
ON THE SECURITY OF TIGER HASH FUNCTION

ONUR ÖZEN

JANUARY 2008

ON THE SECURITY OF TIGER HASH FUNCTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR ÖZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CRYPTOGRAPHY

JANUARY 2008

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Ersan AKYILDIZ

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ferruh Özbudak

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ali DOG̃ANAKSOY

Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Prof. Dr. Ferruh ÖZBUDAK

Assoc. Prof. Dr. Ali DOG̃ANAKSOY

Assis. Prof. Dr. Ali Aydın SELÇUK

Dr. Muhiddin UG̃UZ

I hereby declare that all information in this document has been ob-

tained and presented in accordance with academic rules and ethical con-

duct. I also declare that, as required by these rules and conduct, I have

fully cited and referenced all material and results that are not original to

this work.

Name, Last Name : Onur ÖZEN

Signature :

iii

Abstract

ON THE SECURITY OF TIGER HASH FUNCTION

Özen, Onur

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ali DOG̃ANAKSOY

January 2008, 86 pages

Recent years have witnessed several real threats to the most widely used hash

functions which are generally inspired from MD4, such as MD5, RIPEMD, SHA0

and SHA1. These extraordinary developments in cryptanalysis of hash functions

brought the attention of the cryptology researchers to the alternative designs.

Tiger is an important type of alternative hash functions and is proved to be

secure so far as there is no known collision attack on the full (24 rounds) Tiger.

It is designed by Biham and Anderson in 1995 to be very fast on modern

computers.

In two years some weaknesses have been found for Tiger-hash function.

First, in FSE ′06 Kelsey and Lucks found a collision for 16-17 rounds of Tiger

and a pseudo-near-collision for 20 rounds. Then, Mendel et al extended this

attack to find 19-round collision and 22-round pseudo-near-collision. Finally in

2007, Mendel and Rijmen found a pseudo-near-collision for the full Tiger. In

this work, we modify the attack of Kelsey and Lucks slightly and present the

exact values of the differences used in the attack.

Moreover, there have been several cryptanalysis papers investigating the

randomness properties of the designed hash functions under the encryption

modes. In these papers, related-key boomerang and related-key rectangle at-

iv

tacks are performed on MD4,MD5, HAVAL and SHA. In this thesis, we introduce

our 17,19 and 21-round related-key boomerang and rectangle distinguishers to

the encryption mode of Tiger.

Keywords: Tiger, Cryptanalysis, Hash Functions, Collision, Boomerang Attack

v

Öz

TIGER ÖZET FONKSİYONUN GÜVENLİG̃İ ÜZERİNE

Özen, Onur

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ali DOG̃ANAKSOY

Ocak 2008, 86 sayfa

Son yıllar özellikle MD4 özet fonksiyon ailesinden türetilmiş MD5, RIPEMD, SHA0

ve SHA1 gibi çok kullanılan özet fonksiyonlarına yapılan ataklara tanıklık etmiştir.

Bu tip çok kullanılan özet fonksiyonlarına yapılan ataklar kriptoloji araştırmacı-

larını dig̃er özet fonksiyonlarına yöneltmiştir. Tiger, MD4 özet fonksiyonu kur-

gusuna benzer, şu ana kadar güvenli varsayılan 24 çevrimli önemli bir fonksiyon-

dur. Tiger, 1995’te Biham ve Anderson tarafından özellikle modern bilgisa-

yarlarda hızlı olacak şekilde tasarlanmıştır.

Son iki yılda Tiger’ yapısında bazı zayıflıklar bulunmuştur. Öncelikle, FSE

’06’da Kelsey ve Lucks Tiger özet fonksiyonun 16-17 çevrimi için çakışma ve

20 çevrimi için de sözde-çakışma bulmuştur. Daha sonra bu atak Mendel vd

tarafından INDOCRYPT ’06’da 19 çevrimlik çakışma ve 22 çevrimlik sözde

yarı-çakışmaya geliştirilmiştir. Son olarak da ASIACRYPT ’07’de Mendel ve

Rijmen 24 çevrimli Tiger için sözde-yarı-çakışma bulmuştur. Bu çalışmada,

Kelsey ve Lucks’un atag̃ında kullanılan gerçek farklar bulunup, bu atak geliştiril-

miştir.

Ayrıca, literatürde özet fonksiyonlarının şifreleme sürümlerinin rassallık özel-

liklerini inceleyen çalışmalar bulunmaktadır. Bu çalışmalarda, MD4,MD5, HAVAL

ve SHA özet fonksiyonlarının şifreleme sürümlerine ilişik anahtarlı bumerang ve

vi

dikdörtgen atakları uygulanmıştır. Bu çalışmada, Tiger’in şifreleme sürümüne

17, 19 ve 21 çevrimlik ilişik anahtarlı bumerang ve dikdörtgen atakları uygu-

lanmıştır.

Anahtar Kelimeler: Tiger, Kriptanaliz, Özet Fonksiyonları, Çakışma, Bumerang

Atag̃ı.

vii

To Nihal and my family,

viii

Acknowledgments

I would like to express my sincere gratitude to my supervisor Ali DOG̃ANAKSOY

for guiding and supporting me like a father, sharing and talking with me like a friend

and teaching me life like a mathematician. His way of life has always amazed and

excited me.

It is a great pleasure to thank my collegue Kerem VARICI for being with me every-

time and everywhere for seven years. Our discussions and sleepless nights gave birth

to the valuable contributions to our lives.

I also want to thank Meltem SÖNMEZ TURAN for her amazing ideas and encourege-

ment, Çag̃daş ÇALIK for being with me with his valuable skills and his friendship,

Çelebi KOCAİR for his collobaration and patience and Fatih SULAK for his part-

nership.

Very special thanks to Nihal for her love, support and encouregement. I am also

grateful to my family for trusting me since I was born and growing up me with their

love. I want to thank my friends, everyone at IAM and other members of my family

for believing in me.

ix

Table of Contents

Abstract . iv

Öz . vi

Acknowledgments . ix

Table of Contents . x

CHAPTER

1 Introduction . 1

1.1 Block Ciphers . 2

1.2 Hash Functions . 5

1.3 Our Contributions and The Structure of the Thesis 7

2 Differential Cryptanalysis . 9

2.1 DES . 10

2.2 The Overview of the Attack . 11

2.3 Differential Cryptanalysis of DES . 15

2.4 Differential Cryptanalysis of FEAL-8 17

2.4.1 FEAL-8 . 17

2.4.2 Efficient Algorithm for Computing Differential Properties of

Addition . 18

2.4.3 Constructing Differential Characteristics 19

x

2.5 Resistance Against Differential Cryptanalysis 22

2.5.1 An Example: CLEFIA . 23

3 Extensions of the Differential Cryptanalysis 26

3.1 The Boomerang and The Related-Key Boomerang Attack 27

3.1.1 Boomerang Attack on FEAL-8 30

3.2 The Amplified-Boomerang and The Related-Key

Amplified-Boomerang Attack . 33

3.3 The Rectangle and The Related-Key Rectangle

Attack . 35

3.4 On The Security of The Encryption Modes of MD4 and MD5 38

3.4.1 MD4 and MD5 . 38

3.4.2 Related-Key Boomerang and Rectangle Attacks to the Encryp-

tion Mode of MD4 . 39

3.4.3 Related-Key Boomerang and Rectangle Attacks to the Encryp-

tion Mode of MD5 . 42

4 Previous Collision Attacks on the Tiger Hash Function . . . 44

4.1 Tiger . 45

4.1.1 The Round Function of Tiger 46

4.1.2 The Message Expansion of Tiger 47

4.2 Attack Method . 47

4.2.1 Conventions . 48

4.2.2 Finding Good Differential Characteristics For The Message Ex-

pansion of Tiger . 49

4.2.3 Message Modification by Meeting in the Middle 50

4.3 Collision Attack on Tiger-16 . 52

4.3.1 Precomputation . 53

4.3.2 The Attack . 55

4.4 Pseudo-Near-Collision Attack on Tiger 58

xi

4.4.1 The Attack . 59

4.5 Conclusion . 62

5 Cryptanalysis of the Encryption Mode of Tiger 63

5.1 The Related-Key Boomerang and Rectangle Attacks to Tiger 64

5.1.1 17-Round Distinguisher . 65

5.1.2 19-Round Distinguisher . 67

5.1.3 21-Round Distinguisher . 70

5.1.4 The Attack . 72

6 Conclusion . 75

References . 78

A The Examples of the Attacks . 86

xii

List of Figures

1.1 Cryptographic Primitives . 3

2.1 The General Overview of DES . 10

2.2 The Round Function of DES . 11

2.3 Overview of the Differential Cryptanalysis 12

2.4 A One Round Differential for DES . 13

2.5 The Differential Key Recovery Attack for Feistel Networks and SPNs . 15

2.6 The Differential Characteristics Used for DES 16

2.7 Overview FEAL-8 . 18

2.8 3-Round Characteristics of FEAL-8 . 20

2.9 5-Round Characteristic of FEAL-8 . 21

2.10 6-Round Characteristic of FEAL-8 . 22

2.11 CLEFIA Block Cipher (128-bit key version) 24

2.12 CLEFIA Round Function . 24

3.1 The Boomerang Distinguisher . 28

3.2 Related-Key Boomerang Distinguisher Based on Four Related Keys . 30

3.3 3-Round Characteristics of FEAL-8 . 31

3.4 Boomerang Distinguisher on FEAL-8 32

3.5 The Amplified Boomerang Distinguisher 33

3.6 Related-Key Amplified Boomerang Distinguisher Based on Four Re-

lated Keys . 35

3.7 The Rectangle Distinguisher . 36

xiii

3.8 Related-Key Rectangle Distinguisher Based on Four Related Keys . . 37

3.9 MD4 and MD5 . 39

4.1 The ith Round of Tiger . 46

4.2 Message Modification by Meet-in-the-Middle 51

4.3 Collision Attack on Tiger-16 . 56

4.4 Pseudo-Near-Collision Attack on Tiger 61

5.1 17-Round Related-Key Boomerang Distinguisher for Tiger 67

5.2 19-Round Related-Key Boomerang Distinguisher for Tiger 68

5.3 21-Round Related-Key Boomerang Distinguisher for Tiger 72

6.1 An Attempt to Extend the Collision Attack for Tiger 77

A.1 Related-Key Boomerang Distinguisher Based on Four Related Keys . 86

xiv

List of Tables

2.1 Number of Active S-boxes of CLEFIA 25

3.1 The characteristic for MD4 . 41

3.2 The characteristic for MD5 . 43

4.1 Overview of Attacks to the Tiger Hash Function 45

4.2 Notation . 45

4.3 The Message Expansion of Tiger . 48

4.4 The Propagation of Some Differences with probability 1 50

4.5 The Characteristic for Collision Attack on Tiger-16 53

4.6 An Example of Consistency Between XOR and Modular Difference . . 54

4.7 The Characteristic for Pseudo-Near-Collision Attack on Tiger 59

5.1 The Propagation of Some Key Differences with probability 1 and 1/2* 64

5.2 The characteristic for 17-Round Distinguisher 66

5.3 The characteristic for 19-Round Distinguisher 69

5.4 The characteristic for 21-Round Distinguisher 71

A.1 An Example to 17-Round Related-Key Boomerang Distinguisher . . . 87

A.2 An Example to 18-Round Related-Key Boomerang Distinguisher . . . 88

A.3 An Example to 20-Round Related-Key Boomerang Distinguisher . . . 89

xv

Chapter 1

Introduction

Cryptology is known to be the science of concealing information inspired from Greek

words kryptós ”hidden,” and the verb gráfo ”write” or legein ”to speak” . It has

two basic building blocks, namely the cryptography which is the science of designing

secure components and the cryptanalysis which is science of analyzing or breaking the

designed cryptographic primitives. Over the centuries, the history has been witnessed

the challenge between these two sciences.

Cryptography has been used over 4000 years to conceal secret and the sensitive

information. Throughout the ages, the importance and the way of usage of cryptog-

raphy has evolved. Before 1960s, when the computers were not the key primitives of

our lives, cryptography had been used generally for military purposes. Cryptanaly-

sis, on the other hand, has evolved parallelly with the developments in cryptography.

The role of cryptanalysis during the World War I and II affects the future of several

countries and the end of these wars was generally dependent to the developments in

cryptanalysis.

After 1960s, when the computers has commenced to be vital for communities, the

cryptology has started to become public. That is, private sector needed to conceal

sensitive information digitally. By these purposes, DES (Data Encryption Standard)

was designed by IBM as U.S. Federal Information Processing Standard (FIPS) for

encrypting unclassified information. It is inspired by the work of Feistel in Lucifer

and has been used widely since then. In early 2000s, the fast evolution of computers

and the recent developments in cryptanalysis lead to a new standard called AES

(Advanced Encryption Standard) which was designed by Rijmen and Daemon in

1998 and nowadays it is the most widely used publicly known algorithm in the world.

One of the common features of these algorithms is that there exists only one

1

secret parameter in these components, namely the key. This secret key is known for

each parties who are trying to communicate and used for encryption and decryption.

This type of cryptographic primitive is defined to be symmetric key primitives.

In 1976, Diffie and Hellman announced the birth of a new concept called public key

cryptography which is believed to be the most exciting discovery in cryptology intro-

ducing a new concept called assymmetric key primitives. They could not exemplify

the concept but the idea was interesting. In this smart technique, the uniqueness of

the secret key is discarded and distributed over all parties. Namely, every user has de-

cided a secret and a public parameter and the security of the system depends heavily

on solving very hard mathematical problems such as discrete logarithm problem.

Rivest, Shamir and Adleman gave the first example of the public-key primitive

called RSA in 1978 which is based on the difficulty of factoring large integers. Af-

ter that, El Gamal proposed a new protocol based on discrete logarithm problem.

However, the most interesting development came to the picture when digital sig-

natures arise in 1991. Nowadays, the protocols based on public key primitives are

one of the hot research topics in cryptology community. The general overview of

the cryptographic primitives are given in Figure 1.1 which is taken from the well

known reference book [1]: Handbook of Applied Cryptography by A.Menezes, P.van

Oorschot and S.Vanstone.

Nowadays, cryptology plays a crucial role in our lives. It became a vital tool for

personal information security besides the national security. We use cryptology to

protect our sensitive and secret data in many applications such as financial trans-

actions, satellite communications, authentication, e-government applications, etc. In

the following years, the role of cryptology is going to become more important and

vital as the use of cryptology becomes wide.

The following sections cover the basic building blocks used in this work. In Section

1.1, the block ciphers are summarized and some basics of cryptanalysis methods are

given. Hash functions together with their attack scenarios are recapitulated in Section

1.2 and Section 1.3 details our contributions and the structure of the thesis.

1.1 Block Ciphers

A block cipher is a symmetric encryption primitive which encrypts n-bit block that

is broken from an m-bit message by using k-bit secret key and transmitting n-bit

2

Security
Primitives Primitives

Symmetric−Key

Public−Key
Primitives

Unkeyed
Primitives

Arbitrary−length
hash functions

Permutations
One−way

Random Sequences

Symmetric−Key
Ciphers

MACs

Signatures

Pseudorandom
Sequences

Identification
Primitives

Public−Key

Ciphers

Signatures

Identification
Primitives

Ciphers

Block

Ciphers

Stream

Figure 1.1: Cryptographic Primitives

3

encrypted data at a time. Most of the encryption primitives used today are block

ciphers. Generally, a block cipher is said to encrypt a plaintext of n bits into n-bit

ciphertext by using k-bit secret key.

Feistel Ciphers and Substitution-Permutation-Networks (SPNs) are two types of

block ciphers known today. DES is an example of a Feistel Cipher and AES can be

given as an example of an SPN. Block cipher theory is a very well studied research

area and there exist a lot of papers investigating the security of block ciphers. More-

over, cryptanalysis methods special to block ciphers are wide and well established.

Throughout this thesis, some of the powerful attack scenarios are going to be pre-

sented.

Firstly, some cryptanalysis preliminaries will be given but before that some as-

sumptions need to be done. First of all, an attacker is assumed to know the entire

properties of the attacked cipher and the only secret parameter is assumed to be the

secret key. This principle is known to be the Kerkhoff’s Principle. Although this

leads to some misunderstandings about the security of the system, this assumption is

crucial from the cryptanalysis point of view (in the literature some reverse engineer-

ing examples exist, however that is not the case for our model). Below some basic

cryptanalytic definitions are presented .

• Ciphertext-Only Attacks: In ciphertext only attacks, the attacker is as-

sumed to have just the ciphertexts and there exist minimal knowledge about

the plaintext. It is the most powerful attack scenario and nowadays there is no

ciphertext-only attacks to block ciphers.

• Known-Plaintext Attacks: In this attack scenario, the attacker has access

to plaintexts and corresponding ciphertexts. Generally, it is assumed that the

attacker gathers some plaintext-ciphertext pairs and tries to reveal the secret

key from that knowledge. Linear Cryptanalysis can be given as an example to

known-plaintext attacks.

• Chosen Plaintext Attacks: In chosen plaintext attacks, the attacker has

control over the encryption box. Namely, he is able to choose plaintext and

construct the corresponding ciphertexts. Differential Cryptanalysis is an exam-

ple of a chosen plaintext attacks.

• Adaptively Chosen Plaintext-Ciphertext Attacks: This attack scenario

seems to be unrealistic but in terms of the security of the designed system it is

4

still crucial. Here, the attacker is assumed to gather both the encryption and

the decryption boxes and has full control over the plaintext and the ciphertexts.

Boomerang attack is an example of adaptively chosen plaintext-ciphertext at-

tacks.

• Related-Key Attacks: In the related-key attack scenario, it is again assumed

that the only secret parameter is the key. However, this time there exist many

keys and the attacker knows the relations between the keys (e.g. differences

between the keys) but not the exact values of the keys. Combined attacks with

related keys can be given as the example to the related-key attacks.

The most trivial method to break a cipher is the exhaustive search meaning to

try all possible secret key combinations. However, by breaking a cipher, we mean to

generate a method to distinguish the cipher from a random permutation or revealing

some parts of the secret key faster than the exhaustive search. All attack methods

introduced so far exemplify this simple trivial fact.

1.2 Hash Functions

Hash functions, more precisely cryptographic hash functions are one of the key prim-

itives of cryptography which are being used in many areas such as unkeyed, sym-

metric or asymmetric cryptography. They are used widely in cryptographic applica-

tions such as digital signatures, information authentication, redundancy, protection

of passwords, confirmation of knowledge/commitment, pseudo-random string gener-

ation and key derivation.

Cryptographic hash functions are used to map arbitrary length data to fix length

hash (message digest, fingerprint) value. They are the digital fingerprints of the

compressed messages and used to identify the original messages as in the real meaning

of fingerprint. However, in cryptographic hash functions, it is highly crucial that given

a hash value h(x), it is hard to find the original message x that is compressed by

the hash function h. Besides, effectiveness of the compression process is also very

important for hash functions.

The most well known hash functions today assume the design principles of MD4[69]

which is designed by Rivest. MD5[70], SHA0[62] and SHA1[61] are some of the examples

of MD4-descendants where the last one is used as FIPS for secure hashing. Recently,

5

many of these family have been broken by the extraordinary improvements in crypt-

analysis of hash functions.

As the hash functions map arbitrary length data to a fix length hash value, it

is trivial that there exist many collisions which is the basis of cryptanalysis of hash

functions. Regarding this simple fact, some basic properties of a cryptographic hash

function are listed below:

• Preimage Resistant: For a given value h(x) and the compression function h,

it should be ‘hard’ to compute x.

• Second Preimage Resistant: Given x and h(x) , it should be ‘hard’ to find

x′ such that x 6= x′ and h(x′) = h(x).

• Collision Resistant : For any x it should be ‘hard’ to find x′ where x 6= x′

and h(x) = h(x′).

From the definitions given above collision resistance implies second preimage resis-

tance.

In block cipher cryptanalysis, the theoretical bound for breaking a cipher is taken

to be the complexity of the exhaustive search. However, in cryptanalysis of hash

functions this is not the case because we are searching for colliding pairs instead of

finding the secret key that matches plaintext-ciphertext pairs. The birthday paradox

limit is taken as a basis for finding collisions for hash functions.

Birthday attack can be described as follows. Suppose that h(x) is a random

function where h(x) is the set of all possible 2n values. One expects a collision in

about 2n/2 evaluations of h [26]. Therefore, if one is able to find a collision for a hash

function (which is producing a hash value of 2n bits) in less than 2n/2 evaluations of

h , then h is assumed to be broken.

Let h be a hash function producing n bit fingerprint. Collision attacks to h can

be divided in three major parts :

1. Collision Attack : In this scenario, the attacker tries to find at least one

colliding pair in less than 2n/2 evaluations of h.

2. Near-Collision Attack : In near-collision attack, the attacker tries to find

at least one pair whose hash values are same in many of the bits in less than

2n/2 evaluations of h. Near-collision is not a collision at all but it can lead to

collisions for further message blocks.

6

3. Pseudo-Collision Attack : If h(x) uses an Initial Value (IV) as a starting

step, this IV is assumed to be fixed to some constants. In pseudo-collision

attack, the attacker starts with free IVs instead of a fixed value and tries to

find collision.

4. Pseudo-Near-Collision Attack : This is a free start near-collision attack.

Namely, the attacker chooses IVs and tries to find near-collisions.

These are the basic attack scenarios for hash functions and that are used through-

out the thesis. One of he common features of the latest attack scenarios to hash

functions is to adopt differential cryptanalysis which will be introduced in the next

chapter.

1.3 Our Contributions and The Structure of the Thesis

In this work, we consider mainly cryptanalysis of block ciphers and hash functions.

Starting from the differential cryptanalysis, we extend the notion to the other block

cipher attacks inspired from differential cryptanalysis, namely boomerang, amplified

boomerang and rectangle attacks together with their related-key versions. Our aim

is to adopt some block cipher attacks to hash functions to find collisions. In this

respect, we take the well known block cipher based hash function Tiger as a starting

point and we tried to mount these attacks on Tiger.

Our first contribution is to apply a related-key boomerang and rectangle attacks

to the encryption mode of Tiger. We convert Tiger to a block cipher and found

17, 19 and 21-round distinguishers. These attacks are distinguishing attacks but can

easily be converted to key recovery attacks. In addition, the exact values of the

differences used in the attack of Kelsey and Lucks are found and the collision attack

on Tiger-16 is slightly modified.

The structure of the thesis is as follows. In Chapter 2, we make a recapitulation of

differential cryptanalysis and give some basic examples of differential cryptanalysis.

In Chapter 3, the extensions of the differential cryptanalysis to boomerang, amplified

boomerang and rectangle attacks together with their related-key combined attack

versions are detailed. Moreover, the application of these attacks to the encryption

modes of MD4 and MD5 is given. In Chapter 4, we give some of the previous collision

attacks to Tiger. Firstly, we give the details of the collision attack of Kelsey and

Lucks to reduced round Tiger with slight modifications and the pseudo-near-collision

7

attack of Mendel and Rijmen to full Tiger. Our contributions are in Chapter 5.

Namely, 17, 19 and 21-round distinguishers to the encryption mode of Tiger are

presented. Finally, Chapter 6 concludes the thesis.

8

Chapter 2

Differential Cryptanalysis

This chapter is mainly dedicated to differential cryptanalysis which is known to be

one of the generic, methodological and statistical block cipher attack. Its extensions

to the boomerang attack, amplified boomerang attack, rectangle attack and their

related-key combined attack versions will be mentioned in the following chapters.

Differential cryptanalysis which exploits the differential relations between the

plaintext and ciphertext pairs is the first attack that breaks DES theoretically. Al-

though it was claimed to be known, it was introduced in 1990 by Biham and Shamir

in [13] by attacking reduced round DES and then improved to a full attack in [15].

Then, Knudsen extended the differential cryptanalysis to truncated and higher order

differentials [47].

Many block ciphers known today are not vulnerable to differential cryptanalysis

since a lot of work done on this subject. However, still it is the key primitive for block

cipher designers to show that the designed cipher is secure against the differential

cryptanalysis. Besides, the most powerful attacks to hash functions so as to find

collisions known today are all differential attacks. Also, in recent years there are a

lot of papers adapting differential cryptanalysis to the stream ciphers as well [86, 87,

59, 29]. Therefore, the resistance against differential cryptanalysis plays a crucial role

in cryptography.

The overview of this chapter is as follows. The Section 2.1 introduces DES very

briefly that is the first block cipher attacked by differential cryptanalysis. The pure

differential cryptanalysis is discussed in Section 2.2. Sections 2.3 and 2.4 exemplify

the differential cryptanalysis on DES and FEAL-8, respectively.

9

IP

IP

F

.

.

.

F

K1

K

P (64 bits)

C(64 bits)

−1

16

32 bits 32 bits

Figure 2.1: The General Overview of DES

2.1 DES

DES [63] is a block cipher which is selected as FIPS for the United States in 1976.

It operates on 64 bits encrypting 64-bit plaintext to the 64-bit ciphertext using a

relatively short 56-bit secret key. Nowadays, DES is believed to be insecure as there

exist many attacks on DES. However, some new versions such as triple DES is still

being used in many applications.

The history of DES commences at the early 1970s from a need for a government-

wide standard for encrypting unclassified information. In 1976, the proposal from

IBM found suitable for the DES and it has been used widely since then. Although it

is claimed to be insecure against differential cryptanalysis in late 70s, until 1990 it is

kept secret. In 1990, the first attack was applied on 15-round DES faster than exhaus-

tive search by Biham and Shamir [13]. Two years later, this attack was extended to

the full DES.

The general overview of DES is shown in Figure 2.1. It is a typical Feistel Cipher

operating on 64 bits. The round function of DES takes 32-bit input and produces a

10

E

(32 bits)

(48 bits)

Key

(48 bits)

(48 bits)

(32 bits)

P

(32 bits)

S
1

S S S S S S S
2 3 4 5 6 7 8

Figure 2.2: The Round Function of DES

32-bit output. 32-bit input is first expanded by E to 48-bit to be able to be XORed

with 48-bit subkey. Then, 8 different 6 × 4 Substitution Boxes (S-Boxes) are used

to provide the non-linearity and 32-bit output of the substitution layer. Finally, a

permutation P is applied to the 32-bit data to produce 32-bit output of the round

function. One round of DES is visualized in Figure 2.2. The exact tables for E, P and

S-boxes can be found in the original proposal [63]. For the time being, we exclude

the key scheduling algorithm as it is not directly related to the pure differential

cryptanalysis.

2.2 The Overview of the Attack

Differential cryptanalysis is a chosen plaintext attack and proposed for block ciphers

at first. However, the straightforward generalizations can be easily be made to stream

ciphers and hash functions as well. Given two plaintexts P1 and P2 with a prede-

termined difference, the attacker tries to exploit some expected differences between

their ciphertexts C1 and C2 with a high probability. These type of attacks are called

as distinguishing attacks and used to distinguish the cipher from a random permu-

tation. For the key recovery attacks, on the other hand, the attacker tries to exploit

the differences between the outputs of the rounds (1, 2 rounds before the ciphertext

depending on the cipher) before the ciphertexts.

11

K
1

1

K

K
2

1

K
1

1

K
N

1

K
N

1

K
2

N

*

K
2
N

*

*

N

X
Part

Non−linear
CY

X
Part

Non−linear
CY

P C

X
Part

Non−linear
CY

1
X

Part

Non−linear
C

11
Y

P C Round 1

1

1

1

11

2

111

2 2 2

1

1

1

111

N N N

N

222

P
N

P

P

P
N N N N

1

2

N
Round N

* *

**

*

.

.

.

Holds with probability p p...
11 N

Holds with probability p

2

1

Holds with probability p
1

Figure 2.3: Overview of the Differential Cryptanalysis

The most attractive part of the differential cryptanalysis is the fact that it makes

an extensive use of ignoring the key effect which is the only secret parameter of the

cipher. That is, the differences between the plaintexts are arranged according to the

operations used in the round functions to cancel the key part as just one key is used

for both of the plaintexts. Let ~ be the operation to combine the data P with the

key K (that is, P ~ K). Then the difference between the two data are chosen as:

∆(P1, P2) = P1 ~ P−1
2 .

So, the difference after key addition is

∆(P1 ~ K, P2 ~ K) = P1 ~ K ~ K−1 ~ P−1
2 = ∆(P1, P2)

Therefore, the key effect through the differences can be discarded by this simple

trick. In general, XOR or modular addition are used as ~ and the inverse of a

data can be found easily. For an R round random cipher operating on n bits, the

probability of expecting the corresponding ciphertext difference is 2−n. However,

12

p
1 =

−2.41
2

p
2 2

−4
=

0

0

0

0

8

0

0

8

0

0

0

0

0

0

3

3

S

S

S

S

S

S

S

S

1

2

3

4

5

6

7

8

E

4
0
0
4
0
0
0
0

F
=40 04 00 00

x
= 80 40 02 02

x

P

8
0
4
0
0
2
0
2

Figure 2.4: A One Round Differential for DES

differential cryptanalysis works under the fact that given a plaintext difference, the

corresponding ciphertext difference occurs with a probability much higher than 2−n.

In each round, the corresponding input difference and the expected output dif-

ference, together with the probability p of this expectation, are gathered and the so

called the differential (∆P,∆C, p) is constructed. The non-linear parts of the round

functions, such as S-boxes, affect the probability of the differential at each round.

Assuming the independence, the total probability is calculated as the multiplication

of the differential probabilities of each round. The model is visualized in Figure 2.3.

In the round function components, the difference propagates linearly through the

linear operations as permutations or expansions. However, the nonlinear components

such as S-boxes do not let the difference propagate linearly. The Difference Distribu-

tion Table (DDT) or The XOR Table of an S-box is defined to extract the probabilities

of getting some specific output difference given the input difference. The ith row and

jth column of a DDT correspond to the input difference and the output difference

respectively. The intersection shows the number of occurrences of the corresponding

differences.

Figure 2.4 shows a one round differential characteristic for DES [28]. 40 04 00 00x

input difference enters to the round function F and 30 03 00 00x output difference is

expected with probability 2−4.1.2−4 = 2−8.1. The input difference propagates linearly

through the expansion E and the permutation P . However, the first and the fourth S-

boxes are active and both seek for the same input and the output differences; namely

13

8x and 3x respectively.

For the key recovery attack, the differential characteristic is set up to a number

of rounds before the last round. That is, depending on the cipher (Feistel or SP Net-

work), in order to recover the key, the differential characteristic must be constructed

up to a reference round (1, 2 rounds before the last round). Afterwards, by guessing

the subkeys of the remaining rounds and decrypting the ciphertexts up to that refer-

ence round, the attacker is able to analyze the differential characteristic to hold with

some prescribed probability.

The guessed subkey bits are called target partial subkeys and fully determined by

the differential characteristic and the differences in the reference step. Let us assume

for a moment that the differential characteristic starts from the first round (some

tricks can be used as structures to discard first round as in the differential attack

to full round DES [15]). The Figure 2.5 shows the differential key recovery attack in

detail where the first two are the classical Feistel Networks and the third one is a

basic Substitution Permutation Network. The last round subkey KR is guessed for

all three of the ciphers and the corresponding ciphertext pairs are decrypted until the

reference step shown with a dashed horizontal line. Another dashed line with arrows

shows the known part of the ciphertext pairs through the decryption process which

enable the attacker to get the differences whereever necessary.

The number of needed pairs generally depends on the characteristic probability,

the number of subkey bits guessed and on the level of identification of the right

pairs [14]. A right pair is defined to be the pair of plaintexts together with their

ciphertexts that obey to the prescribed differential path. A noise, on the other

hand, is the plaintext-ciphertext pairs that obey the differences in their plaintexts

and ciphertexts but not obey the prescribed characteristic. It is trivial that for

a characteristic with probability p, one needs at least 1/p pairs to distinguish the

cipher from a random permutation. In fact, the number of pairs is taken to be c/p,

where c is a constant dependent to the so called S/N(Signal to Noise) ratio which is

known to be the ratio of the probability of the right key being suggested by a right

pair to the probability of a random key being suggested by a random pair with the

given initial difference:

S/N =
2k.p

α.β

Here, k is the number of active bits, p is the characteristic’s probability, α is the

14

F

F

F

K
R

.

.

.

F

K

1

2

K

F

K
R−1

K
R−2

P P

CC
L R

L R

F

F

F

.

.

.

.

.

.

F

F

F

F

F

FK
R

K

1

2

K

K
R−1

K
R−2

K
R

F

F

P P

CC
L R

L R
P

K
2

K
1

K

K
R−1

R−2

K
3

C

Figure 2.5: The Differential Key Recovery Attack for Feistel Networks and SPNs

number of keys suggested by each pair of plaintexts and β is the fraction of the

counted pairs among all pairs [14](For details refer to [13, 15, 14]). When S/N is

sufficiently larger than 1, only a few pairs are needed for the attack. If S/N ratio

is closer to 1, then more data is needed to distinguisher the cipher from a random

permutation (If S/N ratio is less than one the attack can not be applied).

The following subsections contain two examples of the differential attacks: Dif-

ferential Cryptanalysis of DES and FEAL-8. The former is the first example in the

literature and the latter is different in the sense that it uses an efficient algorithm

to calcute the differential probabilities of modular addition over XOR and does not

make use of the tricky points used for DES. Differential cryptanalysis of FEAL-8 is an

elementary application that is detailed more by constructing the differential charac-

teristics step by step.

2.3 Differential Cryptanalysis of DES

The application of the differential cryptanalysis is not a straightforward manner since

it is difficult to construct the differential characteristic. There are some tricky points

to extend the one-round characteristics to the whole cipher, one of which is the use of

the iterative characteristics that enable to iterate the characteristics as many times

15

00 00 00 00 00 00 00 00
x

F
x

19 60 00 00
x

00 00 00 00

F

F

19 60 00 00
x

00 00 00 00

00 00 00 00 00 00 00 00
x

19 60 00 00
x

00 00 00 00

19 60 00 00
x

00 00 00 00

F
x

x
19 60 00 00

x
00 00 00 00

00 00 00 00 00 00 00 00
x

F
x

F
x

F
x

F
x

C

F

x

.

.

.

Round 2

Round 1

Round 14

Round 16

Round 15

P P

C

L
R

R
L

Figure 2.6: The Differential Characteristics Used for DES

as needed. Moreover, given a non-zero input difference, searching for a zero difference

in the output difference with high probability is another tricky point to construct the

differential characteristic. Both are used to attack DES [13, 15].

In the attack, a one-round differential with zero output difference of probability

1/234 is combined with the trivial characteristic making a 2-round iterative differ-

ential characteristic. It is iterated 6.5 times to construct the 13-round characteristic

with probability (1/234)6 = 2−47.2. This 13-round differential characteristic is used

between the rounds 2 and 14. Finally, by going backwards up to 14th round as

described earlier, this characteristic can be used to attack DES. However, the first

round needs to be modified for the characteristic. These characteristics are detailed

in Figure 2.6.

In order to extend the attack to 16 rounds Biham and Shamir introduced the

so called structures in [15]. Actually, the structures can be understood as the care-

fully chosen plaintexts. The aim here is to use structures such that without loss of

probability the required plaintext pairs with the prescribed difference are generated

before the second round. Let P be an arbitrary plaintext and c1, ..., c4096 be the all

possible output differences of the S-boxes S1, S2 and S3 leading to zero differences in

remaining 20 bits. The structure of 213 plaintexts are defined to be:

Pi = P ⊕ (ci, 0) , P ∗
i = Pi ⊕ (0, 19600000x) , for 1 ≤ i ≤ 212

Ci = DES(Pi) , C∗
i = DES(P ∗

i)

Here one can generate 224 plaintext pairs (Pi, P
∗
j) with the XOR difference ∆ =

16

(ck, 19600000x) (1 ≤ i, j, k ≤ 212) as:

(P1, P
∗
1) , (P2, P

∗
1) , . . . , (P212 , P ∗

1)

(P1, P
∗
2) , (P2, P

∗
2) , . . . , (P212 , P ∗

2)
...

(P1, P
∗
212) , (P2, P

∗
212) , . . . , (P212 , P ∗

212)

Obviously in 224 pairs above each ∆(P1, P
∗
j),∆(P2, P

∗
j), . . . ,∆(P212 , P ∗

j) is one of

the constants (ck, 19600000x). Thus, each ck appeared 212 times in above pairs. As a

result, one can cancel the differences in the output of the round function of the first

round exactly for 212 plaintext pairs. Therefore, this leads to offset the first round

by preparing necessary plaintexts for the differential characteristic starting from the

second round. Now, for each structure the probability of holding the differential

characteristic is 212.2−47.12 = 2−35.12.

Differential cryptanalysis of DES is an important example of the use of iterative

characteristics and the structures. Differential cryptanalysis of FEAL, on the other

hand, can be given as an important example of the use of high probability character-

istics and extending this characteristics to many rounds.

2.4 Differential Cryptanalysis of FEAL-8

2.4.1 FEAL-8

FEAL-8 [58] is a DES-like block cipher and was designed to be as secure as DES but

faster than DES in many platforms. It is an 8 round cipher with 128-bit key length

and 64-bit block length. It can in fact be broken by many type of attacks because its

simplicity in the round function. The general overview of FEAL-8 is given in Figure

2.7. Let us ignore the input and output whitening operations for a moment as it can

be discarded easily (for further details refer to [14]).

FEAL-8 has a very simple round function which is depicted in Figure 2.7. From

the differential cryptanalysis point of view, one really needs to be careful about the

simplicity of S-Boxes. The non-linearity of S-Boxes used in FEAL-8 heavily depends

on the modular addition mod 256. The reason why the designers of FEAL-8 have

chosen those S-Boxes is the speed of the addition operation. Actually, it is difficult

to analyze and read the 224 entries in the XOR table of FEAL-8. Therefore, there is a

17

S

S

S

S

0

0

1

1

Subkey

Subkey

St = (X,Y) ROL2 (X+Y+t (mod 256))

F

.

.

.

F

KI

K1

K8

KO

P (64 bits)

C(64 bits)

F Function

8 bits

8 bits

8 bits

8 bits

Figure 2.7: Overview FEAL-8

need to find the effect of modular addition on XOR operation instead of investigating

the XOR Tables. In [51] Lipmaa and Moriai makes it very easy to construct such

probabilities by introducing efficient algorithms for differential probability of addition

mod 2n that will be summarized in the following subsection.

2.4.2 Efficient Algorithm for Computing Differential Properties of

Addition

Originally, differential cryptanalysis was considered with respect to XOR and then

generalized to an arbitrary group operation. Until now it has seemed that the problem

of evaluating the differential properties of addition with respect to XOR is hard and

it is used in many ciphers to obtain non-linearity very efficiently. The differential

probability of addition with respect to XOR can be defined as:

DP+(α, β → γ) := Px,y[(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ]

The fastest known algorithms for computing the differential probability of ad-

dition DP+ is exponential in n [51]. However, in [51] Lipmaa and Moriai present

a log-time algorithm for DP+. Let us introduce some brief notation together with

some auxiliary conventions.

Let Σn = {0, 1} be the binary alphabet. For any n-bit string x ∈ Σn, xi be the ith

18

coordinate of x (i.e., x =
∑n−1

i=0 xi2i). We always assume that xi = 0 if i /∈ [0, n− 1].

Let ⊕,∨,∧ and ¬ denote n-bit bitwise XOR, OR, AND and negation, respectively.

Let x >> i (resp. x << i) denote the right (resp. the left) shift by i positions.

Addition is always performed modulo 2n, if not stated otherwise.

For any x,y and z we define

eq(x, y, z) : = (6= x⊕ y) ∧ (6= x⊕ z)

that is, eq(x, y, z)i = 1 ⇔ xi = yi = zi and

xor(x, y, z) : = x⊕ y ⊕ z

For any n, let mask(n) := 2n− 1. We say that differential δ = (α, β → γ) is good

if

eq(α << 1, β << 1, γ << 1) ∧ (xor(α, β, γ)⊕ (α << 1)) = 0

For the detailed description of the algorithm refer to [51]). The following algo-

rithm gives the desired value for the differential property of the addition [51].

Algorithm 2.4.1: A Log-Time Algorithm for DP+((α, β →
γ))

if eq(α << 1, β << 1, γ << 1) ∧ (xor(α, β, γ)⊕ (β << 1)) 6= 0

return (0);

return (2)−wh(¬eq(α,β,γ)∧mask(n−1))

It is obvious that this algorithm is very simple. Special functions used in the

algorithm can be investigated by the original paper. Now, let us construct the round

characteristics. For the remaining part of this section the notation (∆x,∆y) = ∆z is

used to denote the input-output XOR differences.

2.4.3 Constructing Differential Characteristics

Using the above algorithm or by just observing, it is easy to see that there is no

difference if we change the places of ∆x and ∆y. Also, it is obvious that the below

differences are satisfied with trivial probability because of the simple operation used

19

80 80 80 80
x

F

F

F

xx

x x

xx

x

00 00 00 00 00 00 00 00

x

F

F

F

80 80 80 80
xx

x x

xx
80 80 80 80

80 80 80 80
x

02 00 00 02

x
02 00 00 02

00 00 00 00 00 00 00 00

x
02 00 00 02

02 00 00 02 80 80 00 00 02 00 00 00

80 80 00 00
xx

02 00 00 00

02 00 00 00 80 80 00 00

02 00 00 00 80 80 00 00

Figure 2.8: 3-Round Characteristics of FEAL-8

in the S-boxes of FEAL-8 (The differences are written in hexadecimal).

(∆x = 00,∆y = 00) = ∆z = 00

(∆x = 80,∆y = 80) = ∆z = 00

(∆x = 80,∆y = 00) = ∆z = 02

In fact, it is good to see that 3 such one-round characteristics are found because

many round characteristics with p = 1 can be constructed by using these one-round

characteristics. During the attack, we make an extensive use of this fact. In order

to construct a powerful characteristic, the above characteristics should be used as

much as possible. Transition from a 1-round characteristic to 3-round characteristics

is straightforward and shown in Figure 2.8.

The aim here is to extend these characteristics as much as possible. Therefore,

by using 3-round characteristics, 5-round characteristics can be constructed similarly.

However, this time a 1-round characteristic is needed for the second and the fourth

round. The strategy that we follow is to take the obvious characteristic in the middle,

namely in the third round and to arrange the first and the last round according to

the middle. Let us investigate the 5-round characteristic given in Figure 2.9. As

seen, the rounds 1, 3 and 5 are satisfied with the maximum probabilities. If the most

effective differences are chosen for the rounds 2 and 4, a 5-round characteristic will

be obtained. As seen from the figure, the new aim now is to find the input difference

which corresponds to the output difference (80 80 00 00) with high probability. In

20

F

x

F

F

F

F

00 00 00 00 x

80 80 00 00

80 80 00 00 x02 00 00 00 x

x80 80 00 00

80 80 00 00 x

02 00 00 00 x 80 80 00 00 x

00 00 00 00 x

80 80 00 00 x

p=1

p=1

p=1

S

S

S

S

0

1

1

0

00

00

80

80
80

80

80

00

00

00

00

80

00

00

80

A0
A0

A0
A0

80

80

F

x

F

F

F

F

00 00 00 00 x

80 80 00 00

80 80 00 00 x02 00 00 00 x

x80 80 00 00

80 80 00 00 x

02 00 00 00 x 80 80 00 00 x

00 00 00 00 x

80 80 00 00 x

p=1

p=1

p=1

x

x

xA2 00 80 00

A0 00 80 00

A0 00 80 00

A2 00 80 00x

p=1/4

p=1/4

Figure 2.9: 5-Round Characteristic of FEAL-8

order to find such a characteristic, the round function F should be investigated

carefully to find the most efficient value.

As seen from Figure 2.9, the highest probability and the input difference ∆x which

corresponds to (∆x,∆y = 80) = ∆z = 80 should be found. With the help of the

algorithm given above, by trying 256 possible combinations, x = A0 input difference is

found to give the highest probability with p = 1/2. It is really an efficient probability

and when applied to 2 S-Boxes in the F -function a new one round characteristic can

be found working with probability 2−2.

The last step to finalize the attack is to extend the 5-round characteristic to

6-round characteristic. This time the process followed in the construction of the

5-round characteristic will be repeated for the 6-round characteristic for the round

function. The characteristic shown in Figure 2.10 works with probability p = 1/16

and sufficient for the time being. Moreover, it is the simplest way to extend the

5-round characteristic. What needs to be done is to find the most efficient output

difference which corresponds to the input difference (A2 00 80 00). Therefore, F -

function should be investigated again.

The Figure 2.10 summarizes the 6-round differential characteristic search. During

the process, it is made an extensive use of the algorithm given above. The 6-round

characteristic works with probability 1/256 and it is a really good characteristic in

order to break the cipher because a few plaintext-ciphertext pairs are needed.

We simulated with characteristic probability p = 1/128, excluding one active S-

Box in the last round. 2000 chosen plaintexts are collected and the attack is mounted.

The last round subkey can be found in a few seconds uniquely. We expected to have

21

F

x

F

F

F

F

00 00 00 00 x

80 80 00 00

80 80 00 00 x02 00 00 00 x

x80 80 00 00

80 80 00 00 x

02 00 00 00 x 80 80 00 00 x

00 00 00 00 x

p=1

p=1

p=1

x

xA2 00 80 00

A0 00 80 00

A0 00 80 00

p=1/4

p=1/4

F

x

A2 00 80 00 x

A2 00 80 00 x

F

x

F

F

F

F

00 00 00 00 x

80 80 00 00

80 80 00 00 x02 00 00 00 x

x80 80 00 00

80 80 00 00 x

02 00 00 00 x 80 80 00 00 x

00 00 00 00 x

p=1

p=1

p=1

x

xA2 00 80 00

A0 00 80 00

A0 00 80 00

p=1/4

p=1/4

F

x

A2 00 80 00 x

A2 00 80 00 x

S

S

S

S

0

1

1

0
A2

00

80

00

A2

00

A2

A2

00

80

80

80

00

XY

88

20

80

88

88

88

20

XY 88 20 80

XY 88 20 80

x

x

p=1/16

Figure 2.10: 6-Round Characteristic of FEAL-8

15− 16 pairs to satisfy the above characteristic for the right pair and we found that

at least 13 pairs satisfying the characteristic.

2.5 Resistance Against Differential Cryptanalysis

As its name suggests this section is devoted to discuss the security of a cipher against

the differential cryptanalysis. A cipher’s security against differential cryptanalysis

is very important in that it is assumed to be the first and vital step for a designer

to prove the security of the designed cipher. Let us assume that the confusion is

gathered through S-boxes for simplicity (for the other type of confusion mechanisms

as in IDEA, the attacker is assumed to calculate the differential probabilities up to

some reference point, e.g. the Hamming Weight of the input differences are upper

bounded by some constants).

The security of the cipher against differential attacks is not generally shown by

finding some round characteristics. Instead, some tight complexity bounds are given

by considering the number of active S-boxes. An inactive S-box is defined to take

a zero input difference. Once an S-box is active, it is assumed that the differential

holds with DPmax. We assumed that the confusion layer is gathered through S-boxes

because we are able to construct the XOR Tables and the maximum probability

DPmax in XOR table.

Since we are searching for the best differential, if we have at least n active S-

22

boxes, then one can conclude that the probability of any differential characteristic

can be at most DPn
max. Therefore, one can easily prove that if the designed cipher

fulfills this complexity bound, then it is resistant against differential cryptanalysis.

Namely, if DP−n
max exceeds the exhaustive search bound, then one can conclude that

the designed cipher is secure against differential cryptanalysis. This is given in terms

of the number of rounds attacked.

This type of analysis is not practical because the true complexity of mounting a

practical differential attack is often much higher than the bound indicates. Nonethe-

less, when DPn
max is sufficiently small, the results can provide powerful evidence of

the ciphers’ security against differential cryptanalysis.

In the folowing subsection, a recently designed cipher CLEFIA’s [78] security

against differential cryptanalysis will be discussed.

2.5.1 An Example: CLEFIA

CLEFIA [78] is a new block cipher introduced in FSE ’07 by Shirai et al. It is a

relatively fast and modern cipher and the key sizes can be chose as 128-bit, 192-bit

or 256-bit. It is a generalized unbalanced Feistel Scheme with four branches and the

round number depends on the key length (18, 20, 22 rounds for 128, 192 and 256 bit

keys respectively). The general overview of CLEFIA is given in Figure 2.11.

CLEFIA uses two types of round functions F0 and F1 as depicted in Figure 2.12.

In the round function, firstly 32-bit input is XORed with the subkey and enters to

the substitution level. In CLEFIA two 8× 8 S-boxes S0 and S1 are used and they are

applied alternatively in F0 and F1 but in different order. Finally, again two different

Maximum Distance Separable (MDS) codes are used as the diffusion layer (Again we

omit the key scheduling algorithm). The detailed description of CLEFIA is given in

[78].

CLEFIA is shown to be secure for all known cryptanalytic attacks in the proposal.

Resistance of CLEFIA against differential cryptanalysis is proved by the analysis given

in previous subsection. The maximum probability in DDT of both S-boxes are gath-

ered and the number of minimum active S-boxes is calculated for CLEFIA. The Table

2.1 shows the number of rounds and the minimum number of active S-boxes of CLEFIA

under 128, 192 and 256-bit keys where the number of rounds are 18,22 and 26, respec-

tively and DPmax = 2−4,67. For 128-bit key version, since (4.67)×28 = 130.76 > 128,

it can be proved theoretically that reduced 12-round CLEFIA is secure against differ-

23

F
0

F
1

F
0

K
1

K

K

K

KK

K K

KK

F
1

F
0

.

.

.

F
1

3

2

4

65

19 20

2221

(32 bits) (32 bits) (32 bits)(32 bits)

Figure 2.11: CLEFIA Block Cipher (128-bit key version)

8 bits

8 bits

8 bits

8 bits

S

S

S1

0

1

0

M

D

S

Key (32 bits)

S

2

F

8 bits

8 bits

8 bits

8 bits

S

S

S0

1

0

1

M

D

S

1

Key (32 bits)

S

0

F
1

Figure 2.12: CLEFIA Round Function

24

Round Number of Active S-boxes Round Number of Active S-boxes

1 0 14 34
2 1 15 36
3 2 16 38
4 6 17 40
5 8 *18 44
6 12 19 46
7 14 20 50
8 18 21 52
9 20 *22 55
10 22 23 56
11 24 24 59
12 28 25 62
13 30 * 26 65

Table 2.1: Number of Active S-boxes of CLEFIA

ential cryptanalysis. Similar calculations can be done for other key lengths.

25

Chapter 3

Extensions of the Differential

Cryptanalysis

This chapter is devoted to the extensions of the differential cryptanalysis to the

other block cipher attacks inspired from differential cryptanalysis. Throughout this

chapter, the boomerang, amplified boomerang and rectangle attacks together with

their related key combined attack versions are mentioned.

While early 1990s witnessed the pure differential cryptanalysis and its slight im-

provements, it was shown in late 1990s and early 2000s that differential cryptanalysis

can further be improved to a new type of attacks; namely the combined attacks

which were first exemplified by the differential-linear attacks in [50]. The boomerang

attack was introduced in [80] as the extension of the differential-linear attack to

differential-differential attack that effectively makes use of the two short differen-

tial characteristics instead of one long one. Afterwards, the boomerang attack was

improved to amplified boomerang attack and the rectangle attack in [37] and [8],

respectively.

Nowadays, on the other hand, the boomerang attacks and the rectangle attack

have been applied together with the related-key model [5]. That is, the new type of

combined attacks called related-key boomerang and rectangle attacks [9, 11, 12, 44]

are two of the most effective block cipher attacks. The best attacks applied to AES

[43, 12] known today are of these type.

This chapter is structured as follows. Section 3.1 introduces the boomerang and

the related-key boomerang attack. Then, the boomerang attack is extended to am-

plified boomerang and rectangle attacks together with their related-key combined

attack versions in Section 3.2 and 3.3. In Section 3.4, the application of these attacks

26

to the encryption modes of MD4 and MD5 is presented.

3.1 The Boomerang and The Related-Key Boomerang

Attack

The Boomerang Attack [80] may be seen as the refinement or the effective use of the

pure differential cryptanalysis. After the application of differential-linear cryptanaly-

sis [50], the boomerang attack can also be called differential-differential cryptanalysis.

In the boomerang process, instead of using one long-ineffective (low probability) dif-

ferential, the attacker uses two short-high probability differentials to increase the

number of rounds attacked and the probability of the differential. The disadvan-

tage of the boomerang attack is its adaptively chosen plaintext-ciphertext nature.

Namely, besides the encryption box of the attacked cipher, it is assumed to have the

decryption box.

For the sake of simplicity, we will use the same notation as in [12]. The Boomerang

Distinguisher treats the attacked cipher E as a cascade of two sub-ciphers E0 and

E1 (EK
i stands for encryption with key K), i.e. E = E1 o E0. As mentioned above,

two short-high probability differentials are used, one for E0 and one for E1, in order

to increase the probability of the distinguisher. Let α → β with probability p be the

first differential used for E0 and γ → δ with probability q be the second differential

used for E1. Notice that, once the differential is chosen in one direction, the same

differential holds for the opposite direction. Namely, the differentials β → α for E−1
0

and δ → γ for E−1
1 hold with probabilities p and q respectively. The key step in

the boomerang distinguisher is to combine these two differentials. The boomerang

distinguisher works as follows:

• Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.

• Obtain the corresponding ciphertexts C1 = E(P1) and C2 = E(P2) through E.

• Form the second ciphertext pair by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

• Obtain the corresponding plaintexts P3 = E−1(C3) and P4 = E−1(C4) through

E−1.

• Check P3 ⊕ P4 = α.

27

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

E

E

E

EE

E

0

0

0

1

E
1

1

1

γ

δ

γ

δ

β

α

β

α

E

Κ

Κ Κ

Κ

0

Κ

Κ

Κ

Κ

Figure 3.1: The Boomerang Distinguisher

After the first step of the above algorithm, the probabilistic arguments take place.

While obtaining C1 and C2, we expect that the differential α → β holds with prob-

ability p for E0 once. There are no arguments about E1 yet. Then, after the third

step, through the decryption process we expect the differential δ → γ holds with

probability q for E−1
1 twice as we go backwards twice, once for each of the pairs

(C1, C3) and (C2, C4). The crucial step of the boomerang distinguisher comes to the

picture here when we are going backwards. Once we get E−1
1 (C3) ⊕ E−1

1 (C4) = β,

we are almost done as we know E−1
0 (E−1

1 (C3))⊕E−1
0 (E−1

1 (C4)) = P3⊕P4 = α holds

with probability p. Now, it is time to explain how this is obtained.

E−1
1 (C3) ⊕ E−1

1 (C4) =

E−1
1 (C3) ⊕ E−1

1 (C4)⊕ E−1
1 (C1)⊕ E−1

1 (C1)⊕ E−1
1 (C2)⊕ E−1

1 (C2) =

E−1
1 (C1) ⊕ E−1

1 (C3)⊕ E−1
1 (C2)⊕ E−1

1 (C4)⊕ E−1
1 (C1)⊕ E−1

1 (C2) =

γ ⊕ γ ⊕ E−1
1 (C1)⊕ E−1

1 (C2) = E0(P1)⊕ E0(P2) = β

Therefore, the boomerang distinguisher works with probability p2q2. On the

other hand, for a random permutation, the last step of the above argument holds

with probability 2−n where n is the number of the bits of each plaintext P . Thus,

pq > 2−n/2 must hold for the boomerang distinguisher. The boomerang distinguisher

28

is visualized in Figure 3.1.

The related-key attack was first introduced by just considering rotational related-

keys of LOKI [4]. Then, it was extended to differential-related-keys to attack many

ciphers [39]. In differential related-keys, two differentials are combined; once for the

standard encryption algorithm and once for the key scheduling algorithm. Namely,

the standard differential model tries to increase P (EK(x)⊕EK(x⊕∆x) = ∆y). The

related-key model, on the other hand, tries to increase P (EK(x)⊕EK⊕∆K(x⊕∆x) =

∆y). The related-key boomerang attack, on the other hand, is one of the effective

combined attacks on block ciphers that can be applied to many known block ciphers.

For the related-key model, attacker assumes to know the relation (difference) between

the keys, but not the exact values of keys.

The adaptation of related-key model to the boomerang attack is straightforward.

The usual related-key model is applied to the subciphers E0 and E1 separately and

the normal procedure is applied for the boomerang distinguisher. However, some ad-

ditional properties are adapted for the related-key boomerang distinguisher. Instead

of one pair of related-keys, 4 (or more) [43, 28, 40] related keys can be used and the

most effective one is selected for the attack according to the structure of the cipher.

We are going to give details about the related-key boomerang distinguisher based on

4 related-keys (as it is used in following chapters) as follows which is also shown in

Figure 3.2:

• Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.

• Obtain the corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) through

E, where K2 = K1 ⊕∆K12.

• Form the second ciphertext pair by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

• Obtain the corresponding plaintexts P3 = E−1
K3

(C3) and P4 = E−1
K4

(C4) through

E−1, where K3 = K1 ⊕∆K13, K4 = K3 ⊕∆K12.

• Check P3 ⊕ P4 = α

The probabilistic arguments are same as in the boomerang distinguisher but they

are converted to the related-key model for the related-key boomerang distinguisher.

However, the non-linearity of the key scheduling algorithm is very important. It

is not guaranteed in the boomerang distinguisher that the difference of the keys

hold with high probability. The attacker should consider the probabilities carefully.

29

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β

α

β

α

0

1

E
0

E
Κ

0
E

E

Κ2

Κ3

Κ4

1

Κ
E

E
1

Κ

E
Κ

E
Κ1

2

3

4

Κ
Κ

Κ12

Κ

13

12

13

∆

∆

∆
∆

Figure 3.2: Related-Key Boomerang Distinguisher Based on Four Related Keys

Nonetheless, we are going to investigate the trivial differences caused by the key

scheduling algorithm of Tiger.

3.1.1 Boomerang Attack on FEAL-8

In previous chapter, two 3-round trivial differentials were given for FEAL-8. Here, we

show how to extend these characteristics immediately to 6-round by using the trivial

6-round boomerang distinguisher and improve the probability of the distinguisher

immediately. Recall that the extension of the 3-round characteristics to 6-round

characteristic for the standard differential cryptanalysis of FEAL-8 led to a loss of

probability from one to 2−7. Here, we show the benefits of using two short high

probability differentials instead of long ineffective one. Figure 3.3 shows two trivial

3-round characteristics for FEAL-8.

It does not matter which of the characteristic matches with E0 or E1. Without

loss of generality, let us assume for E0 that the characteristic

α = (02000002x, 80808080x) −→ β = (02000002x, 80808080x)

holds with probability one. Recall that the characteristic β −→ α also holds for E−1
0

30

80 80 80 80
x

F

F

F

xx

x x

xx

x

00 00 00 00 00 00 00 00

x

F

F

F

80 80 80 80
xx

x x

xx
80 80 80 80

80 80 80 80
x

02 00 00 02

x
02 00 00 02

00 00 00 00 00 00 00 00

x
02 00 00 02

02 00 00 02 80 80 00 00 02 00 00 00

80 80 00 00
xx

02 00 00 00

02 00 00 00 80 80 00 00

02 00 00 00 80 80 00 00

Figure 3.3: 3-Round Characteristics of FEAL-8

with the same probability. For the second subcipher E1, the characteristic

γ = (02000000x, 80800000x) −→ δ = (02000000x, 80800000x)

also holds with probability one.

The 6-round boomerang distinguisher works as follows for FEAL-8.

• Take a randomly chosen plaintext P1 and form P2 = P1⊕(02000002x, 80808080x).

• Obtain the corresponding ciphertexts C1 = E(P1) and C2 = E(P2) through E.

At the end of this step we expect that the characteristic α −→ β holds for E0

with probability one.

• Form the second ciphertext pair by C3 = C1⊕γ = (02000000x, 80800000x) and

C4 = C2 ⊕ γ = (02000000x, 80800000x).

• Obtain the corresponding plaintexts P3 = E−1(C3) and P4 = E−1(C4) through

E−1. Here the characteristic δ −→ γ holds twice for E−1
1 with probability one.

As the boomerang condition suggests, we have E−1
1 (C3)⊕ E−1

1 (C3) = β.

• Check P3 ⊕ P4 = α. If this is true, identify the cipher as FEAL-8.

All probabilistic arguments work with probability one meaning that once the

distinguisher given above works, the cipher can be identified as FEAL-8. Therefore,

a 6-round trivial characteristic has been found for FEAL-8 and the differential attack

mounted in previous chapter can be directly applied with this distinguisher. Now,

the number of needed data for the attack is dramatically decreased. However, the

31

C
4

C
1

E
0

E
1

2
C

β=(02000002,80808080)
γ=(02000000,80800000)

β=(02000002,80808080)

γ=(02000000,80800000)

δ=(02000000,80800000)

δ=(02000000,80800000)

3
C

P

P

P

P

1

2

3

4

α = (0
2000002,80808080)

α = (0
2000002,80808080)

Figure 3.4: Boomerang Distinguisher on FEAL-8

32

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β β

α

0
E
0

E
Κ

0
E

E

Κ

Κ

Κ

1

Κ
E

E
1

Κ

E
Κ

E
Κ

α

Figure 3.5: The Amplified Boomerang Distinguisher

attack is not a chosen plaintext attack, one needs 4 adaptively chosen plaintext and

ciphertexts to apply boomerang attack on FEAL-8.

3.2 The Amplified-Boomerang and The Related-Key

Amplified-Boomerang Attack

The amplified boomerang attack is the refinement of the boomerang attack intro-

duced in previous section. The most important improvement in amplified boomerang

attack is that it converts the adaptively chosen plaintext nature of boomerang attack

into chosen plaintext attack. Instead of using both of the encryption and decryption

boxes, amplified boomerang attack uses just the encryption box. However, proba-

bilistically it is not a refinement as the convertion to the chosen plaintext scenario

leads to some cost.

In amplified boomerang distinguisher, the attacker tries to construct the plain-

text pairs (P1, P2) and (P3, P4) with a prescribed difference α. Here, through the

encryption of these pairs, the differential α → β holds with probability p for E0.

Assuming the independence of the plaintexts P1 and P3 (equivalently P2 and P4), at

the end of E0 the difference E0(P1)⊕E0(P3) = γ is expected to hold with probability

2−n, given that the attacked cipher operates on n bits. Once this is satisfied, by the

33

boomerang conditions introduced in previous section are satisfied and the difference

E0(P2)⊕ E0(P4) = γ (E0(P1)⊕ E0(P3) = γ resp.) holds for free.

After constructing the boomerang condition at the end of E0, for the second

sub-cipher E1 it is expected that the differential γ → δ holds with probability q.

Therefore, at the end of E1, the differences C1 ⊕ C3 = δ and C2 ⊕ C4 = δ hold with

probability 2−np2q2. The amplified boomerang distinguisher is visualized in Figure

3.5 and can be summarized as:

• Take a randomly chosen plaintext P1 and obtain the corresponding ciphertext

C1 = E(P1).

• Form P2 = P1 ⊕ α and obtain the corresponding ciphertext C2 = E(P2).

• Pick another randomly chosen plaintext P3 and obtain the corresponding ci-

phertext C3 = E(P3).

• Form P4 = P3 ⊕ α and obtain the corresponding ciphertext C4 = E(P4).

• Check C1 ⊕ C3 = δ and C2 ⊕ C4 = δ.

Starting with N pairs (P1, P2), (P3, P4) a fraction of about p satisfies the differen-

tial in E0 (we expect Np pairs with output difference β in the input to E1) and at the

end of E1 the expected number of right quartets satisfying the amplified boomerang

distinguisher is C(Np, 2).2−n.q2 , where C(Np, 2) denotes the number of of ways

choosing 2 pairs from Np pairs of plaintexts [28].

The related-key model of the amplified boomerang distinguisher is similar to the

related-key model of the boomerang distinguisher and can be given as:

• Take a randomly chosen plaintext P1 and obtain the corresponding ciphertext

C1 = EK1(P1).

• Form P2 = P1 ⊕ α and obtain the corresponding ciphertext C2 = EK2(P2),

where K2 = K1 ⊕∆K12.

• Pick another randomly chosen plaintext P3 and obtain the corresponding ci-

phertext C3 = EK3(P3), where K3 = K1 ⊕∆K13.

• Form P4 = P3 ⊕ α and obtain the corresponding ciphertext C4 = EK4(P4),

where K4 = K3 ⊕∆K12.

34

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β β

α

0

1

E
0

E
Κ

0
E

E

Κ2

Κ3

Κ4

1

Κ
E

E
1

Κ

E
Κ

E
Κ1

2

3

4

Κ
Κ

Κ12

Κ

13

12

13

∆

∆

∆
∆

α

Figure 3.6: Related-Key Amplified Boomerang Distinguisher Based on Four Related
Keys

• Check C1 ⊕ C3 = δ and C2 ⊕ C4 = δ.

Next section covers the refinement of the amplified boomerang distinguisher,

namely the rectangle distinguisher.

3.3 The Rectangle and The Related-Key Rectangle

Attack

The rectangle attack also converts the adaptively chosen nature of the boomerang

attack into the chosen plaintext attack. In fact, it is the refinement of the amplified-

boomerang attack [37] and used to attack to many known ciphers [33, 43].

In boomerang distinguisher, the γ difference after E0 and before E1 is gath-

ered through the decryption process. However, in rectangle distinguisher, the pairs

(P1, P2) and (P3, P4) make use of the differential α → β and since (P1, P3) is taken as

random, it is expected that the difference E0(P1)⊕E0(P3) = γ holds with probability

2−n before the subcipher E1. Once this is satisfied, the differential γ → δ comes to

the picture. Of course, the subciphers before and after the rectangle distinguisher

work as in the boomerang distinguisher.

35

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β β

α

0
E
0

E
Κ

0
E

E

Κ

Κ

Κ

1

Κ
E

E
1

Κ

E
Κ

E
Κ

α

Figure 3.7: The Rectangle Distinguisher

Actually, so far, these are similar in amplified boomerang attack. Following [28],

we will show the improvements specific to rectangle distinguisher. Firstly, besides

the advantage of chosen plaintext nature, it also makes use of all β′ values satisfying

α → β′ and all γ′ values that satisfy γ′ → δ as well. A right quartet ((P1, P2), (P3, P4))

and corresponding ciphertexts ((C1, C2), (C3, C4)) are defined such that

P1 ⊕ P2 = P3 ⊕ P4 = α

C1 ⊕ C3 = C2 ⊕ C4 = δ

In the boomerang attack, it is known which ciphertext is derived from the other.

In the rectangle attack this is not the case. For each pair (P1, P2) and (P3, P4), there

are two possible quartets: ((P1, P2), (P3, P4)) and ((P1, P2), (P4, P3)). Each of these

pairs can be tested to form a right quartet which reduces the data requirement. Using

the notations given above, one can describe the related-key rectangle distinguisher

based on 4 related-keys as follows (For further improvements, see [12, 28]).

• Take a randomly chosen plaintext P1 and obtain the corresponding ciphertext

C1 = EK1(P1).

36

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β β

α

0

1

E
0

E
Κ

0
E

E

Κ2

Κ3

Κ4

1

Κ
E

E
1

Κ

E
Κ

E
Κ1

2

3

4

Κ
Κ

Κ12

Κ

13

12

13

∆

∆

∆
∆

α

Figure 3.8: Related-Key Rectangle Distinguisher Based on Four Related Keys

• Form P2 = P1 ⊕ α and obtain the corresponding ciphertext C2 = EK2(P2),

where K2 = K1 ⊕∆K12.

• Pick another randomly chosen plaintext P3 and obtain the corresponding ci-

phertext C3 = EK3(P3), where K3 = K1 ⊕∆K13.

• Form P4 = P3 ⊕ α and obtain the corresponding ciphertext C4 = EK4(P4),

where K4 = K3 ⊕∆K12.

• Check C1 ⊕ C3 = δ and C2 ⊕ C4 = δ

The probability P of the rectangle distinguisher is given by P = 2−np̂2q̂2, where

p̂ =
√∑

β P 2
K1,K2

(α → β) and q̂ =
√∑

γ P 2
K3,K4

(γ → δ). For a random cipher, the

probability of the given difference is P ′ = 2−2nS where S is the cardinality of the

set of differences of all δ values. Once P ≥ P ′ is satisfied, the rectangle distinguisher

works. We conclude that given N plaintext pairs we expect to have N2p̂2q̂2/2n right

rectangle quartets.

As shown in [28], if the expected number of right quartet is taken to be 4, then

there is at least one right quartet in the data set with probability 0.982 since it is

a Poisson distribution with expectation of 4. Therefore, the number of plaintext

37

pairs needed is N = 2n/2+1/p̂q̂ that consist of 2n+2/p̂2q̂2 quartets expecting 4 right

quartets at a time.

3.4 On The Security of The Encryption Modes of MD4

and MD5

3.4.1 MD4 and MD5

This subsection is devoted to well known hash functions MD4 and MD5 which inspire

many of the popular hash functions as well such as SHA-family. MD4 [69] was designed

by Ron Rivest in 1990 which takes at most 264 bits of input (as its padding rule

permits) and produces 128-bit fingerprint of it. It is built on the Merkle-Damgärd

Construction Principle that is proved to be a secure design principle [25]. The suc-

cessor of MD4, MD5 [70], was published again by Ron Rivest two years later by a slight

modifications on the compression function.

MD4 takes message blocks of 512 bits and produces 128-bit hash value. In order

to make the message an exact multiple of 512-bit, the padding procedure is applied.

First, one 1 bit and enough 0 bits are added to the end of the message to make the

length 448 modulo 512. Finally, 64-bit representation of the original message length

is filled for the remaining 64 bits. After padding, message becomes exact multiple of

512 bits, so is an exact multiple of 16 (32-bit) words.

MD4 has 3 rounds, each consisting 16 steps. In every step i, the state variables

(Ai−1, Bi−1, Ci−1, Di−1) are updated as Ai, Bi, Ci, Di by using the message word Mi,

the step constant Ki and the shift value si specified for the step i. Ai−1 , Bi−1 , Ci−1

and Di−1 are intermediate variables which are updated at every step. The Figure

3.9(a) visualizes one step of the step function of MD4.

Every round of MD4 compression function uses a different boolean function as

stated below:

F1(X, Y, Z) = XY ⊕XZ ⊕ Z

F2(X, Y, Z) = XY ⊕XZ ⊕ Y Z

F3(X, Y, Z) = X ⊕ Y ⊕ Z

MD4 type hash functions use a public IV as an initial state variable. Exact values of

IV, permutation of words, constants and shift values are given in [69].

38

s
i

i step
th

B C
i−1 i−1

B C
i i i

DA
i

D
i−1

A
i−1

M
i

<<<

F

K
i

(a) MD4

s
i

i step
th

B C
i−1 i−1

B C
i i i

DA
i

D
i−1

A
i−1

M
i

<<<

F

K
i

(b) MD5

Figure 3.9: MD4 and MD5

In 1992, Ron Rivest made some refinements on MD4 algorithm and published the

new version as MD5. These refinements include the addition of the fourth round

as F4(X, Y, Z) = Y ⊕ (X ⊕ ¬Z) (where ¬ denotes the bitwise complement of the

state variable) and the change of the second round (that is, F2 is F2(X, Y, Z) =

XY ⊕Y ⊕Z⊕1). Besides, the state variable Bi is added to the output of the boolean

function at each step (The full list of changes including the constants and the shift

values are given in [70]). The Figure 3.9(b) visualizes one step of the compression

function of MD5.

3.4.2 Related-Key Boomerang and Rectangle Attacks to the En-

cryption Mode of MD4

In this and the following subsection, the related-key boomerang and rectangle attacks

of Kim et al [42] to the encryption mode of MD4 based on 4-related-keys are presented.

In their work, there exist also other attacks based on 2-related keys and some weak

classes.

Before starting the attack procedure, the encryption mode of MD4 has to be iden-

tified which can be described easily. The encryption mode of MD4 is supposed to

encrypt 128-bit plaintext to 128-bit ciphertext using 512-bit secret key. The decryp-

tion is also well-defined as there is no need to inverse the round operations. The

message expansion (key scheduling) of MD4 is a permutation of 16 32-bit words that

are used used exactly once in each round pass in a specified order. In this attack, the

attackers make use of the linearity in message expansion algorithm.

39

To construct an efficient differential characteristic for the message expansion of

MD4, the behavior of the message words in the subciphers E0 and E1 should be

investigated carefully. First of all, all the message differences introduced in E0 and

E1 are constructed by just flipping the most significant bit of the message words (the

difference denoted by ∆Mi = e31) as it kills the carry effect in modular addition.

Then, the message words to be changed are chosen such that two appearances of

them are as wide as possible to construct a long distinguisher.

For MD4, the rounds between 0− 29 and 29− 47 are chosen as E0 and E1 respec-

tively. The message word to be changed in E0 is M3 and the message word to be

changed in E1 is chosen to be M7. These message words are determined such that

the distinguisher covers all the rounds in MD4. Table 3.1 shows the characteristic used

for MD4. We use the notation given in [42]. Here ei denotes the difference that has

zero difference in all bits except the ith bit. Similarly, ei1,i2,..,ik denotes the difference

ei1⊕ei2⊕ ...⊕eik . In the table, Pr[REC] and Pr[BOO] denote the probability of the

related-key rectangle and boomerang distinguishers respectively. Pr[REC] is given

by

Pr[REC] = (2−2)2122−128 = 2−132.

Since the differences after step 45 can be seen in the ciphertext directly, the proba-

bilities after step 45 are discarded. Similarly, Pr[BOO] is given by

Pr[BOO] = 2−2(2−1)21 = 2−4.

The first factor is p and the second factor is q2. However, for the last factor the first

3 steps are discarded as the differences are expected in the plaintexts.

The related-key boomerang attack on MD4 can be described as follows:

• Prepare 25 plaintext pairs (P1, P2) with ∆ = (0, e31, 0, 0). By the properties of

the boolean function F1 = XY ⊕XZ ⊕ Z, the most significant bits of C and

D have to be equal.

• Obtain the corresponding ciphertexts C1 = Em1(P1) and C2 = Em2(P2) through

E, where m2 = m1 ⊕ (0, 0, 0, e31, 0, ..., 0).

• Calculate the second ciphertext pair as C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

• Obtain the corresponding 25 plaintexts P3 = E−1
m3

(C3) and P4 = E−1
m4

(C4)

40

Round ∆A ∆B ∆C ∆C ∆K Probability

α 0 e31 0 0 K12

0 0 e31 0 0 0 1
1 0 0 e31 0 0 2−1

2 0 0 0 e31 0 2−1

3 e31 0 0 0 e31 (∆M3) 1
4 0 0 0 0 0 1
.
.
.

27 0 0 0 0 0 1
28 0 0 0 0 e31 (∆M3) 1
β 0 e2 0 0 p = 2−2

γ e31 0 0 0 K13

29 e31 0 0 0 e31 (∆M7) 1
30 0 0 0 0 0 1
.
.
.

45 0 0 0 0 0 1
46 0 0 0 0 e31 (∆M7) 1
47 0 e10 0 0 0 2−1

δ 0 e25 e10 0 q = 2−1

REC Pr[REC] ≈ 2−132

BOO Pr[BOO] ≈ 2−4

Table 3.1: The characteristic for MD4

41

through E−1, where m3 = m1 ⊕ (0, 0, 0, 0, 0, 0, 0, e31, 0, ..., 0),

m4 = m3 ⊕ (0, 0, 0, 0, 0, 0, 0, e31, 0, ..., 0).

• Check P3 ⊕ P4 = P1 ⊕ P2.

• If this is the case, identify the corresponding cipher as MD4.

Since we gathered 25 plaintext pairs and Pr[BOO] = 2−4, the probability that a

pair is not a right quartet is (1− 2−4). So, the probability that the attack succeeds

is 1 − (1 − 2−4)2
5

= 0.87. For the related-key rectangle distinguisher on the other

hand, the attack can be described as follows:

• Prepare 267 plaintext pairs (which construct 2134 quartets) (Pi, P
∗
i) with ∆ =

(0, e31, 0, 0). By the properties of the boolean function F1, the most significant

bits of C and D have to be equal.

• Obtain the corresponding ciphertexts C1 = Em1(P1) and C2 = Em2(P2) through

E, where m2 = m1 ⊕ (0, 0, 0, e31, 0, ..., 0) and obtain C3 = Em3(P3) and C4 =

Em4(P4) through E, where m4 = m3 ⊕ (0, 0, 0, e31, 0, ..., 0).

• Check if there exist C1 ⊕ C3 = C2 ⊕ C4.

• If this is the case, identify the corresponding cipher as MD4.

Since we gathered 267 plaintext pairs and Pr[REC] = 2−132, the probability that

a pair is not a right quartet is (1−2−132). So, the probability that the attack succeeds

is 1− (1− 2−132)2
134

= 0.98.

3.4.3 Related-Key Boomerang and Rectangle Attacks to the En-

cryption Mode of MD5

The Related-Key Boomerang and Rectangle Attacks to the encryption mode of MD5

is similar to the attack presented in previous subsection. Here, we will just give

the characteristic used for MD5. Table 3.2 summarizes the attack where Pr[REC] ≈
2−137.1 and Pr[BOO] ≈ 2−11.6.

42

Round ∆A ∆B ∆C ∆C ∆K Probability

α 0 0 e31 0 K12

0 0 0 e31 0 0 1
1 0 0 0 e31 0 2−1

2 e31 0 0 0 e31 (∆M2) 1
3 0 0 0 0 0 1
.
.
.

28 0 0 0 0 0 1
29 0 0 0 0 e31 (∆M2) 2−1

30 0 e8 0 0 0 p = 2−2

β 0 e8 e8 0 p = 2−4

γ e11,31 e31 e31 e31 K13

31 e11,31 e31 e31 e31 0 2−1

32 0 0 e31 e31 0 1
33 e31 0 0 e31 0 1
34 e31 0 0 0 e31 (∆M11) 1
35 0 0 0 0 0 1
.
.
.

60 0 0 0 0 0 1
61 0 0 0 0 e31 (∆M11) 2−1

62 0 e9 0 0 0 2−2

63 0 e9 e9 0 0 2−2

δ 0 e9 e9 e9 q = 2−6

REC Pr[REC] ≈ 2−137.1

BOO Pr[BOO] ≈ 2−11.6

Table 3.2: The characteristic for MD5

43

Chapter 4

Previous Collision Attacks on

the Tiger Hash Function

Recent developments in cryptanalysis of dedicated hash functions brought new at-

tention to the cryptanalysis of alternative hash functions, such as Tiger [2]. Tiger

[2] is an important type of an hash function which is proved to be secure so far as

there is no known collision attack on the full Tiger. It is designed by Biham and

Anderson in 1995 to be very fast on modern computers, and in particular on the

64-bit computers, while it is still not slower than other suggested hash functions on

32-bit machines.

Recently some weaknesses have been found for Tiger-hash function. First, in FSE
′06 [38] Kelsey and Lucks found a collision for 16-17 rounds of Tiger and a pseudo-

near-collision for 20 rounds. Then, in INDOCRYPT ′06, Mendel et al [55] extended

this attack to 19-round collision and 22-round pseudo-near-collision. Finally in 2007

at ASIACRYPT ′07 Mendel and Rijmen [56] found a pseudo-near-collision for the full

Tiger. Therefore, the cryptanalysis of the Tiger-hash function is a popular research

area in these days.

This chapter is devoted to the some of the previous collision search attacks to

Tiger hash function. First, the basic attack strategy is introduced which is the

common feature of all the attacks presented. Then, the attack by Kelsey and Lucks

and the extension of this attack by Mendel et al will be mentioned. The former is

the first attempt to find collisions for Tiger and the latter is the first attack mounted

on full Tiger. Table 5.1 summarizes the collision search attacks to the Tiger hash

function (an extension of the table in [55]).

44

Number of Rounds Attack Type Attack Complexity
16 Collision [38] 244

19 Collision [55] 262 and 269

19 Pseudo-Collision [55] 244

21 Pseudo-Collision [55] 266

20 Pseudo-Near-Collision [38] 248

21 Pseudo-Near-Collision [55] 244

22 Pseudo-Near-Collision [55] 244

23 Pseudo-Near-Collision [56] 247

24 Pseudo-Near-Collision [56] 247

Table 4.1: Overview of Attacks to the Tiger Hash Function

Notation Meaning
A � B Addition of A and B mod 264

A � B Subtraction of B from A mod 264

A � B Multiplication of A and B mod 264

A⊕B Bitwise XOR-operation of A and B mod 264

¬A Bitwise NOT-operation of A
A << n Bitwise rotation of A to the left by n bits
A >> n Bitwise rotation of A to the right by n bits

Xi Message word i
Xi[even] Even bytes of Xi

Xi[odd] Odd bytes of Xi

M i Message i
Xi

j Message word j of the Message i
Ai

j State Variable j of the Message i

Table 4.2: Notation

4.1 Tiger

Tiger [2] is a cryptographic, iterative hash function which is designed for 64-bit

processors by Biham and Anderson in 1995. Its compression function is based on a

block-cipher-like function producing 192-bit hash value from a 512-bit message block.

The size of the hash value and the intermediate state length are 192-bit (three 64-bit

words). A detailed description of Tiger is given in [2] and for the remaining parts,

we will follow the notation given in Table 4.2.

45

A B i+1

(constant)

X

odd

even

C
i+1i+1

i

i
B
i

C
i

A

Figure 4.1: The ith Round of Tiger

4.1.1 The Round Function of Tiger

In Tiger, state update transformation starts with a fixed IV and at each round three

64-bit state variables A,B, C are updated as follows:

A := A � even(C)

B := (B � odd(C)) � mult , where mult ∈ {5, 7, 9}

C := C ⊕Xi

Here, each 64-bit message word is obtained from 512-bit message block and the non-

linear functions even and odd operate on even and odd bytes of the input respectively

that are defined as:

even(C) : = t1(C[0])⊕ t2(C[2])⊕ t3(C[4])⊕ t4(C[6])

odd(C) : = t1(C[7])⊕ t2(C[5])⊕ t3(C[3])⊕ t4(C[1])

Four 8 × 64 bit S-boxes are used in even and odd functions and shown by t1, t2, t3

and t4 where C[i] denotes the ith byte of C (0 ≤ i ≤ 7, 7th byte is the most significant

byte). The ith round input values are shown by Ai, Bi, Ci (three 64-bit words) where

i ∈ {0, . . . , 24}, ith round message block is Xi and ith round output values are Ai+1,

Bi+1, Ci+1. One step of Tiger is shown in Figure 4.1

Before the beginning of the second 8-round pass, intermediate values A, B, C

46

are updated as C8, A8, B8. Before the beginning of the last 8-round pass again

intermediate values are updated and they are assigned to B16, C16, A16[2] (As there

is no effect of this simple operation, all attacks including ours discard this operation).

After the last round of the state update transformation, the initial value A0, B0, C0

and the output of the last round A24, B24, C24 are combined resulting to the hash

value or the initial value of the next step as follows.

A25 = A0 ⊕A24

B25 = B0 � B24

C25 = C0 � C24

The block cipher mode of Tiger is straightforward. The chaining operations of

the intermediate values are omitted and Tiger is treated as a block cipher encrypting

192-bit plaintext into 192-bit ciphertext using 512-bit secret key. There is no need to

invert odd and even function since their inverses do not affect the decryption mode.

In the decryption mode, the inverses of the modular operations are used which can

be defined very easily.

4.1.2 The Message Expansion of Tiger

In Tiger, 512-bit message block is expanded to 24 × 64-bit message blocks by us-

ing a message expansion algorithm. The non-linear invertible message expansion

of Tiger uses some logical operations. In the first 8 rounds, the original message

words X0, ..., X7 are used and for the next 8 rounds the message expansion is ap-

plied to X0, ..., X7 and the message words X8, ..., X15 are formed. For the remaining

8 rounds the message expansion is performed to the message words X8, ..., X15 to

gather X16, ..., X23. 512-bit key is expanded by using the operations shown in Table

4.3.

4.2 Attack Method

The basic attack strategy for the collision search attacks to the Tiger hash function

basically consists of the method developed by Kelsey and Lucks in [38]. The exten-

sions of this attack by Mendel et al in [55] and in [56] use the same attack strategy

but with some slight modifications.

47

First Pass Second Pass
X0 = X0 � (X7 ⊕A5A5A5A5A5A5A5A5x) X0 = X0 � X7

X1 = X1 ⊕X0 X1 = X1 � (X0 ⊕ (X7 << 19))
X2 = X2 � X1 X2 = X2 ⊕X1

X3 = X3 � (X2 ⊕ (X1 << 19)) X3 = X3 � X2

X4 = X4 ⊕X3 X4 = X4 � (X3 ⊕ (X2 >> 23))
X5 = X5 � X4 X5 = X5 ⊕X4

X6 = X6 � (X5 ⊕ (X4 >> 23)) X6 = X6 � X5

X7 = X7 ⊕X6 X7 = X7 � (X6 ⊕ 0123456789ABCDEFx)

Table 4.3: The Message Expansion of Tiger

The attack starts with finding a good differential characteristic for the message

expansion of Tiger. This part generally works with probability one. The second

part of the algorithm makes use of the message modification technique for Tiger

hash function. In this part, some necessary differences are introduced to the state

variables. Then, these differences are cancelled by the differences introduced by

the message expansion algorithm. Before the introduction of these two parts, some

notation and conventions will be given as they are used in all attacks mounted on

Tiger.

4.2.1 Conventions

In this and the following chapters, we follow the notation and conventions intro-

duced by Kelsey and Lucks [38]. First, throughout the attack, in order to avoid

misunderstandings we will make a difference between the additive differences and the

XOR difference. We will use the following notation for the additive and the XOR

differences.

∆+(X) = X � X∗ , additive difference mod 264

∆⊕(X) = X ⊕X∗, XOR difference

The differences between the message words are seen as the XOR difference as it is

XORed to the state variables. However, the differences in the state variables are seen

as the additive differences as the addition and the subtraction are used as the basic

operations in the compression function of Tiger.

Moreover, we will switch between the additive differences to the XOR difference

or vice verse. Generally, it works with probability 1/2, except the most significant

48

bit of the words. Namely,

If X � X∗ = 2i, then, the probability P [X ⊕X∗ = 2i] = 1/2.

The exception is i = 63,where P [X ⊕X∗ = 2i] = 1.

The attacks proposed for Tiger make an extensive use of this fact. Let I denote the

difference of 263. Then, there exist no difference between the additive differences and

the XOR difference probabilistically. Furthermore, during the attacks, the attackers

use the another simple trivial fact that the I difference propagate as difference I

through multiplication and zero difference through even function. The simple proof

of the former statement is given below.

CLAIM : For an odd constant c, c.263 ≡ 263(mod264)(that is, c.I ≡ I(mod264)).

Proof : Let us assume the contrary. That is, 264 - c.263 − 263. Say c = 2t + 1.

Then, 264 - (2t + 1).263 − 263 ⇒ 264 - 264t which is a contradiction. Therefore, the

difference I propagates as I through the multiplication by an odd constant.

Following these tricks, the collision search attacks are going to be presented in

the following sections.

4.2.2 Finding Good Differential Characteristics For The Message

Expansion of Tiger

In Tiger, the message expansion algorithm is non-linear. However, some differences

propagate linearly. Some of such differentials are used in [38, 55, 56] to attack Tiger.

In [38] Kelsey and Lucks are assumed to find the used characteristic exhaustively by

imposing all possibilities of the distribution of the I difference in the message words.

In [55, 56] Mendel et al, on the other hand, used a linearized model of the key schedule

by imposing coding theory and applying some efficient probabilistic algorithms (The

details are given in [56, 65]).

This motivates us to search for other good differentials that propagate very ef-

ficiently. What makes it good in terms of their efficiency is quite obvious in that

the hamming weight of the corresponding differences should be kept small. Also,

reducing carry effect by introducing the difference I, we got several probability one

differentials, some of them are given in Table 4.4. The table consists of the charac-

teristics where in all rounds the I difference appears. These differences are used to

cancel the differences imposed on the state variables which will be mentioned in the

49

The Propagation of Differences
Message Differences Rounds 0− 7 Rounds 8− 15 Rounds 16− 23
(0, 0, 0, 0, I, I, I, I) (0, 0, 0, 0, I, I, I, I) (0, I, 0, I, I, 0, 0, I) (0, 0, 0, I, I, I, I, 0)
(0, 0, 0, I, 0, 0, 0, I) (0, 0, 0, I, 0, 0, 0, I) (0, I, 0, 0, 0, 0, 0, I) (0, 0, 0, 0, 0, 0, 0, I)
(0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, 0, 0, 0) (0, 0, 0, I, I, I, I, I)
(0, 0, I, 0, 0, 0, I, I) (0, 0, I, 0, 0, 0, I, I) (I, 0, 0, 0, 0, 0, I, I) (0, 0, 0, 0, 0, 0, I, I)
(0, 0, I, 0, I, I, 0, 0) (0, 0, I, 0, I, I, 0, 0) (I, I, 0, I, I, 0, I, 0) (0, 0, 0, I, I, I, 0, I)
(0, 0, I, I, 0, 0, I, 0) (0, 0, I, I, 0, 0, I, 0) (I, I, 0, 0, 0, 0, I, 0) (0, 0, 0, 0, 0, 0, I, 0)
(0, 0, I, I, I, I, 0, I) (0, 0, I, I, I, I, 0, I) (I, 0, 0, I, I, 0, I, I) (0, 0, 0, I, I, I, 0, 0)
(0, I, 0, 0, 0, I, I, I) (0, I, 0, 0, 0, I, I, I) (0, 0, 0, 0, 0, I, I, 0) (0, 0, 0, 0, 0, I, I, I)
(0, I, 0, 0, I, 0, 0, 0) (0, I, 0, 0, I, 0, 0, 0) (0, I, 0, I, I, I, I, I) (0, 0, 0, I, I, 0, 0, I)
(0, I, 0, I, 0, I, I, 0) (0, I, 0, I, 0, I, I, 0) (0, I, 0, 0, 0, I, I, I) (0, 0, 0, 0, 0, I, I, 0)
(0, I, 0, I, I, 0, 0, I) (0, I, 0, I, I, 0, 0, I) (0, 0, 0, I, I, I, I, 0) (0, 0, 0, I, I, 0, 0, 0)
(0, I, I, 0, 0, I, 0, 0) (0, I, I, 0, 0, I, 0, 0) (I, 0, 0, 0, 0, I, 0, I) (0, 0, 0, 0, 0, I, 0, 0)
(0, I, I, 0, I, 0, I, I) (0, I, I, 0, I, 0, I, I) (I, I, 0, I, I, I, 0, 0) (0, 0, 0, I, I, 0, I, 0)
(0, I, I, I, 0, I, 0, I) (0, I, I, I, 0, I, 0, I) (I, I, 0, 0, 0, I, 0, 0) (0, 0, 0, 0, 0, I, 0, I)
(0, I, I, I, I, 0, I, 0) (0, I, I, I, I, 0, I, 0) (I, 0, 0, I, I, I, 0, I) (0, 0, 0, I, I, 0, I, I)

Table 4.4: The Propagation of Some Differences with probability 1

following sections in detail.

4.2.3 Message Modification by Meeting in the Middle

In the first attack [38], to find collision in reduced round Tiger, Kelsey and Lucks

proposed a new type of message modification technique modified for Tiger by meeting

in the middle. The key primitive of this technique is the use of the degree of freedom

in the choice of message words to impose conditions on the state variables. Thus,

one can impose some differences to state variables by message modification and then

these differences are cancelled with the differences coming from the message expansion

algorithm.

Assume we are given the state variables Ai, Bi, Ci (A∗
i , B

∗
i , C∗

i) and Xi[even] to-

gether with the message differences ∆⊕(Xi) and ∆⊕(Xi+1). Automatically we have

the modular differences ∆+(Ai),∆+(Bi) and ∆+(Ci). Then, the modular difference

∆+(Ci+2) can be forced to be any modular difference δ with probability 1/2 by using

the birthday attack. We will briefly describe the method in Figure 4.2.

As shown in the figure, the additive difference δ depends on additive differences

shown by the differences on the dashed-lines. From now on, we need to consider the

additive differences and the XOR differences at the same time because the reason

why we apply the message modification is to fix the message words Xi and Xi+1

50

A
i

B
i

C
i

∆
+

∆
+

∆
+)(

∆
+

C()
i+2

∆
+ (

i+2
Beven ())

∆
+

B())
i+1

(odd

i+2
B

B
i+1

*

*

even

odd

even

odd

X

())(

(
i
)∆

∆ (X
i+1

)

= δ

Figure 4.2: Message Modification by Meet-in-the-Middle

and they are added to the state variables by the XOR operation. For any nonzero

XOR difference ∆⊕(Bi+2[even]), we expect to have about 232 different correspond-

ing additive output differences ∆+(even(Bi+2)) and for any nonzero XOR difference

∆⊕(Bi+1[odd]) (Here, in our notation ∆⊕(Bi+1[odd]) contains ∆+(Bi)), we expect to

have about 232 different corresponding additive output differences ∆+(odd(Bi+1)).

Note that these differences should be taken as nonzero additive or XOR differences.

The meet-in-the-middle approach works as follows.

1. Store the 232 candidates of ∆+(odd(Bi+1)) in a table by guessing Xi[odd]

odd(Bi+1) = (Bi � odd(Ci[odd]⊕Xi[odd])) � mult

odd(B∗
i+1) = (B∗

i � odd(C∗
i [odd]⊕X∗

i [odd])) � mult

Note that Bi, B
∗
i , Ci, C

∗
i and ∆⊕(Xi) are known.

2. For all 232 candidates of ∆+(even(Bi+2)), calculate ∆+(even(Bi+2) by guessing

Xi+1[even]

even(Bi+2) = even(Ai � even(Ci[even]⊕Xi[even])⊕Xi+1[even]

51

even(B∗
i+2) = even(A∗

i � even(C∗
i [even]⊕X∗

i [even])⊕X∗
i+1[even]

Note that Ai, A
∗
i , Ci, C

∗
i , Xi[even] and ∆⊕(Xi+1)) are known.

3. Test whether there exist some

∆+(odd(Bi+1)) satisfying ∆+(odd(Bi+1)) = (∆+(even(Bi+2)) � δ).

This technique needs about 233 evaluations round function of Tiger that is equiv-

alent to about 228.5 evaluations of the Tiger compression function. Data complexity

of the precomputation is 232 units (each unit is 23-byte) of storage space. In the

attack scenario, we assumed that the message word Xi[even] has been fixed and the

meet-in-the-middle approach gathered 64 local message bits Xi[odd] and Xi+1[even].

Therefore, at the end of this step we completed the message word Xi and we gathered

Xi+1[even].

4.3 Collision Attack on Tiger-16

In the collision attack on Tiger-16 [38], Kelsey and Lucks first found a differential

characteristic in message expansion working with probability one. Then, by using

the message modification technique introduced in the previous chapter, they imposed

differences on state variables to cancel the differences coming from the message ex-

pansion algorithm. The reason why they attacked to reduced round Tiger-16 is quite

obvious in the sense that they used an effective differential characteristic in message

expansion algorithm which is very suitable for attacking 16 rounds as canceling after

round 10 leads to a collision at the end of the round 16. The attack can be broken

into three pieces [38]:

1. Use the differential characteristic (I, I, I, I, 0, 0, 0, 0) −→ (I, I, 0, 0, 0, 0, 0, 0) in

the message expansion algorithm (Note that the path does not consider the last

8 rounds).

2. Make use of the differential characteristic (I, I, 0) −→ (0, 0, 0) in rounds 7−10 of

the round function. (Since the message words in rounds 10−15 are unchanged,

this leads to a collision after 16 rounds.)

3. Use message modification to force the difference in the round function after

round 6 to (I, I, 0).

52

In order to have a collision in the compression function of Tiger after 16 rounds,

it is required that there is a collision after round 9. Hence, the following differences

are needed in the state variables for round 7 of Tiger.

∆⊕(A7) = I, ∆⊕(B7) = I, ∆⊕(C7) = 0

The most important part of the attack is to construct the desired difference in

the state variables for round 7. Kelsey and Lucks use the message modification tech-

nique described in previous section. The following subsections contain the necessary

modifications to construct the desired difference.

i ∆Ai ∆Bi ∆Ci ∆Xi

0 0 0 0 I
1 * * * I
2 * * * I
3 * * * I
4 * * K⊕ I
5 0 K+ L⊕ 0
6 0 L+ I 0
7 I I 0 0
8 I 0 I I
9 0 0 I I
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0

Table 4.5: The Characteristic for Collision Attack on Tiger-16

4.3.1 Precomputation

The precomputation step is used for all attacks performed on Tiger. We will use the

notation given in [56]. The reason why we applied precomputation step is that we

have to find a set L of possible modular differences L+ which are consistent to a low

weight XOR-difference L⊕. It is said that a modular difference L+ is consistent to

L⊕ if there exist X and X such that X∗ ⊕X = L⊕ and X∗ � X = L+. An example

of a consistency between XOR and modular differences are given in table 4.6.

Let CL⊕ be the set of modular differences L+ which are consistent to the XOR-

difference L⊕. Then the set L of modular differences for the collision attack is defined

53

xi ∆⊕ = 0100 xi ⊕ 0100 = x∗i xi � x∗i = L+

0000 0100 0100 1100
0001 0100 0101 1100
0010 0100 0110 1100
0011 0100 0111 1100
0100 0100 0000 0100
0101 0100 0001 0100
0110 0100 0010 0100
0111 0100 0011 0100
1000 0100 1100 1100
1001 0100 1101 1100
1010 0100 1110 1100
1011 0100 1111 1100
1100 0100 1000 0100
1101 0100 1001 0100
1110 0100 1010 0100
1111 0100 1011 0100

hw = 1 |L+| = 2

Table 4.6: An Example of Consistency Between XOR and Modular Difference

as:

L = {L+ ∈ CL⊕ : L+ = I � odd(B7 ⊕ I) � odd(B7)}

The cardinality of the set CL⊕ is directly related to the Hamming weight of L⊕,

namely |CL⊕ | ≤ 2HW (L⊕) (An n-bit XOR difference has either 2n or 2n−1 additive

differences consistent with it, depending on the bit position flipped). Obviously, the

differences with low Hamming weight are used for L⊕. Kelsey and Lucks claimed

that there exists L⊕ of Hamming weight 8 and this value can be used in their attack.

However, Mendel and Rijmen [56] claimed that in their modified collision attack on

Tiger-16 that the Hamming Weight of 10 can be found for L⊕. However, what is

important about the attack is the number of elements in L.

Similarly, a set K of possible modular differences K+ which are consistent to the

XOR-difference K⊕ can be constructed:

K = {K+ ∈ CK⊕ : K+ = odd(B6 ⊕ L⊕) � odd(B6)}.

Here, we applied the attack with the exact values of L⊕ and K⊕. The XOR

differences L⊕ and K⊕ of Hamming Weight 12 and 8 are used respectively. Obviously,

54

it is impossible to search for all differences of the prescribed Hamming weight because

of the time complexity. Instead, we start searching for the differences satisfying the

below relation,

L = {L+ ∈ CL⊕ : L+ = I � odd(B7 ⊕ I) � odd(B7)}

All 232 possibilities of the state variable B7 were tried and the corresponding dif-

ferences were gathered. Here, we could not find the modular differences consistent

with an XOR difference of Hamming Weight 8, 9 and 10. Therefore, we extended the

search for higher Hamming Weights of 11 and 12. Four XOR differences of Hamming

weight 11 and 61 XOR differences of Hamming weight 12 are found (44 out of 65

XOR differences are different in their odd bytes) suitable for the conditions. Then

we considered the second set K for all possible (44) L⊕ differences:

K = {K+ ∈ CK⊕ : K+ = odd(B6 ⊕ L⊕) � odd(B6)}

Again the search commenced from the differences of low Hamming weight and the

difference K⊕ of weight 8 could not be found for 17 of the L⊕ differences. For the

remaining 48 L⊕ values, we searched for the highest cardinality of |L| and |K| at the

same time. The following differences are used for K⊕ and L⊕.

L⊕ = 82201180A4020104x

K⊕ = 9002400040200804x

Here, it is important that the most significant bits of L⊕ and K⊕ are nonzero. We

make an extensive use of this fact since |CL⊕ | = 211 instead of 212 and |CK⊕ | = 27

instead of 28. According to the XOR differences given above we found |L| = 2002

and |K| = 4.

The precomputation step of the attack is performed only once. It has a complexity

of about 2.232 round computations of Tiger (232 round computation for each L and

K). This is approximately about 228.5 evaluations of the compression function of

Tiger.

4.3.2 The Attack

Starting from the round 1, as described before, the attack basically consists of impos-

ing differences in state variables until the round 7 by message modification technique

55

2

7

2

7

2

7

2

7(A , B , C , X)

C O L L I S I O N

M
1

M
es

sa
g
e

M
o
d
if

ic
a
ti

o
n
 o

f

K
el

se
y

&
 L

u
ck

s

1

7

1

7

1

0

1

0

1

0

1

0

1

15

(A , B , C , X)

15

7

∆ = (0, 0, 0, 0)

∆ = (Ι, Ι, 0, 0)

15(A , B , C , X)
22

1515

22

1515

1
(A , B , C , X)

1

15

1

2

M
2

0 0

2

0(A , B , C , X)
2

0

2

(A , B , C , X)
1 1

7

Figure 4.3: Collision Attack on Tiger-16

given above, and canceling these differences at the end of round 9. Below, we describe

the collision attack on reduced round Tiger-16 step by step.

1. Precomputation: Perform the precomputation step described in the previous

subsection. Use L⊕ = 82201180A4020104x and K⊕ = 9002400040200804x.

The differences L = {L+ ∈ CL⊕ : L+ = I � odd(B7 ⊕ I) � odd(B7)} and

K = {K+ ∈ CK⊕ : K+ = odd(B6 ⊕ L⊕) � odd(B6)} are gathered at the end

of this step (Also, we have values of B6 and B7 satisfying the above criteria).

Here |L| = 2002 and |K| = 4.

Complexity : The precomputation step of the attack has a complexity of

about 228.5 evaluations of the compression function of Tiger.

2. Choose random values for X0, X1 and X2[even] to compute A1, B1, C1, A2,

B2, C2 and C3.

Complexity : This step of the attack has a negligible time complexity.

3. Apply a message modification step to construct the XOR-difference K⊕ in

round 4. This step needs to be done for all values of K+ (27 times) as mes-

sage modification works with the modular differences. This step determines the

56

message words X2[odd] and X3[even]. Now, we have the values of A3, B3, C3

and C4 (as well as A∗
3, B

∗
3 , C∗

3 and C∗
4).

Complexity : This step of the attack has a complexity of about 228.5 +

(27.228.5).2 ≈ 236.5 evaluations of the compression function of Tiger.

4. Apply a message modification step to construct the XOR-difference L⊕ in round

5. This step needs to be done for all values of L+(211 times) and determines the

message words X3[odd] and X4[even]. Now, we have the values of A4, B4, C4

and C5 (as well as A∗
4, B

∗
4 , C∗

4 and C∗
5).

Complexity : This step of the attack has a complexity of about 236.5 +

(211.228.5).2 ≈ 240.5 evaluations of the compression function of Tiger.

5. Apply a message modification step to construct the XOR-difference I in round

6. This step of the attack determines the message words X4[odd] and X5[even].

It is again repeated 27 times as we use the modular differences in message mod-

ification. Now, we have the values of A5, B5, C5 and C6 (as well as A∗
5, B

∗
5 , C∗

5

and C∗
6).

Complexity : This step of the attack has a complexity of about 240.5 +

(228.5.27).2 ≈ 241 evaluations of the compression function of Tiger.

6. In order to guarantee that ∆+(B5) can be canceled by ∆+(odd(B6)), we need

that ∆+(B5) ∈ K. Since we found that |K| = 4, this has a probability of

2−5 = (4/128). In order to guarantee that the difference in B6 is canceled, we

need that ∆+(B6) ∈ L. Since we found that |L| = 2002, this has a probability

of 20.03.

Complexity : In order to make the desired cancellations in ∆+(B5) the pre-

vious computations should be repeated 25 times. This step of the attack has

a complexity of 241.25 = 246 evaluations of the compression function of Tiger.

Similarly, so as to cancel ∆+(B6) the previous computations should be repeated

20.03 times. This step of the attack has a negligible time complexity.

7. Since we know the values of the differences in L and K, we know the values

of B6 and B7 immediately according to the results of the precomputation step.

Therefore, we can determine X5[odd] and X6[odd]. This adds no additional cost

to the attack complexity.

8. Choose X6[even] and X7 randomly (obeying to the path) and form the other

message words accordingly by using message expansion algorithm. At the end

57

of this step we are able to compute the message words M1 = (X1
0 , ..., X1

7) and

M2 = (X2
0 , ..., X2

7).

Hence, a collision can be constructed in Tiger reduced to 16 rounds with a com-

plexity 246 evaluations of the Tiger compression function. Actually, the attack of

Kelsey and Lucks has a better complexity, namely 244 evaluations of Tiger compres-

sion function. They used different techniques for the attack [38]. However, in this

slightly modified attack, we present exact values of L⊕ and K⊕.

4.4 Pseudo-Near-Collision Attack on Tiger

In this section, we summarize the pseudo-near-collision attack performed by Mendel

and Rijmen in [56] to full Tiger. This is the first attack mounted on full Tiger-hash

function. In the attack, difference in the final hash value is the same as in the initial

value. Although there is a pseudo-collision after 24 rounds, due to the feed forward

the collision after 24 rounds is destroyed. It results in a 1-bit pseudo-near-collision

for the Tiger hash function.

Mendel and Rijmen used the characteristic given below, for the message expansion

of Tiger. Instead of the characteristic used by Kelsey and Lucks, this holds with a

probability of 2−1.

(0, I, 0, 0, 0, I, I ′, 0) −→ (0, I, 0, I, 0, 0, 0, 0) −→ (0, I, 0, 0, 0, 0, 0, 0)

Here, as above, I denotes a difference in the most significant bit of the message word

and I ′ := I >> 23.

We need to have the following differences in state variables so as to have a pseudo-

near-collision in Tiger-hash function.

∆⊕A15 = 0,∆⊕B15 = I, ∆⊕C15 = 0

As in the collision attack on Tiger-16, the vital part of the attack is to construct the

above differences in state variables.

58

i ∆Ai ∆Bi ∆Ci ∆Xi

0 I 0 0 0
1 0 0 I I
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 I
6 * I 0 I ′

7 * I ′ * 0
8 * * * 0
9 * * * I
10 * * * 0
11 * * * I
12 * * K⊕ 0
13 0 K+ L⊕ 0
14 0 L+ I 0
15 0 I 0 0
16 I 0 0 0
17 0 0 I I
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0
24 I 0 0

Table 4.7: The Characteristic for Pseudo-Near-Collision Attack on Tiger

4.4.1 The Attack

Starting from round 5, the attack consists of imposing differences in state variables

until round 15 by message modification technique given above, and canceling these

differences at the end of round 18. Below, we describe the pseudo-near-collision

attack on Tiger step by step.

1. Precomputation: Perform the precomputation step described in the previous

sections. Use L⊕ = 02201080A4020104x and K⊕ = 0880020019000900x. The

differences L = {L+ ∈ CL⊕ : L+ = odd(B15 ⊕ I) � odd(B15)} and K = {K+ ∈
CK⊕ : K+ = odd(B14 ⊕ L⊕) � odd(B14)} are gathered at the end of this step.

Here |L| = 502 and |K| = 2.

Complexity : The precomputation step of the attack has a complexity of

59

about 228.5 evaluations of the compression function of Tiger.

2. Choose random values for B5 and B6 and compute A6 = (B5�odd(B6))�mult.

Here, we have ∆+A5 = 0,∆+B5 = 0,∆+C5 = 0 and ∆+X5 = I, we get

∆+B6 = I and ∆+(A6) = A6 �A6. Note that there is no difference in C6, since

there are no differences in A5 and B6[even].

3. Choose a random value for B7. Since there is a difference in ∆⊕(X6) = I ′ and no

difference in C6, we also know the modular difference of ∆+(B7) = (B7⊕I ′)�B7.

If we have B7 and B∗
7 , by choosing random values for X7, X8, X9 and X10[even],

we can calculate B10, C10, C11 (and B∗
10, C

∗
10, C

∗
11).

Complexity : This step of the attack has a negligible time complexity.

4. Apply a message modification step to construct the XOR-difference K⊕ in

round 12. This step needs to be done for all values of K⊕(28 times) and deter-

mines the message words X10[odd] and X11[even]. Now, we have the values of

A11, B11, C11 and C12 (as well as A∗
11, B

∗
11, C

∗
11 and C∗

12).

Complexity : This step of the attack has a complexity of about 228.5 +

(28.228.5).2 ≈ 237.5 evaluations of the compression function of Tiger.

5. Apply a message modification step to construct the XOR-difference L⊕ in round

13. This step needs to be done for all values of L⊕(210 times) and deter-

mines the message words X11[odd] and X12[even]. Now, we have the values of

A12, B12, C12 and C13 (as well as A∗
12, B

∗
12, C

∗
12 and C∗

13).

Complexity : This step of the attack has a complexity of about (237.5 +

210.228.5).2 ≈ 239.5 evaluations of the compression function of Tiger.

6. Apply a message modification step to construct the XOR-difference I in round

14. This step of the attack determines the message words X12[odd] and X13[even].

Now, we have the values of A13, B13, C13 and C14 (as well as A∗
13, B

∗
13, C

∗
14 and

C∗
14).

Complexity : This step of the attack has a complexity of about (239.5 +

228.5.28).2 ≈ 240 evaluations of the compression function of Tiger.

7. In order to guarantee that ∆+(B12) can be canceled by ∆+(odd(B13)), we

need that ∆+(B12) ∈ K. Since we assume that the Hamming Weight of K⊕is

8, this has a probability of 2−7. In order to guarantee that the difference

in B13 is canceled, we need that ∆+(B13) ∈ L. Since L⊕ has a Hamming

Weight of 10, this has a probability of 2−7. This determines the message words

60

15(A , B , C , X)
22

1515

22

15

M
1

11

5

1

0

1

0

1

0

1

0(A , B , C , X)

2

M
2

0 0

2

0(A , B , C , X)
2

0

2

M
es

sa
g
e

M
o
d
if

ic
a
ti

o
n
 o

f

M
en

d
el

 &
 R

ij
m

en

5 5 5

2 2 2 2
(A , B , C , X)5 5 55

∆ = (0, Ι, 0, 0)

∆ = (0, 0, 0, 0)

∆ = (Ι, 0, 0, 0)

∆ = (Ι, 0, 0, 0)1

24

111
(A , B , C , X)

2222
(A , B , C , X)24 24 24 24 24(A , B , C , X)2424

P S E U D O − N E A R C O L L I S I O N

(A , B , C , X)
11

1

15 15 15(A , B , C , X)
1

15

1 1

Figure 4.4: Pseudo-Near-Collision Attack on Tiger

61

X12[odd], X13[even], X13[odd] and X14[odd]

Complexity : This step of the attack works with the previous step and in

order to guarantee the necessary cancellations it needs to be repeated 28 times.

This step has a complexity of about 248 evaluations of the compression function

of Tiger.

8. Now we have the message words X7, ..., X13 and X14[odd]. To compute the

message words X0, ..., X7 we use the inverse key schedule of Tiger. Choose a

random value for X14[even] and compute X15 as follows:

X15 = (X7 ⊕ (X14 � X13) � (X14 ⊕ 0123456789ABCDEF))

Since this step of the attack works with probability 2−1, it should be repeated

twice for different values of X14[even]. This adds negligible cost to the attack

complexity.

9. Compute the IV by running the first 8 rounds backwards using X0, ..., X7.

4.5 Conclusion

In this chapter, the collision search attacks on Tiger were presented. Firstly, the

collision attack on Tiger-16 and then the pseudo-near-collision attack on Tiger were

mentioned. The attack of Kelsey and Lucks was slightly modified with the exact

values of L⊕ and K⊕ and the attack of Mendel and Rijmen was repeated. In the

following chapter, we will introduce our related-key boomerang, amplified boomerang

and rectangle distinguishers to the encryption mode of Tiger.

62

Chapter 5

Cryptanalysis of the

Encryption Mode of Tiger

So far, we have investigated the application of the differential cryptanalysis to the

several cryptographic primitives, namely block ciphers and hash functions. This

chapter is devoted to the application of differential cryptanalysis to the encryption

mode of Tiger-hash function. We treat Tiger as a block cipher and mount a related-

key boomerang and related-key rectangle attacks to the reduced (17, 19, 21 rounds

out of 24) Tiger.

There have been several cryptanalysis papers investigating the randomness prop-

erties of the designed hash functions under the encryption modes by such as the

paper of Kim et al [42]. In that paper, related-key boomerang and related-key rect-

angle attacks are performed on the encryption modes of MD4,MD5 and HAVAL under

2, 4 related-keys or some weak keys. Moreover, there have been very important at-

tacks [44, 52, 46] on SHACAL as well which is based on the hash function SHA. Now,

we investigate the security notion of reduced round Tiger in the encryption mode

against the very well known and the efficient block cipher attacks, namely related-key

boomerang and the related-key rectangle attacks. Moreover, we present related-key

boomerang and rectangle distinguishers of 17, 19 and 21 rounds.

The rest of the chapter is structured as follows. In Section 5.1, we will investigate

the security of Tiger in the encryption mode and in Section 5.2 we conclude the

chapter.

63

Key Difference Rounds 0− 7 Rounds 8− 15 Rounds 16− 23
(I, I, I, I, 0, 0, 0, 0) (I, I, I, I, 0, 0, 0, 0) (I, I, 0, 0, 0, 0, 0, 0) (., ., ., ., ., ., ., .)
(0, I, 0, 0, 0, I, I ′, 0) (0, I, 0, 0, 0, I, I ′, 0) (0, I, 0, I, 0, 0, 0, 0) (0, I, 0, 0, 0, 0, 0, 0)*
(0, I, 0, 0, 0, I, I, I) (0, I, 0, 0, 0, I, I, I) (0, 0, 0, 0, 0, I, I, 0) (0, 0, 0, 0, 0, I, I, I)
(0, 0, 0, I, 0, 0, 0, I) (0, 0, 0, I, 0, 0, 0, I) (0, I, 0, 0, 0, 0, 0, I) (0, 0, 0, 0, 0, 0, 0, I)
(I, I, 0, 0, 0, I, 0, 0) (I, I, 0, 0, 0, I, 0, 0) (0, 0, 0, 0, 0, I, 0, I) (., ., ., ., ., ., ., .)
(0, 0, 0, I, 0, 0, 0, I) (0, 0, 0, I, 0, 0, 0, I) (0, I, 0, 0, 0, 0, 0, I) (0, 0, 0, 0, 0, 0, 0, I)

Table 5.1: The Propagation of Some Key Differences with probability 1 and 1/2*

5.1 The Related-Key Boomerang and Rectangle Attacks

to Tiger

In this section, we introduce our related-key boomerang and rectangle distinguishers

to reduced round Tiger. Two of the distinguishers work with probability one and one

of them works with 2−1 and they can be easily adapted to the key recovery attacks.

The block cipher mode of Tiger is straightforward. The chaining operations of

the intermediate values are omitted and Tiger is treated as a block cipher encrypting

192-bit plaintext into 192-bit ciphertext using 512-bit secret key. There is no need to

invert the odd and the even functions since their inverses do not affect the decryption

mode. In the decryption mode, we just use the inverses of the binary operations that

can be defined very easily except for the division mod 264. However, as we divide any

number mod 264 by an odd constant, this division operation is also well defined. Thus,

besides the encryption function, the decryption function is well defined. Moreover,

from now on in this section, the message expansion is called the key schedule of

Tiger.

In Tiger, the key scheduling is non-linear. However, some differences propagate

linearly. We introduced some of the differentials in previous chapter. Six of them

is given in Table 5.1 and used in 17, 19 and 21-round related-key rectangle and

boomerang distinguishers. In order to succeed, we need to combine some of these

differentials very effectively. Observing the propagation of these differentials, we

should make an extensive use of cancellations and probability one differentials as in

the collision attacks on Tiger. Moreover, low weight differentials and the number

of rounds attacked are also very important. In the scope of this simple tricks, the

following sections contain our attacks on the encryption mode of Tiger.

64

5.1.1 17-Round Distinguisher

Following the notation introduced in Chapter 3, we treat Tiger as a cascade of two

sub-ciphers, E0 and E1. The rounds between 7− 15 are taken as E0 and the rounds

between 15− 23 are treated as E1.

The Differential for E0 (rounds 7− 15)

In Tiger, we can find a probability 1 related-key differential for E0. For E0, the

related-key differential (I, I, 0) → (0, 0, 0) works with probability 1 for rounds 7− 15

under the key difference (I, I, I, I, 0, 0, 0, 0) shown in Table 5.1. In round 7, by

imposing difference α = (∆A7,∆B7,∆C7) = (I, I, 0), we cancel the subkey difference

∆X8 = I with ∆C8 = I making (∆A9,∆B9,∆C9) = (0, 0, I). In round 9, as in the

previous round, we cancel the subkey difference ∆X9 = I with ∆C9 = I. Finally

in round 10, we have (∆A10,∆B10∆C10) = (0, 0, 0). From round 10 until round 15,

we use the trivial differential which makes β = (0, 0, 0). Notice that, we make an

extensive use of the trivial propagation of the I difference through the words Bi and

even function.

Up to know, everything works with probability 1 and the differential probability

p and p̂ for the subcipher E0 is 1. This is valid for both of the related-key rectangle

and the related-key boomerang attacks.

The Differential for E1 (rounds 15− 23)

For the second part of our distinguisher E1, the related-key differential (0, I, 0) →
(0, 0, 0) works with probability 1 for rounds 15− 23 under the key difference (0, I, 0,

0, 0, I, I ′, 0). Here, according to the notation given in Chapter 3, γ = (0, I, 0). Again

we will use the trivial propagation of the difference I through the words Bi. The differ-

ence γ in round 15 propagates to the round 17 as (∆A17,∆B17,∆C17) = (0, 0, I) with

probability 1 and cancels the subkey difference ∆X17 = I. From the end of the round

17 till round 23, again we use the trivial differential making (∆A23,∆B23,∆C23) =

(0, 0, 0). As in E0, everything works with probability 1 and the differential probability

q and q̂ for the subcipher E1 is 1. This is valid for both of the related-key rectangle

and the related-key boomerang attacks. However, the key scheduling characteristic

works with probability 2−1 and the attack should be repeated 2 times for different

key values.

65

Round ∆A ∆B ∆C ∆K Probability

α I I 0 K12

7 I I 0 0 1
8 I 0 I I 1
9 0 0 I I 1
10 0 0 0 0 1
11 0 0 0 0 1
12 0 0 0 0 1
13 0 0 0 0 1
14 0 0 0 0 1
15 0 0 0 0 1
β 0 0 0
γ 0 I 0 K13

15 0 I 0 0 1
16 I 0 0 0 1
17 0 0 I I 1
18 0 0 0 0 1
19 0 0 0 0 1
20 0 0 0 0 1
21 0 0 0 0 1
22 0 0 0 0 1
23 0 0 0 0 1
δ 0 0 0

REC Pr[REC] = 1
BOO Pr[BOO] = 1

Table 5.2: The characteristic for 17-Round Distinguisher

66

1

23

1

23

1

23

1

23(A , B , C , X)
3

23

3

23

3

23

3

23(A , B , C , X)

2

23

2

23

2

23

2

23(A , B , C , X)

M
1

E 0

1E

2

7

2

7

2

7

2

7

2

15

2

15

2

15

2

15

1

7

1

7

1

7

1

7

1

15

1

15

1

15

1

15

3

15

3

15

3

15

3

15

4

23

4

23

4

23

4

23(A , B , C , X)

4

15

4

15

4

15

4

15

M
42

M

α =
 ∆

 =
 (Ι

, Ι
, 0

, 0
)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X) (A , B , C , X)

(A , B , C , X)

γ = ∆ = (0, Ι, 0, 0)

γ = ∆ = (0, Ι, 0, 0)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

δ = ∆ = (0, 0, 0, 0)

δ = ∆ = (0, 0, 0, 0)

α =
 ∆

 =
 (Ι

, Ι
, 0

, 0
)

M
3

Figure 5.1: 17-Round Related-Key Boomerang Distinguisher for Tiger

5.1.2 19-Round Distinguisher

The Differential for E0 (rounds 5− 13)

As in the 17-round distinguisher, we can find a probability 1 related-key differential

for E0. Here the subcipher E0 consists of the rounds between 5 and 13. For E0,

the related-key differential (I, I, I) → (0, 0, 0) works with probability 1 under the key

difference (0, I, 0, 0, 0, I, I, I) shown in Table 5.1. In round 5, by imposing difference

α = (∆A5,∆B5,∆C5) = (I, I, I), we cancel the subkey difference ∆X5 = I with

∆C5 = I making (∆A6,∆B6,∆C6) = (I, 0, I). In round 6, as in the previous round,

we cancel the subkey difference ∆X6 = I with ∆C6 = I. Finally in round 7, we

67

have (∆A7,∆B7,∆C7) = (0, 0, I). Again, the subkey difference ∆X7 = I and the

word C7 difference ∆C7 = I cancel each other. From round 7 until round 13, we

use the trivial differential which makes β = (0, 0, 0). Notice that, we again make an

extensive use of the trivial propagation of the I difference through the words Bi and

even function as it does not affect the even bytes of the corresponding words.

M
1

2

M M
4

E 0

1E

2

5

2

5

2

5

2

5

2

13

2

13

2

13

2

13

1

5

1

5

1

5

1

5

1

13

1

13

1

13

1

13

3

13

3

13

3

13

3

13

4

13

4

13

4

13

4

13

3

22

3

22

3

22

3

22

2

22

2

22

2

22

2

22

4

22

4

22

4

22

4

22

1

22

1

22

1

22

1

22(A , B , C , X)

α =
 ∆

 =
 (Ι

, Ι
, Ι

, Ι
)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

γ = ∆ = (0, Ι, 0, 0)

γ = ∆ = (0, Ι, 0, 0)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

δ = ∆ = (0, 0, 0, 0)

δ = ∆ = (0, 0, 0, 0)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X) (A , B , C , X)

α =
 ∆

 =
 (Ι

, Ι
, Ι

, Ι
)

M
3

Figure 5.2: 19-Round Related-Key Boomerang Distinguisher for Tiger

Up to know, everything works with probability 1 and the differential probability

p and p̂ for the subcipher E0 is 1. This is valid for both of the related-key rectangle

and the related-key boomerang attacks.

The Differential for E1 (rounds 13− 22)

For the second part of our distinguisher E1, the related-key differential (0, I, 0) →
(0, 0, 0) works with probability 1 for rounds 13− 22 under the key difference (0, 0, 0

, I, 0, 0, 0, I). Here, according to the notation given in chapter 3, γ = (0, I, 0). The

difference γ in round 13 propagates to the round 15 as (∆A15,∆B15,∆C15) =

68

Round ∆A ∆B ∆C ∆K Probability

α I I I K12

5 I I I I 1
6 I 0 I I 1
7 0 0 I I 1
8 0 0 0 0 1
9 0 0 0 0 1
10 0 0 0 0 1
11 0 0 0 0 1
12 0 0 0 0 1
13 0 0 0 0 1
β 0 0 0
γ 0 I 0 K13

13 0 I 0 0 1
14 I 0 0 0 1
15 0 0 I I 1
16 0 0 0 0 1
17 0 0 0 0 1
18 0 0 0 0 1
19 0 0 0 0 1
20 0 0 0 0 1
21 0 0 0 0 1
22 0 0 0 0 1
δ 0 0 0

REC Pr[REC] = 1
BOO Pr[BOO] = 1

Table 5.3: The characteristic for 19-Round Distinguisher

69

(0, 0, I) with probability 1 and cancels the subkey difference ∆X15 = I. From

the end of the round 15 till round 22, again we use the trivial differential mak-

ing (∆A22,∆B22,∆C22) = (0, 0, 0). As in E0, everything works with probability 1

and the differential probability q and q̂ for the subcipher E1 is 1.

The Round After the Distinguisher

There is also a possibility to add a round after the distinguisher given above. However,

this addition is applicable just for the rectangle distinguisher. We have (∆A22,∆B22,

∆C22) = (0, 0, 0) and the subkey difference ∆X22 in the last round is I. There-

fore, the propagation of this difference through the last round leads to the difference

(∆A23,∆B23,∆C23)=(δ′, I, 0) where A23 � A∗
23 = Odd(B23) � Odd(B∗

23). Therefore,

the distinguisher works between the rounds 5− 23.

5.1.3 21-Round Distinguisher

The Differential for E0 (rounds 3− 13)

Another differential for Tiger can be used to extend the distinguisher to 21 rounds.

This time the other differential in Table 5.1 is used. In round 3, by imposing difference

α = (∆A3,∆B3,∆C3) = (0, I, 0), we cancel the subkey difference ∆X5 = I with

∆C5 = I making (∆A6,∆B6,∆C6) = (0, 0, 0). From round 6 until round 13, we use

the trivial differential which makes β = (0, 0, 0).

Again, all differential works with probability one and we make an extensive use

of the propagation of I difference through round operations.

The Differential for E1 (rounds 13− 22)

For the second part of our distinguisher E1, the related-key differential (0, I, 0) →
(0, 0, 0) works with probability 1 for rounds 13−22 under the key difference (0, 0, 0, I, 0,

0, 0, I). Here, γ = (0, I, 0). Again we will use the trivial propagation of the difference

I through the words Bi. The difference γ in round 13 propagates to the round 15 as

(∆A15,∆B15,∆C15) = (0, 0, I) with probability 1 and cancels the subkey difference

∆X15 = I. From the end of the round 15 till round 22, again we use the trivial

differential making (∆A22,∆B22,∆C22) = (0, 0, 0). As in E0, everything works with

probability 1 and the differential probability q and q̂ for the subcipher E1 is 1. This is

70

Round ∆A ∆B ∆C ∆K Probability

α 0 I 0 K12

3 0 I 0 0 1
4 I 0 0 0 1
5 0 0 I I 1
6 0 0 0 0 1
7 0 0 0 0 1
8 0 0 0 0 1
9 0 0 0 0 1
10 0 0 0 0 1
11 0 0 0 0 1
12 0 0 0 0 1
13 0 0 0 0 1
β 0 0 0
γ 0 I 0 K13

13 0 I 0 0 1
14 I 0 0 0 1
15 0 0 I I 1
16 0 0 0 0 1
17 0 0 0 0 1
18 0 0 0 0 1
19 0 0 0 0 1
20 0 0 0 0 1
21 0 0 0 0 1
22 0 0 0 0 1
δ 0 0 0

REC Pr[REC] = 1
BOO Pr[BOO] = 1

Table 5.4: The characteristic for 21-Round Distinguisher

71

valid for both of the related-key rectangle and the related-key boomerang attacks. As

in the previous distinguisher, we can extend the above related-key rectangle distin-

guisher by adding one round after the distinguisher. Thus, the attack works between

the rounds 3− 23.

M
1

2

M M
4

E 0

1E

2

3

2

3

2

3

2

3

2

13

2

13

2

13

2

13

1

3

1

3

1

3

1

3

1

13

1

13

1

13

1

13

3

13

3

13

3

13

3

13

4

13

4

13

4

13

4

13

3

22

3

22

3

22

3

22

2

22

2

22

2

22

2

22

4

22

4

22

4

22

4

22

1

22

1

22

1

22

1

22(A , B , C , X)

α =
 ∆

 =
 (0

, Ι
, 0

, 0
)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

M
3

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

γ = ∆ = (0, Ι, 0, 0)

γ = ∆ = (0, Ι, 0, 0)

β =
 ∆

 =
 (0

, 0
, 0

, 0
)

δ = ∆ = (0, 0, 0, 0)

δ = ∆ = (0, 0, 0, 0)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X)

(A , B , C , X) (A , B , C , X)

α =
 ∆

 =
 (0

, Ι
, 0

, 0
)

Figure 5.3: 21-Round Related-Key Boomerang Distinguisher for Tiger

5.1.4 The Attack

In this subsection, we present our attacks for the last distinguisher as it is similar

for the othres. A 20-round related-key boomerang and a 21-round related-key rect-

angle distinguishing attacks are detailed. For the boomerang distinguisher, we do

not use the round after the distinguisher added to the usual related-key boomerang

distinguisher that totally covers 21 rounds (17 and 19-round versions are similar).

The related key boomerang attack to the reduced round Tiger can be summerized

as follows:

72

• Take a randomly chosen plaintext P1 = (A3, B3, C3) and form

P2 = (A∗
3, B

∗
3 , C∗

3) as P1 �P2 = (0, I, 0). As the value of P1 is chosen randomly,

P2 can be chosen accordingly since the differences are known.

• Obtain the corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) through

E, where K2 = K1 � (I, I, 0, 0, 0, I, 0, 0).

• Take the second ciphertext pair as C3 = C1 and C4 = C2. Since the values of

C1 and C2 are known, the values of C3 and C4 can be arranged accordingly.

• Obtain the corresponding plaintexts P3 = E−1
K3

(C3) and P4 = E−1
K4

(C4) through

E−1, where K3 = K1 � (0, 0, 0, I, 0, 0, 0, I),

K4 = K3 � (I, I, 0, 0, 0, I, 0, 0).

• Check P3 � P4 = P1 � P2 = (0, I, 0).

• If this is the case, identify the corresponding cipher as Tiger.

For the related-key rectangle distinguisher on the other hand, we use the round

after the distinguisher added to the related-key rectangle distinguisher that totally

covers the rounds 3 − 23. The 21-round related-key rectangle distinguisher can be

given as:

• Prepare 297 randomly chosen plaintexts (Pi, P
∗
i) with the prescribed difference

α.

• Obtain the corresponding ciphertext C1 = EK1(P1), C2 = EK2(P2), C3 =

EK3(P3) and C4 = EK4(P4) where K2 = K1 � (I, I, 0, 0, 0, I, 0, 0) and K3 =

K1 � ((0, 0, 0, I, 0, 0, 0, I).

• Check C1 � C3 = (δ
′
, I, 0) and C2 � C4 = (δ

′
, I, 0). Note that these differences

are not equal to each other. Instead, they are fully determined by the values of

C1, C2, C3 and C4.

• If this is the case identify the corresponding cipher as Tiger.

Throughout this chapter, we present several related-key boomerang and rectangle

distinguishers to the reduced encryption mode of Tiger. However, both attacks given

above can be easily generalized to key recovery attacks by guessing subkey values in

corresponding rounds. As the encryption mode uses 512-bit secret key, it permits to

guess the subkeys of at least 7 rounds. However, it is highly theoretical. The results

73

of the given related-key boomerang distinguishers are given in the appendix. For

each related-key-boomerang distinguisher, an example is provided.

74

Chapter 6

Conclusion

In this work, starting from the differential cryptanalysis we investigated the security

of the Tiger hash function. Firstly, the theory of the differential cryptanalysis to-

gether with some basic applications to FEAL-8 and DES are studied. In differential

cryptanalysis of FEAL-8 we made an extensive use of the algorithm that enables us

to calculate the differential probability of addition on XOR operation. The applica-

tion of this algorithm to FEAL-8 is obvious and can be generalized to the other block

ciphers easily.

Then, the notion was extended to the boomerang, amplified boomerang and rect-

angle attacks which are known to be some of the most powerful block cipher attacks

today. However, for the pure models(the ones using a unique key) of these attacks

many block ciphers are known to be secure. For the related-key combined attack

versions of these attacks, on the other hand, there exist many important attacks. In

this thesis, we applied related-key boomerang and rectangle attacks to the encryp-

tion mode of Tiger and we have found 17, 19 and 21-round distinguishers. These

attacks work with probability 1 and 2−1 and can be generalized immediately to the

key recovery attacks.

For the original mode of Tiger, we recapitulate the collision attacks known today.

Firstly, the collision attack of Kelsey & Lucks[38] on Tiger-16 is detailed. In this at-

tack, we made some modifications in that we found the exact values of the differences

used in their attack which were not exemplified in the original paper (There are also

assumptions on this attack in [56]). Moreover, we give the details of the pseudo-near

collision attack on Tiger [56] which is known to be the first attack on full Tiger.

Our real aim was to adopt boomerang-type attacks to find collisions for hash

functions. The analogy here is the extension of standard related-key differential

75

characteristic to the related-key boomerang characteristic so as to increase the num-

ber of rounds attacked. In this respect, we tried to combine the attacks of Kelsey

& Lucks and Mendel & Rijmen. Since the attack of Mendel & Rijmen covers full

rounds of Tiger, it is not an extension at all. However, ignoring this attack we tried

to extend the characteristic of Kelsey & Lucks. The attack can be described as:

1. Apply the message modification of Kelsey and Lucks to the first 8 parts of M1

and M2 to impose the differences α = (∆A7,∆B7,∆C7) = (I, I, 0) and gather

the message words M1 and M2. This will lead to a collision after round 15.

2. Apply the difference γ = (∆A15,∆B15,∆C15) = (0, I, 0) to the state variables

of M1 & M3 and M2 & M4 at the end of round 15. Once this is satisfied,

by boomerang conditions the message words M3 and M4 collide at the end of

round 15.

3. Construct the message words M3 and M4.

4. From 18-round boomerang distinguisher, it is known there are collisions be-

tween the state variables of M1 & M3 and M2 & M4 at the end of the last

round.

However, since the differences between the IVs of M1 & M3 and M2 & M4 are random,

this attack does not succeed. Moreover, the interaction between the 8-round passes

do not let us construct the desired message words. Therefore, we concluded that this

type of attack is not applicable directly to extend the characteristic. This attack

attempt is visualized in Figure 6.1.

76

1

15

1

15

1

15

1

15(A , B , C , X)

1

7

1

7

1

7

1

7(A , B , C , X)

1

0

1

0

1

0

1

0(A , B , C , X)

3

15

3

15

3

15

3

15(A , B , C , X)

M
es

sa
g
e

M
o
d
if

ic
a
ti

o
n
 o

f

K
el

se
y

&
 L

u
ck

s

2

15

2

15

2

15

2

15(A , B , C , X)

M
1

M
3

E 0

1E

4

7

4

7

4

7

4

7

4

15

4

15

4

15

4

15(A , B , C , X)

1

23

1

23

1

23

1

23(A , B , C , X)
3

23

3

23

3

23

3

23(A , B , C , X)

2

23

2

23

2

23

2

23(A , B , C , X)
4

23

4

23

4

23

4

23(A , B , C , X)

3	

7

3

7

3

7

3

7(A , B , C , X)

2

M M
4

∆ =
 (Ι

, Ι
, 0

, 0
)

∆ =
 (0

, 0
, 0

, 0
)

∆ =
 (0

, 0
, 0

, 0
)

∆ =
 (0

, 0
, 0

, 0
)

∆ = (0, Ι, 0, 0)

∆ = (0, Ι, 0, 0)

(A , B , C , X)

M
en

d
el

 &
 R

ij
m

en

M
es

sa
g
e

M
o
d
if

ic
a
ti

o
n
 o

f

∆ = (0, 0, 0, 0)

∆ = (0, 0, 0, 0)

∆ = ?

∆ = ?

Figure 6.1: An Attempt to Extend the Collision Attack for Tiger

77

References

[1] P.van Oorschot A.Menezes and S.Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996.

[2] Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In

Gollmann [31], pages 89–97.

[3] Rana Barua and Tanja Lange, editors. Progress in Cryptology - INDOCRYPT

2006, 7th International Conference on Cryptology in India, Kolkata, India, De-

cember 11-13, 2006, Proceedings, volume 4329 of Lecture Notes in Computer

Science. Springer, 2006.

[4] Eli Biham. New Types of Cryptoanalytic Attacks Using related Keys (Extended

Abstract). In EUROCRYPT, pages 398–409, 1993.

[5] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. J. Cryp-

tology, 7(4):229–246, 1994.

[6] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In CRYPTO, pages 290–

305, 2004.

[7] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet,

and William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Cramer [23],

pages 36–57.

[8] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-

angling the Serpent. In Pfitzmann [64], pages 340–357.

[9] Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang

and Rectangle Attacks. In Daemen and Rijmen [24], pages 1–16.

[10] Eli Biham, Orr Dunkelman, and Nathan Keller. Rectangle Attacks on 49-Round

SHACAL-1. In Johansson [34], pages 22–35.

78

[11] Eli Biham, Orr Dunkelman, and Nathan Keller. New Combined Attacks on

Block Ciphers. In Gilbert and Handschuh [30], pages 126–144.

[12] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and

Rectangle Attacks. In Cramer [23], pages 507–525.

[13] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-

tems. In Menezes and Vanstone [57], pages 2–21.

[14] Eli Biham and Adi Shamir. Differential Cryptoanalysis of FEAL and N-Hash.

In EUROCRYPT, pages 1–16, 1991.

[15] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-Round

DES. In Brickell [19], pages 487–496.

[16] Alex Biryukov. Methods for Cryptanalysis. PhD thesis, Applied Mathematics

Department, Technion, 1999.

[17] Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop,

FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Pa-

pers, volume 4593 of Lecture Notes in Computer Science. Springer, 2007.

[18] John Black, Martin Cochran, and Trevor Highland. A Study of the MD5 Attacks:

Insights and Improvements. In Robshaw [71], pages 262–277.

[19] Ernest F. Brickell, editor. Advances in Cryptology - CRYPTO ’92, 12th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science.

Springer, 1993.

[20] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Character-

istics: General Results and Applications. In ASIACRYPT, pages 1–20, 2006.

[21] Anne Canteaut and Kapalee Viswanathan, editors. Progress in Cryptology - IN-

DOCRYPT 2004, 5th International Conference on Cryptology in India, Chen-

nai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in

Computer Science. Springer, 2004.

[22] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In

Krawczyk [49], pages 56–71.

79

[23] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of

Lecture Notes in Computer Science. Springer, 2005.

[24] Joan Daemen and Vincent Rijmen, editors. Fast Software Encryption, 9th Inter-

national Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised

Papers, volume 2365 of Lecture Notes in Computer Science. Springer, 2002.

[25] I.B. Damgaard. A Design Principle for Hash Functions. pages 416-427, Springer

Verlag, 1990.

[26] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,

Ruhr-Universitat Bochum, 2005.

[27] Yvo Desmedt, editor. Advances in Cryptology - CRYPTO ’94, 14th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer Science.

Springer, 1994.

[28] Orr Dunkelman. Techniques for Cryptanalysis of Block Ciphers. PhD thesis,

Computer Science Department, Technion, 2006.

[29] Orr Dunkelman Eli Biham. Differential Cryptanalysis in Stream Ciphers. In

eprint Archive.

[30] Henri Gilbert and Helena Handschuh, editors. Fast Software Encryption: 12th

International Workshop, FSE 2005, Paris, France, February 21-23, 2005, Re-

vised Selected Papers, volume 3557 of Lecture Notes in Computer Science.

Springer, 2005.

[31] Dieter Gollmann, editor. Fast Software Encryption, Third International Work-

shop, Cambridge, UK, February 21-23, 1996, Proceedings, volume 1039 of Lec-

ture Notes in Computer Science. Springer, 1996.

[32] Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors. Information and Com-

munication Security, First International Conference, ICICS’97, Beijing, China,

November 11-14, 1997, Proceedings, volume 1334 of Lecture Notes in Computer

Science. Springer, 1997.

80

[33] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. Related-Key

Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In Gilbert

and Handschuh [30], pages 368–383.

[34] Thomas Johansson, editor. Fast Software Encryption, 10th International Work-

shop, FSE 2003, Lund, Sweden, February 24-26, 2003, Revised Papers, volume

2887 of Lecture Notes in Computer Science. Springer, 2003.

[35] Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified)

Boomerang Attack. In CRYPTO, pages 244–263, 2007.

[36] Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart

Preneel, editors. Information Security, 9th International Conference, ISC 2006,

Samos Island, Greece, August 30 - September 2, 2006, Proceedings, volume 4176

of Lecture Notes in Computer Science. Springer, 2006.

[37] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang At-

tacks Against Reduced-Round MARS and Serpent. In Schneier [77], pages 75–93.

[38] John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-

Round Tiger. In Robshaw [71], pages 111–125.

[39] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of

3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Han et al.

[32], pages 233–246.

[40] Jongsung Kim. Combined Differential, Linear and Related-Key Attacks on Block

Ciphers and MAC Algorithms. PhD thesis, Katholieke Universiteit Leuven, 2006.

[41] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Secu-

rity of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1

(Extended Abstract). In Prisco and Yung [67], pages 242–256.

[42] Jongsung Kim, Alex Biryukov, Bart Preneel, and Sangjin Lee. On the Security

of Encryption Modes of MD4, MD5 and HAVAL. In Qing et al. [68], pages

147–158.

[43] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-Key Rectangle Attacks

on Reduced AES-192 and AES-256. In Biryukov [17], pages 225–241.

[44] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong. The

Related-Key Rectangle Attack - Application to SHACAL-1. In Wang et al. [81],

pages 123–136.

81

[45] Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Jung Hwan Song.

Related-Key Attacks on Reduced Rounds of SHACAL-2. In Canteaut and

Viswanathan [21], pages 175–190.

[46] Jongsung Kim, Dukjae Moon, Wonil Lee, Seokhie Hong, Sangjin Lee, and Seok-

won Jung. Amplified Boomerang Attack against Reduced-Round SHACAL. In

Zheng [88], pages 243–253.

[47] Lars R. Knudsen. Truncated and Higher Order Differentials. In Preneel [66],

pages 196–211.

[48] Lars R. Knudsen, editor. Fast Software Encryption, 6th International Workshop,

FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings, volume 1636 of Lecture

Notes in Computer Science. Springer, 1999.

[49] Hugo Krawczyk, editor. Advances in Cryptology - CRYPTO ’98, 18th Annual

International Cryptology Conference, Santa Barbara, California, USA, August

23-27, 1998, Proceedings, volume 1462 of Lecture Notes in Computer Science.

Springer, 1998.

[50] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis.

In Desmedt [27], pages 17–25.

[51] Helger Lipmaa and Shiho Moriai. Efficient Algorithms for Computing Differen-

tial Properties of Addition. In Matsui [54], pages 336–350.

[52] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Differential

and Rectangle Attacks on Reduced-Round SHACAL-1. In Barua and Lange [3],

pages 17–31.

[53] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Related-Key

Rectangle Attack on 42-Round SHACAL-2. In Katsikas et al. [36], pages 85–100.

[54] Mitsuru Matsui, editor. Fast Software Encryption, 8th International Workshop,

FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, volume 2355 of

Lecture Notes in Computer Science. Springer, 2002.

[55] Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai

Watanabe. Update on Tiger. In Barua and Lange [3], pages 63–79.

[56] Florian Mendel and Vincent Rijmen. Cryptanalysis of Tiger Hash Function. In

ASIACRPYT, 2007.

82

[57] Alfred Menezes and Scott A. Vanstone, editors. Advances in Cryptology -

CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Bar-

bara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture

Notes in Computer Science. Springer, 1991.

[58] Shoji Miyaguchi. The FEAL Cipher Family. In Menezes and Vanstone [57],

pages 627–638.

[59] Frédéric Muller. Differential Attacks against the Helix Stream Cipher. In Roy

and Meier [72], pages 94–108.

[60] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of Lecture

Notes in Computer Science. Springer, 2007.

[61] National Institute of Standards and Technologies. Secure Hash Standard. In

Federal Information Processing Standards Publication, FIPS-180-1, April 1995.

[62] National Institute of Standards and Technologies. Secure Hash Standard. In

Federal Information Processing Standards Publication, FIPS-180, May 1993.

[63] National Institute of Standards and Technologies. Data Encryption Standard.

In Federal Information Processing Standards Publication, FIPS-46-3, November

1976.

[64] Birgit Pfitzmann, editor. Advances in Cryptology - EUROCRYPT 2001, Inter-

national Conference on the Theory and Application of Cryptographic Techniques,

Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes

in Computer Science. Springer, 2001.

[65] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting

Coding Theory for Collision Attacks on SHA-1. In Smart [79], pages 78–95.

[66] Bart Preneel, editor. Fast Software Encryption: Second International Workshop.

Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture

Notes in Computer Science. Springer, 1995.

[67] Roberto De Prisco and Moti Yung, editors. Security and Cryptography for Net-

works, 5th International Conference, SCN 2006, Maiori, Italy, September 6-8,

2006, Proceedings, volume 4116 of Lecture Notes in Computer Science. Springer,

2006.

83

[68] Sihan Qing, Wenbo Mao, Javier Lopez, and Guilin Wang, editors. Information

and Communications Security, 7th International Conference, ICICS 2005, Bei-

jing, China, December 10-13, 2005, Proceedings, volume 3783 of Lecture Notes

in Computer Science. Springer, 2005.

[69] Ron Rivest. The MD4 Message-Digest Algorithm. 1990.

[70] Ron Rivest. The MD5 Message-Digest Algorithm. 1992.

[71] Matthew J. B. Robshaw, editor. Fast Software Encryption, 13th International

Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Pa-

pers, volume 4047 of Lecture Notes in Computer Science. Springer, 2006.

[72] Bimal K. Roy and Willi Meier, editors. Fast Software Encryption, 11th Interna-

tional Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers,

volume 3017 of Lecture Notes in Computer Science. Springer, 2004.

[73] Markku-Juhani Olavi Saarinen. Cryptanalysis of Block Ciphers Based on SHA-1

and MD5. In Johansson [34], pages 36–44.

[74] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New Message Differ-

ence for MD4. In Biryukov [17], pages 329–348.

[75] Martin Schläffer. Cryptanalysis of MD4. Master’s thesis, Graz University of

Technology, Graz,Austria, 2006.

[76] Martin Schläffer and Elisabeth Oswald. Searching for Differential Paths in MD4.

In Robshaw [71], pages 242–261.

[77] Bruce Schneier, editor. Fast Software Encryption, 7th International Workshop,

FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978

of Lecture Notes in Computer Science. Springer, 2001.

[78] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.

The 128-Bit Block Cipher CLEFIA (Extended Abstract). In Biryukov [17], pages

181–195.

[79] Nigel P. Smart, editor. Cryptography and Coding, 10th IMA International Con-

ference, Cirencester, UK, December 19-21, 2005, Proceedings, volume 3796 of

Lecture Notes in Computer Science. Springer, 2005.

[80] David Wagner. The Boomerang Attack. In Knudsen [48], pages 156–170.

84

[81] Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors. Information

Security and Privacy: 9th Australasian Conference, ACISP 2004, Sydney, Aus-

tralia, July 13-15, 2004. Proceedings, volume 3108 of Lecture Notes in Computer

Science. Springer, 2004.

[82] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-

analysis of the Hash Functions MD4 and RIPEMD. In Cramer [23], pages 1–18.

[83] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full

SHA-1. In CRYPTO, pages 17–36, 2005.

[84] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.

In Cramer [23], pages 19–35.

[85] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search

Attacks on SHA-0. In CRYPTO, pages 1–16, 2005.

[86] Hongjun Wu and Bart Preneel. Differential Cryptanalysis of the Stream Ciphers

Py, Py6 and Pypy. In Naor [60], pages 276–290.

[87] Hongjun Wu and Bart Preneel. Differential-Linear Attacks Against the Stream

Cipher Phelix. In Biryukov [17], pages 87–100.

[88] Yuliang Zheng, editor. Advances in Cryptology - ASIACRYPT 2002, 8th In-

ternational Conference on the Theory and Application of Cryptology and Infor-

mation Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings,

volume 2501 of Lecture Notes in Computer Science. Springer, 2002.

85

Appendix A

The Examples of the Attacks

In the attacks usual related-key boomerang distinguisher is used as described below:

• Take a randomly chosen plaintext P1 and form P2 = P1 ⊕ α.

• Obtain the corresponding ciphertexts C1 = EK1(P1) and C2 = EK2(P2) through

E, where K2 = K1 ⊕∆K12.

• Form the second ciphertext pair by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

• Obtain the corresponding plaintexts P3 = E−1
K3

(C3) and P4 = E−1
K4

(C4) through

E−1, where K3 = K1 ⊕∆K13, K4 = K3 ⊕∆K12.

• Check P3 ⊕ P4 = α

The total comlexity of the attacks are negligible and can be performed in a second

using an ordinary PC.

P

P

P

P

C
C

C

1

2

3

4

1

2
C

3

4

0

1

1

γ

δ

γ

δ

β

α

β

α

0

1

E
0

E
Κ

0
E

E

Κ2

Κ3

Κ4

1

Κ
E

E
1

Κ

E
Κ

E
Κ1

2

3

4

Κ
Κ

Κ12

Κ

13

12

13

∆

∆

∆
∆

Figure A.1: Related-Key Boomerang Distinguisher Based on Four Related Keys

86

P1 ⊕ P2 0x8000000000000000, 0x8000000000000000, 0x0000000000000000

P1 0x9AC1B5074E6EC041, 0x23CB3E897856B783, 0x1E085E27096EC261

P2 0x1AC1B5074E6EC041, 0xA3CB3E897856B783, 0x1E085E27096EC261

∆K12 0x8000000000000000, 0x8000000000000000, 0x8000000000000000,
0x8000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x0000000000000000

∆K13 0x0000000000000000, 0x8000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x8000000000000000,

0x0000010000000000, 0x0000000000000000

K1 0xCBD055A5A2886272, 0x4B66FB530AB2A11B, 0xC75DAF23D142B034,
0x9157E68BB9D48F85, 0xA4E52A476D8DB9B8, 0xF3B40BFD66AD182D,

0x0AC751DB09010F9A, 0x58F62612CAB5976E

K2 0x4BD055A5A2886272, 0xCB66FB530AB2A11B, 0x475DAF23D142B034,
0xA55BEBC6E2E1E47E, 0x8B928D6463E1D311, 0xE319E3805A00528C,

0x0AC751DB09010F9A, 0x58F62612CAB5976E

K3 0xCBD055A5A2886272, 0xCB66FB530AB2A11B, 0xC75DAF23D142B034,
0x9157E68BB9D48F85, 0xA4E52A476D8DB9B8, 0x73B40BFD66AD182D,

0x0AC750DB09010F9A, 0x58F62612CAB5976E

K4 0x4BD055A5A2886272, 0x4B66FB530AB2A11B, 0x475DAF23D142B034,
0x1157E68BB9D48F85, 0xA4E52A476D8DB9B8, 0x73B40BFD66AD182D,

0x0AC750DB09010F9A, 0x58F62612CAB5976E

C1 0xD91F598FE1C761BB, 0x17075E71FEE1589C, 0xEE92A40037FB2AAA

C2 0x74444537E34A238E, 0x0409E3FFBC4D3D54, 0x811C773D2C5576C3

C3 0xD91F598FE1C761BB, 0x17075E71FEE1589C, 0xEE92A40037FB2AAA

C4 0x74444537E34A238E, 0x0409E3FFBC4D3D54, 0x811C773D2C5576C3

P3 0xFCCAE0250E697ABB, 0x10F46BB52B11EB28, 0x0BA8E5FCEFC92625

P4 0x7CCAE0250E697ABB, 0x90F46BB52B11EB28, 0x0BA8E5FCEFC92625

P4 ⊕ P3 0x8000000000000000, 0x8000000000000000, 0x0000000000000000

Table A.1: An Example to 17-Round Related-Key Boomerang Distinguisher

87

P1 ⊕ P2 0x8000000000000000, 0x8000000000000000, 0x8000000000000000

P1 0x5BFEC7BEDF9ACF42, 0xB3B3C30EB3159A93, 0xC5E4033F9A0E5DAB

P2 0xDBFEC7BEDF9ACF42, 0x33B3C30EB3159A93, 0x45E4033F9A0E5DAB

∆K12 0x0000000000000000, 0x8000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x8000000000000000,

0x8000000000000000, 0x8000000000000000

∆K13 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x8000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x8000000000000000

K1 0x9CAAAE0ED8D1546F, 0xAD8245D21D411DD1, 0x32DF5EBD8FC96B9B,
0xA55BEBC6E2E1E47E, 0x8B928D6463E1D311, 0x6319E3805A00528C,

0xE0B04A6F79B50B1E, 0x11F6E4F3D7C87163

K2 0x9CAAAE0ED8D1546F, 0x2D8245D21D411DD1, 0x32DF5EBD8FC96B9B,
0x1157E68BB9D48F85, 0xA4E52A476D8DB9B8, 0xF3B40BFD66AD182D,

0x60B04A6F79B50B1E, 0x91F6E4F3D7C87163

K3 0x9CAAAE0ED8D1546F, 0xAD8245D21D411DD1, 0x32DF5EBD8FC96B9B,
0x255BEBC6E2E1E47E, 0x8B928D6463E1D311, 0x6319E3805A00528C,

0xE0B04A6F79B50B1E, 0x91F6E4F3D7C87163

K4 0x9CAAAE0ED8D1546F, 0x2D8245D21D411DD1, 0x32DF5EBD8FC96B9B,
0x255BEBC6E2E1E47E, 0x8B928D6463E1D311, 0xE319E3805A00528C,

0x60B04A6F79B50B1E, 0x11F6E4F3D7C87163

C1 0x23B35087E2A57AF9, 0xE977E99F1B118CB5, 0xEEE039D189EF8E7B

C2 0x962503719904C7CD, 0x11DEF4450188AFCC, 0xDA8134C11790CBF6

C3 0x23B35087E2A57AF9, 0xE977E99F1B118CB5, 0xEEE039D189EF8E7B

C4 0x962503719904C7CD, 0x11DEF4450188AFCC, 0xDA8134C11790CBF6

P3 0x33ED9A7BB66C5CF2, 0x171F02E113CDCE60, 0x88F74DFE4CFF9D8F

P4 0xB3ED9A7BB66C5CF2, 0x971F02E113CDCE60, 0x08F74DFE4CFF9D8F

P4 ⊕ P3 0x8000000000000000, 0x8000000000000000, 0x8000000000000000

Table A.2: An Example to 18-Round Related-Key Boomerang Distinguisher

88

P1 ⊕ P2 0x0000000000000000, 0x8000000000000000, 0x0000000000000000

P1 0x0B79B8924076136F, 0xA0227877491D319E, 0x221141F4C530C5FE

P2 0x0B79B8924076136F, 0x20227877491D319E, 0x221141F4C530C5FE

∆K12 0x8000000000000000, 0x8000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x8000000000000000,

0x0000000000000000, 0x0000000000000000

∆K13 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x8000000000000000, 0x0000000000000000, 0x0000000000000000,

0x0000000000000000, 0x8000000000000000

K1 0xA408441DF15EBD84, 0xFA676C8ED9AD179D, 0xE32F5F254DCCD44C,
0xFF85092C483FE5ED, 0x47290A3987C7BD81, 0x2F2A0F08D726A5BA,

0x5505DFA2D1B4EFD1, 0x39F8FD8238E26F7F

K2 x2408441DF15EBD84, 0x7A676C8ED9AD179D, 0xE32F5F254DCCD44C,
0xFF85092C483FE5ED, 0x47290A3987C7BD81, 0xAF2A0F08D726A5BA,

0x5505DFA2D1B4EFD1, 0x39F8FD8238E26F7F

K3 0xA408441DF15EBD84, 0xFA676C8ED9AD179D, 0xE32F5F254DCCD44C,
0x7F85092C483FE5ED, 0x47290A3987C7BD81, 0x2F2A0F08D726A5BA,

0x5505DFA2D1B4EFD1, 0xB9F8FD8238E26F7F

K4 0x2408441DF15EBD84, 0x7A676C8ED9AD179D, 0xE32F5F254DCCD44C,
0x7F85092C483FE5ED, 0x47290A3987C7BD81, 0xAF2A0F08D726A5BA,

x5505DFA2D1B4EFD1, 0xB9F8FD8238E26F7F

C1 0xDCD0C6D011A5B29E, 0x402C4EA1394FCDD8, 0x3F925353D2B2CD95

C2 0x87EDAF0D1EFB91ED, 0x5BD6EC0499296DF6, 0xCFC8F3081FEF4B63

C3 0xDCD0C6D011A5B29E, 0x402C4EA1394FCDD8, 0x3F925353D2B2CD95

C4 0x87EDAF0D1EFB91ED, 0x5BD6EC0499296DF6, 0xCFC8F3081FEF4B63

P3 0x144F2A412B2E8EFD, 0xA29D4FACFE3B75B2, 0x0D0081CCC3B3ED61

P4 0x144F2A412B2E8EFD, 0x229D4FACFE3B75B2, 0x0D0081CCC3B3ED61

P4 ⊕ P3 0x0000000000000000, 0x8000000000000000, 0x0000000000000000

Table A.3: An Example to 20-Round Related-Key Boomerang Distinguisher

89

