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ABSTRACT 

 

NUMERICAL SIMULATION OF  

NON-REACTING TURBULENT FLOWS OVER A  

CONSTANT TEMPERATURE SOLID SURFACE IN REGRESSION 

 

 

KARAEREN, Cenker 

M. Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Kahraman ALBAYRAK 

Co. Supervisor: Prof. Dr. Kazım AKYÜZLÜ 

 

December 2007, 116 pages 

 

 

In this study, an attempt is made to obtain convergent and stable solutions of the K-ε 

turbulence model equations for non-reacting turbulent flows over an isothermal 

solid surface in regression. A physics based mathematical model is used to describe 

the flow and temperature field over the moving surface. The flow is assumed to be 

two-dimensional, unsteady, incompressible with boundary layer approximations. 

Parabolized form of the standard K-ε equations is adopted to simulate turbulence in 

the flow.  

 

Regression of the solid surface causes the bounds of the solution domain to change 

with time, therefore a coordinate transformation is used in the vertical direction. 

The computational domain with fixed boundaries is discretized using an orthogonal 

grid system where a coordinate stretching is used in the vertical direction. A second 

order accurate, explicit finite difference technique is used for discretization of the 

governing equations. The final set of discretized equations is then solved using a 

solution algorithm specifically developed for this study. The verification of the 



 v

solution algorithm includes a grid independence study, time increment study, and a 

comparison of the steady state results for the laminar and the turbulent flow cases. 

Finally, a parametric study is conducted using the proposed solution algorithm to 

test the stability of the numerical results for different Reynolds numbers, regression 

rates, and surface temperatures. It is concluded that the proposed numerical solution 

algorithm is capable of providing convergent and stable solutions of the two-

equation turbulence model.   

 

Keywords: Turbulent flow, regression, moving boundary 
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ÖZ 

 

SABİT SICAKLIKLI GERİLEMELİ YÜZEYLERİN ÜZERİNDEN 

TÜRBÜLANSLI REAKSİYONSUZ AKIŞLARIN SAYISAL SİMÜLASYONU 

 

 

Karaeren, Cenker 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kahraman ALBAYRAK 

Tez Yardımcı Yöneticisi: Prof. Dr. Kazım AKYÜZLÜ 

 

Aralık 2007, 116 sayfa 

 

 

Bu çalışmada sabit sıcaklıktaki, gerilemeli düz bir plaka üzerindeki yanmasız, 

türbülanslı akışlarda K-ε denklemleri için yakınsayan ve kararlı çözümle elde 

edilmesi amaçlanmıştır. Hareketli yüzey üzerindeki akış ve sıcaklık alanlarını 

tanımlamak için fizik tabanlı bir matematiksel model kullanılmıştır. Akış iki 

boyutlu, sıkıştırılamaz ve türbülanslı olarak kabul edilmiştir, sınır tabakası 

tahminleri geçerlidir. Türbülans modellemesi için standart K-ε denklemlerinin 

parabolik formu kullanılmıştır. 

 

Katı yüzeyin gerilemesinden dolayı gaz tabakasının sınırları değişmektedir; bunun 

için dikey yönde bir koordinat dönüşümü gerçekleştirilmiştir. Sabit sınırları olan bu 

sayısal alan dikey yönde esnetilmiş, sınır tabakasına yakın bölgede daha ince bir ağ 

elde edilmiştir. Denklemler matematiksel olarak ikinci derecede kesin, açık bir 

yöntemle bilgisayar çözümü için cebirsel hale getirilmiştir. Bu denklemlerin 

çözümde özel olarak geliştirilmiş bir çözüm algoritması kullanılmıştır. 

 



 vii

Çözüm algoritmasının doğrulanması için ağ boyutundan bağımsızlık ve zaman 

ilerlemesinden bağımsızlık çalışmaları yapılmış, laminar ve türbülanslı durumlar 

için sürekli çözümler literatürdeki diğer çalışmalarla karşılaştırılmıştır.  

 

Son olarak parametrik bir çalışma yapılmış, çözüm algoritmasının kararlılığı farklı 

Reynolds sayıları, gerileme hızları ve yüzey sıcaklıklarında test edilmiştir. Sayısal 

çözüm algoritmasının türbülans modeli için kararlı ve yakınsayan sonuçlar verdiği 

sonucuna varılmıştır.  

 

Anahtar Kelimeler: Türbülanslı akış, gerileme, hareketli sınır tabakası 
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NOMENCLATURE  

 
 
 

Symbols 

1εC  coefficient for turbulent dissipation energy 

2εC  coefficient for turbulent dissipation energy 

μC  coefficient for eddy viscosity 

pc  specific heat at constant pressure 

vc  specific heat at constant volume 

h initial thickness of the gas 

H total height of the gas 

i node number in horizontal direction 

IN total number of nodes in horizontal direction 

j node number in vertical direction 

JN total number of nodes in vertical direction 

k thermal conductivity 

K turbulent kinetic energy 

L length of the plate 

r regression 

r&  regression rate 

Pr Prandtl number 

εPr  turbulent Prandtl number for dissipation energy 

KPr  turbulent Prandtl number for kinetic energy 

tPr  turbulent Prandtl number 

R gas constant 

Re Reynolds number 



 xviii

t time 

T temperature 

u horizontal velocity 

v vertical velocity 

x horizontal coordinate 

y vertical coordinate 

 

Greek symbols 

ηΔ  space increment in stretched vertical direction 

σΔ  space increment in transformed vertical direction 

tΔ  time increment 

xΔ  space increment in x-direction 

yΔ  space increment in y-direction 

ε  turbulent dissipation energy 

η  
stretched vertical coordinate, non-dimensional vertical 

coordinate for Blasius solution 

μ  absolute viscosity 

ρ  density 

σ  transformed vertical coordinate 

 

Subscripts 

eff effective 

s surface 

t turbulent 

∞  free stream 

 

Superscripts 

n iteration number 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Hybrid rockets combine advantages of both solid rockets and liquid-fuel rockets, 

therefore becoming more attractive. In hybrid rockets, the solid fuel is hollowed out 

to produce a combustion port very similar to that of a solid rocket motor type 

system. The fuel must be initially ignited in order to vaporize some of the fuel into a 

region just above the solid surface. Then, by injecting the oxidizer at a high mass 

flow rate and pressure into the chamber the oxidizer and fuel are allowed to react in 

a thin boundary layer just above the surface of the fuel. The combustion gases pass 

through the remainder of the combustion port and expanded via a nozzle.  

 

Those rockets also have start, stop and restart capabilities. Hybrid rocket systems 

are safer to produce and store, ecologically safer with proper propellant choice. 

 

When modeling such a system, it must be considered that the location of the solid-

gas interface changes with time, as the solid fuel burns out. This moving boundary 

must be modeled with proper mathematical transformation to deal with regression 

of the surface. 

 

1.1 Motivation and Scope 

 

In this study, a previous computer code, which is written for predicting flow field 

for “turbulent flow over a solid surface in non-uniform regression”, is developed to 

be more stable under higher regression rates. The same numerical differencing 

scheme of the previous code is used to develop the present code, but a two-step time 

averaging method is used for the linearization of equations. A detailed explanation 

of the solution procedure and differencing scheme can be found in Chapter 6. 
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The mathematical model is physics based. Momentum equation, continuity 

equation, energy equation and K-ε  turbulence equations are used to construct the 

mathematical model. The flow is assumed to be incompressible and turbulent; flow 

field is two-dimensional.  

 

The equations for the cartesian (x-y) coordinates are transformed into a fixed 

coordinate system (x-σ) because of the moving boundary condition. The regression 

of the solid surface causes the bounds of the numerical domain to change; therefore 

vertical coordinates are normalized based on the total height of the gas domain. 

 

Then, the transformed equations are stretched in the vertical direction using a 

logarithmic transformation to provide mesh refinement at the boundaries where the 

gradients of the flow parameters are very high. After stretching, the numerical 

domain is changed to the (x-η) coordinates. 

 

The transformed and stretched form of the energy, x-momentum, continuity, and 

turbulence equations are solved with an appropriate numerical technique that is 

second order accurate in time.  

 

A two-step time averaging method is used for the solution of the transformed and 

stretched equations. The developed computer code first reads the boundary and 

initial conditions that are specified within input files, and then predicts the flow 

field at the next time step, n+1. Then using those predicted values, flow field at next 

time step, n+2 is predicted. By averaging the flow field variables at time n and n+2, 

flow field at time n+1 is obtained. 

 

Throughout the study, present program is run for uniform regression at the 

boundary, constant regression rate and constant interface temperature. 
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1.2 Outline 

 

Chapter 2 consists of a literature survey on different type of turbulence models, 

numerical methods, and finite differencing methods. 

 

In Chapter 3 the description of the physical model is given. 

 

Chapter 4 involves the modeling of the gas flow. 

 

In Chapter 5, transformation and stretching procedure for moving boundary is 

explained. 

 

In Chapter 6, numerical solution technique is given in detail. 

 

In Chapter 7, results of the developed computer code are compared with the Blasius 

solution for laminar flow over a flat plate, and turbulent flow over a flat plate 

investigated by other researchers. Then it is verified that the developed program 

works independent of time increment and mesh size. 

 

The results of the present computer code and the previous code are compared in 

Chapter 8. 

 

Program is run for three different Reynolds numbers, three different regression rates 

and two interface temperatures and results are presented in Chapter 9. 

 

Concluding remarks are presented in Chapter 10.  

 

Recommendations for possible future works are given in Chapter 11.
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

2.1 Turbulence Models 

 
Turbulence is the state of fluid motion, which is characterized by apparently 

random and chaotic vorticity. When turbulence is present, it usually dominates all 

other flow phenomena and results in increased energy dissipation, mixing, heat 

transfer, and drag. Almost all fluid flows that is the subject of science and 

engineering are turbulent. 

 

Turbulent flows can often be observed to arise from laminar flows as the Reynolds 

number is increased. This happens because small disturbances to the flow are no 

longer damped by the flow, but begin to grow by taking energy from the original 

laminar flow.  

 

The manner in which the instabilities grow naturally in a flow can be examined 

using the equations governing the flow. They are derived by decomposing the 

motion into a mean and fluctuating part.  

 

xXx ′+=               (2.1) 
 
One reason of decomposing variables is that it is usually more important to know 

the mean values instead of time histories. There are many models developed for 

predicting the effects of turbulence. 

 



 

5 

2.1.1 Statistical Models 

 

Some of the study of turbulence is focused on statistics and stochastic processes, 

simply because the instantaneous motions are complicated to understand. This 

should does not mean that the governing equations are stochastic. In other words, 

even though the solutions for a given set of initial and boundary conditions can be 

perfectly repeatable and predictable at a given time and point in space, it may be 

impossible to guess from the information at one point or time what will it be at 

another. Moreover, a slight change in the initial or boundary conditions may cause 

large changes in the solution at a given time and location. 

 

In order to predict the flow field, many experimental results must be present. 

Moreover, it is intended to develop a physics based model so statistical methods are 

out of the scope of this work. Works in the literature can be seen for further details 

[17],[18],[19]. 

 

2.1.2 Algebraic Models 

 

An algebraic equation can be used to compute turbulence. The Reynolds stress 

tensor is then computed using an assumption which relates the Reynolds stress 

tensor to the velocity gradients and the turbulent viscosity. This assumption is 

called the Boussinesq assumption. Algebraic models are also called as zero-

equation models. 

 

Both eddy viscosity and mixing length models require the unknown functions to be 

related to the local values of the boundary layer, such as the boundary layer 

thickness δ  and the displacement thickness 1δ . There are several models developed 

for that purpose such as the models by T. Cebeci and A.M.O Smith [20], R. Michel 

et al. [21], M.P Escudier [22].  
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The algebraic turbulence models are only an approximation for all other boundary 

layers. One or more equation models are more precise. 

   

2.1.3 One Equation Models 

 

All non-algebraic models use the equation for the kinetic energy of the turbulent 

fluctuations (K-equation) in the form: 
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(2.2) 

 

which is based on the work of L. Prandtl. The terms on the right hand side are as 

follows: viscous diffusion, turbulent diffusion, production (two terms) and (pseudo) 

dissipation. 

 

Following references can be seen for different one-equation models developed by 

Bradshaw et al. [23], Rubesin M. W. [24], Goldberg U.C. [25], Baldwin B.S. and 

Barth T.J.[26] . 

 

2.1.4 Two Equation Models 

 

If the equation developed by Prandtl is defined for the turbulent shear stress, by 

replacing tν  with tτ , two further equations for the unknown functions K(x,y) and 

),( yxε are then required to close the system of equations. This will lead to two or 

more equation models. 

 

K-ε  and k-ω  have become standard models for turbulence prediction and 

commonly used for most engineering problems. Most often one of the transported 

variable is K, turbulent kinetic energy. The second transported variable depends on 

the model chosen. Turbulent dissipation energy ε  or the specific dissipation ω used 
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for the following methods. Summaries of two-equation models have been given by 

W.C. Reynolds[27] and C.G. Speziale et al.[28]. 

 

2.1.4.1   K-ε  Model 

 

The standard K-ε  model is in the form [14]: 
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As well as the standard K-ε  model, there are also modified K-ε  models in the 

literature some of which are claimed to be more precise. 

 

The RNG model was developed using Re-Normalization Group (RNG) methods by 

Yakhot et al to renormalize the Navier-Stokes equations, to account for the effects 

of smaller scales of motion. In the standard K-ε  model the eddy viscosity is 

determined from a single turbulence length scale, so the calculated turbulent 

diffusion is that which occurs only at the specified scale, whereas in reality all 

scales of motion will contribute to the turbulent diffusion. The RNG approach, 

which is a mathematical technique that can be used to derive a turbulence model 

similar to the K-ε , results in a modified form of the ε -equation which attempts to 

account for the different scales of motion through changes to the production term. 
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There are number of ways to write transport equations for K and ε , a simple 

interpretation where buoyancy is neglected is: 
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K-ε  model does not give very accurate results near the boundaries. This model is 

not suitable for drag or lift calculations of airfoils. 

 

2.1.4.2   K-ω  Model 

 

In k-ω  model, instead of turbulent dissipation energy, specific dissipation ω  is 

used as the second variable of turbulence. It is the variable that determines the scale 

of turbulence, whereas the first variable K, determines the energy in the 

turbulence.ω  is defined as: 

 

KC
εω

μ

1
=      where  09.0≈μC              (2.7) 

 

and the equations defining the model are: 
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ω -equation 
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There are some modifications made to the standard K-ω  model. Wilcox’s modified 

K- ω  model, SST K- ω  model are examples to those modified models. 

 

2.2 Numerical Methods for Solution 

 
Numerical differentiation is a technique of numerical analysis to produce an 

estimate of the derivative of a mathematical function using values from the function 

and other knowledge about the function. It is widely used for solution of 

engineering problems, especially for fluid flow. The idea is based on evaluating the 

derivative of a function with the knowledge of its value on some points.  

 

The method selected depends on the nature of the equation that is going to be 

solved. There are various methods with different accuracy levels, convergence rates 

and computational times required to find the solution.  

 

Several methods are used for the solution of Navier-Stokes equations, energy 

equation, turbulence equations, and continuity equation. 

 

The unsteady, incompressible, Navier-Stokes equations are a mixed set of 

hyperbolic-elliptic equations, which are difficult to solve because of the differences 

in numerical techniques required to solve for hyperbolic and elliptic type equations. 

Nearly all successful solutions of the incompressible Navier-Stokes equations have 

employed the unsteady form of the equations. The steady-state solution is obtained 

by marching the solution in time until convergence is achieved. The procedure is 

called time-dependent approach and is used for the solution of momentum 

equations. 
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Both explicit and implicit finite-difference schemes have been used with the time-

dependent approach to solve the incompressible Navier-Stokes equations. Nearly all 

of these methods are second order accurate in space and either first or second order 

accurate in time. If only the steady-state solution is required, it is often 

advantageous to employ a scheme, which is not time accurate since the steady-state 

solution may be achieved with fewer time steps. 

 

Because of the added complexity, only a handful of third-order or higher methods 

have appeared in the literature to solve the incompressible Navier-Stokes equations. 

A second-order accurate scheme is thought to be the optimum choice in the sense of 

computing time and accuracy.  

 
 
2.2.1 Explicit MacCormack Method 

 

When the original MacCormack scheme [29] is applied to the incompressible 

Navier-Stokes equations the following algorithm results: The explicit scheme is 

second-order accurate in both space and time. General forms of the equations are 

given in forward differencing for the predictor step, and backward differencing is 

used in the corrector step.  

 
The terms in Navier Stokes equations are grouped such as: 
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The property U, can be predicted in the first step as: 
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and corrected in the second step as: 
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The forward and backward differencing can be alternated between predictor and 

corrector steps as well as between the two spatial derivatives in a sequential fashion. 

This eliminates the bias due to one-sided differencing. An example is given in the 

table below: 

 
Table 2.1 Differencing Sequence for MacCormack Scheme 
 

 PREDICTOR CORRECTOR 

STEP x-derivative y-derivative x-derivative y-derivative 

1 
2 
3 
4 
5 
6 
7 
8 

F 
B 
F 
B 
F 
B 
F 
B 

F 
B 
F 
F 
B 
F 
B 
B 

B 
F 
B 
F 
B 
F 
B 
F 

B 
F 
B 
B 
F 
B 
F 
F 

  
F, forward difference; B, backward difference 
 
 
The derivatives appearing in the viscous terms of E and F must be differenced 

correctly in order to maintain the second order accuracy. This is accomplished in 

the following manner. The x derivative terms appearing in E are differenced in the 

opposite direction to that used for  xE ∂∂  while the y-derivatives are approximated 

with central differences. 

 

Explicit MacCormack algorithm is a suitable method for solving both steady and 

unsteady flows at moderate to low Reynolds numbers. However, it is not a 

satisfactory method for solving high Reynolds number flows where the viscous 

regions become very thin. For these flows mesh must be highly refined in order to 

accurately solve the viscous regions. This leads to small time steps and 
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subsequently long computational times if an explicit scheme such as MacCormack 

method is used. 

 

There are certain modifications made to MacCormack method to provide higher 

convergence rate and stability. There are also works on using different time 

increments in x and y directions, therefore decreasing the computational time [30]. 

 
A time averaging method similar to MacCormack method is used for the developed 

code [31]. Mesh is refined near the solid surface.  

 

2.2.2 Hopscotch Method 

 

In Hopscotch algorithm, there are two sweeps of the solution domain carried out. In 

the first sweep, the properties are approximated at the nodes where i+j+n is even; 

then in the second sweep, the properties at the nodes where i+j+n is odd are 

calculated.  

 

The mixed derivative terms appearing in the Navier-Stokes equations create a 

problem in Hopscotch scheme. If those terms are differenced in the usual manner, 

the Hopscotch method is no longer explicit and requires a matrix inversion. This 

problem can be circumvented by lagging the mixed derivative term.  

 

2.2.3 Brailovskaya Method 

 

Brailovskaya method is a two-step scheme, second order accurate in space and first 

order accurate in time. It does not give acceptable results except the steady-state 

solutions. If the solution requires second-order accuracy, MacCormack or Lax-

Wendroff method must be used. 
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2.2.4 Allen-Cheng Method 

 

Allen-Cheng method is an improvement to the Brailovskaya method. The viscous 

term is differenced in a different way providing that it is more stable. Stability 

condition for the Allen-Cheng method is independent of viscosity giving it a distinct 

advantage over the other methods except the Hopscotch method. But it is first order 

accurate in time, thus it can not be used for the solution of a transient problem.  

 

 

2.2.5 Lax-Wendroff Method 

 

Lax-Wendroff scheme is similar to MacCormack scheme. It is a two-step predictor-

corrector type scheme using the flow parameters between the nodes, instead of at 

the nodes.  

 
It is first-order accurate in time and second-order accurate in space, but it is 

required to compute the variables at the half nodes thus the computational time 

increases. There are some works in the literature to increase the time accuracy of 

this method to second-order, using n+1 time levels in the predictor step instead of 

n+ 21 . 

 

2.2.6 Implicit Methods 

 

Implicit methods are widely used for the solution of the Navier-Stokes equations. 

Solution procedure is generally more complicated for this type of methods. The 

term implicit means that the dependent variable and the independent variables can 

not be separated on opposite sides of the equations. Therefore, the set of equations 

form a matrix, that is generally upper or lower bi-diagonal or triangular. Matrix 

inversion or decomposition techniques should be used for the solution of those 

methods. 
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Implicit methods generally require more computational time, but they are 

convergent also for coarser mesh sizes. The stability restrictions of the explicit 

methods do not exist in implicit methods. 

 

2.3 Comparison of the Finite-Differencing Methods 

 

For the numerical solution of the partial differential equations, finite-differencing 

must be carried out based on the solution domain as a grid of discrete points are 

substituted for the partial derivatives in the equations of interest. 

 

The equations that are obtained after transformation and stretching must be finite 

differenced in order to be solved. Finite-differencing must be made according to the 

nature of the problem.  

 

The continuity, momentum, energy, turbulence and conservation of species 

equations contain the first and second partial derivatives of the flow properties with 

respect to the coordinates and time. 

 

The direction of differencing depends on the nature of the problem. There are three 

options for first order differencing; backward, central and forward differencing. 

 

2.3.1 Backward Differencing 

 

Backward differencing of any partial derivative uses the information of the present 

node and the previous node with respect to the flow direction to approximate the 

derivative. If the flow properties of the present node are mainly affected by the 

previous node, this is the ideal differencing scheme. It is also called “upwind 

differencing”. It is given by the formula: 
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Here the index i represents the node number in x-direction and j represents the node 

number in η-direction. Δx is the distance of the nodes in x-direction. 

 

2.3.2 Central Differencing 

 

Central differencing of any partial derivative uses the information of both the next 

node and the previous node to approximate the derivative. If the flow properties of 

the present node are affected by both nodes equally, this is the ideal differencing 

scheme. It is given by the formula: 
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2.3.3 Forward Differencing 

 

Forward differencing of any partial derivative uses the information of both the next 

node and the current node to approximate the derivative. This scheme can be used 

to capture backflow. It is given by the formula: 
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The scheme used for the computer code is described in detail in section 6.1. 
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CHAPTER 3 

 

DESCRIPTON OF THE PHYSICAL MODEL 

 

 

3.1 Physical Model 

 
The physical model is a “flow over a flat plate” with constant regression rate and 

constant surface temperature. Figure 3.1 shows the schematic of the model. 

Boundary conditions are given in Chapter 4. 

 

 
Figure 3.1 Definition of the Physical Model 
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The main objective of this study is to develop a computer code to calculate the 

velocity and temperature distribution, taking the effect of turbulence into 

consideration for the given problem. The gas domain is assumed turbulent, 

incompressible with boundary layer approximations.  

 

It is assumed that:  

- the flow is near-parallel 

- the inlet velocity is uniform 

- regression is uniform throughout the boundary and constant 

- physical properties are constant 

- gas is ideal 

- solid surface is isothermal 

 

The mathematical model, which describes the physical model given above, is 

presented in next chapter. 
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CHAPTER 4 

 

MODELING OF THE GAS FLOW 

 

 

4.1 Modeling of the Gas Flow 

 

The gas flow over a solid surface is assumed to be two-dimensional, turbulent, 

incompressible and subsonic with boundary layer approximations. The conservation 

equations based on boundary layer approximations for an unsteady flow of a gas are 

given as follows: 

 

4.1.1 Continuity Equation 

 

The general form of the continuity equation in two-dimensional cartesian 

coordinates is [1]: 
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For the incompressible flow case, the continuity equation reduces to: 
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The continuity equation (4.2) is used in the code to calculate the vertical 

velocity( v ). 
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4.1.2 Momentum Equation 

 

The x-momentum equation is used in the code to predict the horizontal velocity(u ). 

General form of the momentum equation in x-direction is [1]: 
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       (4.3) 

The effective viscosity in this equation is defined as: 

 

teff μμμ +=                   (4.4) 

 

where the eddy (turbulent) viscosity is given by: 

 

ε
ρμ μ

2KCt =                  (4.5) 

 

For the incompressible case, where ∞u  is assumed constant, the pressure term 
x
p
∂
∂  

drops out. If the kinetic and potential energy changes of the fluid and viscous 

dissipation are neglected, parabolic form of the x-momentum equation (4.3) reduces 

to [2]: 
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This parabolic form of the momentum equation assumes that the viscous dissipation 

in x-direction is negligible therefore drops out. 
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4.1.3 Energy Equation 

 

General form of the energy equation is [1]: 
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The flow is incompressible, subsonic and assumed near-parallel therefore 

conduction in x-direction and viscous dissipation terms are neglected. Fluid 

properties are assumed constant. Therefore, equation (4.7) becomes: 
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where the effective thermal conductivity is given by: 

 

teff kkk +=                               (4.9) 

 

the turbulent thermal conductivity is:         
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Energy equation is used in the code to predict temperature (T ) of the gas. 

 

4.1.4 K-ε Equations 

 

K and ε are, turbulent kinetic energy and turbulent dissipation energy respectively. 

These variables are determined from the equations 2.5 and 2.6. For this study, these 

equations are parabolized and the following equations are obtained: 
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turbulent kinetic energy (K-equation) 
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turbulent dissipation energy (ε-equation)  
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the constants of the K-ε model adopted for this study are given as [4]: 

 

09.0=μC    45.11 =εC   0.22 =εC   0.1Pr =K   3.1Pr =ε         (4.13) 

 

4.1.5 Boundary and Initial Conditions 

 

To close the mathematical formulation, the following boundary and initial 

conditions are necessary for the gas domain: 

 

 
Figure 4.1 Boundary conditions 
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at the solid surface, ),( txrhy +=  

0=u                (4.14) 

rv &= (regression rate=constant)           (4.15) 

.constTs =               (4.16) 

0=K                     (4.17) 

0=ε                     (4.18) 

 

at the top boundary, 0=y  

∞= uu                (4.19) 

0=v                (4.20) 

∞= TT                (4.21) 

0=K                (4.22) 

0=ε                (4.23) 

 

at the inlet, x=0 

∞= uu                (4.24) 

0=v                (4.25) 

∞= TT                (4.26) 

0=K                    (4.27) 

0=ε                (4.28) 

 

initially, at 0=t , for the whole domain except the bottom, top and inlet boundaries: 

∞= uu                (4.29) 

0=v                (4.30) 

∞= TT                (4.31) 

0=K                    (4.32) 

0=ε                                      (4.33) 
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4.2 Final Form of the Mathematical Model 

 

Based on the above assumptions, equations used in the mathematical model are 

(4.2) (4.6) (4.8) (4.11) and (4.12). These governing differential equations for the 

present study are solved under the boundary and initial conditions given in section 

4.1.5. 
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CHAPTER 5 

 

MOVING BOUNDARY TRANSFORMATION AND STRETCHING 

 

 

5.1 Introduction 

 

The governing equations given in Chapter 4 for this study cannot be solved for 

moving boundary without mathematical transformation. An appropriate 

transformation as described below, is used to create a fixed boundary, orthogonal 

domain where these governing equations can be solved. Furthermore, the equations 

are stretched in vertical direction to increase the accuracy of the numerical solution 

near the wall where high velocity and temperature gradients exist. Details of the 

proposed transformation and stretching used in this study are given below. 

 

5.2 Transformation of the equations 

 

The boundary of the solid surface and the gas is a moving boundary, because of the 

regression of the solid surface. The boundary between the solid and the gas is 

moving as a function of x and t, therefore all the equations must be transformed into 

a fixed, orthogonal coordinate system. There is no need to normalize the equations 

in x-direction since x-coordinates are not affected by the regression. The model of 

the domain can be seen in Figure 7.1, where the original position of the surface 

before regression is shown with dashed line and the height of the gas before 

regression is given as h. 
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Figure 5.1 Schematic of the Moving Boundary 

 

In order to deal with the moving boundary condition, the coordinate system is 

changed from x-y to x-σ. The transformation is given in the following sections. 

 

It is shown in Figure 5.1 that regression rate is non-uniform, but throughout this 

study it is set as constant and uniform. 

 

5.2.1 Transformation of the gas domain 

 

Gas domain is transformed from x-y coordinates into x-σ coordinate system by the 

given formulas: 

  

H
y

=σ                  (5.1) 

 

where H is the time dependent total height of the gas. It is defined as: 
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),(),( txrhtxH +=                 (5.2) 

 

Based on the transformation given above, the first order time derivative of any 

variable in the gas domain is calculated from: 
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The first order derivative with respect to horizontal coordinate x is defined as: 
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The first order derivative with respect to vertical coordinate y is defined as: 
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The second-order partial derivative with respect to vertical coordinate y is defined 

as: 
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The transformation of a sample equation, turbulent kinetic energy equation, can be 

seen in Appendix A. 

 

5.2.2 Changes in Mathematical Domain After Transformation 

 

Mathematical domain before the transformation is given in Figure 5.2.  

 

 
Figure 5.2 Sketch of the Mathematical Domain Before Transformation (x-y 

domain) 

 

After the transformation, the mathematical domain is normalized in vertical 

direction. Therefore, the cells became identical.  
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Figure 5.3 Sketch of the Mathematical Domain After Transformation (x-σ domain) 

 

5.3 Stretching of the equations 

 

The transformed governing differential equations in the gas domain must be 

stretched to generate a finer mesh at the boundaries. The gradients of the flow 

parameters are very high in the boundary layer; therefore, it is essential to have 

finer mesh close to the boundary. 

 

Stretching is carried out in vertical direction using a logarithmic transformation. 

The coordinate system is changed from x-σ to x-η after stretching. The formula 

used during stretching is given as [15]: 

 

( ) ( )[ ]{ } ( )[ ]{ }( )
( ) ( )[ ]1/1ln

2/21/2/21ln1
−+

++−−++
×++=

ββ
αασβαασβααη hh       (5.10) 

 

In this transformation if α  is selected as 0=α , therefore the mesh is refined only 

at h=σ , at the solid-gas boundary. If α  was selected as 5.0=α  the mesh will be 

refined equally at the bottom and top boundaries of the gas domain. The other 
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parameterβ  has values such that ∞≤≤ β0.1 . In this study it is selected as [1] 

15.1=β . 

 

To transform the governing differential equations to the new x-η coordinate system, 

the chain rule of the derivatives is used as: 

 

)()(
ησ

η
σ ∂

∂
∂
∂

=
∂
∂              (5.11) 

 

where 

 

( )( )
( )[ ]{ } ( ) ( )[ ]{ }1/1ln2/12

1212
2 −+−+−

+−
=

∂
∂

=
ββαασβ

ααβ
σ
ηησ hh

        (5.12) 

 

 

After stretching, the computational domain becomes as shown in Figure 5.4. Mesh 

is highly refined near the solid-gas boundary, where there is high energy interaction, 

high velocity and temperature gradients.  

 

 
 

Figure 5.4 Sketch of the Mathematical Domain After Stretching (x-η domain) 
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After the flow field is predicted in the stretched computational domain, the 

following inverse transformation is used to go back to the physical domain. 

 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ⎥⎦

⎤
⎢⎣
⎡ −+++

+−−++
=

−
−

−
−

α
αη

α
αη

ββα

αβββαβσ
1

1

1/1112

21/12h          (5.13) 

 
 

The stretching of a sample equation, turbulent kinetic energy equation, is provided 

in Appendix A.   

 

5.4 Final Form of the Transformed and Stretched Governing Differential 

Equations 

 

After transformation and stretching, the governing differential equations become: 

  

Continuity: 
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Momentum: 
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Energy: 
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Turbulent Kinetic Energy: 
 

ε
η

η
ρ
μ

η
η

ρ
μ

ρ
μ

η
η

η
ησ

η
ησ

σσ

σσσ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

2
2

22

2
2

2

1
Pr

1

1

u
H

K
H

Kv
H

Kur
Hx

KuKr
Ht

K

t

K

t

xt

        (5.17) 

 
 
Turbulent Dissipation Energy: 
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CHAPTER 6 

 

NUMERICAL SOLUTION TECHNIQUE 

 
 
6.1 Introduction 

 

The governing differential equations are non-linear although parabolic in nature. 

For solution an explicit, segregated, second order accurate finite difference 

technique will be adapted. The transformed and stretched governing differential 

equations (5.14), (5.15), (5.16), (5.17) and (5.18) will be linearized for the 

computational domain given in Figure 6.1 and Figure 6.2. 

 

6.2 Final Numerical Domain 

 

Sample meshes of the instantaneous computational domain relative to fixed 

reference of frame are given in the following figures. Mesh is given for two 

different times, at the beginning and end of simulation, at st 0=  and st 08.0= . i-j 

indicates the nodal coordinates. 
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Figure 6.1 Numerical Domain for 21x61 Mesh Size at the Beginning of Simulation 

( st 0= , Solid Surface at Vertical Distance m0= ) 

 

 
Figure 6.2 Numerical Domain for 21x61 Mesh Size at the End of Simulation, 

( st 08.0= , smr /015.0=& , Solid Surface at Vertical Distance = mx 31005.1 −− ) 
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6.3 Numerical Technique and Differencing Scheme Used in the Previous Study 

 

The transformed and stretched equations are finite-differenced in order to be solved 

by computer. A single-step explicit scheme was used in the previous study [2]. 

 

Momentum, energy and turbulence equations are in the form similar to the form 

given in [15]: 

 

S
yyy

v
x

u
t

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ φλφρφρφρ                    (6.1) 

 

where the first term is “inertia of φ ”, second term is “convection of φ  in x-

direction”, third term is “convection of φ  in y-direction”, fourth term is “diffusion 

of φ  in y-direction” and the last term is “source term”. In this equation lambda -

diffusion coefficient- is constant. Turbulent ε−K  equations contain additional 

terms, which are called viscous dissipation terms in y-direction. 

 

The viscous dissipation terms in the turbulent kinetic energy and turbulent energy 

dissipation equations are: 

 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

y
ut

ρ
μ

    and                    (6.2) 

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

y
u

K
C t ε

ρ
μ

ε                            (6.3) 

 

After transformation and stretching of the equations, while chain differentiation of 

derivatives with respect to x and t, additional terms appear because 
t∂

∂σ  

and
x∂

∂σ are not zero. 
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In the previous computer code: 

 

i. backward differencing is used during linearization of convective terms 

which has derivatives with respect to x, and inertia terms which have 

derivatives with respect to t 

 

ii. central differencing is used during linearization of convective and inertia 

terms which have derivatives with respect to η , dissipation terms and 

diffusive terms 

 

iii. source term does not contain any derivative, so it is not differenced 

 

In Appendix A, linearization of a sample equation, turbulent kinetic energy 

equation is given for the present computer code. The differencing at the predictor 

step of the present computer code is exactly the same as the whole differencing of 

the previous computer code. Finite differencing of each term can be found in A.3. 

 

The following equations are used to predict the following flow properties: 

i. continuity equation - vertical velocity ( v ) 

ii. x-momentum equation - horizontal velocity (u ) 

iii. energy equation - temperature (T ) 

iv. K-equation - turbulent kinetic energy ( K ) 

v. ε-equation - turbulent dissipation energy (ε ) 

 

6.4 Numerical Technique and Differencing Scheme Used in the Present Study 

 

The single-step explicit scheme used in the original program is replaced by a two-

step, time averaging method that is second order accurate in time. The same 

equations are used for the prediction of the flow field.  
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In the present computer code: 

 

i. in both predictor and corrector stages, backward differencing is used 

during linearization of convective terms which has derivatives with 

respect to x, and inertia terms which have derivatives with respect to t 

 

ii. in both predictor and corrector stages, central differencing is used during 

linearization of convective and inertia terms which have derivatives with 

respect to η , dissipation terms and diffusive terms 

 

iii. in both predictor and corrector stages, source term does not contain any 

derivative, so it is not differenced 

 

In Appendix A, differencing of each term of a sample equation, turbulent kinetic 

energy equation, is given in detail.  

 

6.5 Final Form of the Linearized and Discretized Equations 

 

A similar differencing given in Appendix A is applied to the equations (5.14), 

(5.15), (5.16), (5.18) and the following linearized and discretized equations given 

below are obtained. During the discretization, properties and the coefficients of 

transformation and stretching are assumed constant. 

 

Continuity equation: 
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37 

Second time step (n+2) 
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Time averaging at (n+1) 
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Momentum equation: 

 

First time step (n+1) 
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Second time step (n+2) 
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Time averaging at (n+1) 
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Energy equation: 

 

First time step (n+1) 
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Second time step (n+2) 
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Time averaging at (n+1) 
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Turbulent Kinetic Energy Equation: 

 

First time step (n+1) 
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Second time step (n+2) 
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Time averaging at (n+1) 
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Turbulent Dissipation Energy Equation: 

 

First time step (n+1) 
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Second time step (n+2) 
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Time averaging at (n+1) 
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6.6 Remarks on the Initial Conditions 

 

Because of computational necessity, initial values of turbulent kinetic energy and 

turbulent dissipation energy are taken as small values near zero, instead of setting 

them equal to zero. 

 

at the solid surface, ),( txrhy +=  
2100.1 −= xK               (6.19) 

4100.1 −= xε               (6.20) 

 

at the top boundary, 0=y  
11100.1 −= xK               (6.21) 

2101523.2 −= xε                         (6.22) 

 

at the inlet, x=0 
7100.1 −= xK               (6.23) 

0=ε                (6.24) 

 

initially, at 0=t , for the whole domain except the bottom, top and inlet boundaries: 
7101.1 −= xK               (6.25) 

2101523.2 −= xε              (6.26) 

 

6.7 Time Delay 

 

Both the computer codes of the previous and current studies employ a time delay 

algorithm. At the beginning, both programs start with the given initial conditions 

except the surface temperature and regression rate and waited until time 

st 0098.0= . Then both the regression and the solid surface temperature is set to the 

prescribed value. At the beginning, until st 0098.0= , regression rate smr /0=&  and 

temperature of the solid surface is ∞= TTs .  
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6.8 Numerical Solution Procedure 

 

Numerical solution procedure of the present computer code is as follows: 

 

1. Read input operational parameters: )(,,,,, tdelays rrtpTTu =∞∞∞ &  

2. Read input geometrical parameters: LH ,  

3. Read input turbulence parameters: 21 ,,Pr,Pr,),( εεεε CCK Kinitial  

4. Read input computational parameters: finaltJNIN ,,  

5. Read properties of the gas: Rkcc vp ,,,, μ  

6. Calculate the density from ideal gas relation as a function of Tp, : ρ  

7. Assign the initial conditions to flow field: ( )n jiKTvu ,,,,, ε  

8. Assign ∞== TTr s,0&  

9. Predict 1
,
+n
jiT , from the energy equation (6.10) 

10. Predict 1
,
+n
jiu , from the momentum equation (6.7) 

11. 1,2 −= INiDO  

     2,1−= JNjDO  

Predict 1
,
+n
jiv , from the continuity equation (6.4) 

      END DO 

END DO 

12. Extrapolate 1
,
+n

jINu  and 1
,
+n

jINv , at the exit boundary  

13. Predict 1
,
+n
jiK , from the turbulent kinetic energy equation (6.13) 

14. Predict 1
,
+n
jiε , from the turbulent dissipation energy equation (6.16) 

15. Predict ( ) 1
,
+n
jitμ , from (4.5) 

16. Predict 2
,
+n
jiT , from the energy equation (6.11) 

17. Predict 2
,
+n
jiu , from the momentum equation (6.8) 
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18. 1,2 −= INiDO  

     2,1−= JNjDO  

Predict 2
,
+n
jiv , from the continuity equation (6.5) 

      END DO 

END DO 

19. Predict 2
,
+n
jiK , from the turbulent kinetic energy equation (6.14) 

20. Predict 2
,
+n
jiε , from the turbulent dissipation energy equation (6.17) 

21. Predict 1
,
+n
jiu , 1

,
+n
jiv , 1

,
+n
jiT , 1

,
+n
jiK , 1

,
+n
jiε   using the time averaging equations (6.6), 

(6.9), (6.12), (6.15), (6.18)  

22. Predict ( ) 1
,
+n
jitμ , from (4.5) 

23. Extrapolate 1
,
+n

jINu  and 1
,
+n

jINv , at the exit boundary  

24. Update the vertical physical position of the solid surface according to the 

regression rate 

25. Update the vertical physical coordinates of the gas domain according to the 

regression rate 

26. Write the variables to output file: 1
,),,,,,( +n
jitKTvu με   

27. Check if time t< delayt   

→YES  return step 9,  

→ELSE  continue 

28. Assign the prescribed values of the regression rate and surface temperature: 

sTr,&  

29. Check if time t< finalt  

→YES  return step 9,  

→ELSE  continue 

30. Write the variables to output file: 1
,),,,,,( +n
jitKTvu με   

31. END of program 
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6.9 Computer Code 

 

A Fortran code (program) has been developed which implements the solution 

procedure given in section 6.8. In Chapter 7, it is verified that the computer 

program works independent of time increment and mesh size, and the results of the 

program is compared to Blasius velocity profile and turbulent velocity profiles 

given by other studies. Flowchart of the computer code is given in Appendix B.  

 

Computer program is run under various conditions and all the results presented in 

following chapters are obtained from those runs. 
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CHAPTER 7 

 

VERIFICATION OF THE COMPUTER CODE 

 

 
7.1 Introduction 

 

This chapter starts with a comparison of the results of the present program with 

Blasius solution for laminar flow over a flat plate. Then, for the turbulent case, the 

results of the present program are compared to experimental and numerical results 

by other researchers. Finally, it is proven that the results of the program are 

independent of both the mesh size and time increment. 

 

7.2 Comparison of the Numerical Solution with Blasius Solution 

 

The computer code of the present study is verified by comparing to Blasius solution 

for flow over a flat plate. Blasius solution is valid only for laminar flows, with 

Reynolds number less than 1.0x105. All the presented results in this section are for 

lower Reynolds numbers. Both the previous computer code and the computer code 

of the present study are run for zero regression rate. Effect of turbulence is set to 

zero, since the analysis is for laminar case. The program is allowed to run 0.08s and 

stopped since steady-state values are reached. List of the input parameters are given 

in Table 7.1.   

 

Table 7.1 List of Input Parameters Used in Runs with Number 1, 2 

PARAMETER DESCRIPTION VALUE 

∞u  free stream horizontal velocity 20 m/s 

∞T  free stream gas temperature 293 K 

sT  temperature of the solid surface 293 K 
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INxJN number of nodes in x and y directions  21x61 

tΔ  time increment at each iteration 7100.1 −x s 

L plate length 0.0381 m 

H total height of the gas domain 0.004 m 

r&  regression rate of the solid surface 0 m/s 

ρ  density of the gas 33137.1 mkg  

μ  absolute viscosity of the gas 25 .105.1 msNx −  

pc  specific heat of the gas KkgkJ .00.922  

tμ  turbulent viscosity 0 2/. msN  

 

Two runs are made in this section. Run number 1 is done with the computer code of 

the previous study, while the run number 2 is done with the code of the present 

study. 

 

Table 7.2 List of Runs for Blasius Profile Comparison 

RUN NUMBER DESCRIPTION Re 

1 

Laminar flow, computer code of the 
previous study, for comparison with the 
Blasius solution, run parameters given in 

Table 7.1 

5.33x104 

2 

Laminar flow, computer code of the 
present study, for comparison with the 

Blasius solution, run parameters given in 
Table 7.1 

5.33x104 

 

During the analysis, data of velocity profiles are stored for 3 different horizontal 

distances. The Blasius profile given for non-dimensional variables η and ∞uu are 

found in [14] and η  is transformed into y coordinate according to the following 

equation: 
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x
uy
μ

ρ
η

2
∞=                 (7.1) 

 

Values of horizontal velocity predicted by the previous and present computer codes 

and the Blasius solution are tabulated for the 18th node, where mxx 21024.3 −= . It 

can be found in Appendix C. It is seen from the table that the maximum deviation 

from the Blasius solution is around 38.6% close to the boundary, whereas it is 

0.21% at mxy 31081.2 −= . Velocity profiles at three different positions are given as 

follows: 

 

 
Figure 7.1 Comparison of the Results of the Previous Program, Present Program 

and the Blasius Solution at mxx 31081.3 −=  ( smu /20=∞ , 31067.6Re x= , 

st 08.0= ) 
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Figure 7.2 Comparison of the Results of the Previous Program, Present Program 

and the Blasius Solution at mxx 210905.1 −=  ( smu /20=∞ , 41034.3Re x= , 

st 08.0= ) 
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Figure 7.3 Comparison of the Results of the Previous Program, Present Program 

and the Blasius Solution at mxx 21024.3 −=  ( smu /20=∞ , 41068.5Re x= , 

st 08.0= ) 
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7.3 Comparison of the Turbulent Boundary Layer Velocity Profile with 

Various Studies 

 

The turbulence model used for this study is standard ε−K  model, and it is given in 

Chapter 4 in detail. To validate the application of this turbulence model in the 

present study, a couple of cases are studied. 

 

The laminar and turbulent boundary layer profiles given by Schetz [32] are: 

 

 
Figure 7.4 Comparison of the Turbulent and Laminar Boundary Layer Velocity 

Profiles [32] 

 

Turbulent velocity profiles measured by Schetz [32], predicted by Antoniou [9] and 

present study are as follows. 
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Figure 7.5 Comparison of the Turbulent Boundary Layer Velocity Profiles 

Measured by  Schetz [32], Predicted by Antoniou [9] and Present Program 

 

Antoniou [9] used an implicit scheme for the solution of the compressible, 

hyperbolic finite-difference equations. For the present study, an explicit scheme is 

adopted which is given in Chapter 6.  

 

As it can be observed from Figure 7.5, the velocity predicted by the present 

program is underestimated near the wall with respect to other two studies, because it 

is parabolic. 
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7.4 Grid Independence Study 

 

The computer code of the previous study used a mesh size of 21x61. In order to 

verify that the solution is independent of mesh size, several runs are made with 

three different mesh sizes, 21x41, 21x61, 31x61, where the first number indicates 

the mesh size in x-direction and second number indicates the mesh size in y-

direction.  

 

Results are found slightly dependent on the mesh size, with maximum difference of 

5% for horizontal velocity between 21x41 and 31x61 mesh sizes. Properties vary 

less than 1% between 21x61 and 31x61. Therefore, for the parametric study, 21x61 

mesh size is used. 

 

Following variables are plotted: horizontal velocity, temperature. Velocity and 

temperature distribution is given at mxx 210905.1 −= .  

 

Input parameters in Table 7.3 are used for the runs 4,6,7. 

 

Table 7.3 List of Input Parameters Used in Runs with Number 3-13 

PARAMETER DESCRIPTION VALUE 

∞T  free stream gas temperature 293 K 

sT  temperature of the solid surface 600 K 

delayt  delay time after which regression starts 0.0098s 

L plate length 0.0381 m 

H total height of the gas domain 0.004 m 

r&  regression rate of the solid surface 0.015 m/s 

ρ  density of the gas 33137.1 mkg  

μ  absolute viscosity of the gas 25 .105.1 msNx −  
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pc  specific heat of the gas KkgkJ .00.922  

 

Table 7.4 List of Runs for Grid Independence Study 

RUN NUMBER DESCRIPTION MESH SIZE 

4 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smr /015.0=& , sxt 7100.1 −=Δ  , 
run parameters given in Table 7.3 

21x61 

6 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smr /015.0=& , sxt 7100.1 −=Δ  , 
run parameters given in Table 7.3 

21x41 

7 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smr /015.0=& , sxt 7100.1 −=Δ  , 
run parameters given in Table 7.3 

31x61 

 

 

7.4.1 Horizontal Velocity Profiles 

 

Horizontal velocity profiles for 3 different mesh size are plotted at horizontal 

distance mxx 210905.1 −= . Maximum variation of u is less than 5% between mesh 

sizes 21x41 and 31x61. 
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Figure 7.6 Horizontal Velocity Profiles at mxx 210905.1 −= , for 3 Different Mesh 

Sizes ( smu /100=∞ , 51067.1Re x= , smr /015.0=& ) 
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7.4.2 Temperature Profiles 

 

Temperature profiles for 3 different mesh size are plotted at horizontal 

distance mxx 210905.1 −= . Maximum variation of T is less than 2% between mesh 

sizes 21x41 and 31x61. 

 

 

Figure 7.7 Temperature Profiles at mxx 210905.1 −= , for 3 Different Mesh Sizes 

( smu /100=∞ , 51067.1Re x= , smr /015.0=& , KTs 600= ) 

 



 

56 

7.5 Time Increment and Convergence Study  

 

In order to verify that the solution is independent of time increment, several runs are 

made with three different time increments, sxt 7105.0 −=Δ , sxt 7100.1 −=Δ , 

sxt 7105.1 −=Δ . It is found out that the results are independent of time increment. 

Therefore,  sxt 7100.1 −=Δ  is during the parametric study. Following variables are 

plotted: horizontal velocity, temperature. 

 

Values of horizontal velocity, vertical velocity, temperature and turbulent viscosity 

are stored at every 1000 iterations, for 9 nodes. Then this data is used to create 

histogram plots at those nodes. Nodes are selected such that 3 of them are close to 

the inlet, 3 of them are in the middle of the plate and three of them are close to the 

exit of the control volume. Histogram plots at node (3,59) where mxx 31081.3 −=  

and initially mxy 31095.3 −= , are given.  

 

In the histogram of temperature at node (3,59), Figure 7.6 , the temperature remains 

constant for 0.0098s and then rapidly increases. This is because of the delay time 

concept given in section 6.5. At st 0098.0= , temperature at the lower boundary (at 

the surface of the solid surface) is set to 600K as well as the regression rate is set to 

a constant value other than 0. Starting from st 0098.0= , the lower boundary moves 

downward because of the regression of the solid surface. 

 

Values of the input parameters for all runs in Chapter 7 and 8 are given in the 

following table. Some of the runs in Chapter 9 also use the same input parameters. 
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Table 7.5 List of Runs for Time Increment Independency Study 

RUN NUMBER DESCRIPTION TIME INCREMENT 

3 

Turbulent flow, computer code of the 
present study, 

Re= 41033.5 x , smu /100=∞ , 
smr /015.0=& , mesh size 21x61, run 

parameters given in Table 7.3 

sx 7105.0 −  

4 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smu /100=∞ , smr /015.0=& , mesh 
size 21x61, 

run parameters given in Table 7.3 

sx 7100.1 −  

5 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smu /100=∞ , smr /015.0=& , mesh 
size 21x61, 

run parameters given in Table 7.3 

sx 7105.1 −  

 

 

7.5.1 Horizontal Velocity 

 

The values of horizontal velocities (u) are stored in data files for every 1000 

iterations. These files are used to create the histogram plots, which shows the 

variation of horizontal velocities with time, at node (3,59). Position of that node 

initially corresponds to mxx 31081.3 −= , mxy 31095.3 −=  and changes because of 

regression of the solid surface. The horizontal velocity tends to increase as the 

position of the node moves away from the boundary.  
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Figure 7.8 Histogram of Horizontal Velocities at Node (3,59), Initially at 

mxx 31081.3 −= , mxy 31095.3 −= , for 3 Different Time Increments ( smu /100=∞ , 
41037.3Re x= , smr /015.0=& ) 

 

The following figure shows the development of the boundary layer. Program starts 

with the initial conditions given in data files and converges to a steady-state value. 

This value is independent of time increment. As already explained before, 

regression rate is 0 until stt delay 0098.0==  and regression starts with the steady 

state values.  
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Figure 7.9 Histogram of Horizontal Velocities at Node (3,59) in Logarithmic Time 

Scale, Initially at mxx 31081.3 −= , mxy 31095.3 −= , for 3 Different Time 

Increments ( smu /100=∞ , 41037.3Re x= , smr /015.0=& ) 
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Horizontal velocity distribution is plotted at horizontal distance mxx 210905.1 −= .  

 

 

Figure 7.10 Horizontal Velocity Profiles at mxx 210905.1 −= , for 3 Different Time 

Increments ( smu /100=∞ , 51067.1Re x= , smr /015.0=& ) 
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7.5.2 Temperature 

 

The values of temperatures (T) are stored in data files for every 1000 iterations. 

These files are used to create the histogram plots, which shows the variation of 

temperatures with time, at node (3,59). Position of that node initially corresponds to 

mxx 31081.3 −= , mxy 31095.3 −=  and changes because of regression of the solid 

surface. The gas temperature tends to decrease as the position of the node moves 

away from the boundary.  

 

 
Figure 7.11 Histogram of Temperatures at Node (3,59), Iinitially at 

mxx 31081.3 −= , mxy 31095.3 −= , for 3 Different Time Increments ( smu /100=∞ , 
41037.3Re x= , smr /015.0=& ) 
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 7.6 Singular Points in Histogram Plots 

 

There are singular points in histogram plots of horizontal velocity, vertical velocity, 

temperature and turbulent viscosity. Singular points in the plots are originated from 

the low resolution of the graphs or insufficient number of points are stored during 

simulation. 

 

Singular points in temperature histograms are caused by the time delay, while 

surface temperature suddenly increases to 600K at time 0.0098s.  

 

Figure 7.13 shows the close-look to the singular point of the histogram plot of 

horizontal velocity, Figure 7.4. It can be seen that there is a curve instead of a 

singular point. Similar results are obtained for other plots. 

 

 
Figure 7.12 Close-look to the Histogram of Horizontal Velocity at Node (3,59), 

Initially at mxx 31081.3 −= , mxy 31095.3 −=  

 



 

63 

 

CHAPTER 8 

 

COMPARISON OF THE RESULTS OF THE PRESENT AND PREVIOUS 

PROGRAMS 

 

 

8.1 Introduction 

 

Both the previous and present computer codes are run with same input parameters. 

The obtained results are plotted in the following sections.  

 

Velocity profiles, vector plots of velocity, contour plots of horizontal velocity, 

temperature and turbulent viscosity shows that boundary layer predicted by the 

present program is thinner with respect to the previous program. This is mainly, 

because of the viscosity predicted by the present program is lower. 

 

Run number 8 is carried out with the computer code of the previous study, while the 

run number 4 is done with the code of the present study. 

 

Table 8.1 List of Runs for Comparison of Present and Previous Studies 

RUN NUMBER DESCRIPTION 

4 

Turbulent case, computer code of the present study, for 
comparison with the previous program  

21x61 mesh size, smu /100=∞ , 51067.1Re x= , 
smr /015.0=& , KTs 600=  , sxt 7100.1 −=Δ ,  

input run parameters given in Table 7.3 

8 

Turbulent case, computer code of the previous study, for 
comparison with the present program  

21x61 mesh size, smu /100=∞ , 51067.1Re x= , 
smr /015.0=& , KTs 600= , sxt 7100.1 −=Δ   

input run parameters given in Table 7.3 
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8.1.1 Horizontal Velocity Profiles 

 

In this section, velocity profiles of the present and previous program is plotted at 

three different horizontal distances.  

 

 
Figure 8.1 Velocity Profiles of the Previous and Present Programs at 

mxx 31081.3 −=  ( smu /100=∞ , 41034.3Re x= ,  st 08.0= , smr /015.0=& , 

KTs 600= ) 
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Figure 8.2 Velocity Profiles of the Previous and Present Programs at 

mxx 210905.1 −=  ( smu /100=∞ , 51067.1Re x= , st 08.0= , smr /015.0=& , 

KTs 600= ) 
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Figure 8.3 Velocity Profiles of the Previous and Present Programs at 

mxx 21024.3 −=  ( smu /100=∞ , 51084.2Re x= , st 08.0= , smr /015.0=& , 

KTs 600= ) 
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8.1.2 Velocity Vectors and Contours 
 

Velocity vectors for both the previous and present programs can be found in the 

following figures. In data files information of the whole domain is written, however 

to illustrate more clearly vectors at some of the horizontal distances are shown.  

 

 
Figure 8.4 Velocity Vectors of Previous Program ( st 08.0= , smr /015.0=& , 

smu /100=∞ , KTs 600= ) 

 

 



 

68 

 
Figure 8.5 Velocity Vectors of Present Program ( st 08.0= , smr /015.0=& , 

smu /100=∞ , KTs 600= ) 
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8.1.3 Temperature Contours  

 

The temperature contours at the end of analysis, at time 0.08s, are given in Figure 

8.8 for the previous program and in Figure 8.9 for the present program. 

 

 

 
 

Figure 8.6 Temperature Contours of Previous Program ( st 08.0= , smr /015.0=& , 

smu /100=∞ , KTs 600= ) 
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Figure 8.7 Temperature Contours of Present Program ( st 08.0= , smr /015.0=& , 

smu /100=∞ , KTs 600= ) 
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8.1.4 Turbulent Viscosity Contours 

 

The turbulent viscosity contours at the end of analysis, at time 0.08s, are given in 

Figure 8.10 for the previous program and in Figure 8.11 for the present program. 

 

 

 
 
Figure 8.8 Turbulent Viscosity Contours of Previous Program ( st 08.0= , 

smu /100=∞ , smr /015.0=& , KTs 600= ) 
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Figure 8.9 Turbulent Viscosity Contours of Present Program ( st 08.0= , 

smu /100=∞ , smr /015.0=& , KTs 600= ) 
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8.1.5 Histogram Plots of Selected Variables 

 

The values of horizontal velocities and temperatures are plotted for run numbers 4 

and 8. There is a slight difference between two programs for the predicted value of 

temperature, less than 1%. For the horizontal velocity, this difference is as high as 

28%.  

 

 

 
 
Figure 8.10 Variation of the Horizontal Velocities with Time at Node (11,59) 

which is Initially at mxx 210905.1 −= , mxy 31095.3 −=  ( st 08.0= , smu /100=∞ , 

smr /015.0=& , KTs 600= ) 
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Figure 8.11 Variation of the Temperatures with Time at Node (11,59) which is 

Iinitially at mxx 210905.1 −= , mxy 31095.3 −=  ( st 08.0= , smu /100=∞ , 

smr /015.0=& , KTs 600=  ) 
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CHAPTER 9 

 

PARAMETRIC STUDY  

 

 

9.1 Study with Different Regression Rates 

 

Present program is run with three different regression rates and results are presented 

in the following pages. It is observed that program worked successfully and no 

degeneration of the results near the boundary is found.  

 

Table 9.1 List of Runs for Different Regression Rate Study 

RUN NUMBER DESCRIPTION REGRESSION RATE 

4 

Turbulent flow, computer code of the 
present study, 

Re= 41033.5 x , smr /015.0=&  , run 
parameters given in Table 7.3 

smr /015.0=&  

9 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smr /012.0=&  
run parameters given in Table 7.3 

smr /012.0=&  

10 

Turbulent flow, computer code of the 
present study, Re= 41033.5 x , 

smr /018.0=&  
run parameters given in Table 7.3 

smr /018.0=&  

 

 

9.1.1 Horizontal Velocity Profiles 

 

Horizontal velocity profiles at mxx 210905.1 −=  is given in the following figure at 

the end of simulation, st 08.0= . Regression caused the bounds of the physical 

domain to change, therefore plots start from different points in vertical direction. 
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Figure 9.1 Horizontal Velocity Profiles at mxx 210905.1 −= , for 3 Different 

Regression Rates ( smu /100=∞ , 51067.1Re x= , st 08.0= ) 

 

9.1.2 Temperature Contours 

 

In the following figures, temperature contours at the end of simulation for 

regression rates smr /012.0=&  and smr /015.0=&  are given. In Figure 9.4, for 

smr /018.0=&  instantaneous temperature contours are given for various times. The 

regression of the boundary between gas and solid surface can be observed. 



 

77 

 
Figure 9.2 Temperature Contours of Present Study ( smr /012.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= ) 

 

 
Figure 9.3 Temperature Contours of Present Study ( smr /015.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= ) 
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Figure 9.4 Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= ) 

 

 
Figure 9.5a Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 0= ) 
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Figure 9.5b Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 02.0= ) 

 
Figure 9.5c Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 04.0= ) 
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Figure 9.5d Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 06.0= ) 

 
Figure 9.5e Temperature Contours of Present Study ( smr /018.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= ) 
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9.2 Study with Different Reynolds Numbers 

 

Present program is run with three different Reynolds numbers and results are 

presented in the following pages. The boundary layer became thinner as the 

horizontal velocity increased.  

 

Table 9.2 List of Runs for Different Reynolds Number Study 

RUN 
NUMBER DESCRIPTION REYNOLDS 

NUMBER 

4 

Turbulent flow, computer code of the 
present study, 

smu /100=∞ , 51034.3Re x= , smr /015.0=&  
, run parameters given in Table 7.3 

51034.3Re x=  

11 

Turbulent flow, computer code of the 
present study, smu /150=∞ , 51001.5Re x= , 

smr /015.0=&  
run parameters given in Table 7.3 

51001.5Re x=  

12 

Turbulent flow, computer code of the 
present study, smu /150=∞ , 51001.6Re x= , 

smr /015.0=&  
run parameters given in Table 7.3 

51001.6Re x=  

 

 

9.2.1 Horizontal Velocity Profiles and Contours 

 

Horizontal velocity profiles at mxx 210905.1 −=  is given in the following figure at 

the end of simulation, st 08.0=  are plotted in Figure 9.5. Horizontal velocity 

contours can be seen in figures 9.6, 9.7 and 9.8 for different free stream velocities.  
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Figure 9.6 Horizontal Velocity Profiles at mxx 210905.1 −= , for 3 Different 

Reynolds Numbers ( smr /015.0=& , st 08.0= ) 
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Figure 9.7 Horizontal Velocity Contours of Present Study ( smr /015.0=& , 

smu /100=∞ , 51034.3Re x= , st 08.0= ) 

 

 
Figure 9.8 Horizontal Velocity Contours of Present Study ( smr /015.0=& , 

smu /150=∞ , 51001.5Re x= , st 08.0= ) 



 

84 

 
Figure 9.9 Horizontal Velocity Contours of Present Study ( smr /015.0=& , 

smu /180=∞ , 51001.6Re x= , st 08.0= ) 

 

9.2.2 Temperature Contours 

 

Temperature contours can be seen in figures 9.9, 9.10 and 9.11 for different free 

stream velocities. The temperature field is slightly affected by the free stream 

horizontal velocity. Variation of T between 51034.3Re x=  and 51001.6Re x=  is 

less than 3%.  
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Figure 9.10 Temperature Contours of Present Study ( smr /015.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= ) 

 

 
Figure 9.11 Temperature Contours of Present Study ( smr /015.0=& , smu /150=∞ , 

51001.5Re x= , st 08.0= ) 
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Figure 9.12 Temperature Contours of Present Study ( smr /015.0=& , smu /180=∞ , 

51001.6Re x= , st 08.0= ) 

 

9.3 Study with Different Surface Temperatures 

 

The present program is run with two different surface temperatures and results are 

plotted in this section. The list of runs are given in Table 9.3. The thermal boundary 

layer is found to be slightly thicker for KTs 700= . 

 

Table 9.3 List of Runs for Different Surface Temperatures 

RUN 
NUMBER DESCRIPTION SURFACE 

TEMPERATURE 

4 

Turbulent flow, computer code of the 
present study, 

smu /100=∞ , 51034.3Re x= , smr /015.0=&  
, run parameters given in Table 7.3 

KTs 600=  

13 

Turbulent flow, computer code of the 
present study, smu /100=∞ , 51034.3Re x= , 

smr /015.0=&  
run parameters given in Table 7.3 

KTs 700=  
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9.3.1 Temperature Contours 

 

Temperature contours for different surface temperatures are as follows: 

 

 
Figure 9.13 Temperature Contours of Present Study ( smr /015.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= , KTs 600= ) 
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Figure 9.14 Temperature Contours of Present Study ( smr /015.0=& , smu /100=∞ , 

51034.3Re x= , st 08.0= , KTs 700= ) 
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CHAPTER 10 

 

CONCLUSIONS 

 

 

In this study, an attempt was made to obtain stable and accurate solutions of the 

standard K-ε turbulence model equations for non-reacting turbulent flows over an 

isothermal solid surface in regression. The accomplishments of this effort and the 

conclusions drawn from the results of the numerical study can be summarized as 

follows: 

 

1. A time-dependent coordinate transformation has been successfully used in 

handling the moving boundary condition (due to the uniform regression of 

the isothermal solid surface.) 

2. Previously proposed two-step time averaging (which is a second order 

accurate numerical scheme) has been successfully adopted to discretize the 

temporal terms in the governing equations of the mathematical model.  

3. The unsteady and parabolic form of the two-equation (standard K-ε) 

turbulence model can be considered modestly successful in predicting the 

turbulent behavior of the flow inside the boundary layer. (It should be noted 

that the velocities are underestimated by this model as one moves close to 

the wall.) 

4. The results of the parametric study indicate that the solution algorithm 

adopted for the proposed numerical model results in solutions of the 



 

90 

unsteady turbulent flow and temperature fields which are rapidly converging 

and stable for the Reynolds number and temperature ranges studied.  

5. Numerical solutions are shown to be stable for uniform regressions rates 

between 0.001 and 0.02 m/sec. As expected, no detachment of the viscous or 

thermal boundary layers has been observed for the regression rates studied. 
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CHAPTER 11 

 

RECOMMENDATIONS 

 

 

As noted in the previous chapters of this thesis, the mathematical model adopted for 

this study is based on various assumptions (such as incompressible flow and 

boundary layer approximations.) These assumptions result in a parabolized form of 

the governing equations. The two-equation turbulence model equations used in this 

study is also of the parabolized type. This form of the turbulence equations is 

known to underestimate the velocities very near to the moving surface. 

Furthermore, the discretization schemes used for the first order spatial derivates (the 

one for the convective terms in the horizontal direction) are first order accurate. 

Therefore, following recommendations are suggested to improve the numerical 

accuracy of the study: 

 

1. The hyperbolic-parabolic version of the Navier-Stokes equations should be 

used to define the flow field. 

2. Hyperbolic form of the turbulence model should be adopted for the study. 

3. A modified version of the standard K-ε model (the one that gives better 

results near to the wall) should be used in the study. 

4. To improve the accuracy of the numerical scheme, an alternating direction 

(backward then forward) finite difference scheme should be used in 

discretizing the convective terms in the horizontal direction. 
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5. The stretching and transformation coefficients should be updated for the 

prediction at the second time step. 

6. The stability and convergence of the solutions obtained by the proposed 

numerical solution algorithm should be checked for high regression rates of 

the solid surface.) 

7. Finally, the solution algorithm should be used to obtain solutions of the 

governing equations when the regression rate is non-uniform, that is, it 

changes as one moves along the surface.  

 

 

 

 

 

 

 

 

 

 



 

93 

 

REFERENCES 

 

 

[1] Antoniou, A. and Akyuzlu, K. M., 2005, “A Physics Based Comprehensive 
Mathematical Model to Predict Motor Performance in Hybrid Rocket Propulsion 
Systems,” 41st AIAA/ASME Joint Propulsion Conference and Exhibit, Paper No. 
2005-3541, Tucson, Arizona.  
 
 
[2] Akyuzlu, K.M., Antoniou, A., and Martin, M., 2002, “Determination of 
Regression Rate in Hybrid Rocket Solid Fuel Using a Physics Based 
Comprehensive Mathematical Model,” 38th AIAA/ASME Joint Propulsion 
Conference, Paper No. 3577, Indianapolis, Indiana.  
 
 
[3] Akyuzlu, K. M., Kagoo, R., and Antoniou, A., 2001, “ A Physics Based 
Mathematical Model to Predict The regression Rate in Ablating Hybrid Rocket 
Solid Fuel,” 37th AIAA/ASME Joint Propulsion Conference, Paper No. 2001-3242, 
Salt Lake City, Utah.  
 
 
[4] Arpaci, V. and Larsen, P., 1984. Convective Heat Transfer. Prentice Hall, Inc., 
Englewoods Cliffs, New Jersey.  
 
 
[5] Ozisik, N., 1973, “ Radiative Transfer and Interactions with Conduction and 
Convection,” John Wiley and Sons, Inc., New York, New York.  
 
 
[6] Akyuzlu, K., Antoniou, A., and Kagoo, R., “ The Effect of Radiation on 
Turbulent Convective Heat Transfer Over an Ablating Solid”, Proceedings of the 
36

th 
AIAA/ASME/ SAE/ASEE Joint propulsion Conference and Exhibit, Orlando, 

FL, 2000.  
 
 
[7] Syed, H., “ An Experimental and Theoretical Study of Combustion of Solid 
Fuels for Hybrid Rockets Using a Two-Dimensional Sub-Scale Hybrid Rocket 
Motors,” MS Thesis, Department of Mechanical Engineering, U of New Orleans, 
New Orleans, LA, 2004.  
 
 
 
 



 

94 

[8] Jones, W. and Launder, B., “ The Calculation of Low-Reynolds-Number 
Phenomena with a Two –Equation Model of Turbulence”, International Journal of 
heat and Mass Transfer, Vol. 16, 1973, pp. 1119-1130.  
 
 
[9] Antoniou, A., “ A Physics Based Two Dimensional Comprehensive 
Mathematical Model to Predict Non Uniform Regression Rate in Solid Fuels For 
Hybrid Rocket Motors,” PhD thesis, Department of Mechanical engineering, 
University of New Orleans, New Orleans, LA, 2005 
 
 
[10] Zedan, M. and Schneider, G.E., “ A Coupled Strongly Implicit Procedure for 
Velocity and Pressure Computation in Fluid Flow Problems,” Numerical Heat 
transfer, 8, 1985, pp. 537-557.  
 
 
[11] Chen, K. and Pletcher, R., “ Primitive Variable, Strongly Implicit Calculation 
Procedure for Viscous Flows at All Speeds”, AIAA Journal, Vol. 29, No. 8, !991, 
pp. 1241-1248.  
 
 
[12] Morihara, H. and Cheng, R.T., “Numerical Solution of the Viscous Flow in the 
Entrance Region of Parallel Plates”, Journal of Computational Physics, Vol.11, 
1973, pp. 550, 572.  
 
 
[13] Chapra Steven C.  and Canale Raymond P., “Numerical Methods for 
Engineers”, McGrow Hill 2002. 
 
 
[14] Schlichting Hermann and Gersten Klaus, “Boundary-Layer Theory”, 8th 
Edition, Springer-Verlag Berlin Heidelberg 2000 
 
 
[15] Anderson Dale A., Tannehill John C.  and Pletcher Richard H., 
“Computational Fluid Mechanics and Heat Transfer”, Hemisphere 1984 
 
 
[16] Bruce R. Munson, Donald F. Young and Theodore H. Okiishi, “Fundamentals 
of Fluid Mechanics”, 4th Edition, John Wiley & Sons 2002 
 
 
[17] Roshko,A., ”Structure of Turbulent Shear Flows-A New Look”, AIAA Journal, 
Vol. 141349-1357 
 
 



 

95 

[18] Cantwell B.J., “Organized Motion in Turbulent Flow” Annu. Rev. Fluid 
Mech., Vol. 13, 457-515 1981 
 
 
[19] Fiedler H.E , “Coherent Structures in Turbulent Flows” Prog. Aerospace Sci., 
Vol. 25, 235-269, 1988  
 
 
[20] Cebeci T. and Smith, A.M.O. “Analysis of Turbulent Boundary Layers”, 
Academic Press, New York 1974 
 
 
[21] Michel R., Quémard C. and Durant R., “Hypotheses on the Mixing Length and 
Application to the Calculation of the Turbulent Boundary Layers”, Proceedings 
Computation of Turbulent Boundary Layers, AFOSR-IFP-Stanford Conference, 
Vol. I, 195-207 1968 
 
 
[22] Escudier M.P. “The Distribution of Mixing Length in Turbulent Flows Near 
Walls”, Imperial College, Heat Transfer Section, Rep. TWF/TN/1 1966 
 
 
[23] Bradshaw P. and Ferriss D.H., “Calculation of Boundary Layer Development 
Using the Turbulent Energy Equation”, J. Fluid Mech. Vol. 28, 593-616 1971 
 
 
[24] Rubesin M.W., “ A One-Equation Model of Turbulence for Use with the 
Compressible Navier-Stokes Equations” NASA-TM-X-73128 1976 
 
 
[25] Goldberg U.C, “Derivation and Testing of a One-Equation Model Based on 
Two Time Scales”, AIAA Journal, Vol. 29, 1337-1340 
 
 
[26] Baldwin B.S and Barth T.J.,  “A One-Equation Turbulence Transport Model 
for High Reynolds Number Wall-Bounded Flows” NASA-TM-102847 
 
 
[27] Reynolds W.C., “Computation of Turbulent Flows”, Annu. Rev. Fluid Mech., 
Vol. 8, 183-208 1976 
 
 
[28] Speziale C.G., Abid R. and Anderson E.C. , “A Critical Evaluation of Two-
Equation Models for Near-Wall Turbulence”, AIAA Paper 90-1481 1990 
 
 



 

96 

[29] MacCormack R.W., “A Numerical Method for Solving the Equations of 
Compressible Viscous Flow”, AIAA Paper 81-0110 Louis, Missouri 1981 
 
 
[30] MacCormack R.W and Paullay A.J., “Computational Efficiency Achieved by 
Time-Splitting of Finite Difference Operators”AIAA Paper 72-154, San Diego, 
California 1972 
 
 
[31] Akyuzlu M. Kazim, “Modeling of Instabilities Due to Coupling of Acoustic 
and Hydrodynamic Oscillations in Hybrid Rocket Motors”, 43rd  
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati,  
OH, July 8-11, 2007 
 
 
[32] Schetz, Joseph A., “Boundary Layer Analysis”, Prentice-Hall Inc. Englewood 
Cliffs, New Jersey 



 

97 

 
APPENDIX A 

 

TRANSFORMATION, STRETCHING AND LINEARIZATION OF 

PARABOLIC TURBULENT KINETIC ENERGY EQUATION 

 

 

A.1 TRANSFORMATION OF TURBULENT KINETIC ENERGY EQUATION 

 

The parabolic turbulent kinetic energy equation as given in (4.11) is: 
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Each term in the above equation is transformed according to (5.3), (5.5) and (5.7) to 

σ−x  coordinate axis as follows: 
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ε−      (remains the same)             (A.7) 

 

The final form of the transformed turbulent kinetic energy equation is: 
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A.2 STRETCHING OF TURBULENT KINETIC ENERGY EQUATION 

 

Each term in equation (A.8) is stretched in the vertical direction using equation (5.13) 

as follows: 
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-ε      (remains the same)            (A.14) 

 

 

The final form of the stretched turbulent kinetic energy equation is: 
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A.3 LINEARIZATION OF TURBULENT KINETIC ENERGY EQUATION 

 

Linearization procedure is discussed in detail and can be found in Chapter 6. Each 

term of the transformed and stretched turbulent kinetic energy equation (A.15) is as 

follows:  
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Predicted value of turbulent K, at time n+1: 
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SECOND TIME STEP 

 

Same differencing scheme used for the second time step, and the predicted value of 

turbulent K at time n+2 is: 
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Time averaging to find the final value of turbulent K, at time n+1: 
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APPENDIX B 

 

FLOWCHART OF THE COMPUTER CODE 

 

Figure B.1 Flowchart of the Computer Code (new added subroutines are marked in 

red) 

 

 

READCP READCP.DAT 

READOP READOP.DAT 

PREF, TSO, 
TINTI, TF, 

TINF, UINF, 
TGO, T0, REG0, 

TIMED 

IRUN, TFIN, 
NP, NHP 

PROGRAM START 

READGP READGP.DAT 
XO, BETA, 

ALPHA 

SOLIDINIT 
TS TSO 

GASINIT 
TG TGO 
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Figure B.1 cont’d 

 
 

PROPGAS 
KG, ROG, CPG, 
VISG, VISKG 

KGO, 
ROGO 

REGINIT 
HGG, REG, RP,  

HG 
SIG, REG0, 

HGG 

UVINIT 
U, V 

UINF, 
DELETA, 

SIG, 
ROGO, 

VISKO, R, 
HG, HGG 

TKTEINIT 
TK, TE INTK.DAT, 

INTE.DAT 

TURVISKG 
VISKGT TK, TE, IN, 

JN, CM, 
ROG 

TEMPG 
TG 

TG, ROG, 
ETASIG, 
DELETA, 
ROG, TG, 
U, V, DX, 

R, RP, SIG, 
HG, IN, JN 

DO (TIME<TFIN) 
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Figure B.1 cont’d 
 

 

UVELG 
U 

U,V, IN, 
JN, DX, 
VISKG, 

DT, ROG, 
KG, R, RP, 
DELETA, 
SIG, HG, 
ETASIG 

VBOUNDARY 
V IN, JN, V, 

R, RP, DT 

UBOUNDARY 
U IN, JN, U, 

UINF, 
UINFT, 

HG, HGG 

VVELG 
V 

U,V, IN, 
JN, DX, 
TG, DT, 

DELETA, 
HG, SIG, R, 
RP, UINFT, 

ROG, 
ETASIG 

TURBULENTK 
TK 

TK, TE, IN, 
JN, U , V, 
VISKG, 
DX, DT, 

SIG, 
DELETA, 
R, HG, RP, 

ROG, 
ETASIG, 

PRK 

TURBULENTE 
TE 

TK, TE, IN, 
JN, U , V, 
VISKG, 
DX, DT, 

SIG, 
DELETA, 
R, HG, RP, 

ROG, 
ETASIG, 
PRE, C1, 

C2 
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Figure B.1 cont’d 
 

 

TURVISKG 
VISKGT TK, TE, IN, 

JN, CM, 
ROG 

TEMPG2 
TG 

TG, ROG, 
ETASIG, 
DELETA, 
ROG, TG, 
U, V, DX, 

R, RP, SIG, 
HG, IN, JN 

VBOUNDARY
2 

V IN, JN, V, 
R, RP, DT 

UBOUNDARY
2 

U IN, JN, U, 
UINF, 

UINFT, 
HG, HGG 

VVELG2 
V 

U,V, IN, 
JN, DX, 
TG, DT, 

DELETA, 
HG, SIG, R, 
RP, UINFT, 

ROG, 
ETASIG 

UVELG2 
U 

U,V, IN, 
JN, DX, 
VISKG, 

DT, ROG, 
KG, R, RP, 
DELETA, 
SIG, HG, 
ETASIG 
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Figure B.1 cont’d 
 

 

TURBULENTK2 
TK 

TK, TE, IN, 
JN, U , V, 
VISKG, 
DX, DT, 

SIG, 
DELETA, 
R, HG, RP, 

ROG, 
ETASIG, 

PRK 

TURBULENTE2 
TE 

TK, TE, IN, 
JN, U , V, 
VISKG, 
DX, DT, 

SIG, 
DELETA, 
R, HG, RP, 

ROG, 
ETASIG, 
PRE, C1, 

C2 

AVERAGE 
TK, TE, U, V, 

TG 
TK, TE, U, 
V, TG, IN, 

JN 

TURVISKG 
VISKGT TK, TE, IN, 

JN, CM, 
ROG 

BOUNDARYGAS 
TG 

IN, JN, TG, 
T0, TINT, 

TGO 
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Figure B.1 cont’d 
 

 

REGRES 
R, HG 

R, 
REGDUM
MY, DT, 
HGG, IN 

BOUGSI 
TG, TS 

TINT, IN, 
JN 

PHYDOM 
YG, YS 

IN, JN, R, 
HG, HS, 

SIG 
 

STACK 

U, V, TS, TG, 
TK, TE, R, RP, 
HS, HG, TINT, 

REG, ROG, 
YFL, YOX,

IN, JN, 
JSN, U, V, 

TS, TG, 
TK, TE, R, 

RP, HS, 
HG, TINT, 
REG, ROG, 
YFL, YOX, 

YPR 

IF KC=(TFIN/DT)/NP 
OR KC=0 

CONTPLOT 

IN,JN, X, 
YG, TG, 
TIME, U, 

V, TK, TE, 
VISKGT 

CONTOURTEMP.DAT 
CONTOURU.DAT 
CONTOURVISKG.DAT 
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Figure B.1 cont’d 
 

VECTORPLOT

IN,JN, X, 
YG, U, V VECTORPLOT.DAT 

 

HISTPLOT

TIME, TS, 
TG, REG, 

ROG, U, IN, 
JN 

TINHISTIN.DAT 
TINHISTIN1.DAT 

TSHIST.DAT 
TGHISTIN.DAT 

TGHISTIN1.DAT 
TGHISTIN2.DAT 
HISTEXPO.DAT 
REGHIST1.DAT 
REGHIST2.DAT 

U,V,TG,VISKGT,TK,TE 
 (3,59),(3,30),(3,3) 

(11,59),(11,30),(11,3) 
(18,59),(18,30),(18,3).D

AT 

WRITEOUT

IRUN, TS, 
TG, IN, JN, 

SIG, X, 
TIME, HG, 
U, V, YG, 

HGG, 
TK,TE, 
ROG, 

VISKGT 

SURFACETEMP.DAT 
GASTEMP.DAT 
OUTPUT.DAT 

CONTPLOT 

IN,JN, JSN, 
X, YG, TG, 
TIME, U, 

V, TK, TE, 
VISKGT 

CONTOURTEMP.DAT 
 

ELSE 

END OF DO LOOP 
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Figure B.1 cont’d 
 

VECTORPLOT

IN,JN, X, 
YG, U, V VECTORPLOT.DAT 

 

HISTPLOT 

TIME, TG, 
REG, ROG, 
U, IN, JN,  

TINHISTIN.DAT 
TINHISTIN1.DAT 

TSHIST.DAT 
TGHISTIN.DAT 

TGHISTIN1.DAT 
TGHISTIN2.DAT 
HISTEXPO.DAT 
REGHIST1.DAT 
REGHIST2.DAT 

U,V,TG,VISKGT,TK,TE 
 (3,59),(3,30),(3,3) 

(11,59),(11,30),(11,3) 
(18,59),(18,30),(18,3).D

AT 

END OF PROGRAM 

WRITEOUT

IRUN, TS, 
TG, IN, JN, 

SIG, X, 
TIME, HG, 
U, V,YG, 

HGG, 
TK,TE, 
ROG, 

VISKGT 

 SURFACETEMP.DAT 
GASTEMP.DAT 
OUTPUT.DAT 
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Table B.1 List of Subroutines Used in the Computer Code 

 
NAME OF THE 
SUBROUTINE DESCRIPTION OUTPUT  

PARAMETERS 

READCP read input computational parameters IRUN, TFIN, NP, 
NPH 

READOP read input operational parameters 

IRUN, PREF, 
TSO, TINF, 
UINF, REGO, 
TIMED 

READGP read input geometrical parameters 
and calculate stretching parameters 

IRUN, XO, HSS, 
ETASIG, 
ETASIGS, 
VLAX, X, SIG 

SOLIDINIT set the initial temperature of the 
solid surface TS 

GASINIT set the initial temperature of the gas TG 

PROPGAS define and calculate properties of 
gas 

KG, CPG, 
ROGO, CPGO, 
VISG, VISGO, 
ROG 

REGINIT set initial regression rate values HGG, R0 

UVINIT set initial values of horizontal and 
vertical velocities U, V, UB, VB 

TKTEINIT set the initial values of K-ε TK, TE 

TURVISKG calculate the turbulent eddy viscosity VISGT 

PHYDOM update the height of the gas domain 
every time step YG 

WRITEOUT write the values of various variables 
in output files - 

CONTPLOT create file to enable plotting of 
temperature contours in TecPlot - 

VECTORPLOT create file to enable plotting of 
velocity vectors contours in TecPlot - 

HISTPLOT create the histograms of various 
variables - 

TEMPG calculate the temperature of the gas TG 
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Table B.1 cont’d 
 

UVELG calculate the horizontal velocity U 

UBOUNDARYG calculate or set the horizontal 
velocities at boundaries U 

VVELG calculate the vertical velocity V 

VBOUNDARYG calculate or set the vertical velocities 
at boundaries V 

TURBULENTK predict the turbulent kinetic energy TK 

TURBULENTE predict the rate of dissipation of the 
turbulent kinetic energy TE 

BOUNDARYGAS update the temperatures of the gas at 
the boundaries TG 

BOUNDARYSOLID update the temperatures of the solid 
surface TS 

STACK update the values of variables every 
time step 

TG, HG, TK, TE, 
ROG 

TURVISKG calculate the turbulent eddy viscosity VISKGT 
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Table B.2 List of Variables Used in the Computer Code 
 
 
BETA 

CE1 

CE2 

CM 

CPG 

CPGO 

DELETA 

DT 

DX 

ETASIG 

HG 

HGG 

IN 

IRUN 

JN 

KEFF 

KG 

KGO 

KGTURB 

NP 

NPH 

NPH 

PRANDTGT 

PRE 

PRK 

R 

REG 

REGDUMMY 

REGO 

y-direction stretching factor for gas 

coefficient 1 for turbulence 

coefficient 2 for turbulence 

coefficient for turbulent viscosity for turbulence 

specific heat for constant pressure for gas 

initial specific heat for constant pressure for gas 

non-dimensional space increment in y-direction 

time increment 

space increment in x-direction for gas 

y-direction stretching coefficient for gas 

height of the gas at any time 

total height of the gas 

number of nodes in x-direction 

run number 

number of nodes in y-direction 

effective thermal conductivity of gas 

absolute thermal conductivity of gas 

initial absolute thermal conductivity of gas 

turbulent thermal conductivity of gas 

number of zones created in plots 

number of points in histogram 

number of points in histogram 

turbulent Prandtl number 

turbulent Prandtl number for dissipation energy 

turbulent Prandtl number for kinetic energy 

regression at any time 

regression rate at any time 

dummy regression rate 

initial regression rate 
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Table B.2 cont’d 
 
 
RG 

ROG 

ROGO 

RP 

RU 

SIG 

TE 

TFIN 

TG 

TGO 

TIME 

TINF 

TK 

U 

UB 

UINF 

V 

VB 

VISKEF 

VISKGT 

VISG 

VISGO 

X 

gas constant 

density of gas at any time 

initial density of gas 

regression at previous time 

universal gas constant 

stretching variable for gas domain 

turbulent dissipation energy 

final time 

temperature of gas at any time 

initial temperature of gas 

time 

reference temperature of gas 

turbulent kinetic energy 

horizontal velocity component of gas at any time 

boundary value of horizontal velocity component 

reference horizontal velocity 

vertical velocity component of gas 

boundary value of vertical velocity component of gas 

effective viscosity 

turbulent viscosity 

absolute viscosity 

initial absolute viscosity 

horizontal distance for gas 
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APPENDIX C 
 

LAMINAR BOUNDARY LAYER 

 
 
Table C.1 Comparison of the Results of the Present Solution and Blasius Solution 
for the Laminar Case mxx 21024.3 −=  
 

-vertical 
distance- 

(m) 

horizontal 
velocity 

predicted by 
present 

study (m/s) 

horizontal 
velocity 

predicted by 
previous study 

(m/s) 

horizontal 
velocity given 

by Blasius 
solution (m/s) 

percentage 
deviation 
between  

present and 
previous 
studies 

percentage 
deviation 
between  

present study 
and Blasius 

solution 

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0000254 1.0599740 1.0599740 0.7645720 0.0000000 38.6362516 

0.0000517 2.1614569 2.1614569 1.5588560 0.0000000 38.6566104 

0.0000791 3.3043873 3.3043873 2.3835400 0.0000000 38.6336011 

0.0001076 4.4872150 4.4872150 3.2383200 0.0000000 38.5661400 

0.0001371 5.7064038 5.7064038 4.1241400 0.0000000 38.3659096 

0.0001678 6.9558906 6.9558906 5.0389400 0.0000000 38.0427344 

0.0001996 8.2265642 8.2265642 5.9809000 0.0000000 37.5472628 

0.0002326 9.5058757 9.5058757 6.9492400 0.0000000 36.7901481 

0.0002668 10.7777339 10.7777339 7.9411600 0.0000000 35.7198942 

0.0003023 12.0228697 12.0228697 8.9469400 0.0000000 34.3796844 

0.0003390 13.2198126 13.2198126 9.9616200 0.0000000 32.7074576 

0.0003771 14.3465090 14.3465090 10.9793000 0.0000000 30.6687039 

0.0004166 15.3824117 15.3824117 11.9902400 0.0000000 28.2911079 

0.0004574 16.3106729 16.3106729 12.9830600 0.0000000 25.6304208 

0.0004996 17.1199700 17.1199700 13.9451800 0.0000000 22.7662172 

0.0005433 17.8055612 17.8055612 14.8629000 0.0000000 19.7987017 

0.0005885 18.3693763 18.3693763 15.7230000 0.0000000 16.8312428 
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Table C.1 cont’d 
 

0.0006352 18.8192008 18.8192008 16.5133200 0.0000000 13.9637627 

0.0006834 19.1672153 19.1672153 17.2236600 0.0000000 11.2842176 

0.0007332 19.4282368 19.4282368 17.8471400 0.0000000 8.8591048 

0.0007846 19.6179970 19.6179970 18.3800600 0.0000000 6.7352174 

0.0008376 19.7517020 19.7517020 18.8229400 0.0000000 4.9342026 

0.0008923 19.6179970 19.8430096 19.1657000 1.1339641 2.3599294 

0.0009486 19.7517020 19.9034497 19.4317200 0.7624192 1.6466993 

0.0010066 19.8430096 19.9422369 19.6312800 0.4975737 1.0785318 

0.0010663 19.9034497 19.9663762 19.7700200 0.3151623 0.6749094 

0.0011277 19.9422369 19.9809511 19.8624400 0.1937556 0.4017478 

0.0011908 19.9663762 19.9894928 19.9235800 0.1156439 0.2148018 

 
 


