
ASSIGNMENT PROBLEM AND ITS VARIATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET GÜLEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

THE DEPARTMENT OF COMPUTER ENGINEERING

DECEMBER 2007

Approval of the thesis

�ASSIGNMENT PROBLEM AND ITS VARIATIONS�

submitted by Mehmet Gülek in partial full�llment of the requirements for the
degree of Master of Science in Computer Engineering by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department,Computer Engineering

Prof. Dr. �smail Hakk� Toroslu
Supervisor,Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Faruk Polat
Computer Engineering, METU

Prof. Dr. �smail Hakk� Toroslu
Computer Engineering, METU

Assoc. Prof. Dr. Göktürk Üçoluk
Computer Engineering, METU

Assoc. Prof. Dr. Halit O§uztüzün
Computer Engineering, METU

Y�lmaz Arslano§lu
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Mehmet Gülek

Signature :

iii

ABSTRACT

ASSIGNMENT PROBLEM AND ITS VARIATIONS

Gülek, Mehmet

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. �smail Hakk� Toroslu

December 2007, 41 pages

We investigate the assignment problem, which is the problem of matching two sets with each

other, optimizing a given function on the possible matchings. Among di�erent de�nitions,

a graph theoretical de�nition of the linear sum assignment problem is as follows: Given

a weighted complete bipartite graph, �nd a maximum (or minimum) one-to-one matching

between the two equal-size sets of the graph, where the score of a matching is the total

weight of the matched edges. We investigate extensions and variations like the incremental

assignment problem, maximum subset matching problem, maximum-weighted tree matching

problem. We present a genetic algorithm scheme for maximum-weighted tree matching

problem, and experimental results of our implementation.

Keywords: assignment, one-to-one, Kuhn-Munkres, genetic, algorithm

iv

ÖZ

E�LE�T�RME PROBLEM� VE ÇE��TLEMELER�

Gülek, Mehmet

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Prof. Dr. �smail Hakk� Toroslu

Aral�k 2007, 41 sayfa

Bu çal�³mada e³le³tirme problemi incelenmi³tir. E³le³tirme problemi, verilen iki kümeyi,

olas� e³le³tirmeler üzerinde tan�mlanm�³ bir fonksiyonu en çoklayan ya da en azlayan ³ekilde

e³le³tirme problemidir. Do§rusal e³le³tirme probleminin de§i³ik tan�mlar�ndan biri ³u ³ek-

ildedir: Verilen, iki e³it parçal�, olas� her ayr�t� içeren bir çizge için, parçalar aras�ndaki en

az (veya en çok) puanl� birebir e³le³tirmeyi bulma. Bir e³le³tirmenin puan�, içerilen ayr�t-

lar�n puanlar�n�n toplam� olarak tan�mlanmaktad�r. Art�rmal� e³le³tirme problemi, alt küme

e³le³tirme problemi ve en çok puanl� a§aç e³le³tirme problemi gibi, klasik e³le³tirme prob-

leminin de§i³ik türleri ve uzant�lar� incelenmi³tir. En çok puanl� a§aç e³le³tirme problemi

için bir genetik yöntem tan�mlanm�³ ve yap�lan kodlamadan elde edilen deneysel sonuçlar

verilmi³tir.

Anahtar Kelimeler: e³le³tirme, birebir, Kuhn-Munkres, genetik, algoritma

v

ACKNOWLEDGMENTS

I would like to thank �.H. Toroslu, Halit O§uztüzün, and my brother Hüseyin Gülek.

vi

To My Family

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vi

DEDICATON . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION 1

2 A POLYNOMIAL-TIME ALGORITHM: KUHN-MUNKRES ALGORITHM 3

2.1 Introduction . 3

2.2 The Algorithm . 4

2.3 The Time Complexity Of The Algorithm 5

2.4 A Sample Run Of The Algorithm . 6

3 INCREMENTAL ASSIGNMENT PROBLEM 11

3.1 Introduction . 11

3.2 Finding Feasible Vertex Labeling . 12

3.3 An Algorithm To Find A Feasible Vertex Labeling 12

4 MAXIMUM-WEIGHTED TREE MATCHING PROBLEM 15

4.1 Introduction . 15

4.2 Notation . 15

4.3 Maximum-Weighted Tree Matching Problem 15

viii

5 MAXIMUM-WEIGHTED SUBSET MATCHING PROBLEM 17

5.1 Introduction . 17

5.2 Maximum-Weighted Subset Matching Problem 17

5.3 NP-Completeness . 18

5.4 Conclusion . 19

6 MAXIMAL K-NODES PROBLEM 20

6.1 Introduction . 20

6.2 Maximal k-Nodes Problem . 20

6.3 An Algorithm To Solve The Problem . 21

6.4 Correctness Of The Algorithm . 22

6.5 An Example Run . 24

6.6 The Complexity Of The Algorithm . 26

6.7 Conclusion . 27

7 IMPLEMENTATION OF A GENETIC ALGORITHM 29

7.1 Introduction . 29

7.2 Implementation . 30

7.3 Experimental Results . 33

7.4 Conclusion . 38

REFERENCES . 40

ix

LIST OF TABLES

TABLES

Table 7.1 Performance Of The Genetic Algorithm On Small Random Inputs . . . 35

x

LIST OF FIGURES

FIGURES

Figure 2.1 Sample graph . 6

Figure 2.2 Sample graph with vertex labels . 6

Figure 2.3 Sample run of the algorithm . 7

Figure 2.4 Sample run of the algorithm(cont'd) . 8

Figure 2.5 Sample run of the algorithm(cont'd) . 8

Figure 2.6 Sample run of the algorithm(cont'd) . 9

Figure 2.7 The Hungarian tree . 9

Figure 2.8 Sample run of the algorithm(cont'd) . 10

Figure 3.1 An example graph . 12

Figure 3.2 Example graph with vertex labels . 13

Figure 6.1 An example tree . 24

Figure 6.2 Example tree with the outputs of EvalMax() 25

Figure 6.3 Example tree with the outputs of EvalMax() (cont'd) 25

Figure 6.4 Example tree with the outputs of EvalMax() (cont'd) 26

Figure 6.5 An example tree structure showing the worst case of the algorithm . . 27

Figure 7.1 Indexes of nodes in an example tree . 31

Figure 7.2 Performance of the genetic algorithm on random input with 1,001 nodes 34

Figure 7.3 Performance of the genetic algorithm on random input with 2,001 nodes 36

Figure 7.4 Performance of the genetic algorithm on random input with 10,001 nodes 37

Figure 7.5 Performance of the genetic algorithm on random input with 100,001

nodes . 38

xi

CHAPTER 1

INTRODUCTION

An assignment is a one-to-one mapping between two �nite sets of equal sizes. There are

di�erent ways to express this formally. One way is to represent the mapping by a permuta-

tion. A permutation is a one-to-one matching from a set into itself. Another way is to use

an adjacency matrix, where exactly one 1 occurs at every row, exactly one 1 occurs at every

column, and the rest of the items are 0. The 1's correspond to matched items, and the 0's

correspond to non-matched items.

A common example to explain the assignment problem is as follows: Assume you have

n workers and n jobs. Any worker is able to do any job. Every worker-job pair has a score.

One may think that, the score is somehow the measure of how properly that worker may

perform that job. You want

1. all the jobs be performed,

2. all the workers work

3. the total score be maximized (or minimized).

This problem is called the "Linear Sum Assignment Problem", also known as the

"Maximum-Weighted Bipartite Matching Problem". Surveys on Linear Assignment

Problem can be found in [3] and [1].

Let G = (U, V,E) be a complete bipartite graph, where |U | = |V | = n, and E = UxV .

Let U = U1, U2, ..., Un and V = V1, V2, ..., Vn. LetW be an n×n weight matrix. Wij is a real

number which is the weight of the edge (Ui, Vj). Let P be a permutation from {1, 2, ..., n}

to itself. Let P also denote, at the same time, the corresponding one-to-one function from U

to V (Thus P (Ui) = VP (i)). With these notations which already ensure the constraints (1)

(since P is a function) and (2) (since P is one-to-one) above, the constraint (3) can formally

be expressed as below:

1

n∑
i=1

Wi,P (i) is maximized (minimized).

One can easily see that, including either maximization or minimization of the sum in the

de�nition does not matter. They correspond to the same problem. One may alter the signs

of the numbers Wij , and switch from maximization problem to minimization problem, or

vice versa.

One may also easily see that, a possible constraint of non-negativity of the edge weights

(that is, all the edge weights must be non-negative) does not produce a di�erent problem.

This follows easily from the following lemma:

Lemma 1.1 Using the above notations and considering the maximization of the sum,

let P be a permutation corresponding to an optimal solution. Let W ′ be a weight matrix,

generated from W by adding the constant k to the rth row. Then the permutation P still

speci�es an optimal solution for the new problem.

Proof By contradiction. Observe that, for any permutation P , the score of the permutation

for the new problem is equal to that for the original problem, added k; since the di�erence

of the sums is only due to the di�erence in the items Wr,P (r) and W ′r,P (r), where W
′
r,P (r) =

Wr,P (r) + k. So, occurence of a better score for the new problem simply suggests a better

solution for the original problem, which is a contradiction.

The similar argument is also true, which considers adding a constant to some column of

the weight matrix.

2

CHAPTER 2

A POLYNOMIAL-TIME ALGORITHM:

KUHN-MUNKRES ALGORITHM

2.1 Introduction

In this section, we describe the Kuhn-Munkres algorithm, which is a well-known algorithm

to solve the Linear Sum Assignment Problem. This algorithm was described by [7] and [9].

The algorithm �nds an optimal solution to the problem in only O(n3) time, where n is the

number of vertices, see [8]. The method is also known as the Hungarian method. Before

proceeding, we make some assumptions and de�nitions.

We assume that all edge weights are non-negative. Wi,j ≥ 0, for i, j = 1, 2, ..., n.

We de�ne a feasible vertex labeling as a real-valued function l de�ned both on U and V .

This function must satisfy the constraint

l(Ui) + l(Vj) ≥Wi,j , for i, j = 1, 2, ..., n.

The number l(v) is called the label of the vertex v. For any graph, a feasible vertex

labeling can be found as below:

l(Ui) = max{Wi,j |j = 1, 2, ..., n}, l(Vi) = 0, for i = 1, 2, ..., n.

We de�ne the Equality Subgraph, Gl as the minimal subgraph of G, including all the

vertices, but only the edges (Ui, Vj) such that

Wi,j = l(Ui) + l(Vj).

Throughout this chapter, what is meant by a match is a one-to-one, but probably partial

function from U to V . If a match is total, then we call it a perfect matching.

3

A vertex is said to be matched, according to a match, if some edge in that match touches

that vertex. If a vertex is not matched, then it is said to be free. An edge is said to matched,

if it is included in the match. Otherwise it is said to be free. An alternating path is a path

beginning at a free vertex, and alternating between free and matched edges. An augmenting

path is an alternating path ending at a free vertex. One may observe that, if M is a match

and P is an augmenting path with respect toM , then, ((M ∪P)− (M ∩P)) is a matching of

size |M |+ 1, where the size of a matching is the number of edges included, and |M | denotes

the size of M . We will show the total weight of a match M by w(M). Then,

w(M) =
∑

(i,j)∈M Wi,j .

2.2 The Algorithm

The below theorem is a basis for an elegant algorithm to �nd a maximum matching.

Theorem 2.2.1 If the Equality Subgraph Gl, has a perfect matching M , then M is a

maximum-weighted matching in G.

Proof Let M be a perfect matching in Gl. We have, by de�nition,

w(M) =
∑

(i,j)∈M

Wi,j .

=
∑

x∈U∪V

l(x).

Let M ′ be any perfect matching in G. Then

w(M ′) =
∑

(i,j)∈M ′

Wi,j ≤
∑

x∈U∪V

l(x) = w(M).

Hence,

w(M ′) ≤ w(M).

The algorithm starts with a feasible labeling. Then one computes the Equality Subgraph

and �nds a maximum matching. If it is perfect, then we are done. Else, one adds more edges

to the Equality Subgraph by updating the vertex labels. This process does not cause any

matched edge to leave the Equality Subgraph. After adding some number of edges to the

Equality Subgraph, one eventually �nds an augmenting path. Using the augmenting path,

4

one updates the matching. By the above observation, the new matching is larger than the

old one. The algorithm eventually �nds a perfect matching. By the above theorem, it is a

maximum-weighted matching. We give a more formal de�nition of the algoritm:

Start with an arbitrary feasible vertex labeling l, determine the Equality Subgraph Gl.

1. Choose an arbitrary maximum matching M in Gl. If M is perfect for G, then M is

optimal. Stop. Otherwise, there is some unmatched x ∈ U . Set S = {x} and T = ∅.

2. If JGl
(S) 6= T , go to step 3. Otherwise, JGl

(S) = T . Find

αl = min
x∈S,y∈T c

{l(x) + l(y)− w(xy)}

where T c denotes the complement of T in V , and construct a new labeling l′ by

l′(v) =


(v)− α1, v ∈ S

l(v) + α1, v ∈ T

l(v), otherwise

Note that α1 > 0 and JG′
l
(S) 6= T . Replace l by l′ and Gl by Gl′ .

3. Choose a vertex y in JGl
(S), not in T . If y is matched in M , say with z ∈ U , replace

S by S ∪ {z} and T by T ∪ {y} , and go to step 2. Otherwise, there will be an M -

alternating path from x to y, and we may use this path to and a larger matching M ′

in Gl. Replace M by M ′ and go to step 1.

We will state the following theorem, without giving a proof:

Theorem 2.2.2 Kuhn-Munkres algorithm �nds a maximum-weighted matching of a given

weighted complete bipartite graph.

2.3 The Time Complexity Of The Algorithm

Theorem 2.3.1 The time complexity of the Kuhn-Munkres algorithm is O(n3).

Proof One may observe that, starting with any feasible vertex labeling (for example, as

shown above) and any maximum matching, the algorithm takes at most n main steps, where

a main step is de�ned as a series of steps after which the size of the match is incremented. A

main step takes at most n loops, where a loop is a series of steps after which S is incremented

5

by one element. Clearly, a main step can not take more than n loops. Since a loop takes

�nite number of steps (2-4), the algorithm takes not more than O(n2) basic steps. A basic

step does not take more than O(n) time if implemented properly (For details see [8]. So, the

algorithm takes O(n3) time.

In the next section, we show a sample run of the algorithm.

2.4 A Sample Run Of The Algorithm

Figure 2.1 shows the weight matrix for a complete bipartite graph with 4 + 4 vertices.

Figure 2.1: Sample graph

We label the vertices as suggested before. See Figure 2.2.

Figure 2.2: Sample graph with vertex labels

We �nd the maximum match M = {(U1, V1), (U2, V4), (U3, V3)}. The labels and the

6

match are shown in Figure 2.3. The gray items are the matched edges, and the dashed ones

are those in the Equality Subgraph but not in the match.

Figure 2.3: Sample run of the algorithm

Step 1. Since U4 is not matched, we set S = {U4}, T = ∅.

Step 2. We compute JGl
(S) = {V1}. Since JGl

(S) 6= T , goto step 3.

Step 3. We choose y = V1 in JGl
(S)−T . Since V1 is matched with U1 in the match M ,

we add U1 to S and V1 to T . Now S = {U1, U4}, T = {V1}. Goto step 2.

Step 2. We compute JGl
(S) = {V1}. Since JGl

(S) = T , we �nd

αl = min
x∈{U1,U4},y∈{V2,V3,V4}

{l(x) + l(y)−W (xy)}

= l(U1) + l(V3)−W13

= 1.

We decrement the labels of the vertices U1 and U4 by one, while we increment that of V1

by one. Note that, this operation does not cause (U1, V1) and (U4, V1) to leave the Equality

Subgraph. We update the labels as shown in Figure 2.4. Note that, the number of blue

items increased by one. We compute JGl
(S) = {V1, V3}.

Step 3. We choose y = V3 in JGl
(S)−T . Since V3 is matched with U3 in the match M ,

we add U3 to S and V3 to T . Now S = {U1, U3, U4}, T = {V1, V3}. Goto step 2.

Step 2. We compute JGl
(S) = {V1, V3}. Since JGl

(S) = T , we �nd

αl = min
x∈{U1,U3,U4},y∈{V2,V4}

{l(x) + l(y)−W (xy)}

7

Figure 2.4: Sample run of the algorithm(cont'd)

= l(U3) + l(V4)−W34

= 2.

We decrement the labels of the vertices U1, U3 and U4 by two, while we increment that

of V1 and V3 by two. We update the labels as shown in Figure 2.5. We compute JGl
(S) =

{V1, V3, V4}.

Figure 2.5: Sample run of the algorithm(cont'd)

Step 3. We choose y = V4 in JGl
(S)−T . Since V4 is matched with U2 in the match M ,

we add U2 to S and V4 to T . Now S = {U1, U2, U3, U4}, T = {V1, V3, V4}. Goto step 2.

Step 2. We compute JGl
(S) = {V1, V3, V4}. Since JGl

(S) = T , we �nd

αl = min
x∈{U1,U2,U3,U4},y∈{V2}

{l(x) + l(y)−W (xy)}

= l(U2) + l(V2)−W22

8

= l.

We decrement the labels of the vertices U1, U2, U3 and U4 by one, while we increment

that of V1, V3 and V4 by one. We update the labels as shown in Figure 2.6. We compute

JGl
(S) = {V1, V2, V3, V4}.

Figure 2.6: Sample run of the algorithm(cont'd)

Step 3. We choose y = V2 in JGl
(S) − T . We observe that V2 is not matched in M .

So there must be an augmenting path from U4 to V2. We grow the Hungarian tree starting

from U4 to �nd this path, as shown in Figure 2.7.

Figure 2.7: The Hungarian tree

In Figure 2.7, the vertical dashed lines show non-matched edges, while horizontal lines

9

show matched edges. As shown above, the path is

P = {(U4, V1), (V1, U1), (U1, V3), (V3, U3), (U3, V4), (V4, U2), (U2, V2)}.

We construct the new match M ′ by

M ′ = (M ∪ P)− (M ∩ P)

= {(U4, V1), (U1, V3), (U3, V4), (U2, V2)}

Graphically, the above operation corresponds to adding the vertical lines (edges) to and

deleting horizontal lines from the original match. Note also that the above operation incre-

mented the size of the match by one. We set M = M ′ and goto step 1. The new matching

is shown in Figure 2.8.

Figure 2.8: Sample run of the algorithm(cont'd)

Step 1. Since M is complete, it is a maximum-weighted matching, with weight 22.

STOP.

10

CHAPTER 3

INCREMENTAL ASSIGNMENT

PROBLEM

3.1 Introduction

Incremental assignment problem was proposed in [10]. The problem is de�ned as: Given

a weighted bipartite graph and its maximum-weighted matching, determine the maximum-

weighted matching of the graph extended with a new pair of vertices, one on each partition,

and weighted edges connecting these new vertices to all the vertices on their opposite par-

titions [10]. An algorithm was proposed to the problem which �nds an optimal solution

in O(n2) time. We do not step into details. The algorithm requires that, together with

the maximum-weighted matching, a feasible vertex labeling is provided which includes the

maximum-matching in the Equality Subgraph.

We do not step into details. Simply stating, the algorithm starts with a feasible vertex

labeling for the new graph. The labels of the old vertices are the same with their old labels.

The labels of the new vertices (say Un+1 and Vn+1) are found by some formulas. The

algorithm grows the Hungarian tree starting with the new vertex Un+1, and tries to �nd an

augmenting path. When that is found, the match is updated, and the procedure terminates.

Else, the labels of the vertices are updated to add more edges to the Equality Subgraph.

The above method is e�cient when a problem instance is updated by adding a pair

of vertices. Unfortunately, the method requires the feasible vertex labeling of the original

graph. We propose a method to �nd a feasible vertex labeling for a given maximum-weighted

matching.

11

3.2 Finding Feasible Vertex Labeling

LetG = (U, V,E) be a complete bipartite graph, where |U | = |V | = n, and E = UxV.LetU =

U1, U2, ..., Un and V = V1, V2, ..., Vn. Let W be an nxn weight matrix. Wij is a real number

which is the weight of the edge (Ui, Vj). We may alternatively use W (Ui, Vj) to show the

same value.

Now we de�ne the problem of �nding a feasible vertex labeling. Let M be a maximum-

weighted matching ofG. Without loss of generality we assumeM = {(U1, V1), (U2, V2), ..., (Un, Vn)}.

The problem is: Find a vertex labeling function l de�ned both on U and V , such that

l(Ui) + l(Vj) ≥Wij , i = 1, 2, ..., n. (3.1)

l(Ui) + l(Vi) = Wii, i = 1, 2, ..., n. (3.2)

Figure 3.1 shows an example graph with n = 4. The gray items are the matched edges.

Figure 3.1: An example graph

In the next section, we state an algorithm to �nd a feasible vertex labeling.

3.3 An Algorithm To Find A Feasible Vertex Labeling

Lemma 3.3.1 l(Ui) = Wii − l(Vi), i = 1, 2, ..., n.

Proof Direct consequence of (3.2).

The above lemma shows that, �nding the values l(Vi) is su�cient. Then, one can easily

obtain the values l(Ui). In Figure 3.2, xi is used instead of l(Vi).

12

Figure 3.2: Example graph with vertex labels

The constraint x3+(5−x2) ≥ 6 can be obtained from the itemW23 of the weight matrix.

With a little bit modi�cation, it can be expressed as x2 − x3 ≤ −1. Similarly, the item W42

suggests that x4 − x2 ≤ 5. Generally, the constraint suggested by the (i, j)th item of the

weight matrix is

xi − xj ≤Wii −Wij

Let us de�ne Aij by Aij = Wii −Wij . Then what we have is a set of inequations

xi − xj ≤ Aijfori, j = 1, 2, ..., n.

This is a well-known problem. These constraints are named di�erence constraints. A

well-known algorithm to �nd some solution is given:

Step 1. Convert the system of linear inequalities into a directed weighted graph G′ by

• The inequality xi − xj ≤ Aij is represented as vertices xi and xj , and a directed

edge connecting them. The direction is from xj to xi. The weight of the edge is

W ′(xj , xi) = Aij .

• Introduce vertex v0, such that W ′(x0, xi) = 0 for all i.

Step 2. Find shortest paths from v0 to all other vertices. In this step, a single-source

shortest path algorithm must be used, which handles negative edge-weights. Bellman-Ford

algorithm can be used [2].

If G′ contains no negative weight cycles, then the shortest path solution, starting from

v0, is the feasible solution to the system. It is not hard to see that, in our problem setting,

G′ can not contain any negative weight cycles. Because otherwise would suggest a matching

13

with bigger weight (constructed by adding the edges in the cycle to and deleting the nec-

essary edges from the matching), contradicting the assumption that the given matching is

maximum-weighted.

The time-complexity of the above procedure is that of Step 2, which is O(n3) if Bellman-

Ford algorithm is used.

14

CHAPTER 4

MAXIMUM-WEIGHTED TREE

MATCHING PROBLEM

4.1 Introduction

In this section, we de�ne the Maximum-Weighted Tree Matching Problem, which is

a variant of Maximum-Weighted Bipartite Matching Problem already introduced.

4.2 Notation

In this section, we set some notation. An undirected graph is pair (V,E), where V is a �nite

set of vertices, and E ⊆ V × V is the set of edges, where (x, y) ∈ E implies (y, x) ∈ E and

(x, x) /∈ E for all x, y ∈ V . A path in a graph is a tuple of vertices (v1, v2, ..., vn) where

n ≥ 2 and (vi, vi+1) ∈ E for i = 1, 2, ..., n− 1. A cycle is a path starting and ending at the

same vertex. A graph is acyclic if it has no cycles. A tree is an acyclic connected undirected

graph. A vertex of that graph is called a node. A rooted tree is a nonempty tree which has

a distinguished node called the root. A forest is a collection of trees. A node p is a child of

another node q if p and q are connected with an edge, and q is closer to the root. In this

case, q is said to be the parent of p. The ancestor relation is the transitive closure of the

parent relation. The descendent relation is that of the child relation. A node is said to be a

leaf if it has no children.

4.3 Maximum-Weighted Tree Matching Problem

De�nition Let F be a forest of rooted trees. Let also k ∈ N be given. For each node d in

F , the function w is de�ned. w(d) is a k-tuple of natural numbers. So, if D is the set of

15

nodes in F , w : D → Nk. We will simply show the tth elementh of w(d) by w(d, t). The

problem is to �nd a k-tuple K = (d1, d2, ..., dk) of k distinct nodes of F such that

k∑
i=1

w(K(i), i)

is maximal among all such tuples, subject to the independency constraint, which states

that any two distinct nodes x, y ∈ K should be independent, where independency is de�ned

as below:

De�nition Two distinct nodes x and y are said to be dependent if they simultaneously

occur in some shortest path from a root to a leaf. Otherwise they are said to be indepen-

dent. Simply we will say that a set A of nodes is independent if any two nodes in A are so.

Also we will say that the sets A and B are independent if for all pairs (x ∈ A, y ∈ B), x and

y are independent.

Note that, above we used K(i) to show the ith element of the k-tuple, treating the k-tuple

as a function from {1, 2, ..., k}. We will call this problem as Maximum-Weighted Tree

Matching Problem.

Assume that we have k jobs, and some number of workers. Any worker can do any

job with a given pro�t. The workers may come together forming groups. Also any group

can do any job, again with some given pro�t. The groups may also come together forming

another group. This recursive structure is formulated above by using the notion of trees.

One should note that, this formulation does not allow all groupings between workers, the

tree structure restricts the grouping. Indeed, this structure is similar to that in companies.

The leaf nodes correspond to workers, and the other nodes to groups. The problem is to

assign the jobs to workers/groups with maximum pro�t. The problem de�nition requires all

jobs to be performed, since we have de�ned K as a k-tuple. An alternative de�nition might

be done, de�ning K as a partial one-to-one mapping. The dependency constraint amounts

to saying "a worker can not be used simultaneously to perform two distinct jobs". One may

have also noticed that, the problem has a solution if and ony if k does not exceed the number

of leaves.

In the rest of this work, we investigate some di�erent versions of the problem. In the next

chapter, we show that a generalized version is NP-Hard. After that, we show that a much

simpli�ed version can be solved in polynomial time. Then, we present a genetic algorithm

to solve the above problem.

16

CHAPTER 5

MAXIMUM-WEIGHTED SUBSET

MATCHING PROBLEM

5.1 Introduction

We de�ne the Maximum-Weighted Subset Matching Problem and show that it is

NP-Hard, by proving NP-Completeness of the decision problem version.

5.2 Maximum-Weighted Subset Matching Problem

De�nition Let U be a �nite set of workers and J be a �nite set of jobs. LetW : (J×2U)→

N be a partial weight function. The Maximum-Weighted Subset Matching Problem

asks for a matching M : J → 2U such that

∑
j∈J

W (j,M(j))

is maximal among all matchings, subject to the constraint

If x, y ∈ J with x 6= y, then M(x) and M(y) are disjoint.

The weight function should be de�ned on the (job, subset) pairs in the matching.

Informally speaking, the above constraint says that "A worker can not be used more than

once". Note that it is probable that one can not �nd any matching to complete the jobs at

all. The matching is a complete function from the set of jobs, which means that "All jobs

should be performed".

In the next section we prove that the decision problem version of the de�ned problem is

NP-Complete.

17

5.3 NP-Completeness

We �rst de�ne a decision problem related to the above problem:

De�nition Let U be a �nite set of workers and J be a �nite set of jobs. LetW : (J×2U)→

N be a partial weight function. Let k ∈ N be given. The question is whether there exists

some matching M : J → 2U such that

k ≤
∑
j∈J

W (j,M(j))

subject to the constraint

If x, y ∈ J with x 6= y, then M(x) and M(y) are disjoint.

For simplicity we call this problem MWSM-dec. We will describe an instance of

MWSM-dec by a quadruple (U, J,W, k).

Now we introduce the so-called Set-Packing problem.

De�nition Suppose we have a �nite set S and a list L of subsets of S. Then, the Set-

Packing problem asks if some k subsets in L are pairwise disjoint (in other words, no two

of them intersect). We let a triple (S,L, k) specify an instance of Set-Packing.

Theorem 5.3.1 Set-Packing is NP-Complete.

Proof We reduce the well-known k-clique problem, or simply Clique problem, which was

shown to be NP-Complete in [6]. Let G = (V,E) be an undirected graph, and k be a natural

number. The k-clique problem asks whether G has a k-clique, that is, a complete subgraph

with k vertices. Let n = |V |. Then we will construct a list L of n subsets. We set S = V ×V .

We assume an ordering on the vertices V of G. We also assume a one-to-one correspondence

between V and L. For every (x, y) ∈ (V × V − E) with x < y, we add the elements (x, y)

to both subsets corresponding to x and y. Finally, two vertices are neighbours in G i� the

corresponding subsets in L are disjoint. Thus, there is a k-clique in G i� there are some k

subsets in L which are pairwise disjoint. Note that, the reduction is polynomial. We would

similarly reduce the Independent Set Problem if we have simply replaced (V ×V −E) by

E in the above reduction.

Below we show that, MWSM-dec is NP-Complete.

18

Theorem 5.3.2 MWSM-dec is NP-Complete.

Proof First we observe MWSM-dec ∈ P . Given a candidate matching M : J → 2U , one

can verify the satisfaction of the two constraints in polynomial time. Second, we reduce the

Set-Packing problem introduced above. Assume that we have a �nite set S and a list L

of subsets of S, and let k ∈ N be given. We may assume k ≤ |L|, since otherwise would

directly indicate a "NO" answer. The constructed instance of MWSM-dec is as follows:

The set of workers U is S. There are k jobs, that is |J | = k. For any pair j ∈ J and X ∈ L,

the weight function is de�ned as W (j,X) = 1. W is unde�ned on other pairs. Informally

speaking, this means that "Any set of workers in L can do any of the jobs, with constant

pro�t". It is easy to see that

(S,L, k) ∈ Set-Packing i� (U, J,W, k) ∈MWSM-dec.

The size of the new problem instance is at most square of the original problem instance,

since we assumed k ≤ |L|, showing that the reduction is polynomial.

5.4 Conclusion

The decision problem version of the Maximum-Weighted Subset Matching Problem,

which we have calledMWSM-dec is NP-Complete, as shown in the above work. This shows

that the optimization problem version is NP-Hard, thus no exact polynomial-time algorithm

exists unless P=NP.

19

CHAPTER 6

MAXIMAL K-NODES PROBLEM

6.1 Introduction

We de�ne the Maximal k-nodes Problem and show that it can be solved e�ciently, i.e.,

in polynomial time.

6.2 Maximal k-Nodes Problem

De�nition Let F be a forest of rooted and weighted trees. The weights of the nodes are

positive integers. For a node d, let w(d) denote the weight of d. Let also k ∈ N be given.

The problem is to �nd a set K = {d1, d2, ..., dk} of k nodes in F such that, the sum of the

weights of these nodes

∑
d∈K

w(d)

is maximal among all such sets, subject to the independency constraint, which states

that any two distinct nodes x, y ∈ K should be independent (or simply, K should be inde-

pendent), where independency has been de�ned in Chapter 4.

We will call this problem as Maximal k-nodes Problem.

REMARK: One may formulate an instance of the above problem by using a weighted

graph. The nodes of the graph are those of the forest F . The node weights are the same

with the weights of those in F . Two nodes are combined with an edge if and only if they

simultaneously occur in the same shortest path from a root to a leaf in F . Independency of

two distinct nodes in a graph should be de�ned as "having no edges between them", in this

case.

20

6.3 An Algorithm To Solve The Problem

In this section, we present an algorithm to solve the problem. Firstly, for simplicity we

assume that F is actually a tree. We do not lose any generality doing so, because, otherwise,

F can be converted to a tree by adding a duplicate of some node r as the root, and making

all the other roots children of r. This will not e�ect the result.

The below function EvalMax() is the main function. For a given tree T , it returns a

sequence S = (S0, S1, ..., St), where t is the number of leaves in T , and Sk denotes the sum of

maximal k-nodes, for k = 0, 1, ..., t. Thus, the algorithm computes the optimum solution for

all possible k values. Although the algorithm does not keep which nodes are in the optimal

selection, it is not hard to modify it to give not only the sums, but the sets of nodes also. It

may e�ect the time complexity, without harming polynomiality.

The algorithm uses a bottom-up approach. We give a pseudo-code below:

Algorithm 6.3.1: EvalMax(T)

Let r be the (weight of) root of T

Let c1, c2, ..., cm be the children of r.

for i← 1 to m

do maxseqi ← EvalMax(ci)

combined←Merge(maxseq1,maxseq2, ...,maxseqm)

if m=0

then

combined[0]← 0

combined[1]← r

else if r>combined[1]

then combined[1]← r

return (combined)

The above function calls the Merge() function, pseudo-code of which is given below.

Merge() merges m sequences iteratively. First it merges the �rst and the second sequences.

Then it merges the result with the third one. Then the fourth one, ..., so on.

21

Algorithm 6.3.2: Merge(s1, s2, ..., sm)

combined← s1

for i← 2 to m

do combined←MergeTwo(combined, si)

return (combined)

The above function calls the MergeTwo() function, pseudo-code of which is given

below. It merges two sequences s1 and s2 by examining all possible pairs (s1[i], s2[j]). So,

for example, if the maximum sum of 7 nodes can be reached by selecting 3 nodes from the

�rst set (not necessarily a tree) and 4 nodes from the second set (again not necessarily a

tree), it will be detected by the function when i = 3 and j = 4.

Algorithm 6.3.3: MergeTwo(s1, s2)

Let len1 be the length of s1, and len2 be the length of s2.

for i← 0 to (len1 + len2)

do combined[i]← 0

for i← 0 to len1

do for j ← 0 to len2

do if s1[i] + s2[j] > combined[i+ j]

then combined[i+ j]← s1[i] + s2[j]

Note that s1[0] and s2[0] are always 0.

return (combined)

6.4 Correctness Of The Algorithm

Lemma 6.4.1 Let N1 and N2 be two disjoint sets of nodes. Let s1, s2 be two �nite sequences,

where s1[j] denotes the maximum possible sum of j independent nodes in N1, and similarly

for s2. Assume that N1 and N2 are independent. Then the output of MergeTwo(s1, s2) is

the �nite sequence corresponding to N1 ∪N2 in the same sense.

Proof We let length(x) denote the size of a sequence or a set x. Let NS = N1 ∪N2, and

let s be the sequence corresponding to N . We must show that s is actually the output of

MergeTwo(s1, s2). Consider s[t] for some t ∈ {0, 1, 2, ..., length(s1)+length(s2). It denotes

the maximum sum of t independent nodes in NS. Clearly, if A ⊆ NS is an independent set

of size t, there exists two sets A1 ⊆ N1 and A2 ⊆ N2, where A = A1 ∪A2, A1 is independent

22

and A2 is also independent. Let t1 = length(A1) and t2 = length(A2). Then t = t1 + t2.

We also have 0 ≤ t1 ≤ length(s1) and 0 ≤ t2 ≤ length(s2). So, when i = t1 and j = t2,

the procedure computes s1[t1] + s2[t2], and puts that value to combined[t1 + t2] if it was not

reached before. So we conclude that, the return value combined is equal to s.

Lemma 6.4.2 Let N1, N2, ..., Nm be pairwise disjoint sets of nodes. Further let N1, N2, ..., Nm

be pairwise independent. Let si correspond to Ni. Then Merge(s1, s2, ..., sm) returns the

sequence corresponding to N1 ∪N2 ∪ ... ∪Nm.

Proof We will show by induction that, after the execution of the for loop, combined stores

the desired sequence. For the case m = 1, nothing to show, since combined = s1 in that case,

as desired. If m = 2, the procedure returns MergeTwo(s1, s2). Since N1 and N2 are inde-

pendent, this result is the desired sequence corresponding to N1∪N2. Letm > 2, and assume

the correctness of the lemma form−1. Then, before the last callMergeTwo(combined, sm),

combined stores the sequence corresponding to N1∪N2∪...∪Nm−1. Since N1∪N2∪...∪Nm−1

and Nm are independent, MergeTwo(combined, sm) just returns the desired sequence for

N1 ∪N2 ∪ ... ∪Nm.

Theorem 6.4.3 Let T be a tree. Then EvalMax(T) returns the sequence corresponding to

T .

Proof We will make induction on size of T , where we de�ne the size of a tree as the number

of nodes in it. The smallest tree contains just the root. For that case, as handled seperately in

the procedure, the 0th element of the return sequence is 0, and the 1st one is the weight of the

root, as desired. Assume that r has some children c1, c2, ..., cm. Then the children are smaller,

and by the inductive hypothesis, EvalMax(ci) returns the desired sequence corresponding

to ci. They are stored in maxseqi. We note that, ci are disjoint. We also note that they are

pairwise independent. So, by the above lemma, Merge(maxseq1,maxseq2, ...,maxseqm)

returns the desired sequence corresponding to c1∪c2∪ ...∪cm. So, after the call toMerge(),

combined stores the desired sequence only except the element combined[1]. The maximum

sum of 1 element in the whole tree may be the weight of root. This case is handled seperately,

possibly changing combined[1]. We note that, r can not be used together with any node in

ci, because it is dependent to any of them.

23

6.5 An Example Run

In this section, we show an example run of the algorithm without giving much details.

Figure 6.1 shows an example tree where the numbers in the rectangles show the weights of

nodes.

Figure 6.1: An example tree

Figure 6.2, Figure 6.3 and Figure 6.4 show how the algorithm works from bottom to

up. The sequences appearing near the nodes show the output of EvalMax().

24

Figure 6.2: Example tree with the outputs of EvalMax()

Figure 6.3: Example tree with the outputs of EvalMax() (cont'd)

The result is shown at Figure 6.4, near the root of the tree. The sequence (9, 17, 23, 27, 30, 32, 31)

(note that the 0th elements of the sequences are not shown, since they are all 0) indicates, for

example, the selection of 4 pairwise independent nodes from the tree gives the maximal sum

of 27, and the number is 32 for 6 nodes. The reader may have noticed that, the sequence is

not monotone increasing; in fact it doesn't have to be so.

25

Figure 6.4: Example tree with the outputs of EvalMax() (cont'd)

6.6 The Complexity Of The Algorithm

In this section, we investigate the time complexity of the stated algorithm and prove that it

runs in polynomial time.

Theorem 6.6.1 Let T be a tree, and n be the number of nodes in T . The worst case running

time of EvalMax(T) is O(n3).

Proof The EvalMax() function is called for every node exactly once. It consumes constant

time except for the recursive call to EvalMax() and the call to Merge(). The runing time

of Merge() is determined by that of MergeTwo(). The running time of MergeTwo() is

O(len1 ∗ len2), where len1 and len2 are the lengths of the sequences sent as parameters.

Now we investigate the running time ofMerge(s1, s2, ..., sm). The length of the sequence

combined increases from s1 to s1 ∗ s2 ∗ ... ∗ sm by calling MergeTwo() m − 1 times. The

calls to MergeTwo() consumes s1 ∗ s2, (s1 + s2) ∗ s3, (s1 + s2 + s3) ∗ s4, ..., s1 + s2 + ...+

sm−1) ∗ sm time. If we let leni denote the length of sequence si, we have the running time

of Merge(s1, s2, ..., sm):

TMerge =
m−1∑
i=1

i∑
j=1

lenj ∗ leni+1

Now let

A = (
m∑

i=1

leni) ∗ (
m∑

i=1

leni)

26

A little inspection shows that TMerge < A, observing that all of the terms in TMerge is

included in the expansion of A, and some terms in that expansion do not appear in TMerge

. Since

m∑
i=1

leni ∈ O(n)

we have that

A ∈ O(n2)

We conclude that TMerge ∈ O(n2). Then running time of a call to EvalMax() is O(n2),

if we do not count the recursive calls. To count the number of recursive calls, we note that,

EvalMax() is called n times. So, summing up, the total running time of EvalMax(T) is

O(n3).

We note without proving that, if the tree is a balanced t-ary tree for some t ≥ 2, the

running time actually is O(n2), but there are cases where O(n3) is the tightest possible

bound, as shown in Figure 6.5 (Note that, the depth of the tree is approximately half of the

number of nodes).

Figure 6.5: An example tree structure showing the worst case of the algorithm

6.7 Conclusion

We have de�ned the Maximal k-nodes problem and have shown that it can be solved in

O(n3) time. Without proving, we have stated that it is the tightest possible bound for the

27

time complexity of the algorithm. We have not counted the extra cost for outputting the

selected nodes, which may increase the complexity.

28

CHAPTER 7

IMPLEMENTATION OF A GENETIC

ALGORITHM

7.1 Introduction

In this section, we introduce the genetic algorithms [5]. A survey on genetic algorithms

can be found in [4]. An optimization problem, shortly, is a problem in which, one expects

to �nd an element E in a search space S, such that f(E) is a maximal element of the set

{f(X) : X ∈ S}, where f : S → N is a pro�t function. In computer science, the optimization

problems dealed with have easily computable pro�t functions, and easily expressable search

spaces. Often, �nding a maximal element in reasonable time is not obvious. In particular, if

an optimization problem is NP-Hard, it is impossible unless P = NP . For such problems, we

need e�cient methods to �nd some element E in S, which we can use for practical purposes,

expecting f(E) to be as big as possible.

A genetic algorithm may provide an approximate solution for such a problem. The

concept of a genetic algorithm has been inspired from the evolutionary process in biological

organisms. Mutations and sexual reproduction in (some) organisms may increase the quality

of the population, where the quality of a population depends on that of the organisms.

Chromosomes play the important role in the process, since they are the main parts of the

organisms which are mutated and crossed-over while sexual reproduction takes place. A

genetic algorithm is roughly as below:

For a search space S, one �nds an encoding function encode : S → T , where T is a

set of strings. The strings may be strings consisting of 0's and 1's, to represent an ele-

ment of the search space. Then one generates a (generally random) pool of chromosomes,

called a generation. Then, step by step, the generation is updated by means of mutation

29

and cross-over mechanisms. A mutation is a sudden change in some part of a chromo-

some. Assuming representation by bits, a mutation on the chromosome (a1, a2, ..., an) may

result with (a1, a2, ..., ak−1, a
′
k, ak+1, ..., an), if the kth bit is mutated. A cross-over is a

mechanism which generates two new chromosomes from two old chromosomes. A typical

cross-over between the chromosomes (a1, a2, ..., an) and (b1, b2, ..., bn) generates two new

chromosomes (a1, a2, ..., ak, bk+1, bk+2, ..., bn) and (b1, b2, ..., bk, ak+1, ak+2, ..., an). That is,

the two old chromosomes are divided from the kth position and the parts after that position

are exchanged. After a new generation is generated, the process goes on using that one.

One may decide a �xed number of iterations, or require a criterion to be met, to �nalize the

algorithm. The �nal generation is expected to contain good chromosomes corresponding to

elements of S with high pro�t.

7.2 Implementation

In this section we describe our genetic algorithm implementation. The functions given below

are not exactly the same as those in the actual implementation, we are simplifying them.

We use the notation in Chapter 4. First we state an assumption on the input, which

have made the implementation little bit simpler, although it is not necessary.

Assumption F is a strictly binary rooted tree. By "strictly binary" we mean that, a node

is either a leaf, or has exactly two children.

We are not going into formal details. The assumption of F being a tree has been made

in Section 6.3 before. If a non-leaf node d has only one child d1, then they can be combined

into a single node d′, for i = 1, 2, ..., k, setting w(d′, i) = max{w(d, i), w(d1, i)}. Observe

that, d and d1 are dependent to exactly same nodes besides being dependent to each other,

and assigning a job to one of them is not reasonable if the other one is better at that job. If d

has more than two children d1, d2, ..., dt, then one can add a duplicate node d′ (say, duplicate

of d2) as a child of d, keeping d1 as a child of d, and making d2, d3, ..., dt children of d′. This

procedure can be repeated until the tree is binary. Observe that, after this procedure, the

number of nodes in the resulting tree is not more than twice the original one.

We assign an index to all nodes. The index index(d) of a node d is a number between 1

and n, where n is the number of nodes. Tree is preorder traversed, the indexes of the nodes

show the order they are visited at this traversed. Figure 7.1 shows an example indexing:

30

Figure 7.1: Indexes of nodes in an example tree

From now on, we will identify a node with its index.

Now we explain the chromosome structure. A chromosome p = (p1, p2, ..., pk) is a k-tuple

of nodes, where p1 < p2 < ... < pk, and p1, p2, ..., pk are independent. This tuple actually

can be seen as a set, since it does not have the meaning of assignment of jobs to nodes. It

does just indicate a selection of independent nodes. This will make sense after we describe

the scoring of chromosomes.

Cross-over between two chromosomes

p = (p1, p2, ..., pk)

q = (q1, q2, ..., qk)

results with two new chromosomes

p∗ = (p1, p2, ..., pt, qt+1, qt+2, ..., qk)

q∗ = (q1, q2, ..., qt, pt+1, pt+2, ..., pk)

if we divide them from the tth position.

Referring to the example tree given in the above �gure, assuming k = 5, crossing-over

two genes

p = (3, 5, 8, 10, 12)

q = (3, 6, 7, 10, 11)

from the 2nd position gives two new chromosomes

p∗ = (3, 5, 7, 10, 11)

31

q∗ = (3, 6, 8, 10, 12)

Note that, in the above example, p∗ is not a valid chromosome, since 5 and 7 are depen-

dent nodes. We provide a mechanism to correct the chromosomes after cross-overs. First we

place 0's in the chromosome to indicate invalid nodes. The chromosome becomes

p∗∗ = (3, 5, 0, 10, 11)

The below algorithm is used to correct p∗∗ by the call CorrectChromosome(p∗∗).

Algorithm 7.2.1: CorrectChromosome(c)

Let zeros be number of 0's in c

for i← 1 to zeros

do



Let frees be free nodes, i.e., nodes that can be safely added to c

Let nonleaves be nonleaf nodes in c

r ← a random node in one of frees and nonleaves

if r is in frees

then

{
Replace a 0 in c with r

else if r is in nonleaves

then



Let r1 and r2 be children of r

Replace r with 0 in c

Replace a 0 in c with r1

Replace a 0 in c with r2

CorrectChromosome(p∗∗) corrects the dependencies in p∗∗. It should be sorted again

to be a valid chromosome, according to our de�nition.

We have not used any mutations. But the procedure of correcting a resulting chromo-

somes after a cross-over may be argued to include mutations, since it may randomly add

nodes to a chromosome, and randomly delete nodes from that.

When the above function is called by CorrectChromosome(p∗∗) and the resulting

chromosome is sorted, we may have valid chromosomes like below

p∗∗∗ = (3, 5, 8, 10, 11), or

p∗∗∗ = (3, 5, 10, 12, 13)

32

In the �rst case, node 8 has been randomly selected and added to c. In the second one,

node 11 has been randomly selected and replaced with its two children 12 and 13.

The generation of the initial pool actually is done by the above algorithm, starting with

an empty (i.e., all items are 0) chromosome, and correcting it.

The �tness of a chromosome is computed by the Kuhn-Munkres algorithm, which we call

to optimally assign the k jobs to selected k nodes in a chromosome. As we have indicated

before, a chromosome does not actually show a matching, instead it only shows a selection of

nodes. One might follow an alternative approach, in which chromosomes show the matching.

But this approach does not take advantage of the fact that, assigning k jobs to k nodes

optimally is a task for which, a polynomial time solution already exists. On the other side,

following our approach, one requires O(k3) time to compute the �tness of a chromosome,

while the alternative approach reduces it to linear time.

7.3 Experimental Results

We have written ANSI-C code implementing the tasks brie�y described above. For test

purposes, we have written another C code to generate random inputs of di�erent sizes, and

compute the optimum scores by exhaustive search. In Table 7.1 we give the experimental

results on randomly generated inputs. Success ratio is found by dividing the score of the

best chromosome found in given number of iterations by the optimum score. We state some

parameters used in the algorithm. The size of the pool is 10n, where n is the number of nodes.

At the end of each iteration, the chromosomes are sorted according to the �tness function.

Best n chromosomes are directly copied to the new generation. So we never lose the best

chromosome, guaranteeing the success ratio to be non-decreasing while number of iterations

increases. 2n pairs among 5n best chromosomes are randomly selected and crossed-over. A

chromosome is not used in more than one cross-over. Worst 4n chromosomes are deleted.

Totally, the new generation consists of 4n new chromosomes, and 6n old chromosomes.

33

For bigger tree sizes, we do not have a fast way to obtain the optimum score. So, we use

upper bounds to observe the performance of the genetic algorithm. An upper bound for a

problem instance can be easily found by summing up the best weights for each job. Also the

parameters used for big inputs are not the same. The size of the pool is 100, independent

of the problem size. At the end of each iteration, the chromosomes are sorted according

to the �tness function. Best 3 chromosomes are directly copied to the new generation. 40

pairs among 90 best chromosomes are randomly selected and crossed-over. A chromosome

is not used in more than one cross-over. Worst 80 chromosomes are deleted. Totally, the

new generation consists of 80 new chromosomes, and 20 old chromosomes.

In Figure 7.2, Figure 7.3, Figure 7.4, and Figure 7.5 we give the experimental results

for four random inputs. For the �rst one, the number of nodes is 1,001, and the number

of jobs is 40. For the second one, the number of nodes is 2,001, and the number of jobs is

50. For the third one, the number of nodes is 10,001, and the number of jobs is 60. For the

fourth one, the number of nodes is 100,001, and the number of jobs is 100. The plots have

been generated using gnuplot .

Figure 7.2: Performance of the genetic algorithm on random input with 1,001 nodes

34

Table 7.1: Performance Of The Genetic Algorithm On Small Random Inputs

Number of nodes Number of jobs Number of iterations Success Ratio

7 3 0 1.000000

17 7 0 1.000000

21 8
0 0.994631

1 1.000000

25 10

0 0.992129

1 0.999845

3 0.999971

5 0.999972

10 1.000000

29 12

0 0.996969

1 0.997208

3 0.999826

5 1.000000

33 13

0 0.999918

1 0.999918

3 0.999989

5 0.999989

10 1.000000

49 20

0 0.955593

1 0.982867

3 0.996585

5 0.998506

10 0.999446

245 0.999739

35

Figure 7.3: Performance of the genetic algorithm on random input with 2,001 nodes

36

Figure 7.4: Performance of the genetic algorithm on random input with 10,001 nodes

37

Figure 7.5: Performance of the genetic algorithm on random input with 100,001 nodes

7.4 Conclusion

The de�ned problem may be in P, may be NP-Complete. We do not have a proof for the

both cases. The genetic algorithm we have implemented has given good results for small

inputs. It is hard to examine for large inputs, since we should do exhaustive search on the

input to �nd the optimum score for comparison. We argue that, including Kuhn-Munkres

algorithm in the implementation makes it better, since Kuhn-Munkres algorithm �nds the

optimal ordering of a set of nodes.

38

CONCLUSION

In this work, the classical assignment problem (also called Linear Sum Assignment Problem

or Maximum-Weighted Bipartite Matching Problem) has been investigated. The polynomial-

time Kuhn-Munkres algorithm has been described. Some features of the so-called Incremen-

tal Assignment Problem has been investigated. An O(n3) procedure has been proposed for

the problem of �nding the feasible vertex labels, when the maximum-weighted matching of

a bipartite graph is known. Unfortunately this complexity renders the procedure unsuit-

able for practical purposes. Maximum-Weighted Tree Matching Problem has been de�ned.

A generalized version, which we have called Maximum Subset Matching Problem, has been

shown to be NP-Hard. On the other hand, we have been presented an e�cient algorithm to

solve a simpli�ed version which we have called Maximal k-nodes Problem. A genetic algo-

rithm scheme has been presented to solve the Maximum-Weighted Tree Matching Problem,

and experimental results has been given for random small inputs. A future work may be

solving the Maximum-Weighted Tree Matching Problem in polynomial time, or showing it is

NP-Hard.

39

REFERENCES

[1] M. Akgül. The linear assignment problem. Combinatorial Optimization, M. Akgul and

S. Tufecki, eds., Springer Verlag, Berlin, pages 85�122, 1992.

[2] Paul E. Black. "Bellman-Ford algorithm", in Dictionary of Algorithms and Data Struc-

tures [online]. U.S. National Institute of Standards and Technology, 2005.

[3] R. E. Burkard and E. Çela. Linear assignment problems and extensions. Handbook

of Combinatorial Optimization Vol.4 (D.-Z. Du and P.M. Pardalos, eds.) Dordrecht:

Kluwer Academic Publishers, 1999.

[4] David E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem.

In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing, pages 74�88.

Morgan Kaufmann Publishers, 1987.

[5] John H. Holland. Adaptation in Natural and Arti�cial Systems. The University of

Michigan Press, Ann Arbor, 1975.

[6] R.M. Karp. Compexity of Computer Computations, chapter Reducibility among com-

binatorial problems, pages 85�103. Miller, R.E. and Thatcher, J.W. (Eds.). Plenum

Press, New York, 1972.

[7] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistic Quarterly, 2:83�97, 1955.

[8] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart,

Winston, New York, 1976.

[9] James Munkres. Algorithms for the assignment and transportation problems. Journal

of the Society for Industrial and Applied Mathematics, 5(1):32�38, 1957.

40

[10] �smail H. Toroslu and Göktürk Üçoluk. Incremental assignment problem. Inf. Sci.,

177(6):1523�1529, 2007.

41

