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ABSTRACT 
 

 

ROUTING ALGORITHMS FOR ON CHIP NETWORKS 
 

 

 

Atagoziyev, Maksat 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Dr. Şenan Ece (Güran) Schmidt 

 

December 2007, 79 pages 

 

 

Network-on-Chip (NoC) is communication infrastructure for future multi-core 

Systems-on-Chip (SoCs). NoCs are expected to overcome scalability and 

performance limitations of Point-to-Point (P2P) and bus-based communication 

systems. The routing algorithm of a given NoC affects the performance of the system 

measured with respect to metrics such as latency, throughput and load distribution. In 

this thesis, the popular Orthogonal One Turn (O1TURN) and Dimension Order 

Routing algorithms (DOR) for 2D-meshes are implemented by computer simulation. 

Investigating the effect of parameters such as packet, buffer and topology sizes on 

the performance of the network, it is observed that the center of the network is 

loaded more than the edges. A new routing algorithm is proposed and evaluated to 

achieve a more balanced load distribution. The results show that this goal is achieved 

with a trade off in latency and throughput in DOR and O1TURN. 

 

 

Keywords: Networks on Chip, Dimension Ordered Routing, on-chip routing 
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ÖZ 
 

ÇİP ÜZERİNDEKİ AĞLAR İÇİN YÖNLENDİRME 

ALGORİTMALARI 
 

 

Atagoziyev, Maksat 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Dr. Şenan Ece (Güran) Schmidt 

 

Aralık 2007, 79 sayfa 

 

 

Yonga üzeri Ağlar (YüA) gelecekte gerçekleştirilecek çok çekirdekli Yonga üzeri 

Sistemler (YüS) için haberleşme alt yapısı olacaklardır. YüA’ların noktadan noktaya 

ya da veriyolu tabanlı haberleşmenin daha önce karşılaşılmış olan ölçeklenme ve 

başarım kısıtlarının üstesinden gelmeleri beklenmektedir.  Bir YüA için seçilen 

yönlendirme algoritması sistemin gecikme, veri iletme kapasitesi ve yük dağılımı 

gibi başarım değerlerini etkilemektedir. Bu tezde iki boyutlu örgüler için çok 

kullanılan Orthogonal One Turn (O1TURN) ve Boyut Sıralamalı Yönlendirme 

(BSY) algoritmaları bilgisayar benzetimi yolu ile gerçekleştirilmektedir. Paket, 

arabellek ve ağ büyüklükleri parameterelerinin ağ başarımına etkisi incelendiğinde 

ağın merkez kısımlarının kenarlardan daha çok yüklendiği görülmüştür. Buna göre 

yükü daha dengeli dağıtacak yeni bir yönlendirme algoritması tasarlanmış ve  

başarımı incelenmiştir. Elde edilen sonuçlar BSY ve O1TURN’e göre gecikme ve 

veri iletme kapasitesinde bir düşüşe karşılık istenen amaca ulaşıldığını 

göstermektedir. 

 

Anahtar Kelimeler: Çip üzerindeki Ağlar, Boyut Sıralama Yönlendirme, çip üzerinde 

yönlendirme 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 
In 1990’s more and more resources (e.g. processor cores and reusable components) 

have been integrated on a single silicon die. This approach has become known as 

System-on-Chip (SoC) paradigm. Buses and point-to-point (P2P) links were used as 

communication infrastructure for SoCs, but as silicon technology advances further, 

they are becoming too costly for this purpose because of their poor scalability, low 

and unpredictable performance, and high power consumption [1]. Emergence of SoC 

platforms containing a large set of processing elements (PE) is inevitable. One of the 

most important parts of such multiprocessor SoC (MP-SoC) is communication 

infrastructure [2]. Buses cannot provide efficient interconnect from performance 

point of view. They are capable of supplying the needed level of interconnect 

efficiency if the system size does not exceed a few tens of components, otherwise 

significant degradation of performance can be observed, at the same time P2P 

connections can efficiently connect even fewer numbers of elements [3]. Thus, 

communication is becoming a bottleneck in SoC design, and today chip design 

methodologies are much more communication rather than computation centric. 

 

Around 1999 several research groups started investigation of communication part of 

SoCs [1]. As a result, in 2002, Networks-on-Chip (NoC) paradigm was proposed to 

overcome the limitations arising with bus and P2P connection based communication 

infrastructures [4]. NoCs are expected to be a response to the “interconnect 

showstopper”. They have many in common with interconnect architectures of high-

performance parallel computing systems. The key idea of NoC approach is using 
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packet-switched technique and so called infrastructure IPs (I2Ps) [5] for 

communication between functional IP blocks. Ideas such as switch-based (routers) 

networks and packet-switched communication were borrowed from macroscopic 

communication networks, since over many years of rapid evolution computer 

networks demonstrated sustainable scalability, continuously improving performance 

and reliability [6]. Packet-switched communication not only provides high degree of 

scalability, but also gives an opportunity for standardization and reuse of 

communication architecture [3]. Using NoCs unlike buses makes possible sharing 

wiring resources between several communication flows, what provides better wire 

utilization. Another advantage of using networks instead of buses is that it has higher 

bandwidth and allows multiple concurrent communications [7]. 

 

The most important features that distinguish NoC architectures are network topology 

and routing algorithms [7] [8] [9]. However, such parameters as buffer size and area 

overhead should also be kept in mind while trying to improve network performance. 

Area overhead is directly proportional to buffer size; increasing buffer size of each 

physical channel of 4x4 NoC from 2 to 3 words leads to 30% increase of total router 

area [10]. Buffers are the most power-hungry components of on-chip routers. Thus, 

usage of buffers should be limited as much as possible and a large set of wiring 

resources available on silicon chip should be utilized instead. On-chip routing 

algorithms and switching techniques also should be chosen such that they do not 

make use of huge buffers and network state is available through control links [11]. At 

the same time, they must be simple enough in order not to extend routing time and 

implementation complexity. Often it becomes the reason of preferring deterministic 

routing algorithms to adaptive ones.  

 

The main performance metrics considered in the literature [13][36][38] in evaluating 

NoC designs and routing algorithms are throughput and average packet delay. 

Another parameter we are considering in performance evaluation of routing 

algorithms in this study is the  load distributions.  
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Our research was motivated by advances in VLSI technology and rapid evolution of 

NoCs. Despite a lot of research work has been conducted since proposal of NoC 

approach, much more work is to be done in future, since this field is still in its 

infancy. There are still many outstanding research problems in NoC design. In [12] 

the key problems and the suggested solutions were described. We mainly concentrate 

on routing algorithm design. Choosing the right type of routing is essential. It 

directly affects the network performance and power consumption [13] [14] [15] [16]. 

Implementation complexity and performance requirements are the main parameters 

affecting the choice of routing strategy. Deterministic routing requires less resources 

and guarantees correct packet arrival sequence, while adaptive routing is more 

complex in implementation but provides higher throughput and lower latency. 

Deterministic techniques have disadvantage of underutilization of network resources 

[4]. Adaptive algorithms are deadlock- and livelock-prone in comparison with 

deterministic ones and need extra precaution. However, applied deadlock/livelock 

detection mechanisms may lead to unpredictable degradation of performance [15]. 

The choice between adaptive and deterministic routing should be made very 

carefully, because it causes trade-offs between area and performance [12].  

 

Dimension Order Routing (DOR) algorithm or its variants are often used in mesh-

based NoCs, because they are minimal, fully deadlock- and livelock-free and simple 

in implementation. It is called XY-routing algorithm for 2D-meshes. However, XY-

routing tends to send packets toward the center of the mesh when the contention is 

high [14].  Hence, the central part of the mesh becomes overloaded. It leads to early 

network saturation and performance degradation. XY-routing performs well just for 

uniformly distributed traffic.  
 

One of the recently proposed algorithms based on DOR is Orthogonal One Turn 

(O1TURN) routing algorithm. According to [36] O1TURN achieves higher 

throughput than DOR when the network size increases. 
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This thesis explores performance of Dimension Order and O1TURN routing for 

pipelined wormhole routers. Also a deterministic routing algorithm based on 

Dimension Order and O1TURN routing and its performance evaluation is presented 

in this research. In the proposed algorithm an attempt to distribute the load in the 

center of 2D-mesh network was made. During the process of research a simulator for 

pipelined switch model was developed. Performance evaluation of the Dimension 

Order and O1TURN routing algorithm as well as the proposed algorithm is carried 

out using this simulator. 

 

 

1.1 Thesis Organization 

 
The thesis is organized as follows: 

In Chapter 2, first, information on NoC design considerations is given, after that the 

most popular network on-chip topologies are introduced. Next, switching techniques 

for interconnection networks are reviewed. Then, on-chip routing algorithms are 

described and their performance characteristics are reviewed briefly. Finally, concise 

information on traffic models for NoCs is presented. 

In Chapter 3, we present analysis of Dimension Order and O1TURN routing 

algorithms for different configurations of 2D-mesh network on chip. In the first part, 

the canonical router architecture is introduced then our simulator model is presented. 

In the next section we provide an examination of correctness of our simulator, after 

that discuss simulation results of Dimension Order routing for 2D-mesh topology. 

O1TURN algorithm and its performance evaluation are given in the last section of 

this chapter. 

Chapter 4 introduces the algorithm we propose and its comparative performance 

evaluation in terms of throughput, average packet delay, and load distribution with 

Dimension Order and O1TURN algorithms. 

Chapter 5 concludes the thesis and outlines future work. 
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CHAPTER II 

 

 

BACKGROUND 

 

 

 
 SoCs consist of various IP blocks, routers, and physical links. IP block (in some 

literature terms such as processing element (PE) or virtual component are also used) 

is a general term used for representing such entities as DSPs, memory modules, 

MPEG decoders, processor cores and so on. Routers and links are employed for 

providing communication infrastructure for IP blocks in other words they organize a 

NoC. Routers have input and output ports which are connected to IP blocks and other 

routers in the system. The number of ports depends on the network topology. 

Physical links are actually copper wires utilized for data transmission between 

adjacent routers and IP blocks. The messages sent via physical links are divided into 

packets or flits depending on the used switching technique. Packet is a fixed length 

data block containing all the control and routing information, which gives the router 

an opportunity to decide where the incoming packet should be sent, in its header. 

Sometimes packets are further split into flits (flow control units). Unlike packets just 

the first flit called header flit involves routing information; its main task is reserving 

a path for other flits (data flits) following it, the last flit is a tail flit which releases all 

the resources reserved by header flit. Performance of NoC as defined in the previous 

chapter, depends on various factors such as network topology, routing strategy and 

switching technique. Hence, in this chapter, we give a brief theoretical background 

on these issues. Firstly, we introduce NoC design considerations. Subsequently, most 

popular topologies employed in NoCs are reviewed. Then, switching techniques used 

in NoCs are presented. In the next section we describe widely used routing 
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algorithms and review their performance characteristics briefly. Finally, we present 

brief information about traffic models for NoCs. 

 

 

2.1 Network on Chip Design Considerations 

 

All of the NoC designs have specific features, however, the same performance 

evaluation metrics apply to them such as latency, throughput, power consumption, 

area overhead, and implementation complexity. All of these metrics depend on each 

other, and cannot be considered separately. These performance metrics are divided 

into performance parameters and cost factors [44]. 

 

The performance parameters are throughput and latency. Throughput is defined as a 

fraction of packets delivered from sources to destinations in a given amount of time. 

Latency is defined as time taken to deliver a packet from source to destination 

[38][13]. For any of the NoC applications high throughput and low latency are 

desirable. Low latency and high throughput can be achieved by providing deadlock-, 

livelock-, and starvation-freedom (see Section 2.4 for definitions), better channel 

utilization, and using appropriate routing algorithms (see Section 2.4) and switching 

techniques (see Section 2.3). 

 

Power consumption, area overhead, and implementation complexity are cost factors. 

Power consumption is one of the important NoC design constraints, especially for 

battery-operated mobile devices [1] because reduction of power consumption helps 

to extend the battery life. Area overhead is often depends on buffer size of an 

individual router. As we mentioned in previous chapter increasing buffer size 

significantly impacts total router area and its power consumption. Usage of large or 

small buffers depends on the requirements of switching technique and routing 

algorithm. Much more resources are required for implementing adaptive routing 

algorithms in comparison to deterministic ones. This leads to high implementation 

complexity of the router. In adaptive routing algorithms packets between the same 
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source destination pair may take different routes. Thus, they may arrive out of order. 

Huge buffers are needed for their reordering [45].  

 

In Chapter IV we use another additional performance parameter for comparison of 

routing algorithms. This performance parameter is load distribution. We measure the 

load on a router as the number of flits passed through the router during the 

simulation time. The routers which are located closer to the center of the 2D mesh-

based network experience higher loads compared to those located closer to the edges 

[46]. This leads to greater packet delays and lower throughput of a NoC system. If 

the load is distributed more uniformly better performance results can be obtained. 

 

 

2.2 Network on Chip Topologies 

 

Most interconnect architectures used for NoC came from the parallel computing 

field. However, SoC design paradigm introduces some constraints to those 

architectures, because there is a significant difference between on-chip and off-chip 

(on board) applications. An ideal architecture should provide high throughput, low 

latency, low power consumption, and have small area requirements and 

implementation complexity. Certainly, it is impossible to incorporate all of these 

features into the same system, because some of them contradict each other. That is 

why researchers always have to sacrifice some of the advantages of certain 

architecture for the sake of gaining another one. For this reason none of the existing 

architectures offer the desired performance. One of the essential parameters effecting 

performance of a NoC is topology. There were proposed different ones since the 

beginning of intensive research in this field. In the following, we overview the most 

popular ones. 
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2.2.1 SPIN 

 

One of the proposed interconnect templates SPIN [17] (Scalable, Programmable, 

Integrated Network) uses fat-tree architecture (Figure 1. Black boxes are routers, 

white boxes are IP blocks). A fat-tree is a tree with routers on the nodes and IP 

blocks on the leaves. Every node has four leaves and the parent is replicated four 

times at any level of the tree. The number of parent port is equal to the number of 

child ports for every switch. The size of the network grows with a rate of (NlogN)/8 

where N is the number of IP blocks. For N IP blocks, the number of switches 

converges to S=3N/4. There are as many parents as leaves so the network is non-

blocking. The term non-blocking comes from the area of Multistage Interconnection 

Networks (MIN), it means that it is always possible to establish a connection between 

any idle pair of input and output ports having no effect on existing 

connections[13][37]. It is obvious that there must exist multiple paths between any 

given input and output ports in the network in order to be non-blocking. Supporting 

multiple paths leads to undesired growth of hardware complexity, power 

consumption, and high usage of on-chip space.  

 

 

 

Figure 1 SPIN architecture [2] 
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2.2.2 CLICHÉ 

 

CLICHÉ (Chip-Level Integration of Communicating Heterogeneous Elements) was 

proposed by Kumar et al. [8]. This architecture is the same as 2D mesh 

interconnection topology. There are as many switches as IP blocks. Every switch, 

except those at the edges, is connected to four neighboring switches and one IP 

block. Local interconnections between IP blocks and switches are independent of the 

size of the network. The simplicity of the architecture allows for the division of the 

chip into processing regions. Different protocols may be used in local regions. 

Routing is not complex, so the smaller size switches may be used and the network is 

scalable.  

 

 

 

 

Figure 2 CLICHE [18] 
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2.2.3 Torus 

 

Torus [7] architecture is the same as regular mesh. However, unlike the mesh, where 

edge switches are connected only to two neighboring switches, the torus architecture 

uses wrap-around channels in order to connect the switches at the edges to the 

switches at the opposite edge. The number of switches is equal to the number of IP 

blocks and every switch has five ports. 

 

Due to the long wrap-around channels the packet transmission delay may become 

significantly long and require usage of repeaters. This can be avoided by folding the 

torus as it is shown in Figure 4. Folding is done by shifting all nodes in even rows to 

the right and all nodes in even positions of each row down, next connecting all the 

neighboring nodes in newly gained rows and columns then pair-wise connecting 

edge nodes in rows and columns. Now wraparound links are significantly shorter and 

link propagation delays fit within a single clock cycle [42]. 

 

 

 

 

Figure 3 2D Torus [2] 
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Figure 4 2D Folded Torus[2] 

 

 

2.2.4 Octagon 

 

The Octagon [19] architecture has its own advantageous properties. Every pair of 

nodes has a maximum two-hop path to communicate with each other. The basic 

model consists of eight IP blocks and 12 bidirectional links, as shown in Figure 5. 

The nodes are arranged in a ring and there is a central connection point in the center 

of a ring. Every node is also connected to the neighboring nodes. The node consists 

of IP block and a switch. Every switch has three connection ports. Usually the 

architecture uses a simple short-path algorithm. The throughput is higher than of the 

shared bus and crossbar interconnect if properly designed. This requires a 

development of good interconnection scheduler. 
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Figure 5 Octagon [2] 

 

 

If we consider the scalability of the network then while increasing the network size, 

octagon is extended in multidimensional space. For large number of nodes this 

architecture may significantly increase the wiring complexity. 

 

 

2.2.5 BFT 

 

Another proposed interconnect template is BFT (Butterfly Fat Tree) [9], [20]. In this 

tree based architecture, IP blocks are placed at the leaves and switches are placed at 

vertices (Figure 6). Each switch has two parent ports and four child ports. In order to 

label the nodes, (l, p) coordinates are given to each node where l shows the level of 

the node and p shows the position of a node within that level. The address of a lowest 
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level is zero and the addresses of all IP’s range from 0 to (N-1). There are N/4 

switches at the first level and at the jth level there are N/2j+1 switches. The number of 

switches at each level reduces by 2. Unlike a simple mesh, where there is one switch 

for every four IP blocks, this topology requires one switch for every two IP blocks. 

 

 

 

 

Figure 6 BFT Architecture [2] 

 

 

2.3 Switching Techniques 

 

Switching techniques define the way and time of connections between input and 

output ports inside a switch. There exist various switching techniques, but the most 

popular ones are Circuit Switching, Packet Switching, Virtual Cut-Through 

Switching and Wormhole Switching. 

 

 

2.3.1 Circuit Switching 

 

In circuit switching [13] the physical path from source to destination is reserved for 

the entire duration of data transmission. This is realized by injecting the header flit 
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into the network. The header flit contains the destination address and some additional 

control information. It moves toward the destination through intermediate routers 

reserving physical links it has passed. By the time it reaches the destination, the 

complete path has been reserved and the acknowledgement is sent back to the source. 

The reserved path may then be released by the destination or by the last bits of 

message itself. 

 

This technique is advantageous when the messages are infrequent and long. In other 

words it is useful when the message transmission time is long compared to the pass 

set up time. However, it may block other messages while reserving the entire path, 

thus causing unnecessary delays. 

 

 

2.3.2 Packet Switching 

 

This technique is also called Store-and-Forward (SAF) [13] technique. The message 

is divided into fixed-length blocks, called packets. Unlike the circuit switching 

technique, which sets the path before sending a data, every packet is routed 

individually from source to destination. Every packet has routing and control 

information called packet header, which is used by intermediate routers to determine 

the packet’s destination. Thus, the latency of a packet varies with the distance 

between source and destination. The longer the distance the greater is  the latency. 

 

Packet switching is advantageous when messages are short and frequent. It also fully 

utilizes the communication link, while the circuit switching may keep the reserved 

path idle for some time. However, the storage requirements at the individual routers 

can become extensive if packet size becomes large and multiple packets must be 

buffered at a node. 
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2.3.3 Virtual Cut-Through (VCT) Switching 

 

In the packet switching technique, a packet must be received in its entirety before 

making any routing decisions. However, the size of a packet may be bigger than the 

width of a physical channel, so the transfer of a packet may take multiple cycles. The 

width of a physical channel is measured in bits and defines how many bits of 

information can be sent through the physical channel in parallel. The packet header is 

the first few bytes of a packet that can be received after first few cycles and it 

contains the routing information of a packet. Rather than waiting for an entire packet 

to be received, the router can start forwarding the packet header and following data 

as soon as the routing decision is made and the output buffer is free. In the absence 

of blocking, the packet does not have to be buffered in the output buffer and can cut 

through directly to the input buffer of the next router before the current router 

receives the complete packet. This switching technique is called virtual cut-through 

(VCT) [13]. The difference of this technique from packet switching is that the 

packets do not always have to be buffered in the intermediate routers; they are 

buffered only if the packet is blocked. That is why at high network loads the virtual 

cut-through switching behaves just like packet switching. 

 

Only the packet header contains the routing information and the following data is 

simply forwarded along the same output channel as its predecessor. Therefore, 

transmission of different packets cannot be interleaved or multiplexed over the same 

physical channel. 

 

 Unlike circuit switching in VCT and SAF switching we do not have to reserve the 

whole path from source to destination since every packet contains routing 

information. A physical link between just two adjacent routers is reserved for the 

duration of packet transmission; it is released as soon as packet reaches the next 

router. In VCT and SAF switching each packet is routed independently from others 

and packets with the same source and destination may take different paths. In circuit 

switching links are underutilized, because if the header flit is stalled all the physical 
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links reserved so far cannot be used by anyone. VCT and SAF switching do not 

suffer from this kind of problems. As we said above circuit switching is good for 

light loaded networks with long messages while VCT and SAF switching are suitable 

for heavy loaded network configurations. It must be noted that we can make use of 

VCT’s advantage over SAF only if the packet size is bigger than the width of the 

physical channel measured in bits, otherwise they perform similarly. 

 

 

2.3.4 Wormhole Switching 

 

In wormhole switching [13] the message is divided into flits. This is done in order to 

decrease the buffer size at routers and to achieve much faster routers. The input and 

output buffers of a router are large enough to contain a few flits. 

 

A message is sent through the network at flit level in pipelined fashion. The header 

flit contains the routing information and builds a path in the network, which the other 

flits follow. In case of blocking VCT collects the following data at the current router, 

which requires bigger buffer size, while wormhole switching simply stops every flit 

in its current position. Thus, when a message is blocked it occupies several routers in 

the path constructed so far and a few flits need to be buffered at a router. As a result 

there is no need for a local processor memory to buffer messages, which significantly 

reduces average message latency. However, only the header flit contains the routing 

information and each incoming data flit is simply forwarded along the same output 

channel as the preceding data flit, which requires that the message must cross the 

channel in its entirety before it can be used by another message. This blocks the 

resources in case of stalled pipelines and makes the wormhole technique deadlock-

prone. The problem can be solved by adding some control logic that splits the 

physical channel into several virtual channels. They will have their own buffers but 

share one physical medium, in other words each port of the router will have several 

queues for storing incoming flits instead of a single queue. In such an organization 

several buffers are associated with a single physical channel and form several virtual 
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channels, it is like adding lanes to a street. Each of the queues is allocated to a certain 

packet and contains flits of only that packet [31]. A physical channel is allocated to 

each of the virtual channels in flit-by-flit manner. The buffers sharing the same 

physical channel receive their flits alternately. If one of the packets is blocked the 

other one can advance further towards its destination. 

In Table 1 a brief summary of switching techniques is given. 

 

 

Table 2 Summary of switching techniques 

Switching 

technique 

Communication 

entity 

Path 

reservation 

Buffer 

size 

Resource 

utilization 

Circuit switching Flit Yes Small Poor 

SAF switching Packet No Large Good 

VCT switching Packet No Large Good 

Wormhole 

switching 
Flit Yes Small Moderate 

 

 

 

2.4 Routing Algorithms 

 

A routing algorithm determines a path for a packet to reach its destination. It must be 

decided within each intermediate router which output channels must be selected for 

the incoming messages. There are various types of routing algorithms differentiated 

according to their key characteristics. In accordance with the place where the routing 

decision is made they may be grouped as centralized, source, and distributed routing 
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algorithms. If an algorithm is centralized the path is chosen by a centralized 

controller, if it is source routed then the route is determined by the source router prior 

to sending a packet, in distributed algorithms the path is chosen in a distributed 

manner at the intermediate routers. According to the way how they choose a path 

routing algorithms are broadly classified as deterministic and adaptive algorithms. 

Deterministic algorithms do not take into account network conditions when they take 

a decision that is why they always supply the same path from source to destination. 

But, it is not the case for adaptive ones in which network load, traffic conditions, 

information about available output channels are always taken into consideration.  

 

Every algorithm has different impact on the network. Routing algorithms use a 

variety of metrics that affect the calculation of the optimal path for a message. Many 

properties of the interconnection network depend on the routing algorithm used 

because the complexity of an individual router has a significant impact on the 

complexity of the entire network. For example, if the routing algorithm is too 

complicated it will require extra hardware to realize the routing logic, moreover it 

may take much more time to make a decision about the direction where the message 

should be sent to. It will in turn lead to increase of packet latency. Deadlock, livelock 

and starvation freedom are also among those properties. This property shows the 

ability to guarantee that packets will not block or wander across the network forever 

or permanently stop and never reach its destination. 

 

Deadlock: Deadlock is one of the situations that can postpone packet delivery 

indefinitely. It happens when a packet is requesting a resource that is held by another 

packet while holding the resource that is requested by other packet. There is a cyclic 

dependency between channels. Thus the packet may be blocked forever. 

Deadlock is the most difficult problem to solve. There are three strategies that can 

cope with deadlock: deadlock prevention, deadlock avoidance and deadlock 

recovery.  
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Livelock: Livelock usually happens in adaptive routing schemes.  It happens when a 

packet is running forever in circular motion around its destination, because the 

channels that are required to reach the destination are occupied by other packets. 

Hot potato routing is an example for an algorithm that can cause a livelock. In this 

algorithm, whenever a desired channel is not available, a packet will pick any 

alternative available channel and move to the next switch instead of waiting. 

However, the alternative channels may misroute a packet around its destination. 

In order to remove livelock several techniques have been proposed such as minimal 

path, restricted non-minimal path, probabilistic avoidance. 

 

Starvation: Starvation may happen when a resource that was requested by a packet 

is always granted to other packets. Thus, the packet stops permanently in traffic, 

never getting the resource it needs. Starvation can be avoided by using correct 

resource assignment scheme. 

 

 

2.4.1 Deterministic Routing Algorithms 

 

Deterministic routing algorithms [13] always generate the same single routing path 

for a given pair of source and destination, usually choosing the shortest one. Only the 

addresses of current and destination nodes are used to compute the path. As 

messages with the same source and destination always use the same network path, 

they cannot use alternative paths to avoid blocked channels. 

 

As it was said in the beginning of this section if source routing is used, the path is 

computed at the source node without considering any information about traffic. 

Otherwise, if distributed routing is used, routers make unique decisions at the 

intermediate nodes, based on current and destination node addresses. In both cases 

channel status is not considered while computing the output channel to be used. 

Deterministic algorithms should be progressive and profitable, which means that the 

header should move forward reserving a new channel at each routing operation, 
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under condition that the supplied channel always brings the packet closer to the 

destination. Thus deterministic routing algorithms use greedy algorithms, always 

choosing the shortest path.  

 

The most popular deterministic algorithm is known as dimension-order routing. It is 

based on the idea that some topologies can be decomposed into several orthogonal 

dimensions, i.e. hyper cubes, meshes and tori. The distance between two nodes in 

these topologies is computed as the sum of the offsets in all dimensions. The 

algorithm reduces one of these offsets in each routing step. The offset of the current 

dimension must be equal to zero before the algorithm considers the offset of the next 

dimension. 

 

Dimension–order routing is usually used for meshes and hypercubes. In 2D mesh it 

is called XY- or YX-routing depending on the dimension in which a packet travels 

first. The algorithm is deadlock-free for n-dimensional hypercubes and meshes, as 

their channel dependency graph (CDG) is acyclic. CDG is a directed graph where 

channels are represented by vertices and edges are pairs of channels connected by a 

routing function [28]. However, the CDG for some topologies has cycles. In order to 

remove cycles, physical channels may be split into virtual channels. 

 

Most commercially available parallel machines usually use distributed deterministic 

routing as it is simple and fast. But distributed deterministic routing assumes that the 

traffic is uniform. In case of non uniform traffic the performance of distributed 

deterministic routing in terms of latency and throughput is very poor [13]. 

 

 

2.4.2 Adaptive Routing Algorithms 

 

Adaptive routing algorithms do not restrict a message to a single path when traveling 

from the source to the destination. While making a decision the current network 
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conditions are considered. This makes the routing more flexible and reduces 

unnecessary waiting time delays, providing better fault tolerance.  

 

Adaptive routing algorithms contain two functions: routing and selection. Routing 

function gives a set of output channels based on the current node and destination 

node, Selection function selects the most appropriate output channel from that set. 

The selection function always supplies with a free channel. Thus, messages can 

follow alternative ways instead of waiting for a busy channel. Non greedy 

algorithms, which can supply channels that send packets away from its destination, 

are also allowed. 

 

Adaptive algorithms also allow backtracking technique, which enables the header to 

backtrack, releasing previously reserved channels, thus systematically searching for 

appropriate path. For deterministic algorithms backtracking technique is useless as 

the message will go by the same path again. Adaptive routing algorithms increase 

routing flexibility but the hardware becomes more complex and slower. 

 

 

2.4.3 Minimal Adaptive Routing 

 

Minimal routing algorithms always use the shortest path in order to reach destination. 

While being adaptive they restrict the routing direction in some level. One of the 

examples for minimal adaptive routing algorithms is double Y-channel routing 

algorithm [21]. This algorithm divides the network into several sub-networks. The 

packet is sent via particular sub-network according to the location of destination. The 

network is usually divided into +X sub-network and –X sub-network. Here Y 

dimension has a pair of channels and X dimension has unidirectional channel. If the 

location of the destination node is bigger than the location of source node, in other 

words if dx > sx, than the packet is sent through +X sub-network. Otherwise –X sub-

network is used. If dx = sx    then either sub-network can be used. 
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Figure 7 Double Y-channel 2D mesh [22] 

 

 

The double Y-channel algorithm is minimal and fully adaptive, which means that the 

packet is delivered through any of the shortest paths. In order to avoid deadlock, 

channels should be ordered in appropriate manner [21]. The packet that is sent to the 

destination should path the channel in descending order, in other words, the channel 

label that was passed must be bigger than the channel label that is going to be passed. 

This algorithm is impractical when n is large ( n is the number of dimensions), due to 

the additional channel requirement. 

 

 

2.4.4 Non-minimal Adaptive Routing 

 

Unlike the minimal adaptive routing algorithm, where a packet searches only for a 

shortest path, non-minimal adaptive routing allows the packet to take a longer path if 

there is no available shortest path. 
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Figure 8 +X sub-network and labeling [22] 

 

 

This technique is fully adaptive and can be achieved by few more additional 

channels. Two non-minimal routing algorithms were proposed by Dally et al. [23]. 

One of them is static dimension reversal routing algorithm, where every two adjacent 

nodes are connected by r pairs of channels. Here, the network is divided into r sub-

networks and the ith sub-network consists of all the ith pair channels. Each packet 

header stores additional value c which is initially set to zero. The packet can move in 

any direction in its own sub-network, but when the packet moves from high 

dimensional channel to low dimensional channel the c field is increased by one. If c 

reaches the value r-1 then the packet must switch into the deterministic dimension-

ordered routing algorithm. The packets can be routed also in reverse dimension 

order. Parameter r restricts the number of times it can happen.  

 

Another algorithm is called dynamic dimension reversal routing algorithm. Here, the 

channels are divided into two classes: adaptive and deterministic. At first, packets are 

sent through adaptive channels, moving in any direction. But, when a packet reaches 

a node, where all output channels are busy by packets with values of c that is smaller 
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or equal to its own, it must switch to the deterministic channels. After entering the 

deterministic channels a packet cannot return to adaptive channels. The algorithm is 

deadlock-free. 

 

 

2.4.5 Turn Model 

 

This algorithm was proposed by Glass and Ni [14] for n-dimensional meshes. It 

suggests a systematic approach to the development of adaptive routing without 

additional channels. The algorithm supports both minimal and non-minimal adaptive 

routing and is partially adaptive. 

 

The packet, while traveling through the network, switches from one dimension to 

another, in order to reach the destination. Switching from one dimension to another is 

called turn. If the packet changes its direction without moving to another dimension 

then this is 180-degree turn. Usually physical channels are split into virtual channels 

and the packet may move from one virtual channel to another. If it moves from one 

virtual channel to another and is still in the same dimension and direction then this is 

a 0-degree turn. Turns can form a cycle. It is known that, deadlock occurs when the 

packet routes contain turns that form a cycle. The algorithm is based on the idea that, 

if there is no cyclic dependency between channels then deadlock cannot occur. So, 

the concept of the algorithm is to prohibit the smallest number of turns such that 

cycles are prevented. There are several steps that can be useful in developing 

maximal adaptive routing algorithms: 

 

• Classify channels according to the direction in which they route packets. 

• Determine all possible turns that can occur between one direction and 

another. 00 and   1800 turns are not considered. 

• Identify the cycles that can be formed. 

• Prohibit one turn in each cycle. 
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• 00 and 1800 turns cannot be prohibited as they are needed for non-minimal 

routing algorithms or if there are multiple channels in the same direction. 

 

One of the examples for this algorithm is west first routing algorithm, where it first 

routes a packet west, if necessary, and then adaptively south, east and north.  

 

 

 

 

Figure 9 Six turns (solid arrows) allowed in west-first routing [22] 

 

 

Figure 9 shows the turns that are prohibited. Thus, the packet can make only six turns 

and two turns to the west are not allowed. Therefore, to travel west, a packet must 

begin in that direction. For minimal routing, the algorithm is fully adaptive if the 

destination is on the right side of the source, otherwise, it is deterministic. For non-

minimal routing the algorithm is adaptive in either case.  

 

 

 

2.4.6 Randomized Routing Algorithms 

 

DOR algorithm is considered to be one of the most popular deterministic routing 

algorithms due to its simplicity for implementation and good performance according 
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to average packet delay and throughput metrics [35]. As we can see in Figure 27 not 

the whole available bandwidth of the network is used. Sometimes minimality 

constraints are relaxed to some extend and randomization is added for more efficient 

usage of the network bandwidth. 

 

Valiant and Brebner [34] proposed one of the best known randomized algorithms 

named Valiant. This algorithm has two phases. In both of the phases it uses 

dimension-order routing.  In the first phase a random node is selected, and a packet is 

sent there. In the second phase, it routes the packet from that random node to its 

destination. Valiant is non-minimal and tries to avoid congestion in the network. 

Packets with the same source and destination are unlikely to take the same path, as 

they will have different intermediate nodes, which are selected randomly. Several 

sets of buffers are needed in order to avoid deadlocks. In a mesh topology, it requires 

two sets of independent buffers per communication link. In Valiant routing algorithm 

livelocks cannot occur, as the packet reaches its destination eventually, but it may 

take longer path than actually required. The path taken is a drawback of this 

algorithm, because its length increases according to the topology being used. For 

example, in a mesh, the packet’s path may be doubled. This means that the Valiant 

routing results in longer routing times. Hence, the demand on network bandwidth is 

also doubled. 

 

Another routing algorithm which uses randomization is Randomized, Oblivious, 

Multi-phase, Minimal (ROMM) [35] algorithm. It inherits minimality of DOR, and 

randomization of Valiant. Minimality assures that the path taken by a packet will be 

minimal. Randomization is used to assure that packets with same source and 

destination will not take the same path. These properties are combined to avoid 

congestion. This algorithm is oblivious, thus, making it easy to implement in contrast 

to adaptive algorithms which are more complex. As ROMM algorithm uses only 

minimal paths, it is constrained in randomization unlike Valiant which uses full 

randomization. 
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ROMM selects random nodes within the range of a minimal path a message is 

required to follow in order to reach the destination. It routes a packet in p-phases. A 

p-phase ROMM algorithm has p-1 randomly selected nodes Z1, Z2, …, Zp-1 between 

source and destination, such that, those Zi ‘s must be on minimal path from source to 

destination. 

 

 

 

 

Figure 10 A possible path from src to dst using 3-phase ROMM on a 2D mesh 

 

 

Figure 10 illustrates a possible path from source to destination in a 3-phase ROMM. 

Here, source node determines the path that would be taken by message using 

dimension-order routing and chooses a random node that lies within that path, in our 

case Z0. Then message is routed from src to Z0 using dimension-order routing. Now, 

Z0 becomes a source node and chooses another random node that lies along the 

minimal path from Z0 to dist, in this case Z1, and send a message using dimension-
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order routing. Z1 in its turn routes a message to dst again using dimension-order 

routing. 

 

If p phases are used then ROMM algorithm requires p-virtual channels for wormhole 

routed mesh network, in order to avoid deadlocks. The algorithm becomes very 

costly as p increases, as it increases memory usage adding virtual channels and 

complicates routing with additional logics required to manage virtual channels. 

 

Another algorithm which allows several routes is O1TURN [36]. In O1TURN a 

network is partitioned into two virtual networks. One of them is XY-routed the other 

is YX-routed. It uses just one phase unlike ROMM and Valiant. However, it also 

provides more than one path, because when the flit is injected into the network it 

may choose one of the networks, more precisely it is randomly sent into one of the 

virtual networks. According to [36] O1TURN outperforms ROMM, Valiant and 

DOR under non-uniform traffic. But DOR is still better under uniform traffic pattern. 

 

 

2.4.7 Comparison of Routing Algorithms 

 

In this section we introduce general comparison of routing algorithms mentioned in 

previous sections as it is indicated in the literature. Deterministic algorithms in 

comparison to adaptive ones achieve higher throughput behavior under uniform 

traffic pattern in 2D mesh with the same number of VCs and have lower latencies at 

higher throughputs [13][14]. However, adaptive algorithms outperform them when 

used in 2D torus [13]. Deterministic algorithms suffer from channel underutilization 

while adaptive algorithms distribute the traffic more uniformly across the network 

and do not have such a shortcoming. Under non-uniform traffic pattern adaptive 

algorithms perform much better than deterministic ones in terms of throughput and 

latency. It is due to their ability to provide several routes between the same pair of 

source and destination. 
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Performance evaluation of O1TURN, DOR, and ROMM algorithms and their 

comparison were presented in [36]. DOR outperforms O1TURN under uniform 

traffic when the network size is small (4x4). It achieves lower latency and higher 

throughput behavior. When network size increases O1TURN behaves better. ROMM 

has the worst performance (greater latency, lower throughput) under uniform traffic. 

O1TURN is always better than DOR under non-uniform traffic pattern regardless of 

the network size. Under non-uniform traffic the performance of O1TURN is almost 

the same or better than the best of DOR or ROMM. 

 

 

2.5 NoC Traffic Models 

 

One of the main problems of NoC design is generation of realistic traffic pattern. 

Despite many researches are conducted very few of them are related to traffic 

models. Generally, Poisson packet arrival process is used for NoC traffic generation. 

However, it was shown that real-world NoC traffic is self-similar in nature [39]. Self-

similar traffic can be modeled by aggregating many on/off message sources with 

Pareto distributed (F(x) = 1-x-α, with 1<α<2) on/off periods [43]. Most researchers 

assume uniform destination distribution. But, this is also not correct, because 

destination distribution depends on the application being modeled and how different 

functions of the application are mapped onto the SoC cores. 

 

Marculescu proposed a traffic model for NoCs, and modeled MPEG-2 video 

applications, but his model is related to pair-wise traffic rather than the traffic over 

the entire network[40]. In [41] traffic traces of 30 applications were gathered and 

empirically derived and modeled. There, spatial and temporal variations of NoC 

traffic are captured by 3-tuple, where each component represents a statistical 

distribution (temporal burstiness, spatial hop distribution, and spatial injection 

distribution). However, nobody has introduced complete traffic model for NoCs, 

because NoC traffic is application-specific and it is very difficult to obtain realistic 
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traffic traces, it is even more difficult to predict what NoC traffic will look like in the 

future [41].  
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CHAPTER III 

 

 

ANALYSIS OF NETWORK ON CHIP ROUTING ALGORITHMS 

 

 

 
In this chapter we give description of the canonical router architecture and the 

simulator model assumed in this work, show the correctness of our simulator, present 

how XY routing algorithm performs under different configurations. Then 

performance evaluation of O1TURN routing algorithm is conducted. XY routing was 

chosen because of its wide popularity. The choice of O1TURN is explained by the 

fact that our implementation is based on its concept of dividing a single physical 

network into two virtual networks and it outperforms ROMM and Valiant routing 

algorithms in spite of their randomized features. However, O1TURN, ROMM , and 

Valiant are also based on XY routing. 

 

 

3.1 Canonical Router Architecture 

 

The performance of interconnection networks depends on the performance of the 

routers which they are constructed from. As routers are fundamental components of a 

network along with topology and flow control policies, the optimization of a router 

significantly increases network throughput. Several router delay models have been 

proposed. They show the performance of a router according to the implementation 

complexity. 

 

The first router delay model was proposed by Chien [24], where he considered the 

implementation complexity of a router. In his model he defined the router with 
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several functions, which were on so called critical path. Those functions were 

address decoding (AD), crossbar (CB) and routing arbitration (RA), crossbar 

traversal, and virtual-channel (VC) allocation (Figure 11). Per-hop router latency was 

accepted as a total delay of these functions.  

 

However, Chien did not consider the pipelining in his model, assuming that the entire 

critical path fits within a single clock cycle. He also assumed that the crossbar must 

provide each virtual channel with a separate port. This brings complications to 

crossbar design as the number of virtual channels increase. The extended form of 

Chien’s model was proposed by Duato and Lopez [25]. In their model pipelining was 

taken into account. They proposed a three-staged pipeline: routing stage, switching 

stage and channel stage. 

 

 

 

Figure 11 Canonical architecture proposed by Chien [24]  
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These proposed models assumed that the clock cycle time depends only on router 

latency. Peh et al. [26] suggested a more realistic router delay model, where the clock 

cycle time was fixed and the pipeline stages might vary. According to this delay 

model a router design consists of general and specific models. The overall view of a 

router and its pipeline stages were presented by general model while specific router 

model was used for thorough investigation of delays of each stage and determining 

the clock cycle time. 

 

In this study, we define the general model only as this model will be considered in 

our implementation. 

 

 

 

 

Figure 12 Canonical wormhole router architecture [26] 

 

 

Figure 12 presents a canonical wormhole router architecture, where p is the number 

of physical channels and w is the channel width in bits as defined in the previous 

section. An incoming flit must pass through routing, switch arbitration and switch 

traversal stages. Each time a new flit arrives in a router the input controller identifies 
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its type: header, data or tail flit. If it is a header flit its destination field is forwarded 

to routing logic, the flit itself is placed into buffer, and since input controller is also 

responsible for setting states to a channel, it changes its state to routing. When the 

routing logic returns an output port for a packet (we say packet because the 

reservation is made for the duration of entire packet), input controller sets the 

channel state to switch arbitration and sends a request for that output port to the 

global switch arbiter. Global switch arbiter provides a requester with available output 

port and marks that output port as unavailable to other requests. As soon as an output 

port is granted to input controller it sets the input channel’s state to switch traversal 

and sends the flit through crossbar if there is any available buffer space in the next 

node. Data flits only pass switch traversal stage since all the routing information is in 

the header flit and other flits simply follow the reserved path. The input controller 

buffers data flits in input queue and sends them to the output port reserved by the 

header flit. The tail flit sets the channel state to idle and signals to global switch 

arbiter to release the reserved output channel upon leaving the input queue.  

 

Figure 13 illustrates canonical virtual-channel router architecture. It adopts additional 

parameter v, which is a number of lanes per physical channel. Crossbar ports are 

shared between lanes of a physical channel and allocated flit-by-flit. The architecture 

suggested in [26] uses a crossbar that has just p ports. In our implementation we 

assume that the crossbar has pxv input ports, which means that the number of ports is 

equal to the total number of virtual-channels. 

 

Each lane has a separate buffer and a state. The packet passes through routing, virtual 

channel allocation, switch allocation and crossbar traversal stages. Each flit has a 

VC-identifier (VCID) field, which defines the lane where a flit is destined to. When a 

header flit arrives input controller decodes its VCID and injects the packet into 

virtual channel with associated VCID, where it is buffered. Virtual-channel enters a 

routing state and sends a flit’s destination field to routing logic which returns the 

output virtual channel for a packet. Input controller then sets the virtual-channels 

state to virtual-channel allocation. Virtual-channel sends a request for those output 
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virtual-channels to global virtual-channel allocator, which in turn returns the 

available output virtual-channels and updates the states of those output virtual-

channels to unavailable. Once an output virtual-channel is allocated the header flit 

sends a request to global switch allocator for output port. When a request is granted 

the header flit leaves for the next node, with its VCID field changed to the recently 

allocated virtual-channel’s VCID. 

 

 

 

 

Figure 13 Canonical virtual channel router architecture [26] 

 

 

When data flits arrive they inherit the output virtual-channel reserved by their header 

flit so they can immediately send a request to global switch allocator for output port. 

The tail flit signals the virtual-channel allocator to release the output virtual-channels 

reserved by its header flit after gaining access to crossbar passage. 
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In virtual channel router we have one extra pipeline stage for any kind of flits. So, 

wormhole and virtual channel routers contain three and four pipeline stages for 

header flits, and one and two stages for both data and tail flits. 

 

 

3.2 Simulator Model 

 

 As it was mentioned before we have three pipeline stages in wormhole router model 

and four pipeline stages in virtual channel router model.  We implemented in C++ 

the router models shown in Figures 12,13. The network is organized in a 2D-mesh 

(CLICHE) topology, used switching technique is wormhole switching. Also we 

consider the link delay between any two routers to be equal to one clock cycle and 

each pipeline stage is also assumed to take a single clock cycle. 

 

In conducted simulations routers are exactly the same as for wormhole and virtual 

channel routers in [27]. All of the mentioned pipeline stages were implemented as 

separate functions. In our simulator all the generated packets are stored in packet 

buffers before being injected into the network. As long as free buffer space is 

available in injection queues a packet is split into flits and placed in there. In 

wormhole router when header flit arrives, input controller decodes its type, since the 

type field is set to “header”, its destination address is forwarded to routing logic, flit 

itself is placed into the buffer, and channel state (Figure 14) is set to routing. The 

routing logic returns output port. A request for that output port is sent to the switch 

arbiter and the channel state is set to arbitration. Switch arbiter resolves contention 

and assigns available outputs to inputs which bid for them. If the output port is 

granted for any of the input ports, it is marked as unavailable. When the grant is 

accepted the channel state is changed to switch traversal and header flit is sent over 

the crossbar to the next router over the link. When the next flit arrives the path is 

already reserved and it is directly forwarded to the output port. If the incoming flit is 

a tail flit, switch arbiter is signaled to release all the reserved resources and to set 

input channel state to idle on its departure [27]. The virtual channel router is a bit 
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different. We said that it has four pipeline stages. They are also implemented as 

separate functions. The difference from wormhole router is that after all the 

connections between input and output virtual channels are arranged, input VCs 

sharing the same output port send flits in a round-robin fashion. If one of the input 

queues is empty or its corresponding buffer in the next node is full it misses its turn. 

If any of output ports is reserved for a single input VC then that input VC can 

transmit each cycle, because it does not have to share the reserved output with others 

and a switch is always allocated to it.  

 

 

 

 

Figure 14 Canonical wormhole architecture [27] 

 

 

We have the following entities in the simulator: 

•  Router – has 5 input and 5 output ports (4 input and 4 output ports are for 

communication with adjacent switches, left 2 ports are connected to local 

resource), priority matrix, routing function, arbitration function and crossbar 
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traversal function. Each input has its own FIFO-queue, for storing incoming 

flits. 

• Link – connects output and input ports of two adjacent routers for flit 

transmission. 

• Control Link – is used to transmit control data between two adjacent 

routers. 
  

Each router except those at the edges has 4 neighbors (Northern, Southern, Eastern, 

and Western). We have packet generators connected to local port of each router. 

Packets are divided into fixed sized flits (flow control units). 

 

We simulated our model for 4x4, 8x8, 12x12 and 16x16 networks with fixed sized 

packets and exponentially distributed packet lengths holding average packet lengths 

equal to 10-, 32- and 64-flits for each one, changing buffer sizes in the range of 3-10 

flits per input port. Destinations are uniformly distributed. Each simulation is first 

run 3000 cycles for warm-up without gathering any statistics and then another 35 000 

cycles collecting the network performance data. All the simulations were performed 

under Poisson traffic. However, as it was discussed previously (see Section 2.5), 

Poisson traffic model and uniform destination distribution are not suitable for 

generating realistic NoC traffic. They are still used because no other realistic traffic 

model has been proposed yet. 

 

 

3.3 Correctness of the Simulator 

 

In the following, we compare our simulation results of DOR and O1TURN 

algorithms with those in the literature in order to determine if our simulator works 

properly. We simulated these two algorithms under the same assumptions (packet 

size = 5 flits, buffer size = 8 flits per physical channel, network size = 8X8) as in the 

papers [26][27][36], and got the results given in Figures 15-19. In these figures 

throughput is given as a fraction of network capacity, which is defined as 4/k 
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packets/node/cycle (packet size is assumed to be exactly one flit) [36] for kxk 

networks when k is even, where k is the number of nodes along each dimension. As 

we can see our results are approximately the same as in the original papers. There is 

a slight difference when DOR with 2 VCs is used. It is due to changes made to 

original algorithm, where routing stage is performed just one time. In our simulator 

we perform routing stage each time when contention for all the free VCs previously 

returned by a routing logic is lost. Source queuing delays (the time packets have to 

wait in packet buffers before being injected into the network) of packets are taken 

into account in Figures 15-19. This explains why the delays are different from those 

presented later in this thesis.  

 

 

 

 

Figure 15 Latency-throughput curves of DOR algorithm with 1 and 2 VCs [26][27] 
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Figure 16 Latency-throughput curve of DOR algorithm with a single VC (obtained 

by our simulator) 

 

 

 

Figure 17 Latency-throughput curve of DOR algorithm with 2 VCs (obtained by our 

simulator) 
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Figure 18 Latency-throughput curve of O1TURN algorithm [37] 

 

 

 

Figure 19 Latency-throughput curve of O1TURN algorithm (obtained by our 

simulator) 
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3.4 Performance Evaluation of XY Routing Algorithm 

 

In this section we provide performance evaluation of XY routing algorithm. In 

Figure 20 we present its pseudocode. It is called if the incoming flit is a header flit. 

First the offsets in X and Y dimensions are calculated, then the appropriate output 

channel is determined and returned. 

 

 

 

 

Figure 20 XY routing algorithm for 2D-meshes [13] 

 

 

3.4.1 Effect of Packet Size on Performance 

 

In Figures 21-23 the effect of packet and buffer size on overall performance from 

throughput point of view is given. The network size is 4x4. For other network sizes 

Algorithm: XY-Routing for 2-D Meshes 

Inputs: Coordinates of current node (Xcurrent, Ycurrent) 
and destination node (Xdest, Ydest). 

Output: Selected output Channel 
Procedure: 
Xoffset := Xcurrent − Xdest; 

Yoffset :=Ycurrent −Ydest; 

if Xoffset = 0 and Yoffset = 0 then 

Channel := Local; 
else if Xoffset < 0 then 

Channel := East; 
else if Xoffset > 0 then 

Channel := West; 
else if Yoffset < 0 then 

Channel := North; 
else if Yoffset > 0 then 

Channel := South; 
endif 
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we observed the same trend in performance, the difference is that the larger the 

network size the earlier it saturates. 

  

 In all the figures throughout this thesis load is defined as follows: if our packet 

length is 10 flits we assume that load=1 means that our interarrival rate is one packet 

per 10 cycles, in other words 1 flit/cycle. If load=0.5, it gives us 0.5 X 1 / 10 = 1/20 

packets/cycle. Delay of a packet is taken as the period of time elapsed since the 

generation of header flit at the source node and ejection of its tail flit at the 

destination node, the time spent by the packet in the packet buffer is not taken into 

account. When a flit reaches its destination it is immediately ejected from the 

network. The throughput is given as the ratio of received packets to sent packets. 

 

 

 

 

Figure 21 Effect of packet size on throughput (packet size = 10 flits) 
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Figure 22 Effect of packet size on throughput (packet size = 32 flits) 

 

 

 

Figure 23 Effect of packet size on throughput (packet size = 64 flits) 
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As we can see in Figures 21-23 the buffer size does not affect the performance of the 

system [13], that is, the throughput behavior does not change much. When the 

network size is kept constant and the packet length is prolonged there cannot be seen 

any change in throughput since we measure it in percentage of received to sent 

packets in a fixed period of time. But, in terms of numbers of received packets, it 

would be completely different, because the larger the packet size the less its 

generation rate, in other words with growth of packet size its generation rate 

decreases but number of flits injected into the network remains unchanged. All the 

three figures above have the same throughput behavior, it means that the system has 

limited capacity and its utilization does not depend on the quantity of packets, it 

depends on the number of flits.  

 

 

3.4.2 Effect of Network Size on Performance of XY-Routing Algorithm 

 

In the following figures, the effect of network size on the average delay and 

throughput are depicted.  

 

 

 

Figure 24 Effect of network size on average packet delay (packet size = 10 flits) 
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Figure 25 Effect of network size on throughput (packet size = 10 flits) 

 

 

 

Figure 26 Effect of network size on average packet delay (packet size = 32 flits) 
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Figure 27 Effect of network size on throughput (packet size = 32 flits) 

 

 

 

Figure 28 Effect of network size on average packet delay (packet size = 64 flits) 
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Figure 29 Effect of network size on throughput (packet size = 64 flits) 

 

 

When the packet length is kept constant and network size is expanded the average 

packet delay grows (Figures 24, 26, 28), because the number of contending packets 

grows proportionally to network size. Another reason is that the average hop count of 

packets becomes greater. The throughput decreases because the saturation point of 

the network is reached earlier with increasing number of packets it has at any time 

instance (Figures 25, 27, 29). If we compare Figure 24 and Figure 25 with Figure 26 

and Figure 27 respectively, we can notice that average packet delay grows with 

network and packet size, at the same time the throughput diminishes. It shows us that 

the impact of network and packet size on performance is significant.  
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3.5 Performance Evaluation of O1TURN Routing Algorithm 

 

In Chapter 2 we gave brief information about O1TURN routing algorithm. In this 

section we provide its performance evaluation. But first, in Figure 30 we present its 

pseudo code: 

 

 

 

 

Figure 30 O1TURN routing algorithm for 2D Meshes 

Algorithm: O1TURN Routing for 2-D Meshes 

Inputs: input port (In_port), coordinates of current node (Xcurrent, Ycurrent) and 
destination node (Xdest, Ydest), 
Output: Selected output Channel 
Procedure: 
Xoffset := Xcurrent − Xdest; 

Yoffset :=Ycurrent −Ydest; 

if Xoffset = 0 and Yoffset = 0 then 

Channel := Local; 
else if In_port= Local_port 
 randomly choose virtual_network 
else define virtual_network according to information in the flit 
if virtual_ network is XY_routed then 

if Xoffset < 0 then 
Channel :=East; 

else if Xoffset > 0 then 
Channel := West; 

else if Yoffset < 0 then 
Channel := North; 

else if Yoffset > 0 then 
Channel := South; 

 else  
if Yoffset < 0 then 

Channel := North; 
else if Yoffset > 0 then 

Channel := South; 
else if Xoffset < 0 then 

Channel := East; 
else if Xoffset > 0 then 

Channel := West; 
endif
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According to the pseudocode in O1TURN when a flit is coming from the local port, 

one of the virtual networks is chosen randomly; otherwise, virtual network is 

identified according to information extracted from the flit’s header. Then one of the 

corresponding output channels is returned. 

 

It is clear that this algorithm is more flexible in comparison to XY-routing because it 

provides two paths to the same destination. In [36] in performance evaluation section 

8 VCs per physical port were used. In our model we only have 2 VCs per physical 

channel. Below performance evaluation of O1TURN under different conditions is 

presented. 

 

 

3.5.1 Effect of Packet Size on Performance of O1TURN Routing Algorithm 

 

Different sized O1TURN routed networks with different packet sizes were simulated. 

In all of them nearly the same results were observed (Figures 31-34). That is why we 

present just the results for 4x4 networks. Average delay of packets is directly 

proportional to their size, the longer the packet the higher its delay (Figures 31, 33). 

However, the throughput remains the same for all configurations of packet sizes. It 

was observed that the average delay of fixed sized packets is smaller than of 

exponentially distributed ones. Fixed sized packets always hold the exact amount of 

resources as the only reason for delay to increase is the level of contention in the 

network, which increases if the packet generation rate becomes higher. In case of 

exponentially distributed packet size it is not exactly the same. Even though all the 

nodes have the same packet generation rate the lengths of packets are different. Thus, 

they require different amount of resources, and the contention may vary in certain 

parts of the network. The trend in performance of DOR algorithm and O1TURN is 

the same since they use the same concept, but O1TURN provides some level of 

adaptivity. However, this adaptivity is not controlled. 
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Figure 31 Effect of packet size on average delay in 4x4 network (fixed packet size) 

 

 

 

Figure 32 Effect of packet size on network throughput in 4x4 network  

 (fixed packet size) 
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Figure 33 Effect of packet size on average delay in 4x4 network (exponentially 

distributed packet size) 

 

 

 

Figure 34 Effect of packet size on network throughput in 4x4 network 

 (exponentially distributed packet size) 
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3.5.2 Effect of Network Size on Performance of O1TURN Routing Algorithm 

 

Figures 35-40 illustrate effect of network size on throughput and average delay in 

O1TURN routing algorithm. There is no much difference from the results obtained 

for XY-routing algorithm except that for smaller sized networks XY-routing 

performs better, but as the network grows O1TURN shows higher performance in 

terms of throughput. 

 

 

 

 

Figure 35 Effect of network size on average delay (packet size = 10 flits) 
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Figure 36 Effect of network size on throughput (packet size = 10 flits) 

 

 

 

Figure 37 Effect of network size on average delay (packet size = 32 flits) 
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Figure 38 Effect of network size on throughput (packet size = 32 flits) 

 

 

 

Figure 39 Effect of network size on average delay (packet size = 64 flits) 
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Figure 40 Effect of network size on throughput (packet size = 64 flits) 
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CHAPTER IV 

 

 

DETERMINISTIC XY-YX ROUTING ALGORITHM 

 

 

 
The first part of this chapter introduces deterministic XY-YX routing algorithm 

which is based on O1TURN routing algorithm. Then its performance evaluation and 

comparison with DOR and O1TURN algorithm is presented. 

 

 

4.1 Deterministic XY-YX Routing Algorithm 

 

According to our simulations when XY routing algorithm is used the central part of 

the network is more loaded (Figure 41). In this figure the load of all of the routers in 

a 16x16 network is shown where the incoming traffic is Poisson traffic with fixed 

packet sizes and the routing is done by XY routing algorithm. The greater the load of 

the node the darker is its colour. If this load is distributed more uniformly better 

performance results can be obtained. 

 

Contention Look Ahead [11] routing was proposed for avoiding overloaded areas, 

but it does not guarantee deadlock-freedom. We propose to improve performance of 

a network by  dividing the network into four equal quadrants and using XY and YX 

routing in those quadrants interchangeably. The same (XY or YX) routing algorithm 

is used in diagonally neighboring quadrants. Each quadrant is deadlock-free; problem 

arose just when the flit went from YX-routed quadrant to XY-routed one or vice 

versa, if it had to turn from Y(X)-direction to X(Y)-Direction. We tried to solve it by 

giving higher priorities to flits crossing YX-XY and XY-YX borders. 
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Figure 41 Distribution of network load over the routers in an 16x16 network 

 

 

 

Figure 42 Network partitioning 

1 

3 4 

2 
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However, we faced problems concerning deadlocks. In addition we realized that we 

cannot provide deadlock-freedom without VCs. So, we added additional VC and use 

two VCs and introduced some changes into our algorithm. We limit the number of 

VCs to minimum. This is dictated by the fact that additional buffer space 

significantly increases area overhead of a router and complexity of a switch allocator. 

 

 

 

 

Figure 43 XY_YX routing algorithm 

Algorithm: XY_YX Routing for 2-D Meshes 

Inputs: input port (In_port), coordinates of current node (Xcurrent, Ycurrent) 
and destination node (Xdest, Ydest), 
Output: Selected output Channel 
Procedure: 
Xoffset := Xcurrent − Xdest; 

Yoffset :=Ycurrent −Ydest; 

if Xoffset = 0 and Yoffset = 0 then 

Channel := Local; 
else 
if In_port= Local_port 
 if in quadrant 1or 4 

choose XY_routed virtual_network 
 else choose YX_routed network virtual_network 
else define virtual_network according to information in the flit 
if virtual_ network is XY_routed then 

if Xoffset < 0 then 
Channel := East; 

else if Xoffset > 0 then 
Channel := West; 

else if Yoffset < 0 then 
Channel := North; 

else if Yoffset > 0 then 
Channel := South ; 

 else  
if Yoffset < 0 then 

Channel := North; 
else if Yoffset > 0 then 

Channel := South; 
else if Xoffset < 0 then 

Channel := East; 
else if Xoffset > 0 then 

Channel := West; 
endif 
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Having two VCs per physical channel we divide our network into two virtual 

networks. As it was said above we partition the network into four quadrants as shown 

in Figure 42. If the source node is in quadrants 1 or 4 it injects the flits into the XY-

routed virtual network, otherwise into the YX-routed one. So, we have two virtual 

networks where the number of packet sources is two times less than in the original 

physical network. Injected flits first travel in one dimension according to their 

routing algorithm and then do in the other. This approach was adopted from 

O1TURN algorithm. In Figure 43 we introduce the pseudocode of the proposed 

algorithm. 

 

 

4.2 Performance evaluation of XY-YX Routing 

 

In this section we conducted performance evaluation of XY-YX routing algorithm by 

comparing it with algorithms described in previous chapter. Additionally along with 

those algorithms we implemented DOR routing algorithm with two VCs. 

Performance evaluation and comparison is done by means of varying packet and 

network sizes. 

 

 

4.2.1 Performance evaluation by means of different packet sizes 

 

Here we present comparison of DOR, O1TURN and XY-YX routing algorithms. 

Figures 44-49 show the results of simulations with varying packet sizes (10-, 32-, 64-

flits ) and constant (4x4) network size. 
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Figure 44 Effect of packet size on average delay (packet size = 10 flits) 

 

 

 

Figure 45 Effect of packet size on throughput (packet size = 10 flits) 
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Figure 46 Effect of packet size on average delay (packet size = 32 flits) 

 

 

 

Figure 47 Effect of packet size on throughput (packet size = 32 flits) 
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Figure 48 Effect of packet size on average delay (packet size = 64 flits) 

 

 

 

Figure 49 Effect of packet size on throughput (packet size = 64 flits) 
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It was expected that DOR with two virtual channels (DORvc2) would perform better 

than other algorithms, but it turned out that in a small (4x4) network DOR algorithm 

with a single virtual channel significantly outperforms other routing algorithms 

(Figures 47, 49 ). This is due to small amount of hops and larger packet sizes. In 

addition extra stages in the pipeline become a disadvantage since it increases router 

latency in such cases. Algorithms using extra VCs suffer from additional pipeline 

overhead in each router. In Figure 45 we see that DOR with two VCs beats all other 

algorithms. The reason is that 10-flits packet size is tolerable for showing its real 

performance in small networks. But, when the packet size increased we can observe 

significant degradation in its performance. O1TURN and XY-YX routing algorithms 

do not perform as good as the previous two. Because both of them have extra 

pipeline stages like DORvc2 and on the other hand they inherit the basic concept of 

DOR algorithm with a slight difference that normal DOR considers the network as a 

whole, while those two partition it into two virtual networks, in other words they 

inherit all the features which become disadvantage for DOR when the packet size is 

considerably small and DORvc2 when the packet size is large. 

 

 

4.2.2 Performance evaluation by means of different network sizes 

 

This section investigates throughput and delay characteristics of routing algorithms 

under different network sizes and constant packet size (10 flits). Figures 50-53 show 

variations of delay and throughput for larger (12x12, 16x16) network sizes. 
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Figure 50 Effect of network size on average delay (network size 12x12) 

 

 

 

Figure 51 Effect of network size on throughput (network size 12x12) 
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Figure 52 Effect of network size on average delay (network size 16x16) 

 

 

 

Figure 53 Effect of network size on throughput (network size 16x16) 
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This time packet size is kept constant (10 flits) while network size changes. In 

contrast with small networks O1TURN and XY-YX routing algorithms do not bate 

DOR and DORvc2 much. However, DORvc2 is the best. O1TURN turned out to be 

more tolerant to variations of network size. It is now better than DOR. XY-YX 

routing algorithm performs similar to DOR. We think O1TURN and XY-YX routing 

algorithms cannot perform as good as DORvc2 because despite they use virtual 

channels they still suffer from HOL-blocking since a flit is injected into one of the 

virtual networks it cannot leave it. In DORvc2 each flit may use any of the virtual 

channels if it is available. That is why DORvc2 is always better. DOR’s performance 

degrades because it has no such flexibility. Despite O1TURN and XY-YX routing 

algorithms split the network into two virtual networks and they seem to exploit two 

separate networks they are still bounded by common physical channels, and they 

cannot make use of another virtual channel in the neighbouring virtual network for a 

particular packet since they cannot switch to it even it is not occupied. Thus, inspite 

of employing two virtual networks, they still behave like a single network. In 

addition they have extra pipeline stages in each router. 

 

 

4.3 Load Distribution 

 

In Figures 54-57 load distributions of differently routed networks are given. Load 

distributions were calculated according to the total amount of flits passed through the 

nodes. As it was said before when XY-routing is used the most loaded area is the 

center of the network (Figure 54). XY routing with two VCs does not introduce 

much difference to load distribution from that of XY routing with a single channel 

(Figure 55). When O1TURN routing is used due to injection of flits into two virtual 

networks the dark area has broadened towards the outside of network (Figure 56). It 

is more efficient than XY-routing algorithm from this point. This improvement is 

obtained by the adaptivity provided by additional YX routed virtual network.    

Figure 57 illustrates load distribution of XY-YX routing algorithm. Here significant 

change of the form of dark region can be observed. It took a shape of cross marking 
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the borders of differently routed areas. It occurred due to injection of packets into 

one of the virtual networks in accordance with location of the source node.  

 

 

 

 

Figure 54 Load distribution of XY-routing algorithm 

 

 

Figure 55 Load distribution of XY-routing algorithm with 2 VCs 
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Figure 56 Load distribution of O1TURN routing algorithm 

 

 

 

Figure 57 Load distribution of XY-YX routing algorithm 
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Figure 58 shows the distribution of the load over the nodes defined as the number of 

nodes with a certain amount of flits passed through them. Here, we find the least and 

the most loaded (in flits per node) nodes of the network, divide the range between 

their loads into 20 equal intervals and count the number of nodes in each interval. 

Each of the intervals is equal to 3750 flits/node. In the ideal case the load of all nodes 

of the network must be equal. However, it is not possible since the number of ports 

in each node is not the same (the corner nodes have 2 ports and the edge nodes have 

3 ports, while the regular nodes have 4 ports), and the number of VCs also varies 

with routing algorithms used. Both of these parameters depend on the number of the 

neighboring nodes. There are four different colored groups of bars in Figure 59 

corresponding to the 4 different routing algorithms that are evaluated. The first 

occurrence of bars of any color is not greater than five, the constituents of those bars 

are the nodes at the corners of 2D-mesh. They experience the lowest load because 

they have the fewest number of neighbors. The contributors of the rightmost bars are 

located in the center of the network. They are most efficiently utilized in terms of 

usage of full capacity of the routers when O1TURN and DOR with 2 VCs are 

exploited. When XY-YX routing is used there are not any nodes with loads higher 

than 57000 flits/node. Hence, it decreases the maximum amount of load that is 

observed on any given node in the network. However, there is a trade off with other 

performance metrics such as throughput and delay which is discussed above. The 

network is mostly loaded when DOR with 2 VCs is used, its peak load is about 

79000 flits/node. In this figure we can observe the same trend for all four routing 

algorithms, the bars grow at the start, achieve their highest level in the middle, then 

decrease. We see that most of the routers when any of the mentioned routing 

algorithms is employed do not operate at their full capacities 
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Figure 58 Distribution of load 

 

 

Figure 59 illustrates combined representation of load distribution in the networks. 

We put it for clearer interpretation of Figures 54-57. In each part of this figure we 

can see 16 hillocks, each of them corresponds to a row in Figures 54-57 begining 

from one and ending with sixteen. The top of each hillock represents the node in the 

center of a certain row. The sharper the top of a hillock the less uniformly distributed 

the load among the nodes of that row. Here we can see that from load distribution 

point of view O1TURN is the most efficient algorithm. We can notice that XY-YX -

routing more efficiently uses two opposite sides of central rows in comparison with 

DOR (XY). 
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Figure 59 Combined representation of load distribution in networks 
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CHAPTER V 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 
In this thesis we examined DOR and O1TURN routing algorithms for pipelined 

router model. Also a modified combination of these two routing algorithms was 

proposed. We estimated the effect of parameters such as buffer, packet, and network 

sizes on total performance of the NoC architecture. 

 

Our simulations showed us that buffer size does not affect much the overall 

performance, but packet length and network size impact delay and throughput 

significantly. Also we observe that XY routing overloads the center of our network. 

If that area is bypassed better performance results can be achieved. We proposed 

deterministic XY-YX routing algorithm but realized that it cannot keep up with 

problem of high level load in the center but slightly changes the load distribution. If 

we increase the number of quadrants (rectangles) it is possible that the load 

distribution of the network takes different shape distributing burden of heavy loaded 

nodes more uniformly, thus capturing light loaded ones. In spite of usage of separate 

virtual networks it still behaves like a single network. Another disadvantage of our 

algorithm is that it is more complex than original XY routing algorithm because of 

using additional virtual channel. DOR algorithm in spite of its simplicity is still one 

of the best algorithms for uniformly distributed traffic pattern. 

 

Our future work includes implementation of our algorithm splitting the network into 

greater amount of quadrants where some adaptivity will be added by allowing 
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switching of flits from one virtual network to another. However, the number of 

switchings will be limited to exactly one; otherwise it may lead to a deadlock.  

 

As we mentioned in Chapter II no realistic traffic model has been proposed yet. It is 

very interesting and attractive research area. If a realistic traffic model is introduced, 

it can significantly relieve prediction of the real behavior of NoC in early stages of its 

design. 
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