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ABSTRACT 
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IN FINITE DIFFERENCE SENSITIVITY CALCULATIONS 

 

 

Özhamam, Murat 

M.S., Department of Aerospace Engineering 

Supervisor: Assoc.Prof.Dr. Sinan Eyi 

 

December 2007, 94 Pages 

 

 

 

Accuracy of the finite difference sensitivity calculations are improved by 

calculating the optimum finite difference interval sizes. In an aerodynamic inverse 

design algorithm, a compressor cascade geometry is perturbed by shape functions 

and finite differences sensitivity derivatives of the flow variables are calculated with 

respect to the base geometry flow variables. Sensitivity derivatives are used in an 

optimization code and a new airfoil is designed verifying given design 

characteristics. Accurate sensitivities are needed for optimization process. In order to 

find the optimum finite difference interval size, a method is investigated. 

Convergence error estimation techniques in iterative solutions and second derivative 

estimations are investigated to facilitate this method. For validation of the method, 

analytical sensitivity calculations of Euler equations are used and several 

applications are performed.  
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Efficiency of the finite difference sensitivity calculations is improved by 

parallel computing. Finite difference sensitivity calculations are independent tasks in 

an inverse aerodynamic design algorithm and can be computed separately. 

Sensitivity calculations are performed on parallel processors and computing time is 

decreased.  

 

Keywords: Finite Difference Sensitivity Analysis, Inverse Aerodynamic Design 

Optimization, Convergence Error Estimation, Parallel Computing 
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ÖZ 

 

 

SONLU FARKLARLA DUYARLILIK HESAPLAMALARINDA  

HASSASİYET VE ETKİNLİĞİN ARTIRILMASI 

 

 

Özhamam, Murat 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç.Dr.Sinan Eyi 

 

Aralık 2007, 94 sayfa 

 

 

Sonlu farklarla duyarlılık türevi hesaplamalarında, en iyi sonlu fark aralığı 

hesaplanarak hassasiyet artırılmıştır. Bir ters aerodinamik tasarım algoritması 

üzerinde, bir kompresör kanatçığı geometrisi şekil fonksiyonlarıyla değiştirilmiş ve 

temel şekil ile yeni şekil akış verileri arasında sonlu farklar kullanılarak duyarlılık 

hesapları yapılmıştır. Duyarlılık türevi hesaplamaları bir optimizasyon koduna 

girilerek istenen özelliklerde yeni bir kanatçık profili tasarlanmıştır. Sonlu farklarla 

duyarlılık türevi hesaplamaları bu yakınsamada oldukça önemlidir. En iyi sonlu fark 

miktarını hesaplamak için bir metot üzerine çalışılmıştır. Bu metodun 

uygulanabilmesi için, yakınsamalı çözüm metotlarındaki yakınsama hatasının 

hesaplanması ve ikinci derece türev tahminleri üzerinde durulmuştur. Metodun 

doğrulanması için Euler analitik hassasiyet hesaplamaları kullanılmış ve çeşitli 

uygulamalar yapılmıştır.  
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Sonlu farklarla hassasiyet hesaplamalarında etkinlik, parallel işlemciler 

kullanılarak artırılmıştır. Sonlu farklarla duyarlılık türevi hesaplamaları bağımsız 

işlemlerdir ve ayrı ayrı hesaplanabilir. Paralel işlemciler kullanılarak hesaplamalar 

yapılmış ve tasarım süreci kısaltılmıştır.  

 

Anahtar Kelimeler: Sonlu Farklarla Duyarlılık Hesaplamaları, Ters 

Aerodinamik Tasarım Optimizasyonu,  İteratif Hata Tahmini,  Paralel İşlem 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Motivation 

The operation of aircraft and propulsion systems relies on performance of their 

aerodynamic components, such as air intakes, nozzles, wings, cascades, etc. 

Aerodynamic design of these systems requires engineering expertise, powerful 

design methods and computer aid. Engineers not only aim to minimize aerodynamic 

losses and increase performance, but also design the bodies with affordable costs and 

optimum shapes that can be easily manufactured and maintained. Aerodynamic 

shape design involves ability to determine the geometry that will satisfy specified 

aerodynamic objectives. For instance, it is possible to design an airfoil with a 

specified pressure distribution.  

Design procedure is categorized by direct and inverse methods. In direct 

methods, designer specifies a geometry and then analyzes its performance. Based on 

the analysis results, the designer modifies the shape in accordance with his 

experience. This is essentially equivalent to the wind tunnel design method of “trial 

and error”. Drawback of direct design is that designer should be capable and 

experienced to reach the required shape.    

In inverse design methods, designer is asked to predict the detailed geometry of 

the flying object so that it is compatible with specified features of the flow field. 
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Designer usually gets a base geometry and applies some geometry perturbations in 

order to reach the required flow field or surface parameters such as pressure 

distribution, lift or pitching moment. Inverse design may lead to unrealistic shapes 

although solutions are made mathematically correct where upper and lower surfaces 

can cross-over (fish tail).  

In inverse aerodynamic design, flow field design and surface flow design are 

the main categories. Surface flow design is achieved by specifying a certain flow 

parameter such as pressure or Mach number on the surface of the body and finding 

the shape that will generate these surface conditions without regard for the rest of the 

flow field. The flow field design enforces certain global flow field features such as 

shock-free flow or minimal entropy generation at every point of the flow field by 

finding the shape that will satisfy these global constraints. First shape design attempt 

is done by Joukowski.[1] Joukowski conformal mapping was actually a technique for 

designing a class of airfoil shapes having specified surface distribution of pressure 

that corresponds to a flow around a rotating cylinder.  

 In inverse design, there are two approaches that are used widely: solving an 

inverse problem and using optimization. Inverse problem computes an airfoil 

geometry which will produce a desired target pressure distribution without 

performing any analysis. Some difficulties may arise during the inverse problem. For 

a given cascade, a flow analysis always produces a pressure distribution at a given 

flow condition. However, the existence of the solution of the inverse problem is not 

always guaranteed, i.e. the target pressure distribution may not be generated by any 

cascade at the given flow condition. Furthermore in inverse design problem, the 

arbitrary selection of the target pressure distribution may produce a cascade shape 

that is not physically meaningful.  

Some of the difficulties associated with the inverse design problem can be 

eliminated by using optimization. An optimization-based design method minimizes a 

specified objective function by combining a flow solver with an optimization 
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algorithm. Beside the objective function, constraints can be imposed in order to 

satisfy some performance aspects. In this study, the inverse design is formulated as 

an unconstrained optimization in which the pressure discrepancy between the target 

and the designed cascade is the objective function. For a given design condition, an 

optimization method generally produces a physically meaningful cascade with the 

appropriate parameterization, even if no cascade will yield the target pressure 

distribution. 

Besides the advantages of optimization over the inverse problem, there are 

some important issues that have to be considered in order to make this method 

practical. The computational cost has been a major concern in design optimization. 

The computational performance of design optimization is greatly influenced by the 

cost and accuracy of the sensitivity calculations. Choice of flow models, design 

parameterization, and optimization algorithms also affect the performance of the 

optimized design. 

 Another major difficulty in non-linear design optimization is to find the global 

optimum. Some inverse designs use stochastic methods such as genetic algorithms. 

Stochastic methods have more advantages in finding globally optimum solution. 

However, these methods require large number of function evaluations and may not 

be suitable for practical design applications. In the present study, a deterministic 

method based on a least-square optimization is used. 

The major computational cost in aerodynamic design optimization is associated 

with the sensitivity calculations that evaluate the variation of the flow field with 

respect to geometry perturbations. There are two ways to reduce the design 

computational time. One way is to compute the sensitivities on parallel processors in 

order to reduce the execution time. The other way is to improve the accuracy of the 

sensitivity calculations. This also enhances the design performance. 

There are two methods to obtain the sensitivities: finite-difference and 

analytical methods. In analytical method, the sensitivities are obtained by 
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analytically differentiating the governing equations and the objective and constraint 

functions with respect to design variables. Analytical sensitivities can be obtained 

accurately; however, a sensitivity code has to be developed for each analysis code. 

This causes difficulties especially in complex analysis codes that involve non-

differentiable terms.  

Unlike the analytical method, the finite-difference method does not require an 

additional programming effort to build a dedicated sensitivity code. Finite-difference 

method has two drawbacks. One of them is the computational cost which is 

associated with the additional flow analyses required for each perturbed geometries. 

This cost can be reduced by initializing the flow-field of the perturbed geometry 

from the converged base solution. Parallel computing can also be used to calculate 

sensitivities on parallel processors in order to reduce the computational cost. The 

other drawback is the difficulty in predicting the accuracy of the sensitivities. Both of 

these problems are affected by the size of the finite-difference perturbation and flow 

variable initialization. However, errors in finite-difference sensitivity calculations 

can be reduced by developing a method to calculate the sensitivities with optimum 

perturbation size.  

The reliability of a design result also depends on the ability to accurately 

simulate the flow field. The flow model used in the design process should be able to 

represent all significant flow physics encountered during the process. In the past, 

designs were based mostly on the full potential equation. However, the potential 

formulation can not properly represent the transonic features such as embedded 

shock waves and shock boundary layer interactions. This study uses Euler and 

Navier-Stokes solutions that cover shock boundary layer interactions and viscosity.  

1.2 Objectives 

This study investigates the methods to improve the performances of the finite 

difference-sensitivity calculations in terms of accuracy and efficiency. In order to 

improve the accuracy, errors in finite difference sensitivities are to be minimized. An 
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error analysis was performed to investigate the errors in sensitivity analysis that 

involve truncation, cancellation and iterative errors. One of the objectives of this 

study is to estimate these errors accurately. An optimum step size that minimizes 

error in sensitivity calculation is studied. Calculation of optimum step size requires 

the estimation of convergence error. Therefore, an extended research has been 

pursued to estimate the convergence error. The accuracy of finite difference 

sensitivities are validated with analytical sensitivities. For efficiency improvement, 

parallel processing is used. Independent finite difference sensitivity calculations are 

run on different processors in order to decrease the computation time.  

1.3 Literature Survey 

Iott, Haftka and Adelman [2] already described selecting optimum finite 

difference interval sizes in sensitivity analyses by finite differences. This study 

covers structural examples and errors are estimated with the rough error bounds 

defined. Gill, Murray and Wright [3] covered several algorithms in order to find the 

optimum step sizes. Barton [4] also describes almost the same method for optimum 

step size. A recent study is done by Kirsch and Bogomolni [5] covering accuracies of 

the analytical and finite difference results. 

Effects of sensitivity analysis are examined by in both analytical and finite 

difference approaches. Most of the literature covers the analytical sensitivity 

derivatives. An adjoint sensitivity analysis is investigated by Chun-ho Sung and Jang 

Hyuk Kwon [6]. used analytical approaches for aerodynamic design optimization.  

Both analytical and finite difference methods are compared by Kocabıçak and Eyi 

[7] in a turbomachinery blade design case and results showed a further study is 

needed to over the accuracy problem of the finite difference approach. 

For calculating the optimum step sizes for finite difference sensitivity 

derivatives, estimation of the error in the variables are to be done. For estimation of 

the error in iterative solutions, Ferziger and Peric [8], [9] described a validated 

method. This method investigates the error propagation by eigenvalue analysis and 
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successive over relaxation. Successive over relaxation is deeply explained by 

Hoffmann [10] and Ferziger[11]. 

Kaplan’s thesis [12] covers an inverse design method which couples a Navier-

Stokes flow solver and a numerical optimization algorithm. The design method 

generates a compressor cascade, producing a specified surface pressure distribution 

at a transonic speed and a least-square optimization technique is used to minimize 

pressure discrepancies between the target and designed cascades. The same 

optimization technique and geometry is used in this study. Kocabıçak’s thesis [13] 

covered the effects of sensitivities on the performance of turbomachinery blade 

design optimization using the Euler equations. Kocabıçak’s study performed several 

inverse design optimizations to evaluate the merits of analytical approach in 

comparison with the finite-difference approach.  

Two valuable AGARD reports [14] [15] includes many good examples of 

methods for inverse design and optimization. A detailed survey was presented by 

Sobieczky [16] and Dulikravich [17] to describe the progress in inverse design and 

optimization. Several remarkable papers by Çetinkaya, Akmandor and Ucer [18] and 

Vicini and Quagliarella [19] are about shock-free cascade design and usage of 

genetic algorithms. 

PVM software is used for parallel computing and software manual [20] is very 

detailed and comprehensive. An AGARD report [21] summarizes the techniques 

with examples.    

1.4 Outline 

Chapter 2 introduces the basic theory of the flow code for the Euler/Navier-

Stokes equations and optimum step size calculation method. Euler and Navier stokes 

equations are represented in physical and computational domains. Numerical 

solutions of these equations are presented. Differences and the derivations of 

analytical and finite difference sensitivity analyses are presented. A brief error 
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analysis for finite difference sensitivity is done and formulation for optimum finite 

difference interval size is stated.   

In Chapter 3, improvements in accuracy of finite difference sensitivity 

derivatives are investigated. Values of convergence error and second derivative are 

used for optimum interval size that minimizes the error. Convergence error 

estimation method, which is based on eigenvalue analysis, is stated. This method is 

applied on Laplace, Euler and Navier-Stokes iterative solutions. Second order 

derivative is estimated by a trial method that uses estimated error values. The 

optimum interval size method is applied on Laplace and Euler solutions and in both 

applications, analytical results are used for validation. A design example is 

performed to emphasize the benefits of improving the accuracy of the finite 

difference sensitivities.    

In chapter 4, efficiency improvements in finite difference sensitivity 

calculations are investigated by parallel computing. Theory of parallel computing 

and inverse design optimization is given. Application is done on a Navier-Stokes 

design solution. Benefits and efficiency of using parallel computing in finite 

difference sensitivity calculations are discussed. 

In chapter 5, the conclusion remarks and recommendations for future studies 

are presented. 
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CHAPTER 2 

 

SENSITIVITY ANALYSIS 

 

2.1 Introduction 

 Design optimization process requires sensitivities which are the change of 

objective or constraint function or state variables with respect to design parameters. 

This study focuses on accurate and efficient calculation of finite-difference 

sensitivities. In general, state variables are calculated after iterative procedures that 

involve errors and these errors cause sensitivity inaccuracies. In this chapter, the 

aerodynamic flow analysis and error propagation in finite difference sensitivity 

analysis are investigated. 

2.2 Flow Analysis 

 The flow model should have the capability to retain the flow physics for the 

given flow conditions. The governing equations of the fluid flow, the employed 

discretization scheme, the choice of appropriate boundary conditions and grid 

density are very important factors for better flow simulations. In this study, two-

dimensional (2-D) Euler and Navier-Stokes flow analyses are used for calculating 

analytical and numerical sensitivities.  
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2.2.1 Euler Equations 

 The universal laws of the conservation of mass, momentum, and energy are 

the basis of the fundamental equations of fluid dynamics. [22] Euler equations are 

composed of these conservation equations. The 2-D unsteady compressible Euler 

equations, in a Cartesian coordinate system, can be written as:  

 0=
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∂
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 In these equations, w is the flow variables vector. F and G are the inviscid flux 

vectors. ρ, p, u, v, E, H, are the density, pressure, and velocity components in the x 

and y directions, total energy, total enthalpy respectively. [23] The pressure is 

obtained from the equation of state:  

 p = ρ R T (2.3) 

2.2.2  Navier-Stokes Equations 

 The Navier-Stokes equations can be written by adding viscous terms to Euler 

equations. The 2-D Navier-Stokes equations are a set of four coupled, nonlinear 

partial differential equations. Upon assuming that body forces and the addition of 

external heat are negligible, the Navier-Stokes equations can be written in non-

dimensional conservation law form as: 
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where w is the vector of conserved mass defined as: 
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The inviscid flux vectors, F, and G are defined as: 
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where ρ is the density, u and v are the x and y components of the velocity vector 

respectively; p is pressure, E is the total energy and H is the total enthalpy per unit 

volume. [23] 

 The viscous stresses are included when Newtonian fluid, where the stress is 

linearly dependent on the rate of strain, is considered and the viscous flux vectors, 

Fν, and Gν are defined as: 
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where 
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[ ]

[ ]xyxyy

xyxxx

vvu

uvu

µλτ

µλτ

2)(
Re

1

2)(
Re

1

++=
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∞

∞  

 

)(
Re

1

)(
Re

1

xzzxxz

xyyxxy

wu

vu

+==

+==

∞

∞

µττ

µττ

  (2.8) 

 
yyyyxy

xyyxxx

qvu

qvu

−+=

−+=

ττβ

ττβ
  

where λ is bulk and µ is dynamic viscosity coefficients. Heat conduction terms are 

defined as: 

 
( )

( ) y

T

M
q

x

T

M
q

y

x

∂

∂

−
−=

∂

∂

−
−=

∞∞

∞∞

2

2

1PrRe

1PrRe

γ

µ

γ

µ

 (2.9) 

The Prandtl number, Pr, is defined as: 

 
∞

=
k

c
Pr

pµ
 (2.10) 

where cp is the specific heat at constant pressure, and k is the coefficient of thermal 

conductivity. The Prandtl number is indicative of the relative ability of the fluid to 

diffuse momentum and internal energy by molecular mechanisms. The Reynolds 

number indicates the relative importance of inertial and viscous effects in fluid 

motion and is shown as: 

 
∞

∞∞=
µ

ρ Lu
Re  (2.11) 
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 Here, ∞u  is the freestream velocity, L is the reference length, µ is the 

coefficient of dynamic viscosity, and the subscript ∞  denotes freestream values. 

For turbulent flows, a turbulence model should be used to specify the coefficients of 

viscosity and heat conductivity, which appear in the viscous terms in equation (2.8).  

2.2.3 Euler and Navier-Stokes Equations in Generalized Coordinates 

 In order to apply the numerical algorithm and boundary conditions easily, the 

governing equations which are developed in the physical domain or Cartesian 

coordinates, (x, y), should be transformed to the computational domain or 

generalized coordinates, (ξ, η). Then Euler equations (2.1) can be written in the 

transformed domain as:  

 
ηξ ∂

∂
+

∂

∂
+

∂

∂ GF

t

w ˆˆˆ
= 0 (2.12) 

where        

 



















= −

E

v

u
Jw

ρ

ρ

ρ

ρ

1ˆ



















+

+
= −

VH

pvV

puV

V

JG
y

x

ρ

ηρ

ηρ

ρ

1ˆ



















+

+
= −

UH

pvU

puU

U

JF
y

x

ρ

ξρ

ξρ

ρ

1ˆ  (2.13) 

where U and V are contravariant velocity components defined as: 

 
vuV

vuU

yx

yx

ηη

ξξ

+=

+=
 (2.14) 

where yxyx ηηξξ ,,,  are transformation metrics. 

 Applying this generalized transformation to the Navier-Stokes equations (2.4), 
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the following transformed equations are obtained 

 
∂η

∂

∂ξ

∂

∂η

∂

∂ξ

∂

∂τ

∂ vv GFGFw ˆˆˆˆˆ
+=++  (2.15) 

where the inviscid flux terms are: 
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
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

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
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ηρ

ηρ
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

















+

+
= −

UH

pvU

puU

U

JF
y

x

ρ

ξρ

ξρ

ρ

1ˆ   (2.16) 

while the viscous flux terms are given by: 
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



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
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



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











+

+

+
= −

yyxx

yyyyxx

xyyxxx

v JG

βηβη

τητη

τητη

0

ˆ 1  (2.17) 

where 

 

( ) ( )[ ]

( ) ( )[ ]

( )ηξηξ

ηξηξ

ηξηξ

ηξηξ
µ

ττ

ηξηξ
µ

τ

ηξηξ
µ

τ

vvuu

uuvv

vvuu

xxyyyxxy

xxyyyy

yyxxxx

+++==

+−+=

+−+=

∞

∞

∞

Re

Re

Re

 (2.18) 

where the heat conduction terms in the computational space are: 
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( )

( )

( )
( )ηξ

ηξ

ηξ
γ

µ

ηξ
γ

µ

TT
M

q

TT
M

q

yyx

xxx

+
−

−=

+
−

−=

∞∞

∞∞

2

2

1RePr

1RePr
 (2.19) 

2.3 Numerical Solution of Euler and Navier-Stokes Equations 

 It is more eligible to predict complex flow phenomenon with solution of 

Navier-Stokes equations instead of Euler equations. All of the computations are 

performed until steady-state conditions are reached. Determination of steady-state 

condition is obtained by writing the system of equation as: 

 ( )wR
t

w
=

∂

∂
 (2.20) 

where R is the steady-state residual. When norm of residual approaches zero, then 

tw ∂∂ / also approaches zero, and the system is said to have reached steady-state. In 

all calculations, the system is deemed steady-state when norm of residual is reduced 

by a given order of magnitude from its initial state. 

 The 2-D compressible Euler and Navier-Stokes equations are solved in 

conservative form using finite-volume flow code. Flow variables are defined at the 

cell center, and centered differencing is used for spatial derivatives. Both second 

and fourth-order artificial viscosity are added for numerical stability.[23] The time 

integration is performed using an explicit four stage Runge-Kutta scheme. Local 

time stepping, variable-coefficient implicit residual smoothing, and multigrid 

methods are implemented to accelerate the convergence to the steady-state 

solutions. For the cascade flow conditions, inlet, outlet and periodic boundary 

conditions are used. For Navier-Stokes solutions, a no-slip, adiabatic wall condition 

is used on the airfoil surface. The Baldwin-Lomax Eddy viscosity model [24] is 

used for turbulence closure and the transition point is assumed to be located at 
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fourteen percent of the chord for viscous Navier-Stokes solutions.  

2.4 Analytical Sensitivity Analysis 

 In analytical sensitivity calculations, the governing equations and their 

boundary conditions are differentiated with respect to the design variables. If the 

governing equations are differentiated after their numerical discretization, the 

method is called as discrete approach. If the governing equations are differentiated 

before the numerical discretization, the method is known as a continuum 

(variational) approach.  

 In discrete direct differentiation method, the objective function f is a function 

of the flow variables vector, w , and the coordinates of the grid points vector, x , 

both of which are functions of the design variable X . 

 ( ) ( )[ ]XwXxff ,=        (2.21) 

The total rate of change of this function, due to a change in the ith component of the 

design variable, Xi, is given as: 

 
iii dX

dw

w

f

X

x

x

f

dX

df

∂

∂
+

∂

∂

∂

∂
=       (2.22) 

 The partial derivatives xf ∂∂ / , iXx ∂∂ /  and wf ∂∂ /  are explicit and they are 

relatively easy to calculate. However, the response derivative idXwd /
r

, is implicitly 

defined and it is more difficult to evaluate.  

The first step in a shape sensitivity analysis is to develop a relationship 

between a variation in a shape of domain and the resulting variation in the 

functional defined on the domain. Consider a domain Q, bounded by the surface 

Γ and the design variable Xi as it changes the shape of the body. The changes in the 
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domain Q and boundary Г are shown in Figure 2.1. This approach is called the 

material derivative approach. 

 

Figure 2.1 Variation of domain  

The derivative with respect to the design variable Xi is a total derivative, 

dw/dXi, and consists of two parts. The first part will consist of the rate of change of 

the quantity at a fixed point in space, is often referred to as a local derivative, and is 

denoted as iXw ∂∂ / . The second part will consist of the changes due to variation of 

the material point's location, and is called convective part, vw ˆ⋅∇ , where ∇ w 

denotes the spatial gradient of w, and v̂  is the design velocity field 

idX

dx
v =ˆ          (2.23) 

The total derivative is  

vw
X

w

dX

dw

ii

ˆ.∇+
∂

∂
=           (2.24) 

This approach is also called as the material derivative approach, because of the 

formulation is in the form of a material derivative. The design velocity on surface is 
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subsequently given as  

i

i
X

x
u

∂

∂
=ˆ  

i

i
X

y
v

∂

∂
=ˆ                                                                                    (2.25) 

To obtain the sensitivity field dw/dXi, Euler equations and boundary 

conditions are differentiated with respect to design variables Xi as: 

0=








∂

∂
+

∂

∂
+

∂

∂

y

G

x

F

t

w

dX

d

i

                                                                 (2.26) 

Equation (2.26) can be written in the following form:  

0)
ˆ

()
ˆ

( =
∂

∂
⋅∇−

∂

∂
⋅∇−









∂

∂
+
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





∂

∂
+
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





∂

∂

y

v
G

x

v
F

dX

dG

ydX

dF

xdX

dw

t iii

  (2.27) 

The last two terms in Equation (2.37), can be written explicitly as follows:  







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∂

∂
+



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∂
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∂
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∂
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∂

∂

∂
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∂

∂
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∂
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∂

∂
−
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y

F
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u

x

F
    (2.28) 

from the Euler equations:  










∂

∂
+

∂

∂
−=

∂

∂

y

G

t

w

x

F
       (2.29)           
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
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x

F

t

w
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       (2.30) 

Substitution of equation (2.29) and (2.30) into equation (2.28) yields:  

y
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F
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If we transform Equation (2.31) into generalized coordinates, then the above 

equation becomes:  
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Equation (2.32) can be written as:  

( ) ( ) ( ) 0=+
∂

∂
+

∂

∂
+

∂

∂
CGFw

t ηξ
              (2.33) 

where 

h
dX

dw
w

i

=                  
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where R0 is the steady-state residual in the flow analysis, and can be neglected in 

the sensitivity calculations, except for the constant term, C. In this study, the 

analytical sensitivity solutions in continuum approach are used to validate the 

accuracy of finite difference sensitivity.  

2.5 Finite-Difference Sensitivity Analysis 

  In finite difference approach, sensitivities are calculated from the flow 

solutions by applying the first order forward finite-difference derivative method. 

The objective function, ( ) ( )[ ]XwXxf ,  is a function of flow variables vector, w, and 

grid coordinates vector, x, which are both functions of design variables, X. The ith 

component of sensitivity can be approximated using the forward difference 

calculation, as: 

 
( ) ( )[ ] ( ) ( )[ ]

i

ii

i X

XwXxfXXwXXxf

X

f

∆

−∆+∆+
=

∆

∆ ,,
   (2.35) 

Another approach is to first decompose the sensitivities into explicit and implicit 

parts, and then, apply the finite-difference method. In this approach, the sensitivities 

of objective function can be written as   
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iii dX

dw

w

f

X

x

x

f

dX

df

∂

∂
+

∂

∂

∂

∂
=       (2.36) 

where idXdw /  is the variation of the flow variables with respect to the design 

variables. Here, xf
r

∂∂ / , iXx ∂∂ /
r

  and wf
r

∂∂ /  are explicit, and can be calculated by 

either analytical or finite-difference methods accurately. However, idXwd /
r

 is 

implicit and to compute it by the finite-difference method requires the solution of 

multiple iterative flow analyses. This study aims to improve finite-difference 

sensitivity calculations. The accuracy of the calculations will be investigated below.   

2.5.1 Accuracy in Finite Difference Derivatives 

 First order forward difference formula for )(Xw is stated as: 

 
X

XwXXw

dX

dw

∆

−∆+
=

)()(
 (2.37) 

where X∆  is the positive finite difference interval at point X. There are two 

dominant errors in the computed value of 
dX

dw
 which are truncation error and 

cancellation errors. Truncation error is caused by the neglected terms of the Taylor 

series expansion and cancellation error is caused by the inaccuracies in the 

computed function values. Taylor series expansion for )( XXw ∆+  can be 

represented by analytical values as: 

 .
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    (2.38) 
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where w~  represents analytical values. Substituting (2.37) into (2.38) as: 

 
X

XwXXw

dX

wd

∆

−∆+
=

)(~)(~~
 

   ...)
~

24

~

6

~

2
(

4

43

3

32

2

2

+
∆

+
∆

+
∆

−
dX

wdX

dX

wdX

dX

wdX
  (2.40) 

defining numerical derivative 
dX

wd~
 as: 
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The difference between analytical numerical value due to neglected terms of Taylor 

series expansion is the truncation error and can be written as: 

  2

2

2 dX

wdX

dX

dw
truncation

∆
=ε  (2.42) 

neglecting higher order terms. Cancellation error is due to inaccuracies of the 

computed values of state variables. Finite difference sensitivities with computed 

values can be calculated as: 

  
X

XwXXw

dX

dw

∆

−∆+
=

)(~)(~
 (2.43) 
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XXX
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XwXXw
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dw
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+

∆

−∆+
=

)()()()( εε
 (2.44) 

where )(Xε  is the error vector that includes round-off and convergence errors. In 

an iterative procedure, errors )( XX ∆+ε  and )(Xε  are approximately same. 
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Therefore, amount of cancellation error can be represented as: 

 
X
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dX

dw
oncancellati ∆

=
)(2 ε

ε  (2.45) 

The error from these two sources is expressed as; 
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Round-off errors are neglected. When equation (2.47) is differentiated with respect 

to X∆ , minimum value of total error is obtained as: 
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X
X

dX

dw
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ε
=∆        (2.48) 

 Above equation shows that in order to calculate optimum step size, error term, 

ε, and second derivative, 
2

2

dX

wd
, should be known or estimated.  

In the same manner, optimum step size can be calculated for second order finite 

difference derivatives. Second order central difference formula can be expressed as: 
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XXwXwXXw
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=Φ     (2.49) 

where )(XΦ is used instead of 
2

2

dX

wd
. In order to investigate the amount of errors in 
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this formula Taylor series expansion and cancellation errors are to be expressed: 
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plugging equation (2.57) and (2.58) into equation (2.56), it is obtained that: 
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Truncation error for )(XΦ is the remaining terms on RH as: 

 ...)(~
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)4(
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 In order to get cancellation error, equation (2.56) is to be written by computed 

values and error terms as: 
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Amount of cancellation error for )(xΦ can be at maximum by bound of errors as: 
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Total error for )(xΦ can be written as: 
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by neglecting higher order terms in truncation error.  

Throughout this study all domain solutions are investigated and norm values are 

got in the calculations by using below definitions: 

 ∑
=

=
K
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jxX
1

1
        (2.64) 

  ∑
=

=
K

j

jxX
1

2

2
        (2.65) 

 jxX max=
∞

  j=1,2,….K     (2.66) 

2.5.2 Laplace Solution Example 

 A case study is done for a simple problem that has minimum errors for 

optimum finite difference intervals for both first and second order finite difference 

derivatives. A Laplace solution is performed for function: 

  xyttyxu 100),,( 4=        (2.67) 

where x, y and t are variables. The solution is performed by Laplace solution as: 

  0),,(2 =∇ tyxu         (2.68) 

 in a 40x40 grid. The error amount for the first-order and second-order derivatives 



 25 

can be written as by (2.54): 

  
h

xy
h

xyt
h

xyt
h

utotal

ε
ε 2)10024(

24
)10024(

6
)10012(

2

32
2 +++=′′  (2.57) 

  
2

4)10024(
12 h

xy
h

total

ε
ε +=

Φ
      (2.58) 

where the ε terms are calculated iterative errors and known truncation errors. Error 

variations due to finite difference intervals for first and second order derivatives in 

L1 norm are graphed in Figure 2.2. Example solution performed on 1x1 plate with a 

80x80 cartesian grid where the residual reached 10-10.   

 Exact errors are differences between the analytical formulation and the 

numerical computation as stated in equation (2.57). Truncation and cancellation 

errors are generated by the formulations in equation (2.58). Since the function 

xyttyxu 100),,( 4=  can only be differentiated to the 4th order, there are no 

neglected higher order terms for truncation error.  

   For second order derivative, it can be seen that exact error variation is the 

sum of the truncation and cancellation errors. Truncation error fits with almost no 

difference at the larger intervals where the cancellation error is negligible. 

Cancellation error dominates the total error variation with the smaller intervals. The 

cancellation error is calculated with equation (2.58) where the error bound is 

calculated by the iterative error estimation procedure as: 

 
2

4
h

estimated

oncancellati

ε
ε =Φ       (2.59) 
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Figure 2.2 Error variation of xyttyxu 100),,( 4=  problem w.r.t. differentiation 
interval h. 

There is a slight difference between the cancellation error and total error due to 

nominal values in iterative error estimation. In the same manner for the first 

derivative (sensitivity calculation) truncation error almost is in the same amount of 

the exact error. Cancellation error is calculated by equation (2.53) by the iterative 

error estimates as: 

     
h

estimated

oncancellati

ε
ε 2=        (2.60) 

For smaller than the optimum value finite difference intervals, sensitivity error 

values are oscillatory due to norm calculations. This kind of oscillations is also seen 

in several studies. [25] 
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CHAPTER 3 

 

ACCURACY IMPROVEMENTS  

IN FINITE DIFFERENCE SENSITIVITY CALCULATIONS 

 

3.1 Introduction 

This study investigates a method for obtaining a near-optimum step size for 

finite difference sensitivity derivatives. Several studies have already been done for 

some functions. [2] These methods involve only continuous functions and will be 

adapted to domain type-solutions in this study.   

In finite difference sensitivity calculations, decreasing step size usually 

decreases truncation error and increases cancellation errors. In chapter 2, the effects 

of step sizes on the accuracy are investigated and optimum step size for the first-

order derivative is stated as: 

  
Φ

=′

ε
2wopth         (3.1) 

where ε  is the error of the computed value f(x) and Φ  is the associated second-order 

derivative.  

 In this chapter, methods are investigated for estimating the convergence 
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error, convε , and second order derivative, Φ , terms in domain solutions, especially for 

the fluid flow applications. This method will be applied to a Laplace heat problem 

and an Euler CFD solutions. 

3.2 Convergence Error Estimation 

The result of discretization process is a system of algebraic equations, which are 

linear or non-linear according to the nature of the partial differential equations. In the 

non-linear case, the discretized equations can be solved by an iterative technique by 

guessing an initial solution. Whether the equations are linear or not, efficient 

methods for solving linear systems of algebraic equations are needed. The system 

can be written in matrix notation as: 

  [ ] QwA =   (3.2) 

where A is the square sparse coefficient matrix, w is a vector containing the variable 

values and Q is the vector containing the known terms. The matrices derived from 

partial differential equations are usually sparse.  

Direct solution of systems of equations can be considered and well-known 

methods are Gauss elimination and LU decomposition.[8] Gauss elimination; is the 

systematic reduction of large systems of equations to smaller ones. By applying row 

operations some elements are eliminated and a triangular matrix is obtained. Then by 

back substitution solution is obtained. This method is rather expensive for large 

systems that are not sparse and interchange of rows by pivoting causes error growth. 

LU decomposition method factorizes matrix A into two lower, L, and upper, U, 

triangle matrices and eases the solution as in the Gauss elimination. For factorization 

Gauss elimination procedures are used. The advantage of LU factorization over 

Gauss elimination is that the factorization can be performed without knowing vector 

Q. This allows that if many systems are involving the same matrix are to be solved, 

considerable savings can be obtained by performing the factorization first. 
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Cyclic reduction method is used for sparse matrices which only have non-zero 

terms on diagonals. For finite difference solutions, these kind of sparse matrices are 

created and by simple cyclic row operations, solution is reached by back 

substitutions. Any systems of equations can be solved by Gauss elimination or LU 

decomposition. Unfortunately, the triangular factors of sparse matrices are not that 

easy to implement and this hardens the solution algorithm and number of 

calculations. The discretization error is usually much larger than the accuracy of the 

computer arithmetic so there is no reason to solve the system that accurately. 

3.2.1 Iterative Methods for Systems of Equations 

 Iterative methods are generally used for non-linear systems, an also used for 

sparse linear systems of equations. In an iterative method, an initial solution is 

guessed and systematically improved. Generally, iterative methods are more 

successful than direct methods in number of calculations and usage of memory. 

[John h. Mathews]  

 Convergence to the exact solution is the purpose of each iterative solution. 

Exact solution is the solution that satisfies the equation with zero residual. 

Considering the simple matrix problem which might result from Finite Difference 

and Finite Volume approximations of a flow problem as formulated in equation 

(3.1), after n iterations, w
n does not satisfy these equations exactly. Instead there 

becomes a non-zero residual ρn as; 

 [ ] nn
QwA ρ−=         (3.2) 

where w
n is the converged solution. Convergence error, which is the difference 

between exact and iterative solution, can be written as: 

 nn
ww −=ε         (3.3) 
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where w is the exact solution, wn is the converged solution after n iterations and nε  is 

the associated error vector.  The residual can be stated by substituting equation (3.3) 

into (3.2) as: 

[ ] nn
A ρε =         (3.4) 

The purpose of the iteration procedure is to derive the residual to zero. As 

residual goes to zero, error also tends to be small if convergence is achieved on exact 

value. Iteration scheme directly affects the convergence and precision of the solution. 

For iteration scheme example in the solution of equation (3.1), arranging a scheme 

by decomposing matrix A as; 

 [ ] [ ] [ ]NMA −=         (3.5) 

and substituting into equation (3.2) as: 

[ ] [ ] nnn
QwNwM ρ−+=       (3.6) 

It can be assumed that as residual, ρn
, goes to zero solutions at iterations n+1 and n 

are almost equal. Therefore equation (3.6) can be arranged as: 

 [ ] [ ] QwNwM
nn +=+1        (3.7) 

where wn+1 and wn are the solutions in referred iterations. Selecting M and N matrices 

plays an important role in solution of matrices. To investigate their effects on error 

propagation, error definition in equation (3.3) can be used by subtracting [ ] n
wM from 

equation (3.7) as: 

 [ ] [ ] [ ] nnn
wNMQwwM )()( 1 −−=−+      (3.8) 

by the definitions in equations (3.2) and (3.5), equation (3.8) can be arranged as: 
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 [ ] [ ] nnn
wAQwwM −=−+ )( 1        

 [ ] nnn
wwM ρ=−+ )( 1        (3.9)    

By the definition in equation (3.4), equation (3.9) can be stated as: 

 [ ] [ ] nnn
AwwM ε=−+ )( 1        (3.10) 

 From equation (3.10), it is understood that convergence error is generated by 

the iterative solution scheme. For an iterative method to be effective, solution must 

have minimum number of calculations and converge rapidly. During construction of 

iterative solution scheme, such as defining M and N matrices in the above example, 

care should be taken to minimize the convergence error growth. Generally A is a 

sparse matrix.  For convergence, M should be easily inverted such as being diagonal, 

tridiagonal, triangular etc.  

3.2.2 Estimation of Convergence Error in Iterative Solutions 

The iterative solution method directly affects the convergence. The convergence 

of iterative method can be studied by using eigenvalues and eigenvectors of matrix 

iteration matrices. [8] As residual goes to zero, iterative solution approaches the 

exact solution. For monotone decreasing iterative solution the eigenvalues of the 

iteration scheme are to be considered. For the above discussed iterative solution 

scheme, substituting exact solution into equation (3.7), provided that residual is 

negligibly small, as: 

[ ] [ ] QwNwM +=        (3.11) 

and subtracting this from equation (3.7)  

[ ] [ ] )()( 1 wwNwwM nn −=−+       (3.12) 



 32 

and by substituting the convergence error definition in equation (3.3), it obtained as: 

[ ] [ ] nn NM εε =+1        (3.13) 

or can be also arranged as: 

[ ] [ ] nn
NM εε 11 −+ =        (3.14) 

Equation (3.14) represents that, in an iterative solution, any error on convergence is 

characterized by the [ ] [ ]NM
1−  matrix. For convergence, 1+nε should be smaller than 

nε and converge to minimum value that; 

 0lim =
∞→

n

n
ε         (3.15) 

Eigenvalues and eigenvectors are important for the convergence of the iteration 

solution. The eigenvalues and eigenvectors of matrix [ ] [ ]NM
1−  can be defined as: 

  [ ] k

k

k
NM ψλψ =−1     k=1,2…..K      (3.16) 

where ψk
’s are the eigenvectors, λk’s are the eigenvalues and K is the number of 

equations (or grid points if it’s a domain solution). Eigenvectors is assumed to be a 

basis for Rn vector and forms a complete set. So, initial convergence error can be 

shown as a combination of eigenvectors such as; 

∑
=

=
K

k

k

ka
1

0 ψε         (3.17) 

where ak is a constant. Iterative solution yields the next iteration error term by 

combining equation (3.14) and (3.17) as; 
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[ ] [ ]∑
=

==
K

k

k

kaNN
1

1-01-1 MM ψεε       (3.18) 

and by induction, error for the nth iteration can be written as; 

 ∑
=

=
K

k

k

kk

n
a

1

 ψλε         (3.19) 

Above equation shows that, λk’s should be less than unity for convergence of 

iteration method. In particular, number of iterations is quite a large number in CFD 

problems. The largest eigenvalue, also called as the spectral radius, has the dominant 

effect on error growth. So simply, it will be a reliable assumption that equation (3.20) 

is to be written by only the spectral radius as; 

 1
11 )( ψλε nn

a≈         (3.20) 

where λ1 is the largest eigenvalue, a1 and ψ1 are the respective constant and 

eigenvector.  

 In an iterative method it is important to be able to estimate the convergence 

error in order to decide when to stop iteration.  Calculation of the eigenvalues of the 

iteration matrix is difficult that reasonable approximations have to be used. In order 

to estimate the convergence error some definitions are required. Difference vector 

between the following iterations is:  

 
nnn

ww −= +1δ           (3.21) 

By subtracting and adding exact values in equation (3.21), it can be written that; 

 )()( 1
wwww

nnn −−−= +δ        

 
nnn εεδ −= +1
         (3.22) 
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By substituting equation (3.20) into (3.22): 

 ( ) ( ) 1111
1

11 ψλψλδ
nnn

aa −≈
+

        

 ( ) ( ) 1111 1 ψλλδ
nn

a−≈         (3.23) 

In equation (3.23), λ1 and a1 are scalar quantities where ψ1
 and nδ  are vectors. In 

order to estimate a convergence error, difference term, nδ , is the only computable 

term. Convergence error is to be written as a combination of nδ . Therefore define a 

ratio as: 

 
( ) ( )

( ) ( ) 11

111

111
1 1

1
λ

ψλλ

ψλλ

δ

δ
=

−

−
=

−− n

n

n

n

a

a
      (3.24) 

where nδ  represents norm of difference vector nδ . Equation (3.24) shows that 

largest eigenvalue can be found by the ratio of the differences between two 

successive iterations.  By substituting equation (3.20) into equation (3.23), is 

obtained as: 

 ( ) nn ελδ 11 −≈          (3.25) 

Arranging equation (3.25) by normalized values, convergence error formulation can 

be obtained as: 

1
 

1 −
≈

λ

δ
ε

n

n         (3.26) 

Iterative methods often have complex eigenvalues. When this is the case, the 

convergence error reduction may not be monotonic. Since the equations are real, 

complex eigenvalues must occur as conjugate pairs. Their estimation requires an 
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extension of the above procedure. If the largest eigenvalue is complex equation 

(3.20) can be written as; 

   11
*

1
*

111 )()( ψλψλε nnn
aa +≈       (3.27) 

where λ2
*
 is the conjugate pair of λ1 and a1

* is the corresponding constant. Residual 

for iterations in equation (3.27) is to be written for complex values as; 

iv
le=1λ          (3.28) 

Ferziger and Peric [8] has stated a formulation to estimate the error growth in an 

iterative solution, where the largest eigenvalue is complex, by defining a z
n scalar 

quantity, which eliminates conjugate terms as; 

 112 −−− −= nnnnn
z δδδδ        (3.29) 

by using δn vectors in equation (3.25) into (3.36) and defining a parameter σ  as;  

 111 )1( ψλσ a−=         (3.30) 

Then equation (3.23) for complex problems is to be written as; 

 ( ) ( ) *
1

*
1 ωλωλδ

nnn +≈         (3.31) 

and equation (3.29) gets the form of; 

 ( )1)2cos(2
222 −= −

vlz
nn ω       (3.32) 

and magnitude of the eigenvalue is to be written as; 

 
1−

=
n

n

z

z
l         (3.40) 
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The complex eigenvalues cause non-monotonic decrease of the convergence 

error. For estimating convergence error, differences between iterations, δn
, and 

magnitude of the eigenvalue, l, are to be computed. Due to complex eigenvalues of 

and eigenvectors, the result contains terms proportional to the cosine of the phase 

angle since only magnitudes are interested. It is assumed that these terms are zero in 

average. This allows a simple relation as: 

 
1

 
2 +

≈
l

n

n
δ

ε

r

        (3.41) 

This is the desired estimate of the error. Due to oscillations in the solution, this 

estimate may not be accurate on any particular iteration. Ferziger and Peric (2002) 

suggests a ratio as; 

 
2

n

n
z

r

δ
r=          (3.42) 

If the ratio is large the eigenvalue is probably complex. For real eigenvalues r 

tends to be smaller than 10-2 and for complex eigenvalues r is approximately 1. 

Although this method is designed for linear systems, all systems are essentially linear 

near convergence; so, this method can be applied to non-linear systems as well.  

It is recommended that the relation between the largest eigenvalue and residual 

should also be investigated. [9] Residual of an iterative solution procedure can be 

changed by successive over relaxation (SOR) methods. [10] In order to accelerate the 

convergence of iterative procedure, an over-relaxation parameter can be introduced. 

Residual can be expressed by extrapolating the known residual for the next iteration. 

Equation (3.2) for iteration n+1, can be written as: 

[ ] 11 ++ −= nn
QwA ρ        (3.43) 
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In a converging solution residual, ρ ,  is expected to decrease by successive 

iterations. It is convenient to represent iterative solution with a extrapolation 

formulation as: 

 )( 11 −+ −+= nnnn
wwww α       (3.44) 

where α  is an extrapolation parameter. Equation (3.44) can be arranged as: 

 11 )1( −+ −+= nnn
www αα       (3.45) 

The formulation can be written as below [11]: 

 11 )1( −+ −+= nnn
www ωω       (3.46) 

where 

 α+= 1w         (3.47) 

where ω is called the over-relaxation parameter. Ferziger [11] suggests a correlation 

between the eigenvalues of the iteration matrix and the extrapolation equation (3.46) 

as: 

)1( ωλωλ −+=w        (3.48) 

where wλ  is the over-relaxed solution scheme’s eigenvalue. Selecting optimum over 

relaxation parameter is important that there is an optimum over relaxation factor that 

corresponds to the eigenvalues of the main iteration matrix. Whenever a larger value 

than the optimum over relaxation parameter used complex eigenvalues are 

introduced. [14] Ferziger [11] proposes that in simple Gauss-Seidel iteration scheme, 

which does use uptated solutions in Laplace solution, has absolute eigenvalues of 

simple Jacobi solution and states that the magnitudes of the largest and minimum 
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eigenvalues are equal. Where ω is between 1 and 2 for over-relaxation, wλ  is 

minimize when λ is equal to 0. Therefore it can be written that: 

 )1()1( 2
1 ωωλω −+=−        (3.49) 

 )1()1( 2
1 ωωλω −−−=−       (3.50) 

and optimum relaxation can be found as: 

2
12

2

λ
ω

−
=opt         (3.51) 

It is not simple to find optimum over relaxation factor in larger grids and 

complicated problems. Generally, larger the grid larger the optimum over relaxation 

factor is. For values of ω less than the optimum, the convergence is monotonic and 

the rate of convergence increases as ω increases. When the optimum ω is exceeded, 

the convergence rate deteriorates and the convergence is oscillatory. [9] For Euler 

and Navier-Stokes problems, in order to find the best convergence rate and control 

the eigenvalues, optimum relaxation can be optimized by trial and error. Also this 

will show whether the eigenvalues are real or not. So error estimation method can 

also be decided. So, parameters like CFL number should be controlled for best 

convergence.  

3.2.3 Application on Laplace’s Solution 

Above mentioned iteration solution method is applied in 2-D Laplace solution as:  

)(
4

1
1,1,,1,1, +−−+ +++= jijijijiji wwwww      (3.52) 

 The linear problem is Laplace’s equation in the square domain (0<x<1, 0<y<1) 

with boundary conditions of 100xy. The advantage of this solution is that the second 
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order central difference approximation to the converged solution is exact. The initial 

guess of the solution is taken as zero everywhere within the domain. A relaxation 

parameter, ω, is introduced in the numerical solution. A FORTRAN code is written 

for computing and run in single precision of 10-6. 

Results of error estimations for uniform grids with 80x80 and 20x20 cells are 

shown in Figure 3.1 to Figure 3.4 in logarithmic values. Results are represented for 

L1, L2 and L∞ norms. In each figure, exact convergence error, the convergence error 

estimate, change between successive iterations and residuals are shown. For each 

grid size problem, two different relaxation parameters are incorporated: one below 

the optimum value, where solution has real eigenvalues and one above the optimum 

leading to complex eigenvalues. 

In Figure 3.1 estimation is quite successful for 20x20 grid with a relaxation 

parameter of 1.5, where the changes between successive iterations are linearly 

decreasing. Relaxation parameter is smaller than the optimum relaxation parameter 

and the solution eigenvalues are real. The code itself has already switched to real 

eigenvalue estimation method with the ratio criteria of 0.1, given by equation (3.42). 

At the beginning of the solution, when changes and residuals are not monotonic, 

estimation couldn’t be achieved. When the changes approach to computer precision 

amount, the solution is not monotonic and estimation gives oscillatory results. There 

is no big difference for estimation quality for different norms. 

In Figure 3.2 the same solution is done with a relaxation parameter of 1.8 which 

is greater than the optimum relaxation value. The solution is not monotonic that 

intends complex eigenvalues. Code has already switched to complex estimation 

method and estimation is not that successful with respect to the real estimation. 

Generally a half order of magnitude gap exists between exact error and estimation. 

There are not much oscillations in this method and solution is reached in almost half 

number of iterations of the above case where relaxation parameter was smaller. L2 

norm gave the most precise estimation. There are sudden changes at some iterations 
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and estimation is linear between these iterations. 

In Figure 3.3 80x80 grid solution is represented for a relaxation parameter of 1.5 

which is smaller than the optimum parameter. Solution has real eigenvalues and 

estimation is successful when a monotonic decrease is achieved. In Figure 3.4, 80x80 

grid solution is represented for a relaxation parameter of 1.95 which is larger than the 

optimum parameter. Solution has reached to minimum residual almost 3 times faster 

than the above case where relaxation parameter was smaller. In this complex 

estimation, there is again a sudden change in solution and convergence error 

estimation is again linear. Estimation is not that successful as in the real estimation 

but again L2 norm gave the closest estimation. 

For the case of real eigenvalues, results are smoothly converged. The 

convergence error estimate is almost exact in this case. However at the beginning of 

the iterations the norms of differences fall too rapidly and do not follow the fall of 

the convergence error. This effect is seen well in fine grid. Once the asymptotic 

reduction rate is achieved, the slopes of all curves are the same. In the case for which 

the eigenvalues of the iteration matrix are complex, the convergence is not 

monotonic and there are oscillations in the error. The comparison of predicted and 

exact errors in this case is also reasonably satisfactory especially in slow solutions 

with smaller relaxation parameters.  
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(a) L1 norm 

 
(b) L2 norm 

 
(c)L∞ norm 

 
Figure 3.1 Variation of exact convergence error, error estimate, differences between 
two successive iterations and residuals for the Laplace problem on a 20x20 Cartesian 
square grid with a relaxation parameter of 1.5. 
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(a) L1 norm 

 
(b) L2 norm 

 
(c)L∞ norm 

Figure 3.2 Variation of exact convergence error, error estimate, differences between 
two successive iterations and residuals for the Laplace problem on a 20x20 Cartesian 
square grid with a relaxation parameter of 1.80. 
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(a) L1 norm 

 
(b) L2 norm 

 
(c)L∞ norm 

Figure 3.3 Variation of exact convergence error, error estimate, differences between 
two successive iterations and residuals for the Laplace problem on a 80x80 Cartesian 
square grid with a relaxation parameter of 1.5. 
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(a) L1 norm 

 
(b) L2 norm 

 
(c)L∞ norm 

 
Figure 3.4 Variation of exact convergence error, error estimate, differences between 
two successive iterations and residuals for the Laplace problem on a 80x80 Cartesian 
square grid with a relaxation parameter of 1.95. 
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3.2.4 Application on a Euler and Navier-Stokes Solution of a Flow Problem 

 An Euler solver is applied on a turbomachinery cascade blade. Since, there is 

no exact solution for Euler and Navier-Stokes equations, exact solution is estimated 

at the best solutions achieved. To calculate exact solution code is run until the 

residual is reached to machine epsilon. At each iterations, difference between the 

computed solution and exact solution is regarded as the error. 

 Figure 3.5 shows the case compressor cascade geometries for Euler and Navier 

Stokes solutions. For both solution inlet and outlet Mach numbers are taken as 1.023 

and 0.654 and corresponding Reynolds number is 1.54x106. For each solution, grid 

refinement is done for the first 100 iterations. 

  

(a)  Euler solution mesh 193x33          (b) Navier-Stokes solution mesh 257x49 

Figure 3.5 Solution Meshes  
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 Both solutions are run for different number of CFL (Courant-Friedrichs-Lewy) 

numbers. The CFL number acts as the relaxation parameter. As the CFL number gets 

larger time steps gets larger and faster solution is achieved. For wave equation it is 

shown as; 

x

tu
c

∆

∆⋅
=        (3.57) 

where ∆t is the time step and u/∆x is the characteristic convection time. This number 

(also known as Courant number) represents the time required for a disturbance to be 

convected a distance ∆x. 

 Euler solutions are represented in Figure 3.6 to Figure 3.8 for different norms 

and the CFL numbers. In these figures exact and estimated errors, changes between 

iterations, residuals and ratio parameter, r, given by equation (3.42) are shown. Ratio 

parameter is graphed only once for each case.  

 Figures 3.6 to 3.8 show Euler solution with CFL numbers of 3, 4 and 5, 

respectively. All three Euler solutions gave exactly the same results. Small values of 

ratio, r, showed that iterative scheme has real eigenvalues.  For beginning 1000 

iterations the iterative solution does not converge and estimation is oscillatory. The 

solution is not linearly decreasing until 3000 iterations and estimation is not that 

precise. When the solution goes linearly decreasing, ratio parameter, r, is gradually 

increasing. The estimation goes oscillatory when the changess between iterations 

begin to reach a limit of computer precision and ratio, r, reaches to the switch value 

of 0.1. This switch criteria of 0.1 did not work well that ratio reaches a value which 

is larger than the criteria and does not change; however, at these iterations solution 

has already converged. For the CFL number of 4, solution gave the slowest solution. 

For all cases L1 norm gave the best estimated results. 

 Figures 3.9 to 3.11 show Navier-Stokes solutions with the CFL numbers of  3, 
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4 and 5, respectively. The solution is much more linearly decreasing with respect to 

Euler solution. From 800 iterations to the computer precision is reached, the 

estimation gave quite well results and solution decreased linearly. For the beginning 

iterations, convergence is not linearly decreasing and the estimation is oscillatory. 

Whenever linear decreasing is achieved in changes between successive iterations, the 

estimation gave good results. In the same manner in Euler solution, when the 

differences reached computer precision, estimation gave oscillatory results and ratio 

has reached a limit that is larger than the switch criteria. The ratio results show that 

again solution has real eigenvalues. Higher CFL numbers gave faster solutions. For 

higher CFL numbers the oscillations due to non-linear convergence have lasted for 

more number of iterations. In Figure 3.11 the oscillations reached almost 1500 

iterations. 

Convergence error estimation method has been used in Laplace, Euler and 

Navier-Stokes iterative solutions and gave quite well results. When linearly 

decreasing residuals are reached, convergence error estimations gave almost perfect 

results. However as the residuals approaches the smallest achievable quantities, 

estimations can give reliable numbers, so the ratio parameter, r, should be followed 

for reliability of this method.   
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.6 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid 
with CFL number of 3. 
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.7 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid 
with CFL number of 4. 
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.8 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid 
with CFL number of 5. 
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.9 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Navier-Stokes problem on a 257x49 
C-grid with CFL number of 3. 
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.10 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Navier-Stokes problem on a 257x49 
C-grid with CFL number of 4. 
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(a) L1 norm and ratio parameter, r 

 

 
(b) L2 norm 

 

  
(c) L∞ norm 

 
Figure 3.11 Variation of norms of the exact convergence error, error estimate, 
differences, residual and ratio parameter for the Navier-Stokes problem on a 257x49 
C-grid with CFL number of 5. 
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3.3 Optimum Finite Difference Interval Estimation 

 In order to estimate the best finite difference interval that generates the 

minimum error in sensitivity calculations, a procedure is investigated. [2] This 

procedure is based on the approximation of the second derivative and the 

corresponding finite difference interval for accurate second derivative calculation. 

Acceptable values of second derivative are used for calculation of the optimum first 

order forward finite difference derivative formulation. Equation (2.48) is to be 

written as: 

 
Φ

=
estimated

forwardh
ε

2   (3.58) 

where h is the finite difference interval, estimatedε is the norm of computation error 

and Φ  is the norm of second order derivative. 

 Procedure is based on the fact that the truncation error tends to be an increasing 

function of interval h while the cancellation error bound is generally a decreasing 

function of h. Throughout this procedure the value of Φh  is selected from a sequence 

of trials. The decision, whether a given value of Φ  is sufficiently accurate, is given 

by a defined cancellation error bound.  The normalized value of equation (2.62) with 

second derivative value, Φ , as; 

 
Φ

=Φ 2

4

h

estimated

oncancellati

ε
ε
)

 (3.59) 

 The interval for cancellation error norm, Φoncancellatiε
)

, is [0.001, 0.1]. For values 

below 0.001, truncation error tends to be large and for values over 0.1 cancellation 

error is large. It is assumed to be Φ  is not a large number and the value where Φ  is 
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calculate, is not a singularity. In this procedure, by trials Φ  and Φoncancellatiε
)

are 

calculated and checked. If Φoncancellatiε
)

is larger than the interval Φh  is increased, 

otherwise decreased. 

 The procedure not only checks the second derivative cancellation error, but also 

checks the forward and backward derivatives. Normalized cancellation errors for 

forward and backward derivatives are calculated by; 

 

forward

estimated

forwardoncancellati

dX

dw
h

ε
ε

2
=

)
 (3.60) 

 

backward

estimated

backwardoncancellati

dX

dw
h

ε
ε

2
=

)
 (3.61) 

Procedure obtains optimum interval size Φh  by generating a sequence of trial 

values ih . Also an initial guess for Φh  is required. Gill, Murray, Wright [15] suggest 

an initial guess for  forwardh  by a rough estimation of; 

 w+≈Φ 1  (3.62) 

then calculates initial guess of  forwardh  as; 

 
w

h
estimated

forward
+

=
1

2
ε

 (3.63) 

and assumes that second order derivative optimum interval is one order larger than 

the first derivatives. Therefore the initial interval is: 
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w

hh
estimated

forward
+

⋅=⋅=
1

210100

ε
 (3.64) 

This procedure has been used for continuous functions. [15] This study adopts the 

procedure for domain problems and uses norms of the domains. The procedure can 

be stated as; 

Step 1: (Initialization) 

- Calculate estimatedε  

- Calculate initial interval  
w

h
estimated

+
⋅=

1
2100

ε
 

- Evaluate )( 0hXw + , )( 0hXw − , )( 0hX
dX

dw

forward

+ , )( 0hX
dX

dw

backward

+ , 

),( 0hXΦ , forwardoncancellatiε
)

, backwardoncancellatiε
)

, Φoncancellatiε
)

. 

- Set k = 0 

Step 2: (Decide whether to accept, increase or decrease the interval) 

- If 
{ }backwardoncancellatiforwardoncancellati εε

))
,max

 < 0.1 and  

 0.001 < Φoncancellatiε
)

 < 0.1, set Φh = 0h , go to step 5. 

- If 
{ }backwardoncancellatiforwardoncancellati εε

))
,max

 < 0.1 and 

{ }backwardoncancellatiforwardoncancellati εε
))

,max
  < 0.001 go to step 4. 

- Otherwise go to step 3. 

Step 3: (Increase h) 
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Set k = k +1 

Set 110 −⋅= kk hh  

- Evaluate )( 0hXw + , )( 0hXw − , 
)( 0hX

dX

dw

forward

+
, 

)( 0hX
dX

dw

backward

+
, 

),( 0hXΦ , forwardoncancellatiε
)

, backwardoncancellatiε
)

, Φoncancellatiε
)

. 

- If 
{ }backwardoncancellatiforwardoncancellati εε

))
,max

 < 0.1 and 0.001 < Φoncancellatiε
)

 < 0.1 set 

0hh =Φ , go to step 5. 

- If maxkk =  stop. 

- Otherwise repeat step 3. 

Step 4: (Decrease h) 

- Set k = k +1 

- Set 10/1−= kk hh  

- Evaluate )( 0hXw + , )( 0hXw − , 
)( 0hX

dX

dw

forward

+
, 

)( 0hX
dX

dw

backward

+
, 

),( 0hXΦ , forwardoncancellatiε
)

, backwardoncancellatiε
)

, Φoncancellatiε
)

. 

- If 
{ }backwardoncancellatiforwardoncancellati εε

))
,max

 > 0.1 or  

 Φoncancellatiε
)

 > 0.1, set Φh = 1−kh , go to step 5. 

- If 0.001 < Φoncancellatiε
)

 < 0.1, set Φh = kh , go to step 5. 

- If maxkk =  stop. 

- Otherwise repeat step 4. 
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Step 4: (Compute the estimate of the optimal interval) 

- Define forwardh  by the equation; 

 
Φ

=
estimated

forwardh
ε

2   

- Set forwardTotalε by the equation; 

 
forward

estimatedforward

fTotal
h

h

forward

ε
ε

⋅
+Φ=′

2

2
  

3.3.1 Case Study I: Laplace Solution 

A case study is performed for a Laplace solution for  xyttyxw 100),,( 4=  as 

described in section 3.2. Two different grids of 40x40 and 80x80 are used. Iterations 

are stopped with different criteria that define the stopping residual values of 10-6,   

10-8, 10-10 and 10-12. Three different norms of L1, L2 and L∞ are used. Above 

described optimum finite difference step size procedure is applied and solution is 

repeated for different intervals and errors are graphed for verification. On the graphs, 

estimated norm values are shown. 

In figure 3.12, norms of exact error, truncation error and estimated cancellation 

error variations are represented for 40x40 grid. Estimated optimum finite difference 

interval value and corresponding estimated total error is pointed out on the graph. All 

the estimated values are at the junction of truncation error and the estimated 

cancellation error curves. The most accurate results are estimated with the L1 norms. 

Therefore, following results are graphed by L1 norms. 

Figure 3.13 and Figure 3.14 shows the results in L1 norm for 40x40 and 80x80 

grids, respectively. Optimum interval size estimations are more precise with the 
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estimated cancellation error on fine grid of 80x80. In general procedure gave 

approximate results in one order of magnitude due to the approximations of 

cancellation error estimations. Numerical results are tabulated in table 3.1 for 40x40 

grid solution and in table 3.2 for 80x80 grid solution. 
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(a) L1 norm 

 

 
(b) L2 norm 

 

 
(c) L∞ norm 

 
Figure 3.12 Error variations of sensitivities and corresponding estimated optimum 
intervals on 40x40 grid Laplace solution for different norms.  
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(a) 10-6 (b) 10-8 

 

(c) 10-10 (d) 10-12 

Figure 3.13 Error variations of sensitivities and corresponding estimated step 
sizes on 40x40 grid Laplace solution for L1 norms of different iteration stopping 
criteria. 
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(a) 10-6 (b) 10-8 

  

(c) 10-10 (d) 10-12 

Figure 3.14. Error variation of sensitivities and corresponding estimated step sizes on 

80x80 grid Laplace solution for L1 norms of different iteration stopping criteria. 
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3.3.2 Case Study II: Euler Solution  

 Optimum finite difference interval procedure is applied to the Euler inverse 

design algorithm. The exact errors that are calculated by the differences between 

numerical iterations and analytical solution are calculated. Interval size that generates 

the minimum exact error is referred as the optimum interval. The above described 

procedure is applied and the results are compared. Also a comparison for full inverse 

design cycle including optimization is included. Inverse design algorithm is 

explained in Chapter 4.  

 The design practices are performed for the Rotor R 030. [26] A solution mesh 

is given in figure 3.1.(a). The flow condition is set to outlet Mach number of 1.1, 

inlet Mach number of 1.4, flow angle of 56.8° and Reynolds number of 106. 

Algorithm, briefly gets target and base geometries, defines perturbations on base 

geometry and calculates the sensitivities of the flow variables. Sensitivities are 

inputted to an optimization algorithm that tries to reach the target values and a new 

geometry is designed. Pressure distribution on the design geometry is compared with 

the target’s by a convergence parameter: 
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where Pt and Pb are the target and baseline pressures respectively on the cascade 

surface at point i and ∆Si is the length of the surface element. 

 Figures 3.15 to 3.18 show the exact error variation with Patched and Wagner 

polynomials. (Appendix) In figures 3.15 to 3.17, a patched polynomial is used for 

perturbation where the perturbation centers are 10%, 50% and 90% of the chord 

length, respectively. In all cases, three different iteration termination criteria are 
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used. Iterations are terminated with respect to estimated errors reached 10-4. In 

figures errors are graphed in three different norms of L1, L2 and L3. 

 The calculated optimum interval estimations are pointed out in the graphs. The 

estimations are in one order of magnitude precise. In three cases estimations are 

smaller than the optimum value and in figure 3.16 it is larger than the optimum. Error 

amount differences between the calculated interval’s and the real optimum are in one 

order of magnitude. There’s no notable difference between the usage o different 

norms.  

 In figure 3.16 it hard to distinguish the optimum value of interval, because error 

quantities are almost same between 10-3 to 10-7. Exact error quantities are calculated 

as the differences of flow variables that found with the finite difference sensitivity 

algorithm and the ones calculated with the analytical sensitivity algorithm. The 

algorithms used in this study did not give the same results. Total error amounts are 

all less than the exact value. The terms in equation (2.47) are approximate values. 

Total error is calculated estimated values of interval, h, second derivative Φ  and 

error, ε .  

 This method is used in sample full design cycle. In this case, 10 patched 

polynomials are defined as 5 each on upper and lower surfaces at 0.15, 0.30,.0.50, 

0.70 and 0.85 stations. For each perturbation an optimum perturbation size (finite 

difference interval) is calculated by the above described method. Design cycle is 

repeated 10 times but the perturbation sizes are only defined in the first cycle.  

 Figure 3.19 and 3.20 shows the pressure and density contours of the flow 

domains, respectively. Also, geometries and surface pressure distributions are 

compared in figure 3.21 and 3.22. The results are almost identical. This design is 

repeated with different given perturbation amounts. In these solutions perturbation 

amounts are pre-defined in the input. Figure 3.23 shows convergence parameter 

variation with respect to perturbation sizes. Small perturbations of 10-8, 10-9 and 10-10 
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gave quite larger quantities for convergences and also larger perturbations of  10-2 

and 5x10-1 gave larger quantities for convergences. Optimum perturbations 

calculated by the method are averaged and corresponding convergence value is 

pointed out in figure 3.23. Convergence parameters over the design cycles are also 

graphed in figure 3.24.  
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Figure 3.15 Error variations of sensitivities vs. finite difference interval size h with 
Patched polynomial bump of 0.1/1.0 station on upper surface. Estimated optimum 
interval sizes and corresponding estimated errors are indicated also represented. 

 
Figure 3.16 Error variations of sensitivities vs. finite difference interval size h with 
Patched polynomial bump of 0.5/1.0 station on upper surface. Estimated optimum 
interval sizes and corresponding estimated errors are indicated also represented. 
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Figure 3.17 Error variations of sensitivities vs. finite difference interval size h with 
Patched polynomial bump of 0.9/1.0 station on upper surface. Estimated optimum 
interval sizes and corresponding estimated errors are indicated also represented. 

 
Figure 3.18 Error variations of sensitivities vs. finite difference interval size h with 
Wagner Polynomials Perturbations on upper surface. Estimated optimum interval 
sizes and corresponding estimated errors are indicated also represented. 
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(a) Pressure Contour - Design  

 
(b) Pressure Contour - Target 

Figure 3.19 Pressure distributions of design and target geometries under the same 

flow conditions. 
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(a) Density Contour - Design 

 
(b) Density Contour - Target  

Figure 3.20 Density distributions of design and target geometries under the same 

flow conditions.
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Figure 3.21 Target and Design geometries  

 

Figure 3.22 Target and Design surface pressure distributions 
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Figure 3.23 Convergence Parameter variations vs. surface perturbation delta. Design 

is completed with 10 design cycles with Patched polynomials. 

 

Figure 3.24 Convergence Parameter variations vs. design cycle. Design is completed 

with 10 design cycles with Patched polynomials. 
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CHAPTER 4 

 

EFFICIENCY IMPROVEMENTS  

IN FINITE DIFFERENCE SENSITIVITY ANALYSIS 

 

4.1 Introduction 

In inverse design algorithm, a base geometry is perturbed and sensitivities are 

calculated for each perturbation. In this study, accuracy and efficiency of the finite-

difference sensitivity derivatives are investigated. Most of the computation time is 

used for finite difference sensitivity calculations. These calculations are independent 

tasks and derivative values are inputted into an optimization process. Increasing 

efficiency of the design procedure is investigated by parallel computing of the finite 

difference sensitivity derivatives. Theory and application of parallel computing are 

investigated below and results for an example application are discussed. 

4.2 Parallel Computing 

Parallel processing, the method of having many small tasks solve one large 

problem, has emerged as a key enabling technology in modern computing. The past 

several years have witnessed an increasing acceptance and adoption of parallel 

processing for high-performance scientific computing. This enabled lower cost and 

sustained productivity. The acceptance has been facilitated by two major 

developments: massively parallel processors (MPPs) and the widespread use of 

distributed computing. 
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MPPs are powerful computers that combine a few hundred to a few thousand 

CPUs in a single large cabinet connected to large memories. MPPs are generally 

used for global climate modeling and drug design. As simulations become more 

realistic, the computational power required to produce them grows rapidly. Thus, 

researchers on the cutting edge turn to MPPs and parallel processing in order to get 

the most computational power possible. 

  The second major development affecting scientific problem solving is 

distributed computing. Distributed computing is a process whereby a set of 

computers connected by a network are used collectively to solve a single large 

problem. As more and more organizations have high-speed local area networks 

interconnecting many general-purpose workstations, the combined computational 

resources may exceed the power of a single high-performance computer. The most 

important factor in distributed computing is cost. Large MPPs typically cost more 

than $10 million but distributed computing systems offers very little cost in contrast 

especially on a local set of existing computers.  

In all parallel processing, data must be exchanged between cooperating tasks. 

The message-passing model is generally used from the perspective of the number 

and variety of multiprocessors that support it, as well as in terms of applications, 

languages, and software systems that use it. The Parallel Virtual Machine (PVM) 

system uses the message-passing model to allow programmers to distribute 

computing across a wide variety of computer types, including MPPs. A key concept 

in PVM is that it makes a collection of computers appear as one large virtual 

machine. Figure 4.1 represents a cluster of computers that runs the different tasks on 

different CPUs over the main computer using PVM software. 
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Figure 4.1  Cluster of CPUs connected from separate computers by PVM 
software in order to form a single virtual computer with multiple processors.  

4.3 Inverse Design Algorithm 

In an inverse design algorithm, a base geometry is perturbed and sensitivities 

are calculated for each perturbation. In this study sensitivities are calculated by finite 

difference methods. Each finite difference sensitivity calculation is run 

independently for every perturbation. In several studies, number of independent 

perturbations varies between 8 and 16. [16] In order to decrease computational time 

inverse design algorithm can be arranged that each finite difference sensitivity 

calculations can be defined as independent tasks. Arranged algorithm is shown in 

Figure 4.2.  

This algorithm runs only the finite difference sensitivity calculations on 

parallel computers. Analyses of optimization and design geometries are calculated on 

the main processor, flow analyses of each perturbation and the corresponding finite 
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difference sensitivity calculations are done on different processors. Main processor 

waits until all sensitivity values are calculated in order to go optimization step. 

 

 

Figure 4.2 Parallel Inverse Design Algorithm 

4.4 Case Study  

Comparison of process times between a single and multiple processors is 

performed. The complete design cycle is done with different perturbation sizes and 

shape functions. Code input values and boundary conditions stayed same. The time is 

measured in minutes by the time measuring standard subroutines. 16 perturbations 

are defined at the beginning and sensitivity calculations are calculated on 1, 2, 4, 8 

and 16 CPUs (PIII 750 MHz). Results are grouped for 3 different shape functions 
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and 5 different perturbation sizes. The shape functions are Wagner, Hicks-Henne and 

patched polynomials (Appendix) The perturbation sizes are 0.0005, 0.00075, 0.001, 

0.00125 and 0.0015.  

The design code performed Navier-Stokes equations for flow analyses. The 

flow analysis is based on the solution of 2-D, unsteady, compressible Navier-Stokes 

equations over a curvilinear co-ordinate system. The Baldwin Lomax eddy viscosity 

model is used for turbulence closure, and the transition point is fixed at fourteen 

percent of the chord. A finite volume method is employed for the spatial 

discretization. The flow variables are defined at cell centers, and centered differ-

encing is used for the spatial derivatives. Second and fourth-order artificial 

viscosities are added to enforce numerical stability. The time integration is performed 

using an explicit, four-stage Runge-Kutta scheme. Local time stepping, variable-

coefficient implicit residual smoothing, and a multigrid method are implemented to 

accelerate the convergence. Characteristic boundary conditions are imposed at the 

far-field boundary based on a one-dimensional eigenvalue analysis, and a no-slip, 

adiabatic-wall conditions are used on the cascade surface.  

The design practices are performed for the Rotor R 030. [26] Computational 

structured grids of 257 x 49 are generated. The minimum grid spacing next to the 

cascade surface is set to .001 percent of the chord length. The profiles at 150 and 190 

mm. in radial axis are used as target and baseline cascades, respectively. Figure 4.3 

shows the computational grids for target and base shapes. The profile at 150 mm. in 

radial axis is located at mid-span of the blade. The flow condition is set to M2 = 

0.654, M1 = 1.023, α = 56.8° and Re = l.54x106. Here, M2 , M1, α and Re are the 

outlet and inlet Mach numbers, inlet flow angle and Reynolds number, respectively. 
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Figure 4.3  257x49 Computational Grid for Rotor R 030 blade [26] and 

Geometrical Presentation of Target (dashed) and Base (solid) airfoils 

In order to judge the design quality and monitor the convergence of the 

design cycle, a convergence parameter, CP, is defined. This parameter is based on 

the root-mean-square of length-weighted pressure discrepancies between the target 

pressure and the pressure of the designed cascade: 
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                     (4.1) 

where Pt and Pb are the target and baseline pressures respectively on the cascade 

surface at point i and ∆Si is the length of the surface element. There are total of I 

elements on the cascade. 
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4.5 Results 

Results are tabulated in Table 4.1. The execution time decreased with 

increasing number of processors. Gain in execution time showed an asymptotic 

decreasing trend with the number of processors. Because, only flow analyses for 

finite-difference sensitivity calculations are parallel run, all other computations are 

performed on a single processor. The communication time between the processors is 

insignificant compared to total design execution time. Ratio of processing time of 

multiple processors to the single is called as speed-up and tabulated in Table 4.2. 

Tabulated data, designed shape and surface pressures are graphed in Figure 4.4, 4.5 

and 4.6 for Wagner, Hicks-Henne and Patched polynomials, respectively. 
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Table 4.1 Execution Time (min) and Convergences  

(a) Wagner Functions     

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 471 347 380 339 323 

2 262 190 212 184 178 

4 183 121 137 116 112 

8 170 79 94 76 74 

16 103 57 70 53 56 

Convergence 0.00542 0.00849 0.00224 0.00219 0.00213 

     

b) Hicks-Henne Functions     

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 464 476 581 406 446 

2 353 267 312 237 256 

4 262 180 205 191 165 

8 169 127 144 137 106 

16 120 99 102 105 78 

Convergence 0.00824 0.00849 0.00835 0.00679 0.00723 

     

(c) Patched Polynomials     

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 317 352 403 386 304 

2 174 191 188 180 174 

4 110 123 114 109 102 

8 75 81 72 70 66 

16 58 57 51 51 48 

Convergence 0.00671 0.00671 0.00366 0.00670 0.00680 
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Table 4.2 Parallel Speed-up 

(a) Wagner Functions     

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 1.00 1.00 1.00 1.00 1.00 

2 1.80 1.83 1.79 1.84 1.81 

4 2.57 2.87 2.77 2.92 2.88 

8 2.77 4.39 4.04 4.46 4.36 

16 4.57 6.09 5.43 6.40 5.77 

      

(b) Hicks-Henne 

Functions 

    

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 1.00 1.00 1.00 1.00 1.00 

2 1.31 1.78 1.86 1.71 1.74 

4 1.77 2.64 2.83 2.13 2.70 

8 2.75 3.75 4.03 2.96 4.21 

16 3.87 4.81 5.70 3.87 5.72 

      

(c) Patched Polynomials     

#CPU delta=0.0015 delta=0.00125 delta=0.001 delta=0.00075 delta=0.0005 

1 1.00 1.00 1.00 1.00 1.00 

2 1.82 1.84 2.14 2.14 1.75 

4 2.88 2.86 3.54 3.54 2.98 

8 4.23 4.35 5.60 5.51 4.61 

16 5.47 6.18 7.90 7.57 6.33 

 



 82 

 

 
 

(a) Evolution of Blade Geometry (b) Evolution of Surface Pressure 

 
 

(c) Convergence History (d) CPU times 

Figure 4.4 Design Practice with 16 Wagner Functions 
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(a) Evolution of Blade Geometry (b) Evolution of Surface Pressure 

 
 

(c) Convergence History (d) CPU times 

Figure 4.5 Design Practice with 16 Hicks-Henne Functions 
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(a) Evolution of Blade Geometry (b) Evolution of Surface Pressure 

  

(c) Convergence History (d) CPU times 

Figure 4.6. Design Practice with 16 Patched Polynomials 
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4.6 Discussions 

In this inverse design algorithm, most of the processing time is used for finite 

difference sensitivity calculations. Each sensitivity analysis performs a flow solution 

with the new perturbed geometry. Flow solution begins from the last updated 

solution; however, convergence is still not reached after a quite large number of 

iterations. Some perturbations may sometimes cause more changes in flow 

environment than expected such as changing shapes occurs on shock generated areas, 

leading edge or trailing edge. Therefore some sensitivity calculations can last longer 

than others and whole process waits for it.   

 Gain in execution time showed an asymptotic decreasing trend with the number 

of processors. Because, only flow analyses for finite-difference sensitivity 

calculations are run parallel, all other computations are performed on a single 

processor. Also different processing times due to perturbation differences slow down 

the process. The communication time between the processors is insignificant 

compared to total design execution time. Ideally number of processors should be 

equal to number of independent tasks, but, regarding to the cost of hardware 

reasonable decrease can be preferred with less number of processors. 

 With this case study, effect of shape functions and perturbation sizes can also be 

compared. Wagner functions gave the most converged solutions in overall but in 

advancing side of the blade shape made an off-set due to limited convergence at 

sharp edges. Hicks-Henne functions caused wavy surface designs. Patched 

polynomials gave reasonable solutions for most of the geometry but an abnormal 

bump stayed on the designed geometry. In validation of the designs, convergence 

parameter is calculated by pressure differences, but shapes also be checked out for 

abnormalities. For sharp edges, it is hard to design; so, shape functions should be 

capable of creating edges. 
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 Convergences differ with changing perturbation sizes. This was expected, since 

it is known that there exists an optimum step size that minimizes the total error in 

finite difference sensitivity calculations. Truncation error decreases with decreasing 

step size of a finite difference derivative, but cancellation error increases with 

decreasing step size. This study also described the importance of the importance of 

accuracy improvements in sensitivity calculations.   
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS 

 

 Sensitivity calculation is one of the most important parts in the design 

optimization. The performance of finite difference sensitivities was studied. 

Compared to analytical method, finite difference methods are easy to use in 

sensitivity calculation. However finite difference sensitivities have accuracy 

problems and computational time may be very large.  

 Accuracy improvements in finite difference sensitivities are investigated by 

error analysis. One of the ways to reduce the error in finite difference sensitivity 

calculation is to use optimum finite difference interval size. Finding optimum 

interval size requires an estimation of convergence error and estimation of second 

order sensitivities. Convergence errors are analyzed and it has been represented that 

the construction of the iteration scheme directly affects the convergence error. The 

relation between the eigenvalues of iteration matrices and error propagation are 

investigated and a method is applied. The presented convergence error estimation 

method, which is based on eigenvalue analysis, is successful in predicting 

convergence error.  

 In this method convergence errors are predicted for both real and complex 

eigenvalues. Results show that estimating convergence error with real eigenvalues 

was successful. A parameter is stated for decision whether the eigenvalues of 

iteration matrix is complex or not. The switching parameter that distinguishes real 

and complex eigenvalue may not be very reliable in some problems. A better method 
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can be developed for estimating the type of eigenvalues or switching criteria should 

be identified by general rules.   

 The optimum finite difference interval size method requires value of second 

derivative. Second derivative estimation is represented by a method that makes trials 

due to error estimations. Usage of estimated values and trials make this method 

rather inefficient. Therefore; estimating second order derivative is difficult; but may 

be very useful in calculating optimum interval size. Approximating second derivative 

as 1.0 may not be useful because order of magnitude of second derivative may be 

very large like in this study.  

 Efficiency of the finite difference sensitivities can be improved by parallel 

computing. Modifying code for parallel sensitivity calculation does not require large 

modification in usual code. This study used an algorithm that a processor behaves as 

central and uses parallel processors in sensitivity calculations. Initial and design 

analyses, optimization processes are still done on a central processor but independent 

tasks of finite difference sensitivity calculations, which takes most of the 

computation time, are spread over parallel processors. Therefore; number of 

processors does not linearly decrease the computation time and half the number of 

tasks are recommended for number of processors.      

       For future studies, it can be said that the accuracies in finite difference step sizes 

highly depend on the second derivative estimations. In this study second derivative 

estimation has been done over a trial method. This way increases the computational 

time and did not give excellent results. Convergence error estimation method is 

highly recommended for iterative solutions; however, the control on eigenvalues of 

iteration matrix should be done followed that eigenvalues can go complex values for 

some cases. Aid of parallel computing should be taken when finite difference 

sensitivity analysis is performed in an inverse aerodynamic design algorithm. The 

computational time can be decreased in great amounts. Inverting a code to a parallel 

algorithm does not take some much effort and modifications.      
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APPENDIX 

 

DESIGN VARIABLES 

 

 

Cascade Shape Modification 

 

The cascade geometry was modified by adding smooth perturbations. The 

geometry perturbation ∆y was defined as a linear combination of base functions fk. 

 

( ) ( )∑
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kk xfXxy
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∆  (A.1) 

 

where Xk is the perturbation magnitude, or design variable, fk is the shape function, 

and K is the number of design variables to be used. 

 

Wagner Functions: 

Wagner functions are frequently used in optimization. They provide large variations 

with high harmonics and may cause waviness in resulting designs. 
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Patched Polynomials: 

A cubic on one side of xk is patched with another cubic on the other side to produce a 

smooth curve of second-order continuity. xk is the location of maximum perturbation. 
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where  

 ( )kx,maxA 210 −=  

 ( )120 −= kx,maxB  

 

Hicks-Henne Functions: 

The sinusoidal shape functions are frequently used in airfoil optimization. 

 

( ) ( )( )f x xk
e k= sin3 π   (A.4)  

where 
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Here xk’s are the locations of maximum height of the corresponding shape functions. 
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 (a) Wagner functions 

 
(b) Patched polynomials 

 
(c) Hicks-Henne functions 

 

Figure A.1 Shape functions used to perturb the geometry 
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