
REAL LEFSCHETZ FIBRATIONS

NERMİN SALEPCİ
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Prof. Dr. Canan Özgen
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ABSTRACT

REAL LEFSCHETZ FIBRATIONS

SALEPCİ, Nermin

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Sergey FINASHIN

Co-supervisor: Prof. Dr. Viatcheslav KHARLAMOV

OCTOBER 2007, 116 pages

In this thesis, we present real Lefschetz fibrations. We first study real Lefschetz

fibrations around a real singular fiber. We obtain a classification of real Lefschetz

fibrations around a real singular fiber by a study of monodromy properties of real

Lefschetz fibrations. Using this classification, we obtain some invariants, called real

Lefschetz chains, of real Lefschetz fibrations which admit only real critical values.

We show that in case the fiber genus is greater then 1, the real Lefschetz chains

are complete invariants of directed real Lefschetz fibrations with only real critical

values. If the genus is 1, we obtain complete invariants by decorating real Lefschetz

chains.

For elliptic Lefschetz fibrations we define a combinatorial object which we call

necklace diagrams. Using necklace diagrams we obtain a classification of directed

elliptic real Lefschetz fibrations which admit a real section and which have only real

critical values. We obtain 25 real Lefschetz fibrations which admit a real section

and which have 12 critical values all of which are real. We show that among 25 real

Lefschetz fibrations, 8 of them are not algebraic. Moreover, using necklace diagrams

we show the existence of real elliptic Lefschetz fibrations which can not be written

as the fiber sum of two real elliptic Lefschetz fibrations. We define refined necklace

diagrams for real elliptic Lefschetz fibrations without a real section and show that
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refined necklace diagrams classify real elliptic Lefschetz fibrations which have only

real critical values.

Keywords : Lefschetz fibrations, real structure, real Lefschetz fibrations, real

Lefschetz chains, necklace diagrams.

v



ÖZ

REEL LEFSCHETZ LİFLENMELERİ

SALEPCİ, Nermin

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Sergey FINASHIN

Ortak Tez Yöneticisi: Prof. Dr. Viatcheslav KHARLAMOV

EKİM 2007, 116 sayfa

Bu tezde reel Lefschetz liflenmeleri sunulmaktadır. Öncelikle reel Lefschetz liflen-

melerini herhangi bir reel singuler lif yakınında çalıştık. Monodromy özelliklerini kul-

lanarak, singuler bir lif etrafında ki reel Lefschetz liflenmelerinin bir sınıflandırmasını

verdik. Bu sınıflandırmayı kullanarak, sadece reel kritik değerleri olan reel Lefschetz

liflenmeleri için reel Lefschetz zincirleri diye adlandırdığımız bir değişmez tanımladık.

Liflerin genus sayısı 1’ den büyük ise, bu değişmezin sadece reel kritik değerleri olan

yönlü reel Lefschetz liflenmelerinin tam değişmezi olduğunu gösterdik. Lif genus

sayısı 1 ise reel Lefschetz zincirlerini decore ederek tam değişmezler elde ettik.

Elipsel reel Lefschetz liflenmeleri icin kolye diyagramları diye adlandırdığı mız

kombinatoryal nesneleri tanımladık. Kolye diyagramlarını kullanarak, reel kesit

kabul eden ve sadece reel kritik değerleri olan reel Lefschetz liflenmelerinin bir

sınıflandırmasını elde ettik. Bu sınıflandırmanın sonucu olarak 25 tane, reel kesit

kabul eden ve sadece reel kritik değerleri olan ve toplam kritik değer sayısı 12 olan

elipsel reel Lefschetz liflenmeleri elde ettik. Elde ettiğimiz 25 tane liflenmelerin 8’i

hariç hepsinin cebirsel olduğunu gösterdik. Bununla birlikte, kolye diyagramlarını

kullanarak iki elipsel reel Lefschetz liflenmesinin lif eklenmesi olarak yazılamayan

elipsel reel Lefschetz liflenmeleri örneklerini bulduk. Son olarak, reel kesit teşkil

etmeyebilen liflenmeler için rafine kolye diyagramlarını tanımladık ve sadece reel

kritik değerleri olan elipsel reel Lefschetz liflenmelerinin rafine kolye diyagramları ile

sınıflandırıldığını gösterdik.
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Anahtar kelimeler : Lefschetz liflenmeleri, reel yapı, reel Lefschetz liflenmeleri,

reel Lefschetz zincirleri, kolye diyagramları.
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me morally and were always by my side. I send my special thanks to Kadriye who

read some parts of my thesis till late at night in her visit to Strasbourg and suggested

me several grammatical changes.

Of course, I wouldn’t be where I am without my family. I wish to express my

indebtedness to my parents, to my dear sisters and to Laurent for their endless

support and love.

x



TABLE OF CONTENTS

abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

introduction

The richness of complex manifolds is mainly due to the existence of two important

maps: multiplication by i and complex conjugation. To be able to obtain smooth

manifolds which resemble complex manifolds as much as possible, generalizations

of these maps to smooth even-dimensional manifolds are introduced. The general-

ization of multiplication by i is called an almost complex structure and of complex

conjugation is called a real structure.

In this thesis, we study Lefschetz fibrations which admit a real structure. Let us

recall that a Lefschetz fibration of a smooth 4-manifold is a fibration by surfaces such

that only a finite number of fibers are allowed to have a nodal type of singularity.

Lefschetz fibrations naturally appear on complex surfaces in complex projective 3-

space as blow ups of a pencil of planes, generic with respect to surfaces. It is

known that the monodromy of Lefschetz fibrations around a singular fiber is given

by a single (positive) Dehn twist along a simple closed curve (called the vanishing

cycle) [K] and that decompositions of the monodromy (up to Hurwitz moves and

conjugation by an element of the mapping class group) into a product of Dehn

twists classify Lefschetz fibrations over D2. One important property of the Lefschetz

fibrations is that they form the topological counterpart of symplectic 4-manifolds

(see S. Donaldson [Do], R. Gompf [GS]).

The study of real Lefschetz fibrations is motivated by the work of S. Yu. Orevkov

[O1] in which he presented a method of reading the (braid) monodromy of a fibration,

π : C → CP 1, of a (complex) curve C (which is invariant under complex conjugation)

in CP 2 from the part RP 2 ∩C → RP 1 where the fibration, π, of C is obtained from

a real pencil of lines in CP 2, generic with respect to C. He observed that the total

monodromy is quasipositive (product of conjugations of positive twists) if the curve

C is algebraic and used this observation to show that certain distributions of ovals in

RP 2 are not algebraically realizable. It is not hard to see that if his construction is
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applied to surfaces in CP 3, what we obtain is nothing but a Lefschetz pencil which

commutes with the standard complex conjugation of CP 3. This gives a prototype

of the real Lefschetz fibrations.

We define a real structure on a smooth 2k-dimensional manifold as an orientation

reversing involution if k is odd and an orientation preserving involution if k is even.

We also require that the fixed point set, if it is not empty, has dimension k to

make the situation as similar as possible to that of an honest complex conjugation.

A manifold together with a real structure is called a real manifold and the set of

points fixed by the real structure is called the real part. Although, naturally, we

cannot talk about a real structure on an odd dimensional manifold, we also use

the term real for odd dimensional manifolds which appear as the boundary of real

manifolds.

A real structure on a Lefschetz fibration, π : X → B, is a pair, (cX , cB), of real

structures, cX : X → X and cB : B → B, such that π ◦ cX = cB ◦ π. We study

Lefschetz fibrations up to equivariant diffeomorphisms. We assume that fibrations

are relatively minimal (that is none of the vanishing cycles bounds a disc on the

fiber) and that the genus of the regular fibers is at least 1. We consider also real

fibrations over S1 which are boundaries of real Lefschetz fibrations over a disc.

In this thesis, we treat mainly the cases B = D2 and B = S2. In both cases,

we consider real structures which have nonempty real part. By abuse of notation,

we denote both real structures by conj . Indeed, one can identify S2 with CP 1 in a

way such that conj becomes the standard complex conjugation on CP 1. Similarly,

(D2, conj ) can be identified with a 2-disc in CP 1 which is invariant under complex

conjugation. Most of the time, we assume that the real part of (D2, conj ) is oriented.

We call such fibrations directed real Lefschetz fibrations.

The first chapter of the thesis gives some basic definitions. In Chapter 2 we

examine monodromies of real Lefschetz fibrations in terms of monodromies of real

fibrations over S1. Note that there are two real points, r±, of (S1, conj ) and the

fibers over them, F±, inherit a real structure, c±, from the real structure of X. The

main observation is that these two real structures are related by the monodromy, f ,

of the fibration: namely, c+ ◦ c− = f . This decomposition property is fundamental

for the results obtained in this thesis, so it is discussed in detail. In the last section

of Chapter 2, we give a classification of real fibrations over S1, whose fiber genus is

1, using the decomposition property of their monodromy.
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Chapter 3 is devoted to the classification of real Lefschetz fibrations over a disc

with a unique nodal singular fiber, we call such fibrations elementary real Lefschetz

fibrations. Such fibrations give a local model for real Lefschetz fibrations around

a real singular fiber. Note that the compatibility of real structures with the fibra-

tion forces the critical value and the critical point of the elementary real Lefschetz

fibration to be real.

We mostly work with marked Lefschetz fibrations. This means that we fix a base

point b and an identification, ρ : Σg → Fb, of the fiber over b with an abstract genus-

g surface, Σg. On real Lefschetz fibrations, we consider two types of markings: R-

marking, (b, ρ), where b is a real boundary point and C-marking, ({b, b̄}, {ρ, ρ◦cX}),
where {b, b̄} is a pair of complex conjugate points on the boundary. In the case of

R-marking, Σg has a real structure c : Σg → Σg obtained as the pull back of the

inherited real structure on Fb, so we require that ρ satisfies cX ◦ ρ = ρ ◦ c. For

C-markings, Fb and hence Σg, have no real structure; however, one can obtain a real

structure by pulling back a real structure on a real fiber. This way we obtain a real

structure defined up to isotopy.

Let us choose a simple closed curve, a ⊂ Σg, representing the vanishing cycle on

Σg such that c(a) = a. We call the pair (c, a) with c(a) = a a real code. Two real

codes (c, a) and (c′, a′) are called isotopic if there exists a smooth family of orientation

preserving diffeomorphisms φt : Σg → Σg such that φ0 = id and φ1(a) = a′, c◦φ1◦c =

c′. We denote by [c, a] the isotopy class of the real code (c, a). Similarly, two real

codes (c, a) and (c′, a′) are called conjugate if there is an orientation preserving

diffeomorphism φ : Σg → Σg such that φ(a) = a′ and φ ◦ c = c′ ◦ φ. The conjugacy

class of the real code is denoted by {c, a}.
The main theorem of Chapter 3 is the following.

Proposition 1.0.1. Up to equivariant diffeomorphisms preserving the marking, di-

rected C-marked elementary real Lefschetz fibrations are classified by the isotopy

classes, [c, a].

Up to equivariant diffeomorphisms, directed elementary real Lefschetz fibrations

are classified by the conjugacy classes, {c, a}.

By enumerating possible classes {c, a}, we have obtained the classification of

directed elementary real Lefschetz fibrations.

In Chapter 4, we generalize the classification of elementary real Lefschetz fibra-

tions to a classification of real Lefschetz fibration over D2 whose critical values are

all real. For this purpose we define a boundary fiber sum for real Lefschetz fibrations

3



over D2. Let us note that unlike the boundary fiber sum of Lefschetz fibrations the

boundary fiber sum of two real Lefschetz fibrations is not always defined since one

needs the compatibility of real structures on fibers to be glued. We have shown that

the boundary fiber sum (when it is defined) of two directed C-marked genus-g real

Lefschetz fibrations over D2 is well-defined if g > 1. In case of g = 1 (in this case we

call the fibration elliptic Lefschetz fibration), the boundary fiber sum is well-defined

provided fibrations admit a real section.

Let π : X → D2 be a C-marked real Lefschetz fibration with only real critical

values, q1 < q2 < · · · < qn. We divide D2 into smaller (topological) discs, each

containing a single critical value (see Figure 1.1). Let r0 = r−, r1, . . . , rn−1, rn = r+

denote the real boundary points of the obtained smaller discs.

x xx
q q q

1 2 3

...
...

b

b

rr = r1
+-0 rr = n

r
2

Fig. 1.1.

Each fibration over such discs is determined by the pair [ci, ai] such that ci(ai) =

ai. And each pair of real structures ci−1, ci are related by the monodromy tai
;

ci ◦ ci−1 = tai
where ci is the real structure carried over from the real structure on

the fiber Fri and ai is the vanishing cycle corresponding to the critical value qi.

If g > 1 the classes [ci, ai] can be carried over to Σg canonically. Thus, we get a

sequence [c1, a1], [c2, a2], . . . , [cn, an] on Σg such that ci(ai) = ai and ci ◦ ci−1 = tai
.

We call this sequence the real Lefschetz chain. In the case of g = 1, we can apply

the same idea for real Lefschetz fibrations which admit a real section, then the real

structures are determined up to isotopy relative to the points determined by the

section. Let us denote the relative isotopy class by [c, a]∗. We call the sequence

[c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗ such that ci(ai) = ai and ci ◦ ci−1 = tai

the pointed

real Lefschetz chain.

Theorem 1.0.2. If g > 1, there is a one-to-one correspondence between the real

Lefschetz chains, [c1, a1], [c2, a2], . . . , [cn, an] on Σg and the isomorphism classes of

directed C-marked genus-g real Lefschetz fibrations over D2 with only real critical
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values. If g = 1, there is a one to one correspondence between the pointed real

Lefschetz chains, [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗, on Σ1 and the isomorphism classes

of directed genus-g C-marked real Lefschetz fibrations over D2 with a real section

and with only real critical values.

Moreover, in the both cases, if the total monodromy is isotopic to the identity,

one can extend the fibration to a fibration over S2. We will show that such an

extension is unique in both cases.

A similar result can be obtained for directed real elliptic Lefschetz fibrations

which do not admit a real section. However, for such fibrations there is no canonical

way to carry the classes [ci, ai] to the fiber Σg. Thus, we consider the boundary fiber

sum of non-marked fibrations and work with the conjugacy classes {ci, ai} of real

codes. We see that the boundary fiber sum is not uniquely defined for certain cases

and hence the chain {c1, a1}, {c2, a2}, . . . , {cn, an} of conjugacy classes of real codes,

called the weak Lefschetz chain, is not sufficient for a correspondence theorem.

On Σ1, for certain real structures a special phenomenon may occur: two in-

variant curves can be isotopic without being equivariantly isotopic. When we glue

two elementary real Lefschetz fibrations at real fibers where the vanishing cycles are

such invariant curves, the boundary sum depends on whether or not we switch the

two such vanishing cycles while identifying the fibers. We mark such a gluing point

if we switch the two vanishing cycles. We consider the weak real Lefschetz chain,

{c1, a1}, {c2, a2}, . . . , {cn, an} and mark the real codes corresponding to marked glu-

ing points by {ci, ai}R (where R refers to the rotation exchanging the vanishing

cycles). The resulting chain is called the decorated weak real Lefschetz chain.

Theorem 1.0.3. There exists a one-to-one correspondence between the decorated

weak real Lefschetz chains and the isomorphism classes of directed (non-marked)

real elliptic Lefschetz fibrations over D2 with only real critical values.

(Let us note that if on the weak real Lefschetz chain, none of the real structures

ci has no real component and none of the real codes {ci, ai} is marked then the

corresponding real elliptic Lefschetz fibration admits a real section.)

If the total monodromy is the identity then we can talk about the extension of

the fibration over D2 to a fibration over S2. We show that such an extension is

unique, if the point of infinity does not require a marking; otherwise, the extension

is uniquely determined by the marking of infinity.

The remaining part of the thesis is devoted to the classification of real elliptic

Lefschetz fibrations over S2 with only real critical values. We see that elliptic Lef-
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schetz fibrations, π : X → S2, with only real critical values are determined by their

real locus, πR : XR → S1, whereXR = Fix(cX) and πR : π|F ix(cX). In fact, under the

assumption that there is a real section, one can control the isotopy types of the real

structures over the regular fibers of πR. By encoding the types of the real structure

on the fibers (singular or nonsingular) on S1, we obtain a decoration. We introduce

a combinatorial object called necklace diagrams related to the decorated S1. When

the fibration is directed the associated necklace diagram is naturally oriented.

As was shown by B. Moishezon, [Mo] (non-real) elliptic Lefschetz fibrations are

classified by the number of critical values. The latter is divisible by 12 and one

denotes by E(n) the class of elliptic Lefschetz fibrations with 12n critical values. In

Chapter 5, we respond to the following question: how many real structures does the

fibration E(n) admit, for each n, such that all critical values are real? We give the

answer to the above question in terms of necklaces diagrams.

An oriented necklace diagram is an oriented circle, called the necklace chain on

which we have finitely many elements of the set S = {�, , >,<}. The elements of

S are called the necklace stones. Two necklace diagrams will be considered identical

if their stones go in the same cyclic order.

An example of an oriented necklace diagram is shown in Figure 1.2.

Fig. 1.2.

There is a way to assign a matrix in PSL(2,Z) to each stone of S. We call such

a matrix the monodromy of the stone. The necklace monodromy is by definition the

product of the monodromies of the stones where the product is taken in accordance

with the orientation and relative to a base point on the necklace chain.

Clearly, the necklace monodromy relative to another base point is conjugate to

the previous one.

Theorem 1.0.4. There exists a one-to-one correspondence between the set of ori-

ented necklace diagrams with 6n stones whose monodromy is the identity and the set

of isomorphism classes of real directed fibrations E(n), n ∈ N, which have only real

critical values and admit a real section.
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A non-directed real elliptic Lefschetz fibration corresponds to a pair of oriented

necklace diagrams, in which one is the mirror image of the other. By using an

algorithm which takes into account such symmetry equivalence to enumerate all

possible such necklace diagrams we obtain the following result for n = 1.

Theorem 1.0.5. There exist precisely 25 isomorphism classes of real non-directed

fibrations E(1) having only real critical values and admitting a real section. These

classes are characterized by the non-oriented necklace diagrams presented in Fig-

ure 1.3.

Fig. 1.3.

In Appendix, we will show that among the 25 isomorphism classes which we

obtain, there are 8 which are not algebraic. The proof uses the real dessins d’enfants

introduced by S. Yu. Orevkov [O2].

Using necklace diagrams, we found some interesting examples. For example,

there are real elliptic Lefschetz fibrations of type E(n) with only real critical values

which can not be decomposed into a fiber sum of a real E(n − 1) and a real E(1)

both with only real critical values. Note that for fibrations (non-real) without real

structure we have E(n) = E(n − 1)#ΣE(1), [Mo].

Necklace diagrams can be modified to cover the case of fibrations without a real

section. Namely, one needs to replace each -type stone by one of , , , without

changing the monodromy in PSL(2,Z). The resulted necklace diagrams are called

refined necklace diagrams. (Refined necklace diagrams whose circle-type stones are

all -type correspond to fibrations admitting a real section.)
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Theorem 1.0.6. There is a one-to-one correspondence between the set of oriented

refined necklace diagrams with 6n stones whose monodromy is the identity and the

set of isomorphism classes of directed real fibrations E(n), n ∈ N, whose critical

values are all real.
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CHAPTER 2

preliminaries

2.1 Lefschetz fibrations

Throughout the present work X will stand for a compact connected oriented smooth

4-manifold and B for a compact connected oriented smooth 2-manifold.

Definition 2.1.1. A Lefschetz fibration is a surjective smooth map π : X → B such

that:

• π(∂X) = ∂B and the restriction ∂X → ∂B of π is a submersion;

• π has only a finite number of critical points (that is the points where dπ is

degenerate), all the critical points belong to X \ ∂X and their images are

distinct points of B \ ∂B;

• around each of the critical points one can choose orientation-preserving charts

ψ : U → C2 and φ : V → C so that φ ◦π ◦ψ−1 is given by (z1, z2) → z1
2 + z2

2.

We will often address a Lefschetz fibration by its initials LF .

Let ∆ ⊂ B denote the set of critical values of π. As a consequence of the

definition above the restriction, π|π−1(B\∆) : π−1(B \ ∆) → B \∆, of π to B \∆ is a

fiber bundle whose fibers are closed oriented surfaces of the same genus; inheriting

a canonical orientation from the orientations of X and B. At critical values, the

fibers have nodal singularities.

When we want to specify the genus of the nonsingular fibers, we prefer calling

them genus-g Lefschetz fibrations. In particular, we will use the term elliptic Lef-

schetz fibrations when the genus is equal to one. For each integer g, we will fix a

closed oriented surface of genus g, which will serve as a model for the fibers, and

denote it by Σg.
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In what follows we will always assume that a Lefschetz fibration is relatively

minimal, that is none of its fibers contains a self intersection -1 sphere. This is not

restrictive (if g ≥ 1) since any self intersection -1 sphere can be blown down while

preserving the projection a Lefschetz fibration.

Definition 2.1.2. A marked genus-g Lefschetz fibration is a triple (π, b, ρ) such that

π : X → B is an LF , b ∈ B is a regular value of π (if ∂B 6= ∅ then b ∈ ∂B) and

ρ : Σg → Fb = π−1(b) is a diffeomorphism. (Later on, when precision is not needed,

we will denote Fb simply as F .)

Definition 2.1.3. Two Lefschetz fibrations, π : X → B and π′ : X ′ → B′, are

called isomorphic if there exist orientation preserving diffeomorphisms H : X → X ′

and h : B → B′, such that the following diagram commutes

X
H

//

π

��

X ′

π′

��

B
h

// B′.

Two marked Lefschetz fibrations, say (π, b, ρ) and (π′, b′, ρ′), are called isomor-

phic if H,h also satisfy h(b) = b′ and H ◦ ρ = ρ′.

Let Map(S) denote the mapping class group of a compact closed orientable sur-

face S, that is the group of isotopy classes of orientation preserving diffeomorphisms

S → S.

Definition 2.1.4. The monodromy homomorphism µ : π1(B \ ∆, b) → Map(Σg)

of a marked Lefschetz fibration (π, b, ρ) is defined as follows: pick an element γ ∈
π1(B \∆, b), represent it by a smooth map γ̃ : (S1, ∗) → (B \∆, b), and consider the

pull back γ̃∗(X), which is a fiber bundle over S1 with fibers Σg. This fiber bundle

does not depend on the choice of γ̃ ∈ γ and can be obtained from the trivial bundle

Fb× I over an interval I by identifying both ends by a diffeomorphism fγ : Fb → Fb,

that is γ∗(X) = Fb × I�(fγ(x),0)∼(x,1). The latter diffeomorphism is well defined up

to isotopy and the image of γ is defined as the isotopy class [ρ−1 ◦ fγ ◦ ρ] which is

called the monodromy of π along γ relative to the marking ρ.

Obviously, if ρ : Σg → F is replaced by ρ′ = ρ ◦ φ, where φ ∈ Map(Σg), we get

the monodromy µ′(γ) = φ−1 ◦ µ(γ) ◦ φ, which is φ-conjugate to the previous one.

Therefore, for Lefschetz fibrations without marking the monodromy is defined

up to conjugation.
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Let us give an example of LFs obtained by blowing up the pencil of cubics in

CP 2.

Example 2.1.5. Take two generic cubics C1, C2 defined by degree three polynomials

Q1, Q2. Let {p1, . . . , p9} denote the intersection points of C1 and C2.

The pencil t0C1+t1C2, [t0 : t1] ∈ CP 1, defines a projection π : CP 2\{p1, ..., p9} →
CP 1 where π−1([t0 : t1]) is the cubic t0Q1+t1Q2 = 0. By blowing up CP 2 at p1, .., p9

we obtain a Lefschetz fibration CP 2#9CP 2 → CP 1 whose nonsingular fibers are

smooth cubics, which are topologically closed genus-1 surfaces, while singular fibers

are nodal cubics. We will denote the manifold CP 2#9CP 2 considered with such a

Lefschetz fibration by E(1). The Lefschetz fibration E(1) that we obtain does not

depend, up to isomorphism, on the choice of C1, C2, due to the fact that the space

of generic pencils of cubics in CP 2 is connected (cf. [KRV]).

We have χ(CP 2#9CP 2) = 12 and χ(Σ1) = 0 while χ(Nodal Σ1) = 1. Therefore,

applying to E(1) the additivity and multiplicativity of the Euler characteristic, we

find that E(1) has 12 singular fibers.

Notice that E(1) is also unique, up to isomorphism, as a marked Lefschetz fibra-

tion.

Definition 2.1.6. Let us take two marked genus-g Lefschetz fibrations, (π : X →
B, b, ρ) and (π′ : X ′ → B′, b′, ρ′), such that ∂B = ∂B′ = ∅. We consider small

neighborhoods of the fibers F and F ′ over b and b′, respectively, and identify them

both with Σg × D2. The fiber sum, X#ΣX
′ → B#B′, is the Lefschetz fibration

obtained by gluing X \ (Σg ×D2) and X ′ \ (Σg ×D2) along their boundaries by a

map Φ : ∂(Σg ×D2) → ∂(Σg ×D2) given by Φ = (id, conj ) where conj stands for

the usual complex conjugation.

In order to define a fiber sum for LFs without marking, one can pick a diffeo-

morphism φ between two arbitrary chosen regular fibers F and F ′ of π : X → B and

π′ : X ′ → B′ respectively, then we will employ Φ = (φ, conj ), and will proceed in the

same manner as we have done in the definition above. Note that the diffeomorphism

type of the 4-manifold X#ΣX
′ and the fibration depend, in general, on the choice

of the diffeomorphism φ : F → F ′. We denote the fiber sum as X#Σ,φX
′ when the

gluing diffeomorphism φ is not the identity.

Let us take a fiber sum of E(1), n times with itself. The fibration we ob-

tain, E(n) = #nE(1), has got 12n singular fibers. It follows from the theorem of

11



B. Moishezon and R. Livne [Mo] that elliptic Lefschetz fibrations over S2 are classi-

fied by their number of singular fibers, which is a multiple of 12. As a consequence,

E(n) is well defined up to isomorphism and each elliptic LFs over S2 is isomorphic

to E(n) for suitable n.

Definition 2.1.7. The notion of Lefschetz fibration can be slightly generalized

to cover the case of fibers with boundary. Then X turns into a manifold with

corners and its boundary, ∂X, becomes naturally divided into two parts: the vertical

boundary ∂vX which is the inverse image π−1(∂B), and the horizontal boundary ∂hX

which is formed by the boundaries of the fibers. We call such fibrations Lefschetz

fibrations with boundary.

2.2 Real Lefschetz fibrations

Definition 2.2.1. A real structure on a smooth 4-manifold X is an orientation

preserving involution cX : X → X, c2X = id, such that the set of fixed points,

Fix(cX), of cX is empty or of the middle dimension.

Two real structures, cX and c′X , are said to be equivalent if there exists an

orientation preserving diffeomorphism ψ : X → X such that ψ ◦ cX = c′X ◦ ψ. A

real structure, cB , on a smooth 2-manifold B is an orientation reversing involution

B → B. Such structures are similarly considered up to conjugation by orientation

preserving diffeomorphisms of B.

The above definition mimics the properties of the standard complex conjugation

on complex manifolds. In fact, around a fixed point, every real structure defined as

above, behaves like the complex conjugation.

We will call a manifold together with a real structure a real manifold and the

set Fix(c) the real part of c.

It is well known that for given g there is a finite number of equivalence classes

of real genus-g surfaces (Σg, c), which can be distinguished by their types and the

number of real components. Namely, one distinguishes two types of real structures:

separating and nonseparating. A real structure is called separating if the complement

of its real part has two connected components, otherwise we call it nonseparating

(in fact, in the first case the quotient surface Σg/c is orientable, while in the second

case it is not). The number of real components of a real structure (note that the

real part forms the boundary of Σg/c), can be at most g + 1. This estimate is

known as Harnack inequality [KRV]. By looking at the possible number of connected
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components of the real part, one can see that on Σg there are 1+ [g2 ] separating real

structures and g + 1 nonseparating ones. Let us also note that, in the case of genus

1, the number of real components, which can be 0, 1, or 2, is enough to distinguish

the real structures.

Definition 2.2.2. A real structure on a Lefschetz fibration π : X → B is a pair of

real structures (cX , cB) such that the following diagram commutes

X
cX

//

π

��

X

π

��

B
cB

// B.

A Lefschetz fibration equipped with a real structure is called a real Lefschetz fibra-

tion, and is referred as RLF .

When the fiber genus is 1, we call it real elliptic Lefschetz fibration, or abbreviated

RELF .

Definition 2.2.3. An R-marked RLF is a triple (π, b, ρ) consisting of a real Lef-

schetz fibration π : X → B, a real regular value b and a diffeomorphism ρ : Σg → Fb

such that cX ◦ ρ = ρ ◦ c where c : Σg → Σg is a real structure. Let us note that if

∂B 6= ∅ then b will be chosen in ∂B.

A C-marked RLF is a triple (π, {b, b̄}, {ρ, cX ◦ ρ}) including an RLF , π : X →
B, a pair of complex conjugate regular values b, b̄, and a pair of diffeomorphisms

ρ : Σg → Fb, ρ̄ = cX ◦ρ : Σ̄g → F̄b̄ where Fb, F̄b̄ = cX(Fb) are the fibers over b and b̄,

respectively. As in the case of R-marking, if ∂B 6= ∅ then we choose b in ∂B. Later

on, when precision is not needed we will denote Fb, F̄b̄ by F, F̄ , respectively.

Two real Lefschetz fibrations, π : X → B and π′ : X ′ → B′ are said to be

isomorphic if there exist orientation preserving diffeomorphisms H : X → X ′ and

h : B → B′, such that the following diagram is commutative

X
H

//

π
��

X ′

π′

��

X

cX ??
�

�
�

H
//

π

��

X ′
cX′

??
���

π′

��

B
h

// B′

B
h

//

cB ??
�

�
�

B′.
cB′

??
���
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Two R-marked RLFs, are called isomorphic if they are isomorphic as RLFs,
h(b) = b′, and the following diagram is commutative

F
H

//

cX

��

F ′

cX′

��

Σg
ρ′

::tttttρ

ddJJJJJ

c

��

F
H

// F ′

Σg.
ρ′

::ttttρ

ddJJJJJ

Two C-marked RLFs are called isomorphic if they are isomorphic as RLFs and

the following diagram is well defined and commutative

F
H

//

cX

��

F ′

cX′

��

Σg
ρ′

::tttttρ

ddJJJJJ

id

��

F̄
H

// F̄ ′

Σ̄g.
ρ̄′

::ttttρ̄

ddJJJJJ

Definition 2.2.4. A real Lefschetz fibration π : X → B is called directed if the real

part of (B, cB) is oriented.

For example, if cB is separating then we consider an orientation on the real part

inherited from one of the halves B \ Fix(cB).

Two directed RLFs are isomorphic if they are isomorphic as RLFs with the

additional condition that the diffeomorphism h : B → B preserves the chosen ori-

entation on the real part.

Example 2.2.5. The construction given in Example 2.1.5 can be made equivariantly

to obtain an RLF . Namely, we pick out two generic real cubics C1, C2 in (CP 2, conj)

given by real degree three polynomials Q1, Q2 and consider, following Example 2.1.5,

the associated elliptic Lefschetz fibration CP 2#9CP 2 → CP 1. The set of 9 blown

up points and the fibration are clearly conj-invariant. In this way we obtain a real

E(1). Note that unlike in the complex case the real fibration does depend on the

choice of real cubics C1, C2 already since any even number of the 9 blown up points

can happen to be imaginary.
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The fiber sum of two directed R-marked RLFs is defined as the fiber sum of

two marked LFs. Notice that by definition the gluing diffeomorphism is equivariant

once D2 is chosen equivariant. Evidently, the ultimate RLF is directed.

For RLFs without marking, one can start from choosing equivariantly diffeo-

morphic regular real fibers and then follow the construction with markings.

Remark 2.2.6. The construction of Example 2.2.5 can be applied to pencils of

curves of arbitrary degree d. In this way, we obtain RLFs over CP 1 ∼= S2 with

regular fibers diffeomorphic to a genus g = (d−1)(d−2)
2 surface.

Definition 2.2.7. Let π : X → B be an LF . We define the conjugate LF as the

fibration π̄ : X → B̄ which coincides with π as a map and differs from the initial

LF only by changing the orientation of the base and the fibers.

To introduce a conjugate of a marked LF , we preselect an orientation reversing

diffeomorphism j : Σg → Σg and define the conjugate marked LF as (π̄, b, ρ ◦ j).

Remark 2.2.8. It is obvious that two conjugate Lefschetz fibrations have the same

set of critical points and critical values. Indeed, let ψ : U → C2 and φ : V → C be

the local charts of an LF such that φ ◦ π ◦ ψ−1 is (z1, z2) → z1
2 + z2

2. Then local

charts of the conjugate LF can be chosen as conj ◦ψ : U → C̄2 and conj ◦φ : V → C̄

with (z̄1, z̄2) → z̄2
1 + z̄2

2 .

Definition 2.2.9. An LF is called weakly real if it is equivalent to its conjugate,

or in other words if there exist an orientation reversing diffeomorphism, h, of B and

an orientation preserving diffeomorphism, H, of X such that the following diagram

commutes

X
H

//

π

��

X

π

��

B
h

// B̄.

In particular, every RLF is weakly real. At this point, one can naturally doubt

if the converse is true or not. In case of g = 1, a partial answer will be given in

Section 3.7.
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CHAPTER 3

factorization of the monodromy of

real lefschetz fibrations

3.1 Fundamental factorization theorem for real

Lefschetz fibrations

We will discuss below decomposability of the monodromy of real Lefschetz fibrations

over a 2-disc into a product of two involutions, presenting the real structures of the

two real fibers. This is a well-known fundamental fact, which we generalize to weakly

real Lefschetz fibrations in Theorem 3.1.2. The restriction of a Lefschetz fibration to

the boundary of the 2-disc is a usual fibration over a circle, and it will be convenient

to extend the terminology from the previous chapter to such fibrations.

More precisely, let π : Y → S1 be a fibration whose fiber is a compact connected

oriented smooth 2-manifold F . Shortly, such π will be called an F -fibration. In

particular, when the genus of F is equal to 1, we call π an elliptic F -fibration

Definition 3.1.1. An F -fibration π : Y → S1 is called weakly real if there is an

orientation preserving diffeomorphism H : Y → Y which sends fibers into fibers

reversing their orientations. If H2 = id, then H will be called a real structure on the

F -fibration Y → S1. An F -fibration equipped with a real structure will be called

real.
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Note that H induces an orientation reversing diffeomorphism hS1 : S1 → S1

such that the following diagram commutes

Y
H

//

π

��

Y

π

��

S1
h

S1
// S1.

It is not difficult to see that the set of orientation reversing involutions form a

single conjugacy class in the diffeomorphism group of S1 (the crucial observation is

that any such involution has precisely two fixed points). So, any real F -fibration is

equivariantly isomorphic to an F -fibration whose involution hS1 is standard. Let it

be the complex conjugation cS1 : S1 → S1, z 7→ z̄, z ∈ S1 ⊂ C.

In the case of a weakly real F -fibration, hS1 may be not an involution, however,

it also has precisely two fixed points and can be changed into an involution by an

isotopy. It is not difficult to see that this isotopy can be lifted to an isotopy of H.

Thus, by modification of H we can always make hS1 an involution. So, it is not

restrictive for us to suppose always that hS1 = cS1 both for real and weakly real

F -fibrations.

The restrictions of H to the invariant fibers F± = π−1(±1) will be denoted

h± : F± → F±. In the case of real F -fibrations, we will prefer to use notation cY for

the involution H, and c± for the involutions h±.

It is well known that any F -fibration π : Y → S1 is isomorphic to the projection

Mf → S1 of a mapping torus Mf = F × I�(f(x),0)∼(x,1) of some diffeomorphism

f : F → F . More precisely, if we fix a particular fiber F = Fb = π1(b), b ∈ S1, then

an isomorphism φ : Mf → Y can be chosen so that F × 0 and F × 1 are identified

with the fiber Fb, so that x× 0 7→ x and x× 1 7→ f(x).

An F -fibration π determines a diffeomorphism f up to isotopy and thus provides

a well-defined element in the mapping class group [f ] ∈ Map(F ) called the mon-

odromy of π (relative to the fiber F = Fb). A map f representing the class [f ] will

be also often called monodromy, or more precisely, a monodromy map.

In some cases, we fix a marking ρ : Σg → Fb. Then the diffeomorphism ρ−1◦f◦ρ :

Σg → Σg (the pull-back of f) as well as its isotopy class [ρ−1 ◦ f ◦ ρ] ∈ Map(Σg) will

be called the monodromy of π relative to the marking ρ.

In what follows, we choose the point b in the upper semi-circle, S1
+. The restric-

tion Y+ = π−1(S1
+) → S1

+ of π admits a trivialization φ+ : Y+ → F × S1
+ which is

identical on the fiber F = Fb. This allows us to consider the pull-back of c± via φ,
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namely, the two involutions x 7→ φ+(c±(φ−1
+ (x×±1))) on the same fiber F . We will

preserve notation c± for these involutions.

Theorem 3.1.2. Let π : Y → S1 be a weakly real F -fibration with a distinguished

fiber F = Fb, b ∈ S1
+.

Then the two product diffeomorphisms of the fiber F , (h+)−1◦h−, and h+◦(h−)−1

are isotopic and describe the monodromy of π relative to the fiber F . In particular,

if π is a real F -fibration, then the monodromy can be factorized as f = c+ ◦ c−.

Proof. Consider a trivialization Y− → F×S1
− of the restriction Y− = π−1(S1

−) →
S1
− of π over the lower semi-circle, S1

−, which is the composition of φ+ ◦H : Y− →
S1

+ × F , with the map F × S1
+ → F × S1

−, (x, z) 7→ (x, cS1(z)).
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Fig. 3.1.

If S1 is split into several arcs and a fibration over S1 is glued from trivial fibra-

tions over these arc, then the monodromy is clearly the product of the gluing maps

of the fibers over the common points of the arcs, ordered in the counter-clockwise

direction beginning from a marked point b ∈ S1. In our case, the arcs are S1
+,

S1
−, their common points follow in the order −1, +1, and the corresponding gluing

maps, are h−1
− and h+. This gives monodromy h+ ◦ (h−)−1. If we consider another

trivialization Y− → F × S1
− replacing in its definition H by H−1, then the gluing

maps will be h− and h−1
+ , and the monodromy is factorized as (h+)−1 ◦ h−. 2

Remark 3.1.3. It follows from Theorem 3.1.2 that the diffeomorphisms h−1 ◦ f ◦h
as well as h ◦ f ◦ h−1, where h stands either for h+, or for h−, are all isotopic to

the inverse f−1 of the monodromy f of a weakly real F -fibration π (note that f−1

is the monodromy map of the conjugate F -fibration). In particular, if π is a real

F -fibration, then f−1 = c+ ◦ f ◦ c+ = c− ◦ f ◦ c−.
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Corollary 3.1.4. Consider a weakly real F -fibration π : Y → S1, fix a trivialization

of π+ : Y+ → S1
+, and consider the associated diffeomorphisms h± : F → F . Let

h stands for any of the four maps h±, h−1
± . Then there exists a diffeomorphism

f : F → F representing the monodromy class [f ] ∈ Map(F ) of π, such that f−1 =

h ◦ f ◦ h−1.

In particular, if F -fibration π is real, then one can choose a monodromy map f

such that f−1 = c ◦ f ◦ c.

Definition 3.1.5. A diffeomorphism f : F → F as well as its isotopy class [f ] ∈
Map(F ) will be called real (weakly real) if it is a monodromy of a real (weakly real,

respectively) F -fibration.

Proposition 3.1.6. An F -fibration is real (weakly real) if and only if its monodromy

f is real (weakly real).

Proof. We give the proof for real F -fibrations; the proof for weakly real ones is

analogous. Necessity of the condition in the Proposition is trivial. For proving the

converse, let π : Y → S1 be an F -fibration with the monodromy class [f ] ∈ Map(F ),

and f its representative such that f−1 = c◦f ◦c, where c is some real structure on F .

Presenting Y as F ×I�(f(x),0)∼(x,1), we obtain a well-defined involution cY : Y → Y

induced from the involution (x, t) 7→ (c(x), 1− t) in F × I. It preserves the fibration

structure and acts as c and f ◦ c on the real fibers F × 1
2 and F × 0 = F × 1 respec-

tively. 2

3.2 Homology monodromy factorization of elliptic F -

fibrations

We will characterize all real elliptic F -fibrations by answering the question: which

elements in Map(F ) are real in the case of torus, F = T ?

It is well known that Map(T ) = SL(2,Z), due to the fact that every diffeomor-

phism f : T → T is isotopic to a linear diffeomorphism. The latter diffeomorphisms

by definition are induced on T = R2/Z2 by a linear map R2 → R2 defined by a

matrix A ∈ SL(2,Z). Note that we can naturally identify T = H1(T,R)/H1(T,Z),

and interpret matrix A as the induced automorphism f∗ in H1(T,Z). The latter au-

tomorphism is called the homology monodromy. Since isotopic diffeomorphisms have

the same homology monodromy in H1(T,Z), we obtain well defined homomorphisms
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Map(T ) → Aut+(H1(T,Z)) → SL(2,Z) which are in fact isomorphisms (here Aut+

stand for the orientation preserving automorphisms).

Let a denote the simple closed curve on T represented by the equivalence class

of the horizontal interval I × 0 ⊂ R2, and b is similarly represented by the vertical

interval 0 × I. We have a ◦ b = 1 hence, the homology classes represented by

these curves are integral generators of H1(T,Z). The mapping class group of T is

generated by the Dehn twists ta and tb, which can be characterized by their homology

monodromy homomorphism matrices ta∗ =
(

1 0

1 1

)

, and tb∗ =
(

1 −1

0 1

)

.

Therefore, for elliptic Lefschetz fibrations, the question of characterization of

real monodromy classes [f ] ∈ Map(T ) can be interpreted as the question on the

decomposability of their homology monodromy f∗ ∈ SL(2,Z) into a product of

two linear real structures. The latter structures by definition are linear orientation

reversing maps of order 2 defined by integral (2×2)-matrices. Such decomposability

is equivalent to the property that f∗ is conjugate to its inverse by a linear real

structure. Hence a necessary condition for a matrix A to be real is that both A and

A−1 lies in the same conjugacy classes in the group GL(2,Z).

Recall that there are three types of real structures on T distinguished by the

number of their real components: 0, 1, or 2. We will say that a real structure on T

is even if it has 0 or 2 components, and odd if it has 1 component. Note that the

automorphisms of H1(T,Z) induced by even real structures are diagonalizable over

Z, namely, their matrices are conjugate to
(

1 0

0 −1

)

in GL(2,Z). So, we cannot

determine if the number of components 0 or 2 knowing only the matrix representing

the homology action of the real structure. The homology action of an odd real

structure is presented by a matrix conjugate to
(

0 1

1 0

)

.

3.3 The modular action on the hyperbolic half-plane

Let C2 be considered as the vector space of 2 × 1 matrices over C. Then a matrix

A =
(

a b

c d

)

in GL(2,Z) acts on C2 from the left as matrix multiplication.

(
a b

c d

)(
z1

z2

)

=

(
az1 bz2

cz1 dz2

)

This action can be extended to CP 1 = C2 \ {(0, 0)}�(z1 ,z2)∼(λz1,λz2) since

(
a b

c d

)(
λz1

λz2

)

=

(
aλz1 λbz2

cλz1 λdz2

)

= λ

(
az1 bz2

cz1 dz2

)

.
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Let us identify CP 1 ∼= {(z1, z2) ∈ C2, z2 6= 0} ∪ {∞} ∼= C ∪ {∞} and rewrite

the action of GL(2,Z). We obtain a linear fractional transformation z → az+b
cz+d

where z = z1
z2

. In particular, if A ∈ SL(2,Z), then the transformation preserves the

orientation of C and takes R∪{∞} to itself preserving its orientation. Hence, it gives

rise to a diffeomorphism of the upper half plane H which can be seen as a model

for the hyperbolic plane where the geodesics are the semi-circles centered at a real

point or vertical half-lines which can also be considered as arcs of infinite radius. By

identifying the upper half plane with lower half plane by complex conjugation, one

extends the action of SL(2,Z) to an action of GL(2,Z). The standard fundamental

domain of the action is the set {z| |Re(z)| ≤ 1
2 , |z| ≥ 1} which is shown in the Figure

below.
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Fig. 3.2. The upper half plane model of hyperbolic space, and the standard fundamental
domain of SL(2,Z).

3.4 The Farey Tessellation

Let us identify the upper half plane model with the Poincaré disk model D. We will

consider the disk D together with its boundary R ∪∞ and define a tessellation on

D as follows:

Set ∞ as 1
0 and consider the two fractions 0

1 and 1
0 , spot them on D as the

south and the north poles respectively and connect them with a line which will be

the vertical diameter. Consider their mediant 0+1
1+0 = 1

1 and connect each of them

with a geodesic to the mediant. Apply the same to the fractions {0
1 ,

1
1} and {1

1 ,
1
0}.

Iterating this process one obtains a tessellation of the right semi-disk. By taking the

symmetry one extends the tessellation to D. (See Figure 3.3).

In the literature this tessellation is called the Farey tessellation. Let us denote

the disk together with the Farey tessellation by DF . Note that Farey tessellation is

21



0/1

1/0

1/1

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3 0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3

Fig. 3.3. Tessellation of D.

a tessellation of D by ideal triangles ( i.e. triangles with vertices on the boundary

DF ). In fact, the set of vertices of the triangles is exactly Q ∪ {∞}. Moreover, two

fractions m1

n1
, m2

n2
are connected by a line iff m1n2 −m2n1 = ±1. Hence the action of

GL(2,Z) on D induces an action on DF which is transitive on the geodesics of DF.

Only ±I acts as the identity hence the modular group PGL(2,Z) = GL(2,Z)/ ± I

is the symmetry group of DF where the subgroup PSL(2,Z) = SL(2,Z)/ ± I gives

the orientation preserving symmetries. In what follows we denote by Γ the triangle

with vertices {0, 1,∞}. Note that Γ splits in 3 copies of a fundamental region.

3.5 Elliptic and parabolic matrices

The fixed points of the modular action of a matrix A ∈ PSL(2,Z), A 6= I, in DF

are solutions of z = az+b
cz+d . This gives a quadratic equation cz2 + (d − a)z − b = 0

with the discriminant (d − a)2 + 4bc = (d − a)2 + 4(ad − 1) = (a + d)2 − 4, and

we have 3 cases. If the trace |tr(A)| < 2 then the discriminant is negative and the

modular action is a rotation around an imaginary point (an interior point of DF ).

Such matrices are called elliptic. If |tr(A)| = 2, then the discriminant vanishes, and

A acts as a translation with one fixed rational point, d−a2 (on the boundary of DF ).

Such matrices are called parabolic. The hyperbolic matrices have |tr(A)| > 2 and

define a translation of DF with two fixed quadratically irrational real points (on the

boundary of DF ).

Elliptic Matrices: As mentioned above an elliptic matrix, A ∈ PSL(2,Z) act

on DF as rotation around a point in the interior of DF . The center of the rotation

belongs to one of the triangles of the tessellation. Without loss of generality let us

assume that the fixed point belongs to the triangle Γ. If the fixed point belongs to

an edge of Γ, then A rotates Γ by an angle π. The other possibility is rotation by
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angle ±2π
3 around the center of Γ. Note that the pair of rotations by angles ±2π

3

are conjugate to each other via an orientation reversing matrix from PGL(2,Z).

Since PGL(2,Z) acts transitively on the triangles of the tessellation rotation by

π around the center of an edge of Γ and rotation by 2π
3 around the center of Γ defines

the conjugacy classes in PGL(2,Z) of elliptic matrices of PSL(2,Z).

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3

.π.

0/1

1/0

1/1

2/1

1/2

3/1

3/2

2/3

1/3

-2/1

-1/1

-3/1

-3/2

-1/2

-2/3

-1/3

.π/3

Fig. 3.4. Modular actions of elliptic matrices, Eπ,E 2π
3

.

With respect to the triangle Γ, we can consider following matrices representing

these two conjugacy classes. Eπ =
(

0 1

−1 0

)

, E 2π
3

=
(

0 1

−1 1

)

.

Each matrix A in PSL(2,Z) defines two matrices ±A in SL(2,Z). It is not

hard to see that the matrices ±Eπ are conjugate to each other via reflection with

respect to the edge containing the fixed point while ±E 2π
3

are not, simply by the

fact that they have different traces. Hence, there are three conjugacy classes in

GL(2,Z), Eπ,±E 2π
3

, of matrices in SL(2,Z) where E 2π
3

gives the clockwise rotation

while −E 2π
3

is conjugate to the clockwise rotation of DF with respect to the center

of the triangle Γ.

Parabolic Matrices: The fixed point of the action of a parabolic matrix in

PSL(2,Z) is rational, thus it is a common vertex of an infinite set of triangles of

DF . Since PGL(2,Z) acts transitively on the rational points, it is not restrictive to

assume that the fixed point of the translation is 0.

Hence, a parabolic element can shift the triangle Γ by arbitrary number n trian-

gles to the right or to the left(Figure 3.5) fixing 0. The left shift is conjugated to the

right shift by the reflection with respect to the vertical line. Hence the equivalence

classes in PGL(2,Z) are determined by the number n of shifts. Such a shift can be

represented by the matrix Pn =
(

1 0

n 1

)

, n ∈ N.
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Fig. 3.5. Modular actions of parabolic matrices Pn.

The matrix Pn ∈ PSL(2,Z) corresponds to matrices ±Pn ∈ SL(2,Z). Note that

±Pn can not be in the same conjugacy class since they have different traces. Thus

the conjugacy classes in GL(2,Z) of parabolic matrices in SL(2,Z) are determined

by the integer ±n. A representative of conjugacy classes can be chosen as ±
(

1 0

n 1

)

,

n ∈ N.

3.6 Hyperbolic matrices

A hyperbolic matrix A ∈ PSL(2,Z) acts on DF as translation fixing two irrational

points. The geodesic (a semicircle), lA, connecting these fixed points, oriented in

the direction of translation, remains invariant under the translation, so A preserves

also the set of the triangles of DF which are cut by lA.
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..

invariant
geodesic

Fig. 3.6. Modular action of a hyperbolic matrix.

With respect to the orientation of lA, such triangles are situated in two different

ways: a set of triangles with a common vertex lying on the left of lA followed by a

set of triangles with common vertex lying on the right of lA, see Figure 3.7.
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Fig. 3.7. Periodic pattern of the truncated triangles of the Farey tessellation.

Let us label right and left triangles by R and L, respectively. Then we encode

the arrangement of left and right triangles with respect to lA as an infinite word,

. . . LL . . . LRR . . . RLL . . . L . . ., of 2 letters. This word is called the cutting word

of lA. Let us fix a point p at the intersection of lA with an edge separating two

types of triangles. Relative to this point, we obtain a sequence, (a1, a2, a3, . . .)p,

from the cutting word where a2i−1 stands for the number of consecutive triangles

of one type while a2i, i = 1, 2, . . . is the number of consecutive triangles of the

other type. For example, if the cutting word with respect to p reduced to the word

LL . . . L
︸ ︷︷ ︸

a1

RR . . . R
︸ ︷︷ ︸

a2

LL . . . L
︸ ︷︷ ︸

a3

. . . = La1Ra2La3 . . ., then we obtain (a1, a2, . . .)p. This

sequence is called the cutting sequence relative to the point p.

Left and right triangles form a periodic pattern and the action of A is a shift by

the period, so the cutting sequence has a period of even length. Note that choice

of the point p is not canonical, hence we can encode the period only as a cycle,

[a1a2 . . . a2n−1a2n]A, which we call the cutting period-cycle associated to the matrix

A.

Because of the fact that PGL(2,Z) is the full symmetry group of DF , the cut-

ting period-cycle of a hyperbolic matrix A ∈ PSL(2,Z) gives the complete in-

variant of the conjugacy class in PGL(2,Z) of A. In other words, two matrices

A,B ∈ PSL(2,Z) are in the same conjugacy class in PGL(2,Z) if and only if

[a1a2 . . . a2n]A = [aσ(1)aσ(2) . . . aσ(2n)]B for a cyclic permutation σ. Hence we will

denote the conjugacy classes in PGL(2,Z) of hyperbolic matrices of PSL(2,Z) by

the cycle [a1a2 . . . a2n] (defined up to cyclic ordering).
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It can be seen geometrically that with respect to the triangle Γ a matrix repre-

senting a translation corresponding to the cutting period-cycle [a1, a2, . . . , an] can

be chosen as the following product of parabolic matrices.

(
1 a1

0 1

) (
1 0

a2 1

)

· · ·
(

1 a2n−1

0 1

)(
1 0

a2n 1

)

.

For the sake of simplicity, let us denote U =
(

1 1

0 1

)

and V =
(

1 0

1 1

)

. Then

the above product is written as Ua1V a2 . . . V a2n . Note that U is conjugate to V in

PGL(2,Z) but not in PSL(2,Z).

Let us note that in certain cases, namely if lA intersects the vertical line of DF ,

(since the action of PGL(2,Z) is transitive on the geodesics of DF , up to conjugation

this property is always satisfied), the cutting sequence of lA with respect to the

point of intersection of lA with the vertical line is related to the continued fraction

expansion of the fixed point, ξ, which is the “end point” of lA with respect to the

orientation. The corresponding theorem is due to C. Series [S1, S2].

Theorem 3.6.1 ([S1, S2]). Let x > 1, and let l be any geodesic ray joining some

point p on the vertical line of DF to x, oriented from p to x. Suppose that cutting

word of l with respect to p is La1Ra2La3 . . .. Then x = a1 + 1
a2+ 1

a3+···

.

Note that if 0 < x < 1 then the sequence starts with R and x = 1
a1+ 1

a2+ 1
a3+···

.

If x < 0 everything applies with x replaced by −x and with R and L interchanged.

A matrix A ∈ PSL(2,Z) corresponds to ±A ∈ SL(2,Z). Since ±A have different

traces the cutting period-cycle [a1a2 . . . a2n]A, together with the sign determine the

conjugacy of ±A in GL(2,Z). A representative of the conjugacy classes of ±A can

be chosen as ±Ua1V a2 . . . V a2n .

3.7 Real factorization of elliptic and parabolic matrices

Let us first recall that the modular action of linear real structures
(

1 0

0 −1

)

,
(

0 1

1 0

)

on the hyperbolic plane D is z 7→ −z̄ and z 7→ 1
z̄

respectively. Geometrically, these

are reflections with respect to the vertical and, respectively, the horizontal lines, see

Figure 3.8. In particular, the first reflection takes our basic triangle Γ with vertices

{0, 1,∞} to the triangle with vertices {0,−1,∞}, and the second one takes Γ to

itself.
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Fig. 3.8. Modular actions of linear real structures.

Theorem 3.7.1. Every elliptic and parabolic matrices in SL(2,Z) is a product of

two linear real structures.

Proof. The explicit real decomposition for each conjugacy class of elliptic ma-

trices is given below.

E 2π
3

=

(
0 1

−1 1

)

=

(
1 0

1 −1

) (
0 1

1 0

)

−E 2π
3

∼=
(

−1 1

−1 0

)

=

(
1 −1

0 −1

) (
0 1

1 0

)

Eπ =

(
0 1

−1 0

)

=

(
1 0

0 −1

) (
0 1

1 0

)

.

Figure 3.9 illustrates geometrically the above decompositions in terms of the

corresponding modular action of the matrices.
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Fig. 3.9. Decompositions of modular actions of elliptic matrices.
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A real decomposition for each conjugacy class of parabolic matrices can be given

as follows.

Pn =

(
1 0

n 1

)

=

(
1 0

n −1

)(
1 0

0 −1

)

−Pn =

(
−1 0

−n −1

)

=

(
1 0

n −1

)(
−1 0

0 1

)

.

2

Example 3.7.2. Figure 3.10 shows the real decomposition of the modular action

of matrices
(

1 0

n 1

)

for n = 1, 2.
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Fig. 3.10. Decompositions of modular actions of parabolic matrices P1, P2.

3.8 Criterion of factorizability for hyperbolic matrices

Lemma 3.8.1. If the cutting period-cycle of a hyperbolic matrix A is [a1a2 . . . a2n]A,

then the cutting period-cycle of A−1 is [a2na2n−1 . . . a1]A−1 .

Proof. Note that lA = lA−1 with opposite orientation. So, the cutting word of

A−1 can be obtained from the cutting word of A by taking the mirror image of the

word and interchanging L with R. Interchanging L and R does not effect the cutting

period-cycle, hence the cutting period-cycle of A−1 is the reverse [a2na2n−1 . . . a1]A−1

of the cutting period-cycle [a1a2 . . . a2n] of A. 2

Definition 3.8.2. A finite sequence (a1a2 . . . ak) is called palindromic if it is equal

to the reversed sequence (akak−1 . . . a1). We call k the length of the sequence.
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Definition 3.8.3. A cutting period-cycle is called bipalindromic if there is a cyclic

permutation of it such that the permuted period can be subdivided into two palin-

dromic sequences.

In particular, if the cutting period-cycle is subdivided into two palindromic se-

quences of odd length (even length) we call it odd-bipalindromic (respectively, even-

palindromic).

For example, if the period [1213] is odd-bipalindromic, while the period [1122] is

even-bipalindromic.

If A−1 = Q−1AQ for some Q ∈ PGL(2,Z) then by Lemma 3.8.1 we get that

[aσ(1), aσ(2), . . . , aσ(2n)] = [a2n, a2n−1, . . . , a1] for some cyclic permutation σ. This

implies that the cutting period-cycle [a1a2 . . . a2n] is bipalindromic.

Note that when the cutting period-cycle is odd-bipalindromic then the symmetry

of palindromic pieces lifts to a symmetry of left/ right triangles corresponding to

cutting period-cycle. This is not true for even-bipalindromic periods. For example,

for [1213] we have 121 ∼ LR2L = LRRL and 3 ∼ R3 = RRR while for [1122] we

have 11 ∼ LR and 22 ∼ L2R2 = LLRR.

Theorem 3.8.4. A hyperbolic matrix A is a product of two linear real structures if

and only if its cutting period-cycle [a1a2 . . . a2n]A is odd-bipalindromic.

Lemma 3.8.5. Let A ∈ PSL(2,Z) such that A−1 = Q−1AQ for some Q ∈ PGL(2,Z)

and let lA be the geodesic invariant under the action of A. Then Q(lA) = lA.

Proof. Clearly, if A(lA) = lA then A−1(lA) = lA. Hence,

A−1(lA) = Q−1AQ(lA) ⇔ Q(lA) = A(Q(lA)).

By the uniqueness of the invariant geodesic we get Q(lA) = lA. 2

Lemma 3.8.6. Let A,Q, lA as above. If the cutting period-cycle [a1a2 . . . a2n]A of

A is even-bipalindromic, then Q is orientation preserving.

Proof. By Lemma 3.8.5 we haveQ(lA) = lA, henceQ preserves triangles meeting

lA. The action of Q on DF is a linear fractional transformation, so it preserves

the angles. An analysis on the angles at meeting points of lA and the edges of

the triangles will forbid the existence of the orientation reversing map in the case
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that the cutting period-cycle is even-bipalindromic. Let us assume that the cutting

period-cycle has the form

[a1a2 . . . akak . . . a2a1
︸ ︷︷ ︸

P

a′1a
′
2 . . . a

′
sa

′
s . . . a2a

′
1

︸ ︷︷ ︸

P ′

]

where s + k = n and P and P ′ are two palindromic pieces. Substituting the

pieces P,P ′ to the cutting sequence we obtain a sequence of P and P ′ of the form

PP ′PP ′ . . .. Clearly, the action of the matrix A on the sequence we obtain, corre-

sponds to a shift by two: it takes P to P , P ′ to P ′. Let us call edges which separate

the triangles corresponding to P from the triangles corresponding to P ′ as bound-

aries. There are two types of boundaries: if we go in the direction of translation

along lA we encounter boundaries where we pass from P to P ′ and boundaries where

we pass from P ′ to P . Let us denote such boundaries by ei and e′i respectively.

Each triangle of DF which is cut by lA splits into two pieces one of which is a

triangle. Let τi (τ ′i) be triangles having one edge ei (e′i, respectively) and obtained

as the union of triangle-pieces of triangles of DF with a common vertex of one side

of lA, see Figure 3.11. Let αi, (α′
i) be the interior angles of τi (τ ′i , respectively)

between the edges ei (e′i, respectively) and lA. Let βi and β′i be the other interior

angles of τi and τ ′i corresponding to edges on lA.

Note that since A shift triangles by the period PP ′, A takes αi to αi+1 (similarly

α′
i to α′

i+1). Hence all αi (similarly all α′
i) are equal. Let α = αi for all i (and α′ = α′

i

for all i.)
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Fig. 3.11.

Moreover, there is an elliptic matrix in the conjugacy classes of Eπ which fixes

the point of intersection of lA with the middle edge of P or P ′(such edge exists since
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the pieces have even length). Such matrix interchanges the edges ei to e′i. Hence

α = α′. (In the same way we obtain β = βi = β′i for all i.)

P

a aa

P'

e e' '

Fig. 3.12.

Let us assume that α < π
2 . (If it is not so, we can replace α with β. Being two

interior angles of a triangle, α and β can not be both grater then π
2 .)
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Fig. 3.13.

Let us chose an orientation of DF by specifying (v1, v2) where v1 is a tangent

vector of lA and v2 is the tangent vector of ei or e′i such that the angle α between v1

and v2 is α < π
2 , see Figure 3.13. The proof follows from the following observation.

The matrix Q takes (v1, v2) to itself since it preserves lA and the set of boundaries

of P and P ′ hence the angles between them. However, an orientation reversing map

can not preserve the angle both α < π
2 between the vectors (v1, v2) and the vectors

at the same time.2

Proof of the Theorem 3.8.4 (⇒) The matrix A is a product of two liner

real structures, which implies that the cutting period-cycle is odd-bipalindromic by

Lemma 3.8.6.
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(⇐) If the cutting period-cycle is odd-bipalindromic, then up to cyclic ordering,

the period cutting-cycle has two palindromic pieces of odd length. Let us assume

that the cutting period-cycle is of the form

[a1a2 . . . akak+1ak . . . a2a1a
′
1a

′
2 . . . a

′
sa

′
s+1a

′
s . . . a

′
2a

′
1]

where (2k+1)+(2s+1) = 2n. Then for some Q ∈ PGL(2,Z), we have B = Q−1AQ

such that B = Ua1V a2 . . . Ua2V a1Ua
′
1V a′

2 . . . Ua
′
2V a′

1 . Matrices Uai and V ai have the

following real decompositions,

Uai =

(
1 −ai

0 −1

)(
1 0

0 −1

)

andV ai =

(
1 0

0 −1

)(
1 0

−ai −1

)

.

Hence the product Ua1V a2 . . . Ua2V a1 can be rewritten in the form

(
1 −a1

0 −1

)

· · ·
(

1 0

−ak −1

)(
1 −ak+1

0 −1

)(
1 0

−ak −1

)

· · ·
(

1 −a1

0 −1

)

.

This gives a linear real structure, since it is a conjugate of
(

1 −ak+1

0 −1

)

. Sim-

ilarly, the product Ua
′
1V a′2 . . . Ua

′
2V a′1 gives a linear real structure conjugate to

(
1 −as+1

0 −1

)

. 2

Theorem 3.8.7. Every elliptic F -fibration is real if and only if it is weakly real.

Proof. Theorem follows from the following observations

(1) π : Y → S1 is real if and only if the monodromy f is real. i.e. f−1 = c◦f ◦ c,
where c is a real structure. (Proposition 3.1.6).

(2) π : Y → S1 is weakly real if and only if the monodromy f is weakly real.

i.e. f−1 = h ◦ f ◦ h−1, where h is an orientation reversing diffeomorphism. (Propo-

sition 3.1.6).

(3) f−1 = c ◦ f ◦ c iff f−1 = h ◦ f ◦ h−1.

We only need to prove the observation (3).

Obviously f is real ⇒ f is weakly real.

For the converse note that, if f−1 = h ◦ f ◦ h, where h is orientation reversing,

then the cutting period-cycle [a1a2 . . . a2n−1a2n]f∗ of the corresponding homology

monodromy f∗ is odd-bipalindromic by Lemma 3.8.6. Then by Proposition 3.8.4,

we have f−1 = c ◦ f ◦ c, for a real structure c. 2
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CHAPTER 4

real lefschetz fibrations around

singular fibers

It is well known that a singular fiber of a Lefschetz fibration is obtained from a nearby

regular fiber, F , by pinching a simple closed curve, a ⊂ F , the so-called vanishing

cycle. In a neighborhood of a singular fiber, a Lefschetz fibration is determined by

the monodromy, which is a positive Dehn twist, ta, along the vanishing cycle [K].

Recall that ta is a homeomorphism of F obtained by cutting F along a and gluing

back after one full twist in the positive direction.

In this chapter we classify and enumerate the real structures in a neighborhood

of a real singular fiber of a real Lefschetz fibration. Such a neighborhood can be

viewed as a Lefschetz fibration over a discD2 with a unique critical value q = 0 ∈ D2.

Without loss of generality, we may assume that the complex conjugation, conj in

D2 is the standard one, induced from C ⊃ D2. We call such fibrations elementary

Lefschetz fibrations (real or not). We start with an exposition of the techniques

giving the (well known) classification of Lefschetz fibrations in the non-real setting

and then generalize it for the real setting.

4.1 Elementary Lefschetz fibrations

Let (π : X → D2, b, ρ : Σg → Fb) be an elementary marked LF . By definition

there exist local charts (U, φU ), (V, φV ) around the critical point p ∈ π−1(0) and the

critical value 0 ∈ D2, respectively, such that U , V are closed discs and π|U : U → V

is isomorphic (via φU and φV ) to ξ : E → Dǫ, where E = {(z1, z2) ∈ C2 : |z1| ≤
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√
ǫ,

∣
∣z2

1 + z2
2

∣
∣ ≤ ǫ2} and Dǫ = {t ∈ C : |t| ≤ ǫ2}, 0 < ǫ < 1 with ξ(z1, z2) = z2

1 + z2
2 .

Replacing the Lefschetz fibration by an isomorphic one over a smaller base, we can

assume that Dǫ = D2 and b ∈ ∂Dǫ and the critical value q = 0 ∈ Dǫ.

The projection (z1, z2) → z1 maps each fiber ξ−1(t) = {(z1, z2) : z2
1 + z2

2 = t}
of ξ to the disc |z1| ≤ √

ǫ. This mapping represents the fiber ξ−1(t) as a two

sheeted covering ramified at z1 = ±
√
t. Therefore, topologically the regular fibers

ξ−1(t), t 6= 0, are cylinders and the fiber ξ−1(0) is a cone obtained from a nearby

fiber by pinching a simple closed curve, a, the vanishing cycle. Furthermore, such a

curve a realizes a non-trivial homology class in ξ−1(t) and, hence, it is unique up to

isotopy in ξ−1(t).

Recall that ∂E is naturally divided in two parts, ∂vE and ∂hE, see Defini-

tion 2.1.7. Let us fix a marking s : S1 × I → ξ−1(b), I = [0, 1]. Then, using the

double sheeted coverings of V ramified at z1 = ±
√
t, the vertical boundary ∂vE =

ξ−1(∂Dǫ) → ∂Dǫ can be identified with S1 × I × [0, 1]�(ta(x),0)∼(x,1) → [0, 1]�0∼1

and the horizontal boundary ∂hE → Dǫ with S1 ×Dǫ → Dǫ.

The complement of U in π−1(V ) does not contain any critical point. Therefore,

X can be written as union of two LFs with boundary: one of them, U → V , is

isomorphic to E → Dǫ, and the other one is isomorphic to the trivial fiber bun-

dle R → Dǫ whose fibers are diffeomorphic to the complement of an open regular

neighborhood of the vanishing cycle a in Fb.

Let Ag be the set of isotopy classes of simple closed non-contractible (non-

oriented) curves on Σg, and let Vg be the set of isotopy classes of non-contractible

embeddings ν : S1 × I → Σg. We denote by Lg the set of isomorphism classes of

elementary marked genus-g Lefschetz fibrations and define Ω̂ : Vg → Lg such that

Ω̂([ν]) = [Lν ] where [Lν ] stands for the isomorphism class of the Lefschetz fibration

Lν . The construction of Lν is as follows.

Let us choose a representative ν of [ν], and let Σν
g denote the closure of Σg\ν(S1×

I). Consider the trivial fibration Rν = Σν
g × Dǫ → Dǫ with horizontal boundary

∂Σν
g × Dǫ → Dǫ. We take (ξ : E → Dǫ, b, s : S1 × I → ξ−1(b)) as above, switch

the marking to s ◦ ν−1 : ν(S1 × I) → ξ−1(b), and denote by Eν → Dǫ the marked

Lefschetz fibration (ξ : E → Dǫ, b, s ◦ ν−1 : ν(S1 × I) → ξ−1(b)). Then Lν → Dǫ

and its marking ρν : Σg → Fb is obtained by gluing Rν → Dǫ and Eν → Dǫ along

their trivial horizontal boundaries.
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Lemma 4.1.1. Ω̂ : Vg → Lg is a well defined map.

Proof. Let ν, ν ′ : S1 × I → Σg be two isotopic embeddings, and let ψt :

S1 × I → Σg, t ∈ [0, 1], be a continuous family of embeddings such that ψ0 = ν and

ψ1 = ν ′. Then, there exists an ambient isotopy Ψt : Σg → Σg such that Ψ0 = id and

ψt = Ψt ◦ ψ0. Clearly, Ψ1 induces diffeomorphisms Rν → Rν′ and Eν → Eν′ , which

respects the gluing and the fibrations, so that it gives an equivalence of Lν → Dǫ

and Lν′ → Dǫ as marked fibrations. Hence [Lν ] = [Lν′ ]. 2

We consider the map o : Vg → Ag such that o([ν]) = [ν(S1 ×{1
2})] = [a]. Due to

the uniqueness of regular neighborhoods, the mapping o is a two sheeted covering:

the two elements of a fiber o−1([a]) corresponding to opposite orientations of a.

Since the automorphism (z1, z2) → (z1,−z2) of E → Dǫ is reversing the orientation

of the vanishing cycle (or, equivalently, since the Dehn twist does not depend on the

orientation on the vanishing cycle), the map Ω̂ descends to a well defined map Ω

and the following diagram commutes

Vg
Ω̂

��

o
// Ag

Ω
~~||

||
||

||

Lg.

Remark 4.1.2. The above diagram implies that the isomorphism class of resulting

fibration Lν → Dǫ does only depend on [a] = o([ν]). From now on we will denote

Lν by La.

Theorem 4.1.3. Ω : Ag → Lg is a bijection.

Proof. The surjectivity is already shown at the beginning of this section. Let

us show that Ω is injective. Consider [a], [a′] ∈ Ag such that Ωg([a]) = Ωg([a
′]). We

will show that [a] = [a′]. Since Ω is well defined, for some representatives a, a′ of

[a], [a′] respectively, (La → Dǫ, b, ρν : Σg → Fb) is isomorphic to (La′ → Dǫ, b
′, ρν′ :

Σg → F ′
b′).
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Then there exist orientation preserving diffeomorphisms H : La → La′ and

h : Dǫ → Dǫ such that we have the following commutative diagram

La
H

//

π

��

La′

π′

��

Dǫ
h

// Dǫ

where h(b) = b′ and H ◦ ρν = ρν′ .

The diffeomorphism H necessarily takes the critical point to the critical point

hence it takes the corresponding vanishing cycle a to a curve in a regular neighbor-

hood of a′. Since in a cylinder all non-contractible closed curves are isotopic, H(a)

is isotopic to a′. Moreover, since H ◦ ρ = ρ′, we have H(ρν(a)) = ρν′(a) and hence

ρν′(a) is isotopic to ρν′(a
′).

Let ψt : F ′
b′ → F ′

b′ , t ∈ [0, 1] such that ψ0 = id and ψ1(ρ
′(a)) = ρ′(a′). Then

Ψt = ρ′−1 ◦ ψt ◦ ρ′ : Σg → Σg provides an isotopy from a to a′. 2

To deal with Lefschetz fibrations without marking we introduce the following

definition. Two simple closed curves, a and a′, on Σg are called conjugate if there

is an orientation preserving diffeomorphism of Σg which carries a to a′. Note that

isomorphic LFs give conjugate vanishing cycles by the following evident lemma.

Lemma 4.1.4. If there exists a diffeomorphism φ : Σg → Σg such that φ(a) is

isotopic to a then there exists a diffeomorphism ψ of Σg with ψ(a) = a′. 2

Proposition 4.1.5. There is a one-to-one correspondence between the classes of

elementary Lefschetz fibrations (non-marked) and the set of conjugacy classes of

non-contractible simple closed curves on Σg.

Proof. The proposition follows from Lemma 4.1.4 and Theorem 4.1.3. 2

Corollary 4.1.6. There are 1+[g2 ] isomorphism classes of elementary (non-marked)

genus-g Lefschetz fibrations.

Proof. Topologically, there are two types of simple closed curves on Σg: sepa-

rating and nonseparating. Up to diffeomorphism there exists only one nonseparating

curve.

The separating curves are determined by how they divide the genus in two pos-

itive integer summands (the summands are positive because we should exclude the
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case when the curve bounds a disc in Σg, since pinching such a curve creates a sphere

with self intersection -1). Hence, totally we obtain 1 + [g2 ] many local models. 2

4.2 Elementary Real Lefschetz fibrations

Let (π : X → D2, b, ρ : Σg → Fb) be an R-marked elementary real Lefschetz

fibration. We classify such fibrations up to isomorphism then obtain a classification

of C-marked and non-marked RLFs.
As in the non-real case, there exist equivariant local charts (U, φU ), (V, φV )

around the critical point p ∈ π−1(0) and the critical value 0 ∈ D2, respectively,

such that U and V are closed discs and π|U : (U, cU ) → (V, conj ) is equivariantly

isomorphic (via φU and φV ) to either of ξ± : (E±, conj ) → (Dǫ, conj ), where

E± = {(z1, z2) ∈ C2 : |z1| ≤
√
ǫ,

∣
∣z2

1 ± z2
2

∣
∣ ≤ ǫ2}

Dǫ = {t ∈ C : |t| ≤ ǫ2}, 0 < ǫ < 1

with ξ±(z1, z2) = z2
1 ± z2

2 ,

The above two real local models ξ± : E± → Dǫ can be seen as two real structures

on ξ : E → Dǫ. These two real structures are not equivalent. The difference can be

seen already at the level of the singular fibers: in the case of ξ+ the two branches

are imaginary and they are interchanged by the complex conjugation; in the case of

ξ− the two branches are both real (see Figure 4.1 where the two halves of the cone

correspond to the two branches so that the real structure becomes a corresponding

reflection).

To understand the action of the real structures on the regular real fibers of ξ±,

we can use the branched covering defined by the projection (z1, z2) → z1. Thus, we

obtain that:

• in the case of ξ+, there are two types of real regular fibers; the fibers Ft with

t < 0 have no real points, their vanishing cycles have invariant representatives

(that is c(at) = at set-theoretically), and in this case, c acts on the invariant

vanishing cycles as an antipodal involution; the fibers Ft with t > 0 has a circle

as their real part and this circle is an invariant, pointwise fixed, representative

of the vanishing cycle;
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Fig. 4.1. Actions of real structures on the singular fibers of ξ±.

• in the case of ξ−, all the real regular fibers are of the same type and the

real part of such a fiber consists of two arcs each having its endpoints on the

two different boundary components of the fiber; the vanishing cycles have still

invariant representatives and c acts on them as a reflection.

(In Figure 4.2, all types of the real regular fibers and vanishing cycles of ξ± are

shown.)

z + z1
22
2

Real Part

= -r

0 r-r

z + z1
22
2=rz + z1

22
2=0

z + z1
22
2(z , z )1 2

c c
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Real Part
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z - z1
22
2 =rz - z1

22
2 =0

z - z1
22
2(z , z )

1 2

c c

a a

Fig. 4.2. Nearby regular fibers of ξ± and vanishing cycles.

Using once more the ramified covering (z1, z2) → z1, we observe that the horizon-

tal part of the fibration ξ± is equivariantly trivial and, moreover, has a distinguished

equivariant trivialization. On the other hand, since the complement of U in π−1(V )

does not contain any critical point, X can be written as union of two RLFs with

boundary: one of them, U → V , is isomorphic to ξ± : E± → Dǫ, and the other one

is isomorphic to the trivial real fiber bundle R→ Dǫ whose fibers are equivariantly
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diffeomorphic to the complement of an open regular neighborhood of the vanishing

cycle a in Fb. The two types of models, with ξ+ and with ξ−, can also be distin-

guished by the action of the complex conjugation on the boundary components of

the real fiber of R → Dǫ: in the case of ξ+ it switches the boundary components,

and in the case of ξ− they are preserved (and the complex conjugation acts as a

reflection on each of them).

Let Ac
g denote the set of equivariant isotopy classes of non-contractible curves

on the real surface (Σg, c) such that c(a) = a, and Vcg the set of equivariant isotopy

classes of non-contractible embeddings ν : S1 × I → Σg such that c ◦ ν = ν and LR,c
g

the set of classes of directed R-marked elementary genus-g real Lefschetz fibrations.

Let [ν]c ∈ Vcg . We consider the map Ω̂c : Vcg → LR,c
g such that Ω̂c([ν]c) =

[LR
ν ]c, where [LR

ν ]c denote the isomorphism class of directed R-marked real Lefschetz

fibration LR
ν . The construction of LR

ν is the equivariant version of the construction

of Lν . Let ν be a representative of [ν]c, we consider Σν
g which is the closure of

Σg \ ν(S1 × I). Since c ◦ ν = ν, the surface Σν
g inherits a real structure from

(Σg, c). On the boundary of Σν
g the real structure acts in two ways, either it switches

two boundary components or acts as reflection on each boundary components. We

consider a trivial real fibration Rν = Σν
g×Dǫ → Dǫ where cRν = (c, conj ) : Rν → Rν

is the real structure. Let Eν± → Dǫ denote the model ξ± : E → Dǫ whose marked

fiber is identified with ν(S1 × I). Depending on the real structure on the horizontal

boundary S1×Dǫ → Dǫ (where the real structure on S1×Dǫ is taken as (c∂Σν
g
, conj ))

of Rν → Dǫ, we choose either of Eν± → Dǫ and then glue Rν → Dǫ and the suitable

model Eν± → Dǫ along their horizontal trivial boundaries.

Lemma 4.2.1. Ω̂c : Vcg → LR,c
g is well defined.

Proof. Let ν, ν ′ : S1 × I → Σg be two c-equivariant isotopic embeddings, and

let ψt : S1 × I → Σg, t ∈ [0, 1], be a continuous family of equivariant embeddings

such that ψ0 = ν and ψ1 = ν ′. Then, there exists an equivariant ambient isotopy

Ψt : Σg → Σg such that Ψ0 = id and ψt = Ψt ◦ ψ0 with Ψt ◦ c = c ◦ Ψt for all

t. Hence Ψ1 induces an equivariant diffeomorphisms Rν → Rν′ and Eν± → Eν′±,

which respects the fibrations, and the gluing thus it gives an equivalence of LR
ν → Dǫ

and LR

ν′ → Dǫ as R-marked fibrations. 2

Since c ◦ ν = ν, we have c(ν(S1 × {1
2})) = ν(S1 × {1

2})). Hence we can define

oc : Vcg → Ac
g such that o([ν]c) = [ν(S1 × {1

2})]c = [a]c. As in the case of LFs the

mapping oc is two-to-one. Since the monodromy does not depend on the orientation
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of the vanishing cycle, there exists a well defined mapping, Ωc, such that the following

diagram commutes

Vcg
Ω̂c

��

oc
// Ac

g

Ωc
}}{{

{{
{{

{{

LR,c
g .

Theorem 4.2.2. Ωc : Ac
g → LR,c

g is a bijection.

Proof. The proof is the equivariant version of the proof of 4.1.3. Let us denote

the image of Ωc by [LR
a ]c. As it is discussed in the beginning of the section, any

elementary RLF can be divided equivariantly into two RLFs with boundary: an

equivariant neighborhood of the critical point (isomorphic to one of the models, ξ±),

and the complement of this neighborhood (isomorphic to a trivial real Lefschetz fi-

bration). Such a decomposition defines the equivariant isotopy class of the vanishing

cycle. This gives the surjectivity of Ωc.

To show that Ωc is injective let us consider [a]c, [a
′]c ∈ Vcg such that Ωc([a]c) =

Ωc([a′]c). We will show that [a]c = [a′]c. Since Ωc is well defined we have [LR
a ]c =

[LR

a′ ]c hence there exist equivariant orientation preserving diffeomorphismsH : LR
a →

LR

a′ and h : Dǫ → Dǫ such that we have the following commutative diagrams

LR
a

H
//

π
��

LR

a′

π′

��

LR
a

c
LR

a ??
��
H

//

π

��

LR

a′

c
LR

a′

??
��

π′

��

Dǫ
h

// Dǫ

Dǫ
h

//

conj ??
���

Dǫ
conj

??
���

F
H

//

c
LR

a

��

F ′

c
LR

a′

��

Σg

ρν′

::tttttρν

ddJJJJJ

c

��

F
H

// F ′

Σg.
ρν′

::ttttρν

ddJJJJJ

Clearly, H(ρν(a)) is equivariantly isotopic to ρν′(a
′) where a and a′ are repre-

sentatives of [a]c and [a′]c respectively. Moreover, we have H ◦ ρν = ρν′ which gives

H(ρ(a)) = ρ′(a), so ρ′(a) is equivariant isotopic to ρ′(a′). Let ψt : F ′ → F ′,

t ∈ [0, 1] such that ψ0 = id and ψ1(ρ
′(a)) = ρ′(a′), ψt ◦ c′ = c′ ◦ ψt. Then

Ψt = ρ′−1 ◦ ψt ◦ ρ′ : Σg → Σg is the required isotopy. 2

Theorem 4.2.2 shows that c-equivariant isotopy classes of vanishing cycles classify

the directed R-marked elementary RLFs. To obtain a classification for directed C-

marked RLFs we study the difference between two markings. We will be also

interested in the classification of non-marked RLFs.
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Fig. 4.3.

A C-marking on a directed elementary RLF defines an R-marking up to iso-

topy. Let ({m, m̄}, {ρm, cX ◦ρm}) be a C-marking on a directed RLF , π : X → D2.

The complement, ∂D2 \ {m, m̄}, has two pieces S± (upper/ lower semicircles) dis-

tinguished by the direction. By considering a trivialization of the fibration over

the piece of S+ connecting m to the real point, b, (the trivialization over the piece

connecting m̄ to the real point obtain by the symmetry), we can pull the marking,

ρm : Σg → Fm, to Fb to obtain a marking, say ρb : Σg → Fb and a real structure

c = ρ−1
b ◦ cX ◦ ρb : Σg → Σg. Any other trivialization results in an other marking

isotopic to ρb and a real structure isotopic to c : Σg → Σg.

Hence directed elementary C-marked RLFs defines a vanishing cycle defined up

to c-equivariant isotopy where the real structure c is considered up to isotopy.

Definition 4.2.3. A pair (c, a) of a real structure c : Σg → Σg and a non-

contractible simple closed curve a ∈ Σg, is called a real code of an elementary RLF
if c(a) = a. Two real codes, (c0, a0), (c1, a1), will be called isotopic if there exist

an isotopy (ct, at), t ∈ [0, 1] such that ct(at) = at, ∀t. Moreover, two real codes,

(c0, a0) and (c1, a1), will be called conjugate if there is an orientation preserving

diffeomorphism φ : Σg → Σg such that φ ◦ c0 = c1 ◦ φ and that [φ(a0)]c1 = [a1]c1 .

We denote the isotopy class of the real code, (c, a), by [c, a] and the conjugacy class

by {c, a}.

Proposition 4.2.4. There is a one-to-one correspondence between the isomorphism

classes of directed C-marked elementary RLFs and the isotopy classes of real codes.

Proof. Let LC,[c]
g denote the set of classes of directed C-marked elementary

genus-g real Lefschetz fibrations and A[c]
g denote the isotopy classes, [c, a], of real

codes. We consider the map ω : LC
g → A[c]

g . As it is discussed above, a directed

C-marked elementary RLF determines an isotopy class of a directed R-marked
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elementary RLF . By Theorem 4.2.2 we obtain a vanishing cycle up to c-equivariant

isotopy. Since the real structure c is also determined up to isotopy we obtain the

real code [c, a]. Evidently, isomorphic directed C-marked elementary RLFs give

isotopic real codes. Hence ω is well-defined. Surjectivity of ω is also clear.

For the injectivity, we consider two isotopy classes [ci, ai], i = 1, 2 such that

[c1, a1] = [c2, a2]. Let (π1 : X1 → D2, {m1, m̄1}, {ρm1
, ρ̄m1

}) and (π2 : X2 →
D2, {m2, m̄2}, {ρm2

, ρ̄m2
}) be two directed C-marked elementary RLFs, associated

to the classes [c1, a1] and [c2, a2], respectively. We need to show that π1 and π2 are

isomorphic as directed C-marked RLFs.
Note that we can always choose a representative c for both [c1] and [c2] such that

[a1]c = [a2]c. Then by Theorem 4.2.2, π1 is isomorphic to π2 as R-marking RLFs.
An isomorphism of R-marked RLFs may not preserve the C-markings. However, it

can be modified to preserve the C-markings:

b

m

m2

1
S

S

+

+

1

Fig. 4.4.

Up to homotopy, one can identify X2 with a subset of X1. Let
◦
π2:

◦
X2→ D2 be

the corresponding fibration. Then, one can transform
◦
m2 to m1 preserving the real

marking and the trivializations over the corresponding paths, S+ and
◦
S+, see Fig-

ure 4.4 to obtain an isomorphism of C-marked RLFs, preserving the isomorphism

of R-marked RLFs. Since the difference X1\
◦
X2 has no singular fiber. 2

For fibrations without marking we allow to change [c, a] by an equivariant dif-

feomorphism. Hence we have the following proposition.

Proposition 4.2.5. There is a one-to-one correspondence between the set of con-

jugacy classes, {c, a}, of real codes and the set of classes of directed non-marked

elementary real Lefschetz fibrations. 2
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4.3 Vanishing cycles of real Lefschetz fibrations

By definition any real code, (c, a), of directed elementary RLF satisfies c(a) = a.

Hence, the real structure acts on the vanishing cycle a. Such an action can be either

the identity, or an antipodal map, or a reflection. In the latter case, there are two

points fixed by c. They either belong to the same or different real components of c.

We call the curves on which c acts as an antipodal map totally imaginary and

those curves on which c acts as a reflection real-imaginary. (Recall that the curves

on which c acts as the identity are called real.)

In Figure 4.5 we show an invariant curve a together with the action of c. When

necessary, on figures, we will distinguish invariant curves by showing the action of

the real structure c.

Real curve Totally  imaginary curve Real-imaginary curve

Fig. 4.5. Invariant curves together with the action of real structures.

Lemma 4.3.1. Let c be a real structure on a closed surface Σg, let a be an embedded

simple closed curve on Σg such that c(a) = a then c′ = ta ◦ c ( as well as c′′ = c ◦ ta)
is a real structure on Σg.

Moreover, if a is real with respect to c then a is totally imaginary with respect to

c′, and vice versa. On the other hand, a is real-imaginary with respect to c if and

only if a is real-imaginary with respect to c′.

Proof. Clearly ta ◦ c is an orientation reversing diffeomorphism of Σg. Since c

is orientation reversing, the conjugation c ◦ ta ◦ c coincides with t−1
c(a)

. Then we have

(ta ◦ c)2 = ta ◦ c ◦ ta ◦ c = ta ◦ t−1
c(a) = ta ◦ t−1

a = id. This shows that ta ◦ c is a real

structure on Σg. (The proof of the case c ◦ ta is analogous.)

As for the second part, let us first recall the definition of the Dehn twist on

Σg along a. Let ν(a) be a regular neighborhood of a. We choose an orientation

preserving diffeomorphism φ : S1 × [0, 1] → ν(a) such that φ(S1 × {1
2}) = a and

consider τ : S1 × [0, 1] → S1 × [0, 1] such that τ(θ, t) = (θ + 2πt, t). The Dehn twist

ta along a is the diffeomorphism obtained by taking φ ◦ τ ◦ φ−1 : ν(a) → ν(a) on

ν(a) and extending it to Σg by the identity. In particular, ta rotates a by an angle
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of π. Hence, c|a is the identity if and only if (ta ◦ c)|a is the antipodal map and c|a
is reflection if and only if (ta ◦ c)|a is reflection. See Figure 4.6. 2

ac a
c a

c

RF RF
a

RF

RF

Fig. 4.6. Actions of the real structure on nearby regular fibers of ξ±.

The next example shows a real surface together with some non-contractible c-

invariant curves.

Example 4.3.2. Let c′ be a reflection on a genus-5 surface whose real part is the

set of curves {a1, a2, a3, a4} shown in Figure 4.7. We set c = ta1 ◦ c′ and consider

the real surface (Σ5, c). Figure 4.7 shows some examples of invariant curves on the

real surface (Σ5, c). Lemma 4.3.1 implies that c acts on a1 as the antipodal map,

hence the curve a1 is totally imaginary, while a2, a3, a4 are real. The curves, a5 and

a6 are real-imaginary. The real points of a5 belong to two different real curves, a2

and a3, whereas the real points of a6 belong to the real curve a4. Note that the

curves a1, a2, a3, a4, a5, a6 are nonseparating. While the curve a7 is an example of

separating real-imaginary curve.

a a a a

a
a

1 2 3

5

4

6a7

Real curve Totally  imaginary curve Real-imaginary curve

Fig. 4.7. c-invariant curves on (Σ5, c). We showed explicitly the action of c on
a1, a2, a3, a4, a5, a6, a7.
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4.4 Classification of elementary real Lefschetz fibrations

with nonseparating vanishing cycles

Let S∗
g be the set of classes of real closed genus-g surfaces ( g ≥ 1) with two marked

points which are, as a set, invariant under the action of real structure and let Lcg
be the set of classes of directed non-marked elementary genus-g RLFs. We assume

that the vanishing cycle is nonseparating and define a map e : Lcg → S∗
g−1 as follows.

Given a directed elementary RLF , we consider the associated real code (c, a). We

take a c-invariant regular closed neighborhood, ν(a), of a in (Σg, c). The complement

Σ
ν(a)
g = Σg \ ν(a) inherits the real structure from Σg and can be seen as a real

surface with two punctures. Let us consider the punctures as marked points on the

closed surface and define the image of e as the closed marked surface we obtain.

By construction the pair of marked points is invariant under the action of the real

structure. Clearly, equivalent real codes give equivalent real genus-(g − 1) surfaces,

hence e is well defined.

Lemma 4.4.1. The map e : Lcg → S∗
g−1 is surjective.

Proof. Given (Σg−1, cg−1), a representative of a class in S∗
g−1, by Proposi-

tion 4.2.5 it is enough to assign to it, a real code (c, a). Let {s1, s2} be the marked

points on Σg−1, consider open neighborhoods ν(s1) , ν(s2) of s1 and s2, respectively

such that,

• if s1 and s2 are real then we have cg−1(ν(si)) = ν(si) for i = 1, 2,

• if one is the conjugate of the other then we set ν(s2) = cg−1(ν(s1)).

The complement, Σν
g−1, of the neighborhoods ν(si), i = 1, 2, in Σg−1 is a real surface

with two boundary components. We consider S1 × [0, 1] and glue it to Σν
g−1 along

the boundary components. The resulting surface has genus g.

The real structure of Σν
g−1 can be extended to S1×[0, 1] to obtain a real structure

c on Σg such that a = S1 ×{1
2} is a c-invariant curve. Thus, we obtain c : Σg → Σg

and a ⊂ Σg such that c(a) = a.

Clearly, any other representative (Σ′
g−1, c

′
g−1) give another code which is conju-

gate to (c, a). 2
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Lemma 4.4.2.

|S∗
g−1| =

{
9g−5

2 if g-1 even,
9g−6

2 if g-1 odd.

Proof. Note that an invariant pair of marked points on a real surface can be

chosen:

• as a pair of complex conjugate points,

• as real points on a real component, if there is at least one real component,

• as real points on two different real components, if there are at least 2 real

components.

Up to equivariant diffeomorphisms such choices are unique. Thus, for each real

structure which has at least two real components we have 3 choices. When there is

only one real component, we get 2 choices and lastly if there are no real component,

we get only 1 choice for marked points. Recall that for each genus there is only one

real structure with no real component. There is one real structure with one real

component, if genus is odd and there are two such real structures if genus is even.

Since on Σg−1 there are g + 1 + [g−1
2 ] real structures, we obtain

|S∗
g−1| = 3(g + 1 + [

g − 1

2
]) − kwhere

{

k = 4 if g-1 even,

k = 3 if g-1 odd.

2

Proposition 4.4.3.

|Lcg| =







6 if g=1,

8g − 3 if g>1 odd,

8g − 4 if g>1 even.

Proof. Since e is surjective we will count the inverse images of (Σg−1, cg−1)

∈ S∗
g−1. By Proposition 4.2.5, it is enough to count the real codes of elementary

RLFs.
Case 1: Let (Σg−1, cg−1) be a real surface with a pair of conjugate marked

points, say s1, s2. As we discussed above we obtain the genus-g surface by gluing a

cylinder to the surface Σν
g−1. Note that if marked points are conjugate pairs the real

structure switches the boundary components Σν
g−1. Hence on the cylinder S1× [0, 1]

we consider a real structure which exchanges the boundaries. There are two such

46



real structures. One has a real component which is the central curve the other has

no real component. Hence, we have two inverse images for each real surface Σg−1.

...

*

*

... ...Real curve Totally imaginary
curve

Fig. 4.8. Gluing neighborhood of the vanishing cycle to a real genus-(g − 1) surface with
two complex conjugated marked points.

Since the points, s1, s2 are not real, there is no condition on the number of real

components, so there are exactly 2(g + 1 + [g−1
2 ]) directed elementary RLFs.

Case 2: Let us assume that two marked points are chosen on a real component

of the real genus-(g − 1) surface. In this case, the real structure on the boundary

components of Σν
g−1 is reflection hence each component has two real points. Recall

that there is a unique real structure up to diffeomorphism on the cylinder where

the action on the boundary is reflection. However, if we extend the real structure of

Σν
g−1 to the cylinder we have two choices to connect the real points. These choices

result in different real structures since their number of real components are not the

same.

Excluding the case when the real structure has no real component we obtain

2(g + [g−1
2 ]) many local models.

Case 3: Finally, let us assume that the marked points are real points belonging

to different real components. This case can occur only if g−1 > 0. As in the case 2,

boundary components of Σν
g−1 have two real points. Unlike the previous case, the

way we connect the real points does not effect the number of real components, see

Figure 4.10. However, it may change the type of the real structure.

Namely, if cg−1 is separating then we may obtain either separating or nonsep-

arating real structure. When cg−1 is nonseparating the resulting real structure is

nonseparating regardless of how we connect the real points.
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...

... ...

Real curve
* *

Real curves

Real curve

* *

Two real components One real component

Fig. 4.9. Gluing neighborhood of the vanishing cycle to a real genus-(g − 1) surface with
two real marked points belonging to the same real component.

There are exactly g nonseparating real structures on a genus-(g − 1) surface.

Among nonseparating real structures there is one without real component and one

with a unique real component. The number of separating real structures on a genus-

(g− 1) surface whose real part has at least two real components is 1 + [g−1
2 ] if g− 1

is odd and [g−1
2 ] if g − 1 is even.

Hence, totally we have

g − 2 + 2(1 + [g−1
2 ]) real structures if g − 1 is odd and

g − 2 + 2[g−1
2 ] real structures if g − 1 is even.

Therefore,

• If g = 1, we have only cases 1 and 2, hence there are 4 + 2 = 6 directed

non-marked elementary RLFs with nonseparating vanishing cycle,

• if g > 1, is even then we have 2(g+1+[g−1
2 ])+2(g+[g−1

2 ])+2(1+[g−1
2 ])+g−2 =

8g − 4 directed non-marked elementary RLFs with nonseparating vanishing

cycle,
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... Real curves

* *

... Real curve ... Real curve

* *

One real component One real component

Fig. 4.10. Gluing neighborhood of the vanishing cycle to a real genus-(g − 1) surface with
two real marked points belonging to different real components.

• if g > 1, odd we have 2(g + 1 + [g−1
2 ]) + 2(g + [g−1

2 ]) + 2[g−1
2 ] + g− 2 = 8g − 3

directed non-marked elementary RLFs with nonseparating vanishing cycle.

2

4.5 Classification of elementary real Lefschetz fibrations

with separating vanishing cycles

In this section, we consider the real code (c, a) of an elementary RLF such that

a ⊂ Σg is a separating curve. Recall that we restrict ourselves to the study of

relatively minimal LFs. That is no fiber contains an exceptional sphere. Such

phenomenon corresponds to the case when the vanishing cycle bounds a disc. Hence,

we will assume that the vanishing cycle a does not bound a disc.

As before c acts on a. This action can be the identity, the antipodal map or

reflection. However, since a is separating if c acts on a as a reflection then two real

points of a necessarily belong to the same real component.
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Lemma 4.5.1. If g is even then there exists a real structure c and a separating

invariant simple closed curve a on (Σg, c) such that a is real or totally imaginary

with respect to c.

Proof. Clearly, a real curve separates the surface if and only if the real structure

is separating and has only one real component, see Figure 4.11. Such phenomenon

appears only in the case of even genus. Evidently, up to diffeomorphism there exists

unique such pair (c, a).

a a

Fig. 4.11. Real and totally imaginary separating curves.

Recall that there is a strong relation between the real curves and the totally

imaginary curves. Namely, one can change the real structure by a Dehn twist along

a (see Lemma 4.3.1) to obtain a totally imaginary curve from a real curve and vice

versa. Hence, a totally imaginary separating curve a appears only in the case of

even genus and the real structure is nonseparating without real component. 2

Unlike real and totally imaginary curves, there are many separating real-imaginary

curves on a real surface. They are distinguished by how they separate the real sur-

face.

...
Real curve

a

Fig. 4.12. Real-imaginary separating curve.

50



Note that if there is a real-imaginary curve then the real structure has necessarily

at least one real component. Let us fix a real surface (Σg, c) of genus g ≥ 1 such

that c has at least one real component. Then to calculate the possible separating

curves we will make use of the quotient Σg/c. For a nonseparating real structure c

on a genus-g surface with k > 0 real components, the quotient Σg/c is a disc with

k − 1 holes and l = g − k + 1 cross caps see Figure 4.13.

...

a

...

... ...

Fig. 4.13.

If the real structure is separating, the quotient Σg/c is an orientable genus g+1−k
2

surface with k boundary components, see Figure 4.14. By abuse of notation we will

denote g+1−k
2 also by l.

...

...

a

...

...

Fig. 4.14.

Hence in either case we have the following calculations.

Lemma 4.5.2. If both k−1 and l are even numbers then we have [k(l+1)
2 ] separating

curves. Otherwise there are [k(l+1)
2 ] − 1 separating curves.

Proof. This is a counting problem. A separating curve on Σg gives an arc on

Σg/c with endpoints lying on one of the boundary components. We count how many

different ways we can divide Σg/c by a such an arc.

When both k− 1 and l are even the arc can divide the Σg/c into two symmetric

pieces, Figure 4.15. Excluding such case we have (k−1+1)(l+1)−1
2 choices. Hence,

totally we obtain (k−1+1)(l+1)−1
2 +1. Finally, by subtracting the case when the curve

bounds a disc we obtain (k−1+1)(l+1)−1
2 + 1 − 1 = [ (k)(l+1)

2 ] such arc.
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a a

Fig. 4.15. Examples of k = 3, l = 2.

When k− 1 or l is odd, we repeat the same idea. Note that in this case, such an

arc can not divide Σg/c symmetrically, hence we get (k−1+1)(l+1)
2 −1 = [ (k)(l+1)

2 ]−1. 2

Proposition 4.5.3. The number of conjugacy classes of real codes {c, a} where a is

a separating curve is given as follows. By Proposition 4.2.5 this gives the number of

classes of directed R-marked elementary RLFs whose vanishing cycle is separating.

g even

g > 0







1 +
∑

k∈{1,3,...,g+1}

l even

[k(l+1)
2 ] +

∑

k∈{1,3,...,g+1}

l odd

([k(l+1)
2 ] − 1) if c is separating,

1 +
∑

k∈{1,2,...,g}

l even

[k(l+1)
2 ] +

∑

k∈{1,2,...,g}

l odd

([k(l+1)
2 ] − 1) if c is nonseparating,

g odd







∑

k∈{2,4,...,g+1}

([k(l+1)
2 ] − 1) if c is separating,

∑

k∈{1,2,...,g}

([k(l+1)
2 ] − 1) if c is nonseparating.

Proof. The proposition follows from Lemma 4.5.1 and Lemma 4.5.2.

Note that if c is nonseparating then k − 1 + l = g. Thus,

if g > 0 is even: (k − 1, l) = (even, even) or (k − 1, l) = (odd, odd)

if g is odd: (k − 1, l) = (even, odd) or (k − 1, l) = (odd, even).
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If c is separating then k − 1 + 2l = g. Thus,

if g is even: (k − 1, l) = (even, even) or (k − 1, l) = (even, odd)

if g is odd: (k − 1, l) = (odd, even) or (k − 1, l) = (odd, odd).

2
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CHAPTER 5

invariants of real lefschetz

fibrations with only real critical

values

The classification of elementary RLFs can be used to obtain certain invariants

for RLFs over a disc with only real critical values. For this reason we introduce

boundary fiber sum of real directed Lefschetz fibrations over D2. We will study

separately the cases of the fiber genus g > 1 and g = 1, since they are of different

nature with respect to the boundary fiber sum. On the other hand, if we assume

that fibration admits a real section then the case of g = 1 can be treated similar to

the case g > 1.

5.1 Boundary fiber sum of genus-g real Lefschetz fibra-

tions

Let π : X → D2 be a directed real Lefschetz fibration. Following the notation of

previous sections, we denote by S± the upper/ lower semicircles of ∂D2. We consider

also left/ right semicircles, denoted by S±, and the quarter-circles S±
± = S± ∩ S±.

(Here directions right/ left and up/ down are determined by the orientation of

the real part.) Let r± be the real points of S±, and c± the real structures on

F± = π−1(r±).
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S

S+
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r r+-

Fig. 5.1.

Definition 5.1.1. Let (π′ : X ′ → D2, {b′, b̄′}, {ρ′, ρ̄′}) and (π : X → D2, {b, b̄},
{ρ, ρ̄}) be two directed C-marked real Lefschetz fibrations such that the real struc-

tures c′+ on F ′
+ and c− on F− induce (via the markings) isotopic real structures on

Σg. Then we define the boundary fiber sum, X ′♮ΣgX → D2♮D2, of C-marked RLFs
as follows.

r'+

F'
F'

b'
+

b'

b'

Σg ρ

F

b

b

r

Fb

-

-

ρ'

c' c+ -

Fig. 5.2.

We choose trivializations of π′−1(S+
+) and π−1(S−

+) such that the pull backs of c′+

and c− give the same real structure c on Σg. Then the trivialization of π′−1(S+) can

be obtained as a union Σg ×S+
+ ∪Σg ×S+

−�(x,1+)∼(c(x),1−) and similarly π−1(S−) =

Σg × S−
+ ∪ Σg × S−

−�(x,−1+)∼(c(x),−1−). Then the boundary fiber sum X ′♮ΣgX →
D2♮D2 is obtained by gluing π′−1(S+) to π−1(S−) via the identity map.

Remark 5.1.2. 1. In fact, the construction described above creates a manifold with

corners but there is a canonical way to smooth the corners, hence the boundary fiber

sum is the manifold obtained by smoothing the corners.

2. By definition, the boundary fiber sum is associative but not commutative.

3. The boundary fiber sum of C-marked RLFs is naturally C-marked.

4. Note that D2♮D2 = D2 so when the precision is not needed we use D2 instead

of D2♮D2.
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Proposition 5.1.3. If g > 1, then the boundary fiber sum, X ′♮ΣgX → D2, of

directed C-marked genus-g real Lefschetz fibrations is well-defined up to isomorphism

of C-marked RLFs.

Proof. Note that the boundary fiber sum does not effect the fibrations out-

side a small neighborhood of the intervals where the gluing is made. Let us slice a

topological disc D, a neighborhood (which does not contain a critical value) of the

gluing interval on D2 = D2♮D2. Let c′+ and c− denote the real structures on the

real fibers over the real boundary points of D, see Figure 5.3. Since D contains no

real critical value, real structures c′+, c− induce isotopic real structures on Σg. Hence

each real fibration over a disc without a critical value defines a path in the space of

real structures on Σg. Therefore, the difference of two boundary fiber sums gives a

loop in this space. The proof follows from contractibility of such loops discussed in

the next section, see Proposition 5.2.4. 2

b

b

.

xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx

+

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

FF' -c' c+ -

r r- +

Fig. 5.3.

5.2 Equivariant diffeomorphisms and the space of real

structures

Let Cc(Σg) denote the space of real structures on Σg which are isotopic to a fixed

real structure c, and let Diff0 (Σg) denote the group of orientation preserving dif-

feomorphisms of Σg which are isotopic to the identity. We consider the subgroup

of Diff0 (Σg), denoted Diff c
0 (Σg), consisting of those diffeomorphisms which com-

mute with c and the subgroup Diff0 (Σg, c) of Diff0 (Σg) consisting of diffeomor-

phisms which are c-equivariantly isotopic to the identity. Note that the group

Diff0 (Σg) acts transitively on Cc(Σg) by conjugation. The stabilizer of this action is
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the group Diff c
0 (Σg). Hence Cc(Σg) can be identified with the homogeneous space

Diff0 (Σg)/Diff c
0 (Σg).

Lemma 5.2.1. If g > 1 then Diff c
0 (Σg) is connected for all c : Σg → Σg. However,

for g = 1, the space Diff c
0 (Σg) is connected if c is an odd real structure (i.e. it has

1 real component).

Proof. (We will use different techniques for g > 1 and g = 1.) Let us first

discuss the case of g > 1. To show that Diff c
0 (Σg) is connected, we consider the

fiber bundle description of conformal structures on Σg, introduced in [EE]. Let

Conf Σg
denote the space of conformal structures on Σg equipped with C∞-topology.

The group Diff0 (Σg) acts on Conf Σg
by composition from right. This action is

proper, continuous, and effective hence Conf Σg
→ Conf Σg

/Diff0 (Σg) is a principle

Diff0 (Σg)-fiber bundle, (cf. [EE]). The quotient is the Teichmuller space of Σg,

denoted TeichΣg . Note that conformal structures can be seen as equivalence classes

of Riemannian metrics with respect to the relation that two Riemannian metrics are

equivalent if they differ by a positive function on Σg. Let RiemΣg denote the space

of Riemannian metrics on Σg then we have the following fibrations

{u : Σg → R : u > 0} // RiemΣg

p2

��

Diff0 (Σg) // Conf Σg

p1

��

TeichΣg
.

The real structure c acts on Diff0 (Σg) by conjugation. This action can be ex-

tended to Conf Σg
and RiemΣg as follows. We fix a section s : TeichΣg → Conf Σg

of

the bundle p1 and we consider a family of diffeomorphisms φsζ : Diff0 (Σg) → p−1
1 (ζ)

parametrized by TeichΣg such that φsζ(id) = s(ζ). Let [µx] denote a conformal struc-

ture where µx is a Riemannian metric on Σg. Then we have φsζ(f(x)) = [µf(x)] for all

f ∈ Diff0 (Σg), in particular φsζ(id) = s(ζ) = [µx]. The action of real structure, then,

can be written as c.[µf(x)] = [µc◦f◦c(x)]. Clearly the definition does not depend on

the choice of the representative of the class [µf(x)] so the action extends to RiemΣg .

Let FixConf Σg
(c) denote the set of fixed points of the action of c on Conf Σg

and

FixRiemΣg
(c), the set of fixed points on RiemΣg . Note that s(ζ) is in FixConf Σg

(c),

∀ζ ∈ TeichΣg . In fact each [µf(x)] where f ∈ Diff c
0 (Σ1) is in FixConf Σg

(c). Our aim

is the show that FixConf Σg
(c) is connected.
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Note that if FixConf Σg
(c) is disconnected then the inverse image (which is

FixRiemΣg
(c)) is also disconnected in RiemΣg . It is known that RiemΣg is con-

vex and hence FixRiemΣg
(c) is convex. However this contradicts to disconnectivity,

therefore FixConf Σg
(c) is connected. Then FixConf Σg

(c) ∩Diff0 (Σg) = Diff c
0 (Σg) is

connected since FixConf Σg
(c) is a union of sections.

For the case of g = 1, we consider the quotient Σ1/c which is a Möbius band

(MB) when c is an odd structure. It is known that the space of diffeomorphisms

of Möbius band has two components: the identity component Diff0 (Σ1/c), and the

component of diffeomorphisms isotopic to the reflection h shown in Figure 5.4. Note

that when the Möbius band is obtained by from I × I by identifying appropriate

points of I × 0 with the points of I × 1, the diffeomorphism h can be seen as the

diffeomorphism induced from the reflection of I × I with respect to the I × 1
2 . The

diffeomorphism h is not isotopic to the identity, since before identifying the ends it

reverses the orientation of I × I.

real part

Mobius Band Real Torus

h

Fig. 5.4.

The diffeomorphism h lifts to the central symmetry ĥ : Σ1 → Σ1 of Σ1. Central

symmetry is not isotopic to the identity on Σ1 since it reverses the orientation of

the real curve. Hence, we have

{f : Σ1/c→ Σ1/c : f̂ : Σ1 → Σ1 is isotopic to id} = {f : Σ1/c→ Σ1/c : f ∼= id}.

The former is identified by Diff c
0 (Σ1) and the latter is connected, hence Diff c

0 (Σ1)

is connected. 2

58



Lemma 5.2.2. For any real structure c : Σg → Σg

π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) =

{

0 if g > 1

Z if g = 1

Proof. (When it is not needed we will omit the base point from the notation.)

Note that the subgroup Diff0 (Σg, c) acts from the left on Diff0 by composition.

Diff0 (Σg, c) × Diff0 (Σg) → Diff0 (Σg)

(f, g) → f ◦ g

Such action is free so Diff0 (Σg) → Diff0 (Σg)/Diff0 (Σg, c) is a Diff0 (Σg, c)-fiber

bundle. We consider the following long exact homotopy sequence of this fibration

...→ π2(Diff0 (Σg)) → π2(Diff0 (Σg)/Diff0 (Σg, c)) → π1(Diff0 (Σg, c)) →
π1(Diff0 (Σg)) → π1(Diff0 (Σg)/Diff0 (Σg, c)) → π0(Diff0 (Σg)) → ...

Case of g > 1: it is known that Diff0 (Σg) is contractible if g > 1, so we have

πk(Diff0 (Σg), id) = 0 for all k [EE]. Using the exact homotopy sequence we obtain

π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) ∼= π0(Diff0 (Σg, c), id).

Note that the group Diff0 (Σg, c) is isomorphic to Diff0 (Σg/c). Moreover, since

for any real structure c the Euler characteristic of Σg/c is negative, Diff0 (Σg/c) is

contractible [ES]. Hence, π1(Diff0 (Σg)/Diff0 (Σg, c), [id]) = 0.

Case of g = 1: it is known that Σ1 is deformation retract of Diff0 (Σ1). Hence up

to homotopy we consider Diff0 (Σ1) as a group generated by two rotations, shown in

Figure 5.5.

• If c has 2 real components, we consider an identification of Σ1 by C/Z2 such

that the real structure c is induced from the standard complex conjugation on C.

Let ̺ : C/Z2 → Σ1 be such an identification.
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l

1

2

Fig. 5.5. Rotations generating Diff0 (Σ1).

We consider the following family of diffeomorphisms for t ∈ [0, 1],

R′
1(t) : C/Z2 → C/Z2

(x+ iy)Z2 → (x+ t+ iy)Z2

R′
2(t) : C/Z2 → C/Z2

(x+ iy)Z2 → (x+ i(y + t))Z2 .

where (x+ iy)Z2 denotes the equivalence class of x+ iy in C/Z2.

Note that R′
i(0) = R′

i(1) = id and each R′
i(t), t ∈ [0, 1] is isotopic to identity.

Hence Ri(t) = ̺ ◦R′
i(t) ◦ ̺−1, i = 1, 2 form a bases of Diff0 (Σ1).

To understand Diff0 (Σ1, c) ⊂ Diff0 (Σ1) we consider the quotient Σ1/c which is

topologically an annulus. It is known that πk(Diff0 (Σ1/c), id) = πk(Diff0 (S1), id)

[I]. Hence, using the fact Diff0 (Σg, c) = Diff0 (Σg/c) we get

πk(Diff0 (Σ1, c), id) =

{

0 if k > 1

Z if k = 1

C

Fig. 5.6.
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Note that with respect to the identification ̺, diffeomorphismsR1(t) ∈ Diff0 (Σ1, c),

∀t ∈ [0, 1], hence R1(t) gives a loop in π1(Diff0 (Σ1, c), id). Thus we choose R1(t) as

a generator of π1(Diff0 (Σ1, c), id) = Z. Then from the exact sequence

0 → π1(Diff0 (Σg, c))
f ′→ π1(Diff0 (Σg))

g′→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

0 → Z
f ′→ Z + Z

g′→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

1 → (1, 0)

we get Im(f ′) = ker(g′) = π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.

• If c has no real component, we consider ̺ : R2/Z2 → Σ1 such that the real

structure c is induced from the real structure c′ where

c′ = ̺−1 ◦ c ◦ ̺ : R2/Z2 → R/Z2

(x, y)Z2 → (x+ 1
2 ,−y)Z2 .

Then we consider the family of diffeomorphisms R′
i(t) : R2/Z2 → R2/Z2, t ∈

[0, 1] such that

R′
1(t) : R2/Z2 → R2/Z2 R′

2(t) : R2/Z2 → R2/Z2

(x, y)Z2 → (x+ t, y)Z2 (x, y)Z2 → (x, y + t)Z2 .

Hence Ri(t) = ̺ ◦ R′
i(t) ◦ ̺−1, i = 1, 2 form a bases of Diff0 (Σ1). As above to

understand Diff0 (Σ1, c) we consider the quotient Σ1/c is a Klein bottle (KB). It is

known that Diff0 (KB) ∼= S1, [EE]. Hence we consider Diff0 (Σ1/c) as a group gener-

ated by the rotation which lifts to a translation in the universal cover of Klein bottle.

Such translation in the lattice and corresponding rotation shown in Figure 5.7.

Shift

Fig. 5.7.
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Since Diff0 (Σ1, c) ∼= Diff0 (Σ1/c) ∼= S1 we have π1(Diff0 (Σ1, c), id) = Z. With

respect to the identification ̺ and the real structure c, R1(t) gives a generator of

π1(Diff0 (Σ1, c), id) = Z. Then from the exact sequence

0 → π1(Diff0 (Σ1, c)) → π1(Diff0 (Σ1)) → π1(Diff0 (Σ1)/Diff0 (Σ1, c)) → 0

1 → (1, 0)

we get π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.

• If c is an odd real structure, Σ1 has unique real component, denoted C. The

restriction of f ∈ Diff0 (Σ1, c) to C defines a diffeomorphism of C. This restriction

gives a fibration with fibers isomorphic to

Diff0 (Σ1, C) = {f ∈ Diff0 (Σ1, c) : f |C = id}.

Note that Diff0 (Σ1, C) ∼= Diff0 (Σ1 \ C, ∂) where Σ1 \ C denote the closure of Σ1 \
C and Diff0 (Σ1 \ C, ∂) diffeomorphisms of Σ1 \ C which are the identity on the

boundary. Note that Σ1 \ C is an annulus. It is known that Diff0 (Σ1 \ C, ∂) is

contractible [I]. Hence from the exact sequence of the fibration

Diff0 (Σ1,C) // Diff0 (Σ1, c)

��

Diff0 (C)

we get πk(Diff0 (Σ1, c), id) ∼= πk(Diff0 (C), id), ∀k.
Let us choose the identification ̺ : C/Λ → Σ1 where Λ is the lattice generated

by v1 = (1
2 ,

1
2 ) and v2 = (1

2 ,−1
2), see Figure 5.8. Then the real structure c can be

taken as the one induced from the complex conjugation on C.

We consider R′
i(t) : C/Λ → C/Λ, t ∈ [0, 1] such that

R′
1(t) : C/Z2 → C/Z2 R′

2(t) : C/Z2 → C/Z2

(x+ iy)Λ → (x+ t+ iy)Λ (x+ iy)Λ → (x+ i(y + t))Λ.

Clearly, Ri(t) = ̺ ◦R′
i(t) ◦̺−1 gives a bases for Diff0 (Σ1), since R1(t) commutes

with the real structure gives a generator for π1(Diff0 (Σ1, c)) = Z.
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Fig. 5.8.

Therefore, we have

0 → π1(Diff0 (Σg, c))
f→ π1(Diff0 (Σg))

g→ π1(Diff0 (Σg)/Diff0 (Σg, c)) → 0

0 → Z
f→ Z + Z

g→ π1(Diff0 (Σ1)/Diff0 (Σ1, c)) → 0

1 → (1, 0)

Since the sequence is exact

Im(f) = ker(g) = π1(Diff0 (Σ1)/Diff0 (Σ1, c), [id]) = Z.

2

Definition 5.2.3. A rotation in Diff0 (Σ1) is called real rotation if it is in the

subgroup Diff0 (Σg, c), otherwise it will be called imaginary rotation.

Proposition 5.2.4. For any real structure c : Σg → Σg

π1(Diff0 (Σg)/Diff c
0 (Σg), [id]) =

{

0 if g > 1

Z if g = 1

Proof. If g > 1, then Diff c
0 (Σg) is connected ∀c; if g = 1, then Diff c

0 (Σg) is

connected for the real structures c which have 1 real component. Therefore, in these

cases we have Diff c
0 (Σg) = Diff0 (Σ1, c) and thus the result follows from Lemma 5.2.2.

If g = 1 and c : Σ1 → Σ1 has 2 real components, then we consider the identi-

fication ̺ : C/Z2 → Σ1 and the diffeomorphism R2(
1
2) induced from (x + iy)Z2 →
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(x + i(y + 1
2))Z2 . Since y + 1

2 = y − 1
2 modulo Z, the diffeomorphism R2(

1
2) is

equivariant, however it is not equivariantly isotopic to the identity.

π

Fig. 5.9.

Similar construction can be made for real structure with no real component by

considering ̺ : R2/Z2 → Σ1. Therefore, if c is an even real structure (has either 2 or

no real components) on Σ1, then Diff c
0 (Σ1) has two components: Diff0 (Σ1, c) and

the group of diffeomorphisms generated by the imaginary rotation R2(
1
2 ). (In what

follows we denote R2(
1
2) by R 1

2

.)

The quotient Diff0 (Σ1)/Diff c
0 (Σ1) contains only imaginary rotations up to com-

position by R 1

2

. By letting {(x + iy)Z2 → (x + i(y + t))Z2} −→ 2πt, we identify

imaginary rotations by S1. Then, rotations in Diff0 (Σ1)/Diff c
0 (Σ1) are identified by

S1/α∼(α+π)
∼= S1. Thus, we have π1(Diff0 (Σ1)/Diff c

0 (Σ1), [id]) = Z. 2

5.3 Real Lefschetz chains

Let us consider a directed RLF over D2 with only real critical values. We slice D2

up into smaller discs, Di, shown in Figure 5.10 such that over each Di, we have an

elementary C-marked RLF .

Let r0, r1, r2, . . . , rn be the real points on the boundaries of Di (ordered with

respect to the orientation of the real part of (D2, conj )). We denote by ci the real

structure on Σg which is the pulled back from the real structure on Fri . Then we

have ci ◦ ci−1 = tai
where ai denotes the corresponding vanishing cycle. As we

have seen in the previous section that each C-marked elementary RLF over Di is

determined by the isotopy class, [ci, ai], of a real code. Hence, an RLF over D2 with

only real critical values gives a sequence of real codes [ci, ai] satisfying ci ◦ci−1 = tai
.
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Fig. 5.10.

Definition 5.3.1. A sequence [c1, a1], [c2, a2], ..., [cn, an] of isotopy classes of real

codes is called the real Lefschetz chain if we have ci ◦ ci−1 = tai
for all i = 2, ..., n.

Theorem 5.3.2. If g > 1, then there is a one-to-one correspondence between the

real Lefschetz chains, [c1, a1], [c2, a2], ...., [cn, an] on Σg and the isomorphism classes

of directed C-marked genus-g real Lefschetz fibrations over D2 with only real critical

values.

Proof. Above we have discussed how to associate a real Lefschetz chain to a

class of directed C-marked RLF . As for the converse, we consider a real Lefschetz

chain [c1, a1], [c2, a2], ...., [cn, an], by Theorem 4.2.4, we know that each code [ci, ai]

determines a unique isomorphism class of C-marked elementary RLFs. Using the

boundary fiber sum, we glue these fibrations from left to right respecting the order

determined by the chain. By Proposition 5.1.3 the boundary fiber sum is unique up

to isomorphism if g > 1. 2

When the total monodromy of a fibration π : X → D2 is the identity then we

can consider the extension of it to a fibration π̂ : X̂ → S2. Two such extensions,

π̂ : X̂ → S2 and π̌ : X̌ → S2, will be considered isomorphic if there is an equivariant

orientation preserving diffeomorphism H : X̂ → X̌ such that π̂ = π̌ ◦H.

Proposition 5.3.3. In g > 1 and c0 = c1 ◦ ta1 is isotopic to cn, then the fibration

π : X → D2 can be extended uniquely up to isomorphism to a real Lefschetz fibration

over S2.

Proof. The real structure cn is isotopic to c0 if and only if the total monodromy,

cn ◦ c0, is isotopic to the identity hence we can glue to π : X → D2 a trivial real
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Lefschetz fibration Σg ×D2 (with the real structure (cn, conj )) along their bound-

aries. This gives an extension of π over S2. A trivial fibration glued to π : X → D2

defines an isotopy between c0 and cn hence an extension gives a path in the space

of real structures connecting c0 and cn. The difference of two extensions give a loop

in this space. Thus, the result follows from Proposition 5.2.4. 2

5.4 Real elliptic Lefschetz fibrations with real sections

and pointed real Lefschetz chains

Definition 5.4.1. Let s : B → X be a section of a real Lefschetz fibration π : X →
B. The section s is said to be real if s ◦ cB = cX ◦ s.

Two real Lefschetz fibrations (π : X → B, s) and (π′ : X ′ → B′, s′) with a real

section are called isomorphic as fibrations with a real section if there are orientation

preserving diffeomorphisms H : X → X ′ and h : B → B′ such that the following

diagram commutes

X
H

//

π
��

X ′

π′

��

X

cX ??
�

�
�

H
//

π

��

X ′
cX′

??
���

π′

��

B
h

//

s

GG

B′

s′

WW

B
h

//

cB ??
�

�
�

s

GG

B′.
cB′

??
���

s′

WW

If r denotes a real point on B, then we have c(s(r)) = s(r) where c denotes the

real structure on the fiber Fr.

Let us consider a directed C-marked elementary RELF (π : X → D2, {b, b̄},
{ρ, ρ̄}) with a real section s. The section s defines a point ∗ (the pull back of the

point s(b)) on Σ1 such that if (c, a) is a real code then c(∗) = ∗ and ∗ is disjoint

from a. Such a real code will be called the pointed real code. Recall that the real

code is determined up to an isotopy on Σ1. Let [c, a]∗ denote the isotopy class of

a pointed real code (c, a)∗, where the isotopy is taken relative to the point marked

by the section. In other words, the pointed real code considered up to the action of

the group Diff0
∗(Σg), which is the connected component of the identity of the group

Diff ∗(Σg) formed by the orientation preserving diffeomorphisms of Σg which keep

fixed a marked point ∗.
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Lemma 5.4.2. The isotopy classes of pointed real codes [c, a]∗ classify the directed

C-marked elementary RELFs endowed with a real section.

Proof. Above we have shown how we assign a pointed class [c, a]∗ to a given

directed C-marked elementary RELF (considered up to isomorphism of directed

C-marked RELFs).
As for the converse, let us consider [c, a]∗ on Σ1 with a distinguished point ∗.

Let us consider the directed C-marked elementary RELF , π : X → D2, associated

to the underlying isotopy class [c, a]. We will construct the section s : D2 → X as

follows. Let us consider a continuous family of paths αr(t) on the upper half-disc of

D2 connecting the base point b to regular real points r of (D2, c), see Figure 5.11.

b

x r

α

r0 1

r0
α r1

...

Fig. 5.11.

Using these paths we obtain a family of identifications ρr : Σ1 → Fr. Then by

setting s(r) = ρr(∗) we obtain a section over the real part of D2 except the singular

fiber. Since the vanishing cycle a does not contain the distinguished point ∗, this

section extends to the singular fiber.

The section s can be extended to real section over small neighborhood of the

real part. This finishes the proof because the fibration over a small neighborhood

of the real part of D2, is homotopically the same as π : X → D2 as π has only real

critical values. Note that changing the paths αr up to homotopy, defines a directed

C-marked elementary RELF with a section associated to a real code [c′, a′]∗ such

that [c, a]∗ = [c′, a′]∗. 2

With a Lefschetz fibration over D2 which has only real critical values and is

endowed with a section, we associate a sequence [c1, a1]
∗, [c2, a2]

∗, ...., [cn, an]
∗ of

isotopy classes of pointed real codes, such that ci ◦ci−1 = t∗ai
for all i = 2, ..., n. Here

t∗ai
denotes a Dehn twist as an element of Diff ∗(Σg). This kind of sequence is called

pointed real Lefschetz chain.
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Let us consider the subgroup Diff c
0
∗(Σg) ⊂ Diff0

∗(Σg) consisting of those diffeo-

morphisms which commute with c.

Lemma 5.4.3. π1(Diff0
∗(Σ1)/Diff c

0
∗(Σ1), [id]) = 0.

Proof. Basically we repeat the idea of the proof of Lemma 5.2.2. Note that

Diff0
∗(Σ1) can be identified with Diff0 (Σ1 \ {pt}). The latter is known to be con-

tractible by [EE]. Moreover, Diff c
0
∗(Σ1) is a connected subgroup of Diff0

∗(Σ1). 2

Theorem 5.4.4. If g = 1, then there is a one to one correspondence between the

pointed real Lefschetz chains, [c1, a1]
∗, [c2, a2]

∗, . . . , [cn, an]
∗, on Σ1 and the isomor-

phism classes of directed C-marked real Lefschetz fibrations over D2 endowed with a

real section and having only real critical values.

Proof. The proof is analogous to the proof of Theorem 5.3.2 and it follows from

Lemma 5.4.2 and Lemma 5.4.3. 2

Proposition 5.4.5. If c0 = c1 ◦ ta1 is isotopic to cn then there is a unique extension

of π : X → D2 to a fibration with a section over S2.

Proof. The proof is analogous to the proof of Proposition 5.3.3. The result

follows from Lemma 5.4.3. 2

Remark 5.4.6. In fact, if two real Lefschetz fibrations with only real critical values

and with a real section are isomorphic then they are isomorphic as fibrations with

a real section. The result follows from the observation that any two sections can

be carried to each other (without changing the isomorphism type of the fibration)

by the twist transformations, TN and double TNsing
which we introduce in the next

section.

5.5 Real elliptic Lefschetz fibrations without real sec-

tions

Let us recall that the boundary fiber sum of two C-marked RELFs without a real

section is not well-defined already because there is no canonical way to carry real

codes [ci, ai] to the surface Σg. So, in this section, we consider the boundary fiber
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sum of directed non-marked RLFs. We show that for some elementary RLFs the

boundary fiber sum is well-defined.

Definition 5.5.1. Let π′ : X ′ → D2 and π : X → D2 be two directed non-marked

RLFs. We consider fibers, F ′
+ and F− of π′ and π over the real points r′+ and r−,

respectively. Let us assume that the real structure c′+ : F ′
+ → F ′

+ is equivalent to

c− : F− → F−, or in the other words, there is an orientation preserving equivariant

diffeomorphism φ : F ′
+ → F−. Then we define the boundary fiber sum of non-marked

RLFs, X ′♮F,φX → D2, using the identification of the fibers F ′
+ and F− via φ.

r' r+ -

F' F+ -
φ

Fig. 5.12.

The boundary fiber sum does depend on the choice of φ, however, there is the

following (well-known and simple) criterion for a pair of such diffeomorphisms φ and

ψ to give isomorphic fibrations.

Lemma 5.5.2. The boundary fiber sums defined via equivariant diffeomorphisms

φ,ψ : F ′
+ → F− are isomorphic, if ψ ◦ φ−1 : F− → F− can be extended to an

equivariant diffeomorphism of X → D2, or if φ−1 ◦ ψ : F ′
+
→ F ′

+
can be extended to

an equivariant diffeomorphism of X ′ → D2. 2

We will call these two cases the right extendibility and the left extendibility re-

spectively.

The results in the previous chapter yield a condition for the right (and similarly,

for the left) extendibility in the case of elementary RLFs. Namely, ψ ◦ φ−1 :

F− → F− can be extended to an equivariant diffeomorphism of an elementary RLF ,

X → D2, if and only if ψ ◦ φ−1 takes the vanishing cycle, a, of X to a curve which

is equivariantly isotopic to a.
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Lemma 5.5.3. Let g(F ) = 1. Then,

• if a real structure c on F has 1 real component, then F contains a unique

c-equivariant isotopy class of totally imaginary curves, a unique c-equivariant

isotopy class of non-contractible real-imaginary curves, and one real curve,

• if c has 2 real components, then there is a unique c-equivariant isotopy class of

non-contractible real-imaginary curves, no totally imaginary curves, and two

real curves,

• if c has no real components, then there exist two c-equivariant isotopy classes

of totally imaginary curves, but no real and real-imaginary curves.

Proof. If c has 1 real component, then the quotient F/c which is a Möbius band.

The quotient of a totally imaginary curve is a simple closed curve in F/c homologous

to the central curve of the band. Such curve has to be isotopic to the central curve.

The quotient of a real-imaginary curve is an arc connecting two boundary points

on F/c. There is a unique isotopy class of such arcs which are not contractible.

Namely, such arcs are isotopic to the fibers of the standard fibration of the Möbius

band, F/c→ S1 (see 5.13).

Fig. 5.13.

If c has 2 real components, then F/c is an annulus and the quotient of a real-

imaginary curve is a simple arc. It connects the opposite boundary components of

F/c if the curve is non-contractible. Such arcs are also obviously all isotopic.

If c has no real component, then F/c is the Klein bottle which can be viewed as a

pair of Möbius bands glued along their boundaries. The two central curves of these

two Möbius bands represent the quotients of the two c-equivariantly non-isotopic

totally imaginary curves in F . 2

Lemma 5.5.3 implies that the boundary fiber sum of elementary non-marked

RELFs may be not well-defined only in two cases: if c has 2 real components and

a is real, or if c has no real components and a is totally imaginary. In these cases
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there are two c-equivariant isotopy classes of curves a, and we will be calling a pair of

representatives of different classes c-twin curves. Note that the imaginary rotation

R 1

2

(introduced in the proof of Proposition 5.2.4) switches the c-twin curves. Hence,

c-twin curves can be carried to each other via equivariant diffeomorphisms, although

they are not equivariantly isotopic. Thus a diffeomorphism on a real fiber which

switches the c-twin curves can not be extended to a fibration over D2. This shows

that in the above two cases there is an ambiguity in the definition of the boundary

fiber sum X ′♮X: it can be defined in two ways, and to resolve the ambiguity we

should specify how we identify the c-twin curves in the fiber F ′
+ in X ′ with the

c-twin curves in the fiber F− in X.

c

Fig. 5.14.

However in certain cases the problem of switching c-twin curves can be elimi-

nated. For this reason we consider the following definition.

Definition 5.5.4. Let π : X → D2 be a directed RELF . We consider a real slice

N of D2 which contains no critical value, shown in Figure 5.15.
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N xx

Fig. 5.15.

Let ξ : I × I → N , I = [0, 1] be an orientation preserving diffeomorphism such

that first interval correspond to the real direction on N . The fibration over N has

no singular fiber hence it is trivializable.
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Let us consider a trivialization Ξ : Σ1 × I × I → π−1(N) such that the following

diagram commutes

Σ1 × I × I
Ξ

//

��

π−1(N)

π

��

I × I
ξ

// N.

Note that since N has no critical value the isotopy type of the real structure

on the fibers over the real part of N is constant. If the real structure c has 2 real

components then we consider the model ̺ : C/Z2 → Σ1 and set

¯̺ = (̺, id) : C/Z2 × I × I → Σ1 × I × I

then we consider the map,

T ′ : C/Z2 × I × I → C/Z2 × I × I

such that T ′((x+ iy)Z2 , t, s) = ((x+ t+ iy)Z2 , t, s). Then let

TN = Ξ ◦ (¯̺◦ T ′ ◦ ¯̺−1) ◦ Ξ−1 : π−1(N) → π−1(N).

Since at t = 0, 1, TN is the identity we can extend TN to X by the identity outside

of π−1(N). The map TN is called a twist of an RELF over N .

If c has 1 real component then we can construct the twist TN using ̺ : C/Λ → Σ1;

similarly if c has no real component then we repeat the same using ̺ : R2/Z2 → Σ1

(introduced in the previous section).

Remark 5.5.5. 1. Since the twist TN is defined by a real rotation, TN preserves

the isomorphism class of the real Lefschetz fibration.

2. The map TN depends only on the isotopy type of π−1(N).

One can define an equivariant twist for a slice Nsing which contains only one

critical value where the corresponding vanishing cycle is real-imaginary. Let us

divide the boundary of Nsing into to two pieces: left and right boundaries (left/

right being determined by the direction). Note that since the vanishing cycle is

real-imaginary, the real structures on the fibers over real boundary points of Nsing

have 1 real component on one side and 2 real components on the other side. Let us

assume that the real structure on the fiber over the left boundary point has 1 real

component.
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Fig. 5.16.

To construct TNsing
we consider the following well-known model for elementary

elliptic fibrations. Let Ω̂ = {z| |Re(z)| ≤ 1
2 , Im(z) ≥ 1}∪∞, (the subset bounded by

Im(z) ≥ 1 of the one point compactification of the standard fundamental domain

{z| |Re(z)| ≤ 1
2 , |z| ≥ 1} of the modular action on C, see Figure 5.17.)
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Ω

Ω

+iy1
2

iy

Fig. 5.17.

We consider the real structure cΩ̂ : Ω̂ → Ω̂ such that cΩ̂(ω) = −ω. Let Ω denote

the quotient Ω̂� 1

2
+iy∼− 1

2
+iy. The real structure cΩ̂ induces a real structure on Ω.

Note that Ω is a topological real disc and can be identified with Nsing so that the

real part of Nsing corresponds to the union of the half-lines iy and 1
2 + iy where

y ≥ 1. For any ω ∈ Ω, the fiber over ω is given by Fω = C/(Z + ωZ), where the

fiber F∞ has a required nodal type singularity.

Let πΩ : XΩ → Ω denote the fibration such that ∀ω ∈ Ω we have π−1
Ω (ω) = Fω =

C/(Z + ωZ). Then we consider the translation T ′
sing defined by

T ′
sing : XΩ → XΩ

zω ∈ Fω → (z + τ(w))ω ∈ Fω
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where zω denotes the equivalence class of z in C/(Z + ωZ) and τ : Ω → Ω such

that

τ(ω) = −1

2
+ (

1

2
− f(Re(ω)) + i)exp(−Im(ω) + 1)

for some smooth mapping f : R/Z → R/Z satisfying the following properties:

01

2

1

2

1

2

The graph of  f

• f(0) = 1
2 (modulo Z),

• f(1 − x) = 1 − f(x), (⇒ f(1
2) = 1

2 ) (modulo Z),

• f is linear on [14 ,
3
4 ] (modulo Z).

Note that τ has the following properties. (Equations are considered modulo the

relation −1
2 + iy ∼ 1

2 + iy, y ≥ 1.)

• τ(−ω) = −τ(ω),

• τ(∞) = 1
2 ,

• τ(1
2 + iy) = −1

2 + iexp(−y + 1) = 1
2 + iexp(−y + 1),

in particular, if y = 1 then τ(1
2 + i) = 1

2 + i,

•τ(iy) = −1
2 + iexp(−y + 1) = 1

2 + iexp(−y + 1),

in particular, if y = 1 then τ(i) = 1
2 + i.

Let TNsing
denote the twist on π−1(Nsing) induced from the twist T ′

sing on XΩ.

By definition TNsing
is equivariant and is the identity over the left boundary and

half rotation on the right boundary component of Nsing.

Lemma 5.5.6. Let π′ : X ′ → D2 and π : X → D2 be two non-marked elementary

RELFs such that both c′+ and c− have 2 real components. We assume that the

vanishing cycle a of π is real with respect to c−. Then boundary fiber sum X ′♮FX →
D2 is well-defined if the vanishing cycle a′ of π′ is real-imaginary with respect to c′+.

Proof. Let φ and ψ be two equivariant diffeomorphism of F+ such that

φ ∈ Diff0 (F+, c) and ψ = φ′ ◦R 1

2

where φ′ ∈ Diff0 (F+, c).
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As we have discussed in the beginning of this section that the boundary fiber

sums X ′♮F,φX → D2 and X ′♮F,ψX → D2 obtained using diffeomorphisms φ and

ψ may not give isomorphic fibrations, since two gluing diffeomorphisms belong to

different components of Diff c
0 (F+).

xx xx

TNsing

Fig. 5.18. The action of TNsing
on the real part.

As the vanishing cycle of π′ is real-imaginary we can apply TNsing
to X ′. At

the singular fiber TNsing
acts as half rotation, hence the fiber TNsing

(F ′)− dif-

fers from the fiber F ′
− by the rotation R 1

2

. Therefore, X ′♮F,φX is isomorphic to

TNsing
(X ′)♮F,φ◦R 1

2

X which is isomorphic to X ′♮F,ψX → D2. 2

Remark 5.5.7. Let π : X → S2 be a real elliptic Lefschetz fibration with only real

critical values. Let s and s′ be two real sections on X → D2. Using the twists TN

and double TNsing
we can modify the section s, over the intervals where s′ differs

from s, see Figure 5.20. The double twist operation is defined for real Lefschetz

fibrations with two critical values where the corresponding vanishing cycles are both

real-imaginary. The model we use to define the double twist is obtained as follows.

Let us consider the disc with two critical values as the double cover of a disc with one

critical value (where the corresponding vanishing cycle is real-imaginary) branched

at a regular real point. Let Nsing− and Nsing+ denote the two corresponding copies

of Nsing on the branched cover. By pulling back the fibration XΩ over Nsing, we

obtain a model fibration over Nsing− ∪ Nsing+ where the vanishing cycles are real-

imaginary. Thus, we can apply TNsing
at the same time to fibrations over Nsing−

and Nsing+. This way we obtain a twist which is identity over the boundary of

Nsing− ∪Nsing+ and a half twist over the common boundary of Nsing− and Nsing+.

We use double TNsing
to modify the section around the two neighboring singular

fibers with real-imaginary vanishing cycles. Possible modification on the real part

is shown in Figure 5.20.
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Fig. 5.19.

T

T

TN

N

N

sing
double

Fig. 5.20. Modification of the real section over the real part of D2.

Using TN and double TNsing
, we obtain an isomorphism (as fibrations with a

section) of (π : X → D2, s) and (π : X → D2, s′). Since TN and double TNsing
do

not change (π : X → D2, s′) outside some slices of D2, if π can be extended to a

fibration over S2, then extensions of s and s′ match, by Lemma 5.4.3.

5.6 Weak real Lefschetz chains

Let us now consider a directed non-marked RELF over D2 with only real critical

values, q1 < q2 < ... < qn. Around each critical value qi we choose a real disc

Di such that Di ∩ {q1, q2, ..., qn} = {qi} and each Di ∩ Di+1 = {ri} ⊂ [qi, qi+1].

Each (non-marked) fibration over Di is classified by the conjugacy class {ci, ai} of
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the real code. Thus we obtain a sequence {c1, a1}, {c2, a2}, ..., {cn, an} such that

ci ◦ tai
is conjugate to ci−1 for all i = 2, ..., n. We will call this sequence the weak

real Lefschetz chain. Clearly, weak real Lefschetz chains are invariants of directed

non-marked RELFs over disc with only real critical values.

x x xx...

...

q q q q
21 nn-1

Fig. 5.21.

The discussion about well-definedness of boundary fiber sum shows that weak

Lefschetz chains are not sufficient for the classification of the directed RELFs over

D2 with only real critical values. An additional information is needed if for some i,

the real structure ci has no real component or ci has 2 real components and vanishing

cycles corresponding to the critical values qi and qi+1 are real with respect to ci.

We fix the fiber Fri over a real point ri and consider the vanishing cycles ai

and ai+1 on Fri , corresponding to critical values qi and qi+1, respectively. When

the real structure ci has no real component then both ai and ai+1 are necessarily

totally imaginary with respect to ci. Either these curves are the same or they are

the ci-twin curves, see Figure 5.22.

X X

Real part

Fibers

q q
i i+1i

r

:

Imaginary:

X X
q qr

i i+1i

Fig. 5.22.

Similarly, if ci has 2 real components and both ai and ai+1 on Fri are real with

respect to ci then either ai and ai+1 are the same curve or they are the ci-twin

curves on Fri . Note that when both vanishing cycles are the same curve on Fri then

77



the fibration admits a section over [qi, qi+1], otherwise there is no such section, see

Figure 5.23.

X X
q qr

i i+1i

Real part

Fibers

:

Imaginary:

X X
q qr

i i+1
i

Fig. 5.23.

In the above situations if ai and ai+1 are ci-twin curves then we mark ri by rRi .

(Notation refers to imaginary rotation R 1

2

, since one can switch the vanishing cycle

by applying to the imaginary rotation R 1

2

). Then we decorate the weak real Lefschetz

chain by marking classes {ci, ai}R corresponding to the marked points. The weak

Lefschetz chain we obtain is called the decorated weak real Lefschetz chain.

Theorem 5.6.1. There exists a one-to-one correspondence between the decorated

weak real Lefschetz chains and the isomorphism classes of directed non-marked real

elliptic Lefschetz fibrations over D2 with only real critical values.

Proof. Above we discuss how to assign a decorated weak Lefschetz chain to a

directed non-marked RELF . As for the converse, we consider a decorated weak real

Lefschetz chain. Each real code {ci, ai} gives a unique class of directed non-marked

elementary RELFs then we consider boundary fiber sums respecting the decora-

tion from left to right with the order determined by the chain. We obtain unique

real Lefschetz fibration up to isomorphism since boundary fiber sum is determined

uniquely by the decoration. 2

If c1 ◦ ta1 is conjugate to cn then we can consider an extension of π : X → D2 to

a fibration over S2. As before, in case when cn has 2 real components and neither

a1 nor an is a real-imaginary curve or when cn has no real component a decoration

at infinity will be needed.

Proposition 5.6.2. If cn has 2 real components and either a1 or an is real-imaginary

or if cn has 1 real component then there exists a unique extension.

78



Otherwise, there are two extensions distinguished by the decoration at infinity.

Proof. Let π : X → D2 be the directed RELFs associated to a given deco-

rated weak real Lefschetz chain. An extension of π to a fibration over S2 defines a

trivialization, φ : Σ1 × S1 → π−1(∂D2) over the boundary ∂D2. Two trivializations

φ, φ′ correspond to isomorphic real fibrations if φ−1 ◦φ′ : Σ1 ×S1 → Σ1 ×S1 can be

extended to an equivariant diffeomorphism of Σ1×D2 with respect to the real struc-

ture (cn, conj ) : Σ1 ×D2 → Σ1 ×D2. Let Φt = (φ−1 ◦ φ′)t : Σ1 → Σ1, t ∈ S1. Since

there is no fixed marking, up to change of marking we assume that Φt ∈ Diff0 (Σ1).

The real structure splits the boundary into two symmetric pieces, so instead of

considering an equivariant map over the entire boundary we consider a diffeomor-

phism over one the symmetric pieces. Let Φt, t ∈ [0, 1] denote the family of such

diffeomorphisms. The family, Φt, t ∈ [0, 1] defines a path in Diff0 (Σ1) whose end

points lie in Diff cn

0 (Σ1), thus Φt defines a relative loop in π1(Diff0 (Σ1),Diff cn

0 (Σ1)).

We will be interested in the contractibility of this relative loop.

As we have calculated in Section 5.2 we have π1(Diff0 (Σ1),Diff cn

0 (Σ1)) = Z.

However, there is a way to modify Φt without changing the isomorphism class of the

RELF such that Φt is transformed to a contractible relative loop. The proposition

follows from Lemma 5.6.3 below. 2

First, let us consider the exact sequence of the pair (Diff0 (Σ1),Diff cn

0 (Σ1))

... → π1(Diff cn

0 ) → π1(Diff0 )
f→ π1(Diff0 ,Diff cn

0 )
g→ π0(Diff cn

0 )
h→ π0(Diff0 ) →

π0(Diff0 ,Diff cn

0 ) → 0.

In case when cn is an odd real structure, Diff cn

0 (Σ1) is connected so map h is

injective hence g is the zero map which implies that f is surjective. Hence any path

in π1(Diff0 (Σ1),Diff cn

0 (Σ1), [id]) can be seen as a loop in π1(Diff0 (Σ1), id). The

following Lemma shows that any loop in π1(Diff0 (Σ1), id) can be written in terms

of transformations TNi
, for some regular slices Ni.

In other cases, Diff cn

0 (Σ1) has two components. Let us mark one of the compo-

nents. Then the map h restricted to the marked component is injective. Hence g is

the zero map and f is surjective over the marked component of Diff cn

0 . Note that

decoration of real Lefschetz chain distinguishes one of the component of Diff cn

0 (Σ1)

hence marking one component or other give the two different extension determined

by the decoration.

In the case cn has 2 real components and either a0 or an is real-imaginary, the

transformation TNsing
changes one marking to other.
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Lemma 5.6.3. Let us assume that π : X → D2 has at least one real-imaginary

vanishing cycle. Then there exists a generating set for π1(Diff0 (Σ1), id) = Z + Z

consisting of transformations TNi
for some nonsingular slices Ni.

Proof. Let ai denote the real-imaginary vanishing cycle and qi corresponding

critical value. Let N−, N+ be two nonsingular slices of D2 intersecting the real part

(qi−1, qi) and (qi, qi+1), respectively. Let r− and r+ be left boundary points of N−

and N+ shown in Figure 5.24, and c± be the real structures on the fibers π−1(r±).
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Fig. 5.24.

Since the vanishing cycle is real-imaginary, the real structures on the nearby

regular fiber can have either 1 or 2 real components. Let us assume that the real

structure over (qi−1, qi) has 2 real components. (The other case can be treated

similarly.)

Let us choose an auxiliary C-marking ({b, b̄}, {ρ : Σ1 → Fb, ρ̄ : Σ1 → Fb̄}). We

will also fix an identification ̺ : S1 × S1 → Σ1 of Σ1 with S1 × S1. Since c− has 2

real components, we can assumed that the induced real structure on S1 × S1 is the

reflection (α, β) → (α,−β). Then real part consists of the curves C1 = (α, 0) and

C2 = (α, π). Since ai is real-imaginary a representative can be chosen as (0, β). By

Theorem 3.1.2, we have c+ = tai
◦ c− on S1 × S1. Then the real part of c+ is the

curve C3, given homologically by 2C1 − ai, see in Figure 5.25.

Since C3 intersects C1 at one point. We can identify Σ1 = C1 × C3. Then rota-

tions along C1, C3 generates Diff0 (Σ1). Hence TN±
generates π1(Diff0 (Σ1)). 2

Remark 5.6.4. The assumption that the fibration admits a real-imaginary vanish-

ing cycle is not restrictive. In fact, every real elliptic Lefschetz fibration over S2

with only real critical values has at least one real-imaginary vanishing cycle. This

can be seen easily by analysis of the homology monodromy which will be discussed

in next chapter (Corollary 6.10.3).
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Fig. 5.25.

Theorem 5.6.1 applies naturally to directed non-marked RELFs over D2 which

admit a real section. Since there is a real section weak Lefschetz chain does not

contain a real code [ci, ai] with a real structure which has no real component. In

addition, if the real structure has 2 real components and the vanishing cycle is

real the decoration is not needed, since existence of a real section defines uniquely

the gluing of two directed non-marked elementary RELFs over D2. Similarly, the

extension to a fibration over S2 is uniquely defined.

Proposition 5.6.5. Two directed RELFs over S2 admitting a section and having

the same weak Lefschetz chain up to cyclic ordering are isomorphic. 2
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CHAPTER 6

necklace diagrams

6.1 Real locus of real elliptic Lefschetz fibrations with

real sections

Let π : X → S2 be a directed RELF admitting a real section, and πR : XR → S1

the restriction of π to the real part, XR, of X. Since π has a real section, none of

the fibers of πR is empty. As a consequence, topologically regular fibers of πR are

either two copies of S1 (this happens if the real fiber of π has two real components)

or a copy of S1 (this happens if the real fiber π has one real component). There are

two types of singular fibers of πR: topologically either a disjoint union of a circle

and an isolated point or a wedge of two circles. In the first case, the singularity,

called a solitary double point, appear as a local maximum (the local model −x2
1−x2

2),

or a local minimum (the local model x2
1 + x2

2) of πR, while in the second case, the

singularity is called a crossing double point and appear as a saddle critical point (the

local model ±(x2
1 − x2

2)) of πR.

The isotopy type of the real structures and in particular the topology of the fibers

of πR over its regular intervals (between the pairs of neighboring critical points) is

constant.

Definition 6.1.1. A regular interval I ⊂ S1 is called odd if the real structure over

I is an odd real structure, and otherwise is called even.

Lemma 6.1.2. The topology of the regular fibers of πR alternates as we pass through

a critical value.

Proof. Let ci−1 and ci be the real structures on the fibers over the points

neighboring a critical value, qi, and ai the vanishing cycle corresponding to qi.
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If ai is real with respect to ci−1, then by Lemma 4.3.1, ai is totally imaginary

with respect to ci = ci−1 ◦ tai
, vice versa. Therefore, the number of real components

increase or decrease by 1.

O

Real Part

Imaginary part
of the fibers

Fig. 6.1.

If ai is real-imaginary with respect to ci−1, then there are two cases: either ci−1

has two real components and ai intersects each of the real components at one point

or ci−1 has one component and ai intersects the real curve at two points. In fact, the

latter case can be seen as the inverse of the former case with respect to the direction

of S1. So, it will be sufficient to give a proof for the former case.

Real Part Imaginary part
of the fibers

Fig. 6.2.

Note that in the former case, after the Dehn twist along ai, two real components

are connected to each other and form an invariant curve. Since a Dehn twist is the

identity map outside a neighborhood of ai, the real structure ci acts as the identity

on the pieces of this curve, so it should act as the identity on the whole curve. Hence

we obtain one real curve which intersects the vanishing cycle ai at two points. 2

On S1 (the base of πR), we will mark the critical values corresponding to the

solitary double points by ◦ and those corresponding to the crossing double points
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by ×. Moreover, we mark the regular intervals over which fibers of πR have two

components by sketching an extra edge, like is shown on Figure 6.3. Evidently, the

decoration we obtain is an invariant of real Lefschetz fibrations. We call S1 together

with such a decoration an uncoated necklace diagram.

x

xx

x

xx
Fig. 6.3.

Remark 6.1.3. Since the decoration of S1 determines the vanishing cycle and

the real structure up to conjugation, uncoated necklace diagrams give a geometric

interpretation of weak Lefschetz chains, (up to cyclic ordering).

Let us mark an odd interval on S1 \ {critical set}. Then with respect to the

marked interval, we have 4 basic positions.

We introduce the following notation for the even intervals.

−→
−→
−→
−→

Thus, we modify the decoration of a circle and call the object we get an oriented

necklace diagram associated to a directed real elliptic Lefschetz fibration with a

real section. We call the elements of the set { ,�, >,<} necklace stones and the

circle necklace chain of the necklace diagram. Two oriented necklace diagrams are

considered identical if they contain the same types of stones going in the same cyclic

order.
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xx

Fig. 6.4. Uncoated necklace diagram.

A necklace diagram is called non-oriented, if the orientation of its chain is not

fixed. Such diagrams are invariants of non-directed RELFs admitting a real section.

Fixing an orientation, we can obtain a pair of oriented necklace diagrams related by

a mirror symmetry. Thus, non-oriented necklace diagrams will be considered up to

symmetry.

Note that although (oriented) necklace diagrams can be defined for any directed

real elliptic Lefschetz fibration which admits a real section, to be able to obtain a

one to one correspondence we will concentrate ourselves on those fibrations whose

critical values are all real.

6.2 Monodromy representation of stones

Any real structure, c : Σ1 → Σ1, induces a homomorphism c∗ on H1(Σ1,Z) =

Z + Z which defines two rank 1 subgroups Hc
± = {[a] : [a]c∗ = ±[a]} of H1(Σ1,Z).

(Here, [a]c∗ denotes c∗[a].) For any real structure c, the subspaces Hc
± is nonempty.

When the real structure c has two real components, we have H1(Σ1,Z) = Hc
+ +

Hc
−. Otherwise any element of H1(Σ1,Z) can be written as a linear combination of

generators of Hc
± where the coefficients taken from the set 1

2Z = {1
2m : m ∈ Z}.

Vanishing cycles corresponding to the critical value of type ◦ are either real or totally

imaginary, hence they give a generator for the subspace Hc
+. On the other hand,

vanishing cycles corresponding to the critical values of type × are real-imaginary so

they give a generator of the subspace Hc
−.

Let q be a critical value and c and c′ be the real structures on the fibers over

q− ǫ and q+ ǫ, respectively, where ǫ is a sufficiently small positive real number. We

will call c and c′ as left-hand and right-hand real structure, respectively.
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Let < [a] >= Hc
+ and < [b] >= Hc

−; similarly, < [a′] >= Hc′

+ and < [b′] >= Hc′

+ .

To each critical value, q, we assign the transition matrix, Pq, defined up to sign,

such that ([a], [b])Pq = ([a′], [b′]).

There are two types of critical values. For each type there are two cases distin-

guished by the direction.

Lemma 6.2.1. Up to a sign, we obtain the following matrices

P(−×<) = 1
2

(
1 0

−1 2

)

, P(>×−) =
(

2 0

−1 1

)

P(−◦<) = 1
2

(
2 1

0 1

)

, P(>◦−) =
(

1 1

0 2

)

.

Proof. We give the proof for one of the four cases, say P(−×<). (Calculations

for other cases are analogous.)

Recall that, in this case, the vanishing cycle is a real-imaginary curve and hence,

gives a generator of Hc
−. Let us denote the vanishing cycle by b, so that we have

< [b] >= Hc
−. Then, we choose a generator [a] for Hc

+ such that [a] ◦ [b] > 0. Since

c is an odd real structure, [a] ◦ [b] = 2. By Theorem 3.1.2, we have c′ = tb ◦ c and

thus c′∗ = tb∗ ◦ c∗ = c∗tb∗. (To be consistent with the notation [a]c∗, in the level of

homology we consider the product notation for the composition.) We obtain,

[a]c′∗ = [a]c∗tb∗ = [a]tb∗ = [a] + ([b] ◦ [a])[b] = [a] − 2[b]

[b]c′∗ = [b]c∗tb∗ = −[b]tb∗ = −[b].

Note that

([a] + [a]c′∗)c
′
∗ = [a] + [a]c′∗ and ([b] − [b]c′∗)c

′
∗ = −([b] − [b]c′∗).

Therefore a generator [a′] of Hc′

+ and [b′] of Hc′

− can be obtained by normalizing

[a] + [a]c′∗ = 2[a] − 2[b] and [b] − [b]c′∗ = 2[b] so that [a′] ◦ [b′] = 1. We choose

[a′] = 1
2([a] − [b]) and [b′] = [b]. Then we get P(−×<) = 1

2

(
1 0

−1 2

)

.

We can always replace ([a], [b]) by (−[a],−[b]). Thus, the resulted matrix is well-

defined up to a sign. 2

Each necklace stone corresponds to a pair of critical values, and the matrices

associated to the necklace stones are obtained as the following products (up to an

ambiguity of the sign)
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P� = P(−×<)P(>×−) =

(
1 0

−2 1

)

,

P = P(−◦<)P(>◦−) =

(
1 2

0 1

)

,

P> = P(−×<)P(>◦−) = 1
2

(
1 1

−1 3

)

,

P< = P(−◦<)P(>×−) = 1
2

(
3 1

−1 1

)

.

We consider two presentations of SL(2,Z);

SL(2,Z) = {α =
(

1 1

0 1

)

and β =
(

1 0

−1 1

)

: (αβ)6 = id}
= {x =

(
0 1

−1 0

)

and y =
(

0 1

−1 1

)

: x2 = y3, x4 = id}.

One can pass from the first presentation to the second by letting x = αβα = βαβ

and y = αβ.

Since x2 = −id we have PSL(2,Z) = {x, y : x2 = y3 = id}.

Lemma 6.2.2. Let R = 1
2

(
1 −1

1 1

)

and P̃ = R−1PR. Then for each stone we

obtain the following factorization.

P̃� = yxy

P̃ = xyxyx

P̃> = y2x

P̃< = xy2

Proof. We have

P̃� = R−1P�R =
(

0 1

−1 2

)

, P̃> = R−1P>R =
(

1 1

0 1

)

,

P̃ = R−1P R =
(

2 1

−1 0

)

, P̃< = R−1P<R =
(

1 0

−1 1

)

.

Note that P̃� = αβα−1, P̃> = α, P̃ = α−1βα, P̃< = β.

Thus, we obtain the following elements in PSL(2,Z) as monodromies of necklace

stones.
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P̃> = α = β−1α−1αβα = y−1x = y2x

P̃< = β = βαββ−1α−1 = xy−1 = xy2

P̃� = αβα−1 = αβα−1β−1α−1αβ = yxy

P̃ = α−1βα = α−1β−1α−1(αβα−1)αβα = x(yxy)x.
2

Remark 6.2.3. Note that P̃ = xP̃�x and P̃< = xP̃>x, hence if a necklace diagram

has the identity monodromy, then the necklace diagram obtained from the original

by replacing each �-type stone with -types stone, and each >-type stone with

<-type stones, and vice versa has also monodromy the identity. Such a necklace

diagram is called the dual necklace diagram.

Lemma 6.2.4. Let π : X → S2 be a directed real elliptic Lefschetz fibration having

only real critical values and admitting a real section. Then the monodromy of the

necklace diagram associated to π is the identity in PSL(2,Z).

Proof. We mark an odd interval on S1 and denote by {q1, q2, ..., qn} the set

of critical values, ordered with respect to the orientation and the marked interval.

We consider real structures ci, i = 1, 2, ..., n over regular intervals Ii = (qi, qi+1), i =

1, ..., n − 1, and In = (qn, q1). Since c0 = c1 ◦ ta1 and cn are isotopic, we have

c0∗ = cn∗.

Note that with respect to ([a0], [b0]), such that [a0] ∈ Hc0
+ and [b0] ∈ Hc0

− , we can

write c0∗ and cn∗ as

c0∗ =
(

1 0

0 −1

)

and cn∗ = Pq1Pq2...Pqn

(
1 0

0 −1

)

P−1
qn P

−1
qn−1

...P−1
q1
.

Thus,

c0∗ = cn∗ ⇒
(

1 0

0 −1

)

= Pq1Pq2 ...Pqn

(
1 0

0 −1

)

P−1
qn P

−1
qn−1

...P−1
q1
.

By equating two matrices we see that the latter equality holds if and only if Pq1Pq2

...Pqn is the identity ∈ PSL(2,Z). The product Pq1Pq2...Pqn corresponds to the

monodromy of the corresponding necklace diagram. Note that the any other choice

of marked odd interval changes the monodromy up to conjugation, which does not

effect the result. 2
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6.3 The Correspondence Theorem

Recall that the elliptic Lefschetz fibrations of type E(n) can be characterized by the

number 12n of their critical values.

Theorem 6.3.1. There exists a one-to-one correspondence between the set of ori-

ented necklace diagrams with 6n stones whose monodromy is the identity and the set

of isomorphism classes of directed real fibrations E(n), n ∈ N, which have only real

critical values and admit a real section.

Proof. In the previous section we have discussed how to assign an oriented

necklace diagram whose monodromy is the identity to a real E(n) which admits a

real section and has only real critical values. Since E(n) has 12n critical values the

corresponding oriented necklace diagram has 6n stones.

For a given necklace diagram with 6n stones whose monodromy the identity,

we consider the underlying uncoated necklace diagram. The underlying uncoated

necklace diagram defines a weak Lefschetz chain up to cyclic ordering. Hence by

Proposition 5.6.5 there is a unique class of directed non-marked RELF over S2 ad-

mitting a section and having only real critical values.2

Corollary 6.3.2. There exists a bijection between the set of symmetry classes of

non-oriented necklace diagrams with 6n stones whose monodromy is the identity,

and the set of isomorphism classes of non-directed real E(n), n ∈ N which have only

real critical values and admit a real section. 2

6.4 Refined necklace diagrams

One can define a necklace diagram for fibrations not necessarily having a real section.

When we discard the condition that the fibration admits a real section, we need

to consider also the real structure with no real component. Let us recall that a

vanishing cycles with respect to such a real structure can only be totally imaginary.

Thus real structure with no real component are associated to the -type necklace

stones. Recall that -type necklace stones define two critical values of type ◦, so

corresponding singularities are solitary double points. Therefore, in case when the

real Lefschetz fibrations has no real section, with respect to a real structure c on

a real fiber F between the corresponding singular fibers, vanishing cycles are both
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real (if c has 2 real components) or totally imaginary (if c has no real component).

As it was discussed in Section 5.6, the isomorphism class of the fibration depends

on whether these vanishing cycles are the same curve, or c-twin curves (c-invariant

curves which are isotopic but not c-equivariantly isotopic) on F .

Recall that, if c has 2 real components and two vanishing cycles are real, two

possible classes of fibrations are already distinguished by whether or not there exists

a real section over the interval corresponding to two critical values, as is clear from

Figure 6.5.

(1) (2)

Fig. 6.5.

If c has no real component, as discussed in Section 5.6 we have two non-isomorphic

real Lefschetz fibrations although the real part of the fibration does not distinguish

two choices of vanishing cycles, see Figure 6.6.

(3) (4)

Fig. 6.6.

On the homological level, there is no difference between the real structure with

2 real components and the real structure with no component. As a result, there is

no difference in the calculation of the monodromy of the necklaces stones. Thus we

assign a refined (oriented) necklace diagram to a (directed) real Lefschetz fibration

without real sections by replacing -type necklace stones with , , , corre-

sponding respectively to the four cases discussed above, see Figures 6.5 and 6.6.

(Each refined necklace stone corresponds to xyxyx ∈ PSL(2,Z).)
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The necklace diagram which we obtain will be called a refined necklace diagram.

(Clearly if the refined necklace diagram is identical to the necklace diagram then the

corresponding real Lefschetz fibration admits a real section.)

Fig. 6.7. An example of refinements of a necklace diagram.

Theorem 6.4.1. There is a one-to-one correspondence between the set of oriented

refined necklace diagrams with 6n stones whose monodromy is the identity and the

set of isomorphism classes of directed real E(n), n ∈ N with only real critical values.

Proof. As we discuss in the beginning of this section, to a given directed real

E(n) with only real critical values we can assign an oriented refined necklace diagram.

As for the converse, to an oriented refined necklace diagram, we assign a deco-

rated weak real Lefschetz chain. Note that one can always get a necklace diagram

from a refined necklace diagram by forgetting different nuance of -type stones. Let

us consider the underlying uncoated necklace diagram associated to the necklace

diagram obtained from the refined necklace diagram. We get refinement of the un-

coated necklace diagram by considering dotted intervals for refined stones of type

, , see Figure 6.8. Then the oriented refined uncoated necklace diagram defines a

weak real Lefschetz chain up to cyclic ordering, where dotted intervals correspond

to a real structure with no real component.

Fig. 6.8. Refinement of uncoated necklace diagram.
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Note that by its construction, the refinement of -type stones encodes the deco-

ration of the weak Lefschetz chain. Namely, the stone ( ) corresponds to a pair of

critical values where the real code {ci, ai} on a fiber Fi over a real point between the

critical values is decorated (corresponding vanishing cycles on F are ci-twin curves)

and ci has 2 real components (no real components, respectively). On the other

hand, the stone ( ) corresponds to a pair of critical values where the real code

{ci, ai} on a fiber Fi over a real point between the critical values is not decorated

(corresponding vanishing cycles are the same) and ci has 2 real components (no real

components, respectively).

Then by Theorem 5.6.1 and Proposition 5.6.2 we get a unique isomorphism class

of directed RELF with only real critical values. 2

6.5 The Euler characteristic and the Betti numbers of

necklace diagrams

Proposition 6.5.1. Let π : X → S2 be a RELFs admitting a real section. Then

the Euler characteristic of the real part is

χ(XR) = 2(| | − |�|),

and the total Betti number is

β∗(XR) = 2(| | + |�|) + 4.

Proof. Each stone of type includes two singular fibers having a solitary double

point, and, similarly, each stone of type � includes two singular fibers having a

crossing double point. Regular fibers are either one S1 or two copies of S1, hence

their Euler characteristics are zero. The Euler characteristic of a singular fiber

having a solitary double point is 1, while that of a fiber having a crossing double

point is -1. Thus, the result follows by applying Euler characteristic formula for

fibrations.

Necklace diagrams determines the topology of the real part of XR. Indeed, each

|�|-type stone defines a genus on the real part XR and since there is a real section

each | |-type stone defines a sphere component.
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Note also that each stone of arrow type does not effect the homology of XR.

Hence, we have β0 = β2 = | | + 1 and β1 = 2(|�| + 1). Thus β∗ = 2(| | + 1) +

2(|�| + 1) = 2(| | + |�|) + 4. 2

Remark 6.5.2. The calculation of the Euler characteristic of the real part of a

fibration π : X → S2 using a necklace diagram can be made for a fibration without

a real section by replacing | | with | | + | | + | | + | |.

Definition 6.5.3. We call the quantity 2(| | − |�|) the Euler characteristic of the

necklace diagram and 2(| | + |�|) + 4 as the total Betti number of the necklace

diagram.

Definition 6.5.4. Let (X, c) be a real manifold, then the real part XR is called

maximal if β∗(XR) = β∗(X). (Note that in general we have β∗(XR) ≤ β∗(X), called

Smith inequality.)

In our case, the total Betti number of E(n) is β∗(E(n)) = 12n [GS]. We call

a necklace diagram with 6n stones maximal if its total Betti number is 12n. This

happens when | | + |�| = 12n−4
2 . In particular, if n = 1, 2, then | | + |�| = 4 and

| | + |�| = 10, respectively.

6.6 Horizontal and vertical transformations of necklace

diagrams

Let N (i,j)
k denote the set of oriented necklace diagrams with | | = i and |�| = j.

We define transformations which allow us to produce new necklace diagrams from

the given one.

The transformation h interchanges the pieces as is shown below.

h : Nk
(i,j) → Nk

(i,j)

↔
↔

Clearly, h preserves the Euler characteristic and the total Betti number of the

necklace diagram. The transformations v1 and v2 are defined as follows.
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h

Canceling 
the handle

Recreating 
the handle

Canceling 
the handle

Recreating 
the handle

Fig. 6.9. The relation between transformations h and the real part of X .

v1 : Nk
(i,j) → Nk

(i−1,j)

→
→

v Canceling 
the handle1

Fig. 6.10. The relation between v1 and the real part of X .

v2 : Nk
(i,j) → Nk

(i,j−1)

→
→

Canceling 
the handle

v2

Fig. 6.11. The relation between v2 and the real part of X .

Note that unlike h, transformations v1, v2 change the Euler characteristic and

the Betti number of the necklace diagram.

Note that transformations h, v1, v2 can be defined for non-oriented necklace dia-

grams in the same way.

94



h
e

d

e

da

b

a

b

h

a

b

a
b

v2

d

e
v1

d

e

Fig. 6.12. Examples of transformations h, v1, v2.

6.7 Producing new necklace diagrams using necklace

connected sum

We consider two connected sum operations for oriented necklace diagrams called odd

sum and even sum. Note that even and odd sum of necklace diagrams correspond

to fiber sums of real Lefschetz fibration π : X → S2, where the gluing is made on

an even or odd interval of S1. To perform an odd sum, we cut each of two necklaces

along an odd interval (piece of chain) and then reglue them crosswise respecting the

orientation.

The even sum is obtained by cutting necklace diagrams at a stone (this corre-

sponds to cutting the chain on an even interval) and regluing them according to the

table shown in Figure 6.13.

Observe that the Euler characteristic is additive with respect to the odd sum.

However, it is not always additive with respect to the even sum.

Example 6.7.1. Examples of odd and even connected sums are given in Figure

below.

We can also consider the sum of two non-oriented necklace diagrams by fixing

orientations on the necklace chains.

6.8 Classification of real E(1) with real sections via neck-

lace diagrams

Theorem 6.8.1. There exist precisely 25 isomorphism classes of real non-directed

fibrations E(1) admitting a real section and having only real critical values. These

classes are characterized by the non-oriented necklace diagrams presented in Fig-

ure 6.16.
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Fig. 6.13.

Fig. 6.14. An example of odd connected sum.

Proof. By Theorem 6.3.2, it is enough to find the list of symmetry classes

of necklace diagrams of 6 stones whose monodromy is the identity. To find the

symmetry classes of necklace diagrams, we consider the following algorithm. Let

S,C,L,R ∈ PSL(2,Z) = {x, y : x2 = y3 = [id]}, such that S = yxy, C = xyxyx,

L = xy2 and R = y2x. Then,

1. Consider words of length 6 of the letters S,C,L,R.

2. Quotient out the words which are equivalent to each other up to cyclic ordering.

3. Quotient out the symmetry classes. Symmetry classes of necklace diagrams in

terms of words can be seen as follows. Two words will be called symmetric if one

is obtained from the other by reading from the end to beginning and by changing

each letter L by the letter R, and vice versa. For example, CLLSLL ∼ RRSRRC. 2
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Fig. 6.15. Examples of even connected sums.

β=12

β=10

β=8

β=6

β=4

χ =−8 χ =8χ=0

Fig. 6.16. List of necklace diagrams of real E(1) having only real critical values and
admitting a real section.

If a necklace diagram has monodromy identity, its dual has also, thus we can

always assume | | ≤ |�|. One can also proceed by considering words of length 3,

then checking the words which are inverses to each other in PSL(2,Z). This way it

is possible to get the list without using computer. There is also a computer program

written by Andy Wand, which works for the cases n = 1, 2.

Proposition 6.8.2. All necklace diagrams with 6 stones whose monodromy is the

identity can be obtained from the maximal necklace diagrams of 6 stones by applying

the transformations h, v1, v2.

Proof. The proof is obtained by direct analysis of necklace diagrams listed in

Figure 6.16. 2

97



By calculating possible refinements of the necklace diagrams (considered up to

symmetry) listed in Figure 6.16 we obtain the following results. (Note that refine-

ment concerns only those necklace which have at least one -type stone.)

• (| |, |�|) = (1, 1) there are 4 refined necklace diagrams,

• (| |, |�|) = (1, 0) there are 4 refined necklace diagrams,

• (| |, |�|) = (2, 0) there are 46 refined necklace diagrams,

• (| |, |�|) = (3, 0) there are 84 refined necklace diagrams,

• (| |, |�|) = (4, 0) there are 251 refined necklace diagrams.

6.9 Real elliptic Lefschetz fibrations of type E(2) with

real sections

Using the algorithm written by Andy Wand, we obtain 25263 real E(2) having only

real critical values and admitting a real section.

Proposition 6.9.1. There are 10 maximal necklace diagrams (| | + |�| = 10) of

12 stones whose monodromy is the identity. The list is given in Figure 6.17. 2

(9,1)
(5,5)

(1,9)

Fig. 6.17. List of necklace diagrams of maximal real E(2) having only real critical values
and admitting a real section.

98



Proposition 6.9.2. There exist necklace diagrams of 12 stones whose monodromy

is the identity and which can not be written as a connected sum of two necklace

diagrams of 6 stones whose monodromy the identity.

Proof. In Figure 6.18, we construct an example using the necklace connected

sum and the operation h of necklace diagrams. Note that neither h nor vi effects

the monodromy of necklace diagram.

= h

Fig. 6.18. An example of construction of a non-decomposable necklace diagram.

By analyzing possible divisions of the pair (| |, |�|), we see that the necklace

diagram shown in Figure 6.18 cannot be divided into two necklace diagrams of 6

stones with the identity necklace monodromy, listed in Figure 6.16. 2

Remark 6.9.3. The idea of construction can be applied to obtain non-decomposable

examples for all n.

Proposition 6.9.4. There exists a necklace diagram of 12 stones which can not

be obtained from the maximal necklace diagram by applying the transformations

h, v1, v2.

Proof. Examples are given in Figure 6.19, the result is obtain by simple analysis

on possible cases. 2

(9,0) (0,9)

Fig. 6.19. Example of necklace diagrams which can not be obtained from the maximal
necklace diagrams using v1, v2, h.
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6.10 Some other applications of necklace diagrams

Denote by | | (respectively |�|) the number of stones of type (respectively, of type

�). By fixing the pair (| |, |�|), we fix the topology of the real part of E(n), hence

we obtain a classification of real parts of E(n) which have only real critical values

and admit a real section. Note that, | | is the number of spherical components of

the real part and the number of genus of the higher genus component is |�|+ 1. In

Figure 6.20 and Figure 6.21 we show the corresponding classification for n = 1 and

n = 2, respectively.

(1,1)

(0,0)

(0,4)

(0,3)

(0,2)

(0,1)

(4,0)

(3,0)

(2,0)

(1,0)

v

E(1)

v

v

vv

v

v

vv

v

1

1 1

1

1

2

2

2

2

2

Fig. 6.20. Vertices of the graph correspond to the necklace diagrams of real E(1) whose
real part has fixed topological type. Edges correspond to the transformations v1 or v2.

Remark 6.10.1. If the real part of real elliptic Lefschetz fibration, E(n), (admitting

a section) is disjoint union of 2 tori (happen when n is even) or of 2 Klein bottles

(happen when n odd), then E(n) does not admit a real fibration with real critical

values.

Proposition 6.10.2. Each (refined) necklace diagram whose monodromy is the

identity contains at least two arrow type stones.

Proof. Assume that there are necklace diagrams whose monodromy is the iden-

tity and which have either no or only one arrow type stones. If there is no arrow

type stones then we have only � and/ or . However, there is no cancellation in the

product of monodromies of the stones of type � and . Hence, the product can not

be the identity. Similarly, if there is one arrow type stone, to be able to obtain the

identity the monodromies of rest should give yx or xy. Again it can not be possible
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(1,9) (5,5) (9,1)

(0,0)

(0;9) (9,0)

(0,8)

(0,7)

(0,6)

(0,5)

(0,4)

(0,3)

(0,2)

(0,1)

(2,6) (6,2)

(8,0)

(7,0)

(6,0)

(5,0)

(4,0)

(3,0)

(2,0)

(1,0)

(2,2)

(3,3)

(4,4)

(1,1)

(1,8)

(1,7)

(1,6)

(1,5)

(1,4)

(1,3)

(1,2)

(2,5)

(2,4)

(2,3)

(2,1)

(3,5)

(3,4)

(3,2)

(3,1)

(4,5)

(4,3)

(4,2)

(4,1)

(5,4)

(5,3)

(5,2)

(5,1)

(8,1)

(7,1)

(6,1)

E(2)

v v1 2v2

v2

v1

v1

Fig. 6.21. Vertices of the graph correspond to necklace diagrams of real E(2) whose real
part has fixed topological type. Edges correspond to the transformations v1 or v2.

since there is no cancellation in the product of monodromies of � and/ or . 2

Corollary 6.10.3. Each real elliptic Lefschetz fibration with only real critical values

contains at least two critical values of type ×. 2
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APPENDIX A

algebraicity of real elliptic

lefschetz fibrations with a section

In this section, we study the algebraicity of the real elliptic Lefschetz fibrations with

a real section. We concentrate ourselves mainly on fibrations with 12 real critical

values. Note that any algebraic elliptic Lefschetz fibration, E(n), can be seen as

the double branched covering of a Hirzebruch surface of degree 2n, branched at the

exceptional section and a trigonal curve disjoint from this section.

S.Yu. Orevkov [O2] introduced a real version of dessins d’enfants for trigonal

curves on Hirzebruch surfaces which are disjoint from the exceptional section. We

apply his results to determine which of the trigonal curves that appear as the branch-

ing set of the covering E(n) → H(2n), are realizable algebraically and which are

not.

A.1 Trigonal curves on Hirzebruch surfaces

The Hirzebruch surface, H(k), of degree k is a complex surface equipped with a

projection, πk : H(k) → CP 1, which defines a CP 1-bundle over CP 1 with a unique

exceptional section s such that s ◦ s = −k. In particular, H(0) = CP 1 × CP 1 and

H(1) is CP 2 blown up at one point.
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Each Hirzebruch surfaceH(k) can be obtained fromH(0) by successive birational

transformations, namely, by a sequence of blow ups followed by blow downs at

a certain set of points. If these points are chosen to be real, then the resulting

Hirzebruch surface has a real structure inherited from the real structure conj × conj

on H(0): this is the real structure which we deal with.

With respect to this real structure, the real part of H(k) is a torus if k is even,

otherwise it is a Klein bottle.

In this Appendix, we consider nonsingular curves only, so by a trigonal curve on

a Hirzebruch surface H(k) we understand a smooth algebraic curve C ⊂ H(k) such

that the restriction to it of the bundle projection, πk : H(k) → CP 1, is of degree 3.

A trigonal curve on H(k) is called real if it is invariant under the real structure of

H(k).

A.2 Real dessins d’enfants associated to trigonal curves

Let us choose affine coordinates (x, y) for H(k) such that the equation x = const

corresponds to fibers of πk and y = ∞ is the exceptional section s. Then, with

respect to such affine coordinates any (algebraic) trigonal curve can be given by

a polynomial of the form y3 + p(x)y + q(x) where p and q are real one variable

polynomials such that deg p = 2k and deg q = 3k.

The discriminant of y3 + p(x)y + q(x) = 0 with respect to y is −4p3 − 27q2.

Following [O2], we put D = 4p3 + 27q2. The fraction f(x) = D(x)
q2(x)

defines a rational

function whose poles are the roots of q taken with multiplicity 2, zeros are the roots

of D, and the solutions of f = 27 are the roots of p taken with the multiplicity 3.

Let us color RP 1 as in Figure A.1.

x
0 27

Fig. A.1. Coloring of RP 1.

Then the inverse image f−1(RP 1) turns naturally into an oriented colored graph

on CP 1. Since f(x) is real, the graph is symmetric with respect to the complex

conjugation on CP 1.

Sufficient conditions for the realizability of a graph (and the existence of respec-

tive polynomials p, q,D) is given by the following theorem.
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x

Fig. A.2. The graph around the inverse images of zeros of p, q,D.

Theorem A.2.1. [O2] Let Γ ⊂ S2 be an embedded oriented graph where some of

its vertices are colored by the elements of the set {◦, •,×} and each of its edges is

one of the three kinds: , , . Let Γ satisfy the following conditions:

(1) The graph Γ is symmetric with respect to an equator of S2, which is included

into Γ;

(2) The valency of each vertex ′′•′′ is divisible by 6, and the incident edges are col-

ored alternatively by incoming , and outgoing ;

(3) The valency of each vertex ′′◦′′ is divisible by 4, and the incident edges are col-

ored alternatively by incoming , and outgoing ;

(4) The valency of each vertex ′′×′′ is even, and the incident edges are colored alter-

natively by incoming , and outgoing ;

(5) The valency of each non-colored vertex is even, and the incident edges are of the

same color;

(6) Each connected component of S2 \ Γ is homeomorphic to an open disc whose

boundary is colored as a covering of RP 1 (colored and oriented as in Figure A.1)

and the orientations of the boundaries of neighboring discs are opposite.

Then, there exists a real rational function f = 4p3+27q2

q2
whose graph is Γ.

Definition A.2.2. A graph on S2 satisfying the conditions (1)-(6) of the above

theorem is called a real dessin d’enfant.

A.3 Correspondence between real schemes and real des-

sins d’enfants

The real scheme of a trigonal curve imposes strong restrictions on the arrangement

of the real roots of p, q and D. For example, the zeros of D correspond to the points

where the trigonal curve is tangent to the fibers of πk : H(k) → CP 1. A typical

correspondence for certain model pieces of the curve is shown in Figure A.3. (cf [O2]

or [DIK])

108



xx

xx xx x x

Fig. A.3. Because of the symmetry property we consider only one of the symmetric piece
of real dessins d’enfants.

More precisely, fragments of the graph depicted in Figure A.3 determine uniquely

the corresponding pieces of the curve.

The topology of the real part of E(n) and hence the real part of the corresponding

trigonal curve are determined by the necklace diagrams. Using the correspondences

shown in Figure A.3, we obtain a new correspondence between fragments of necklace

diagrams and fragments of the graph, see Figure A.4.

xx

x

. xx .

x . xx.Pieces of
chains 
between the
stones
 

Stones 
 

Fig. A.4.

Definition A.3.1. A piece of a chain of a necklace diagram is called a necklace

interval. We call a necklace interval essential if the corresponding fragment of the

graph is
xx

, see Figure A.4.

Lemma A.3.2. If a real elliptic Lefschetz fibration, E(n), admitting a real section

is algebraic then on the corresponding necklace diagram

• the number of essential intervals cannot be more than 2n,

• the sum of the number of essential intervals and the number of arrow type

stones cannot be greater then 6n.
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Proof. For a trigonal curve on H(2n) defined by y3 + p(x)y + q(x), we have

deg p = 2 · 2n and deg q = 3 · 2n. Thus, the real dessin d’enfant can have at most

4n vertices colored by “•” and at most 6n vertices colored by “◦”. Each essential

interval corresponds to a graph fragment which contains at least two “•” type ver-

tices and at least one “◦” type vertex, while each arrow type stones corresponds to

a graph fragment having at least one “◦” type vertex. 2

For n = 1, the number of essential intervals can not be more than 2 and the

sum of the number of arrow type stones and the number of essential intervals can

not be more than 6. Thus real elliptic Lefschetz fibrations admitting a section,

corresponding to the following necklace diagrams can not be algebraic.

1

2

3

1

2

3

4

1

2

3

1

2

3

1
2

3

1

2

3

4

1

2

3

Fig. A.5. Necklace diagrams which contains more than 2 essential intervals.

1

2

Fig. A.6. The number of essential intervals is 2 and there are 6 arrow type stones.
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A.4 Algebraicity of real elliptic Lefschetz fibrations with

real sections

Lemma A.4.1. If a real elliptic Lefschetz fibration admitting a section is algebraic

then the real elliptic Lefschetz fibration whose necklace diagram is dual to the necklace

diagram of the former is also algebraic.

Proof. Although the real parts of fibrations associated to the two dual necklace

diagrams are different, trigonal curves appearing as the branching curves of coverings

E(n) → H(2n) are the same. Two different real structures on the elliptic fibrations

correspond exactly to two different liftings of the real structure of H(2n) to E(n). 2

+-

+

- +
-

+ -

Fig. A.7. For each trigonal curve on H(2n), there are two real structures of E(n).

Theorem A.4.2. All real elliptic Lefschetz fibrations admitting a real section and

having 12 real critical values are algebraic except those whose associated necklace

diagram is one of the diagrams shown in Figure A.8.

Fig. A.8. Necklace diagrams of non-algebraic real E(1) having only real critical values and
admitting a real section.

Proof. We construct real dessins d’enfants corresponding to necklace diagrams

which are not prohibited by Lemma A.6. By Lemma A.4.1, we only need to consider

necklace diagrams with | | ≥ |�|. Figure A.12 and Figure A.13 show such a list of

real dessins d’enfants.2
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Proposition A.4.3. Real elliptic Lefschetz fibrations of type E(2) which admit a real

section and have only real critical values and which correspond to maximal necklace

diagrams are algebraic.

Proof. Recall that maximal necklace diagrams of 6n stones are those with

| | + |�| = 12n−4
2 . In fact, any maximal necklace diagram with 12 stones can be

obtained as an even sum of maximal necklace diagrams of 6 stones, where the even

sum is made on two arrow type stones of opposite direction. Such a sum increase

the number of | |-type and |�|-type stones by 1 and | | + |�| = 4 + 4 + 2 = 10.

Fig. A.9.

We have shown that in case n = 1, maximal necklace diagrams (| | + |�| = 4)

are algebraic. Thus, we need to show that such even sum preserves algebraicity.

This follows from the observation that real dessins d’enfants associated to such an

even sum can be obtain from the dessins d’enfants of the summands as shown in

Figure A.10. 2

x

x

x

x

x x

xx

.. .

.. .

..
.

..
.

.. . . ..

. .
... .

Maximal sum

.. . . ..

. .
...

.

. ..

. .
...

.

.. .

... ...... ...

Fig. A.10.
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Example A.4.4. An example of even sum which creates maximal necklace diagram

and corresponding real dessins d’enfants are given in Figure A.11

x
x

x
x

xx

x
x

x
x

x

x

x

x

x

x

xx

x

x

x
x x

x

x
x

x
x

xx

x
x

x
x

x

x

x

x

x

x

xx

x

x

x
x x

x

Fig. A.11. An example of even connected sum creating a maximal necklace diagram.
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Real dessins d’enfants of real E(1) with real sections.

xx

xx

xx

x x
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Fig. A.12. Around necklace diagrams, the real part of the corresponding real elliptic
Lefschetz fibrations are shown. The dotted inner circle stands for a lift of the exceptional
section.
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Fig. A.13. Around necklace diagrams, the real part of the corresponding real elliptic
Lefschetz fibrations are shown. The dotted inner circle stands for a lift of the exceptional
section.
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