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ABSTRACT

ACCURACY AND EFFICIENCY IMPROVEMENTS
IN FINITE DIFFERENCE SENSITIVITY CALCULATIONS

Ozhamam, Murat
M.S., Department of Aerospace Engineering

Supervisor: Assoc.Prof.Dr. Sinan Eyi

December 2007, 94 Pages

Accuracy of the finite difference sensitivity calculations are improved by
calculating the optimum finite difference interval sizes. In an aerodynamic inverse
design algorithm, a compressor cascade geometry is perturbed by shape functions
and finite differences sensitivity derivatives of the flow variables are calculated with
respect to the base geometry flow variables. Sensitivity derivatives are used in an
optimization code and a new airfoil is designed verifying given design
characteristics. Accurate sensitivities are needed for optimization process. In order to
find the optimum finite difference interval size, a method is investigated.
Convergence error estimation techniques in iterative solutions and second derivative
estimations are investigated to facilitate this method. For validation of the method,
analytical sensitivity calculations of FEuler equations are used and several

applications are performed.

v



Efficiency of the finite difference sensitivity calculations is improved by
parallel computing. Finite difference sensitivity calculations are independent tasks in
an inverse aerodynamic design algorithm and can be computed separately.
Sensitivity calculations are performed on parallel processors and computing time is

decreased.

Keywords: Finite Difference Sensitivity Analysis, Inverse Aerodynamic Design

Optimization, Convergence Error Estimation, Parallel Computing
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SONLU FARKLARLA DUYARLILIK HESAPLAMALARINDA
HASSASIYET VE ETKINLIGIN ARTIRILMASI

Ozhamam, Murat
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi: Dog¢.Dr.Sinan Eyi

Aralik 2007, 94 sayfa

Sonlu farklarla duyarlilik tiirevi hesaplamalarinda, en iyi sonlu fark aralifi
hesaplanarak hassasiyet artirtlmistir. Bir ters aerodinamik tasarim algoritmasi
tizerinde, bir kompresor kanatcigi geometrisi sekil fonksiyonlariyla degistirilmis ve
temel sekil ile yeni sekil akig verileri arasinda sonlu farklar kullanilarak duyarlilik
hesaplart yapilmigtir. Duyarlilik tiirevi hesaplamalari bir optimizasyon koduna
girilerek istenen Ozelliklerde yeni bir kanatcik profili tasarlanmistir. Sonlu farklarla
duyarlilik tiirevi hesaplamalar1 bu yakinsamada oldukca 6nemlidir. En iyi sonlu fark
miktarim1  hesaplamak i¢in bir metot {izerine c¢alisilmistir. Bu metodun
uygulanabilmesi ic¢in, yakinsamali ¢Oziim metotlarindaki yakinsama hatasinin
hesaplanmas1 ve ikinci derece tiirev tahminleri iizerinde durulmustur. Metodun
dogrulanmasi icin Euler analitik hassasiyet hesaplamalar1 kullanilmig ve cesitli

uygulamalar yapilmstir.
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Sonlu farklarla hassasiyet hesaplamalarinda etkinlik, parallel islemciler
kullanilarak artinlmistir. Sonlu farklarla duyarlilik tiirevi hesaplamalar bagimsiz
islemlerdir ve ayr1 ayr hesaplanabilir. Paralel islemciler kullanilarak hesaplamalar

yapilmis ve tasarim siireci kisaltilmigtir.

Anahtar Kelimeler: Sonlu Farklarla Duyarlilik Hesaplamalari, Ters

Aerodinamik Tasarim Optimizasyonu, Iteratif Hata Tahmini, Paralel islem
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The operation of aircraft and propulsion systems relies on performance of their
aerodynamic components, such as air intakes, nozzles, wings, cascades, etc.
Aerodynamic design of these systems requires engineering expertise, powerful
design methods and computer aid. Engineers not only aim to minimize aerodynamic
losses and increase performance, but also design the bodies with affordable costs and
optimum shapes that can be easily manufactured and maintained. Aerodynamic
shape design involves ability to determine the geometry that will satisfy specified
aerodynamic objectives. For instance, it is possible to design an airfoil with a

specified pressure distribution.

Design procedure is categorized by direct and inverse methods. In direct
methods, designer specifies a geometry and then analyzes its performance. Based on
the analysis results, the designer modifies the shape in accordance with his
experience. This is essentially equivalent to the wind tunnel design method of “trial
and error”. Drawback of direct design is that designer should be capable and

experienced to reach the required shape.

In inverse design methods, designer is asked to predict the detailed geometry of

the flying object so that it is compatible with specified features of the flow field.



Designer usually gets a base geometry and applies some geometry perturbations in
order to reach the required flow field or surface parameters such as pressure
distribution, lift or pitching moment. Inverse design may lead to unrealistic shapes
although solutions are made mathematically correct where upper and lower surfaces

can cross-over (fish tail).

In inverse aerodynamic design, flow field design and surface flow design are
the main categories. Surface flow design is achieved by specifying a certain flow
parameter such as pressure or Mach number on the surface of the body and finding
the shape that will generate these surface conditions without regard for the rest of the
flow field. The flow field design enforces certain global flow field features such as
shock-free flow or minimal entropy generation at every point of the flow field by
finding the shape that will satisfy these global constraints. First shape design attempt
is done by Joukowski.[1] Joukowski conformal mapping was actually a technique for
designing a class of airfoil shapes having specified surface distribution of pressure

that corresponds to a flow around a rotating cylinder.

In inverse design, there are two approaches that are used widely: solving an
inverse problem and using optimization. Inverse problem computes an airfoil
geometry which will produce a desired target pressure distribution without
performing any analysis. Some difficulties may arise during the inverse problem. For
a given cascade, a flow analysis always produces a pressure distribution at a given
flow condition. However, the existence of the solution of the inverse problem is not
always guaranteed, i.e. the target pressure distribution may not be generated by any
cascade at the given flow condition. Furthermore in inverse design problem, the
arbitrary selection of the target pressure distribution may produce a cascade shape

that is not physically meaningful.

Some of the difficulties associated with the inverse design problem can be
eliminated by using optimization. An optimization-based design method minimizes a

specified objective function by combining a flow solver with an optimization



algorithm. Beside the objective function, constraints can be imposed in order to
satisfy some performance aspects. In this study, the inverse design is formulated as
an unconstrained optimization in which the pressure discrepancy between the target
and the designed cascade is the objective function. For a given design condition, an
optimization method generally produces a physically meaningful cascade with the
appropriate parameterization, even if no cascade will yield the target pressure

distribution.

Besides the advantages of optimization over the inverse problem, there are
some important issues that have to be considered in order to make this method
practical. The computational cost has been a major concern in design optimization.
The computational performance of design optimization is greatly influenced by the
cost and accuracy of the sensitivity calculations. Choice of flow models, design
parameterization, and optimization algorithms also affect the performance of the

optimized design.

Another major difficulty in non-linear design optimization is to find the global
optimum. Some inverse designs use stochastic methods such as genetic algorithms.
Stochastic methods have more advantages in finding globally optimum solution.
However, these methods require large number of function evaluations and may not
be suitable for practical design applications. In the present study, a deterministic

method based on a least-square optimization is used.

The major computational cost in aerodynamic design optimization is associated
with the sensitivity calculations that evaluate the variation of the flow field with
respect to geometry perturbations. There are two ways to reduce the design
computational time. One way is to compute the sensitivities on parallel processors in
order to reduce the execution time. The other way is to improve the accuracy of the

sensitivity calculations. This also enhances the design performance.

There are two methods to obtain the sensitivities: finite-difference and

analytical methods. In analytical method, the sensitivities are obtained by



analytically differentiating the governing equations and the objective and constraint
functions with respect to design variables. Analytical sensitivities can be obtained
accurately; however, a sensitivity code has to be developed for each analysis code.
This causes difficulties especially in complex analysis codes that involve non-

differentiable terms.

Unlike the analytical method, the finite-difference method does not require an
additional programming effort to build a dedicated sensitivity code. Finite-difference
method has two drawbacks. One of them is the computational cost which is
associated with the additional flow analyses required for each perturbed geometries.
This cost can be reduced by initializing the flow-field of the perturbed geometry
from the converged base solution. Parallel computing can also be used to calculate
sensitivities on parallel processors in order to reduce the computational cost. The
other drawback is the difficulty in predicting the accuracy of the sensitivities. Both of
these problems are affected by the size of the finite-difference perturbation and flow
variable initialization. However, errors in finite-difference sensitivity calculations
can be reduced by developing a method to calculate the sensitivities with optimum

perturbation size.

The reliability of a design result also depends on the ability to accurately
simulate the flow field. The flow model used in the design process should be able to
represent all significant flow physics encountered during the process. In the past,
designs were based mostly on the full potential equation. However, the potential
formulation can not properly represent the transonic features such as embedded
shock waves and shock boundary layer interactions. This study uses Euler and

Navier-Stokes solutions that cover shock boundary layer interactions and viscosity.
1.2 Objectives

This study investigates the methods to improve the performances of the finite
difference-sensitivity calculations in terms of accuracy and efficiency. In order to

improve the accuracy, errors in finite difference sensitivities are to be minimized. An

4



error analysis was performed to investigate the errors in sensitivity analysis that
involve truncation, cancellation and iterative errors. One of the objectives of this
study is to estimate these errors accurately. An optimum step size that minimizes
error in sensitivity calculation is studied. Calculation of optimum step size requires
the estimation of convergence error. Therefore, an extended research has been
pursued to estimate the convergence error. The accuracy of finite difference
sensitivities are validated with analytical sensitivities. For efficiency improvement,
parallel processing is used. Independent finite difference sensitivity calculations are

run on different processors in order to decrease the computation time.
1.3 Literature Survey

Iott, Haftka and Adelman [2] already described selecting optimum finite
difference interval sizes in sensitivity analyses by finite differences. This study
covers structural examples and errors are estimated with the rough error bounds
defined. Gill, Murray and Wright [3] covered several algorithms in order to find the
optimum step sizes. Barton [4] also describes almost the same method for optimum
step size. A recent study is done by Kirsch and Bogomolni [5] covering accuracies of

the analytical and finite difference results.

Effects of sensitivity analysis are examined by in both analytical and finite
difference approaches. Most of the literature covers the analytical sensitivity
derivatives. An adjoint sensitivity analysis is investigated by Chun-ho Sung and Jang
Hyuk Kwon [6]. used analytical approaches for aerodynamic design optimization.
Both analytical and finite difference methods are compared by Kocabicak and Eyi
[7] in a turbomachinery blade design case and results showed a further study is

needed to over the accuracy problem of the finite difference approach.

For calculating the optimum step sizes for finite difference sensitivity
derivatives, estimation of the error in the variables are to be done. For estimation of
the error in iterative solutions, Ferziger and Peric [8], [9] described a validated

method. This method investigates the error propagation by eigenvalue analysis and



successive over relaxation. Successive over relaxation is deeply explained by

Hoffmann [10] and Ferziger[11].

Kaplan’s thesis [12] covers an inverse design method which couples a Navier-
Stokes flow solver and a numerical optimization algorithm. The design method
generates a compressor cascade, producing a specified surface pressure distribution
at a transonic speed and a least-square optimization technique is used to minimize
pressure discrepancies between the target and designed cascades. The same
optimization technique and geometry is used in this study. Kocabigak’s thesis [13]
covered the effects of sensitivities on the performance of turbomachinery blade
design optimization using the Euler equations. Kocabicak’s study performed several
inverse design optimizations to evaluate the merits of analytical approach in

comparison with the finite-difference approach.

Two valuable AGARD reports [14] [15] includes many good examples of
methods for inverse design and optimization. A detailed survey was presented by
Sobieczky [16] and Dulikravich [17] to describe the progress in inverse design and
optimization. Several remarkable papers by Cetinkaya, Akmandor and Ucer [18] and
Vicini and Quagliarella [19] are about shock-free cascade design and usage of

genetic algorithms.

PVM software is used for parallel computing and software manual [20] is very
detailed and comprehensive. An AGARD report [21] summarizes the techniques

with examples.
1.4 Outline

Chapter 2 introduces the basic theory of the flow code for the Euler/Navier-
Stokes equations and optimum step size calculation method. Euler and Navier stokes
equations are represented in physical and computational domains. Numerical
solutions of these equations are presented. Differences and the derivations of

analytical and finite difference sensitivity analyses are presented. A brief error



analysis for finite difference sensitivity is done and formulation for optimum finite

difference interval size is stated.

In Chapter 3, improvements in accuracy of finite difference sensitivity
derivatives are investigated. Values of convergence error and second derivative are
used for optimum interval size that minimizes the error. Convergence error
estimation method, which is based on eigenvalue analysis, is stated. This method is
applied on Laplace, Euler and Navier-Stokes iterative solutions. Second order
derivative is estimated by a trial method that uses estimated error values. The
optimum interval size method is applied on Laplace and Euler solutions and in both
applications, analytical results are used for validation. A design example is
performed to emphasize the benefits of improving the accuracy of the finite

difference sensitivities.

In chapter 4, efficiency improvements in finite difference sensitivity
calculations are investigated by parallel computing. Theory of parallel computing
and inverse design optimization is given. Application is done on a Navier-Stokes
design solution. Benefits and efficiency of using parallel computing in finite

difference sensitivity calculations are discussed.

In chapter 5, the conclusion remarks and recommendations for future studies

are presented.



CHAPTER 2

SENSITIVITY ANALYSIS

2.1 Introduction

Design optimization process requires sensitivities which are the change of
objective or constraint function or state variables with respect to design parameters.
This study focuses on accurate and efficient calculation of finite-difference
sensitivities. In general, state variables are calculated after iterative procedures that
involve errors and these errors cause sensitivity inaccuracies. In this chapter, the
aerodynamic flow analysis and error propagation in finite difference sensitivity

analysis are investigated.

2.2 Flow Analysis

The flow model should have the capability to retain the flow physics for the
given flow conditions. The governing equations of the fluid flow, the employed
discretization scheme, the choice of appropriate boundary conditions and grid
density are very important factors for better flow simulations. In this study, two-
dimensional (2-D) Euler and Navier-Stokes flow analyses are used for calculating

analytical and numerical sensitivities.



2.2.1 Euler Equations

The universal laws of the conservation of mass, momentum, and energy are
the basis of the fundamental equations of fluid dynamics. [22] Euler equations are
composed of these conservation equations. The 2-D unsteady compressible Euler

equations, in a Cartesian coordinate system, can be written as:

8_w + 8_F + a—G =0 2.1
ot Jdx dy
where
p pu pv
2y uy

we| 2| R PP G| T 22)
pv puv pvo+p
pE pul pvH

In these equations, w is the flow variables vector. F' and G are the inviscid flux
vectors. p, p, u, v, E, H, are the density, pressure, and velocity components in the x
and y directions, total energy, total enthalpy respectively. [23] The pressure is

obtained from the equation of state:

p=pRT (2.3)

2.2.2 Navier-Stokes Equations

The Navier-Stokes equations can be written by adding viscous terms to Euler
equations. The 2-D Navier-Stokes equations are a set of four coupled, nonlinear
partial differential equations. Upon assuming that body forces and the addition of
external heat are negligible, the Navier-Stokes equations can be written in non-

dimensional conservation law form as:



dw F IG _IF, JG

Vv )4

o oy ko

where w is the vector of conserved mass defined as:

The inviscid flux vectors, F, and G are defined as:

pu pv

F= mﬁ+p,G= m?
puv pv-+p
puH PvH

2.4)

(2.5)

(2.6)

where p is the density, u and v are the x and y components of the velocity vector

respectively; p is pressure, E is the total energy and H is the total enthalpy per unit

volume. [23]

The viscous stresses are included when Newtonian fluid, where the stress is

linearly dependent on the rate of strain, is considered and the viscous flux vectors,

F,, and G, are defined as:

0 [0
Z:cx 'Z;,X
IS . G= .
Xy yy
)it 3
where

10

2.7



XX

T, = RLem[l(ux +v),)+2,uux]

7, = RL%[z(ux +v) 42w ]

T =7 —Lﬂ(u +v.)
xy yx Rem y x
: (2.8)
T, =7, =—Muu,+w
XZ oy Re lll( Z x)

oo

ﬂx = uTxx +VTyy _qx

,By =ut, +v7, —q,

where 4 is bulk and x is dynamic viscosity coefficients. Heat conduction terms are

defined as:
Y7, oT
q, =~ 2 N
Re_Pr(y—1)M?2 ox
(2.9)
__ H aT
Qy Re_Pr(y—1)M2 9y
The Prandtl number, Pr, is defined as:
Pr= % (2.10)

where ¢, is the specific heat at constant pressure, and k is the coefficient of thermal
conductivity. The Prandtl number is indicative of the relative ability of the fluid to
diffuse momentum and internal energy by molecular mechanisms. The Reynolds
number indicates the relative importance of inertial and viscous effects in fluid

motion and is shown as:

L
Re= Pectes

2.11)
M

11



Here, u._ is the freestream velocity, L is the reference length, u is the
coefficient of dynamic viscosity, and the subscript «~ denotes freestream values.
For turbulent flows, a turbulence model should be used to specify the coefficients of

viscosity and heat conductivity, which appear in the viscous terms in equation (2.8).
2.2.3 Euler and Navier-Stokes Equations in Generalized Coordinates

In order to apply the numerical algorithm and boundary conditions easily, the
governing equations which are developed in the physical domain or Cartesian
coordinates, (x, y), should be transformed to the computational domain or
generalized coordinates, (£ 7). Then Euler equations (2.1) can be written in the

transformed domain as:

Gl + oF + 9G = (2.12)
ot d¢& adn
where
P pv pU
| oA uV + A U +
=g | P G o g | PV EP | g U S (2.13)
v PV +1,p oU+S& p
PE PVH pUH
where U and V are contravariant velocity components defined as:
U=¢u+&y
’ (2.14)
V=nu+ n,yv

where &, &, 7., i, are transformation metrics.

Applying this generalized transformation to the Navier-Stokes equations (2.4),
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the following transformed equations are obtained

&W&F&G&F&G

v (2.15)
o"Z' 8§ 0"17 o"f 0"17
where the inviscid flux terms are:
P pvV pU
A V+ o U+
N Y A N PSS VA 2.16)
pv pvV +1n,p U +E& p
PE PVH pUH
while the viscous flux terms are given by:
0 0
al x " xx + vTx‘ A — xrxx + vTxv
F,=J S S e = | b T (2.17)
5){ yc + gyryy UXT}'X + 77)'1)')'
gxﬁx + gyﬂy nxﬂx + nyﬂy
where
T)cx = % [(fxuf +77xu77)_(§yvf +77yvi7 )]
T)‘)‘ = ﬁ [(gsvf + ”\'VT])_ (fxuf + nxun )] (2' 1 8)

y7i
T, =7, = Re (fyu et U, +E v+ 77Xv,7)

where the heat conduction terms in the computational space are:
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_ 2 (
Qx - ng +77xT )
PrRe_(y—1)M2 77 e 7 .19
Y7,
=— T, +n.T
&= " PrRe_(y-1)M> (6.7 +n,1,)

2.3 Numerical Solution of Euler and Navier-Stokes Equations

It is more eligible to predict complex flow phenomenon with solution of
Navier-Stokes equations instead of Euler equations. All of the computations are
performed until steady-state conditions are reached. Determination of steady-state

condition is obtained by writing the system of equation as:

o _ R(w) (2.20)
ot
where R is the steady-state residual. When norm of residual approaches zero, then
ow/ dt also approaches zero, and the system is said to have reached steady-state. In
all calculations, the system is deemed steady-state when norm of residual is reduced

by a given order of magnitude from its initial state.

The 2-D compressible Euler and Navier-Stokes equations are solved in
conservative form using finite-volume flow code. Flow variables are defined at the
cell center, and centered differencing is used for spatial derivatives. Both second
and fourth-order artificial viscosity are added for numerical stability.[23] The time
integration is performed using an explicit four stage Runge-Kutta scheme. Local
time stepping, variable-coefficient implicit residual smoothing, and multigrid
methods are implemented to accelerate the convergence to the steady-state
solutions. For the cascade flow conditions, inlet, outlet and periodic boundary
conditions are used. For Navier-Stokes solutions, a no-slip, adiabatic wall condition
is used on the airfoil surface. The Baldwin-Lomax Eddy viscosity model [24] is

used for turbulence closure and the transition point is assumed to be located at
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fourteen percent of the chord for viscous Navier-Stokes solutions.
2.4 Analytical Sensitivity Analysis

In analytical sensitivity calculations, the governing equations and their
boundary conditions are differentiated with respect to the design variables. If the
governing equations are differentiated after their numerical discretization, the
method is called as discrete approach. If the governing equations are differentiated
before the numerical discretization, the method is known as a continuum

(variational) approach.

In discrete direct differentiation method, the objective function fis a function
of the flow variables vector, w, and the coordinates of the grid points vector, x,

both of which are functions of the design variable X .
£ = flX)wl(x)] (2.21)

The total rate of change of this function, due to a change in the it component of the

design variable, X;, is given as:

df :a_f ox +a_f dw
dX, oxdX, owdX,

(2.22)

The partial derivativesodf /dx, dx/dX, and of /dw are explicit and they are
relatively easy to calculate. However, the response derivative dw/dX,, is implicitly

defined and it is more difficult to evaluate.

The first step in a shape sensitivity analysis is to develop a relationship
between a variation in a shape of domain and the resulting variation in the
functional defined on the domain. Consider a domain Q, bounded by the surface

I" and the design variable X; as it changes the shape of the body. The changes in the
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domain @ and boundary /" are shown in Figure 2.1. This approach is called the

material derivative approach.

rx;) e

AX,v(X)
x(Xj)

Figure 2.1 Variation of domain

The derivative with respect to the design variable X; is a total derivative,
dw/dX;, and consists of two parts. The first part will consist of the rate of change of
the quantity at a fixed point in space, is often referred to as a local derivative, and is

denoted as dw/0X,. The second part will consist of the changes due to variation of

the material point's location, and is called convective part, Vw-7, where Vw

denotes the spatial gradient of w, and v is the design velocity field

dx

= 2.23
X (2.23)
The total derivative is
dw  ow
—=—+Vwy 2.24
X, ox 2:24)

This approach is also called as the material derivative approach, because of the

formulation is in the form of a material derivative. The design velocity on surface is

16



subsequently given as

R ox
0, =—
FTax,
. _ Oy
= 2.25
Vi aXl. ( )

To obtain the sensitivity field dw/dX;, Euler equations and boundary

conditions are differentiated with respect to design variables X; as:

d (aw 8F+8GJ:0 2.26)

_ 4 — R
dX,\ ot odx dy

Equation (2.26) can be written in the following form:

d(dw) d(dr) o(dG 2 2
opaw ) ot 1, 014y wr. 2 _wve.- D=0 227
at(dxij+ax(dXJ+ay(dXJ Ve 22D

The last two terms in Equation (2.37), can be written explicitly as follows:

afdw), o(ar) o(dc
or\dx. ) oxldx,) oyl|ax,

OF di JF 0V dG di  9dG dv _0 (2.28)

ox dx dy dx Ox dy dy dy

from the Euler equations:

oF ow dG
oF __[dw 3G 22
o (8t+8yJ (2:29)
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G (8w+8Fj (2.30)

ay ot dx

Substitution of equation (2.29) and (2.30) into equation (2.28) yields:
0 dw 0 dr. Jd [ dG aw G au (aw oF j oy
+— +—— |+ + — | —t+— |—
ot ox dy\ dX, dy ot 0x )dy
______ =0 (2.31)

If we transform Equation (2.31) into generalized coordinates, then the above

equation becomes:

0 dwh+8 dF dy dG ox 0 (dG ox dF 9y
anf dX, 0&

o 9E\ax, ap _ax, an) on
0 o on 0 oi o
Z|F2-G e Ry R

T an an]+8n( P 85]

ow(diu dy dii dy v dx Jv dx
| = =7 - = 0 2.32
"o\ 0gan anoE ooz afanj .

Equation (2.32) can be written as:

%(ﬁﬁ%(ﬁﬁ%(ﬁﬁc ~0 (233)
where
W=,
dX
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FodP dy dG ox
dX,on dX,dn
G 4G dx _ dF oy
X, 9F  dX, O&
d ov on d o v\ R, dh
C=—|F——G— |+—|G—-F — |+ — 2.34
af( an an]+8n( o aéf}th,- 239

where Ry is the steady-state residual in the flow analysis, and can be neglected in
the sensitivity calculations, except for the constant term, C. In this study, the
analytical sensitivity solutions in continuum approach are used to validate the

accuracy of finite difference sensitivity.
2.5 Finite-Difference Sensitivity Analysis

In finite difference approach, sensitivities are calculated from the flow
solutions by applying the first order forward finite-difference derivative method.
The objective function, f [x(X ), w(X )] is a function of flow variables vector, w, and

grid coordinates vector, x, which are both functions of design variables, X. The ith
component of sensitivity can be approximated using the forward difference

calculation, as:

A (X +AX ) w(X +AX )] f(X ) w(X)]
AX. AX .

1 1

(2.35)

Another approach is to first decompose the sensitivities into explicit and implicit
parts, and then, apply the finite-difference method. In this approach, the sensitivities

of objective function can be written as
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df _df ox +a_fdw

_ (2.36)
dX, odxdX, owdX,

where dw/dX,; is the variation of the flow variables with respect to the design
variables. Here, df /dx, 0x/dX, and df /dw are explicit, and can be calculated by
either analytical or finite-difference methods accurately. However, dw/dX, is

implicit and to compute it by the finite-difference method requires the solution of
multiple iterative flow analyses. This study aims to improve finite-difference

sensitivity calculations. The accuracy of the calculations will be investigated below.
2.5.1 Accuracy in Finite Difference Derivatives

First order forward difference formula for w(X) is stated as:

dw _ w(X +AX) - w(X)
dx AX

(2.37)

where AX is the positive finite difference interval at point X. There are two
. . dw . .
dominant errors in the computed value of X which are truncation error and

cancellation errors. Truncation error is caused by the neglected terms of the Taylor
series expansion and cancellation error is caused by the inaccuracies in the
computed function values. Taylor series expansion for w(X +AX) can be
represented by analytical values as:

FX 4+ AX) = (X)) + Ax D
dx

AX* d*w AXPd*w AX* d'w
+ + + +
2 dx? 6 dx® 24 dx*

(2.38)
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where W represents analytical values. Substituting (2.37) into (2.38) as:

i WX +AX) = (X)
dx AX

3 AX d*w  AX* d’w  AX® d'w

— + + +... 2.40
2 dx? 6 dx°® 24 ax* ) (240)

.. . . dw
defining numerical derivative X as:

dv  dw AX d*W AX*d’W AX® d'w
— = (= > + 3 + 7] +...) (2.41)
dX dX 2 dX 6 dx® 24 dx

The difference between analytical numerical value due to neglected terms of Taylor

series expansion is the truncation error and can be written as:

d*w
dx?

AX
£ =—

. dw
truncation — 2
X

(2.42)

neglecting higher order terms. Cancellation error is due to inaccuracies of the
computed values of state variables. Finite difference sensitivities with computed

values can be calculated as:

dw _ (X +AX) = W(X)
ax AX

(2.43)

ﬂ: W(X+AX)—W(X)+€(X+AX)—€(X)

(2.44)
dX AX AX

where £(X) is the error vector that includes round-off and convergence errors. In

an iterative procedure, errors £(X +AX) and &(X) are approximately same.
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Therefore, amount of cancellation error can be represented as:

_ 2le(X)|

€ aw (2.45)

cancellation e AX
The error from these two sources is expressed as;

£ dw =& . dw +€ . dw (246)

total — truncation— cancellation —
X X

. _AX|dPw| 20ex)

total d—w 2 ‘dX 2 ‘ AX (247)

dX

Round-off errors are neglected. When equation (2.47) is differentiated with respect

to AX , minimum value of total error is obtained as:

_, [[EX)

AX =2 [ (2.48)
optimumﬁ dw
ax’

Above equation shows that in order to calculate optimum step size, error term,

. d*w )
g, and second derivative, F’ should be known or estimated.

In the same manner, optimum step size can be calculated for second order finite

difference derivatives. Second order central difference formula can be expressed as:

w(X +AX)-2w(X)+w(X —AX)
AX 2

d(X)= (2.49)

2
where ®(X)is used instead of

e In order to investigate the amount of errors in
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this formula Taylor series expansion and cancellation errors are to be expressed:
WX +AX) = (X)) +AX W (X)

2 _ 3 4
ax W”(X)+AX w”’(X)+AXTw<‘”(X)+.... (2.57)

+

WX —AX) = w(X)— AX W (X)

AX’ AX*

2
AX w(X) +Tw<4> (X)+.... (2.58)

+——W(X) -

plugging equation (2.57) and (2.58) into equation (2.56), it is obtained that:

= = = 2
w(X+AX)—2LV)(()§)+W(X—AX):q)(X)JrAlX_Z;;,W(X)Jr,,, (2.59)

Truncation error for ©(X ) is the remaining terms on RH as:

2

AX©
truncation® — 1_ W(4) (X) +... (260)
In order to get cancellation error, equation (2.56) is to be written by computed

values and error terms as:

WX +AX) = 2w(X) + w(X — AX)

dD(X)= NG

EX+AX)-2e(X)+&e(X —AX)
+ e

(2.61)

Amount of cancellation error for ®(x) can be at maximum by bound of errors as:
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€a

gcancellationcb = 4E (262)
Total error for ®(x) can be written as:
8tt1¢|=iAX2\w“)(X)\+4g—A (2.63)
. 12 AX?

by neglecting higher order terms in truncation error.

Throughout this study all domain solutions are investigated and norm values are

got in the calculations by using below definitions:

|X], = i\xj\ (2.64)
j=1
K 2

x|, = || (2.65)
j=1

| X[ =max|x| j=12....K (2.66)

2.5.2 Laplace Solution Example

A case study is done for a simple problem that has minimum errors for
optimum finite difference intervals for both first and second order finite difference

derivatives. A Laplace solution is performed for function:
u(x,y,t)=1t*100xy (2.67)
where x, y and ¢ are variables. The solution is performed by Laplace solution as:
Viu(x,y,t)=0 (2.68)

in a 40x40 grid. The error amount for the first-order and second-order derivatives
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can be written as by (2.54):

€ —ﬁ(lzzzloox )+£(24t100x )+h—3(24100x y+2% (2.57)

total y” 2 y 6 y 24 y h .
_h £

Erals| =5 (24100x) +4- (2.58)

where the ¢ terms are calculated iterative errors and known truncation errors. Error
variations due to finite difference intervals for first and second order derivatives in
L; norm are graphed in Figure 2.2. Example solution performed on 1x1 plate with a

80x80 cartesian grid where the residual reached 107,

Exact errors are differences between the analytical formulation and the
numerical computation as stated in equation (2.57). Truncation and cancellation

errors are generated by the formulations in equation (2.58). Since the function
u(x,y,t)=1*100xy can only be differentiated to the 4™ order, there are no

neglected higher order terms for truncation error.

For second order derivative, it can be seen that exact error variation is the
sum of the truncation and cancellation errors. Truncation error fits with almost no
difference at the larger intervals where the cancellation error is negligible.
Cancellation error dominates the total error variation with the smaller intervals. The
cancellation error is calculated with equation (2.58) where the error bound is

calculated by the iterative error estimation procedure as:

E .
— 4 estimated (2 59)

gcancellation D ‘ h 2

25



|Sensitivity-error|,

4 e
10 g — — — |Truncation(sensitivity}|,
u —-—-—- |Cancellation(sensitivity)|,
o —_——— |Second-derivative-error],
10 ? N | Truncation(second-der.)|,
SN — — — |Cancellation(second-der.}|,
N ~
10° 5 “
- ' /
= 10’ _ /
5 | /
= B /
Yok !
g /
10"
107 L \
- / EEAN \
10-3 L \IIHHI AI\HHI L II\HHI L II\HHI L II,{:-\:IHI Ll L L L I\HHI
107 10° 10° 10 10° 10° 10" 10°

h

Figure 2.2 Error variation of u(x,y,t)=¢"100xy problem w.r.t. differentiation
interval h.

There is a slight difference between the cancellation error and total error due to
nominal values in iterative error estimation. In the same manner for the first
derivative (sensitivity calculation) truncation error almost is in the same amount of
the exact error. Cancellation error is calculated by equation (2.53) by the iterative

error estimates as:

ge‘vtimuted

h

(2.60)

cancellation | —

For smaller than the optimum value finite difference intervals, sensitivity error
values are oscillatory due to norm calculations. This kind of oscillations is also seen

in several studies. [25]
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CHAPTER 3

ACCURACY IMPROVEMENTS

IN FINITE DIFFERENCE SENSITIVITY CALCULATIONS

3.1 Introduction

This study investigates a method for obtaining a near-optimum step size for
finite difference sensitivity derivatives. Several studies have already been done for
some functions. [2] These methods involve only continuous functions and will be

adapted to domain type-solutions in this study.

In finite difference sensitivity calculations, decreasing step size usually
decreases truncation error and increases cancellation errors. In chapter 2, the effects
of step sizes on the accuracy are investigated and optimum step size for the first-

order derivative is stated as:

lel

;= 1
optw |q)| (3 )

where ¢ is the error of the computed value f{x) and P is the associated second-order

derivative.

In this chapter, methods are investigated for estimating the convergence
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error, £ and second order derivative, ®, terms in domain solutions, especially for

the fluid flow applications. This method will be applied to a Laplace heat problem

and an Euler CFD solutions.
3.2 Convergence Error Estimation

The result of discretization process is a system of algebraic equations, which are
linear or non-linear according to the nature of the partial differential equations. In the
non-linear case, the discretized equations can be solved by an iterative technique by
guessing an initial solution. Whether the equations are linear or not, efficient
methods for solving linear systems of algebraic equations are needed. The system

can be written in matrix notation as:
[Alw=0 (3.2)

where A is the square sparse coefficient matrix, w is a vector containing the variable
values and Q is the vector containing the known terms. The matrices derived from

partial differential equations are usually sparse.

Direct solution of systems of equations can be considered and well-known
methods are Gauss elimination and LU decomposition.[8] Gauss elimination; is the
systematic reduction of large systems of equations to smaller ones. By applying row
operations some elements are eliminated and a triangular matrix is obtained. Then by
back substitution solution is obtained. This method is rather expensive for large
systems that are not sparse and interchange of rows by pivoting causes error growth.
LU decomposition method factorizes matrix A into two lower, L, and upper, U,
triangle matrices and eases the solution as in the Gauss elimination. For factorization
Gauss elimination procedures are used. The advantage of LU factorization over
Gauss elimination is that the factorization can be performed without knowing vector
Q. This allows that if many systems are involving the same matrix are to be solved,

considerable savings can be obtained by performing the factorization first.
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Cyclic reduction method is used for sparse matrices which only have non-zero
terms on diagonals. For finite difference solutions, these kind of sparse matrices are
created and by simple cyclic row operations, solution is reached by back
substitutions. Any systems of equations can be solved by Gauss elimination or LU
decomposition. Unfortunately, the triangular factors of sparse matrices are not that
easy to implement and this hardens the solution algorithm and number of
calculations. The discretization error is usually much larger than the accuracy of the

computer arithmetic so there is no reason to solve the system that accurately.
3.2.1 Iterative Methods for Systems of Equations

Iterative methods are generally used for non-linear systems, an also used for
sparse linear systems of equations. In an iterative method, an initial solution is
guessed and systematically improved. Generally, iterative methods are more
successful than direct methods in number of calculations and usage of memory.

[John h. Mathews]

Convergence to the exact solution is the purpose of each iterative solution.
Exact solution is the solution that satisfies the equation with zero residual.
Considering the simple matrix problem which might result from Finite Difference
and Finite Volume approximations of a flow problem as formulated in equation
(3.1), after n iterations, w" does not satisfy these equations exactly. Instead there

becomes a non-zero residual p” as;
[Alw" =0-p" 3.2)

where w" is the converged solution. Convergence error, which is the difference

between exact and iterative solution, can be written as:

e =w—-w" (3.3)
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where w is the exact solution, w" is the converged solution after n iterations and &€" is
the associated error vector. The residual can be stated by substituting equation (3.3)

into (3.2) as:
[Ale" = p (3.4)

The purpose of the iteration procedure is to derive the residual to zero. As
residual goes to zero, error also tends to be small if convergence is achieved on exact
value. Iteration scheme directly affects the convergence and precision of the solution.
For iteration scheme example in the solution of equation (3.1), arranging a scheme

by decomposing matrix A as;

[A]=[M]-[N] (3.5)
and substituting into equation (3.2) as:

[M]w" =[N]w" +0 - p" (3.6)

It can be assumed that as residual, p", goes to zero solutions at iterations n+1 and n

are almost equal. Therefore equation (3.6) can be arranged as:
M =[N]w" +0 (3.7)

where w"' and w" are the solutions in referred iterations. Selecting M and N matrices

plays an important role in solution of matrices. To investigate their effects on error
propagation, error definition in equation (3.3) can be used by subtracting [M ]w" from

equation (3.7) as:
[M ]! —w"y = 0~ (M ]-[NDw" (3.8)

by the definitions in equations (3.2) and (3.5), equation (3.8) can be arranged as:
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[l —wy =0~ [a]w”

[MJowt —wy = p" (3.9)
By the definition in equation (3.4), equation (3.9) can be stated as:
[M ] —wmy =[Ale" (3.10)

From equation (3.10), it is understood that convergence error is generated by
the iterative solution scheme. For an iterative method to be effective, solution must
have minimum number of calculations and converge rapidly. During construction of
iterative solution scheme, such as defining M and N matrices in the above example,
care should be taken to minimize the convergence error growth. Generally A is a
sparse matrix. For convergence, M should be easily inverted such as being diagonal,

tridiagonal, triangular etc.
3.2.2 Estimation of Convergence Error in Iterative Solutions

The iterative solution method directly affects the convergence. The convergence
of iterative method can be studied by using eigenvalues and eigenvectors of matrix
iteration matrices. [8] As residual goes to zero, iterative solution approaches the
exact solution. For monotone decreasing iterative solution the eigenvalues of the
iteration scheme are to be considered. For the above discussed iterative solution
scheme, substituting exact solution into equation (3.7), provided that residual is

negligibly small, as:
[M]w=[Nw+0 (3.11)
and subtracting this from equation (3.7)

[M]w™" —w)=[NJw" —w) (3.12)
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and by substituting the convergence error definition in equation (3.3), it obtained as:
[M]e™ =[N]e* (3.13)

or can be also arranged as:
e =[M]"'[N]e" (3.14)

Equation (3.14) represents that, in an iterative solution, any error on convergence is

n+l

characterized by the [M ]_1[N ] matrix. For convergence, £"" should be smaller than

£" and converge to minimum value that;

lime" =0 (3.15)

n—oc0

Eigenvalues and eigenvectors are important for the convergence of the iteration

solution. The eigenvalues and eigenvectors of matrix [M ]_l [N ] can be defined as:
M Nyt =Aut k=12..K (3.16)

where y/"’s are the eigenvectors, A;’s are the eigenvalues and K is the number of
equations (or grid points if it’s a domain solution). Eigenvectors is assumed to be a
basis for R" vector and forms a complete set. So, initial convergence error can be

shown as a combination of eigenvectors such as;
K
g° :Zaky/k (3.17)
k=1

where a; is a constant. Iterative solution yields the next iteration error term by

combining equation (3.14) and (3.17) as;
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K
g =MV =[M'N]Y a,pt (3.18)
k=1
and by induction, error for the n™iteration can be written as;
K
e =Y a iyt (3.19)
k=1

Above equation shows that, 4;’s should be less than unity for convergence of
iteration method. In particular, number of iterations is quite a large number in CFD
problems. The largest eigenvalue, also called as the spectral radius, has the dominant
effect on error growth. So simply, it will be a reliable assumption that equation (3.20)

is to be written by only the spectral radius as;
e =a,(A)"y' (3.20)

where 4; is the largest eigenvalue, a; and l//l are the respective constant and

eigenvector.

In an iterative method it is important to be able to estimate the convergence
error in order to decide when to stop iteration. Calculation of the eigenvalues of the
iteration matrix is difficult that reasonable approximations have to be used. In order
to estimate the convergence error some definitions are required. Difference vector

between the following iterations is:
O =w" —w" (3.21)
By subtracting and adding exact values in equation (3.21), it can be written that;
0" =W —w)—(w" —w)

5;1 — 8n+l _8n (322)
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By substituting equation (3.20) into (3.22):
d" =aq, (/11 )"H Vi—q (ﬂ’l )” 4
8" = (A4 —a,(4)"y, (3.23)

In equation (3.23), 4; and a; are scalar quantities where 1//1 and 0" are vectors. In
order to estimate a convergence error, difference term, d", is the only computable

term. Convergence error is to be written as a combination of d". Therefore define a

ratio as:
5” _ n
— — (//LI 1)al(/,i’l 2_11// =ﬂ1 (324)
) (ﬂ’l_l)al(ﬂl) |4
where [0"| represents norm of difference vector 6" . Equation (3.24) shows that

largest eigenvalue can be found by the ratio of the differences between two
successive iterations. By substituting equation (3.20) into equation (3.23), is

obtained as:
5" = (4 —1)e" (3.25)

Arranging equation (3.25) by normalized values, convergence error formulation can

be obtained as:

n 5”
e \zﬁ

(3.26)

Iterative methods often have complex eigenvalues. When this is the case, the
convergence error reduction may not be monotonic. Since the equations are real,

complex eigenvalues must occur as conjugate pairs. Their estimation requires an
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extension of the above procedure. If the largest eigenvalue is complex equation

(3.20) can be written as;

e" =a,(4)"y, +a 1(A)"y, (3.27)

where /1, is the conjugate pair of A; and a; is the corresponding constant. Residual

for iterations in equation (3.27) is to be written for complex values as;
A =le” (3.28)

Ferziger and Peric [8] has stated a formulation to estimate the error growth in an
iterative solution, where the largest eigenvalue is complex, by defining a z" scalar

quantity, which eliminates conjugate terms as;

" =6"28" 5" (3.29)
by using ¢" vectors in equation (3.25) into (3.36) and defining a parameter o as;

o= -Day, (3.30)
Then equation (3.23) for complex problems is to be written as;

5" =) o+(1) o (3.31)
and equation (3.29) gets the form of;

2" =21 (cos(2v) - 1) (3.32)

and magnitude of the eigenvalue is to be written as;

(3.40)
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The complex eigenvalues cause non-monotonic decrease of the convergence
error. For estimating convergence error, differences between iterations, ¢”, and
magnitude of the eigenvalue, /, are to be computed. Due to complex eigenvalues of
and eigenvectors, the result contains terms proportional to the cosine of the phase
angle since only magnitudes are interested. It is assumed that these terms are zero in

average. This allows a simple relation as:

~ (3.41)

This is the desired estimate of the error. Due to oscillations in the solution, this
estimate may not be accurate on any particular iteration. Ferziger and Peric (2002)

suggests a ratio as;

(3.42)

If the ratio is large the eigenvalue is probably complex. For real eigenvalues r
tends to be smaller than 10 and for complex eigenvalues r is approximately 1.
Although this method is designed for linear systems, all systems are essentially linear

near convergence; so, this method can be applied to non-linear systems as well.

It is recommended that the relation between the largest eigenvalue and residual
should also be investigated. [9] Residual of an iterative solution procedure can be
changed by successive over relaxation (SOR) methods. [10] In order to accelerate the
convergence of iterative procedure, an over-relaxation parameter can be introduced.
Residual can be expressed by extrapolating the known residual for the next iteration.

Equation (3.2) for iteration n+1, can be written as:

[A"' =0 - p"" (3.43)
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In a converging solution residual, p, is expected to decrease by successive

iterations. It is convenient to represent iterative solution with a extrapolation

formulation as:

w =w" +a(w" —w") (3.44)
where ¢ is an extrapolation parameter. Equation (3.44) can be arranged as:

wt =1+ a)w" —aw™! (3.45)
The formulation can be written as below [11]:

w™ = ow" +(1-o)w"" (3.46)
where

w=1+a (3.47)

where o is called the over-relaxation parameter. Ferziger [11] suggests a correlation
between the eigenvalues of the iteration matrix and the extrapolation equation (3.46)

as:
A, =wA+(1-w) (3.48)

where A, is the over-relaxed solution scheme’s eigenvalue. Selecting optimum over

relaxation parameter is important that there is an optimum over relaxation factor that
corresponds to the eigenvalues of the main iteration matrix. Whenever a larger value
than the optimum over relaxation parameter used complex eigenvalues are
introduced. [14] Ferziger [11] proposes that in simple Gauss-Seidel iteration scheme,
which does use uptated solutions in Laplace solution, has absolute eigenvalues of

simple Jacobi solution and states that the magnitudes of the largest and minimum
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eigenvalues are equal. Where o is between 1 and 2 for over-relaxation, A,

minimize when A is equal to 0. Therefore it can be written that:

(1-o) = \aﬂf +(1- a))\ (3.49)

(1-w) =-k; —(1-w) (3.50)

and optimum relaxation can be found as:

o, = (3.51)

is

It is not simple to find optimum over relaxation factor in larger grids and

complicated problems. Generally, larger the grid larger the optimum over relaxation

factor is. For values of w less than the optimum, the convergence is monotonic and

the rate of convergence increases as w increases. When the optimum w is exceeded,

the convergence rate deteriorates and the convergence is oscillatory. [9] For Euler

and Navier-Stokes problems, in order to find the best convergence rate and control

the eigenvalues, optimum relaxation can be optimized by trial and error. Also this

will show whether the eigenvalues are real or not. So error estimation method can

also be decided. So, parameters like CFL number should be controlled for best

convergence.

3.2.3 Application on Laplace’s Solution

Above mentioned iteration solution method is applied in 2-D Laplace solution as:

w; zl(w

i,j 4 i+l,j + Wi—l,j +w

+ Wi,j+l) (3.52)

i,j-1

The linear problem is Laplace’s equation in the square domain (O<x<1, O<y<1)

with boundary conditions of 100xy. The advantage of this solution is that the second
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order central difference approximation to the converged solution is exact. The initial
guess of the solution is taken as zero everywhere within the domain. A relaxation
parameter, o, is introduced in the numerical solution. A FORTRAN code is written

for computing and run in single precision of 10°°.

Results of error estimations for uniform grids with 80x80 and 20x20 cells are
shown in Figure 3.1 to Figure 3.4 in logarithmic values. Results are represented for
L;, L, and L., norms. In each figure, exact convergence error, the convergence error
estimate, change between successive iterations and residuals are shown. For each
grid size problem, two different relaxation parameters are incorporated: one below
the optimum value, where solution has real eigenvalues and one above the optimum

leading to complex eigenvalues.

In Figure 3.1 estimation is quite successful for 20x20 grid with a relaxation
parameter of 1.5, where the changes between successive iterations are linearly
decreasing. Relaxation parameter is smaller than the optimum relaxation parameter
and the solution eigenvalues are real. The code itself has already switched to real
eigenvalue estimation method with the ratio criteria of 0.1, given by equation (3.42).
At the beginning of the solution, when changes and residuals are not monotonic,
estimation couldn’t be achieved. When the changes approach to computer precision
amount, the solution is not monotonic and estimation gives oscillatory results. There

is no big difference for estimation quality for different norms.

In Figure 3.2 the same solution is done with a relaxation parameter of 1.8 which
is greater than the optimum relaxation value. The solution is not monotonic that
intends complex eigenvalues. Code has already switched to complex estimation
method and estimation is not that successful with respect to the real estimation.
Generally a half order of magnitude gap exists between exact error and estimation.
There are not much oscillations in this method and solution is reached in almost half
number of iterations of the above case where relaxation parameter was smaller. L,

norm gave the most precise estimation. There are sudden changes at some iterations
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and estimation is linear between these iterations.

In Figure 3.3 80x80 grid solution is represented for a relaxation parameter of 1.5
which is smaller than the optimum parameter. Solution has real eigenvalues and
estimation is successful when a monotonic decrease is achieved. In Figure 3.4, 80x80
grid solution is represented for a relaxation parameter of 1.95 which is larger than the
optimum parameter. Solution has reached to minimum residual almost 3 times faster
than the above case where relaxation parameter was smaller. In this complex
estimation, there is again a sudden change in solution and convergence error
estimation is again linear. Estimation is not that successful as in the real estimation

but again L, norm gave the closest estimation.

For the case of real eigenvalues, results are smoothly converged. The
convergence error estimate is almost exact in this case. However at the beginning of
the iterations the norms of differences fall too rapidly and do not follow the fall of
the convergence error. This effect is seen well in fine grid. Once the asymptotic
reduction rate is achieved, the slopes of all curves are the same. In the case for which
the eigenvalues of the iteration matrix are complex, the convergence is not
monotonic and there are oscillations in the error. The comparison of predicted and
exact errors in this case is also reasonably satisfactory especially in slow solutions

with smaller relaxation parameters.
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Figure 3.1 Variation of exact convergence error, error estimate, differences between
two successive iterations and residuals for the Laplace problem on a 20x20 Cartesian
square grid with a relaxation parameter of 1.5.
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Figure 3.2 Variation of exact convergence error, error estimate, differences between

two successive iterations and residuals for the Laplace problem on a 20x20 Cartesian
square grid with a relaxation parameter of 1.80.
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Figure 3.3 Variation of exact convergence error, error estimate, differences between
two successive iterations and residuals for the Laplace problem on a 80x80 Cartesian
square grid with a relaxation parameter of 1.5.
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Figure 3.4 Variation of exact convergence error, error estimate, differences between
two successive iterations and residuals for the Laplace problem on a 80x80 Cartesian
square grid with a relaxation parameter of 1.95.
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3.2.4 Application on a Euler and Navier-Stokes Solution of a Flow Problem

An Euler solver is applied on a turbomachinery cascade blade. Since, there is
no exact solution for Euler and Navier-Stokes equations, exact solution is estimated
at the best solutions achieved. To calculate exact solution code is run until the
residual is reached to machine epsilon. At each iterations, difference between the

computed solution and exact solution is regarded as the error.

Figure 3.5 shows the case compressor cascade geometries for Euler and Navier
Stokes solutions. For both solution inlet and outlet Mach numbers are taken as 1.023
and 0.654 and corresponding Reynolds number is 1.54x10°. For each solution, grid

refinement is done for the first 100 iterations.
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(a) Euler solution mesh 193x33 (b) Navier-Stokes solution mesh 257x49

Figure 3.5 Solution Meshes
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Both solutions are run for different number of CFL (Courant-Friedrichs-Lewy)
numbers. The CFL number acts as the relaxation parameter. As the CFL number gets
larger time steps gets larger and faster solution is achieved. For wave equation it is

shown as;

(3.57)

where At is the time step and u/Ax is the characteristic convection time. This number
(also known as Courant number) represents the time required for a disturbance to be

convected a distance Ax.

Euler solutions are represented in Figure 3.6 to Figure 3.8 for different norms
and the CFL numbers. In these figures exact and estimated errors, changes between
iterations, residuals and ratio parameter, r, given by equation (3.42) are shown. Ratio

parameter is graphed only once for each case.

Figures 3.6 to 3.8 show Euler solution with CFL numbers of 3, 4 and 5,
respectively. All three Euler solutions gave exactly the same results. Small values of
ratio, r, showed that iterative scheme has real eigenvalues. For beginning 1000
iterations the iterative solution does not converge and estimation is oscillatory. The
solution is not linearly decreasing until 3000 iterations and estimation is not that
precise. When the solution goes linearly decreasing, ratio parameter, r, is gradually
increasing. The estimation goes oscillatory when the changess between iterations
begin to reach a limit of computer precision and ratio, 7, reaches to the switch value
of 0.1. This switch criteria of 0.1 did not work well that ratio reaches a value which
is larger than the criteria and does not change; however, at these iterations solution
has already converged. For the CFL number of 4, solution gave the slowest solution.

For all cases L; norm gave the best estimated results.

Figures 3.9 to 3.11 show Navier-Stokes solutions with the CFL numbers of 3,
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4 and 5, respectively. The solution is much more linearly decreasing with respect to
Euler solution. From 800 iterations to the computer precision is reached, the
estimation gave quite well results and solution decreased linearly. For the beginning
iterations, convergence is not linearly decreasing and the estimation is oscillatory.
Whenever linear decreasing is achieved in changes between successive iterations, the
estimation gave good results. In the same manner in Euler solution, when the
differences reached computer precision, estimation gave oscillatory results and ratio
has reached a limit that is larger than the switch criteria. The ratio results show that
again solution has real eigenvalues. Higher CFL numbers gave faster solutions. For
higher CFL numbers the oscillations due to non-linear convergence have lasted for
more number of iterations. In Figure 3.11 the oscillations reached almost 1500

iterations.

Convergence error estimation method has been used in Laplace, Euler and
Navier-Stokes iterative solutions and gave quite well results. When linearly
decreasing residuals are reached, convergence error estimations gave almost perfect
results. However as the residuals approaches the smallest achievable quantities,
estimations can give reliable numbers, so the ratio parameter, r, should be followed

for reliability of this method.
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Figure 3.6 Variation of norms of the exact convergence error, error estimate,
differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid
with CFL number of 3.

48



105 1 |Error(exact)],
P M‘ — — — — [Error(estimated)|,
10° i —.—-—-— |Differencel,
— — — — |Residuall|,
| —-—-—-— Ratio
10k <o
8o \
107 -
A
5 10° b
gAY
TR
10° 1
I
107 -
10°
10—11 [
~
\\
10-13\\\\ll\l\l\\\\l\l\lll\\T“‘T—\"r‘v"l
1000 2000 3000 4000 5000 6000
Iteration
(a) Ly norm and ratio parameter, r
10° | |Error{exact]|,
Iy — — — — |Error{estimated)|,
10 ey —im—= |Difference|,
— — — — |Residuall|,
10"
10°
5 10°
i@
_1077
10°
1041
10" N e
1045"Hl"..|HH|HH|HT“T“1‘-7":*T--‘-
1000 2000 3000 4000 5000 6000
Iteration
(b) L, norm
10° | ‘t |Error(exact)|,
" Pl‘ — — — — |Error(estimated)|,,
10° »‘ T —-—-—-— |Difference],,
! ¢ — — —— |Residual|,,
10'% )
10 ':m/*r\,
S0
=
ool
10"°
10"
10" -
1045|\\\|\||\|\\\\|\\\||\\\\||\\\
1000 2000 3000 4000 5000 6000

Iteration

(c¢) L, norm
Figure 3.7 Variation of norms of the exact convergence error, error estimate,

differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid
with CFL number of 4.
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Figure 3.8 Variation of norms of the exact convergence error, error estimate,

differences, residual and ratio parameter for the Euler problem on a 193x33 C-grid
with CFL number of 5.
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Figure 3.10 Variation of norms of the exact convergence error, error estimate,
differences, residual and ratio parameter for the Navier-Stokes problem on a 257x49
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differences, residual and ratio parameter for the Navier-Stokes problem on a 257x49
C-grid with CFL number of 5.
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3.3 Optimum Finite Difference Interval Estimation

In order to estimate the best finite difference interval that generates the
minimum error in sensitivity calculations, a procedure is investigated. [2] This
procedure is based on the approximation of the second derivative and the
corresponding finite difference interval for accurate second derivative calculation.
Acceptable values of second derivative are used for calculation of the optimum first
order forward finite difference derivative formulation. Equation (2.48) is to be

written as:

gestima ted

h =2 (3.58)

forward

P

where £ is the finite difference interval, is the norm of computation error

gestimated

and |<I>| is the norm of second order derivative.

Procedure is based on the fact that the truncation error tends to be an increasing
function of interval & while the cancellation error bound is generally a decreasing
function of A. Throughout this procedure the value of A, is selected from a sequence
of trials. The decision, whether a given value of ® is sufficiently accurate, is given
by a defined cancellation error bound. The normalized value of equation (2.62) with

second derivative value, |®|, as;

— 4 gezstimated (359)
||

cancellation ®

The interval for cancellation error norm, |€ , 1s [0.001, 0.1]. For values

cancellation ®

below 0.001, truncation error tends to be large and for values over 0.1 cancellation

error is large. It is assumed to be @ is not a large number and the value where & is
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are

gcancellation [

calculate, is not a singularity. In this procedure, by trials |CI>| and

calculated and checked. If

is larger than the interval hg is increased,

gcancel lation ®

otherwise decreased.

The procedure not only checks the second derivative cancellation error, but also
checks the forward and backward derivatives. Normalized cancellation errors for

forward and backward derivatives are calculated by;

2le,,
— d estimated (3.60)
h w

dX forward

&€

cancellation forward

2|e,.
— d estimated (361)
h w

dX backward

&€

cancellation backward

Procedure obtains optimum interval size h, by generating a sequence of trial
values ;. Also an initial guess for A, is required. Gill, Murray, Wright [15] suggest

an initial guess for A by a rough estimation of;

forward
@] = 1+|w] (3.62)

then calculates initial guess of £, as;

gestimated

1+|w|

=2 (3.63)

forward

and assumes that second order derivative optimum interval is one order larger than

the first derivatives. Therefore the initial interval is:
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hy =10-h

gestimated

=10-2 (3.64)

forward

1+

"

This procedure has been used for continuous functions. [15] This study adopts the
procedure for domain problems and uses norms of the domains. The procedure can

be stated as;

Step 1: (Initialization)

Calculate

gestimated

gestimated

1+

Calculate initial interval A, =102

W

Evaluate w(X +h,), w(X —h,), dw (X +hy), aw (X +h,),

dX forward backward

¢’()(’h())’

’ gcancellatian [

’ gcancellatianhackward

gcam‘el lation forward

- Setk=0

Step 2: (Decide whether to accept, increase or decrease the interval)

max ﬂg

}<0.1 and

4 8cancellation backward

cancellation forward

- If

h

gcancellation o]

0.001 < <0.1, set <I>:h°,go to step 5.

max ﬂg

gcancel lation backward

}

cancellation forward |*

- If }<0.1 and

maxﬂe

>

cancellation forward gcancellation backward

< 0.001 go to step 4.
- Otherwise go to step 3.

Step 3: (Increase h)

56



Setk=k +1

Sor 1 =10°h,
dw dw
— (X+h) — (X +h,)
- Evaluate W(X + ho) W(X - ho) dX forward ’ backward 0
q)(X 5 h() ) écancellation Sforward écancellatian backward éamcellatian(b
_ If maxﬂécancellationforward 4 écancellationbackward } < 01 and 0001 < gcancellationfb < 01 set
hg = h,, go to step 5.
- If k=Ko, stop.
- Otherwise repeat step 3.
Step 4: (Decrease h)
- Setk=k+I
- Set h, =h,_, /10
dw dw
o (X +hy) (X +h,)
- Evaluate W(X + ho) W(X - ho) dX Jorward dX backward 0
(I)(X > ho ) écancellation SJorward écancellation backward écancellationcb
maxﬂé . JIE .
_ If cancellation forward cancellation backward } > 0.1 or

gcancellation o]

> 0.1, set hy,=h,_,, go to step 5.

gcancellatian [

- If 0.001 < <0.1, set hy=h,, go to step 5.

I k=k,

X

stop.

- Otherwise repeat step 4.
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Step 4: (Compute the estimate of the optimal interval)

- Define h,,,,, by the equation;
_ gestimated
forward T d
= Set €1, forwara DY the equation;

2.
|+

_ h forward gestima ted

£

Total ffymara 2
forward

3.3.1 Case Study I: Laplace Solution

A case study is performed for a Laplace solution for w(x,y,t)=¢"100xy as

described in section 3.2. Two different grids of 40x40 and 80x80 are used. Iterations
are stopped with different criteria that define the stopping residual values of 107,
10"8, 10" and 10", Three different norms of L;, L, and L, are used. Above
described optimum finite difference step size procedure is applied and solution is
repeated for different intervals and errors are graphed for verification. On the graphs,

estimated norm values are shown.

In figure 3.12, norms of exact error, truncation error and estimated cancellation
error variations are represented for 40x40 grid. Estimated optimum finite difference
interval value and corresponding estimated total error is pointed out on the graph. All
the estimated values are at the junction of truncation error and the estimated
cancellation error curves. The most accurate results are estimated with the L; norms.

Therefore, following results are graphed by L; norms.

Figure 3.13 and Figure 3.14 shows the results in L; norm for 40x40 and 80x80

grids, respectively. Optimum interval size estimations are more precise with the
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estimated cancellation error on fine grid of 80x80. In general procedure gave
approximate results in one order of magnitude due to the approximations of
cancellation error estimations. Numerical results are tabulated in table 3.1 for 40x40

grid solution and in table 3.2 for 80x80 grid solution.
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Figure 3.12 Error variations of sensitivities and corresponding estimated optimum
intervals on 40x40 grid Laplace solution for different norms.
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3.3.2 Case Study II: Euler Solution

Optimum finite difference interval procedure is applied to the Euler inverse
design algorithm. The exact errors that are calculated by the differences between
numerical iterations and analytical solution are calculated. Interval size that generates
the minimum exact error is referred as the optimum interval. The above described
procedure is applied and the results are compared. Also a comparison for full inverse
design cycle including optimization is included. Inverse design algorithm is

explained in Chapter 4.

The design practices are performed for the Rotor R 030. [26] A solution mesh
is given in figure 3.1.(a). The flow condition is set to outlet Mach number of 1.1,
inlet Mach number of 1.4, flow angle of 56.8° and Reynolds number of 10°,
Algorithm, briefly gets target and base geometries, defines perturbations on base
geometry and calculates the sensitivities of the flow variables. Sensitivities are
inputted to an optimization algorithm that tries to reach the target values and a new
geometry is designed. Pressure distribution on the design geometry is compared with

the target’s by a convergence parameter:

(7, -, Pas, |

I
— | 1=l
CP=|+=l—

D4,

= (65)

where P, and P, are the target and baseline pressures respectively on the cascade

surface at point i and AS; is the length of the surface element.

Figures 3.15 to 3.18 show the exact error variation with Patched and Wagner
polynomials. (Appendix) In figures 3.15 to 3.17, a patched polynomial is used for
perturbation where the perturbation centers are 10%, 50% and 90% of the chord

length, respectively. In all cases, three different iteration termination criteria are
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used. Iterations are terminated with respect to estimated errors reached 10™. In

figures errors are graphed in three different norms of L;, L, and Ls.

The calculated optimum interval estimations are pointed out in the graphs. The
estimations are in one order of magnitude precise. In three cases estimations are
smaller than the optimum value and in figure 3.16 it is larger than the optimum. Error
amount differences between the calculated interval’s and the real optimum are in one
order of magnitude. There’s no notable difference between the usage o different

norms.

In figure 3.16 it hard to distinguish the optimum value of interval, because error
quantities are almost same between 10~ to 10”. Exact error quantities are calculated
as the differences of flow variables that found with the finite difference sensitivity
algorithm and the ones calculated with the analytical sensitivity algorithm. The
algorithms used in this study did not give the same results. Total error amounts are

all less than the exact value. The terms in equation (2.47) are approximate values.

Total error is calculated estimated values of interval, &, second derivative |<I>| and

error, €.

This method is used in sample full design cycle. In this case, 10 patched
polynomials are defined as 5 each on upper and lower surfaces at 0.15, 0.30,.0.50,
0.70 and 0.85 stations. For each perturbation an optimum perturbation size (finite
difference interval) is calculated by the above described method. Design cycle is

repeated 10 times but the perturbation sizes are only defined in the first cycle.

Figure 3.19 and 3.20 shows the pressure and density contours of the flow
domains, respectively. Also, geometries and surface pressure distributions are
compared in figure 3.21 and 3.22. The results are almost identical. This design is
repeated with different given perturbation amounts. In these solutions perturbation
amounts are pre-defined in the input. Figure 3.23 shows convergence parameter

variation with respect to perturbation sizes. Small perturbations of 10®,10” and 10"
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gave quite larger quantities for convergences and also larger perturbations of 107
and 5x107 gave larger quantities for convergences. Optimum perturbations
calculated by the method are averaged and corresponding convergence value is
pointed out in figure 3.23. Convergence parameters over the design cycles are also

graphed in figure 3.24.
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Figure 3.15 Error variations of sensitivities vs. finite difference interval size 4 with
Patched polynomial bump of 0.1/1.0 station on upper surface. Estimated optimum
interval sizes and corresponding estimated errors are indicated also represented.
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Figure 3.16 Error variations of sensitivities vs. finite difference interval size 4 with
Patched polynomial bump of 0.5/1.0 station on upper surface. Estimated optimum
interval sizes and corresponding estimated errors are indicated also represented.
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(b) Pressure Contour - Target

Figure 3.19 Pressure distributions of design and target geometries under the same

flow conditions.
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(b) Density Contour - Target

Figure 3.20 Density distributions of design and target geometries under the same

flow conditions.
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Figure 3.22 Target and Design surface pressure distributions
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CHAPTER 4

EFFICIENCY IMPROVEMENTS

IN FINITE DIFFERENCE SENSITIVITY ANALYSIS

4.1 Introduction

In inverse design algorithm, a base geometry is perturbed and sensitivities are
calculated for each perturbation. In this study, accuracy and efficiency of the finite-
difference sensitivity derivatives are investigated. Most of the computation time is
used for finite difference sensitivity calculations. These calculations are independent
tasks and derivative values are inputted into an optimization process. Increasing
efficiency of the design procedure is investigated by parallel computing of the finite
difference sensitivity derivatives. Theory and application of parallel computing are

investigated below and results for an example application are discussed.

4.2 Parallel Computing

Parallel processing, the method of having many small tasks solve one large
problem, has emerged as a key enabling technology in modern computing. The past
several years have witnessed an increasing acceptance and adoption of parallel
processing for high-performance scientific computing. This enabled lower cost and
sustained productivity. The acceptance has been facilitated by two major
developments: massively parallel processors (MPPs) and the widespread use of

distributed computing.
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MPPs are powerful computers that combine a few hundred to a few thousand
CPUs in a single large cabinet connected to large memories. MPPs are generally
used for global climate modeling and drug design. As simulations become more
realistic, the computational power required to produce them grows rapidly. Thus,
researchers on the cutting edge turn to MPPs and parallel processing in order to get

the most computational power possible.

The second major development affecting scientific problem solving is
distributed computing. Distributed computing is a process whereby a set of
computers connected by a network are used collectively to solve a single large
problem. As more and more organizations have high-speed local area networks
interconnecting many general-purpose workstations, the combined computational
resources may exceed the power of a single high-performance computer. The most
important factor in distributed computing is cost. Large MPPs typically cost more
than $10 million but distributed computing systems offers very little cost in contrast

especially on a local set of existing computers.

In all parallel processing, data must be exchanged between cooperating tasks.
The message-passing model is generally used from the perspective of the number
and variety of multiprocessors that support it, as well as in terms of applications,
languages, and software systems that use it. The Parallel Virtual Machine (PVM)
system uses the message-passing model to allow programmers to distribute
computing across a wide variety of computer types, including MPPs. A key concept
in PVM is that it makes a collection of computers appear as one large virtual
machine. Figure 4.1 represents a cluster of computers that runs the different tasks on

different CPUs over the main computer using PVM software.
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Figure 4.1 Cluster of CPUs connected from separate computers by PVM
software in order to form a single virtual computer with multiple processors.

4.3 Inverse Design Algorithm

In an inverse design algorithm, a base geometry is perturbed and sensitivities
are calculated for each perturbation. In this study sensitivities are calculated by finite
difference methods. Each finite difference sensitivity calculation is run
independently for every perturbation. In several studies, number of independent
perturbations varies between 8 and 16. [16] In order to decrease computational time
inverse design algorithm can be arranged that each finite difference sensitivity
calculations can be defined as independent tasks. Arranged algorithm is shown in

Figure 4.2.

This algorithm runs only the finite difference sensitivity calculations on
parallel computers. Analyses of optimization and design geometries are calculated on

the main processor, flow analyses of each perturbation and the corresponding finite
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difference sensitivity calculations are done on different processors. Main processor

waits until all sensitivity values are calculated in order to go optimization step.

START

Baseline
Coscade SATISFACTORY
Geometry Ag;l:)m Objective Function P'll.‘:;g:;e
UNSATISFACTORY
Define
Perturbations
Modification
Step
Sensitivity
Computations on
........... Parallel
Processors
Design aE Optimization
Variables Step

Figure 4.2 Parallel Inverse Design Algorithm

4.4 Case Study

Comparison of process times between a single and multiple processors is
performed. The complete design cycle is done with different perturbation sizes and
shape functions. Code input values and boundary conditions stayed same. The time is
measured in minutes by the time measuring standard subroutines. 16 perturbations
are defined at the beginning and sensitivity calculations are calculated on 1, 2, 4, 8

and 16 CPUs (PIII 750 MHz). Results are grouped for 3 different shape functions
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and 5 different perturbation sizes. The shape functions are Wagner, Hicks-Henne and
patched polynomials (Appendix) The perturbation sizes are 0.0005, 0.00075, 0.001,
0.00125 and 0.0015.

The design code performed Navier-Stokes equations for flow analyses. The
flow analysis is based on the solution of 2-D, unsteady, compressible Navier-Stokes
equations over a curvilinear co-ordinate system. The Baldwin Lomax eddy viscosity
model is used for turbulence closure, and the transition point is fixed at fourteen
percent of the chord. A finite volume method is employed for the spatial
discretization. The flow variables are defined at cell centers, and centered differ-
encing is used for the spatial derivatives. Second and fourth-order artificial
viscosities are added to enforce numerical stability. The time integration is performed
using an explicit, four-stage Runge-Kutta scheme. Local time stepping, variable-
coefficient implicit residual smoothing, and a multigrid method are implemented to
accelerate the convergence. Characteristic boundary conditions are imposed at the
far-field boundary based on a one-dimensional eigenvalue analysis, and a no-slip,

adiabatic-wall conditions are used on the cascade surface.

The design practices are performed for the Rotor R 030. [26] Computational
structured grids of 257 x 49 are generated. The minimum grid spacing next to the
cascade surface is set to .001 percent of the chord length. The profiles at 150 and 190
mm. in radial axis are used as target and baseline cascades, respectively. Figure 4.3
shows the computational grids for target and base shapes. The profile at 150 mm. in
radial axis is located at mid-span of the blade. The flow condition is set to M; =
0.654, M; = 1.023, o = 56.8° and Re = 1.54x10°. Here, M, , M, o and Re are the

outlet and inlet Mach numbers, inlet flow angle and Reynolds number, respectively.
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Figure 4.3  257x49 Computational Grid for Rotor R 030 blade [26] and

Geometrical Presentation of Target (dashed) and Base (solid) airfoils

In order to judge the design quality and monitor the convergence of the
design cycle, a convergence parameter, CP, is defined. This parameter is based on
the root-mean-square of length-weighted pressure discrepancies between the target

pressure and the pressure of the designed cascade:

1
i=1

o E—

> 4s,

= 4.1)

where P, and P, are the target and baseline pressures respectively on the cascade
surface at point i and ASi is the length of the surface element. There are total of I

elements on the cascade.
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4.5 Results

Results are tabulated in Table 4.1. The execution time decreased with
increasing number of processors. Gain in execution time showed an asymptotic
decreasing trend with the number of processors. Because, only flow analyses for
finite-difference sensitivity calculations are parallel run, all other computations are
performed on a single processor. The communication time between the processors is
insignificant compared to total design execution time. Ratio of processing time of
multiple processors to the single is called as speed-up and tabulated in Table 4.2.
Tabulated data, designed shape and surface pressures are graphed in Figure 4.4, 4.5

and 4.6 for Wagner, Hicks-Henne and Patched polynomials, respectively.
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Table 4.1 Execution Time (min) and Convergences

(a) Wagner Functions

#CPU delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 471 347 380 339 323
2 262 190 212 184 178
4 183 121 137 116 112
8 170 79 94 76 74
16 103 57 70 53 56
Convergence 0.00542 0.00849 0.00224 0.00219 0.00213
b) Hicks-Henne Functions
#CPU delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 464 476 581 406 446
2 353 267 312 237 256
4 262 180 205 191 165
8 169 127 144 137 106
16 120 99 102 105 78
Convergence 0.00824 0.00849 0.00835 0.00679 0.00723
(c) Patched Polynomials
#CPU delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 317 352 403 386 304
2 174 191 188 180 174
4 110 123 114 109 102
8 75 81 72 70 66
16 58 57 51 51 48
Convergence | 0.00671 0.00671 0.00366 0.00670 0.00680
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Table 4.2 Parallel Speed-up

(a) Wagner Functions

#CPU | delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 1.00 1.00 1.00 1.00 1.00
2 1.80 1.83 1.79 1.84 1.81
4 2.57 2.87 2.77 2.92 2.88
8 2.77 4.39 4.04 4.46 4.36
16 4.57 6.09 5.43 6.40 5.77
(b) Hicks-Henne
Functions
#CPU | delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 1.00 1.00 1.00 1.00 1.00
2 1.31 1.78 1.86 1.71 1.74
4 1.77 2.64 2.83 2.13 2.70
8 2.75 3.75 4.03 2.96 4.21
16 3.87 4.81 5.70 3.87 5.72
(c) Patched Polynomials
#CPU | delta=0.0015 | delta=0.00125 | delta=0.001 | delta=0.00075 | delta=0.0005
1 1.00 1.00 1.00 1.00 1.00
2 1.82 1.84 2.14 2.14 1.75
4 2.88 2.86 3.54 3.54 2.98
8 4.23 4.35 5.60 5.51 4.61
16 5.47 6.18 7.90 7.57 6.33
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4.6 Discussions

In this inverse design algorithm, most of the processing time is used for finite
difference sensitivity calculations. Each sensitivity analysis performs a flow solution
with the new perturbed geometry. Flow solution begins from the last updated
solution; however, convergence is still not reached after a quite large number of
iterations. Some perturbations may sometimes cause more changes in flow
environment than expected such as changing shapes occurs on shock generated areas,
leading edge or trailing edge. Therefore some sensitivity calculations can last longer

than others and whole process waits for it.

Gain in execution time showed an asymptotic decreasing trend with the number
of processors. Because, only flow analyses for finite-difference sensitivity
calculations are run parallel, all other computations are performed on a single
processor. Also different processing times due to perturbation differences slow down
the process. The communication time between the processors is insignificant
compared to total design execution time. Ideally number of processors should be
equal to number of independent tasks, but, regarding to the cost of hardware

reasonable decrease can be preferred with less number of processors.

With this case study, effect of shape functions and perturbation sizes can also be
compared. Wagner functions gave the most converged solutions in overall but in
advancing side of the blade shape made an off-set due to limited convergence at
sharp edges. Hicks-Henne functions caused wavy surface designs. Patched
polynomials gave reasonable solutions for most of the geometry but an abnormal
bump stayed on the designed geometry. In validation of the designs, convergence
parameter is calculated by pressure differences, but shapes also be checked out for
abnormalities. For sharp edges, it is hard to design; so, shape functions should be

capable of creating edges.

85



Convergences differ with changing perturbation sizes. This was expected, since
it is known that there exists an optimum step size that minimizes the total error in
finite difference sensitivity calculations. Truncation error decreases with decreasing
step size of a finite difference derivative, but cancellation error increases with
decreasing step size. This study also described the importance of the importance of

accuracy improvements in sensitivity calculations.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

Sensitivity calculation is one of the most important parts in the design
optimization. The performance of finite difference sensitivities was studied.
Compared to analytical method, finite difference methods are easy to use in
sensitivity calculation. However finite difference sensitivities have accuracy

problems and computational time may be very large.

Accuracy improvements in finite difference sensitivities are investigated by
error analysis. One of the ways to reduce the error in finite difference sensitivity
calculation is to use optimum finite difference interval size. Finding optimum
interval size requires an estimation of convergence error and estimation of second
order sensitivities. Convergence errors are analyzed and it has been represented that
the construction of the iteration scheme directly affects the convergence error. The
relation between the eigenvalues of iteration matrices and error propagation are
investigated and a method is applied. The presented convergence error estimation
method, which is based on eigenvalue analysis, is successful in predicting

convergence error.

In this method convergence errors are predicted for both real and complex
eigenvalues. Results show that estimating convergence error with real eigenvalues
was successful. A parameter is stated for decision whether the eigenvalues of
iteration matrix is complex or not. The switching parameter that distinguishes real

and complex eigenvalue may not be very reliable in some problems. A better method
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can be developed for estimating the type of eigenvalues or switching criteria should

be identified by general rules.

The optimum finite difference interval size method requires value of second
derivative. Second derivative estimation is represented by a method that makes trials
due to error estimations. Usage of estimated values and trials make this method
rather inefficient. Therefore; estimating second order derivative is difficult; but may
be very useful in calculating optimum interval size. Approximating second derivative
as 1.0 may not be useful because order of magnitude of second derivative may be

very large like in this study.

Efficiency of the finite difference sensitivities can be improved by parallel
computing. Modifying code for parallel sensitivity calculation does not require large
modification in usual code. This study used an algorithm that a processor behaves as
central and uses parallel processors in sensitivity calculations. Initial and design
analyses, optimization processes are still done on a central processor but independent
tasks of finite difference sensitivity calculations, which takes most of the
computation time, are spread over parallel processors. Therefore; number of
processors does not linearly decrease the computation time and half the number of

tasks are recommended for number of processors.

For future studies, it can be said that the accuracies in finite difference step sizes
highly depend on the second derivative estimations. In this study second derivative
estimation has been done over a trial method. This way increases the computational
time and did not give excellent results. Convergence error estimation method is
highly recommended for iterative solutions; however, the control on eigenvalues of
iteration matrix should be done followed that eigenvalues can go complex values for
some cases. Aid of parallel computing should be taken when finite difference
sensitivity analysis is performed in an inverse aerodynamic design algorithm. The
computational time can be decreased in great amounts. Inverting a code to a parallel

algorithm does not take some much effort and modifications.
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APPENDIX

DESIGN VARIABLES

Cascade Shape Modification

The cascade geometry was modified by adding smooth perturbations. The

geometry perturbation Ay was defined as a linear combination of base functions f;.
K
Ay(x)=Y X, f (x) (A1)
k=1

where X; is the perturbation magnitude, or design variable, f; is the shape function,

and K is the number of design variables to be used.

Wagner Functions:

Wagner functions are frequently used in optimization. They provide large variations

with high harmonics and may cause waviness in resulting designs.

filx )=W—sm2(g] (A2)

)= sin(k@) N sin[(k - 1)6’]
kr V4

fork>1

fk(x

where

6=2 sin_l(\/;)
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Patched Polynomials:

A cubic on one side of xi is patched with another cubic on the other side to produce a

smooth curve of second-order continuity. x; is the location of maximum perturbation.

2
fk(x)zl—[x_ka (1+(LiJ for0<x<x,

Xk I-x; )2 X
(A.3)
(B 1
X—X - X
x)=1- 1+ —= for x, <x<1
fk( ) (1_’%] ( (xk)z 1"%] ¢
where
A= max(O,l -2, )
B= max(O,zxk - 1)
Hicks-Henne Functions:
The sinusoidal shape functions are frequently used in airfoil optimization.
f (x)= sin3(nxe(k)) (A.4)
where
log(0.5
(k) = 0g(05)
log(xk)

Here x;’s are the locations of maximum height of the corresponding shape functions.
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(b) Patched polynomials

(c) Hicks-Henne functions

Figure A.1 Shape functions used to perturb the geometry
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