from the earlier generations.  

The reason for a great part of success of genetic algorithm is its ability to exploit the 

information accumulated about an initially unknown search space in order to perform 

subsequent searches into useful subspaces. This constitutes a key feature, especially 

in large, complex, and poorly understood search spaces, where classical search tools 

are inappropriate. 

A general flowchart of a genetic algorithm indicating the processes within the 

algorithm is given in Figure 4.1. 
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Figure 4.1 Flowchart of a Genetic Algorithm 
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4.1 Coding 

Physical parameters in the problem space constituting the phenotypes are encoded 

into genotypes, thus into the genetic algorithm space. Genotype of an individual is 

the chromosome and the potential solution to a problem corresponding to a string is 

the phenotype. In genetic algorithm space, genetic operators are applied onto the 

individuals to generate better solutions until the optimum one. Then the individual 

representing the optimum solution is decoded to phenotypes and transferred into the 

problem space. The transferred phenotype yields the optimal solution. The decision 

variables, or phenotypes, in the genetic algorithm are obtained by applying some 

mapping from the chromosome representation into the decision variable space. 

Coding in genetic algorithm is the form in which chromosomes and genes are 

expressed. Coding, mapping from phenotypes to genotypes, is performed in a 

number of ways such as binary coding, gray coding, e-coding and real coding. 

However, most common coding mechanisms are binary and real coding. In binary 

coding the chromosomes are expressed as binary strings.   

The most commonly used representation of chromosomes in the genetic algorithm is 

that of the single-level binary string by making use of 0’s and 1’s. In this coding, 

each decision variable in the parameter set is encoded as a binary string and these are 

concatenated to form a chromosome. Therefore, the search space of the problem is 

mapped into a space of binary strings through a coder mapping. Then, after 

implementation of the genetic operators, a decoder mapping is applied to bring them 

back to their real form in order to compute their fitness function values.  

The use of real-valued genes in genetic algorithms is claimed by Wright (1991), to 

offer a number of advantages in numerical function optimization over binary coding. 

Efficiency of the genetic algorithm is increased as genotype into phenotype 

conversion is not required; less memory is required as efficient floating-point internal 

computer representations can be used directly; there is no loss in precision due to 

formation of discreteness to binary or other values; and there is greater freedom to 
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use different genetic operators. Nonetheless, the real coding is more applicable and it 

seems that it fits the continuous optimization problems better than the binary coding.  

In real coded genetic algorithms, each individual is coded as a vector of floating 

point numbers (real numbers) having the same length as that of the solution vector.  

Real-coded genetic algorithms handle even slight changes since real numbers 

represent the individuals and they are capable of local tuning the solutions. 

Using real coding the representation of the solutions is very close to the natural 

formulation of many problems, e.g., there are no differences between the genotype 

(coding) and the phenotype (search space). Therefore, the coding and decoding 

processes that are needed in the Binary Coded Genetic Algorithms are not required; 

this increases the speed of process and expressiveness level reached becomes very 

high. 

Real coding allows the domain knowledge to be easily integrated into the Real 

Coded Genetic Algorithms. Goldberg (1991) and Eshelman and Schaffer (1993) 

leave to the user the decision for choosing one of these coding mechanisms, 

suggesting that each one of them has suitable properties for different types of fitness 

functions. On the other hand, other authors such as Michalewicz (1992) defend the 

use of real coding, showing their advantages with respect to the efficiency and 

precision reached as compared to the binary one. After evaluation of advantages and 

disadvantages of both coding mechanism, real coding is preferred in this research. 

4.2 Constraint Handling 

In optimization problems, a constraint is a condition which a solution to an 

optimization problem must satisfy in order to be acceptable. The set of solutions that 

satisfy all constraints is called the feasible set. They are generally classified as 

equality and inequality constraints. Constraints are embedded into the objective 

function in the form of penalty functions. In other words, a cost or a penalty with all 

constraint violations is associated with the individual and this cost is inserted into the 
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objective function evaluation. Those penalty functions have a force on the objective 

function. In case individual violates constraints, they put forth a negative impact on 

the objective function value and weaken fitness of the individual. Hence, individual 

looses power to survive in the next generation. Otherwise, if constraints are not 

violated, fitness of the individual is not affected and retains its fitness which 

determines its chance to live in the next generation. 

4.3 Fitness Function 

Every chromosome is composed of genes (or also referred to as bits) representing the 

variables which are used to determine the fitness value of the chromosome. Each and 

every chromosome has its own fitness value determined by calculating the objective 

function value for each of them. The fitness value of the chromosome is considered 

to be a grade for the evaluation of this member of the population whether or not to 

pass to the next generation. Fitness values are calculated by making use of the 

objective function; hence fitness value of a chromosome can be taken into 

consideration as the objective function value of this member. The aim in genetic 

algorithm is to end up with the best chromosome yielding the optimum objective 

function value, i.e. the best fitness value.  

Fitness function determination is an important step in the optimization process, 

especially when an “optimum” solution is based on more than one variable. The 

fitness, or objective function, is the “figure of merit” for each individual 

chromosome, and thus determines its probability of taking part in selection process. 

4.4 Selection 

Selection is the survival of the fittest within the genetic algorithm. The key notion in 

selection is to give higher priority of preference to better individuals. During each 

generation, a proportion of the existing population is selected to breed a new 

generation. This operator is an artificial version of natural selection, a Darwinian 

survival of the fittest among string creatures.  In natural populations fitness is 
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determined by a creature's ability to survive predators, pestilence and other obstacles 

to adulthood and subsequent reproduction.  In the artificial setting of a genetic 

algorithm, the objective function is the final arbiter of the string-creature's life or 

death. 

In the stage of application of selection operator, the chromosomes that will be 

awarded to live in the subsequent generation are determined. Those chromosomes 

selected to live in the subsequent generation form the mating pool from which the 

parents of the new generation undergoes the process of crossover. Two chromosomes 

are selected from the mating pool of chromosomes to produce two new offspring.  

Chromosomes having sufficient fitness values to be the candidates for becoming the 

parents of the new population, the children of who will live in the next generation are 

transferred into the next generation. The remaining ones are considered to be dead 

and excluded from the population. This operation is repeated in the subsequent 

iterations so that the good ones shall survive to reach the best solutions at the end of 

generations.  In the application of the selection operator, the idea of natural selection 

is imposed. Selection probability is derived by making use of the ratio of the fitness 

of the individual to that of the total population.  

A selection operator combines the relative fitness of the chromosomes of the 

population with some randomness in order to determine parents of the offspring 

generation. There are different techniques which a genetic algorithm can use to select 

the individuals to be copied over into the next generation.  

One of the techniques used as a selection operator is the “Roulette Wheel Selection” 

operator. In this technique, for each and every chromosome, the ratio of the fitness 

value of the chromosome to the total of the fitness values of the chromosome of the 

whole population is calculated and this parameter computed for each chromosome is 

considered for this member of the population as the probability of survival into the 

next generation. As explained by Ansari and Hou (1999), this approach enables 

chromosomes with higher fitness values to have a greater probability of survival. In 
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addition, the number of chromosomes in a population is kept constant for each 

generation and hence the selection operator will generate a new population of the 

same size. This implies that chromosomes with higher fitness values will eventually 

dominate the population (Ansari and Hou, 1999). 

The basic implementation of a roulette wheel selection operator assigns each 

chromosome a “slice” of the wheel, with the size of the slice proportional to the 

fitness value of the chromosome. In other words, the fitter a member is the bigger the 

slice of the wheel it gets. To select a chromosome for selection, the roulette wheel is 

“spun,” and the chromosome corresponding to the slice at the point where the wheel 

stops on is grabbed as the one to survive in the offspring generation. 

The algorithm of roulette selection may be generalized in steps as follows: 

1. Fitness of each individual, fi, in a population size of N and sum of them are 

calculated. 

2. A real random number, ran( ), within the range [0,1] is generated and s is set 

to be equal to the multiplication of this random number by the sum of the 

fitness values, s=ran ( ) x fsum 

3. Minimal k is determined such that sf
k

i
i ≥∑

=1

, and the kth individual is selected 

in the next generation, t+1 

4. Steps 2 and 3 are repeated until the number of selected individuals becomes 

equal to the population size, N. 

Considering the recommendations and comparisons of the past researches and 

articles investigating the selection methods, roulette wheel selection method is 

preferred in this study. 

Selection techniques other than Roulette Wheel Selection technique is given in 

“Appendix A: Overview of Selection Techniques in Genetic Algorithms”. 
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4.5 Crossover 

Next genetic operator to be applied to the generation is the crossover operator.  

Crossover operator is a method for sharing information between chromosomes.  

If genetic algorithms were to do nothing but selection, the trajectory of populations 

could contain nothing but changing proportions of the chromosomes in the original 

population. To do something more sensible, the algorithm needs to explore different 

structures. A primary exploration operator used in many genetic algorithms is 

crossover. Without crossover, each individual solution is on its own, exploring the 

search space in its immediate vicinity without reference to what other individuals 

may have discovered. However, with crossover in place, there is a transfer of 

information between successful candidates - individuals can benefit from what others 

have learned, and schemata can be mixed and combined, with the potential to 

produce an offspring that has the strengths of both its parents and the weaknesses of 

neither. 

Selected parents reproduce the offspring by performing a crossover operation on the 

chromosomes. It has always been regarded as the main search operator in genetic 

algorithms because it exploits the available information in previous samples to 

influence future searches. In nature, crossover implies two parents exchange parts of 

their corresponding chromosomes. Since more fit individuals have a higher 

probability of producing offspring than less fit ones, the new population will possess 

on the average an improved fitness. This is why the most real coded research has 

been focused on developing effective real-parameter crossover operators, and as a 

result, many different possibilities have been proposed.  

The performance of real coded genetic algorithms on a particular problem will be 

strongly determined by the degrees of exploration and exploitation associated to the 

crossover operator being applied.  
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When two genes [ ]iiii bacc ,, 21 ∈  which are to be combined with { }21 ,min iii cc=α  and 

{ }21,max iii cc=β  are considered, the action interval [ ]ii ba ,  of these genes may be 

divided into three intervals as shown in Figure 4.2. These intervals bind three regions 

to which the resultant genes of some combination of the former may belong. In 

addition, considering a region [ ]'' , iİ βα  so that ii αα ≤'  and ii ββ ≥'  would seem 

reasonable. 

 

 

Figure 4.2 Action interval for [ ]iiii bacc ,, 21 ∈  

 

Exploration and/or exploitation degrees may be assigned to any crossover operator 

for real coded genetic algorithms depending on the way in which these intervals are 

considered to generate genes. 

4.5.1 Crossover Operators for Real Coding 

Assuming that ( )11
11 ,....., nccC =  and ( )22

12 ,....., nccC =  are two chromosomes that have 

been selected to apply the crossover operator to them, below is described the 

operation of the crossover operators for Real Coded Genetic Algorithms considered 

and their effects are shown in graphical form. 

4.5.1.1 Random crossover  

Two offspring are created, 



 28

( )k
n

k
i

k
k hhhH .....,,.....,1= , k=1,2 4.1 

The value of each gene in the offspring is determined by the random uniform choice 

of the values of this gene in the parents: 
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i
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u being a random number which can have a value of zero or one (Syswerda, 1989). 

4.5.1.2 Arithmetic crossover  

Two offspring are produced, 

( )k
n

k
i

k
k hhhH .....,,.....,1=  k=1,2 4.3 

( ) 211 1 iii cch ⋅−+⋅= λλ  4.4 

( ) 122 1 iii cch ⋅−+⋅= λλ  4.5 

Where [ ]1,0∈λ  

Below is shown the region for arithmetical crossover in Figure 4.3 (Michalewicz, 

1996). 

 
 

Fig 4.3 Arithmetical crossover with different values for [ ]1,0∈λ  

 

4.5.1.3 BLX-α Crossover 

Two offspring are generated. 

( )k
n

k
i

k
k hhhH .....,,.....,1=  k=1,2 4.6 

where k
ih  is a randomly (uniformly) chosen number from the interval 

[ ]αα ICIC +− maxmin , ,  4.7 

where { }21
max ,max ii ccC = , { }21

min ,min ii ccC =  and minmax CCI −=  
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Generally, BLX-α crossover allows the best final results to be obtained. It may be 

observed that the higher the α is, the better the results are. As α grows, the 

exploration level is higher, since the relaxed exploitation zones spread over 

exploration zones, increasing the diversity levels in the population. This allows good 

zones to be reached. Considering the final results for α = 0.5, it seems natural that 

under this case an efficient exploration and exploitation relationship was induced 

(Eshelman, 1993). 

Other crossover techniques for real coding is given in “APPENDIX B: Overview of 

Crossover Techniques in Genetic Algorithms”. 

4.6 Mutation 

One further operator in genetic algorithm is the mutation operator which does play a 

role of local random search within the framework of the generational process cycle.   

Mutation is an insurance policy against lost genes. Mutation in genetic algorithms 

serves as an operator to reintroduce “lost genes” into the population. It works on the 

level of chromosome genes by randomly altering a gene value. The operation is 

designed to prevent genetic algorithm from premature termination. 

Mutation is a random process where once the genes are replaced by another to 

produce a new genetic structure. In genetic algorithms, mutation is randomly applied 

with low probability and modifies elements in the chromosomes. Usually considered 

as a background operator, the role of mutation is often seen as providing a guarantee 

that the probability of searching any given chromosome will never be zero and acting 

as a safety net to  recover good genetic material that may be lost through the action 

of selection and crossover. 
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CHAPTER 5 
 
 

5. CONSTRUCTION AND VERIFICATION OF CODE 
 
 
 
This chapter discusses the steps pursued in the construction of the optimization code 

intending to optimize the multi-reservoir systems by Genetic Algorithm and its 

verification. 

5.1 Random Number Generation 

Random numbers are essential in genetic algorithm as in simulation of majority of 

numerical computations. There are two important statistical properties for a sequence 

of random numbers, which are uniformity and independence. In other words, each 

random number generated is an independent sample drawn from a continuous 

uniform distribution between 0 and 1. Since random number generation shall be 

imported in the algorithm, necessary criteria are to be maintained.  

There are numerous techniques for generating random numbers. The most widely 

used technique is linear congruential method, first introduced by Lehmer (1951), 

containing a recursive formula (based on linear recurrences) of the following form in 

its bodily constitution: 

in = MODm(ain_1 + c) 5.1 

where MODm(k) is the module operation which returns the remainder after k is 

divided by m. It can generate up to m random numbers with the right choice of 

constants a and c. The larger m, the better it is but unfortunately there is a limit on 

the maximum one-word integer; 32 bit computers typically allow integers up to w = 

231
 (one bit for the sign in Fortran) or w = 232

 (in C and Pascal). Numerical research 

by Park and Miller (1988) has identified a theoretical "best" set of parameters. For 
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the linear congruential algorithm to be effective, a and m can take only a very few 

values, with m most certainly being prime. Park and Miller (1988) identified the 

parameter values a = 16807, m = 2147483647, c = 0 as producing random values for 

32-bit integers.  

In order to get a different sequence each time, the seed of the random number 

function is initialized with the sum of the current hour, minute, and second. 

5.2 Generation of Initial Population 

Operating rules prescribe how water is to be released or stored during the subsequent 

month based on current state of the system.  

A chromosome (individual) representing all reservoirs in all time steps has been 

constructed having the following form: 

[Nvar] = [R1(1), R2(1), …,RJ(1);…;R1(n), R2(n), …, RJ(n);…….;R1(N), R2(N), …, 

RJ(N)]   5.2 

where J is the number of reservoirs in the system considered, n is an index specifying 

a time period, N is the total number of time periods into which the time horizon is 

divided. [Nvar] is the set of genes forming a chromosome of the population. Each 

chromosome contains J x N genes. Each gene within chromosome represents release 

made from a reservoir at a specific time period and can take up any value between 

the upper and lower bounds of releases. Nvar is the total number of genes in a 

chromosome. Number of genes in a chromosome is defined by the product of 

number of reservoirs and the total number of time periods considered in the system. 

Since a reservoir has a finite capacity for water storage, reservoir releases do have an 

upper boundary and is to be a positive value. Releases are required to stay within 

upper and lower bounds on release. Since the objective function is based on reservoir 

releases in each time step, releases are the decision variables upon which the genetic 

algorithm is based. Maximum and minimum releases are known for each reservoir. 
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Hence, initial population comprising of individuals each containing release sets at 

each time period and reservoir location is created so that release values will remain 

within their known boundaries.  

With J number of reservoirs and N time steps, there are JxN different variables 

necessary to create an individual of the population in genetic algorithm. Each of 

those variables is considered to be a gene. Real coding is considered while 

constructing the chromosomes. Hence, JxN random real numbers within the upper 

and lower boundaries of the releases for each reservoir shall constitute a 

chromosome (individual) of the population.  

How genes are arranged in a chromosome is of high importance. There are two basic 

approaches.  

1) Grouping releases by time step; such that the chromosomes contained in N groups 

of J genes representing the release from each reservoir in a particular time step;  

2 ) Grouping releases by reservoir; J groups of N genes with each group containing 

the time series of releases from an individual reservoir. 

Objective is to find a gene sequence that yields the best chromosome generating the 

maximum energy. 

In order for the genetic algorithm to be initialized, Nip chromosomes are identified. 

Nip is the population size of the problem. Therefore, a matrix of Nip rows and Nvar 

columns considered. Each row of the initial population in Equation 5.3 represents a 

chromosome (individual) of the population. 

Initially, with an identified number of individuals, i.e. population size of Nip, random 

numbers are generated to form a matrix of Nip x Nvar.  
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varxNNip
Population
Initial

⎥
⎦

⎤
⎢
⎣

⎡
 = (RJ,max-RJ,min) x 

varxNNip
numbers
Random

⎥
⎦

⎤
⎢
⎣

⎡
 +  RJ,min 5.3 

where, 

RJ,max and RJ,min are the maximum and minimum values that the variable may assume 

for reservoir J, respectively. Nip is the total number of chromosomes in a population 

which is an input. 

Since real coding is preferred and real numbers are used, random number is not just 

necessarily to be either 0 or 1, but it can take up any real number between 0 and 1.  

5.3 Calculation of State Variables 

After generation of initial population which is composed of individuals containing 

releases (decision variables), calculation of storages (state variables) comes next.  

Storage for each and every gene of the individuals is computed making use of 

continuity equation (3.1) which is the equality constraint of the problem. Usage of 

Equation 3.1 in calculation of storages ensures that continuity equation is satisfied 

for every gene created. However, this does not enable the state variables (storages) 

determined by using the continuity equation be within their boundaries. The 

inequality constraints providing storages remain within their limits are satisfied by 

incorporating the related penalty terms into the objective function (see Equation 3.5)  

5.4 Calculation of Fitness Values 

Next step in the algorithm is the computation of fitness values. Fitness assigned to 

each gene has direct influence on eligibility for each chromosome to live in the next 

generation. Fitness value is the bodily constitution of objective function and the 

penalty terms originating from violation of the constraints, if exists. Constraints are 

embedded into the objective function as penalty terms in order to penalize the 

violation of the constraints related to storages. (See Equation 3.5). 
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In order to overcome negative fitness values which may cause instability in the code, 

they are assigned zero value. Negative fitness may occur when the negative influence 

of penalty functions embedded into the fitness function to account for the violation of 

the constraints exceeds the amount of benefit function which is defining the amount 

of energy generated. 

Next step is the calculation of sum of the fitness values assigned to the 

chromosomes. This sum is a parameter used during implementation of selection 

operator. 

5.5 Genetic Algorithm Operators 

In this phase, genetic algorithm operators; selection, crossover, and mutation 

operators are implemented onto the population. 

5.5.1 Selection Operator 

At this stage, mates, whose child to live in the subsequent generation are selected. 

Among the selection operators mentioned in Section 4.4, roulette wheel selection 

operator, recommended for its superiorities over the remaining ones has been used  

as the selection operator. After the fitness values and the sum of the fitness values in 

the generation are computed, roulette wheel selection, mentioned in Section 4.4 has 

been placed within the code. The higher the fitness value of an individual in the 

current population, the higher its probability of being selected as one of the mates 

whose children will live in the next generation is. Selection probability is the ratio of 

the fitness of the individuals in the population to the sum of fitness of each individual 

in the population.   

5.5.2 Crossover Operator 

After implementation of the selection operator, selected mates are subjected to 

crossover operator which provides sharing of the information between the mates 

selected and exploits the available information in the previous samples to influence 
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future searches. There are different crossover techniques. The mechanisms of those 

crossover techniques are given in Section 4.5. The computer code has been 

developed so as to enhance the comparison of the crossover techniques, arithmetic 

crossover, average crossover, random crossover and BLX-α, with different values of 

α. Parent chromosomes undergo crossover process to give birth to the child 

individuals which may have higher fitness values sharing the strong genes of the 

parent chromosomes, providing approximation to the optimum solution. Crossover 

probability has been configured as an input variable in the code. It is a governing 

value for the code to decide whether or not to put the parent chromosomes under the 

process of crossover. A random number is generated and compared with the 

crossover probability for the computer code to specify whether or not to apply the 

crossover operators. Decision to apply crossover to the selected chromosomes 

depend on whether a random number generated is greater than the probability of 

crossover or not. If it is greater, crossover operator is applied; otherwise it is not. 

5.5.3 Mutation Operator 

One further operator in genetic algorithm is the mutation operator which plays a role 

of local random search within the framework of the generational process cycle.  

Mutation is a random process where a gene of an individual is replaced by a new one 

to produce a new genetic structure. In the genetic algorithm code constructed, 

mutation is randomly applied with low probability, typically in the range 0.001 and 

0.02 to modify the genes of some individuals. Usually considered as a background 

operator, the role of mutation is often seen as a safety net to recover good genetic 

material that may be lost through implementation of selection and crossover 

operators.  

Mutation operator has been constructed so as to alter the gene randomly with 

consideration to probability of mutation. Mutation probability is configured as an 

input the code. In the event that the random number generated is greater than the 

probability of mutation, the gene is reproduced at random; otherwise it remains the 

same. 
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5.6 Verification of the Code 

In order to verify the code, the four-reservoir problem which was formulated and 

first solved by Larson (1968), and elaborated further by Heidari et al. (1971), has 

been used. The fact that this problem has a known global optimum made it eligible 

for verification.  

5.6.1 The Four Reservoir Problem, Heidari et al. (1971) 

The four-reservoir problem permits to test the performance of genetic algorithms 

against a known global optimum and to perform sensitivity analysis. There are four 

reservoirs in the system, the layout of which is shown in Figure 5.1 

 

Figure 5.1 Layout of the reservoirs for the system considered 

 

Details given by Heidari et al. (1971) with regards to the four reservoir system may 

be summarized as follows. 
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“Supplies from the system are used for hydropower generation and for irrigation. The 

objective is to maximize the energy produced from the system over 12 two-hour 

operating periods. The objective function is explicated as  

Max I = ( ) ( )( ) ( ) ( )( )∑ ∑∑
= ==

⋅+⋅
4

1

11

0
45

11

0i tt
ii tRtbtRtb  5.4 

where bi(t) is the unit return due to activity i, i=1,2, …5 during a period starting at 

stage n and lasting at stage n+1.  There are a total of five activities in the above 

criterion; four generation activities (b1(t), b2(t), b3(t), b4(t)) and one irrigation activity 

(b5(t)). The numerical values of unit returns have been given in “APPENDIX C: 

Benefit function constants proposed by Heidari et al. (1971)” 

There are inflows to the first and second reservoirs only, and these are 2 and 3 units, 

respectively, in all time periods. The initial storage in all reservoirs is 5 units. 

Constraints on reservoir storages for all times are: 

10,,0 31 ≤≤ SSS s  5.5 

150 4 ≤≤ S  5.6 

Constraints on releases for all times are as follows:  

30 1 ≤≤ R  5.7 

4,0 32 ≤≤ RR  5.8 

70 4 ≤≤ R  5.9 

Continuity equation for each reservoir over each time period, t is as follows: 
n
t

n
t

n
t

n
t RISS −+=+1  5.10 

In accordance with the layout of the four reservoir problem, continuity equation 

throughout the system may be expressed as follows: 
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Additionally, the target ending minimum storages, di’s are as follows: 

5321 === ddd  5.12 

74 =d  5.13 

and 

( )( ) ( )[ ]21240,12 iiiii dSdSg −−=  for ( ) ii dS ≤12  5.14 

( )( ) 0,12 =iii dSg  for ( ) ii dS >12  5.15 

where ( )( )iii dSg ,12  is a function that reflects a penalty to the system when the final 

state of the ith component of the system at stage N is Si(12) instead of the desired 

minimum state di. Such a penalty function is necessary to meet the requirements 

related to the target ending minimum storages. The desired state vectors of the initial 

and final stages for i=1,2,3,4 are assumed. If the constraints of storages are violated, 

the following penalty terms are embedded into the objective function. 

If max, SS ti > , then the penalty term  

( )[ ]∑∑
= =

−
R

i

T

t
tii SSc

1 0

2
,max,1  is introduced into Equation 5.4 

If min, SS ti < , then the penalty term  

( )[ ]∑∑
= =

−
R

i

T

t
tii SSc

1 0

2
,min,2  is introduced into Equation 5.4 

 

Computer code constructed for optimization of multi-reservoir systems by genetic 

algorithm has been structured as mentioned in the preceding parts of this chapter by 

using Fortran programming language.  

Since four-reservoir problem has been studied formerly and has a known global 

optimum, it is treated in the field of reservoir optimization problems as a reference 

model for verification. Hence, for the purpose of verification, code constructed has 

been applied to the model proposed by Heidari et al. (1971). Code created has been 

compiled and executed under several combinations of different input parameters of 

the problem. 
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The inputs of the computer code created for the optimization of reservoir 

management by Genetic Algorithm may be listed as follows: 

- population size 

- number of generations 

- crossover technique 

- probability of crossover 

- probability of mutation 

As can be inferred from the objective function in equation 5.4, benefit function 

constants (b’s) are used in the objective function in order to reveal the relationship 

between the energy generation and the decision variables, i.e. releases at each time 

step and each reservoir location. Those benefit constants have been studied and 

proposed by Heidari et al. (1971). For the verification of the code constructed, other 

parameters of the problem, such as initial and boundary conditions, objective 

function, system layout have all been adapted to the code as they are used by Heidari 

et al. (1971). 

5.6.2 Comparison of Results 

Adopting the four reservoir problem as an appropriate reference model for 

verification, objective function and constraints indicated in Section 5.6.1 has been 

studied and examined for testing performance of the computer code constructed for 

the optimization of multi-reservoir systems by genetic algorithm.  

For different ranges of input parameters listed above, the variation of outcomes has 

been explored.  

The computer code has been run to observe the effect of considered different 

crossover techniques, namely arithmetic crossover, average crossover, random 

crossover and BLX-α (with different values of α) techniques.  The known global 

optimum for the energy produced in the four-reservoir problem was given by 

Wardlaw and Sharif (1999) as 401.3 units of energy. Energy was given as product of 

benefit constants and release. Based on the above mentioned input parameters, the 

computer code has been run and known global optimum has been achieved. The 
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output storages and releases obtained after execution of the code fit perfectly to those 

stated for the four reservoir problem by Wardlaw and Sharif (1999). The fact that the 

target ending minimum storages are satisfied, another constraint of the four reservoir 

model examined, has also been checked and confirmed for each reservoir location. 

Besides, the results obtained after optimization by the utilization of the computer 

code revealed that the inequality constraints defined in the four reservoir system have 

been met without any violation. 

Furthermore, as expected it was confirmed that CPU time increases with increasing 

generation number and also with increasing population size.  

Sensitivity analysis has been performed to achieve the influence of the change in the 

input parameters on fitness. Sensitivity analysis is mentioned in detail in Section 5.7. 

In the light of the recommended values for input parameters; i.e. population size, 

generation number, probability of crossover, probability of mutation and the results 

of sensitivity analysis, the following set for input parameters were employed: 

Population size: 5,000 

Generation number: 5,000 

Probability of crossover=0.70 

Probability of mutation=0.02 

The variation of the fitness values obtained after test runs for different crossover 

techniques, namely, arithmetic crossover, random crossover, average crossover and 

BLX-α Crossover technique for different values of α = 0.10, 0.25 and 0.50 is shown 

in Figure 5.2. After exploration of the influence of different crossover techniques 

examined and given in Figure 5.2, it is seen that BLX-α Crossover technique exhibits 

a faster converging behavior with respect to that of the other crossover techniques. 

Fitness values determined by execution of code for different crossover techniques are 

given for generation numbers, 2000, 3000, 4000, 5000, in Table 5.1. This fact lead us 

to prefer BLX-α Crossover technique with α = 0.10.  
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Figure 5.2 Influence of Crossover Technique on Fitness 
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Table 5.1 Fitness values for different crossover techniques 
Generation number 

Crossover technique 2000 3000 4000 5000 

Arithmetic crossover 
 400,589 400,887 400,942 401,006 

Average crossover  
 400,912 401,064 401,190 401,199 

BLX-α Crossover 
(α = 0.50)  400,812 401,102 401,278 401,289 

BLX-α Crossover  
(α = 0.25)  401,014 401,188 401,282 401,299 

BLX-α Crossover  
(α = 0.10)  401,177 401,278 401,294 401,301 

Random crossover 
 399,470 400,610 400,988 401,234 

 

5.7 Sensitivity Analysis 

Sensitivity analysis is the investigation of how the variation in the output of a model 

can be apportioned, qualitatively or quantitatively, to different sources of variation. It 

is the formal technique of determining those parameters in a system that controls its 

performance. It identifies those parameters that are important as well as those that are 

unimportant. The sensitivity analysis approach of genetic algorithms parameters such 

as crossover probability, mutation probability, population size, generation number is 

discussed. The most common sensitivity analysis is sampling-based. A sampling-

based sensitivity is the one in which the model is executed repeatedly for 

combinations of values sampled from a set of different input parameters and 

establishing a relationship between inputs and outputs using the model results at the 

sample points.  

5.7.1 Sensitivity to Crossover Probability 

Firstly, sensitivity analysis has been performed with respect to the probability of 

crossover. Used input parameters were mutation probability of 0.02 and BLX-α 

Crossover technique (with α=0.10). In order to see the effect of change in crossover 

probability on proportion of maximum fitness for different sets of population size 

and generation numbers. As depicted in Figure 5.3, crossover probability seems to 
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have no significant effect on fitness for the range covered. Besides, as demonstrated 

by Figures 5.4, 5.5 and 5.6, with increasing generation number, the amplitude of 

fluctuations becomes smaller. Moreover, as generation number increases, the 

bandwidth which is formed by the change in population size, becomes narrower. 

Those variations indicate that the change in proportion of maximum fitness becomes 

insignificant with increasing generation number. 
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Figure 5.3. Effect of Crossover Probability on Fitness 
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Figure 5.4 Effect of Crossover Probability on Fitness (Generation Number=1000; 

Population Size=1000, 3000, 5000) 
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Figure 5.5 Effect of Crossover Probability on Fitness (Generation Number=3000; 

Population Size=1000, 3000, 5000) 
 
 



 45

0,98

0,985

0,99

0,995

1

0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9

Crossover Probability

P
ro

po
rti

on
 o

f M
ax

im
um

 F
itn

es
s

Pop=1000;Generation #:5000 Pop=3000;Generation #:5000 Pop=5000;Generation #:5000  
 

Figure 5.6 Effect of Crossover Probability on Fitness  (Generation Number=5000; 
Population Size=1000, 3000, 5000) 

 

5.7.2 Sensitivity to Population Size and Generation Number 

Sensitivity to population size and generation number has also been investigated. 

Input parameters used were crossover probability of 0.70, mutation probability of 

0.02 and BLX-α Crossover technique (with α=0.10). Fitness is again expressed as a 

proportion of the known optimum for the four-reservoir problem. Variation of 

proportion of maximum fitness was examined against generation number for a series 

of different population sizes. As demonstrated in Figure 5.7, the proportion of 

maximum fitness increases while the effect of population size on the proportion of 

maximum fitness becomes less appreciable.  
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Variation of Proportion of Maximum Fitness against Generation Number
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Figure 5.7 Effect of Population Size and Generation Number on Fitness 

 

5.7.3 Sensitivity to Mutation Probability 

The effect of change in mutation probability has been investigated for different sets 

of population size and generation numbers. Input parameters used were crossover 

probability of 0.70 and BLX-α Crossover technique (with α=0.10). Variation of 

proportion of maximum fitness was examined against mutation probability for a 

series of different population sizes and generation numbers. Irrespective of the 

population size and generation number, the proportion of maximum fitness decreases 

significantly for mutation probability larger than 0.06 as depicted in Figure 5.8.  For 

mutation probability between 0.02 and 0.06, effect of mutation probability on the 

proportion of maximum fitness is insignificant   
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Figure 5.8 Effect of Mutation Probability on Fitness 
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CHAPTER 6 
 
  

6. DEVELOPMENT OF REAL TIME APPROACH, APPLICATION AND 
DISCUSSION OF RESULTS 

 
 
 
This chapter explores the multi-reservoir system in the U.S., so called Colorado 

River Storage Project, including the Blue Mesa, the Morrow Point and the Crystal 

Reservoirs, establishes the mathematical model for optimization of this system by the 

optimization code developed and optimizes this model for different considerations. 

Furthermore, it proposes a real-time optimization approach by making use of the 

code generated. 

6.1 Definition of Problem in the Colorado River Storage Project (CRSP) 

The four reservoir problem utilized in many of the past researches has been studied 

thoroughly for the purpose of verification as a reference model. The objective 

function utilized in the four reservoir problem incorporates the constraints 

specifically determined for that problem solely and therefore this objective function 

can not flexibly be applied to any other reservoir. Setting off from this idea, a more 

general objective function which can be applied to other real case problems has been 

attempted to be formed.  

The objective function for determination of reservoir release policy for the 

maximization of the power generated has been configured, being subject to the 

constraints such that: 

• Continuity equation is satisfied, 

• Storages will be below maximum and above minimum storages, 

• Releases will be equal to or below maximum and equal to or above minimum 

releases, 

• Ending storage will be equal to or above the target ending minimum storage. 
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The energy generated by the hydroelectric power plant is a function of both release 

from the reservoir (discharge) and head. Derived from the elevation versus volume 

(elevation-storage curve) relationship, the power generated may be determined by 

fitting an appropriate curve onto the elevation-storage curve. There is a relationship 

between the head and storage which is determined by elevation-storage curve. 

Furthermore, storage is related to release by using continuity equation. Since releases 

are the decision variables, energy can be determined. 

Colorado River Storage Project (CRSP) was examined and realized operational data 

with regards to the Blue Mesa, the Morrow Point and the Crystal Reservoirs were 

compared to those achieved by means of the optimization code developed. General 

description of CRSP and information related to the multi-reservoir system 

comprising of aforementioned reservoirs are given in detail in “APPENDIX D: 

Colorado River Storage Project Facts”. Realized operational data pertaining to the 

time period between 2002 and 2006 together with information concerning the 

characteristics of the reservoirs considered were obtained from the US Bureau of 

Reclamation, Water Resources Group, Salt Lake City Office. 

The data included all of the constraints, operational data; inflows, releases, power 

generated, water levels in the reservoirs, current status of the dams and reservoirs. 

Objective function formulation used in the four reservoir problem considered in 

verification process has been re-structured so as to be applicable to real world water 

resources problems. Objective function formulation in the four reservoir problem 

which was formulated and first solved by Larson (1968), and developed further by 

Heidari et al. (1971) included benefit constants which are only applicable to that 

system. Benefit constants incorporated in the energy formulation is valid solely for 

that four reservoir problem. Therefore, objective function to maximize the total 

energy production in the multi-reservoir system considered is as follows:  

The objective function formulation of Barros et al. (2003) has been adopted in this 

study. 
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( )∑∑=
t i

titi Rf ,,max ξ  6.1 

where,  

ti ,ξ is the energy production function in MW.s2/m3; such that: 

( )titiitiiti HTHFH ,,,, −=Δ= εεξ  6.2 

with iε  is the specific productibility in MW.s2/m4. tiHF ,  is the reservoir upstream 

water level and tiHT ,  is the tailwater level in m.  

Energy versus titi RH ,,Δ values pertaining to the past data acquired from CRSP has 

been plotted for each reservoir examined. Slope of the line fitted to those plotted data 

reveals the specific productibility as depicted in Figures 6.1, 6.2 and 6.3, for the Blue 

Mesa, the Morrow Point and the Crystal Reservoirs, respectively. 
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Figure 6.1 Specific productibility in Blue Mesa Reservoir 
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Morrow Point Reservoir
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Figure 6.2 Specific productibility in the Morrow Point Reservoir 
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Figure 6.3 Specific productibility in the Crystal Reservoir 
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Specific productibility for the Blue Mesa, the Morrow Point and the Crystal 

Reservoirs were computed as 12,249,000, 8,449,200 and 22,671,720  in MWs2/m4, 

respectively 

Upstream water level is a function of the storage value and by means of the stage-

area-capacity curves obtained the relationship between the upstream water level and 

the storage values are determined as given below in detail. 

The variation of the storage with the upstream water level and the storage in the Blue 

Mesa Reservoir is shown in Figure 6.4. 
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Figure 6.4 Relationship between upstream water level and storage in Blue Mesa 
Reservoir 

 

The equation of the best fit curve obtained to represent the functional relationship 

between the water level, HF and the storage, S is: 

4
,1

113
,1

72
,1,1,1 1061020002.01196.09.2242 ttttt SxSxSSHF −− −+−+=  6.3 
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The variation of the storage with the upstream water level and the storage in the 

Morrow Point Reservoir is shown in Figure 6.5. 
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Figure 6.5 Relationship between upstream water level and storage in Morrow Point 
Reservoir 

 

The equation of the best fit curve obtained to represent the functional relationship 

between the water level, HF and the storage, S is: 

4
,2

73
,2

2
,2,2,2 1060002.00331.04131.22083 ttttt SxSSSHF −−+−+=  6.4 

The variation of the storage with the upstream water level and the storage in the 

Crystal Reservoir is shown in Figure 6.6. 
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Crystal Reservoir

1990

2000

2010

2020

2030

2040

2050

2060

2070

0 5 10 15 20 25 30 35 40

Storage (Mm3)

U
ps

tre
am

 W
at

er
 L

ev
el

 (m
)

 
 

Figure 6.6 Relationship between upstream water level and storage in Crystal Reservoir 

The equation of the best fit curve obtained to represent the functional relationship 

between the water level, HF and the storage, S is: 

4
,3

3
,3

2
,3,3,3 0002.00133.04146.06048.61.1999 ttttt SSSSHF −+−+=  6.5 

Tailwater depths for the Blue Mesa, the Morrow Point and the Crystal Reservoirs are 

2180, 2057 and 1990 m, respectively. 

Then, energy formulation for each reservoir location in the CRSP within a specified 

time takes the following form: 

For the Blue Mesa Reservoir; 

( ) ( )4
,1

113
,1

72
,1,1,1,1 1061020002.01196.09.625.3402 tttttt SxSxSSRE −− −+−+⋅⋅=  6.6 

For the Morrow Point Reservoir; 

( ) ( )4
,2

73
,2

2
,2,2,2,2 1060002.00331.04131.2262347 tttttt SxSSSRE −−+−+⋅⋅=  6.7 
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For the Crystal Reservoir; 

( ) ( )4
,3

3
,3

2
,3,3,3,3 0002.00133.04146.06048.61.97.6297 tttttt SSSSRE −+−+⋅⋅=  6.8 

Constraints on reservoir storages, Si (Mm3) for all times are: 

097.997991.328 1 ≤≤ S  6.9 

098.142253.119 2 ≤≤ S  6.10 

413.21429.16 3 ≤≤ S  6.11 

Constraints on releases, Ri (m3/s) for all times are as follows:  

60,,0 321 ≤≤ RRR  6.12 

Continuity equation for each reservoir over each time period, t is as follows: 

n
t

n
t

n
t

n
t RISS −+=+1  6.13 

Where n
tI  is the inflow in time period t, to reservoir n, in m3/s. 

In accordance with the layout, continuity equation throughout the system may be 

expressed as follows: 
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 6.14 

Additionally, the target ending minimum storages at the end of first year examined, 

di’s in Mm3 are as follows: 

985.7161 =d  6.15 

362.1362 =d  6.16 

870.193 =d  6.17 

Besides, the target ending minimum storages at the end of second year examined, 

di’s are as follows: 

591.7961 =d  6.18 

871.1302 =d  6.19 
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784.163 =d  6.20 

Setting the boundary and initial conditions, the objective function, penalty terms and 

henceforth the fitness function; identifying the remaining inputs of the problem in the 

light of the outcomes of the sensitivity analyses; code has been executed for different 

comparison approaches.  

Within the aforementioned considerations, the program has been run with the 

following set of values of genetic algorithm parameters which were already verified 

in the sensitivity analysis to yield convergence: 

Initial Population: 5,000 

Generation Number: 5,000 

Probability of Crossover: 0.70 

Probability of Mutation: 0.02 

Roulette Wheel Selection Operator and BLX-α (α=0.10) Crossover Technique 

6.2 Comparison Approaches  

Energy production of the CRSP has been compared to those determined by 

application of genetic algorithm with conventional approach and real-time approach.  

6.2.1 Conventional Approach 

As an initial consideration, developed optimization code has been executed taking 

into account a period of 1-year (12 months of 2005). Secondly, year 2006 was 

optimized separately by means of the developed code. Available operational data 

included twelve months in 2005 and eleven months in 2006. 

One further consideration was optimization of both of the separately explored 1-year 

periods one at a time; in other words, considering a 2-years period. The results 

obtained after optimization have been compared to those achieved in realized 

operational results. 



 57

6.2.2 Real-time Approach 

A real-time approach was attempted in the final stage for the multi-reservoir system 

considered in the CRSP. The main goal of this real-time approach was intended to 

ensure real-time optimization with respect to energy maximization of the multi-

reservoir system by making use of the developed code.  

Firstly, a period of 1 year (2005) is optimized by utilizing the code considering the 

past realized operational data. Optimized solution with respect to energy 

maximization criterion formed a template baseline, housing the historical 

background of the conditions concerning the system being examined.  

This template baseline is used for future real-time optimizations. Second year (2006) 

is optimized by using this approach. In this approach, optimization is refreshed every 

month. At the end of each month, inflow value becomes known and the realized 

inflow value is set equal to the inflow in first month of the second year (month 13). 

Release in this month is assumed to be the same as in the first month of the baseline. 

Then, continuity equation is applied to determine the storage at the end of month 13. 

Storage at the end of month 13 is checked so as not to violate its constraints. In case 

of constraint violation, release in month 13 is adjusted so that the storage at the end 

of month 13 remains within its upper and lower boundaries. Storage at the end of 

month 13 is set as the target ending minimum storage of the up-to-date template 

baseline. Besides, the initial storage of the up-to-date template baseline is replaced 

by the storage which is the successor of the initial storage, in the template baseline. 

The template baseline is then shifted and the code is run with the inputs of the shifted 

template baseline. This template baseline is shifted every month following the same 

flow mechanism until the end of the period considered. 

As demonstrated in Figure 6.7, a brief flow scheme including the steps of the 

approach may be summarized as follows: 

- Set inflow in time period 13 equal to the value known at the end of this month. 

- Assume that the release in time period 13 is the same as in the 1st month of the 

baseline, (See 1 in Figure 6.7) 
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- Compute the storage at timepoint 13 (end of January of the second year) using 

Equation 6.14. Check whether the storage computed is within the upper and 

lower boundaries of storages. If it is not, adjust the release in time period 13 

which was assumed to be the release in the 1st month of the baseline is adjusted 

so that the storage constraints will not be violated (See 2 in Figure 6.7 and 

equations 6.21-6.25) 

Assume 113 RR =   

13131213 RISS −+=  6.21 

If max13 SS > then, 

max13 SSS −=Δ  6.22 

SRR Δ+= 113  6.23 

If min13 SS < then, 

13min SSS −=Δ  6.24 

SRR Δ−= 113  6.25 

- Set storage at timepoint 13 as the target ending minimum storage of the up-to-

date template baseline (See 3 in Figure 6.7) 

- Replace storage in the 0th timepoint of the up-to-date template baseline by the 

storage in the 1st timepoint of the template baseline (See 4 in Figure 6.7) 

- Shift up-to-date template and run the code considering the inputs of the shifted 

up-to-date template baseline. 

- Follow the same procedure and shift the template for the remaining months. 
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   Figure 6.7 Illustration of Real-time Approach 
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6.3 Comparison and Results 

Maximized energy amounts determined by using conventional approach and real 

time approach, and real operational energy amounts, as well, are shown in Table 6.1 

and Figure 6.8. 

Table 6.1. Comparison of maximized energy amounts 

Year 2005 Year 2006 Percentage
(%)

Conventional Approaches

Year 2005 627,880

Year 2005 and Year 2006, 
separately 627,880 694,302 101.2

Year 2005 and Year 2006, 
combined 644,685 711,341 103.8

Real-time Approach 627,880 639,223 97.0

Real Operational Data 620,971 685,627 100.01,306,598

Years 2005 & 2006

Total Energy Generated (kWh)

627,880

1,322,182

1,356,026

1,267,103

 

Realized energy amounts was considered as a reference line in order to figure out the 

improvement and/or approximation to the realized/generated energy amount in the 

multi-reservoir system in the CRSP.  

From the investigations of the multi-reservoir system in the CRSP for different 

considerations, it is evident that: 

- Optimizing a 1-year period, year 2005; energy of 627,880 kWh was achieved; 

indicating an improvement of 1.1% when compared to that gained through 

realized/produced energy of 620,971 kWh, 
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- Next 1-year period, year 2006 was optimized and an energy amount of 694,302 

kWh was determined which meant an improvement of 1.27% compared to the 

reference realized energy production, 

- Two separately examined periods, years 2005 and 2006 have been optimized 

considering a single period of 2 years. Energy amount achieved after optimization of 

this multi-reservoir system considering 2-years period was 1,356,026 kWh which is 

by 3.8% improved from the energy actually realized/generated. 

- When aforementioned real-time approach is performed; energy obtained in 2-

years period is 1,267,103 kWh exhibiting an approximation of 3% to the 

realized/generated energy amount. It is to be noted that conventional approach is a 

posteriori, while real time approach proposed is online and is heavily dependent on 

the template baseline. In the event that the template baseline is formed embracing a 

long period, it is very likely that it will give better results. The realized values 

include tacit operational knowledge which have not been reflected on one year long 

data which have been used to establish the template. 

- As the period considered for optimization increases, improvement in the amount 

of optimized energy rises. Energy amount received from optimization of 2-years 

period is by 2.6% higher than the sum of the optimized energy amounts obtained 

through optimization of two separate 1-year period.  
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Figure 6.8 Comparison of Cumulative Energy for 2005-2006 in CRSP with respect to different considerations in optimization 
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CHAPTER 7 

 
 

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS 
 

In the beginning, a literature survey was performed to achieve a sound 

comprehension and see the course of development in the fields of genetic algorithm 

and optimization in water resources problems, specifically optimization of reservoirs.  

Subsequently, problem definition and accordingly construction of the mathematical 

model took place. Then, the mathematical framework defining the optimization 

problem with its objective, initial and boundary conditions was formed. Next step 

was adaptation of this mathematical framework to genetic algorithm which would be 

employed in the optimization process. After configuration of this adaptation, a 

computer code in Fortran programming language was constructed to solve this 

optimization problem by means of processors. This code would include the steps and 

principles which were necessary for genetic algorithm.  

Following the construction of the code, its verification was necessary. A previously 

studied and proven reference multi-reservoir model with a known global optimum 

was used in verification of the code. The mathematical model of this reference 

system was embedded with its objective function, initial and boundary conditions, 

into the code constructed. Results achieved through employment of the code well-fit 

to the known global optimum of the system. Hence, the code has been verified. 

Beside verification, a sensitivity analysis was performed to see how the variation in 

the output of the model was with respect to the controlling parameters in the system.  

Following verification process, the code was attempted to be employed in a real case 

multi-reservoir system under operation. The Blue Mesa, the Morrow Point and the 

Crystal Reservoirs within the Colorado River Storage Project in the U.S. Data which 

would be required in the optimization process have been obtained. Moreover, 

operational data belonging to the same period has also been determined. Since the 
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objective function used in the verification was solely valid for the considered 

reference model, objective function has been modified to be applicable in the CRSP. 

Computer code was executed and the energy produced in the system was optimized 

by using two different approaches, conventional and real-time approach. In 

conventional approach, past data were utilized in optimization for one year and two 

years periods. Two years period has been considered in two different cases; 2-years 

time period as a sole time horizon, and in the second case 2- years time period was 

optimized in two separate 1-year time period. In real-time approach past data 

contributed in formation of a template baseline which is continuously updated in 

accordance with real-time data. As expected, the comparison of the results revealed 

that the energy amounts optimized by using conventional approach were higher than 

the energy produced in real operation. On the other hand, by using real-time 

approach, a close approximation to the real operational data has been achieved.  

While conventional approaches make use of a priori data which belongs to occurred 

time periods, in real-time approach a combination of a priori and posterior data are 

used. A priori data constitutes a template baseline which will be updated by means of 

so called posterior real-time data. Template baseline is constructed benefiting from 

the past data. This baseline reflects the behavior of the flow regime in the considered 

system. In future researches, it can be further improved by being constructed upon 

past data belonging to a longer period of time. It is recommended for future 

researches that a learning capability is brought in this approach so as to cover a long 

period. After this study, it has been shown that genetic algorithms can successfully 

be applied in optimization of reservoir operations. 
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APPENDICES 

APPENDIX A 
 

OVERVIEW OF SELECTION TECHNIQUES IN GENETIC ALGORITHMS  
 
 
A.1 Tournament Selection 

Another selection technique is “tournament selection,” randomly selected pairs of 

chromosomes “fight” to become parents in the mating pool through their fitness 

function value (Goldberg, 1989). Tournament selection runs a "tournament" among a 

few individuals chosen at random from the population and selects the winner in 

accordance with their fitness values, such that the one with the best fitness is selected 

for crossover. Selection pressure can be easily adjusted by changing the tournament 

size. If the tournament size is larger, weak individuals have a smaller chance to be 

selected. In general tournament selection n individuals are selected at random and the 

fittest is selected. The most common type of tournament selection is binary 

tournament selection, where just two individuals are selected.  

Roulette Wheel Selection and Tournament Selection techniques are considered to be 

more popular than the other techniques. However, there are many other selection 

techniques. Among the other selection techniques, are the elitist selection, scaling 

selection, rank selection, generational selection, Steady-state selection and 

hierarchical selection technique. Brief introduction of those selection techniques are 

given below. 

 

A.2 Elitist selection 

The most fit members of each generation are guaranteed to be selected. (Most GAs 

do not use pure elitism, but instead use a modified form where the single best, or a 
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few of the best, individuals from each generation are copied into the next generation 

just in case nothing better turns up.) 

 

A.3. Scaling selection 

As the average fitness of the population increases, the strength of the selective 

pressure also increases and the fitness function becomes more discriminating. This 

method can be helpful in making the best selection later on when all individuals have 

relatively high fitness and only small differences in fitness distinguish one from 

another. 

A.4. Rank selection 

Each individual in the population is assigned a numerical rank based on fitness, and 

selection is based on this ranking rather than absolute difference in fitness. The 

advantage of this method is that it can prevent very fit individuals from gaining 

dominance early at the expense of less fit ones, which would reduce the population's 

genetic diversity and might hinder attempts to find an acceptable solution. 

A.5. Generational selection 

The offspring of the individuals selected from each generation become the entire 

next generation. No individuals are retained between generations. 

A.6 Steady-state selection  

The offspring of the individuals selected from each generation go back into the pre-

existing gene pool, replacing some of the less fit members of the previous generation. 

Some individuals are retained between generations. 
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A.7. Hierarchical selection 

Individuals go through multiple rounds of selection each generation. Lower-level 

evaluations are faster and less discriminating, while those that survive to higher 

levels are evaluated more rigorously. The advantage of this method is that it reduces 

overall computation time by using faster, less selective evaluation to weed out the 

majority of individuals that show little or no promise, and only subjecting those who 

survive this initial test to more rigorous and more computationally expensive fitness 

evaluation. 
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APPENDIX B 
 

OVERVIEW OF CROSSOVER TECHNIQUES IN GENETIC ALGORITHMS  
 
 

( )11
11 ,....., nccC =  and ( )22

12 ,....., nccC =  are two chromosomes that have been selected 

to apply the crossover operator to them. 

B.1 Two-point crossover  

Two points of crossover are randomly selected ( )1,....,2,1, −∈ nji  provided that i<j 

and the segments of the parent, defined by them, are exchanged for generating two 

offspring (Eshelman et al., 1989): 

( )11
1

22
1

21
2

1
11 ,.....,,,.....,,,....,, njjii cccccccH ++=  B.1 

( )22
1

11
1

12
2

2
12 ,.....,,,.....,,,....,, njjii cccccccH ++=  B.2 

B.2. Geometrical crossover  

Two offspring are built, 

( )k
n

k
i

k
k hhhH .....,,.....,1=  k=1,2 B.3 

where 
( )ωω −

⋅=
1211

iii cch  B.4 

( )ωω −
⋅=

1122
iii cch  B.5 

For [ ]1,0∈ω . 
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Below is shown the region for geometric crossover in Figure B.1 (Michalewicz, 

1996). 

 
 

Figure B.1 Geometrical crossover with different values for [ ]1,0∈ω  
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APPENDIX C 
 

BENEFIT FUNCTION CONSTANTS OF THE FOUR RESERVOIR 
PROBLEM 

 
 
 
 
Table C.1 Benefit function used to calculate the optimal policies of the system 
considered proposed by Heidari et al. (1971) 
 
 
 
 
 

 

 

t b1(t) b2(t) b3(t) b4(t) b5(t) 

0 1.1 1.4 1.0 1.0 1.6 

1 1.0 1.1 1.0 1.2 1.7 

2 1.0 1.0 1.2 1.8 l.5 

3 1.2 1.0 1.8 2.5 1.9 

4 1.8 1.2 2.5 2.2 2.0 

5 2.5 1.8 2.2 2.0 2.0 

6 2.2 2.5 2.0 1.8 2.0 

7 2.0 2.2 1.8 2.2 1.9 

8 1.8 2.0 2.2 1.8 1.8 

9 2.2 1.8 1.8 1.4 1.7 

10 1.8 2.2 1.4 1.1 1.6 

11 1.4 1.8 1.1 1.0 1.6 
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APPENDIX D 
 

COLORADO RIVER STORAGE PROJECT FACTS  
 
 
 
General Description 

The Gunnison River is a tributary of the Colorado River, approximately 180 mi (290 

km) long, in the U.S. state of Colorado. 

It rises in west central Colorado, in eastern Gunnison County, formed by the 

confluence of Taylor and East rivers. Just past the town of Gunnison, the river begins 

to swell into the expanse of Blue Mesa Reservoir, a 40 mile (64 km) long reservoir 

formed by Blue Mesa Dam, where it receives the Lake Fork of the Gunnison. Just 

downstream it is dammed again to form Morrow Point Reservoir, then just 

downstream of that dammed for the final time to form Crystal Reservoir. The 

reservoirs produce hydroelectric power and supply water for the surrounding ares for 

both municipal and irrigation use. The reservoirs are the upper part of the Black 

Canyon of the Gunnison, one of the longest, narrowest, and deepest gorges in the 

world. Below Crystal Dam it begins to roar through massive cataracts and flows 

through the deepest part of the gorge. At the outlet of the canyon it receives the 

North Fork River, then downstream near Delta is joined by the Uncompahgre River. 

It then winds through desert canyonlands until it empties into the Colorado near 

Grand Junction, carrying almost as much water as the former. 

The Colorado River Storage Project (CRSP) provides for the comprehensive 

development of the Upper Colorado River Basin. The project furnishes the long-time 

regulatory storage needed to permit States in the upper basin to meet their flow 

obligation at Lees Ferry, Arizona, as defined in the Colorado River Compact, and 

still utilize their apportioned water. 
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Water stored by the project provides a portion for direct use in the upper basin. 

Sediment and flooding are better controlled and recreation development and fish and 

wildlife conservation have benefited. Because of project development, a significant 

amount of electrical energy is produced to meet the needs of the upper basin and 

adjacent areas. 

The project includes four storage units: Glen Canyon on the Colorado River in 

Arizona near the Utah border; Flaming Gorge on the Green River in Utah near the 

Wyoming border; Navajo on the San Juan River in New Mexico near the Colorado 

border; and the Wayne N. Aspinall Storage Unit on the Gunnison River in west-

central Colorado. Figure D.1 and D.2 shows the map of the region under 

consideration. 

Authorized with, but not part of, are a number of participating projects which will 

share in the power revenues of the larger project to help pay for irrigation 

construction costs. These participating projects are listed in the authorization 

paragraphs. 

 

 
 

Figure D.1 Map under consideration (www.coloradowatertrust.org) 
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Figure D.2 Map of Basin Considered (www.coloradowatertrust.org) 

 

Aspinall Unit 

The Aspinall Unit developed the water storage and hydroelectric power generating 

potential along a 40-mile (64 km) section of the Gunnison River in Colorado by the 

construction of three dams and powerplants: Blue Mesa, Morrow Point, and Crystal. 

 

Blue Mesa Dam, Reservoir, and Powerplant 

Blue Mesa Dam is on the Gunnison river about 30 miles below Gunnison, and 1.5 

miles (2.4 km) below Sapinero, Colorado. The zoned earthfill embankment has a 

structural height of 390 feet (119 m), a crest length of 785 feet (239 m), and a 

volume of 3,080,000 cubic yards (2,354,829 cubic meters) of materials. 

The spillway consists of a concrete intake structure with two 25 (7.62 m)- by 33.5  

(10.21 m)-foot radial gates, concrete-lined tunnel, concrete flip bucket structure, and 

stilling basin. Maximum discharge of the spillway is 34,000 cubic feet (963 cubic 

meters) per second. 

The outlet works consists of an intake structure, tunnel, and manifold anchor block. 

The outlet works is controlled by one 16 (4.9 m) - by 18 (5.5 m)-foot fixed-wheel 
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gate in the intake structure and by two 84-inch ring-follower gates and two 84-inch 

(2.13 m) hollow-jet valves in a gate house at the terminus of the outlet conduits. 

Maximum discharge from the outlet works is 5,000 cubic feet (141.6 cubic meters) 

per second at maximum water surface elevation, with two 84-inch (2.13 m) hollow-

jet valves 62 percent open. 

Blue Mesa Reservoir has a total capacity of 940,700 acre-feet (1,161 million cubic 

meters) and an active capacity of 748,430 acre-feet (923 million cubic meters). At 

maximum water surface elevation, the reservoir occupies 9,180 acres (3715 

hectares). 

The Blue Mesa Powerplant consists of two 30,000-kilowatt generators, driven by two 

41.55-horsepower turbines. Each Turbine is designed to operate at a maximum head 

of about 360 feet (109 m). 

One 16-foot-diameter (4.9 m) penstock conveys water to the two turbines and also 

carries water for the outlet works. After branching from the main penstock, each of 

the penstock laterals is controlled by 156-inch (3.9 m) butterfly valves. The main 

penstock is reduced by a wye branch to the outlet works control valves. 

Plant Facts: The Blue Mesa Powerplant consists of two 43,200-kilowatt generators, 

driven by two 41,500-horsepower turbines. Each turbine is designed to operate at a 

maximum head of about 360 feet (109 m). 

River: Gunnison River  

Location 1.5 mi (2.4 km) below Sapinero  

Turbine Type: Francis  

Installed Capacity: 86,400 kW  

Rated Head: 332 feet (101.2 m) 

Year of Initial Operation: 1967  

Hydraulic Height: 33.4 ft (10.18 m) 

Crest Elevation of Dam:  7528.0 ft (2294.5 m) 

Structural Height of Dam: .   502.0 ft (153 m) 
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Crest Length:    785.0 ft (239.3 m) 

Top of Joint Use:  7519.4 ft (2291.9 m) 

Top of Active Conservation: 7519.4 ft (2291.9 m) 

Top of Inactive Conservation:  7393.0 ft (2253.4 m) 

Spillway Crest:  7487.9 ft (2282.3 m) 

Top of Dead Storage:  7358.0 ft (2242.7 m) 

Streambed at Dam Axis :  7186.0 ft (2190.3 m) 

Morrow Point Dam, Reservoir, and Powerplant 

Morrow Point Dam, 12 miles (19.3 km) downstream from Blue Mesa Dam, is 

Reclamation's first thin-arch, double-curvature dam. It is 468 feet (142.6 m) high, 52 

feet (15.8 m) thick at the base, and 12 feet (3.65 m) thick at the crest. The dam has a 

crest length of 720 feet (219.5 m) and a volume of 360,000 cubic yards (275,240 

cubic meters) of concrete. 

The spillway consists of four orifice-type openings in the top central part of the dam, 

providing a free-fall discharge higher than 350 feet (106.68 m) to the concrete 

stilling basin at the toe of the dam. Each of the four spillway openings is controlled 

by a 15 (4.57 m)- by 16.83-foot (5.13 m) fixed-wheel gate. Maximum capacity of the 

spillway is 41,000 cubic feet (1161 cubic meters) per second. 

The outlet works consists of one stainless-steel lined 4-foot-square (0.37 square 

meters) conduit through the dam. Control is by two 3.5-square-foot (0.32 square 

meters) slide gates. Discharge capacity of the outlet works is 1,500 cubic feet per 

second. 

Reservoir capacity behind Morrow Point Dam is 117,190 acre-feet (144.5 million 

cubic meters) at maximum water surface. The active capacity is 42,120 acre-feet 

(51.9 million cubic meters). Surface area for Morrow Point Reservoir is 817 acres 

(330 hectares) at an elevation of 7,160.0 ft (2182.3 m). 
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The powerplant chamber is tunneled into the canyon wall in the left abutment about 

400 feet below the ground surface. The powerplant chamber is 231 feet (70.4 m) 

long and 57 feet (17.4 m) wide with a height ranging from 65 (19.8 m) to 134 feet 

(40.8 m). There are two 60,000-kilowatt generators driven by two 83,000-

horsepower turbines. The power penstocks consist of 13.5-foot-diameter (4.1 m) 

steel liners in 18-foot-diameter (5.5 m) tunnels. 

River: Gunnison River  

Turbine Type: Francis  

Installed Capacity: 173,334 kW  

Year of Initial Operation: 1970  

Rated Head: 396 feet (120.7 m) 

Crest Elevation  7165.0 ft (2183.9 m) 

Structural Height  468 ft (142.6 m) 

Hydraulic Height  400 ft (121.9 m) 

Crest Length . 724 ft (220.7 m) 

Crest Width . 12 ft (3.65 m) 

Base Width . 52 ft (15.85 m) 

Volume of Concrete . 365,180 cu yd (279,200 cubic meters) 

Location . 22 mi (35.4 km) from Montrose, CO  

Crystal Dam, Reservoir, and Powerplant 

Crystal Dam is located 6 miles (9.7 km) downstream from Morrow Point Dam and 

approximately 20 miles (32.2 km) east of Montrose, Colorado. The dam is a double-

curvature thin-arch type, 323 feet (98.45 m) high, with a crest length of 620 feet 

(188.98 m), and a volume of 154,400 cubic yards (118,000 cubic meters) of 

materials. 

The spillway consists of an ungated ogee crest on the right side of the dam and a 

plunge pool at the toe of the dam. The crest is at an elevation of 6,756.0 feet (2059.2 

m), 1 foot (30.5 cm) above normal water surface. The plunge pool is unlined except 

for a downstream retaining wall to contain the river fill material. 
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Water is conveyed from the reservoir to the hydraulic turbine by an 11.5-foot (3.5 m) 

- diameter concrete penstock, the lower portion of which is steel lined. The intake 

structure consists of a metal trashrack, a 10.58 (3.22 m)- by 17.27-foot (5.26 m) 

bulkhead gate, an 8.33 (2.53 m)- by 13.58-foot (4.13 m) fixed-wheel gate, and a 

transition. The fixed-wheel gate is provided for emergency closure and for inspection 

and maintenance of the penstock. Water from the turbine exits through the draft tube 

to the tailrace. 

The river outlets consist of an intake structure on the upstream face of the dam and 

two 54-inch (137 cm) pipes through the dam and powerplant. The 54-inch (137 cm) 

ring-follower emergency gates and 48-inch (122 cm) jet-flow regulating gates in the 

powerplant control outlet flows. The intake structure includes a metal trashrack, a 

concrete arch conduit to convey water to the 54-inch pipes, and provisions for 

installing a bulkhead gate. The Morrow Point Dam river outlet bulkhead gate can be 

used to close off the outlet pipes for inspection or maintenance. 

The reservoir has a total capacity of 25,236 acre-feet (31.11 million cubic meters) 

and an active capacity of 12,891 acre-feet (15.89 million cubic meters) at an  

elevation of 6,700 ft (2042.1 m), with a surface area of 301 acres (121.8 hectares). 

The powerplant, completed in 1978, has a generating capacity of 28,000 kilowatts 

from one unit driven by a 39,000-horsepower hydraulic turbine. It is connected to the 

main CRSP transmission system at the Curecanti substation by a 115-kilovolt line. 

Turbine Type: Francis  

Installed Capacity: 31,500 kW  

Year of Initial Operation: 1978  

Rated Head: 207 feet (63.1 m) 

Location .  20 mi (32.2 km) E of Montrose, CO  

Crest Elevation  6772.0 ft (2064.1 m) 

Structural Height  323 ft (98.45 m) 

Hydraulic Height  227 ft (69.19 m) 

Crest Length . 635 ft (193.5 m) 
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Crest Width . 10 ft (3 m) 

Base Width  29 ft (8.83 m) 

Volume of Concrete . 147,000 cu yd (112,400 cubic meters) 
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