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ABSTRACT

PERIODIC-REVIEW INVENTORY SYSTEMS WITH

EXOGENOUS AND ENDOGENOUS REPLENISHMENT LEAD

TIMES

As.cı, Murtaza

M.Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Zeynep Müge Avs.ar

December 2007, 131 pages

In this thesis, two-echelon systems with exogenous and endogenous lead times

are studied for the orders placed by the retailer(s) from the supplier. The re-

tailer(s) employ periodic-review base-stock policy, namely (R, S) policy. For the

case the demand during review period is i.i.d. and the probability distribution

is Normal for each review period, a new method is proposed for exogenous lead

time case under stationary policy. The results of the proposed method is then

compared with the results of the existing methods in the literature and it is

concluded that the proposed method provides service levels sufficiently close to

target levels whereas the existing methods do not necessarily provide target lev-

els. We use the simulation to study the endogenous replenishment lead time

case. The proposed method is modified when the retailer employs stationary

policy and it is seen that the proposed method gives no-stockout probabilities

close to target levels.

Moreover, the impacts of using adaptive policy on the performance of the retailer

are studied for endogenous replenishment lead time case. It is concluded that
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updating of the order-up-to-level deteriorates the performance of the retailer.

Finally, it is questioned whether it is beneficial for a retailer to use adaptive

policy in a supply chain with two retailers. Simulation results show that the de-

terioration in the performance of the retailer handling stationary policy is larger

compared to the other retailer handling adaptive policy and the deteriorations

get larger in the case of an increase in update frequency or in utilization of the

supplier.

Keywords: Periodic-review, base-stock policy, exogenous and endogenous lead

times, adaptive, lead time syndrome.
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ÖZ

İÇ VE DIS. KAYNAKLI TEDARİK SÜRELERİ İÇİN ARALIKLI

GÖZLEMLENEN ENVANTER SİSTEMLERİ

As.cı, Murtaza

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Y. Doc.. Dr. Zeynep Müge Avs.ar

Aralık 2007, 131 sayfa

Bu tezde, iki kademeli tedarik zinciri sistemleri ic. ve dıs. kaynaklı tedarik süreleri

ic.in analiz edilmektedir. Tedarikc. iler aralıklı gözlemlenen baz-stok politikası

kullanmaktadır. Stok gözden gec.irmeleri arasındaki talep, bağımsız ve özdes.

kabul edilmekte ve olasılık dağılımının normal olduğu varsayılmaktadır. Hede-

flenen stoksuz kalmama olasılığı ic.in siparis. seviyesini belirlemekte kullanılan

metotlar verilmekte ve durağan politikada dıs. kaynaklı tedarik süreleri ic.eren

sistemler ic.in yeni bir metot önerilmektedir. önerilen metodun sonuc. ları, lit-

eratürde var olan metotların sonuc. larıyla kars.ılas.tırılmakta ve önerilen metotla

elde edilen stoksuz kalmama olasılıklarının hedef seviyelere yeterince yakın olduğu,

fakat var olan metotların hedef seviyelere yeterince yakın sonuc.lar vermediği fark

edilmektedir.

İc. kaynaklı durumu incelemek ic.in simülasyon kullanılmaktadır. Tedarikc.i dura-

ğan siparis. politikası kullandığı durumlarda üst siparis. seviyesinin belirlenmesinde

kullanılmak üzere önerilen metot yeniden düzenlenmektedir. Önerilen metodun

hedef seviyelere yeterince yakın stoksuz kalmama olasılıkları verdiği görülmektedir.
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Ayrıca bu c.alıs.mada, durağan talep ve ic. kaynaklı tedarik süreleri ic.in değis.ken

parametreli siparis. politikası kullanılmasının tedarikc.inin performansı üzerindeki

etkileri üzerine c.alıs.ılmaktadır. C. ift tedarikc. ili bir tedarik zincirinde değis.ken

parametreli siparis. politikası kullanmanın, tedarikc.inin yararına olup olmadığı

sorgulanmaktadır. Sonuc.ta durağan politika kullanan tedarikc. inin performan-

sındaki gerileme değis.ken siparis. politikası kullanan tedarikc.inin performan-

sındaki gerilemeden daha fazladır. Siparis. politikasının parametrelerinin güncel-

lenme sıklığı arttıkc.a veya üretim sisteminin kullanım yüzdesi arttıkc.a perfor-

manstaki düs.üs. artmaktadır.

Anahtar Kelimeler: Aralıklı envanter, baz-stok politikası, dıs. ve ic. kaynaklı

tedarik süresi, değis.ken siparis. politikası, tedarik süresi sendromu.
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Chapter 1

INTRODUCTION

Simchi-Levi et al. (2000) define Supply Chain Management as follows:

”Supply chain management is a set of approaches utilized to effi-

ciently integrate suppliers, manufacturers, warehouses and stores so

that merchandise is produced and distributed at the right quantities,

to the right locations, and at the right time, in order to minimize

system-wide costs while satisfying service level requirements.”

Supply chain management deals with the coordination of the activities con-

tributing directly or indirectly to the production and distribution of the finished

products that the customers are willing to get. The challenge is that the mem-

bers in a supply chain usually have conflicting objectives and an effective balance

between these objectives is hard to achieve. In a supply chain, a member ob-

serves the demands of the members at the lower echelons and generates demands

for the members at the higher echelons by placing orders. The retailers, who ob-

serve demands of the end customers, are at the lowest echelon in a typical supply

chain. By placing orders, these retailers generate demands for the suppliers at a

higher echelon. Then, an inventory control problem arises to determine ordering

policies of the retailers depending on the supply mechanism of the suppliers.
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In this thesis, two-echelon inventory systems are analyzed for the cases of endoge-

nous and exogenous replenishment lead times. The motivation is the relation

between the ordering policies of the retailers and the supply mechanism or pro-

duction system of the supplier that should definitely be taken into consideration

while determining inventory control policies to be employed by the retailers. If

the amount and frequency of the orders do not change the replenishment lead

times (time lag between the points in time an order is placed by the retailers

and delivered by the supplier) observed by the retailer, the replenishment lead

times are said to be exogenous. In other words, there is no impact of the re-

tailers’ orders on the production plan of the supplier. Exogenous replenishment

lead times can be explained by the operating system (e.g., keeping high stock

levels) and/or high capacity of the supplier. If the production capacity of the

supplier is much higher as compared to the amount demanded by the retailers

or if the supplier operates keeping high inventory levels for finished goods to

offset fluctuating demands of the retailers, then changes in the ordering policies

of the retailers would not have an impact on the replenishment lead times.

However, it is expected that there is an impact of the ordering policies of the re-

tailers on the supply mechanism of the supplier when the orders should firstly be

produced by the supplier. In this case, the replenishment lead times are endoge-

nous to the retailer. That is, the replenishment lead times would be endogenous

if ordering decisions have an impact on the production planning decisions of the

supplier. As an extreme example of the systems with endogenous replenishment

leads times, capacitated suppliers employing make-to-order production policy

can be considered. In this case, an arriving order has to wait in the queue of

the orders to be processed until processing all orders already in the system is

completed. Thus, replenishment lead time for a large (small) order quantity

would be longer (shorter). If the retailers start working with large (small) order
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quantities as compared to the previous order quantities, then they observe an

increase (decrease) in the replenishment lead times. The impact in the replen-

ishment lead time would be similar for increases (decreases) in the frequencies

of the orders placed by the retailers. That is, the order frequency and quantity

would have a joint impact on the corresponding replenishment lead times. In

the case there exists congestion in the production system of the supplier resulted

from high demand periods, the retailers would work with larger order quanti-

ties. But, as observed by Selçuk et al. (2006), there is no use of increasing

order quantities in the case of congestion if the supply process is stationary. It

is resulted from the fact that more erratic replenishment lead times are observed

which eventually causes the performance of the retailers to worsen. The solution

to this case is simple: decrease next order quantity and wait until the conges-

tion in the supplier queue ends. This solution would work because there are

only one retailer’s orders in the queue of the supplier. The solution approach

is well-known in the literature and called as ’order smoothing’ (Dejonckheere et

al., 2003; Balakrishnan et al., 2004; Disney et al., 2006).

In order to study the systems with exogenous replenishment lead times, replen-

ishment lead times are assumed either constant or distributed according to a

stationary probability distribution in the models studied in this thesis. For the

cases with endogenous replenishment lead times, a capacitated make-to-order

system is considered as in the studies due to Boute (2006) and Selçuk (2007).

The supplier is modeled as a single-server queuing model with first-come-first-

served service discipline. The items are produced one by one by the single server.

Once all of the items in an order placed by a retailer are processed, the items are

shipped to the retailer. In this setting, the replenishment lead times observed by

the retailer would be longer (shorter) if the current workload of the supplier is at

a high (low) level. Then, the retailers should decide whether to update planned
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lead times according to their observations for the changes in the replenishment

lead times. Especially for the case of more than one retailer working with the

same retailer, this would be an important decision for each retailer to have an

advantage over its competitor(s).

Since the demand of the end customers is the driving force of a supply chain, the

primary objective of the retailers is to provide good service to these customers.

However, there is a tradeoff between the amount of inventory kept and the ser-

vice level provided. Higher inventory levels result in higher service level but

also higher inventory holding costs. Therefore, inventory planning and control

decisions should lead to the best balance between holding costs and the costs of

unsatisfied demand. In this thesis, service models are considered to determine

the minimizing inventory holding costs subject to a constraint to satisfy a target

service level. Different performance measures can be used for the constraints on

the customer service levels. The following are widely used measures: fraction

of cycles without stockout (α-service measure), fraction of demand satisfied im-

mediately upon customer arrival (fill rate, β-service measure), fraction of time

the demand is satisfied immediately upon customer arrival (ready rate), 1 minus

the average backorder divided by the mean demand rate per time unit (modified

fill rate, γ-service measure). In this study, we work with the models subject to

a constraint on α-service level. Although we do not work with fill rate as the

service measure in our models, in the numerical experiments, the fill rates are

also obtained and given for comparison purposes.

For both exogenous and endogenous lead times, we consider the case the re-

tailers place orders according to periodic-review base-stock policy denoted as

(R, S) policy, where R is the review period and S is the order-up-to-level. The

base-stock policy is an optimal inventory policy in systems where there is no
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fixed ordering cost, stockouts are backordered and both holding and shortage

costs are linear as shown in the study due to Clark and Scarf (1960) and the

book due to Zipkin (2000). In the studies due to Silver et al. (1998) and Eppen

and Martin (1988), S is calculated for a given R value by working with the

distribution of the demand during the period, which we call as the risk period.

Risk period covers the review period and the following replenishment lead time

just after placing an order upon a review. In both of the references due to Silver

et al. (1998) and Eppen and Martin (1988), the objective is to find S that is

minimizing inventory holding costs while satisfying a target α-service level. In

the book due to Silver et al. (1998), it is assumed that the distribution of the

demand during risk period is Normal. Eppen and Martin (1988) show that the

distribution of the demand during risk period is not Normal even if the distribu-

tion of the demand during review period is Normal. Then, Eppen and Martin

(1988) propose a method to calculate order-up-to-level based on the assumption

that the distribution of risk period demand is Normal for each possible value

of replenishment lead time. This assumption is valid if the distribution of the

demand during review period is Normal. However, it is numerically shown in

this study that the order-up-to-levels calculated by the method given by Eppen

and Martin (1988) do not necessarily provide target service levels even if the

distribution of the demand during review period is Normal.

For the case of exogenous replenishment lead time, an alternative approach is

proposed in this thesis to solve service models with α-service measure under sta-

tionary (R, S) policy based on the assumption that the distribution of inventory-

on-order is Normal for each possible number of outstanding orders. This assump-

tion is also valid if the distribution of the demand during review period is Nor-

mal. We consider the case all of the parameters are time-stationary parameters

and work with the long-run average inventory costs implied by constant S and
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long-run α-service measure. We assume that R is a given time-stationary (con-

stant) parameter. Probability distribution function of the inventory-on-order

is determined to be used in the calculation of S by the proposed method. In

a similar way, the distribution of inventory-on-order is used to calculate S for

endogenous replenishment lead times in the study due to Boute (2006). The

proposed approach in this thesis extends his findings for the exogenous case by

using the method due to Eppen and Martin (1988). This approach is compared

with the existing approaches in the literature for different scenarios by simula-

tion analysis. In these scenarios, the distribution of the demands during review

periods is assumed to be i.i.d. and Normal. Further, we assume that the dis-

ribution of the replenishment lead times is known by the retailers. For the use

of stationary ordering policies by the retailers with time-stationary (constant)

R and S values, the comparisons based on simulation analysis shows that the

order-up-to-levels calculated by the proposed method give α-service measures

(no-stockout probabilities) which are very close to the target levels when long-

run measures are considered. However, the existing methods in the literature

give no-stockout probabilities larger than the target levels in most of the cases,

especially for high target service levels. This results in higher inventory holding

costs as compared to the inventory holding costs incurred by the order-up-to-

levels we propose.

In all of studies mentioned above and most of the other existing studies on

periodic-review systems, replenishment lead time is assumed to be exogenous,

and even constant. However, most of the time this is not the case in real life due

to randomness of many factors or simply due to changes in the environment. En-

dogenous replenishment lead time would naturally be variable especially when

the order quantities change over time. In the study due to Boute (2006), it

is noted that working with lead times as if they are always exogenous is not
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enough since the correlation between the order quantity and its lead time can-

not be simply ignored. In the case of endogenous replenishment lead time, Boute

(2006) studies a two-echelon system when the retailer at the lower echelon uses

periodic-review base-stock ordering policy and the supplier at the higher echelon

has a capacitated make-to-order production system. In the numerical studies

given by Boute (2006) for the case of endogenous replenishment lead time, it

is shown that working as if the replenishment lead times are exogenous seri-

ously underestimates the required safety stock, which causes customer service

to degrade dramatically. In his study, an efficient procedure is developed based

on Markov chain formulations and matrix analytic techniques to compute the

distribution of the replenishment lead time explicitly by taking the correlation

between demand and lead times into account. Then, he calculates the order-up-

to-level providing a given target level on the fill rate (β-service level) by working

with the distribution of inventory-on-order. In this thesis, we also use a similar

setting to calculate order-up-to-levels for a given target level on the stockout

probability in a review period (α-service measure). As oppose to the method

given by Boute (2006), we use simulation to obtain order-up-to-levels because of

the difficulties for an exact theoretical analysis. As long as there is no change in

the supply process, and in the environment, it would make sense to use a station-

ary (R, S) policy for endogenous replenishment lead time. The proposed method

given for the exogenous replenishment lead time case is modified to determine

order-up-to-level when the retailer employs stationary (R, S) policy. The results

of the proposed method is, then, compared with the results of the existing meth-

ods in the literature and it is concluded that α-service measures (no-stockout

probabilities) obtained by the proposed method are sufficiently close to target

levels whereas the existing methods do not necessarily provide target levels.
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On the other hand, demand and replenishment lead times are not always known

before they are observed by the retailers and have to be estimated somehow.

Then, the parameters of ordering policy employed by the retailer should be

updated based on the most recent information about customer demand and

replenishment lead time. In the literature, the impact of updating demand fore-

casts on the ordering policy is studied extensively under the heading of bullwhip

effect. Among many others, the related studies for periodic-review systems are

due to Chen et al. (2000a, 2000b), Lee et al. (1997), Zhang (2004). In these

studies, supply chains are evaluated for different demand patterns and forecast-

ing mechanisms. The main findings in these studies are that the adjustments

in parameters of the ordering policy based on the demand forecasting cause er-

ratic responses and eventually increase the supply chain costs. In this study, we

do not aim to study the impacts of demand forecasting and focus on updating

estimates for planned lead times. For this reason, the demands during review

periods are assumed to be time-stationary and independently and identically

distributed in the models under consideration.

Compared to the studies discussing the impact of updating demand forecasts,

the impact of updating the estimates for replenishment lead time on the per-

formance of the supply chains is studied less in the literature. There are a few

papers discussing the issue under the heading of ’lead time syndrome’. Mather

and Plossl (1978) are the first who describe lead time syndrome as a vicious

cycle between lead time update and order release decisions. It is argued that

closing the gap between the planned lead time and the actual order flow times

by updating the lead time results in uncontrolled order release pattern. As the

lead time gets longer, orders must be released earlier to cover increased expected

demand during the longer lead time, leading to longer queues of production back-

log. Thus, flow times get longer, which causes again a longer lead time. This
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results from the fact that, in releasing the orders, the impact of the ordering

decisions on future lead times and on future orders is ignored. It is suggested

that the lead time syndrome causes instability, and should be avoided. Selçuk

(2007) considers a simple setting for updating planned lead times and report

their analytical observations for lead time syndrome. Selçuk (2007) argues that

trying to close the gap between planned lead times and actual lead times by

updating the planned lead times frequently results in uncontrolled order release

patterns. That is, the variability in the order quantity and replenishment lead

times increase in such an environment. To the best of our knowledge, the study

due to Boute (2006) is the only one that discusses lead time syndrome issue in

the supply chain context. In his study, it is stated that order release mechanism

is similar to the inventory control systems such that release quantities can be

considered as the order quantities placed by the retailer to the supplier and flow

times can be seen as the replenishment lead times corresponding to these order

quantities. But, this relation is not clearly stated in his study since he does not

study the impacts of using an adaptive ordering policy based on the update of

planned lead times. In this thesis, the impact of using adaptive (R, St) policy

on the performance of the system is studied for time-stationary demand and

endogenous replenishment lead times. To the best of our knowledge, lead time

syndrome is not studied for such an inventory system before. Evaluating the

system by the simulation analysis, it is concluded that updating the order-up-to-

level based on the updated estimate of replenishment lead times has an adverse

impact on the performance of the system.

Finally the analysis is extended to the models with two retailers for the case

of endogenous replenishment lead times. In the case of multiple retailers, an

order placed by one of the retailers must wait until the completion of the other

outstanding orders to be processed. Since ordering policies of the retailers deter-
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mine the replenishment lead time of the supplier, each retailer’s replenishment is

dependent on the ordering policies of the other retailer. In such an environment,

a change in the ordering policy of a retailer has an impact on the performance of

other retailer even if the other retailer does not consider any change in its own

ordering policy. Then, it is questioned whether it is beneficial for a retailer to

use an adaptive (R, St) policy in a supply chain with two retailers. To the best

of our knowledge, there is not any other work in the literature on the analysis

of updating ordering policy parameters based on the changes in replenishment

lead times in a setting with multiple retailers. Simulation results show that

both retailers perform worse even if only one of them uses an adaptive policy.

The deterioration in the performance of the retailer employing stationary (R, S)

policy is higher than the performance of the other retailer employing adaptive

(R, St) policy. When both retailers use adaptive (R, St) policies, this leads to a

situation both retailer perform worse compared to the case both retailers employ

stationary policies and to the case one retailer employs adaptive policy and the

other employs stationary policy. We also observe that the deterioration in per-

formance measures gets larger in the case of an increase in the update frequency

or in the utilization of the supplier.

The outline of the thesis is as follows. In Chapter 2, the related literature are

reviewed and the relation of the literature to our work is stated. The models

with single retailer and single supplier are studied for exogenous and endogenous

lead times in Chapter 3. Chapter 4 extends the analysis to the case with two

retailers. Finally, Chapter 5 concludes this thesis with a summary of the main

findings and a discussion of future research directions.
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Chapter 2

RELATED STUDIES

There exist extensive studies related to our work in the literature on supply

chain management, specifically under the heading of inventory management in

supply chains. However, the models considered in these studies differs in many

points such as: number of echelons, number of members in a echelon, ordering

policies employed, demand patterns and number of the customers, inventory

review mechanisms, supply mechanisms, etc. In this thesis, we investigate two-

echelon inventory systems with retailer(s) at the lower echelon and a supplier

at the higher echelon. We restrict our analysis to the cases with single retailer

and two retailers. In the models considered, we work with both exogenous and

endogenous replenishment lead times. For both exogenous and endogenous lead

times, we consider the case the retailers place orders according to periodic-review

base-stock policy. Moreover, customer demand that the retailer observes is as-

sumed to be time-stationary, independently and identically distributed for each

review period and the distribution of the demand during the review period is

assumed to be Normal.

In the studies existing in the literature, different performance measures are used

and different problems are try to be resolved. In this thesis, we work with the

models minimizing inventory holding costs while providing a target service level

for no-stockout probability in a review period. And, we deal with the following
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problem domains: bullwhip effect and lead time syndrome. In this context, we

investigate the effects of using adaptive ordering policy on the performance of

the retailer(s) and obtain different measures to identify whether bullwhip effect

and lead time syndrome are present in our models. In the following parts of this

chapter, the related studies are reviewed and the position of our work among

the related studies are explained based on the mentioned points above.

In the case of exogenous replenishment lead times, computations of the optimal

order-up-to-level, S, are extensively discussed in the literature. In the studies

due to Silver et al. (1998) and Eppen and Martin (1988), S is calculated to

satisfy a given target level on the stockout probability in a review period by

working with the demand during the risk period, which is the sum of a review

period and replenishment lead time just after placing an order. In the afore

mentioned studies, the demands during the review periods are assumed to be

i.i.d. and time-stationary. Also, the replenishment lead times are assumed to be

exogenous. In the book due to Silver et al. (1998), it is assumed that the distri-

bution of the demand during risk period is Normal. Eppen and Martin (1988)

show that the distribution of the demand during risk period is not Normal even

if the distribution of the demand during review period is Normal. Then, Eppen

and Martin (1988) propose a method to calculate order-up-to-level based on the

assumption that the distribution of risk period demand is Normal for each possi-

ble value of replenishment lead time. This assumption is valid if the distribution

of the demand during review period is Normal. However, it is numerically shown

in Section 3.1 in this thesis that the order-up-to-levels calculated by the method

given by Eppen and Martin (1988) do not necessarily provide the target service

levels even if the distribution of the demand during review period is Normal.

For the same system setting given by Eppen and Martin (1988), we propose a

new method by working with the distribution of inventory-on-order and show
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that the service levels obtained by simulation analysis are sufficiently close to

target service levels. The details of the proposed method for the order-up-to-

levels found by the proposed method are explained in Section 3.1.

On the other hand, the number of the studies for endogenous replenishment lead

times is very limited when the retailer employs (R, S) policy. Nevertheless, the

study due to Boute (2006) fills this gap by giving a comprehensive analytical

study for endogenous replenishment lead times. The investigation in his thesis is

for two-echelon production/inventory systems with endogenous and exogenous

replenishment lead times. Boute (2006) notes that working with exogenous lead

times is incomplete since the correlation between the order quantity and its lead

time cannot be simply ignored. In the case of endogenous replenishment lead

time, Boute (2006) studies two-echelon systems when the retailer uses periodic-

review base-stock ordering policy and the supplier has a capacitated make-to-

order production system. In the numerical studies given by Boute (2006) for

the systems where replenishment lead time is endogenous, it is shown that the

assumption of exogenous lead times for determining order-up-to-level to be used

seriously underestimates the required safety stock, which causes customer ser-

vice to dramatically degrade. In his study, an efficient procedure is developed

working with Markov chain formulations and using matrix analytic techniques

to compute the distribution of the replenishment lead time explicitly by taking

the correlation between demand and lead times into account. Then, he calcu-

lates the order-up-to-level providing a given target level on the fill rate (β-service

level) by working with the distribution of inventory-on-order. In this thesis, we

also use a similar method to calculate order-up-to-levels for a given target level

on the stockout probability in a review period (α-service level). As oppose to the

method given by Boute (2006), we use simulation to obtain order-up-to-levels

because of the difficulties of an exact theoretical analysis. The details of this
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method are given in Section 3.2.

As in the study due to Boute (2006), we also restrict our analysis to two-echelon

systems with retailer(s) at the lower echelon and a supplier at the higher eche-

lon. The retailer holds a finished goods inventory to meet a random consumer

demand and a single supplier produces the retailer’s orders on a make-to-order

basis. In order to study endogenous replenishment lead times, we model the

supplier’s capacitated production system by a single-server queuing model that

processes the orders using first-come-first-served queueing discipline. Once pro-

cessing on order quantity is completed, the retailer’s inventory is replenished.

Ordering policy used by the retailer is periodic-review base-stock policy.

Also, there exist extensive studies in the literature on the calculation of order-

up-to-levels for the use of periodic-review base-stock policy when the demands

during review periods are correlated and replenishment lead time is exogenous.

When the demands are correlated, a forecasting mechanism for the demand

should be employed as stated in the studies due to Chen et al. (2000a, 2000b)

and Kim and Ryan (2002). When R is given explicitly and assumed constant,

the optimal policy is an adaptive (R, St) policy with the order-up-to-level, St,

used to determine order quantity at review period t. Order-up-to-levels of the

adaptive policy are updated based on the demand forecasts. Most of these stud-

ies are given under the heading of bullwhip effect and discussed in the following

parts where the related literature to the bullwhip effect explained.

In this thesis, we also aim to investigate the impacts of using adaptive ordering

policy on the system performance. The systems analyzed in this context are

related to studies in supply chain literature with two domains: bullwhip effect

and lead time syndrome. Bullwhip effect that is studied extensively in litera-
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ture is defined as the amplification in demand variability as one moves from the

lowest echelon (retailer) to the highest echelon (supplier) in the supply chain.

As stated by Chopra and Meindl (2007) bullwhip effect is a costly phenomenon

because it reduces the profitability of a supply chain by making it more expen-

sive to provide a given level of product availability. One of the reasons is that it

is difficult to achieve smooth production levels under the existence of bullwhip

effect. Then, inventory holding costs for raw materials and costs caused by ca-

pacity adjustments would be higher on the supplier side. For the retailer, costs

due to unsatisfied customer demand would be higher since the supplier operates

at lower service levels in this case.

Lee et al. (1997) identify five major causes of the bullwhip effect: demand signal

processing, lead time, order batching, price fluctuations, rationing and shortage

gaming. Demand signal processing is the adjustment of the parameters of or-

dering policy based on demand forecasting. The impacts of demand forecasting

on the ordering policy are studied extensively in literature under the heading

of bullwhip effect. Among many others, the related studies are due to Chen

et al. (2000a, 2000b), Lee et al. (1997), Luong (2007), Zhang (2004). The

main findings in these studies are that the adjustments in the parameters of

ordering policy based on the demand forecasts cause erratic responses in the

replenishments to the retailer and eventually increase the supply chain costs.

In this study, we do not aim to study the impacts of demand forecasting and

focus on the update of planned lead times. For this reason, the demands during

review periods are assumed to be time-stationary, independent and identically

distributed in the models under consideration.

As another cause of the bullwhip effect, lead time is also studied extensively in

the literature. Lee et al. (1997) and Zhang (2004) show that the increase in
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bullwhip effect is magnified with an increase in lead time. In these and many

of other existing studies in the literature, replenishment lead times are assumed

to be exogenous, constant and known. On the other hand, there are only a

few studies on the analysis of variable lead times. In the study due to Hayya

et al. (2006), the replenishment lead times are variable, yet exogenous. In

the study due to So and Zheng (2003), the systems with both exogenous and

endogenous replenishment lead times under an adaptive ordering policy and cor-

related demand are analyzed. They conclude that supplier’s variable lead time

can greatly increase the order quantity variability of the retailer, and the com-

pounded effect of demand correlation and variable endogenous replenishment

lead time on the amplification of order quantity variability is much more than

the sum of each of the individual effects of demand correlation and variable en-

dogenous lead time alone. However, they do not give information on the service

levels achieved in such an environment although their model tries to provide a

given target α-service level. In this thesis, we try to close this gap by obtaining

the service levels achieved by the retailer. Also, Boute (2006) studies adaptive

periodic-review base-stock policy based on the updated demand forecasts. He

shows that the bullwhip effect caused by demand forecasting increases mean and

variance of replenishment lead times observed by the retailer when the demand

is positively correlated even if an optimal forecasting method is used. Boute

(2006) states that these increased replenishment lead times inflate the inventory

holdings of the retailer.

Also lead time syndrome is related to the bullwhip effect as explained in the

following parts. Mather and Plossl (1978) are the first to describe the lead time

syndrome as a vicious cycle between lead time update and order release deci-

sions. It is argued that closing the gap between the lead time and the order flow

times by updating the lead time results in uncontrolled order release pattern.
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As the lead time gets longer, orders must be released earlier to cover increased

expected demand during the longer lead time, leading to longer queues of pro-

duction backlog and thus, flow times get longer, which causes again a longer lead

time. Lead time syndrome results from the fact that in releasing the orders, the

effects on future lead times and on future orders are ignored. It is suggested that

the lead time syndrome causes instability, and should be avoided. This reason-

ing has become one of the main arguments for controlling flow times within

predetermined norms instead of forecasting flow times. De Kok and Fransoo

(2003) and Pahl et al. (2005) present an extensive overview of the literature on

the workload control in production planning.

Selçuk (2007) presents an analytical evaluation of the lead time syndrome and

provides stability conditions for systems with updated planned lead times. How-

ever, Selçuk (2007) discuss the issue in workload control domain. To the best

of our knowledge, the study due to Boute (2006) is the only one that discusses

lead time syndrome issue in the supply chain context. In his study, order release

mechanism is comparable to the inventory control polices employed systems in

a supply chain such that release quantities can be considered as order quantities

requested by the retailer from the supplier and flow times at the supplier can

be seen as the replenishment lead times corresponding to these order quantities.

But, this relation is not clearly stated in his study since he does not study the

impacts of using an adaptive ordering policy based on the update of planned

lead times as explained previously. In this thesis, we study bullwhip effect and

lead time syndrome issues under an adaptive ordering policy based on the up-

date of planned lead times.

To summarize, the topics covered in Sections 3.3 and 4.2 are related to the stud-

ies due to Boute (2006) and So and Zheng (2003) and Selçuk (2007). Firstly, our
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study and all of these studies analyze two-echelon systems with endogenous lead

times. Next, we consider the case the retailer uses periodic-review base-stock

policy as in the studies due to Boute (2006) and So and Zheng (2003). Moreover,

in order to study systems with endogenous replenishment lead times, we con-

sider a capacitated make-to-order production system and model the production

system of the supplier as a single-server queuing model with constant service

time per item and first-come-first-served service discipline where the items are

produced one by one. Similarly, Boute (2006) and Selçuk (2007) use the same

model setting for the production system of the supplier but with different dis-

tributions for the service time per item. Finally, we update planned lead times

depending on changes in lead time in similar to the update mechanisms used by

Selçuk (2007) and So and Zheng (2003). All of these studies analyze the supply

chains with single retailer single supplier. In Section 4.2, we extend our analysis

to the case with two retailers and single supplier. In such an environment, a

change in the ordering policy of a retailer has an impact on the other retailer’s

performance even if the other retailer does not consider any change in its own

ordering policy. Then, it is questioned whether it is beneficial for a retailer to

use an adaptive (R, St) policy in this setting. To the best of our knowledge,

there is no work in the literature on the analysis of updating ordering policy

parameters based on the changes in replenishment lead times in a setting with

multiple retailers.
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Chapter 3

SINGLE-RETAILER CASE

In this chapter, we consider two-echelon models with single retailer at the lower

echelon and single supplier at the higher echelon. Customer demand that the

retailer observes is assumed to be time-stationary, and independently and iden-

tically distributed for each review period. Note that we work with cumulative

demand during a review period. That is, only total demand during a review

period is assumed to be known and there is no information about exactly when

and in what amount the demand is realized during a review period. The dis-

tribution of the demand during the review period is assumed to be Normal and

the probability of observing no demand during the review period is assumed to

negligible. In this case, it would make sense for the retailer to use a stationary

ordering policy as long as the supply process does not change over time. For the

models considered in this chapter, the retailer holds finished goods inventory

to meet customer demand and places orders according to a specified periodic-

review base-stock policy. Unsatisfied demand is completely backordered. Here,

we investigate the use of periodic-review base-stock policy, namely (R, S) pol-

icy with stationary parameters R and S. R is the review period in time units

and S is the order-up-to-level (base-stock level). Review period R is the time

that elapses between two consecutive moments at which the retailer monitors

the inventory position, IP , which is the sum of the inventory-on-hand and the

inventory-on-order (items ordered but not delivered yet due to replenishment
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lead time). In the case of backordering, inventory position is determined by

subtracting the number of the backorders from the number items available to

meet demand. If the inventory position is below S at the review point, an or-

der is placed to raise the inventory position to the order-up-to-level S, which

determines the order quantity. Employment of the (R, S) policy is suggested

when there is no fixed ordering cost and both holding and shortage costs are

linear functions of the amount of on-hand inventory or backorder. The related

references are due to Nahmias (1997) and Zipkin (2000).

A typical illustration of an inventory system with (R, S) policy is shown in Fig-

ure 3.1 where t0 and (t0 + R) are two consecutive review points. Assuming that

L denotes the replenishment lead time, (t0 + L) and (t0 + R + L) are the re-

plenishment points for the orders placed at t0 and (t0 + R), respectively. For

the inventory systems where the retailer employs (R, S) policy, the following

definition of ’risk period’ is taken from the study due to Boute (2006).

Definition 1. Risk period (the time between placing a replenishment order un-

til receiving the subsequent replenishment order) is equal to the review period

plus the replenishment lead time.

Based on this definition, (R + L) time units following each review, say to, are

considered to constitute a risk period because the subsequent replenishment is

not realized before (t0 + R + L). Hence, S is the amount available to satisfy

the demand during the risk period between t0 and (t0 + R + L). Although the

demand is assumed continuous in Figure 3.1, the decision maker would work

with cumulative demand of each review period since the inventory is reviewed

periodically every R time units. Under the employment of stationary (R, S)

policy by the retailer, Sections 3.1 and 3.2 are devoted to the analysis of the
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Figure 3.1: Inventory levels under (R,S) policy.

cases with exogenous and endogenous replenishment lead times, respectively.

Replenishment lead times are not always known before they are observed, then,

the decision makers should work with lead time estimates for planning purposes.

This would be case especially when the replenishment lead time is endogenous.

In this case, as the random demands and replenishment lead times are observed

and the corresponding estimates and/or probability functions are updated, the

parameters of the (R, S) policy employed should also be updated. That is, an

adaptive policy would be used.

In Section 3.3, the ordering policy parameters are updated for the case of time-

stationary demand and endogenous supply process. In the models in Section 3.3,

the demand distribution is assumed to be known and only planned lead time is

updated according to the observations for the replenishment lead times. Since
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supply process is endogenous to the retailer, the replenishment lead times would

be determined by the workload in the supplier. That is, the replenishment lead

times would be longer (shorter) for the high (low) utilization periods.

We will use the following notation throughout the thesis: Dt is the random vari-

able for demand in review period t, L is the random variable for replenishment

lead time, Wt is the random variable for demand during risk period (R + L)

following an order placement at review period t. E(.) and V ar(.) denote the

expectation and variance of the random variable under consideration.

In this thesis, we work with the models minimizing inventory costs while pro-

viding a target service level for no-stockout probability in a review period. The

fraction of the cycles (review periods) in which a stockout does not occur is

called as α-service level due to the definition given by Nahmias (1997). A stock-

out is realized when the inventory position is negative. Note that a cycle can be

considered as the time between two consecutive reviews at which IP is raised to

S. As explained in Zipkin (2000), α-service measure is used in accordance with

the cost incurred for each stockout occasion regardless of the duration of stock-

out or amount of backordered demand. We assume that R is a given constant

and a linear holding cost h is incurred for each unit of inventory carried from

one review period to the next. Then, the optimization would be to determine

the best order-up-to-level S working with the mathematical model given below.

Minimize h · I(S)

subject to

A(S) ≥ α,

S ≥ 0,
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where I(S) denotes average inventory-on-hand in the long run and A(S) is the

no-stockout probability in a review period. Note that the planning horizon is

infinity.

Instead of I, we prefer to consider S in the objective function. This allow us

avoiding the difficulties of formulating I as a function of S but resolving the

trade-off between inventory (base-stock) investment and service measure. Note

that, I increases (decreases) as S increases (decreases). Then, the mathematical

model becomes

MODEL 1 : Minimize h · S

subject to

A(S) ≥ α,

S ≥ 0.

In Section 3.1, different approaches are explained to determine the relation be-

tween S and α, that is, to define A(S).

For periodically reviewed inventory systems, the inventory level is only known

at the review points. Then, it is not possible to keep track of stockout occasions

and the total number of backorders at the time of a replenishment unless re-

view and replenishment are at the same point in time. Because of this situation,

most of the studies in the literature works with one of the following assumptions:

Assumption 1. Replenishment lead times are integer multiples of review peri-

ods.

Assumption 2. Demand during a review period is satisfied at the end of the

review period.
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If Assumption 1 is valid, then stockout occasions can always be tracked since

review and replenishment are at the same point in time. In our models, orders

are placed at the end of each review period and inventory of the retailer is re-

plenished at the beginning of a review period after a duration of replenishment

lead time is spent when the replenishment lead times are integer multiples of

review periods. On the other hand, Boute (2006) does not restrict himself to

replenishment lead times that are integer multiples of review periods by work-

ing with Assumption 2. Under Assumption 2, the replenishments during the

review period can be used to fulfill the demand during the current review pe-

riod. Hence, a replenishment in a review period is evaluated as if it is realized

at the beginning of the review period and risk periods can be rounded down to

the nearest integer multiples of review periods to be used in the ordering policy

formulations. In this study, we will utilize one of these assumptions to be able

to keep track of the stockout occasions.

In the study due to Boute (2006), the fraction of stockout occasions is mea-

sured at the end of each review period just after an order is placed instead of

measuring it just before a replenishment point. Both ways of measurement give

the same results as long as the replenishment lead times are integer multiples

of review periods since review and replenishment are at the same point in time.

However, the result turns out to be different in the case that the replenishment

lead time is not integer multiples of the review periods. In this case, it is not

possible to measure the fraction of stockout occasions just before a replenish-

ment point. We distinguish between two ways of the measurement for α-service

level since different methods are developed to calculate the order quantities for

each measurement type. In Section 3.1, the situation is further explained.
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Fill rate (β-service level) is the fraction of customer demand that is met from

inventory, see the definition given by Nahmias (1997). In the case there is a

cost incurred per shortage regardless of the time taken to satisfy backordered

demand, fill rate should be considered as the corresponding service measure. In

this study, we do not consider fill rate as the service measure. However, the

fill rates in the numerical studies are obtained and given for the comparison

purposes.

If the demand during risk period is distributed according to a Normal distribu-

tion, then the order-up-to-level for the (R, S) policy is determined as follows in

most of the studies in the literature:

S = E(W ) + zα ·
√

V ar(W ) (3.1)

where zα is standard normal inverse for a given α-service level; that is,

Pr(
W − E(W )
√

V ar(W )
≥ zα) = α.

From (3.1), order-up-to-level S is the sum of the mean demand during the risk

period and the safety stock for the variation in the demand during the risk

period. Safety stock is calculated by assuming the distribution of the demand

during the risk period is Normal. That is, safety stock is equal to zα ·
√

V ar(W ).

Note that the formula in (3.1) is obtained based on the measurement of no-

stockout probability just before replenishment rather than the measurement at

the end of each review period just after an order is placed. Both ways of measure-

ment give the same results as long as the replenishment lead times are integer

multiples of review periods since reviews and replenishments are simultaneous

in this case. In the following definition, notation used is introduced for two
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different ways of measuring no-stockout probability.

Definition 2.

a) αrep is the probability of no-stockout just before replenishment.

b) αrev is the probability of no-stockout probability at the end of each review

period just after an order is placed.

3.1 Exogenous Replenishment Lead Times with Stationary (R, S)

Policy

In this section, the models with exogenous replenishment lead times are consid-

ered. The probability distribution function of the replenishment lead times is

assumed to be exogenous and known by the retailer. Moreover, we work with

Assumption 1 in the models considered in this section. For the given problem

setting, different methods are given to calculate order-up-to-levels that are pro-

viding target α-service levels. Then, these methods are compared for relevant

performance results for different performance measures that are obtained by sim-

ulation analysis. In this section, three different methods are given: Method 1,

Method 2, Method 3. In Method 1 due to Silver et al. (1998), it is assumed that

the distribution of the demand during risk period (R + L) is i.i.d. and Normal.

However, Eppen and Martin (1988) show that the distribution of the demand

during the risk period is not Normal even if the distribution of the demand dur-

ing review period is Normal. Then, Eppen and Martin (1988) propose Method 2

which is based on the convolutions of the review period’s demands over the risk

period. In this study, we propose Method 3 which is based on the distribution of

inventory-on-order and show that service levels obtained by simulation analysis

are sufficiently close to target service levels while the order-up-to-levels calcu-

lated by using Method 1 and Method 2 do not necessarily provide target service
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levels. In a similar way, Boute (2006) propose a method to calculate order-

up-to-level by obtaining the distribution of inventory-on-order for endogenous

replenishment lead time case. Method 3 extends his approach to the exogenous

replenishment lead time case by using the findings due to Eppen and Martin

(1988).

Method 1. (due to Silver et al., 1998) This method is based on the investigation

of the demand during the replenishment lead time plus review period, which is

the risk period demand. In a periodic-review base-stock policy, an order is placed

at every review point assuming that there is negligible probability of no demand

during a review period. Then, demand during risk period (R + L) following an

order placement at review period t, Wt, is given by the following equation:

Wt =

L+1
∑

n=1

Dt+n. (3.2)

Recall that the assumption here is that the replenishment lead times are integer

multiples of the review periods (Assumption 1 ). However, (3.2) is still applicable

for the non-integer replenishment lead times if the demand during a review

period is assumed to be satisfied or backordered at the end of the review period

(Assumption 2 ). In this case, replenishments in the review period can be used

to fulfill the demand during the current review period. Then, the value of the

risk period can be rounded down to the nearest integer value and used in (3.2).

The explanation below for rounding is due to Boute (2006).

”For instance, suppose that an order placed at the end of period t

has a production lead time of 0.8 periods. This order quantity will

be added to the inventory in the next period t + 1 and can be used

to satisfy demand in period t + 1. Therefore, the replenishment lead

time is 0 periods since the order can immediately be used to satisfy
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next period’s demand.”

When the assumption above does not hold in the case of non-integer replenish-

ment lead times, the demand pattern during a review period should be known

to calculate the demand during the risk period correctly. However, this is not

possible without reviewing inventory continuously. This will be discussed later

in Section 3.1.1).

Since Dts are i.i.d. random variables, we will proceed by dropping subscripts of

Dt and Wt. According to (3.2), expectation and variance of the demand during

risk period are given as follows: E(W ) = [E(L) + 1] · E(D) and V ar(W ) =
∑L+1

n=1 V ar(Dn). By using these in (3.1), the order-up-to-level is given as

S = [E(L) + 1] · E(D) + zα ·

√

√

√

√

L+1
∑

n=1

V ar(Dn). (3.3)

For the variable replenishment lead time case, (3.3) becomes

S = [E(L) + 1] · E(D) + zα ·
√

[E(L) + 1] · V ar(D) + [E(D)]2 · V ar(L). (3.4)

The second term on the right hand side for safety stock part is equal to standard

deviation of the random sum of the random variables multiplied by standard

normal inverse value for a given α-service level. When L is constant, we have

V ar(L) = 0 and (3.4) reduces to

S = [L + 1] · E(D) + zα ·
√

[L + 1] · V ar(D). (3.5)

Method 2. (due to Eppen and Martin, 1988) In the formulations used for

Method 1, safety stock is calculated by assuming that the distribution of the

demand during risk period is Normal. However, this assumption would not hold

true for most of the cases even if the demand of the review period is distributed
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according to a Normal distribution, especially when the replenishment lead time

can take a wide range of values. Eppen and Martin (1988) show how the order-

up-to-level increases as the replenishment lead time is halved in the 50% of the

replenishments as a result of Normal distribution assumption of the lead time

demand. We will illustrate this with a numerical example.

Numerical Example 1. Consider the case replenishment lead time is constant

and equal to 4 review periods. Distribution of the demand per review period is

Normal with a mean of 100 and a variance of 100. Then, Method 1, equation

(3.5), gives the following order-up-to-level to satisfy a probability of stockout

during the risk period not greater than 5%:

S = [4 + 1] · 100 + 1.65 ·
√

[4 + 1] · 100 = 537.

Now, consider the case replenishment lead time is equal to 2 or 4 review periods

with equal probabilities. That is,

L =











2 with probability 1
2
,

4 with probability 1
2
.

In this case, E(L) = 3 and Var(L) = 1. Then, Method 1 gives

S = [3 + 1] · 100 + 1.65 ·
√

[3 + 1] · 100 + [100] · 1 = 568

working with (3.4) which is used for the variable replenishment lead time. It is

obvious that S = 568 provides a lower stockout probability than S = 537 since

the replenishment lead time is halved with probability 0.5. Since the retailer em-

ploys stationary (R, S) policy, the average inventory obtained by using S = 568

is 568−537 = 31 units higher than using S = 537. That is, average inventory is
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%5.77 higher for S calculated by Method 1 compared to Method 2. Recalling that

our objective is to minimize h · I as given by the mathematical model previously,

the inventory holding cost will also be %5.77 higher if the retailer uses Method

1. �

Method 2 is also based on the distribution of the demand during the risk period.

That is, the probability of being no-stockout in a review period is found by the

probability that the demand during the risk period is less than order-up-to-level.

Then, the mathematical model is defined as

MODEL 2 : Minimize h · S

subject to

Pr(W < S) ≥ αrep,

S ≥ 0.

Note that MODEL 2 is obtained by defining A(S) in MODEL 1 according to the

given stockout probability definition. In the case that the replenishment lead

time is not integer multiples of the review periods, we should

Eppen and Martin (1988) show that the distribution of the demand for the risk

period is Normal for each possible value of the replenishment lead time if the

distribution of the demand during the review period is Normal and independent

of the demands in other periods. Therefore, they propose a method to calculate

order-up-to-level for variable replenishment lead times. They estimate service

level by working with the convolutions of Normal distributions for the demands

during the review periods in the risk period. Although Eppen and Martin (1988)

assume that replenishment lead times are integer multiples of the review peri-

ods, that is Assumption 1 is valid, we can use the same method to calculate
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order-up-to-levels for non-integer replenishment lead times proceeding with the

assumption that the demand during the review period can be fulfilled at the end

of the review period (Assumption 2 ). Then, the order-up-to-level that ensures

a given α-service level is the smallest S value such that

Pr(W < S) =
∑

l

Pr(W < S|L = l) · Pr(L = l) ≥ αrep. (3.6)

See the study due to Eppen and Martin (1988) for the detailed explanation.

In (3.6), Pr(W < S) is given as convex combinations of the probabilities that

W is less than S for each possible value of replenishment lead time l. When the

distribution of demand during the review period is Normal with mean of E(D)

and variance of V ar(D), the distribution of the demand during risk period is

Normal for each possible replenishment lead time l with mean (l+1) ·E(D) and

variance (l + 1) · V ar(D). Referring to (3.6),

Pr(W < S) =
∑

l

FZ(
S − (l + 1) · E(D)
√

(l + 1) · V ar(D)
) · Pr(L = l)

where Z is the Standard Normal random variable with mean 0 and variance 1,

FZ(.) is the cumulative distribution function of Z. Then, the following equation

should be solved for order-up-to-level S providing service level αrep:

∑

l

FZ(
S − (l + 1) · E(D)
√

(l + 1) · V ar(D)
) · Pr(L = l) = αrep. (3.7)

Method 3. (Proposed method) All the formulations given for Method 1 and

Method 2 are to calculate the order-up-to-level ensuring a given no-stockout
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probability level measured just before replenishment. Recall that this measure

is called as αrep. The order-up-to-level ensuring a given no-stockout probability

level measured at the end of each review period (αrev) can be calculated by

working with the distribution of inventory-on-order. This is shown by Boute

(2006) for the stationary systems with endogenous replenishment lead times.

Boute (2006) observes the inventory position IPt at the end of every review

period t just after the demand during the review period t (Dt) is satisfied and

an order of size Qt has been placed. Then, it is stated that the inventory

position IPt just after an order is placed is equal to the initial inventory-on-

hand (NI0) plus all replenishment orders received so far minus total customer

demand observed. That is,

IPt = NI0 +

t
∑

n=K(t)+1

Qt−n −
t

∑

n=0

Dt−n, (3.8)

IPt = S +

t−1
∑

n=K(t)+1

Qt−n −
t

∑

n=0

Dt−n, (3.9)

where random variable K(t) denotes the number of outstanding orders that have

not been delivered yet at the end of review period t just after an order is placed.

Note that NI0 + Q0 = S.

When the order-up-to-level is constant, size of the order placed at the end of the

review period t is equal to the demand during the review period t. The reason

is that inventory position IPt is raised to S at period t using the following order

size: Qt = S − IPt. Also, IPt is equal to (S − Dt) since inventory position is

raised to S at review point (t − 1). Then, the order quantity calculated at the

end of review period t is equal to Qt = S − (S − Dt) = Dt. Hence, using Qt in

(3.9), NIt = S−
∑K(t)

n=0 Dt−n is obtained. Since S is constant, the distribution of
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net inventory can be determined by inventory-on-order IOt at the end of period

t as follows:

IOt = S − NIt =

K(t)
∑

n=0

Dt−n, (3.10)

Then, Pr(NIt < 0) = Pr(IOt > S).

Hence, the probability of being no-stockout in a review period is equal to the

probability that inventory-on-order at the end of a review period is less than

order-up-to-level. Then, the mathematical model for Method 3 becomes

MODEL 3 : Minimize h · S

subject to

Pr(IO < S) ≥ αrev,

S ≥ 0.

where IO denotes average inventory-on-order in the long run.

Hence, we just need to know the distribution of inventory-on-order for each value

of the number of outstanding orders at the end of a review period to calculate

the order-up-to-level S that ensures service level αrev. If it is known, then the

order-up-to-level is the smallest S value such that

Pr(IO < S) =
∑

k

Pr(IO < S|K = k) · Pr(K = k) ≥ αrev. (3.11)

The distribution of inventory-on-order is equal to the convolution of the de-

mands during K review periods as seen in (3.10). Note that K is a discrete

random variable. For the case the demands during the review periods are i.i.d.

random variables and the distribution for these random variables is Normal, the
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distribution of inventory-on-order is Normal with mean k · E(D) and variance

k ·V ar(D) for each possible k for random variable K. Moreover, the probability

of having k outstanding orders at the end of review period t just after an order

is placed is equal to the probability that the orders placed at or before t have

not been delivered yet. Denote Lt−n as the replenishment lead time for the order

placed at the end of review period (t−n) where 0 ≤ n ≤ t. Then, the number of

the outstanding orders at the end of review period t just after an order is placed

is equal to K(t) =
∑t

n=0 1{Lt−n>n} where

1{Lt−n>n} =











1 if Lt−n > n,

0 otherwise.

If the probability distributions for Lt are known, then the probability distribu-

tion of K(t) is found as follows:

Pr(K(t) = k) = Pr(
t

∑

n=0

1{Lt−n>n} = k). (3.12)

After obtaining the probability distribution of random variable K, that result

from (3.12), the following equation can be used to find the value of S providing

service level αrev:

∑

k

FZ(
S − k · E(D)
√

k · V ar(D)
) · Pr(K = k) = αrev. (3.13)

The methods given in this section are evaluated by using simulation analysis.

The simulation code is written in SIMAN language and the runs are performed

by using ARENA Simulation Program. A generic simulation code used for the

models studied in this thesis is given in Appendix A. Simulation time is 100,000

review periods and 30 replications are considered. For the models with different

settings and/or parameters (different number of retailers, different demand pat-
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terns and utilization levels), different performance measures are obtained. The

results of the first 5,000 review periods are not taken into consideration to elim-

inate the impact of the initial state. Since the demand for the retailer is random

and generated during the simulation run, different seeds for the generation of

the demands are used in each replication to have independent replications. In

Sections 3.1.1 and 3.1.2, we give numerical examples, and simulation results for

each of the methods under consideration. Section 3.1.1 and Section 3.1.2 de-

voted to the cases of constant and variable exogenous lead times, respectively.

3.1.1 Constant Replenishment Lead Time

Consider the case replenishment lead time is constant and equal to a value that

is integer multiples of the review period, that is Assumption 1 is valid. Since

replenishment lead time takes only one value (L review periods), the distribu-

tion of the demand during the risk period is Normal with mean (L + 1) · E(D)

and variance (L + 1) · V ar(D). Thus, the assumption that the distribution of

the demand during the risk period is Normal holds for Method 1. Then, Method

1 and Method 2 are equivalent. Moreover, αrep and αrev are equal to each other

since reviews and replenishments are at the same moments in time. The number

of outstanding orders at the end of the period t is equal to (L + 1) just after an

order is placed. These are the orders placed at review periods (t-L), ..., (t-1),

t. Then, the distribution of the inventory-on-order is also Normal with mean

(L+1) ·E(D) and variance (L+1) ·V ar(D). As far as replenishment lead time

is constant and integer multiples of the review period, also Method 3 gives the

same S value.

Numerical Example 2. Consider the case replenishment lead time L is con-

stant and equal to 2 review periods. For a service level of α = 95%, zα is equal
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to 1.65. The distribution of the demand during a review period is Normal with

mean 100 and variance 900. Then, the distribution of the demand during the risk

period is Normal with mean 300 = (2+1) ·100 and variance 2700 = (2+1) ·900.

Method 1 gives the following order-up-to-level for service level αrep = 95%:

S = [L + 1] · E(D) + zα ·
√

(L + 1) · V ar(Dn),

S = [2 + 1] · 100 + 1.65 ·
√

(2 + 1) · 900,

S = 385.47.

The order-up-to-level for a target service level αrep = %95 is also calculated as

385.47 by Method 2 by solving the following equation:

FZ(
S − 3 · 100√

3 · 900
) · 1 = 0.95.

The number of outstanding orders at the end of the period t is equal to 3 just

after an order placed (orders of periods (t− 2), (t− 1), t). Then, the distribution

of inventory-on-order is Normal with mean 300 = 3 · 100) and variance 2700 =

3 · 900. Hence, Method 3 gives S=385.47 for αrev = 95% by solving

FZ(
S − 3 · 100√

3 · 900
) · 1 = 0.95.

�

The simulation for Numerical Example 2 gives the results in Table 3.1. Using

S = 385.47, service level of the retailer is obtained as α = 95.02% with a half-

width of 0.05% and this value is sufficiently close to the target level of 95%.

Now, consider the case replenishment lead time L is constant but has a value

which is not integer multiples of the review period, that is Assumption 1 is not
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Table 3.1: Simulation results for constant replenishment lead time case.

Average Half-width Minimum Maximum

Mean Demand 100.0 0.0 99.8 100.2

Variance of Demand 898.8 1.8 886.8 907.2

Mean Order Quantity 100.0 0.0 99.8 100.2

Variance of Order Quantity 898.8 1.8 886.8 907.2

Mean Replenishment Lead Time 2.00 0.00 2.00 2.00

Variance of Rep. Lead Time 0.00 0.00 0.00 0.00

Mean Net Inventory 185.5 0.1 185.1 185.9

Variance of Net Inventory 1798.4 5.0 1768.8 1815.7

Average Inventory-on-hand 185.5 0.1 185.1 185.9

Variance of Inventory-on-hand 1798.4 5.0 1768.7 1815.6

Fill Rate (β) 98.94% 0.01% 98.88% 98.99%

No-stockout Probability (α) 95.02% 0.05% 94.84% 95.22%

valid. In this case, review and replenishment points are at different points in

time. Thus, we are not able to keep track of the stockout occasions at the re-

plenishment points to determine αrep. However, it is still possible to observe the

stockout occasions at the end of the review periods and αrev can be determined

as in the case L is integer multiples of the review period. If demand is assumed

to be satisfied at the end of the review period (replenishments during the period

can be used to fulfill the demand of the current period), that is Assumption 2 is

valid, then L can be treated as ⌊⌊L⌋⌋ which denotes the largest integer smaller

than or equal to L. Under Assumption 2, αrev is equal to αrep. If Assumption 2

does not hold, αrev is not equal to αrep. If demand during L − ⌊⌊L⌋⌋ is strictly

greater than zero, then for a given value of the order-up-to-level S: αrev < αrep.
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3.1.2 Variable Replenishment Lead Time

In this section, replenishment lead times can take more than one value. It is

shown that the methods given for the calculation of order-up-to-level result in

different S values even if replenishment lead time is integer multiples of the

review period. In order to see the differences of the methods, the following nu-

merical example is considered.

Numerical Example 3. For Numerical Example 2, consider the case replen-

ishment lead time is equal to 2 and 4 review periods with equal probabilities.

That is,

L =











2 with probability 1
2
,

4 with probability 1
2
.

Moreover, L and Dts are statistically independent. Then, the mean and variance

of replenishment lead time is calculated as E(L) = 3 and V ar(L) = 1 and

the distribution of the demand during review period is Normal with mean 100,

variance 900. Method 1 gives the following order-up-to-level for a service level

of α = 95% :

S = [3 + 1] · 100 + 1.65 ·
√

[3 + 1] · 900 + [100]2 · 1 = 591.82.

In Method 1, distribution of the demand during risk period is assumed to be Nor-

mal. However, the distribution of the demand during risk period is not Normal

when L is variable. Instead it is Normal for each possible value of the replen-

ishment lead times as illustrated in Figure 3.2. This distribution turns out to be

Normal with mean (l + 1) ·E(D) and variance (l + 1) · V ar(D) for l = 2, 4 with
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equal probabilities. That is,

W =











∑2+1
t=1 Dt with probability 1

2
,

∑4+1
t=1 Dt with probability 1

2
.

Figure 3.2: Probability density function of the demand during risk period for variable
replenishment lead time, Numerical Example 3.

Then, the order-up-to-level giving a service level of α = 95% is calculated as

585.97 by solving the following equation, recall (3.7) for Method 2:

FZ(
S − (2 + 1) · 100
√

(2 + 1) · 900
) · (.5) + FZ(

S − (4 + 1) · 100
√

(4 + 1) · 900
) · (.5) = 0.95.

Hence, the order-up-to-levels calculated by using Method 1 and Method 2 are

different. For the use of Method 3, we need to determine the distribution of
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inventory-on-order. That is, we should find the distribution of the number of

outstanding orders just after an order is placed. This number can take any

integer value between (Lmin + 1) and (Lmax + 1) where Lmin is the minimum re-

plenishment lead time and Lmax is the maximum replenishment lead time since

all orders placed before period (t−Lmax) are delivered at or before t. In this ex-

ample, Lmin and Lmax are 2 and 4 review periods, respectively. Then, the number

of outstanding orders at the end of a review period t can take the values of 3, 4,

5. The number of outstanding orders at the end of review period t just after an

order is placed is 3 if there are 2 outstanding orders. Since Lmax is 4, all orders

placed before period (t − 4) are delivered at or before t. Then, the orders placed

at the end of the review periods (t−n) are not replenished until t with probability

Pr(Lt−n ≥ n) for n = 1, 2, 3, 4. For example, Pr(K(t) = 3) is equal to the

probability that exactly 2 of the last 4 review periods’ orders are not replenished

until t. In Table 3.2, all possible combinations of the replenishment lead times

for the last 4 review periods are listed with the corresponding probabilities. After

finding probability distribution of the random variable K, the order-up-to-level

giving a service level of α = 95% is calculated as 558.47 by solving the following

equation for Method 3:

FZ(
S − 3 · 100√

3 · 900
) · 0.25 + FZ(

S − 4 · 100√
4 · 900

) · 0.5 + FZ(
S − 5 · 100√

5 · 900
) · 0.25 = 0.95.

�

When we use the simulation model for S = 558.47, a service level of α = 94.98%

is observed. However, S = 591.82 and S = 585.97 obtained by Method 1 and

Method 2, respectively, give service levels of almost 97%. Simulation results are

tabulated in Tables 3.3 and 3.4. In Table 3.5, order-up-to-levels calculated by

all of the methods are given for different target service levels.
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Table 3.2: Probability distribution of random variable K for Numerical Example 3

Replenishment Lead Times

t-4 t-3 t-2 t-1 Probability K Pr(K=k)

2 2 2 2 0.0625

3 0.252 2 4 2 0.0625
2 2 2 4 0.0625
2 2 4 4 0.0625
4 2 2 2 0.0625

4 0.5

2 4 2 2 0.0625
2 4 4 2 0.0625
4 2 4 2 0.0625
4 2 2 4 0.0625
2 4 2 4 0.0625
2 4 4 4 0.0625
4 2 4 4 0.0625
4 4 2 2 0.0625

5 0.254 4 4 2 0.0625
4 4 2 4 0.0625
4 4 4 4 0.0625

Simulation results show that calculating order-up-to-level by estimating the de-

mand during the risk period as in Method 2 does not necessarily provide the

specified target service levels. This turns out to be the case even when the re-

plenishments and reviews occur at the same time as in Numerical Example 3.

Recall that service models are considered to determine the minimizing inventory

holding costs subject to a target no-stockout probability in the methods under

consideration. Based on the results obtained by the simulation analysis, we can

conclude that Methods 1 and 2 give higher no-stockout probabilities almost for

all of the cases since S values calculated by these methods are higher. This is

especially the case for high target service levels. However, higher S values result

in higher inventory levels. Since we defined our objective function as h · S in

the mathematical model given at the beginning of this chapter, we can compare

the increase in the inventory cost by comparing S values. For example, the

inventory costs obtained when target service level is 95% are almost 5% higher
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for S values calculated by Method 1 and 2 compared to Method 3.

To see that the mean and variance of the demand during the risk period are

estimated correctly, the replenishment lead times are observed and the demand

during R+L are obtained by simulation. As a result of the simulation analysis,

observed replenishment lead times turn out to be 2 in 49.87% of the time and 4

50.13% of the time. The corresponding E(W ) and V ar(W ) values are observed

to be 300 and 2666.87 for L = 2 and 500 and 4420.04 for L = 4. The mean

and variance of the demand during the risk period obtained by simulation and

analytical formulations are almost the same, which numerically shows that the

values obtained analytically are correct. The histogram of the demand during

risk period is given in Figure 3.3, which shows that the distributions of the de-

mand during risk period is Normal for each possible value of replenishment lead

time.

The number of outstanding orders (K(t)) are also observed by the simulation.

Then, K(t) values are observed as 3 in 25.04% of the time, 4 in 49.75% of the

time and 5 in 25.21% of the time and these values are almost same with the

calculated values given in Table 3.2. The corresponding E(IO) and V ar(IO)

values are observed to be 300 and 2660.81 for k = 3, 400 and 3528.09 for k = 4,

400 and 4444.56 for k = 5. Again, the simulation results are almost the same as

the values obtained analytically.

Another observation based on the simulation results is that demands during the

review periods and order quantities placed by the retailer have the same means

and variances as shown in Table 3.2. The reason is that the order-up-to-level

is constant and the demand pattern and order pattern are equal in this case,

that is Qt = Dt. This means that there is no change in the variance of the
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Figure 3.3: Histogram for the demand during risk period.

order quantity as far as the variance of the demand is the same. Thus, any S

calculated by the given methods provide the same variance of the order quantity.

43



Table 3.3: Simulation results for S = 558.47 obtained by Method 3.

Average Half-width Minimum Maximum
Mean Demand 100.0 0.0 99.8 100.2

Variance of Demand 900.0 1.5 894.4 907.4
Mean Order Quantity 100.0 0.0 99.8 100.2
Variance of Order Quantity 900.0 1.5 894.4 907.4
Mean Replenishment Lead Time 3.00 0.00 3.00 3.00
Variance of Rep. Lead Time 1.00 0.00 1.00 1.00
Mean Net Inventory 258.3 0.2 257.4 259.0
Variance of Net Inventory 7721.3 16.8 7642.4 7796.2
Average Inventory-on-hand 258.4 0.2 257.4 259.0
Variance of Inventory-on-hand 7709.7 16.6 7631.6 7780.9
Fill Rate (β) 98.21% 0.02 98.10% 98.27%
No-Stockout Probability (α) 94.98% 0.03 94.75% 95.09%

Table 3.4: Comparison of the simulation results for Methods 1, 2, 3.

Method 1 Method 2 Method 3

Order-up-to-level (S) 591.82 585.97 558.47

Mean Demand 100.0 100.0 100.0

Variance of Demand 899.9 900.1 900.0
Mean Order Quantity 100.0 100.0 100.0
Variance of Order Quantity 899.9 900.1 900.0
Mean Replenishment Lead Time 3.00 3.00 3.00
Variance of Rep. Lead Time 1.00 1.00 1.00
Mean Net Inventory 291.7 285.8 258.3
Variance of Net Inventory 7721.8 7722.2 7721.3
Average Inventory-on-hand 291.7 285.8 258.4
Variance of Inventory-on-hand 7719.8 7719.4 7709.7
Fill Rate (β) 99.34% 99.21% 98.21%
No-Stockout Probability (α) 97.82% 97.44% 94.98%

Table 3.5: Order-up-to-levels for different target service levels and simulation results
for Method 3.

Target α

50% 75% 90% 95%
Method 1 400.00 478.66 549.45 591.82

Method 2 387.31 500.02 556.47 585.97

Method 3 397.53 463.32 523.88 558.47
α 50.01% 74.99% 89.96% 94.98%

Half-width 0.10% 0.07% 0.04% 0.03%
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3.2 Endogenous Replenishment Lead Times with Stationary (R, S)

Policy

In this section, the production system of the supplier is modelled as a single-

server queuing model that processes the orders of the retailer with first-come-

first-served discipline. Then, replenishment lead times are determined endoge-

nously by the supplier’s capacitated production system depending on the orders

placed by the retailer. To ensure stability of the system, capacity of the single

server should be sufficient to process the orders placed by the retailer. Here, we

express utilization of the production facility as mean production rate of the sup-

plier per review period divided by mean demand during the review period and

assume that it is strictly smaller than one. Since the production system of the

supplier is modelled as a single server queue, the service time of a single item

should be defined. The relationship between utilization level u, mean service

time E(T ) and mean period demand E(D) is given by

u =
E(D)

1/E(T )
.

Note that time unit is ’review period’. That is T is expressed in terms of review

periods. Therefore, 1/E(T ) is mean production rate of the supplier per review

period. Although the mean service time is calculated by the equation above,

the distribution of service time should be defined also. A constant service time

is used in our experiments, which is set as E(T ).

The models considered in this section have the same setting given in Section 3.1

except that the replenishment lead times are endogenous. Moreover, demand

is assumed to be satisfied at the end of each review period in the models con-

sidered in this section. That is Assumption 2 is valid. Then, αrev is equal to

αrep under Assumption 2 as explained in Section 3.1. Finding replenishment
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lead times for the model outlined above is an analytically complex task. To

the best of our knowledge, the analysis performed by Boute (2006) is the only

one in the literature in this context. Boute (2006) models the system with sin-

gle retailer and single supplier as a discrete-time Markov chain and obtains the

steady-state probabilities for replenishment lead time under stationary (R, S)

policy employed by the retailer.

Theoretical analysis due to Boute (2006) is very complex. Here, we prefer to use

simulation to calculate the order-up-to-levels. As in Section 3.1, we distinguish

two different ways of measuring the probability of no-stockout: the probability

of no-stockout measured just before a replenishment (αrep) and the probability

of no-stockout measured just after an order is placed (αrev). We should find

the distribution of the demand during risk period to calculate the order-up-to-

level by using Method 2 to satisfy the constraint on the stockout probability

in a review period. In Section 3.1, the distribution of the demand during risk

period are obtained by using the distribution of the replenishment lead times

which is assumed to be exogenous and known. In this section, we estimate the

necessary probability distributions working with the simulation results since the

distribution of the replenishment lead time is not known explicitly. However,

the method we use is the same: observe replenishment lead times during the

simulation runs and estimate the probabilities of possible replenishment lead

times. Then, Method 2 can be used to find order-up-to-level ensuring a given

target service level αrep.

On the other hand, distribution of the inventory-on-order is needed to find order-

up-to-level by using Method 3 for a service level giving no-stockout probability

measured at the end of each period (αrev). In Section 3.1, the distribution of

inventory-on-order for each possible value of the number of outstanding orders
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(denoted by k) is equal to the convolution of k periods’ demands which is Nor-

mal with mean k ·E(D) and variance k · V ar(D). However, this is not the case

for endogenous replenishment lead time. The reason is that order the size of the

orders and corresponding replenishment lead times are correlated in this case.

Then, the number of outstanding orders k is higher for high demand periods,

that is during the congestion periods. Thus, the observed demand during last

k periods is higher than k · E(D) for high values of k. Hence, we cannot use

the equations given for Method 3 to calculate order-up-to-level for a given target

service level αrev for an endogenous replenishment lead time environment. Then,

we should modify Method 3 for the case of endogenous replenishment time.

In this section, the distribution of inventory-on-order to be used in Method 3

is determined working with the results of a preliminary simulation run. Mean

and variance of inventory-on-order for each possible value of k are estimated as

E(IO|K = k) and V ar(IO|K = k), respectively. Then, the following equation

is solved for order-up-to-level S to satisfy a given target service level αrev:

∑

k

FZ(
S − E(IO|K = k)
√

V ar(IO|K = k)
) · Pr(K = k) = αrev. (3.14)

Note that E(IO|K = k) = k · E(D) and V ar(IO|K = k) = k · V ar(D) in the

case of exogenous replenishment lead time.

Suppose r is the number of the replications and oi is the number of observations

(review periods) for the ith replication where i = 1, ..., r. Moreover, k(ij) and

IO(ij) are defined as the number of the outstanding orders and the inventory-on-

order for the jth observation (review period) in the ith replication, respectively.

Then, the mean estimate of the inventory-on-order when there are k outstanding

orders is equal to the division of the sum of the inventory-on-orders when there
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are k outstanding orders to the number of the observations that there are k

outstanding orders. That is,

E(IO|K = k) =

∑r

i=1

∑oi

j=1 IO(ij) · 1ij(k)

nk

(3.15)

where

1ij(k) =











1 if k(ij) = k,

0 otherwise,

and nk =
∑r

i=1

∑oi

j=1 1ij(k) is the number of the observations that there are k

outstanding orders.

The estimate for the variance of the inventory-on-order when there are k out-

standing orders is the sample variance of all observations. That is,

V ar(IO|K = k) =

∑r

i=1

∑oi

j=1(IOi − E(IO|K = k))2 · 1ij(k)

nk − 1
. (3.16)

Note that the inventory-on-orders for the consecutive review periods are corre-

lated since the inventory-on-order for the current review period is dependent on

the inventory-on-order of the previous review periods.

Based on an initial simulation run, E(IO|K = k) and V ar(IO|K = k) are cal-

culated by (3.15) and (3.16). But, we need to set S to an initial level for the

initial run. Fortunately, order/replenishment pattern, and thus IO values, are

the same for any constant value of order-up-to-level S. Recall that Qt = Dt for

each review period t as shown in Section 3.1. So, we can arbitrarily select an

initial order-up-to-level to find the estimates E(IO|K = k) and V ar(IO|K = k).
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Table 3.6: Simulation results for S = 100.

(a)

l Frequency

0 42.3%
1 53.5%
2 3.9%
3 0.3%

(b)

k Frequency E(IO|K = k) V ar(IO|K = k)

1 42.3% 100.1 894.5
2 53.5% 216.9 1518.1
3 3.9% 324.0 2662.3
4 0.3% 426.1 3508.0

Numerical Example 4. The distribution of demand during the review period

is Normal with mean and variance of 100 and 900, respectively. Then, mean

service time giving u = 0.90 is calculated as

E(T ) =
u

E(D)
=

0.90

100
= 0.009 review periods.

S is selected as 100 for the initial simulation run, and 30 replications are per-

formed. The observed frequencies of the replenishment lead times are summa-

rized in Table 3.6(a). These frequencies are used as the estimator for Pr(L = l)

for each possible value of l, which are then used in Method 2. The number

of outstanding orders and the corresponding inventory-on-orders are also ob-

served at the end of the each review period just after an order is placed. Then,

E(IO|K = k) and V ar(IO|K = k) for each possible number of outstanding

orders are calculated using (3.15) and (3.16). The results are tabulated in Table

3.6(b).
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For Method 2, the estimates for the replenishment lead time probabilities are

used to find the order-up-to-level S for a target service level αrep = %95 by

solving the following equation:

FZ(
S − (0 + 1) · 100
√

(0 + 1) · 900
) · (.423) + FZ(

S − (1 + 1) · 100
√

(1 + 1) · 900
) · (.535)

+FZ(
S − (2 + 1) · 100
√

(2 + 1) · 900
) · (.039) + FZ(

S − (3 + 1) · 100
√

(3 + 1) · 900
) · (.003) = 0.95.

S is obtained as 278.0. For Method 3, the estimates for the probabilities of

the number of outstanding orders and the corresponding inventory-on-orders by

(3.15) and (3.16) are used to find the order-up-to-level for a target service level

αrev = %95 by solving the following equation:

FZ(
S − 100.1

894.5
) · (.423) + FZ(

S − 216.9

1518.1
) · (.535)

+FZ(
S − 324.0

2662.3
) · (.039) + FZ(

S − 426.1

3508.0
) · (.003) = 0.95.

S is found to be 288.7. �

For the given example, S = 278.0 obtained by using Method 2 is smaller than

S = 288.7 obtained by using Method 3. Then, S = 278.0 results in lower no-

stockout probability and average inventory level compared to S = 288.7 since

higher(lower) S values result in higher(lower) inventory levels. S values obtained

by Method 2 and Method 3 are then used in the simulation models to investigate

performances of these S values. Simulation results are tabulated in Table 3.7.

For the methods under consideration, recall that we work with Model 1 at where

the objective is to find S that is minimizing inventory holding costs defined as

h · S while satisfying a target α-service level. Although S = 278.0 obtained

by using Method 2 provides lower inventory costs, the service level obtained by

simulation is 93.45%, which is less than target level 95%. On the other hand,
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the simulation results show that S = 288.7 obtained by using Method 3 gives a

service level of 95.03% that is almost equal to target service level 95%.

Order-up-to-levels obtained by Method 3 and the simulation results for these

order-up-to-levels are given are given in Table 3.8 for different utilization levels.

Moreover, the order-up-to-levels are calculated for different target service levels

at a given utilization level of 90% and the simulation results are given in Table

3.9. It is seen that the service levels obtained by using Method 3 are sufficiently

close to 95% target level.

Order-up-to-levels obtained by using Method 2 for different service and utiliza-

tion levels are also given in Tables 3.10 and 3.11. Especially for high utilization

levels, order-up-to-levels obtained by using Method 2 are much lower than the

order-up-to-levels obtained by using Method 3. Hence, Method 2 cannot satisfy

target no-stockout probabilities in these cases since we know that order-up-to-

levels obtained by using Method 3 gives no-stockout probabilities that is almost

equal to target service levels. Recall that the situation is reverse for exogenous

replenishment lead time as given in Section 3.1.

The other observations based on the simulation results are given below.

• Method 2 and Method 3 give the same means and variances of the order

quantities. The reason is that the order-up-to-level is constant and the

demand pattern and order pattern are exactly the same in this case.

• As utilization of the supplier gets higher, mean and variance of the re-

plenishment lead time get higher since service times are higher for higher

utilization levels.
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Table 3.7: Simulation results for S = 278.0, 288.71; u = 90% and α = %95.

Method 2 Method 3

Order-up-to-level (S) 278.0 288.71

Mean Demand 100.0 100.0

Variance of Demand 898.5 898.5
Mean Order Quantity 100.0 100.0
Variance of Order Quantity 898.5 898.5
Mean Replenishment Lead Time 1.13 1.13
Variance of Rep. Lead Time 0.19 0.19
Mean Net Inventory 156.7 167.5
Variance of Net Inventory 5235.3 5232.2
Average Inventory-on-hand 157.9 168.4
Variance of Inventory-on-hand 4766.9 4852.1
Fill Rate (β) 97.28% 97.83%
No-Stockout Probability (α) 93.45% 95.03%

Table 3.8: Simulation results for Method 3, α = 95%.

Utilization of the Supplier
(u)

50% 75% 90% 95%
Order-up-to-level (S) 149.4 260.34 288.7 413.8

Mean Demand 100.0 100.0 100.0 100.0

Variance of Demand 898.5 898.5 898.5 898.5
Mean Order Quantity 100.0 100.0 100.0 100.0
Variance of Order Quantity 898.5 898.5 898.5 898.5
Mean Replenishment Lead Time 0.50 0.77 1.13 1.61
Variance of Rep. Lead Time 0.02 0.05 0.19 0.74
Mean Net Inventory 94.9 176.4 167.5 244.0
Variance of Net Inventory 3380.3 3366.4 5232.2 11288.3
Average Inventory-on-hand 95.4 176.6 168.4 246.6
Variance of Inventory-on-hand 3264.7 3277.1 4852.1 9526.4
Fill Rate (β) 99.35% 98.91% 97.83% 96.91%
No-Stockout Probability (α) 94.97% 95.02% 95.03% 95.01%
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Table 3.9: Simulation results for Method 3, u = 90%.

Target Service Level (α)

50% 75% 85% 90% 95%
Order-up-to-level (S) 176.3 227.7 248.8 263.3 288.7

Mean Demand 100.0 100.0 100.0 100.0 100.0

Variance of Demand 898.5 898.5 898.5 898.5 898.5
Mean Order Quantity 100.0 100.0 100.0 100.0 100.0
Variance of Order Quantity 898.5 898.5 898.5 898.5 898.5
Mean Replenishment Lead Time 1.13 1.13 1.13 1.13 1.13
Variance of Rep. Lead Time 0.19 0.19 0.19 0.19 0.19
Mean Net Inventory 55.1 106.5 127.5 142.1 167.5
Variance of Net Inventory 5229.3 5234.8 5231.2 5237.9 5232.2
Average Inventory-on-hand 67.1 110.7 130.0 143.7 168.4
Variance of Inventory-on-hand 2638.7 3977.7 4397.0 4610.8 4852.1
Fill Rate (β) 72.70% 90.87% 94.62% 96.21% 97.83%
No-Stockout Probability (α) 49.98% 74.98% 85.07% 90.07% 95.03%

Table 3.10: Order-up-to-levels calculated by using Methods 2 and 3, u = 90%.

Target Service Level (α)

50% 75% 85% 90% 95%
Method 2 158.73 211.76 234.41 249.83 278.00

Method 3 176.31 227.72 248.76 263.32 288.71

Table 3.11: Order-up-to-levels calculated by using Methods 2 and 3, α = 95%.

Utilization of the Supplier

50% 75% 90% 95%
Method 2 149.44 221.32 278.00 399.34

Method 3 149.40 260.34 288.70 413.80

3.3 Endogenous Replenishment Lead Times with Adaptive (R, St)

Policy

There is a considerable impact of the changes in the retailer’s ordering policy on

the inventory system with endogenous replenishment lead times because replen-

ishment lead times are highly dependent on the order quantities. A large order
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quantity results in longer replenishment lead time whereas a small order quan-

tity results in shorter replenishment lead time. Hence, replenishment lead times

are higher (lower) for high (low) demand periods. The retailer would prefer to

take action and change the ordering policy parameters when replenishment lead

time increases in order to avoid stockouts beyond a certain level. That is , an

adaptive ordering policy is employed by the retailer in that case. Then, the

retailer would work with higher order quantities in such a situation. However,

this causes more congestion in the system and replenishment lead times con-

tinue to increase in the following periods. This phenomenon is well-known and

called as ’Lead Time Syndrome’ in the literature, see the related reference due

to Selçuk (2007). In a similar way, the parameters of ordering policy may be

considered to be updated in the case of low demand periods to operate at lower

inventory levels. In that case, the risk of being stockout increases since smaller

order quantities are placed at consecutive periods.

Here, we consider the case with single retailer and single supplier. When there

is congestion, it is obvious that increase in order quantity causes the retailer

to perform worse in the long run. The reason is that the more congestion in

the system is created after order quantities increase and the replenishment lead

times get higher which result in more stockout occasions. In this case, also for

the supplier order quantities become more variable and production cannot be

smoothed, which in turn increases supplier’s production costs. The solution to

this problem is obvious: smoothing order quantities or at least not increasing

order quantities during congestion periods until the congestion ends. This would

work because there is only one retailer in the supply chain that determining the

supplier’s replenishment lead times. However, this solution approach may not

work in the case of multiple retailers since replenishment lead times result from

all of the retailers’ ordering policies.
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In this section, the question addressed is the following: how does the perfor-

mance of the retailer affected in the case that the retailers prefer to use an

adaptive policy when the demand observed by the retailer and the production

system of the supplier is time-stationary. As in Section 3.2, production sys-

tem of the supplier is modelled as a single-server queuing system. However, an

adaptive periodic-review base-stock policy (R, St) is used by the retailer instead

of a stationary (R, S) policy. In (R, St) policy, the order-up-to-level for review

period t, St, is determined depending on the changes in the demand forecasts

and the estimates of the replenishment lead time.

Use of adaptive policies based on demand forecasting is frequently studied in the

literature. However, this is not the case for the use of adaptive policies based

on the update of replenishment lead time estimates. Our study focuses on the

update of replenishment lead time estimates and than the policy parameters for

the retailer. Replenishment lead time may change in time and this change is

either temporary or permanent. A temporary change may naturally arise from

the randomness of the production time or delivery time. However, a permanent

change may be due to the change in the state of supplier’s operations such as

production facilities, delivery modes. For example, capacity of the supplier may

increase/decrease because of the change in the amounts of resources available.

If the retailer decides that a change in the replenishment lead time should be

reflected to the ordering policy parameters, then St should be updated to ensure

the same target service level under the new conditions. In the models under

consideration in this section, the production system of the supplier is time-

stationary. Since we also work with time-stationary demand, the changes in the

replenishment lead times is temporary in our models. As stated previously, the

long run performance measures worsen when an adaptive policy employed by
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the retailer. In this thesis, we aim to measure the decreases in the performance

measures caused by the use of adaptive policy based on the update of the re-

plenishment lead time estimates. Moreover, we investigate whether there is gain

in the short run measures by the use of adaptive policy.

There is an important point in our inventory model related with the calculation

of order-up-to-level. Since our objective is to find order-up-to-level providing a

target service level αrev, the probabilities of the replenishment lead times are

not considered directly or explicitly in the equations to determine order-up-to-

level. As explained in the previous sections, the distributions of the number of

outstanding orders and inventory-on-order should be obtained to calculate the

order-up-to-level. However, the analytical formulation of the relation between

the distribution of inventory-on-order and replenishment lead times is involved

mathematically when the replenishment lead times are endogenous. Such an

analysis is performed by Boute (2006) by modelling the system as a discrete-

time Markov chain. Because of the difficulty of the mathematical analysis, the

approach in Section 3.2 is used to calculate S except that the estimates should

now be updated frequently. In this section, we only work with Method 3 to

calculate the order-up-to-levels since it is shown in Section 3.2 that Method 2

does not give order-up-to-levels satisfying target service levels. Again, mean

and variance of the inventory-on-order for each possible number of outstanding

orders are estimated by a simulation model and used in the calculation of the

order-up-to-level. Thus, mean and variance of inventory-on-order given that

there are k outstanding orders should be estimated at the end of each update

period, which is the duration between two consecutive update of the ordering

policy parameters in time.

The estimates E(IO|K = k) and V ar(IO|K = k) are obtained exactly as in
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Section 3.2 except that r is the number of the replications for each update pe-

riod and oi = o. Then, S is calculated using 3.14 at the end of each update

period. Determining the length of the update period is an issue for the use

of adaptive policies. In our inventory analysis, a simple update mechanism is

considered. As seen above, S is updated at the end of a constant update period

of o review periods. Then, the order-up-to-level used to determine order quan-

tities in the nth update period is defined as S(n) and the same order-up-to-level

is used for all review periods in the nth update period. That is, S(n−1)·o+t = S(n)

for all t = 1, ..., o. Actually, the parameters of the ordering policy should have

been updated if the retailer decides that a change in the estimates of replenish-

ment lead time should be reflected to the ordering policy parameters. And, this

decision can be affected by many factors such as the performance measures ob-

tained by the retailer in the last update period, the forecasts for future periods’

demands, the state of the supplier.

Numerical Example 5. The same setting used in Numerical Example 4 is

used to analyze the case of adaptive (R, St) policy. Again, the service time of the

single server is assumed to be constant and equals to 0.009 review periods for

an utilization level of u = 0.90. The distribution of the demand during review

period is assumed to be Normal with mean 100 and variance 900 and target α-

service level is set as 95%. Finally, update periods of 10, 25, 50 and 100 review

periods are considered for this numerical example. �

For the numerical setting given in Numerical Example 5, simulation results for

each value of update period and the results are given in Table 3.12. The following

observations have been derived from the given results.

• Mean and variance of the order-up-to-level increase as update periods get

shorter. Also, variance of the order quantities increases in a similar way.
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This means that more erratic order pattern is observed when the update

frequency for S is increased.

• Mean and variance of the replenishment lead time increase when the up-

date frequency for St is increased. That is, more erratic replenishment

pattern is observed by the supplier.

• Means and variances of inventory position and inventory-on-hand increase

when the update frequency for S is increased. This is in accordance with

the observation in the first item above and shows that higher levels of

safety stock are held for lower update periods.

• Fill rate and the probability of no-stockout in the long-run decrease as

the update frequency increases. No-stockout probabilities obtained by

the simulation runs are below the target level of 95% and the difference

between target level and observed values gets larger as update frequency

gets higher. Thus, the delivery performance of the retailer deteriorates

when the order-up-to-level is updated frequently.

• Variance of the order quantity is higher than the variance of the demand

for all cases. These amplification in variance get larger as update frequency

increases.

These observations have allow us to come up with the following interpretation.

As replenishment lead time gets longer during the congestion periods, order-up-

to-levels would get higher and then, orders with larger quantities are placed to

cover increased expected demand during the longer lead time, leading to longer

queues in production system of the supplier. Thus, replenishment lead times

get longer and this causes again a longer lead time. Eventually, erratic order-

ing and replenishment behaviors are observed in the system, resulting in larger

variances on inventory levels and replenishment lead times. This phenomenon
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Table 3.12: Simulation results for different update periods, u=0.90.

Update Period (Review Periods)

10 25 50 100

Mean Demand 100.0 100.0 100.0 100.0

Variance of Demand 898.5 898.5 898.5 898.5
Mean Order-up-to-level 304.7 294.6 291.3 290.0
Variance of Order-up-to-level 2158.4 639.7 245.4 114.4
Mean Order Quantity 100.0 100.0 100.0 100.0
Variance of Order Quantity 993.1 921.9 905.2 900.4
Mean Replenishment Lead Time 1.17 1.14 1.13 1.13
Variance of Rep. Lead Time 0.26 0.21 0.20 0.19
Mean Net Inventory 178.6 172.2 169.7 168.7
Variance of Net Inventory 7028.3 5844.0 5481.1 5360.6
Average Inventory-on-hand 179.5 173.1 170.7 169.6
Variance of Inventory-on-hand 6600.5 5438.8 5091.7 4970.9
Fill Rate (β) 97.75% 97.80% 97.82% 97.81%
No-Stockout Probability (α) 94.53% 94.79% 94.91% 94.96%

is called as ’lead time syndrome’. Lead time syndrome should be avoided since

it causes the production cost of the supplier to increase by preventing smooth

production levels. Also, the customer service of the retailer deteriorates in the

existence of lead time syndrome because of the increases in mean and variance

of the replenishment lead time.

The observation in the last item above shows the existence of the bullwhip effect,

which is the amplification in demand variability as one moves from the lowest

echelon (retailer) to the highest echelon (supplier) in the supply chain. Thus,

updating the replenishment lead time result in bullwhip effect. Similar to lead

time syndrome, bullwhip effect should be avoided because it reduces the prof-

itability of a supply chain by making it more expensive to provide a given level

of product availability as stated by Chopra and Meindl (2007). Moreover, the

observation that there is an increase in the mean of inventory-on-hand caused

by frequent update of the ordering policy parameters shows that the inventory
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holding cost gets higher in this case. Although more inventory is kept, that is

safety stock gets higher, the service level of the retailer decreases.

Another interesting question to be answered is the following: what happens if

the utilization level of the supplier gets higher? The following numerical exam-

ple is considered to answer this question.

Numerical Example 6. The same setting used in Numerical Example 5 is

used except that the utilization level of the supplier is 95%. This is achieved by

setting the service time of the single server to 0.0095 review periods. Again,

update periods of 10, 25, 50 and 100 review periods are considered for this nu-

merical example. �

The results obtained by simulating the system in Numerical Example 6 are given

in Table 3.13. When the results given in Tables 3.12 and 3.13 for u = 90% and

u = 95%, respectively, are compared, the followings are observed for the same

values of update period:

• Means and variances of the order-up-to-level and order quantity are higher

for 95% utilization level. (See Figure 3.4)

• Mean and variance of the replenishment lead time are higher for 95%

utilization level. (See Figure 3.5)

• Mean and variance of inventory-on-hand is higher for 95% utilization level.

This observation shows that safety stock to achieve the same service level

is higher for 95% utilization level.

• Decreases in fill rate and no-stockout probability are larger for 95% uti-

lization level.
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• Increase in the amplification in variance is bigger for 95% utilization level.

The main conclusion from these observations is that all of the performance mea-

sures deteriorate for 95% utilization level when compared to 90% utilization

level. By considering the results obtained using stationary (R, S) policy in Sec-

tion 3.2, we can state that stationary policy leads to the lowest cost situation

for both 90% and 95% utilization levels. However, replenishment lead times are

not always known before they are realized and have to be estimated somehow.

Then, an adaptive ordering policy should be inevitably employed by the retailer

although it is not optimal policy.

Table 3.13: Simulation results for different update periods, u=0.95.

Update Duration (Review Periods)

10 25 50 100
Mean Order Up To Point 606.63 491.00 441.13 425.22
Variance of Order Up To Point 122279.58 34628.28 9482.48 3898.91
Mean Order Quantity 100.01 100.01 100.01 100.01
Variance of Order Quantity 1426.36 1124.65 978.40 928.39
Mean Replenishment Lead Time 2.6123 1.9363 1.7055 1.6437
Variance of Rep. Lead Time 6.1824 1.9480 1.0153 0.8220
Mean Net Inventory 332.31 287.23 261.51 252.11
Variance of Net Inventory 63858.61 34474.27 19344.06 14843.17
Average Inventory-on-hand 336.31 290.61 264.51 254.90
Variance of Inventory-on-hand 60430.55 31915.70 17224.29 12940.31
Fill Rate (β) 95.53% 96.07% 96.50% 96.67%
No-stockout Probability (α) 92.90% 93.65% 94.29% 94.57%

Note that the performance measures given in the above tables are evaluated in

the long run. That is, for such steady state measures, naturally use of stationary

policy makes sense in a stationary setting. Next, we investigate whether there

is gain in the short run by the use of adaptive policy. Then, α-service levels

obtained in each update period are observed by the simulation analysis and the
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results for the mean and standard deviation of α-service level are tabulated in

Table 3.14. The results show that more variable α-service levels are observed

for more frequent updates. That is, the variation in α-service level increases

significantly as update period gets shorter although mean α-service level in the

long run decreases slightly. Figures 3.7 and 3.8 illustrate the situation. It is seen

in these figures that more smooth α-service levels are observed when the update

period is 100 review periods compared to the case that the update period is

25 review periods. The reason is due the fact that the system is more responsive

when the update period gets shorter. Then, this responsive pattern results in

higher (lower) S values when the replenishment lead times get higher (lower)

and eventually these S values result in higher (lower) α-service levels for the

consecutive review periods. Figures B.1 and B.2 in Appendix B illustrate this

situation by giving S values calculated at the end of each update period and α-

service levels obtained in each update period. Moreover, Figures B.3 and B.4 in

Appendix B show the order quantities placed by Retailer 2 when update period

is 10 and100 review periods, respectively. As it is seen in these figures, more

variable order quantities are placed when update period is 10 review periods

compared to 100 review periods.

Table 3.14: Simulation results for α-service levels, u = 95%.

Update Period

100 50 25 15
Average 94.57% 94.29% 93.65% 92.100%

Standard Deviation 11.85% 14.79% 17.38% 19.29%
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Figure 3.4: Means and variances of the order quantity, u = 90%, 95%.

Figure 3.5: Means and variances of the replenishment lead time, u = 90%, u = 95%.
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Figure 3.6: Means and variances of inventory-on-hand, u = 90%, 95%.
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Figure 3.7: No-stockout probabilities for the update period of 25 review periods,
u = 95%.

Figure 3.8: No-stockout probability for the update period of 100 review periods,
u = 95%.
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Chapter 4

TWO-RETAILER CASE

In this chapter, we analyze the models with two retailers and single supplier.

Results of the models with exogenous replenishment lead times are the same as

the ones in Section 3.1 because exogenous replenishment lead times are indepen-

dent of the ordering policies of the retailers. However, endogenous replenishment

lead times are determined by the ordering policies of both retailers because the

retailers place orders from the same supplier having a capacitated production

system. In this case, a change in the ordering policy of a retailer has an impact

on the other retailer’s performance even if the other retailer does not make any

change in its own ordering policy. That is, a retailer has to update its own order-

ing policy in order to obtain the target service level if the other retailer changes

its ordering policy. At first glance, it does not make sense for the retailers to

employ adaptive policies in a time-stationary setting. However, the retailers

would tend to increase order quantities when higher replenishment lead times

are observed because of a congestion in the system. In this chapter, the question

addressed is the following: how do the retailers performs when one or both of

the retailers prefer to use an adaptive policy. In the models of this chapter, we

assume the retailers do not collaborate to share information. That is, the case

we study is the case of strict competition. Demands of the retailers are assumed

i.i.d and independent of each other. This assumption is realistic if they operate

in different markets. Also, the distribution of the demand in a review period is
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assumed to be Normal as in Chapter 3.

Recall that we work with the models minimizing inventory costs while providing

a target service level for no-stockout probability in a review period. For two-

retailer case, a mathematical model similar to the given models in Chapter 3

are presented below.

MODEL 4 : Minimize

2
∑

R=1

h · I(R)
(S(R))

subject to

A(R)(S(R)) ≥ α(R) for R = 1, 2,

S(R) ≥ 0 for R = 1, 2,

where superscript (R) is used to differentiate the retailers with R = 1 defining the

first retailer and R = 2 defining the second retailer, S(R) is the order-up-to-level

used in the ordering policy by Retailer R. Moreover, I
(R)

(S(R)) denotes average

inventory-on-hand in the long run and A(R)(S(R)) is the no-stockout probability

in a review period for the given retailer. As in Chapter 3, we prefer to consider

S(R) in the objective function Instead of I
(R)

(S(R)). Then, the mathematical

model becomes

MODEL 5 : Minimize
2

∑

R=1

h · S(R)

subject to

Pr(IO(R) < S(R)) ≥ α(R)
rev for R = 1, 2,

S(R) ≥ 0 for R = 1, 2,

where IO(R) denotes average inventory-on-order in the long run for Retailer R.

In the following sections, we show how to calculate S(R) values for the given
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mathematical models. In Section 4.1, the case that both retailers employ sta-

tionary (R, S) policy is studied. In Section 4.2, it is questioned whether it is

beneficial for a retailer to use an adaptive (R, St) policy in a supply chain with

two retailers.

4.1 Endogenous Replenishment Lead Times with Stationary (R, S)

Policy

We aim to investigate the use of the stationary (R, S) policy in this section for

both retailers. As explained in Sections 3.2 and 3.3, exact analysis to calculate

the order-up-to-level for the case of endogenous replenishment lead times would

be very complex. Thus, the solution approach considered in Section 3.2 is used

also in this section. The initial simulation run is for arbitrary S values and

then, the order-up-to-levels that ensure target service levels of the retailers are

calculated using the simulation results. Again, the order and demand patterns

are the same for any value of the order-up-to-level S as long as both retailers use

stationary (R, S) policies. Hence, we choose two arbitrary initial order-up-to-

level for each of the two retailers and observe the number of outstanding orders

and the corresponding inventory-on-orders at the end of the each review period

just after an order is placed. Mean and variance of inventory-on-order for each

possible number of outstanding orders are estimated as in Chapter 3. Then,

Method 3 is used to calculate order-up-to-levels of each retailer.

For the numerical experiments, service time of the supplier that is required to

achieve a predetermined utilization level should be determined. Here, we assume

the service times are constant as in Chapter 3. Then, the utilization level u is

given by the following equation in terms of mean service time E(T ) and mean
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review period demands E(D(1)) and E(D(2))) of retailer 1 and 2, respectively:

u =
E(D(1)) + E(D(2))

1/E(T )
. (4.1)

Numerical Example 7. Assuming that the distribution of the demands of the

retailers are Normal with mean 100 and variance 900, mean service time giving

u = 0.90 is calculated as

E(T ) =
u

E(D(1)) + E(D(2))
=

0.90

100 + 100
= 0.0045 review periods.

S(R) values used in the initial simulation run is chosen as 100 for both retailers.

During the initial simulation run, the number of outstanding orders with the

corresponding inventory-on-orders are observed at the end of the each review

period just after an order is placed and E(IO|K = k) and V ar(IO|K = k)

for each possible k are obtained by using (3.15) and (3.16), respectively. The

estimates obtained by the initial simulation run are given in Table 4.1.

Table 4.1: Estimates obtained by initial simulation run with S(R) = 100 for R = 1, 2.

k Frequency E(IO|K = k) V ar(IO|K = k)

Retailer 1 Retailer 2 Retailer 1 Retailer 2 Retailer 1 Retailer 2
1 95.78% 95.78% 100.03 100.04 895.38 895.53
2 4.22% 4.22% 222.36 222.36 1783.74 1782.91

For the symmetric numerical setting such that parameters are the same for both

of the retailers, simulation results show that estimates of the retailers are the
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same. Then, the following equation is solved to find S(1) for Retailer 1:

FZ(
S − 100.03

895.38
) · (.9578) + FZ(

S − 222.36

1783.74
) · (.0422) = 0.95.

Solution of the above equation gives S(1) = 166.97 for Retailer 1. In a similar

way, S(2) for Retailer 2 is calculated as 166.98. �

Simulation results for S(R) values found above are given in Table 4.2. Simulation

results are almost the same for each retailer since they employ the same ordering

policy with nearly equal S(R) values. The average of α-service levels obtained by

30 replications turn out to be 94.97% and 94.98% when target service levels are

95%. Half-widths for 95% confidence level are 0.08% and 0.07% for α-service

levels obtained for Retailer 1 and 2, respectively. α = 95% is between upper

and lower limits. Hence, we conclude that S(R) values calculated by Method 3

provides the target service levels in a 95% confidence level.

Moreover, the simulation results show that means and variances of the order

quantity and demand are equal to each other. The reason is that the order-

up-to-level is constant and the demand pattern and order pattern are equal in

this case. This observation shows bullwhip effect, which is the amplification in

demand variability as one moves from the lowest echelon (retailer) to the highest

echelon (supplier) in the supply chain, does not observed in this case.

The next question to be answered is that what happens if different utilization

levels for the supplier are considered. Then, the results for 75% and 95% utiliza-

tion levels with a target service level of 95% are obtained by simulation analysis

and given in Table 4.3. Again, the results show that α values obtained by the

simulation are sufficiently close to the target levels. It is observed from the sim-
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Table 4.2: Simulation results, u = 90%.

Retailer-1 Retailer-2
Average Half-width Average Half-width

Mean Demand 100.0 0.0 100.0 0.0

Variance of Demand 899.2 1.4 899.2 1.5
Mean Order Quantity 100.0 0.0 100.0 0.0
Variance of Order Quantity 899.2 1.4 899.2 1.5
Mean Replenishment Lead Time 0.57 0.00 0.57 0.00
Variance of Rep. Lead Time 0.05 0.00 0.05 0.00
Mean Net Inventory 106.3 0.1 106.3 0.1
Variance of Net Inventory 3485.4 6.7 3487.2 7.0
Average Inventory-on-hand 106.9 0.1 106.9 0.1
Variance of Inventory-on-hand 3328.9 2.9 3330.0 3.1
Fill Rate (β) 97.52% 0.05% 97.52% 0.04%
No-Stockout Probability (α) 94.98% 0.08% 94.97% 0.07%

ulation results that more inventory should be kept to satisfy the same service

level for higher utilization levels. Figure 4.1 illustrates the situation.

Table 4.3: Simulation results for different utilization levels.

Utilization Level
75% 90% 95%

Order-up-to-level (S) 149.34 166.97 255.45

Mean Demand 100.0 100.0 100.0

Variance of Demand 899.2 899.2 899.2
Mean Order Quantity 100.0 100.0 100.0
Variance of Order Quantity 899.2 899.2 899.2
Mean Replenishment Lead Time 0.39 0.57 0.80
Variance of Rep. Lead Time 0.01 0.05 0.18
Mean Net Inventory 85.4 106.3 170.7
Variance of Net Inventory 3119.3 3485.4 4784.9
Average Inventory-on-hand 107.8 85.7 171.5
Variance of Inventory-on-hand 3021.1 3328.9 4443.5
Fill Rate (β) 99.39% 97.52% 98.09%
No-Stockout Probability (α) 94.98% 94.98% 95.00%
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Figure 4.1: Plot of target no-stockout probability vs. average inventory obtained by
the simulation analysis.

4.2 Endogenous Replenishment Lead Times with Adaptive (R, St)

Policy

In this section, use of adaptive ordering policies is questioned for the case of two

retailers. In the case of single retailer in Section 3.3, we observe that there is

no gain of updating the ordering policy parameters frequently when long-term

measures are used. The situation is now different since it is possible for each

of the retailers to have an impact on the performance of the other retailer by

causing a change in the status of the supplier’s production system. For example,

a large order quantity placed by one of the retailers results in longer replenish-

ment lead time observed by the other retailer for the future orders.

The approach considered in Section 3.3 is used also in this section. Parameters

of the ordering policies are updated by observing the inventory system during
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the last update period. Again, the length of the update period is kept constant.

Numerical Example 8. The setting is the same as in Numerical Example 7.

Service time of the single server is set as 0.0045 review periods to obtain an

utilization level u = 0.90. The demand distributions observed by the retailers are

assumed Normal with mean 100 and variance 900. In the first simulation runs,

a target service level α is chosen as 95% for both retailers. Retailer 2 uses an

adaptive (R, St) policy for the update periods of 10, 25, 50 review periods and

Retailer 1 uses a stationary (R, S) policy with S = 166.97 which is the order-up-

to-level calculated in Numerical Example 7 where both retailers use stationary

(R, S) policies and target service level 95%. �

Simulation analysis for the given setting in Numerical Example 8 gives the re-

sults for long-run measures in Table 4.4. For a confidence level of 95%, it cannot

be concluded that use of the adaptive (R, St) policy by Retailer 2 instead of the

stationary (R, S) policy with S = 166.98 causes a decrease in α-service levels

for the update periods of 25, 50 review periods although average α-service lev-

els obtained for the update periods of 25 and 50 review periods is lower than

α-service levels obtained for the use of the stationary (R, S) policy by Retailer

2. However, for the update period of 10 review periods, there is a decrease

in α-service levels from 94.97% to 94.47% for Retailer 1 and from 94.98% to

94.72% for Retailer 2. Upper and lower limits on no-stockout probability based

on 95% confidence level are shown in Figures 4.2 and 4.3 for Retailers 1 and 2,

respectively. When the update period of Retailer 2 is 10 review periods, the

decreases in α-service levels are 0.51% and 0.25% for Retailer 1 and 2, respec-

tively and Retailer 1 observes lower service level than Retailer 2 based on the

limits for 95% confidence level. That is, the deterioration in the service level of

the retailer who uses a stationary (R, S) policy is larger than the retailer who
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uses an adaptive policy when the update period is 10 review periods. For the

other update periods, there is no statistical evidence to come up to the same

conclusion.

Another observation based on the simulation results is that mean and variance

of the inventory carried are higher for Retailer 2 compared to Retailer 1 for

all values of the update period (See Figure C.1 in Appendix C). For example,

when the update period is 10 review periods, mean inventory carried is equal

to 106.32 and 117.09 for Retailers 1 and 2, respectively. That is, there is almost

10% increase in mean inventory carried for Retailer 2 compared to Retailer 1.

According to MODEL 4, this result means that inventory holding costs are 10%

higher for the retailer using adaptive policy in this case. Although more inven-

tory is kept by Retailer 2, α-service level observed by Retailer 2 is 94.72%, which

is slightly below the target level 95%. Hence, the constraint on the service level

in MODEL 4 is not satisfied. However, the service level observed by Retailer 2

is 0.26% higher than the service level observed by Retailer1. In other words, the

service level observed by the retailer using adaptive policy is higher compared to

the service level observed by the retailer using stationary policy but this comes

up with an increase in the inventory holding costs.

Under these findings, we cannot answer the question that whether or not it is

beneficial to use an adaptive policy. The answer completely depends on the

trade-off between the service level provided to the customer and the inventory

holding costs charged to the retailer. Note that we consider only mean inventory

carried to compare the results in a cost view. However, variance of inventory

carried also increases considerably for the retailer using adaptive policy which

may directly or indirectly contribute to the costs of the retailer. Moreover, the

results show that the decrease in α-service level obtained by the retailer using
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stationary policy is faster compared to α-service level obtained by the retailer

using adaptive policy. Conversely, the increase in mean inventory carried by the

retailer using stationary policy is slower compared to mean inventory carried by

the retailer using adaptive policy.The other observations have been derived from

the given results are itemized below.

• For Retailer 2, mean and variance of the order-up-to-level increase as up-

date periods get shorter. Variance of the order quantities increases in a

similar way and is higher than the variance of the demand for all cases.

These amplification in variance gets bigger as update frequency increases.

Hence, bullwhip effect is present and ordering policy of Retailer 2 con-

tributes to the bullwhip effect observed in the system. For Retailer 1,

variance of the order quantity is equal to variance of the demand for any

value of the update period. That is, Retailer 1 do not contribute to the

bullwhip effect. Figure C.2 in Appendix C illustrates these findings.

• Means and variances of the replenishment lead time for both retailers

increase when the update frequency increases. That is, more erratic re-

plenishment pattern is observed by the supplier. Actually, these increases

in mean and variance of the replenishment lead time causes the service

levels observed by the retailers to decrease as update frequency increases.

The graphical representation of these results is given in Figures C.3 and

C.4 in Appendix C. These results can be explained by lead time syndrome

observed in the system as discussed in Section 3.3. Note that the means

of the replenishment lead time observed by both retailers are almost equal

to each other for all update periods. However, the increase in variance of

the replenishment lead time is faster for Retailer 2 compared to Retailer

1 as update frequency increases.
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Table 4.4: Simulation results with adaptive and stationary policies, u = 90%.

Retailer 1 2 1 2 1 2 1 2
S for stationary (R, S) policy 166.97 166.98 166.97 - 166.97 - 166.97 -
Update Period - - - 50 - 25 - 10

Mean Demand 100.00 100.02 100.00 100.02 100.00 100.02 100.00 100.02

Variance of Demand 899.20 899.18 899.20 899.18 899.20 899.18 899.20 899.18
Mean Order Up To Level - - - 169.67 - 171.96 - 178.09
Variance of Order Up To Level - - - 144.32 - 304.38 - 821.22
Mean Order Quantity 100.00 100.02 100.00 100.02 100.00 100.02 100.00 100.02
Variance of Order Quantity 899.20 899.18 899.20 904.01 899.20 915.31 899.20 971.80
Mean Replenishment Lead Time 0.5656 0.5657 0.5661 0.5661 0.5672 0.5671 0.5727 0.5724
Variance of Rep. Lead Time 0.0477 0.0477 0.0479 0.0480 0.0485 0.0488 0.0516 0.0528
Mean Net Inventory 106.31 106.30 106.34 109.00 106.21 111.15 105.67 116.52
Variance of Net Inventory 3485.43 3487.16 3486.97 3628.74 3492.56 3778.40 3519.94 4229.08
Average Inventory Carried 106.87 106.85 106.89 109.56 106.78 111.71 106.32 117.09
Variance of Inventory Carried 3328.94 3330.02 3329.55 3469.45 3330.61 3615.89 3336.59 4061.24
Fill Rate (β) 97.52% 97.52% 97.50% 97.58% 97.46% 97.63% 97.23% 97.72%
No-Stockout Probability (α) 94.98% 94.97% 94.95% 94.91% 94.88% 94.85% 94.47% 94.72%
Half-width for 95% Confidence Level 0.08% 0.07% 0.07% 0.08% 0.08% 0.07% 0.08% 0.06%
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Figure 4.2: Upper and lower limits on no-stockout probability based on 95% confidence
level, Retailer 1.

Figure 4.3: Upper and lower limits on no-stockout probability based on 95% confidence
level, Retailer 2.
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Numerical Example 9. Continuing with the same setting in Numerical Ex-

ample 8, we investigate the case both retailers use adaptive (R, St) policies.

Again, the target service level is chosen as 95% for both retailers. �

Simulation results on long-run measures for Numerical Example 9 are given in

Table 4.5. As it is seen in Figures 4.4 and 4.5, it can be concluded that the use of

the adaptive (R, St) policies by both of the retailers causes decreases in α-service

levels and the decrease gets larger as update frequency increases. The graph in

Figure D.2 in Appendix D compares α-service levels obtained by Retailer 2 in

Numerical Example 8, where only Retailer 2 uses adaptive ordering policy, and

in Numerical Example 9, where both retailers use adaptive ordering policies. As

it is seen in this figure, the decrease in α-service level is higher when both retail-

ers use adaptive ordering policies and the gap between α-service levels increases

as update period gets shorter. Moreover, for the same value of update period,

Retailer 2 keeps more inventory when both retailers use adaptive policies as it

is illustrated in Figure D.3 in Appendix D.

The comparisons for the other performance measures are given in the figures

given in Appendix D. The other observations based on the simulation results

are as follows:

• Average and variance of the inventory carried get higher when both re-

tailers use adaptive ordering policy. Hence, the inventory holding costs

defined in the objective function of MODEL 4 increase even though the

constraint on no-stockout probability cannot be satisfied.

• Variance of the order quantity for both retailers also increases when both

retailers use adaptive ordering policy. Thus, the bullwhip effect is present

and both retailers contribute equally to the bullwhip effect.

78



• Both mean and variance of the replenishment lead times are higher when

both retailers use adaptive ordering policy. Thus, the effect of lead time

syndrome on the system is bigger for this case.

Based on the above observations, we conclude that all of the performance mea-

sures deteriorate when both retailers use adaptive (R, St) policy compared to

only one retailer uses adaptive policy and the deterioration gets larger as the

update period gets shorter. The following numerical example is considered to

answer what happens if the utilization level of the supplier is higher than 90%.
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Table 4.5: Results of the simulations when both retailers uses adaptive policy, u = 90%.

Retailer 1 2 1 2 1 2
Update Period 50 50 25 25 10 10

Mean Demand 100.00 100.02 100.00 100.02 100.00 100.02

Variance of Demand 899.20 899.18 899.20 899.18 899.20 899.18
Mean Order Up To Level 170.44 170.58 174.96 175.49 187.58 189.22
Variance of Order Up To Level 166.38 171.88 443.02 476.55 1454.22 1653.86
Mean Order Quantity 100.00 100.02 100.00 100.02 100.00 100.02
Variance of Order Quantity 904.13 904.15 918.83 919.87 1003.37 1015.84
Mean Replenishment Lead Time 0.5669 0.5669 0.5712 0.5711 0.5964 0.5963
Variance of Rep. Lead Time 0.0485 0.0486 0.0512 0.0515 0.0691 0.0705
Mean Net Inventory 109.70 109.82 113.73 114.21 123.52 124.93
Variance of Net Inventory 3649.30 3656.60 3906.03 3946.29 4752.66 4961.12
Average Inventory Carried 110.25 110.37 114.29 114.77 124.12 125.56
Variance of Inventory Carried 3489.75 3496.45 3740.94 3779.01 4566.00 4762.42
Fill Rate (β) 97.59% 97.58% 97.64% 97.62% 97.68% 97.58%
No-Stockout Probability (α) 94.91% 94.90% 94.80% 94.78% 94.42% 94.31%
Half-width for 95% Confidence Level 0.08% 0.07% 0.07% 0.07% 0.06% 0.06%
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Figure 4.4: Upper and lower limits on no-stockout probability for different update
periods based on 95% confidence level, Retailer 1, Numerical Example 9.

Figure 4.5: Upper and lower limits on no-stockout probability for different update
periods based on 95% confidence level, Retailer 2, Numerical Example 9.

81



Numerical Example 10. In this example, the same settings in Numerical Ex-

amples 8 and 9 are used except that the utilization level of the supplier is 95%.

Again, the target service level is chosen as 95% for both retailers. �

The results obtained by simulating the system with u = 95% is given in Table

4.6 for the case only Retailer 2 uses adaptive ordering policy. As it is seen in

Figures 4.6 and 4.7, we cannot conclude that α-service levels obtained by one

of the retailers are higher or lower than α-service levels obtained by the other

retailer. Mean inventories carried by both retailers are compared in Figure 4.8

and we observe that mean inventory carried decreases slightly for Retailer 1 and

increases slightly for retailer 2 as update period gets shorter but there is no

significant difference between mean inventories carried by the retailers. Based

on these observations, we conclude that there is no gain for Retailer 2 by em-

ploying adaptive ordering policy instead of stationary ordering policy. For the

case both retailers use adaptive ordering policy, the simulation results are given

in Table 4.7. Similar to the simulation results of Numerical Example 9, there

are worsening in the performance measures for both retailers. As it is seen in

Figures 4.9 and 4.9, these deteriorations are much higher for u = 95% when

compared to the simulation results for u = 90%.
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Table 4.6: Simulation results when only Retailer 2 uses adaptive ordering policy, u = 95%.

Retailer 1 2 1 2 1 2 1 2
S for stationary (R, S) policy 255.45 255.45 255.45 - 255.45 - 255.45 -
Update Duration (review periods) - - - 50 - 25 - 10

Mean Demand 100.00 100.02 100.00 100.02 100.00 100.02 100.00 100.02

Variance of Demand 899.20 899.18 899.20 899.18 899.20 899.18 899.20 899.18
Mean Order Up To Level - - - 256.71 - 257.87 - 259.80
Variance of Order Up To Level - - - 288.99 - 549.77 - 1147.86
Mean Order Quantity 100.00 100.02 100.00 100.02 100.00 100.02 100.00 100.02
Variance of Order Quantity 899.20 899.18 899.20 906.15 899.20 917.39 899.20 957.66
Mean Replenishment Lead Time 0.8050 0.8050 0.8071 0.8072 0.8113 0.8113 0.8228 0.8227
Variance of Rep. Lead Time 0.1810 0.1810 0.1835 0.1837 0.1895 0.1900 0.2038 0.2051
Mean Net Inventory 170.67 170.65 170.49 171.69 170.07 172.37 168.92 172.96
Variance of Net Inventory 4784.93 4785.63 4811.22 5033.89 4874.76 5229.59 5024.04 5645.96
Average Inventory 171.46 171.43 171.30 172.49 170.95 173.16 169.94 173.76
Variance of Average Inventory 4443.52 4445.46 4461.32 4691.37 4494.20 4887.96 4576.21 5303.51
Fill Rate (β) 98.09% 98.08% 98.05% 98.02% 97.96% 97.99% 97.75% 97.90%
No-Stockout Probability (α) 95.00% 94.98% 94.93% 94.79% 94.80% 94.70% 94.47% 94.52%
Half-width for 95% Confidence Level 0.14% 0.14% 0.13% 0.14% 0.14% 0.14% 0.15% 0.13%
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Figure 4.6: No-stockout probabilities for Retailers 1 when only Retailer 2 uses adaptive
ordering policy.

Figure 4.7: No-stockout probabilities for Retailers 2 when only Retailer 2 uses adaptive
ordering policy.
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Figure 4.8: Mean inventory carried for Retailers 1 and 2 when only Retailer 2 uses
adaptive ordering policy.
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Table 4.7: Simulation results when both retailers use adaptive policy, u = 95%.

Retailer 1 2 1 2 1 2
Update Duration (review periods) 50 50 25 25 10 10

Mean Demand 100.00 100.02 100.00 100.02 100.02 100.02

Variance of Demand 899.20 899.18 899.20 899.18 899.18 899.18
Mean Order Up To Level 257.75 258.03 261.84 262.16 297.99 297.99
Variance of Order Up To Level 380.16 388.57 1053.42 1078.40 10244.70 10244.70
Mean Order Quantity 100.00 100.02 100.00 100.02 100.01 100.01
Variance of Order Quantity 907.24 907.23 925.33 925.11 1080.50 1080.50
Mean Replenishment Lead Time 0.8122 0.8122 0.8297 0.8296 1.0154 1.0154
Variance of Rep. Lead Time 0.1903 0.1905 0.2165 0.2170 0.6015 0.6015
Mean Net Inventory 172.24 172.47 174.49 174.72 190.75 190.75
Variance of Net Inventory 5137.71 5151.39 5703.92 5728.00 11064.31 11064.31
Average Inventory 173.07 173.30 175.37 175.60 191.99 191.99
Variance of Average Inventory 4780.78 4794.44 5318.91 5343.42 10470.38 10470.38
Fill Rate (β) 97.99% 97.99% 97.88% 97.88% 97.16% 97.16%
No-Stockout Probability (α) 94.78% 94.77% 94.60% 94.59% 93.58% 93.58%
Half-width for 95% Confidence Level 0.14% 0.14% 0.14% 0.15% 0.13% 0.13%
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Figure 4.9: Comparison of no-stockout probabilities for the cases only Retailer 2 or
both retailers use adaptive policies, Retailer 2.

Figure 4.10: Comparison of mean inventory carried for the cases only Retailer 2 or
both retailers use adaptive policies, Retailer 2.
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For the case only Retailer 2 uses adaptive ordering policy, the simulation results

given in Table 4.6 for u = 95% are compared with the simulation results given

in Table 4.4 for u = 90%. First of all, α-service levels obtained by Retailer 1

and 2 for u = 95% are smaller than the ones obtained for u = 90% as it can be

seen in Figures 4.11 and 4.12. However, the difference between α-service levels

obtained by Retailer 2 gets larger as update frequency increases and eventually

Retailer 2 observes slightly higher α-service levels when compared to Retailer 1

as update period is 10 review period. Recall this is not the case for u = 90%.

Secondly, mean inventory carried by both retailers is higher for u = 95% com-

pared to u = 90% for all update periods. Figures E.1 and E.2 in Appendix E

illustrates this situation. But, oppose to the observations for u = 90%, there is

almost no increase in mean inventory carried by both retailers as update period

gets shorter for u = 95%. The comparisons for variance of the order quantities

and the order-up-to-levels are given in Figures E.3 and E.4 in Appendix E, re-

spectively. Interestingly, variance of the order quantity for u = 90% is higher

compared to u = 95% when update period is 10 review periods although the

situation is reverse for variance of the order-up-to-level.

For the case both retailers use adaptive ordering policy, it is seen that all per-

formance measures in the long-run deteriorate for 95% utilization level when

compared to 90% utilization level. Figures E.5, E.6, E.7 in Appendix E com-

pare the simulation results for α-service levels, mean inventory levels and vari-

ance of the order quantity, respectively. When the results in Table 4.5 and 4.7

for u = 90% and u = 95%, respectively, are compared, we come up with the

followingobservations for the same values of update period.

• Means and variances of the order-up-to-level and order quantity are higher

for 95% utilization level.
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• Mean and variance of the replenishment lead time are higher for 95%

utilization level.

• Means and variances of inventory-on-hand are higher for 95% utilization

level. This observation shows that safety stock to achieve the same service

level is higher for 95% utilization level.

• Decreases in fill rate and no-stockout probability are higher for 95% uti-

lization level.
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Figure 4.11: Comparison of no-stockout probabilities for u = 90% and u = 95% when
only Retailer 2 uses adaptive ordering policy, Retailer 1.

Figure 4.12: Comparison of no-stockout probabilities for u = 90% and u = 95% when
only Retailer 2 uses adaptive ordering policy, Retailer 2.
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Chapter 5

CONCLUSION

In this study, we analyze two-echelon supply chain systems with the retailer(s)

at the lower echelon and the supplier at the upper echelon. Degree of the depen-

dence between ordering policy of the retailer(s) and the production system of the

supplier is varied in our models. The models with exogenous and endogenous re-

plenishment lead times are studied for both single-retailer and two-retailer cases.

In Chapter 3, the models with single retailer are considered. For stationary

(R, S) policy, the existing methods to calculate order-up-to-level for a given no-

stockout probability during the review period are reviewed in Section 3.1 and a

new method is proposed for exogenous replenishment lead time. The proposed

method is based on the use of the distribution of inventory-on-order while the

methods in the literature are mainly based on the use of the distribution of the

demand during the risk period. Simulation results show that the order-up-to-

level calculated by using the proposed method provides service levels that are

almost equal to the target service levels. This cannot be ensured by using the

existing methods. In the case of endogenous replenishment time, use of simu-

lation is preferred avoiding the difficult exact analysis to obtain the conditional

distributions of the inventory-on-order given the number of outstanding orders.

Then, order-up-to-levels are calculated using the estimates obtained by the ini-

tial simulation run. The proposed method given for exogenous replenishment
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lead time can be used to determine order-up-to-level for endogenous replenish-

ment lead time. Based on the simulation results presented in Section 3.2, it

is seen that the proposed method give no-stockout probabilities very close to

target levels for endogenous replenishment lead time.

The impacts of using an adaptive (R, St) policy on the performance of the re-

tailer are questioned in Section 3.3. The experimental results indicate that the

updating of the order-up-to-level causes the performance of the retailer to get

worse as update frequency increases.

In Chapter 4, the analysis is extended to the models with two retailers for the

case of endogenous replenishment lead times. Then, it is questioned whether

it is beneficial for a retailer to use an adaptive (R, St) policy in a supply chain

with two retailers. Simulation results show that performances of both retailers

get worse even if only one of them uses an adaptive policy. However, the deteri-

oration in the performance of the retailer using stationary (R, S) policy is larger

than the performance of the other retailer handling adaptive (R, St) policy. We

also observe that the deterioration gets larger in the case of an increase in the

update frequency or in the utilization of the supplier. Moreover, based on the

observations obtained in Section 4.2, we conclude that all of the performance

measures deteriorate when both retailers use adaptive (R, St) policy and the

deterioration gets larger as the update period gets shorter.

The models analyzed in this thesis can be extended in several ways. In the

periodic-review base-stock policies discussed in this thesis, we assume that an

order is replaced at every point that the inventory is reviewed and this is the

optimal ordering policy since there is no fixed ordering cost in the models con-

sidered in this thesis. In the case there exists fixed ordering costs, the ordering
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policy employed by the retailer can be extended such that orders are not placed

at every review point to avoid incurring excessive ordering costs. Moreover, the

distribution of the demand during a review period is assumed to be Normal in

the studied models. Then, the models with different demand distributions can

be considered as a future research direction.

For two-retailer case, we studied the models where the retailers operates in

independent markets and observe equivalent customer demands. In the case the

retailers share same market or operate in independent markets with different

sizes of the customer demand, the use of adaptive ordering policies by one or

both of the retailers should be reinvestigated. In that case, the retailer having

larger market share or observing higher customer demand may take advantage of

using adaptive ordering policy since the orders placed by this retailer dominates

the production system of the supplier. Another restriction in our models is the

assumption for constant service time of the supplier for each unit in endogenous

replenishment lead time case. Then, the models can be extended to have service

times resulted from different probability distributions rather than to be constant.
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Appendix A

Simulation Code

SIMAN PROJECT ENVIRONMENT

PROJECT, ”Unnamed Project”,”METU”,,,No,Yes,Yes,Yes,No,No,Yes;

ATTRIBUTES:

1,CustomerType,0:

2,QuantityToDuplicate,0:

3,TimeIntoManufacturer,0:

4,QuantityToDuplicate 2,0:

5,Order Period,0:

6,Order Period 2,0:

OUT Calculated,77.85:

OUT Calculated 2,78.41;

VARIABLES:

AverageTimes(50,25),CLEAR(System):

OnOrderInventory 2(30),CLEAR(System),0:

OOI 2(30,50001),CLEAR(System),0:

LA(30,50001),CLEAR(System),0:

NumberInManufacturing(30),CLEAR(System),0:

Demand(30),CLEAR(System),0:

PeriodControl(30),CLEAR(System),0:

VariableFlowTime(50),CLEAR(System),0.095:

StockoutPeriod 2(30),CLEAR(System),0:

NA(30,50001),CLEAR(System),0:

Order Quantity 2(30),CLEAR(System),0:

Waiting Orders(30),CLEAR(System),0:

PeriodControl 2(30),CLEAR(System),0:

OnHandInventory(30),CLEAR(System),50:

NumOfTimes 2(50,25),CLEAR(System):

OP(30,50001),CLEAR(System),0:

OP 2(30,50001),CLEAR(System),0:

NLT(30),CLEAR(System),0:

Demand 2(30),CLEAR(System),0:

OnOrderNumber(30,50001),CLEAR(System),0:
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AverageTimes 2(50,25),CLEAR(System):

DA 2(30,50001),CLEAR(System),0:

NLT 2(30),CLEAR(System),0:

OnHandInventory 2(30),CLEAR(System),50:

Period(30),CLEAR(System),0:

Stockout 2(30),CLEAR(System),0:

LA 2(30,50001),CLEAR(System),0:

DA(30,50001),CLEAR(System),0:

NA 2(30,50001),CLEAR(System),0:

Order Up To Point(30),CLEAR(System),100:

Waiting Orders 2(30),CLEAR(System),0:

OnOrderNumber 2(30,50001),CLEAR(System),0:

VarianceTimes(50,25),CLEAR(System):

Order Quantity(30),CLEAR(System),0:

OOI(30,50001),CLEAR(System),0:

LeadTimeDemand(30),CLEAR(System),0:

StockoutPeriod(30),CLEAR(System),0:

VarianceTimes 2(50,25),CLEAR(System):

Period 2(30),CLEAR(System),0:

LeadTimeDemand 2(30),CLEAR(System),0:

StockoutControl(30),CLEAR(System),0:

Rep Lead Time 2(30),CLEAR(System),0:

Order Up To Point 2(30),CLEAR(System),81.29:

OnOrderInventory(30),CLEAR(System),0:

Rep Lead Time(30),CLEAR(System),0:

Stockout(30),CLEAR(System),0:

NumOfTimes(50,25),CLEAR(System):

StockoutControl 2(30),CLEAR(System),0;

QUEUES:

1,WaitingQueue,FirstInFirstOut:

2,ShopQueue,FirstInFirstOut;

FAILURES:

1,Failure 1,Time(EXPO(100),EXPO(2),);

RESOURCES:

1,Waiting,Capacity(1),,Stationary,COST(0.0,0.0,0.0):

2,Machine,Capacity(1),,Stationary,COST(0.0,0.0,0.0);

COUNTERS:

1,TotalDemand,,Replicate,”C:\Total Demand.dat”:

2,TotalStockout,,Replicate,

”C:\Total Stockout.dat”:

3,ValueLookCount,,Replicate:

4,StockoutPeriodCount,,Replicate:

5,CountedPeriod,,Replicate:

6,CountedAlphaPeriod,,Replicate:
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7,StockoutAlphaPeriodCount,,Replicate:

8,TotalAlphaStockout,,Replicate:

9,UpdateTimes,,Replicate:

101,TotalDemand 2,,Replicate,

”C:\Total Demand 2.dat”:

102,TotalStockout 2,,Replicate,

”C:\Total Stockout 2.dat”:

103,ValueLookCount 2,,Replicate:

104,StockoutPeriodCount 2,,Replicate:

105,CountedPeriod 2,,Replicate;

TALLIES:

1,DemandTally,”C:\Demand.dat”:

2,OrderUpToPoint,”C:\OrderUpToPoint.dat”:

3,OrderQuantity,”C:\OrderQuantity.dat”:

4,RealizedLeadTime,”C:\RealizedLeadTime.dat”:

6,Rep Lead Time Tally:

7,LTDemandTally,”C:\LTDemandTally.dat”:

8,Net Stock Tally,”C:\NetStockTally.dat”:

9,On Order Inventory Tally,

”C:\OnOrderInventoryTally.dat”:

10,telly tally,”C:\telly tally.dat”:

101,DemandTally 2,”C:\Demand 2.dat”:

102,OrderUpToPoint 2,”C:\OrderUpToPoint 2.dat”:

103,OrderQuantity 2,”C:\OrderQuantity 2.dat”:

104,RealizedLeadTime 2,

”C:\RealizedLeadTime 2.dat”:

106,Rep Lead Time Tally 2:

107,LTDemandTally 2,”C:\LTDemandTally 2.dat”:

108,Net Stock Tally 2,”C:\NetStockTally 2.dat”:

109,On Order Inventory Tally 2,

”C:\OnOrderInventoryTally 2.dat”:

110,telly tally 2,”C:\telly tally 2.dat”:

Cum Lead Times 2:

Cum Outstanding Orders:

Cum Lead Time Demand 2:

Cum Outstanding Orders 2:

Cum Lead Times,”C:\000\Cum Lead Times.dat”:

Cum Inventory On Order 2:

Cum Lead Time Demand,

”C:\000\Cum Lead Time Demand.dat”:

Cum Inventory On Order;

DSTATS:

1,Max(0, OnHandInventory(1)),Average Inventory,

”C:\Average Inventory.dat”:

2,Max(0, -OnHandInventory(1)),Average Backlog,

”C:\Average Backlog.dat”:
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3,OnHandInventory(1),Net Stock,”C:\Net Stock.dat”:

101,Max(0, OnHandInventory 2(1)),Average Inventory 2,

”C:\Average Inventory 2.dat”:

102,Max(0, -OnHandInventory 2(1)),Average Backlog 2,

”C:\Average Backlog 2.dat”:

103,OnHandInventory 2(1),Net Stock 2,

”C:\Net Stock 2.dat”:

1000,NumberInManufacturing(1),Number In Manufacturing,

”C:\NumberInManufacturing.dat”;

OUTPUTS:

1,TAVG(DemandTally),,Mean Demand:

2,TSTD(DemandTally)**2,,Variance of Demand:

3,TAVG(OrderUpToPoint),,Mean Order Up To Point:

4,TSTD(OrderUpToPoint)**2,,Var. of Or. Up To Point:

5,TAVG(OrderQuantity),,Mean Order Quantity:

6,TSTD(OrderQuantity)**2,,Var. of Order Quantity:

7,TAVG(RealizedLeadTime)/PeriodLong,,Mean Real. Lead Time:

8,(TSTD(RealizedLeadTime)**2)/(PeriodLong**2),,Var. of Real. Lead Time:

9,DAVG(Net Stock),,Mean Net Stock:

10,DSTD(Net Stock)**2,,Var. of Net Stock:

11,DAVG(Average Inventory),,Average Inventory:

12,DSTD(Average Inventory)**2,,Var. of Average Inventory:

14,DAVG(Average Backlog),,Average Backlog:

15,DSTD(Average Backlog)**2,,Var. of Average Backlog:

16,NC(TotalDemand),,TotalDemand:

17,NC(TotalStockout),,Total Stockout:

18,1-NC(TotalStockout)/NC(TotalDemand),,Percent Stockout:

19,1-NC(StockoutPeriodCount)/NC(CountedPeriod),,% Stockout Period:

22,TAVG(Rep Lead Time Tally):

23,TSTD(Rep Lead Time Tally)**2:

24,TAVG(LTDemandTally):

25,TSTD(LTDemandTally)**2:

101,TAVG(DemandTally 2),,Mean Demand 2:

102,TSTD(DemandTally 2)**2,,Variance of Demand 2:

103,TAVG(OrderUpToPoint 2),,Mean OUT Point 2:

104,TSTD(OrderUpToPoint 2)**2,,Var. of OU To Point 2:

105,TAVG(OrderQuantity 2),,Mean Order Quantity 2:

106,TSTD(OrderQuantity 2)**2,,Var. of Order Quan 2:

107,TAVG(RealizedLeadTime 2)/PeriodLong 2,,Mean Real. Lead Time 2:

108,TSTD(RealizedLeadTime 2)**2/(PeriodLong 2**2),,Var. of Real. LeadTime 2:

109,DAVG(Net Stock 2),,Mean Net Stock 2:

110,DSTD(Net Stock 2)**2,,Var. of Net Stock 2:

111,DAVG(Average Inventory 2),,Average Inventory 2:

112,DSTD(Average Inventory 2)**2,,Var. of Avg. Inventory 2:

114,DAVG(Average Backlog 2),,Average Backlog 2:

115,DSTD(Average Backlog 2)**2,,Var. of Avg. Backlog 2:

116,NC(TotalDemand 2),,TotalDemand 2:
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117,NC(TotalStockout 2),,Total Stockout 2:

118,1-NC(TotalStockout 2)/NC(TotalDemand 2),,Percent Stockout 2:

119,1-NC(StockoutPeriodCount 2)/NC(CountedPeriod 2),,% Stockout Period 2:

122,TAVG(Rep Lead Time Tally 2):

123,TSTD(Rep Lead Time Tally 2)**2:

124,TAVG(LTDemandTally 2):

125,TSTD(LTDemandTally 2)**2:

998,DAVG(Number In Manufacturing),,Num. In Manuf. Mean:

999,DSTD(Number In Manufacturing)**2,,Num. In Manuf. Variance;

REPLICATE, 1,0.0,500000,Yes,Yes,10000,,,24.0,Hours;

EXPRESSIONS:

1,PeriodLong,10:

2,MeanDemand,100:

3,ErrorStdDev,30:

4,Ro,0:

5,Mu,MeanDemand * (1-Ro):

6,StdDev,SQRT ( (ErrorStdDev**2) * (1- (Ro**2) ) ):

7,zed,1.644853476:

8,SmoothFactor,1:

9,FlowTimeMean,0.09:

10,FlowTimeStdDev,0.00000001:

11,Alpha,0.01:

12,UpdateFreq,100:

13,ForecastPeriod,40000:

14,LTorLTD,0:

15,SLevel,1:

16,WhichOne,2:

101,PeriodLong 2,10:

102,MeanDemand 2,100:

103,ErrorStdDev 2,30:

104,Ro 2,0:

105,Mu 2,MeanDemand 2 * (1-Ro 2):

106,StdDev 2,SQRT ( (ErrorStdDev 2**2) * (1- (Ro 2**2) ) ):

107,zed 2,1.644853476:

108,SmoothFactor 2,1:

109,FlowTimeMean 2,0.0045:

110,FlowTimeStdDev 2,0.00000001:

111,Alpha 2,0.01:

112,UpdateFreq 2,25000:

113,ForecastPeriod 2,20000:

114,LTorLTD 2,3:

115,SLevel 2,1:

116,WhichOne 2,2:

Single Process,0:

LimitNumber,125:

Limit,0:
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FlowChange,0.05:

First Creation 2,55555555;

SIMAN MODEL ENVIRONMENT

0$ CREATE, 1:PeriodLong:NEXT(1$);

1$ ASSIGN: Period(1)=Period(1)+1:

CustomerType=1:

Demand(1)=max (0, (Mu+ Ro * (Demand(1) ) + NORM(0,StdDev,1) ) ):

DA(1,Period(1))=Demand(1);

5$ TALLY: DemandTally,Demand(1),1;

2$ COUNT: TotalDemand,Demand(1);

3$ ASSIGN: Stockout(1)= (OnHandInventory(1)<=0)*Demand(1) +

(OnHandInventory(1)>0)*Max(0, (Demand(1) - OnHandInventory(1)) ):

StockoutPeriod(1)=(Stockout(1)>0)*1:

OnHandInventory(1)=OnHandInventory(1) - Demand(1);

38$ TALLY: Net Stock Tally,OnHandInventory(1),1;

25$ COUNT: CountedPeriod,1;

24$ COUNT: StockoutPeriodCount,StockoutPeriod(1);

4$ COUNT: TotalStockout,Stockout(1);

6$ ASSIGN: max ( 0,(SmoothFactor* (Order Up To Point(1) -

(OnHandInventory(1)+OnOrderInventory(1))) ) ):

Order Period=Period(1):

OnOrderInventory(1)=OnOrderInventory(1) + Order Quantity(1);

41$ BRANCH, 1:

If,Order Quantity(1)>0,40$,Yes:

If,Order Quantity(1)==0,43$,Yes;

40$ ASSIGN: Waiting Orders(1)=Waiting Orders(1)+1;

43$ ASSIGN: OnOrderNumber(1,Period(1) )=Waiting Orders(1):

OOI(1,Period(1) )=OnOrderInventory(1):NEXT(95$);

95$ IF: (Period(1)>50);

89$ ASSIGN: StockoutControl(1)=StockoutControl(1)+StockoutPeriod(1):

PeriodControl(1)=PeriodControl(1)+1;

96$ ENDIF;

90$ IF: ( Period(1)>=(UpdateFreq+50) ) * ( MOD(Period(1),updateFreq)==0 );

99$ TALLY: telly tally,1 - (StockoutControl(1)/PeriodControl(1) ),1;

97$ VBA: 1,vba;

98$ DUPLICATE: 1,XXX:NEXT(94$);

94$ COUNT: UpdateTimes,1;

93$ ENDIF;

91$ ENDIF: NEXT(7$);

7$ TALLY: OrderUpToPoint,Order Up To Point(1),1;

8$ TALLY: OrderQuantity,Order Quantity(1),1;

39$ TALLY: On Order Inventory Tally,OnOrderInventory(1),1;

42$ BRANCH, 1:
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If,Order Quantity(1)>0,32$,Yes:

If,Order Quantity(1)==0,31$,Yes;

32$ ASSIGN: QuantityToDuplicate=Order

Quantity(1)-1:MARK(TimeIntoManufacturer):NEXT(62$);

62$ ASSIGN: NumberInManufacturing(1)=NumberInManufacturing(1) +

(QuantityToDuplicate + QuantityToDuplicate 2);

68$ IF: NumberInManufacturing(1)>=LimitNumber;

69$ ASSIGN: VariableFlowTime(1)=FlowTimeMean-FlowChange;

71$ ELSEIF: NumberInManufacturing(1)<LimitNumber;

72$ ASSIGN: VariableFlowTime(1)=FlowTimeMean;

70$ ENDIF;

60$ QUEUE, WaitingQueue;

61$ SEIZE, 1,Other:

Waiting,1:NEXT(73$);

73$ BRANCH, 1:

If,Single Process==1,84$,Yes:

If,Single Process==0,74$,Yes;

84$ BRANCH, 1:

If,CustomerType==1,88$,Yes:

If,CustomerType==2,85$,Yes;

88$ DUPLICATE: AINT(QuantityToDuplicate):NEXT(77$);

77$ QUEUE, ShopQueue;

78$ SEIZE, 1,Other:

Machine,1:NEXT(79$);

79$ BRANCH, 1:

If,CustomerType==1,80$,Yes:

If,CustomerType==2,83$,Yes;

80$ DELAY: FlowTimeMean,,Other:NEXT(81$);

81$ RELEASE: Machine,1;

86$ BRANCH, 1:

If,CustomerType==1,82$,Yes:

If,CustomerType==2,87$,Yes;

82$ GROUP, ,Permanent:AINT(QuantityToDuplicate)+1,First:NEXT(67$);

87$ GROUP, ,Permanent:AINT(QuantityToDuplicate 2)+1,First:NEXT(67$);

83$ DELAY: FlowTimeMean 2,,Other:NEXT(81$);

85$ DUPLICATE: AINT(QuantityToDuplicate 2):NEXT(77$);

67$ RELEASE: Waiting,1;

64$ BRANCH, 1:

If,CustomerType==1,65$,Yes:
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If,CustomerType==2,66$,Yes;

65$ DELAY: 0,,Other:NEXT(63$);

63$ ASSIGN: NumberInManufacturing(1)=NumberInManufacturing(1) -

(QuantityToDuplicate + QuantityToDuplicate 2)

:NEXT(9$);

66$ DELAY: 0,,Other:NEXT(63$);

74$ BRANCH, 1:

If,CustomerType==1,75$,Yes:

If,CustomerType==2,76$,Yes;

75$ DELAY: FlowTimeMean * (QuantityToDuplicate+1),,Other:NEXT(67$);

76$ DELAY: FlowTimeMean 2 * (QuantityToDuplicate 2+1),,Other:NEXT(67$);

9$ BRANCH, 1:

If,CustomerType==1,10$,Yes:

If,CustomerType==2,23$,Yes;

10$ TALLY: RealizedLeadTime,INT(TimeIntoManufacturer),1;

28$ ASSIGN: Rep Lead Time(1)=AINT( TVALUE(RealizedLeadTime) / PeriodLong):

NLT(1)=NLT(1)+1:

LA(1,NLT(1) )=Rep Lead Time(1):

OP(1,NLT(1) )=Order Period;

29$ TALLY: Rep Lead Time Tally,Rep Lead Time(1),1;

50$ VBA: 3,vba;

30$ TALLY: LTDemandTally,LeadTimeDemand(1),1;

56$ TALLY: Cum Lead Times,Rep Lead Time(1),1;

57$ TALLY: Cum Lead Time Demand,LeadTimeDemand(1),1;

11$ ASSIGN: OnHandInventory(1)=OnHandInventory(1) + (QuantityToDuplicate+1):

OnOrderInventory(1)=OnOrderInventory(1) - (QuantityToDuplicate+1):

Waiting Orders(1)=Waiting Orders(1)-1;

12$ DISPOSE: No;

23$ TALLY: RealizedLeadTime 2,INT(TimeIntoManufacturer),1;

34$ ASSIGN: Rep Lead Time 2(1)=AINT( TVALUE(RealizedLeadTime 2) /

PeriodLong 2 ):

NLT 2(1)=NLT 2(1)+1:

LA 2(1,NLT 2(1) )=Rep Lead Time 2(1):

OP 2(1,NLT 2(1) )=Order Period 2;

35$ TALLY: Rep Lead Time Tally 2,Rep Lead Time 2(1),1;

51$ VBA: 4,vba;

36$ TALLY: LTDemandTally 2,LeadTimeDemand 2(1),1;

58$ TALLY: Cum Lead Times 2,Rep Lead Time 2(1),1;

59$ TALLY: Cum Lead Time Demand 2,LeadTimeDemand 2(1),1;

37$ ASSIGN: OnHandInventory 2(1)=OnHandInventory 2(1) +

(QuantityToDuplicate 2+1):

OnOrderInventory 2(1)=OnOrderInventory 2(1) - (QuantityToDuplicate 2+1):
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Waiting Orders 2(1)=Waiting Orders 2(1) - 1:NEXT(12$);

31$ DISPOSE: Yes;

13$ CREATE, 1,First Creation 2:PeriodLong 2:NEXT(14$);

14$ ASSIGN: Period 2(1)=Period 2(1)+1:

CustomerType=2:

Demand 2(1)=max (0, (Mu 2+ Ro 2 * (Demand 2(1) ) + NORM(0,StdDev 2,25) ) ):

DA 2(1,Period 2(1) )=Demand 2(1);

18$ TALLY: DemandTally 2,Demand 2(1),1;

15$ COUNT: TotalDemand 2,Demand 2(1);

16$ ASSIGN: Stockout 2(1)= (OnHandInventory 2(1)<=0)*Demand 2(1) +

(OnHandInventory 2(1)>0)*Max(0, (Demand 2(1) - OnHandInventory 2(1)) ):

StockoutPeriod 2(1)=(Stockout 2(1)>0)*1:

OnHandInventory 2(1)=OnHandInventory 2(1) - Demand 2(1);

44$ TALLY: Net Stock Tally 2,OnHandInventory 2(1),1;

27$ COUNT: CountedPeriod 2,1;

26$ COUNT: StockoutPeriodCount 2,StockoutPeriod 2(1);

17$ COUNT: TotalStockout 2,Stockout 2(1);

19$ ASSIGN: Order Quantity 2(1)= max ( 0, (SmoothFactor 2* (Order Up To

Point 2(1) - (OnHandInventory 2(1)+OnOrderInventory 2(1))) ) ):

Order Period 2=Period 2(1):

OnOrderInventory 2(1)=OnOrderInventory 2(1) + Order Quantity 2(1);

46$ BRANCH, 1:

If,Order Quantity 2(1)>0,45$,Yes:

If,Order Quantity 2(1)==0,47$,Yes;

45$ ASSIGN: Waiting Orders 2(1)=Waiting Orders 2(1)+1;

47$ ASSIGN: OnOrderNumber 2(1,Period 2(1) )=Waiting Orders 2(1):

OOI 2(1,Period 2(1) )=OnOrderInventory 2(1):NEXT(103$);

103$ IF: (Period 2(1)>50);

100$ ASSIGN: StockoutControl 2(1)=StockoutControl 2(1)+StockoutPeriod 2(1):

PeriodControl 2(1)=PeriodControl 2(1)+1;

104$ ENDIF;

101$ IF: ( Period 2(1)>=(UpdateFreq 2+50) ) * (

MOD(Period 2(1),updateFreq 2)==0 );

109$ TALLY: telly tally 2,1 - (StockoutControl 2(1)/PeriodControl 2(1) ),1;

107$ VBA: 2,vba;

108$ DUPLICATE: 1,YYY:NEXT(106$);

106$ ENDIF;

102$ ENDIF: NEXT(21$);

21$ TALLY: OrderUpToPoint 2,Order Up To Point 2(1),1;

22$ TALLY: OrderQuantity 2,Order Quantity 2(1),1;

49$ TALLY: On Order Inventory Tally 2,OnOrderInventory 2(1),1;

106



48$ BRANCH, 1:

If,Order Quantity 2(1)>0,33$,Yes:

If,Order Quantity 2(1)==0,20$,Yes;

33$ ASSIGN: QuantityToDuplicate 2=Order Quantity 2(1)-1:

MARK(TimeIntoManufacturer):NEXT(62$);

20$ DISPOSE: Yes;

XXX DELAY: 0.01,,Other:NEXT(53$);

53$ VBA: 5,vba;

54$ DISPOSE: No;

YYY DELAY: 0.01,,Other:NEXT(52$);

52$ VBA: 6,vba;

55$ DISPOSE: No;

VISUAL BASIC APPLICATION CODE

Private Function normCDF (x As Double) As Double

y = Math.Abs(x)

p = 0.2316419

b1 = 0.31938153

b2 = -0.356563782

b3 = 1.781477937

b4 = -1.821255978

b5 = 1.330274429

z = (1 / (Math.Sqr(2 * 3.141592654)) * Math.Exp(-(y ˆ 2) / 2))

t = 1 / (1 + p * y)

normCDF = 1 - z * (b1 * t + b2 * t ˆ 2 + b3 * t ˆ 3 + b4 * t ˆ 4 + b5 * t ˆ 5)

If x < 0 Then

normCDF = 1 - normCDF

End If

End Function

Private Sub VBA Block 1 Fire()

Dim s As SIMAN

Set s = ThisDocument.Model.SIMAN

curDEPer = s.VariableArrayValue(s.SymbolNumber(”Period”, 1))

updFreq = s.ExpressionValue(s.SymbolNumber(”UpdateFreq”))

curLTPer = s.VariableArrayValue(s.SymbolNumber(”NLT”, 1))

SC = s.VariableArrayValue(s.SymbolNumber(”StockoutControl”, 1))

PC = s.VariableArrayValue(s.SymbolNumber(”PeriodControl”, 1))

Dim numTimes(25) As Long

Dim fracTimes(25) As Double

Dim sumDTimes(25) As Long

Dim aveDTimes(25) As Long

Dim LTD(25, 1000000) As Long
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Dim squareSum(25) As Double

Dim varDTimes(25) As Double

avePer = PC

Dim onHandTimes(1000000) As Integer

Dim leadTimes(1000000) As Integer

Dim r As Double

Dim z(25) As Double

Dim sum As Double

Dim mean As Double

Dim std As Double

mean = s.ExpressionValue(s.SymbolNumber(”MeanDemand”))

std = s.ExpressionValue(s.SymbolNumber(”ErrorStdDev”))

’ replace with 102, 103

WhichOne = s.ExpressionValue(s.SymbolNumber(”WhichOne”))

LTorLTD = s.ExpressionValue(s.SymbolNumber(”LTorLTD”))

’ replace with WhichOne 2, LTorLTD 2

r = 1

If (updFreq > 987654) Then

If (WhichOne = 1) Then

For i = 0 To (avePer - 1)

leadTimes(i) = s.VariableArrayValue(s.SymbolNumber(”LA”, 1, (curLTPer -

(LTorLTD) - i)))

numTimes(leadTimes(i)) = numTimes(leadTimes(i)) + 1

fracTimes(leadTimes(i)) = numTimes(leadTimes(i)) / avePer

sumDTimes(leadTimes(i)) = sumDTimes(leadTimes(i)) +

s.VariableArrayValue(s.SymbolNumber(”NA”, 1, (curLTPer - (LTorLTD) - i)))

LTD(leadTimes(i), (numTimes(leadTimes(i)) - 1)) =

s.VariableArrayValue(s.SymbolNumber(”NA”, 1, (curLTPer - (LTorLTD) - i)))

’ replace with LA 2, NA 2, NA 2

Next

If (LTorLTD = 0) Then

Do While sum < 0.95

sum = 0

For i = 1 To 25

z(i - 1) = (r - i * mean) / (Math.Sqr(i) * std)

sum = sum + fracTimes(i - 1) * normCDF(z(i - 1))

Next

r = r + 1

Loop

r = r - 2
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sum = 0

Do While sum < 0.95

sum = 0

For i = 1 To 25

z(i - 1) = (r - i * mean) / (Math.Sqr(i) * std)

sum = sum + fracTimes(i - 1) * normCDF(z(i - 1))

Next

r = r + 0.01

Loop

ElseIf (LTorLTD = 3) Then

For i = 0 To 24

If (numTimes(i) >= 1) Then

aveDTimes(i) = sumDTimes(i) / numTimes(i)

For j = 0 To (numTimes(i) - 1)

squareSum(i) = squareSum(i) + ((LTD(i, j) - aveDTimes(i)) ˆ 2)

Next

ElseIf (numTimes(i) = 0) Then

aveDTimes(i) = 0

End If

If (numTimes(i) > 1) Then

varDTimes(i) = squareSum(i) / (numTimes(i) - 1)

ElseIf (numTimes(i) <= 1) Then

varDTimes(i) = 0

End If

Next

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + fracTimes(i) * normCDF(z(i))

End If

Next

r = r + 1
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Loop

r = r - 2

sum = 0

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + fracTimes(i) * normCDF(z(i))

End If

Next

r = r + 0.01

Loop

End If

ElseIf (WhichOne = 2) Then

For i = 0 To (avePer - 1)

onHandTimes(i) = s.VariableArrayValue(s.SymbolNumber(”OnOrderNumber”, 1,

(curDEPer - i)))

numTimes(onHandTimes(i)) = numTimes(onHandTimes(i)) + 1

sumDTimes(onHandTimes(i)) = sumDTimes(onHandTimes(i)) +

s.VariableArrayValue(s.SymbolNumber(”OOI”, 1, (curDEPer - i)))

LTD(onHandTimes(i), (numTimes(onHandTimes(i)) - 1)) =

s.VariableArrayValue(s.SymbolNumber(”OOI”, 1, (curDEPer - i)))

’ replace with OnOrderNumber 2, OOI 2, OOI 2

Next

For i = 0 To 24

If (numTimes(i) >= 1) Then

aveDTimes(i) = sumDTimes(i) / numTimes(i)

fracTimes(i) = numTimes(i) / avePer

For j = 0 To (numTimes(i) - 1)

squareSum(i) = squareSum(i) + ((LTD(i, j) - aveDTimes(i)) ˆ 2)

Next

ElseIf (numTimes(i) = 0) Then

aveDTimes(i) = 0

End If
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If (numTimes(i) > 1) Then

varDTimes(i) = squareSum(i) / (numTimes(i) - 1)

ElseIf (numTimes(i) <= 1) Then

varDTimes(i) = 0

End If

Next

For i = 0 To 24

If (varDTimes(i) > 0) Then

sumOfFrac = sumOfFrac + fracTimes(i)

End If

Next

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + (fracTimes(i) / sumOfFrac) * normCDF(z(i))

End If

Next

r = r + 1

Loop

r = r - 2

sum = 0

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + (fracTimes(i) / sumOfFrac) * normCDF(z(i))

End If

Next

r = r + 0.01

Loop

End If
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End If

End Sub

Private Sub VBA Block 2 Fire()

Dim s As SIMAN

Set s = ThisDocument.Model.SIMAN

curDEPer = s.VariableArrayValue(s.SymbolNumber(”Period 2”, 1))

updFreq = s.ExpressionValue(s.SymbolNumber(”UpdateFreq 2”))

curLTPer = s.VariableArrayValue(s.SymbolNumber(”NLT 2”, 1))

’ replace with Period 2, UpdateFreq 2, NLT 2

SC = s.VariableArrayValue(s.SymbolNumber(”StockoutControl 2”, 1))

PC = s.VariableArrayValue(s.SymbolNumber(”PeriodControl 2”, 1))

’ replace with StockoutControl 2, PeriodControl 2

Dim numTimes(25) As Long

Dim fracTimes(25) As Double

Dim sumDTimes(25) As Long

Dim aveDTimes(25) As Long

Dim LTD(25, 1000000) As Long

Dim squareSum(25) As Double

Dim varDTimes(25) As Double

avePer = PC

Dim onHandTimes(1000000) As Integer

Dim leadTimes(1000000) As Integer

Dim r As Double

Dim z(25) As Double

Dim sum As Double

Dim mean As Double

Dim std As Double

mean = s.ExpressionValue(s.SymbolNumber(”MeanDemand 2”))

std = s.ExpressionValue(s.SymbolNumber(”ErrorStdDev 2”))

’ replace with MeanDemand 2, ErrorStdDev 2

WhichOne = s.ExpressionValue(s.SymbolNumber(”WhichOne 2”))

LTorLTD = s.ExpressionValue(s.SymbolNumber(”LTorLTD 2”))

’ replace with WhichOne 2, LTorLTD 2

r = 1

If (updFreq > 987654) Then

If (WhichOne = 1) Then

For i = 0 To (avePer - 1)

leadTimes(i) = s.VariableArrayValue(s.SymbolNumber(”LA 2”, 1, (curLTPer -

(LTorLTD) - i)))

numTimes(leadTimes(i)) = numTimes(leadTimes(i)) + 1

fracTimes(leadTimes(i)) = numTimes(leadTimes(i)) / avePer

sumDTimes(leadTimes(i)) = sumDTimes(leadTimes(i)) +

s.VariableArrayValue(s.SymbolNumber(”NA 2”, 1, (curLTPer - (LTorLTD) - i)))
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LTD(leadTimes(i), (numTimes(leadTimes(i)) - 1)) =

s.VariableArrayValue(s.SymbolNumber(”NA 2”, 1, (curLTPer - (LTorLTD) - i)))

’ replace with LA 2, NA 2, NA 2

Next

If (LTorLTD = 0) Then

Do While sum < 0.95

sum = 0

For i = 1 To 25

z(i - 1) = (r - i * mean) / (Math.Sqr(i) * std)

sum = sum + fracTimes(i - 1) * normCDF(z(i - 1))

Next

r = r + 1

Loop

r = r - 2

sum = 0

Do While sum < 0.95

sum = 0

For i = 1 To 25

z(i - 1) = (r - i * mean) / (Math.Sqr(i) * std)

sum = sum + fracTimes(i - 1) * normCDF(z(i - 1))

Next

r = r + 0.01

Loop

ElseIf (LTorLTD = 3) Then

For i = 0 To 24

If (numTimes(i) >= 1) Then

aveDTimes(i) = sumDTimes(i) / numTimes(i)

For j = 0 To (numTimes(i) - 1)

squareSum(i) = squareSum(i) + ((LTD(i, j) - aveDTimes(i)) ˆ 2)

Next

ElseIf (numTimes(i) = 0) Then

aveDTimes(i) = 0

End If

If (numTimes(i) > 1) Then

varDTimes(i) = squareSum(i) / (numTimes(i) - 1)
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ElseIf (numTimes(i) <= 1) Then

varDTimes(i) = 0

End If

Next

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + fracTimes(i) * normCDF(z(i))

End If

Next

r = r + 1

Loop

r = r - 2

sum = 0

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + fracTimes(i) * normCDF(z(i))

End If

Next

r = r + 0.01

Loop

End If

ElseIf (WhichOne = 2) Then

For i = 0 To (avePer - 1)

onHandTimes(i) = s.VariableArrayValue(s.SymbolNumber(”OnOrderNumber 2”, 1,

(curDEPer - i)))

numTimes(onHandTimes(i)) = numTimes(onHandTimes(i)) + 1

sumDTimes(onHandTimes(i)) = sumDTimes(onHandTimes(i)) +

s.VariableArrayValue(s.SymbolNumber(”OOI 2”, 1, (curDEPer - i)))

LTD(onHandTimes(i), (numTimes(onHandTimes(i)) - 1)) =

s.VariableArrayValue(s.SymbolNumber(”OOI 2”, 1, (curDEPer - i)))

’ replace with OnOrderNumber 2, OOI 2, OOI 2
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Next

For i = 0 To 24

If (numTimes(i) >= 1) Then

aveDTimes(i) = sumDTimes(i) / numTimes(i)

fracTimes(i) = numTimes(i) / avePer

For j = 0 To (numTimes(i) - 1)

squareSum(i) = squareSum(i) + ((LTD(i, j) - aveDTimes(i)) ˆ 2)

Next

ElseIf (numTimes(i) = 0) Then

aveDTimes(i) = 0

End If

If (numTimes(i) > 1) Then

varDTimes(i) = squareSum(i) / (numTimes(i) - 1)

ElseIf (numTimes(i) <= 1) Then

varDTimes(i) = 0

End If

Next

For i = 0 To 24

If (varDTimes(i) > 0) Then

sumOfFrac = sumOfFrac + fracTimes(i)

End If

Next

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + (fracTimes(i) / sumOfFrac) * normCDF(z(i))

End If

Next

r = r + 1

Loop
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r = r - 2

sum = 0

Do While sum < 0.95

sum = 0

For i = 0 To 24

If (numTimes(i) >= 2 And varDTimes(i) <> 0) Then

z(i) = (r - aveDTimes(i)) / (Math.Sqr(varDTimes(i)))

sum = sum + (fracTimes(i) / sumOfFrac) * normCDF(z(i))

End If

Next

r = r + 0.01

Loop

End If

End If

End Sub

Private Sub VBA Block 3 Fire()

Dim s As SIMAN

Set s = ThisDocument.Model.SIMAN

Dim LTD As Integer

Dim prevLT As Integer

curLTPer = s.VariableArrayValue(s.SymbolNumber(”NLT”, 1))

curDEPer = s.VariableArrayValue(s.SymbolNumber(”Period”, 1))

’ replace with NLT 2, Period 2

If (curLTPer > 3) Then

prevLT = s.VariableArrayValue(s.SymbolNumber(”LA”, 1, (curLTPer - 3)))

orderPer = s.VariableArrayValue(s.SymbolNumber(”OP”, 1, (curLTPer - 3)))

’ replace with LA 2, OP 2

For i = 0 To (prevLT)

perDemand = s.VariableArrayValue(s.SymbolNumber(”DA”, 1, (orderPer + 1 + i)))

’ replace with DA 2

LTD = LTD + perDemand

Next

s.VariableArrayValue(s.SymbolNumber(”NA”, 1, (curLTPer - 3))) = LTD

s.VariableArrayValue(s.SymbolNumber(”LeadTimeDemand”, 1)) = LTD

’ replace with NA 2, LeadTimeDemand 2, son satırı sil

Else

prevLT = 1
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End If

End Sub

Private Sub VBA Block 4 Fire()

Dim s As SIMAN

Set s = ThisDocument.Model.SIMAN

Dim LTD As Integer

Dim prevLT As Integer

curLTPer = s.VariableArrayValue(s.SymbolNumber(”NLT 2”, 1))

curDEPer = s.VariableArrayValue(s.SymbolNumber(”Period 2”, 1))

’ replace with 115, 101

If (curLTPer > 3) Then

prevLT = s.VariableArrayValue(s.SymbolNumber(”LA 2”, 1, (curLTPer - 3)))

orderPer = s.VariableArrayValue(s.SymbolNumber(”OP 2”, 1, (curLTPer - 3)))

’ replace with LA 2, OP 2

For i = 0 To (prevLT)

perDemand = s.VariableArrayValue(s.SymbolNumber(”DA 2”, 1, (orderPer + 1 + i)))

’ replace with DA 2

LTD = LTD + perDemand

Next

s.VariableArrayValue(s.SymbolNumber(”NA 2”, 1, (curLTPer - 3))) = LTD

s.VariableArrayValue(s.SymbolNumber(”LeadTimeDemand 2”, 1)) = LTD

’ replace with NA 2, LeadTimeDemand 2, son satırı sil

Else

prevLT = 1

End If

End Sub
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Appendix B

Figures for Numerical Example 6

Figure B.1: Plot of no-stockout probability vs. order-up-to-level for the update period
of 25 review periods, u = 95%.
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Figure B.2: Plot of no-stockout probability vs. order-up-to-level for the update period
of 100 review periods, u = 95%.

119



Figure B.3: Plot of order quantity for the update period of 10 review periods, u =
95%.

Figure B.4: Plot of order quantity for the update period of 100 review periods,
u = 95%.
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Appendix C

Figures for Numerical Example 8

Figure C.1: Simulation results for mean inventory carried.
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Figure C.2: Simulation results for variance of the order quantity.

Figure C.3: Simulation results for mean of the replenishment lead time.
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Figure C.4: Simulation results for variance of the replenishment lead time.
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Appendix D

Figures for Numerical Example 9

Figure D.1: Simulation results for variance of the order quantity, Retailer 2.
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Figure D.2: No-stockout probabilities for Retailer 2.

Figure D.3: Simulation results for mean inventory carried by Retailer 2.
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Figure D.4: Simulation results for mean of the replenishment lead time, Retailer 2.

Figure D.5: Simulation results for variance of the replenishment lead time, Retailer 2.
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Appendix E

Figures for Numerical Example 10

Figure E.1: Simulation results for mean inventory carried by Retailer 1 when only
Retailer 2 uses adaptive ordering policy.
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Figure E.2: Simulation results for mean inventory carried by Retailer 2 when only
Retailer 2 uses adaptive ordering policy.
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Figure E.3: Comparison of variance of the order quantity for u = 90% and u = 95%
when only Retailer 2 uses adaptive ordering policy.

Figure E.4: Comparison of variance of the order-up-to-level for u = 90% and u = 95%
when only Retailer 2 uses adaptive ordering policy.
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Figure E.5: Comparison of no-stockout probabilities for u = 90% and u = 95% when
only Retailer 2 uses adaptive ordering policy, Retailer 2.

Figure E.6: Simulation results for mean inventory carried by Retailer 2 when only
Retailer 2 uses adaptive ordering policy.
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Figure E.7: Comparison of variance of the order quantity for u = 90% and u = 95%
when both retailers use adaptive ordering policies.

131


