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ABSTRACT

NUMERICAL SIMULATION OF
NON-REACTING TURBULENT FLOWS OVER A
CONSTANT TEMPERATURE SOLID SURFACE IN REGRESSION

KARAEREN, Cenker
M. Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. Kahraman ALBAYRAK
Co. Supervisor: Prof. Dr. Kazim AKYUZLU

December 2007, 116 pages

In this study, an attempt is made to obtain convergent and stable solutions of the K-¢
turbulence model equations for non-reacting turbulent flows over an isothermal
solid surface in regression. A physics based mathematical model is used to describe
the flow and temperature field over the moving surface. The flow is assumed to be
two-dimensional, unsteady, incompressible with boundary layer approximations.
Parabolized form of the standard K-¢ equations is adopted to simulate turbulence in

the flow.

Regression of the solid surface causes the bounds of the solution domain to change
with time, therefore a coordinate transformation is used in the vertical direction.
The computational domain with fixed boundaries is discretized using an orthogonal
grid system where a coordinate stretching is used in the vertical direction. A second
order accurate, explicit finite difference technique is used for discretization of the
governing equations. The final set of discretized equations is then solved using a

solution algorithm specifically developed for this study. The verification of the

v



solution algorithm includes a grid independence study, time increment study, and a
comparison of the steady state results for the laminar and the turbulent flow cases.
Finally, a parametric study is conducted using the proposed solution algorithm to
test the stability of the numerical results for different Reynolds numbers, regression
rates, and surface temperatures. It is concluded that the proposed numerical solution
algorithm is capable of providing convergent and stable solutions of the two-

equation turbulence model.

Keywords: Turbulent flow, regression, moving boundary
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SABIT SICAKLIKLI GERILEMELI YUZEYLERIN UZERINDEN
TURBULANSLI REAKSIYONSUZ AKISLARIN SAYISAL SIMULASYONU

Karaeren, Cenker
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Kahraman ALBAYRAK
Tez Yardimc1 Yoneticisi: Prof. Dr. Kazim AKYUZLU

Aralik 2007, 116 sayfa

Bu c¢alismada sabit sicakliktaki, gerilemeli diiz bir plaka iizerindeki yanmasiz,
tirbiilansh akislarda K-¢ denklemleri icin yakinsayan ve kararli ¢oziimle elde
edilmesi amac¢lanmistir. Hareketli ylizey iizerindeki akis ve sicaklik alanlarini
tanimlamak i¢in fizik tabanli bir matematiksel model kullanilmigtir. Akis iki
boyutlu, sikistirilamaz ve tlrbiilansli olarak kabul edilmistir, sinir tabakasi
tahminleri gegerlidir. Tiirbiilans modellemesi i¢in standart K-¢ denklemlerinin

parabolik formu kullanilmigtir.

Kat1 ylizeyin gerilemesinden dolay1 gaz tabakasinin sinirlar1 degismektedir; bunun
icin dikey yonde bir koordinat doniisiimii gerceklestirilmistir. Sabit sinirlart olan bu
sayisal alan dikey yonde esnetilmis, sinir tabakasina yakin bolgede daha ince bir ag
elde edilmistir. Denklemler matematiksel olarak ikinci derecede kesin, agik bir
yontemle bilgisayar ¢Oziimii i¢in cebirsel hale getirilmistir. Bu denklemlerin

¢oziimde 6zel olarak gelistirilmis bir ¢oziim algoritmasi kullanilmastir.

vi



Coziim algoritmasinin dogrulanmasi i¢in ag boyutundan bagimsizlik ve zaman
ilerlemesinden bagimsizlik ¢alismalari yapilmig, laminar ve tiirbiilansli durumlar

icin siirekli ¢oziimler literatlirdeki diger ¢calismalarla karsilagtirilmistir.

Son olarak parametrik bir ¢calisma yapilmis, ¢éziim algoritmasinin kararlilig1 farkl
Reynolds sayilari, gerileme hizlar1 ve yiizey sicakliklarinda test edilmistir. Sayisal
¢Ozlim algoritmasinin tiirbiilans modeli i¢in kararli ve yakinsayan sonuglar verdigi

sonucuna varilmistir.

Anahtar Kelimeler: Tiirbiilansh akis, gerileme, hareketli sinir tabakasi
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CHAPTER 1

INTRODUCTION

Hybrid rockets combine advantages of both solid rockets and liquid-fuel rockets,
therefore becoming more attractive. In hybrid rockets, the solid fuel is hollowed out
to produce a combustion port very similar to that of a solid rocket motor type
system. The fuel must be initially ignited in order to vaporize some of the fuel into a
region just above the solid surface. Then, by injecting the oxidizer at a high mass
flow rate and pressure into the chamber the oxidizer and fuel are allowed to react in
a thin boundary layer just above the surface of the fuel. The combustion gases pass

through the remainder of the combustion port and expanded via a nozzle.

Those rockets also have start, stop and restart capabilities. Hybrid rocket systems

are safer to produce and store, ecologically safer with proper propellant choice.

When modeling such a system, it must be considered that the location of the solid-
gas interface changes with time, as the solid fuel burns out. This moving boundary
must be modeled with proper mathematical transformation to deal with regression

of the surface.

1.1 Motivation and Scope

In this study, a previous computer code, which is written for predicting flow field
for “turbulent flow over a solid surface in non-uniform regression”, is developed to
be more stable under higher regression rates. The same numerical differencing
scheme of the previous code is used to develop the present code, but a two-step time
averaging method is used for the linearization of equations. A detailed explanation

of the solution procedure and differencing scheme can be found in Chapter 6.



The mathematical model is physics based. Momentum equation, continuity
equation, energy equation and K-¢& turbulence equations are used to construct the
mathematical model. The flow is assumed to be incompressible and turbulent; flow

field is two-dimensional.

The equations for the cartesian (x-y) coordinates are transformed into a fixed
coordinate system (x-c) because of the moving boundary condition. The regression
of the solid surface causes the bounds of the numerical domain to change; therefore

vertical coordinates are normalized based on the total height of the gas domain.

Then, the transformed equations are stretched in the vertical direction using a
logarithmic transformation to provide mesh refinement at the boundaries where the
gradients of the flow parameters are very high. After stretching, the numerical

domain is changed to the (x-1) coordinates.

The transformed and stretched form of the energy, x-momentum, continuity, and
turbulence equations are solved with an appropriate numerical technique that is

second order accurate in time.

A two-step time averaging method is used for the solution of the transformed and
stretched equations. The developed computer code first reads the boundary and
initial conditions that are specified within input files, and then predicts the flow
field at the next time step, n+1. Then using those predicted values, flow field at next
time step, n+2 is predicted. By averaging the flow field variables at time n and n+2,

flow field at time n+/ is obtained.

Throughout the study, present program is run for uniform regression at the

boundary, constant regression rate and constant interface temperature.



1.2 Outline

Chapter 2 consists of a literature survey on different type of turbulence models,

numerical methods, and finite differencing methods.

In Chapter 3 the description of the physical model is given.

Chapter 4 involves the modeling of the gas flow.

In Chapter 5, transformation and stretching procedure for moving boundary is

explained.

In Chapter 6, numerical solution technique is given in detail.

In Chapter 7, results of the developed computer code are compared with the Blasius
solution for laminar flow over a flat plate, and turbulent flow over a flat plate
investigated by other researchers. Then it is verified that the developed program

works independent of time increment and mesh size.

The results of the present computer code and the previous code are compared in

Chapter 8.

Program is run for three different Reynolds numbers, three different regression rates

and two interface temperatures and results are presented in Chapter 9.

Concluding remarks are presented in Chapter 10.

Recommendations for possible future works are given in Chapter 11.



CHAPTER 2

LITERATURE SURVEY

2.1 Turbulence Models

Turbulence is the state of fluid motion, which is characterized by apparently
random and chaotic vorticity. When turbulence is present, it usually dominates all
other flow phenomena and results in increased energy dissipation, mixing, heat
transfer, and drag. Almost all fluid flows that is the subject of science and

engineering are turbulent.

Turbulent flows can often be observed to arise from laminar flows as the Reynolds
number is increased. This happens because small disturbances to the flow are no
longer damped by the flow, but begin to grow by taking energy from the original

laminar flow.

The manner in which the instabilities grow naturally in a flow can be examined
using the equations governing the flow. They are derived by decomposing the

motion into a mean and fluctuating part.

x=X+x' (2.1)

One reason of decomposing variables is that it is usually more important to know
the mean values instead of time histories. There are many models developed for

predicting the effects of turbulence.



2.1.1 Statistical Models

Some of the study of turbulence is focused on statistics and stochastic processes,
simply because the instantaneous motions are complicated to understand. This
should does not mean that the governing equations are stochastic. In other words,
even though the solutions for a given set of initial and boundary conditions can be
perfectly repeatable and predictable at a given time and point in space, it may be
impossible to guess from the information at one point or time what will it be at
another. Moreover, a slight change in the initial or boundary conditions may cause

large changes in the solution at a given time and location.

In order to predict the flow field, many experimental results must be present.
Moreover, it is intended to develop a physics based model so statistical methods are
out of the scope of this work. Works in the literature can be seen for further details

[17],[18],[19].

2.1.2 Algebraic Models

An algebraic equation can be used to compute turbulence. The Reynolds stress
tensor is then computed using an assumption which relates the Reynolds stress
tensor to the velocity gradients and the turbulent viscosity. This assumption is
called the Boussinesq assumption. Algebraic models are also called as zero-

equation models.

Both eddy viscosity and mixing length models require the unknown functions to be
related to the local values of the boundary layer, such as the boundary layer
thickness ¢ and the displacement thickness J, . There are several models developed
for that purpose such as the models by T. Cebeci and A.M.O Smith [20], R. Michel
etal. [21], M.P Escudier [22].



The algebraic turbulence models are only an approximation for all other boundary

layers. One or more equation models are more precise.

2.1.3 One Equation Models

All non-algebraic models use the equation for the kinetic energy of the turbulent

fluctuations (K-equation) in the form:

-0K -0K O°K 0|, , p ou = —3.0u
U—+v—|= -—|v(p += +7,——pu’” —v°)—-—p¢
p( . j ,Uayz 8y{ (p 54 )} s o( )ax P

which is based on the work of L. Prandtl. The terms on the right hand side are as
follows: viscous diffusion, turbulent diffusion, production (two terms) and (pseudo)

dissipation.

Following references can be seen for different one-equation models developed by
Bradshaw et al. [23], Rubesin M. W. [24], Goldberg U.C. [25], Baldwin B.S. and
Barth T.J.[26] .

2.1.4 Two Equation Models

If the equation developed by Prandtl is defined for the turbulent shear stress, by
replacing v, withz,, two further equations for the unknown functions K(x,y) and
&(x, y)are then required to close the system of equations. This will lead to two or

more equation models.

K-& and k-o have become standard models for turbulence prediction and
commonly used for most engineering problems. Most often one of the transported
variable is K, turbulent kinetic energy. The second transported variable depends on

the model chosen. Turbulent dissipation energy & or the specific dissipation o used



for the following methods. Summaries of two-equation models have been given by

W.C. Reynolds[27] and C.G. Speziale et al.[28].

2.14.1 K-& Model

The standard K- & model is in the form [14]:

K-equation:

0 0 0 U, 0K 7 Ou, u, oT

—(pK)+—(pKu,) =——| (u+—+—)— |- pu, u, + fg, ——

o P+ g, (PR axj((” ak)aj] Pt o P 23)
-pe-Y, +S,

£ -equation:

0 0 0 .. O¢ £ v , oT

(Pt (pau) == —| (u+ £ = S (puyu, +Cfig S

ot OX; Ox; o, OX; K Pr, Ox;, 2.4)

2

&
_CZSP?_{—SS

As well as the standard K-& model, there are also modified K-& models in the

literature some of which are claimed to be more precise.

The RNG model was developed using Re-Normalization Group (RNG) methods by
Yakhot et al to renormalize the Navier-Stokes equations, to account for the effects
of smaller scales of motion. In the standard K-& model the eddy viscosity is
determined from a single turbulence length scale, so the calculated turbulent
diffusion is that which occurs only at the specified scale, whereas in reality all
scales of motion will contribute to the turbulent diffusion. The RNG approach,
which is a mathematical technique that can be used to derive a turbulence model
similar to the K- ¢, results in a modified form of the & -equation which attempts to

account for the different scales of motion through changes to the production term.



There are number of ways to write transport equations for K and &, a simple

interpretation where buoyancy is neglected is:

0 0 0 u, K
—(PK) +——(pKu,) =——| (u+ )= |+ P, - pe
o, (PK) axi(p u;) axj((” 0')8x.] P P

0 0 0 U, O& g g’
— +— )=—|(u+—)—|-C,—P -C, . p—
o PO+ o~ (pau) =— ((/J oé,)aij o e e =GP

i J

(2.5)

(2.6)

K- & model does not give very accurate results near the boundaries. This model is

not suitable for drag or lift calculations of airfoils.

2.14.2 K-w Model

In k- model, instead of turbulent dissipation energy, specific dissipation @ 1is

used as the second variable of turbulence. It is the variable that determines the scale

of turbulence, whereas the first variable K, determines the energy in the

turbulence. @ is defined as:

wzii where C, =0.09
C, K !

Y7
and the equations defining the model are:

K-equation

a—K+U.8—K=ri.%—ﬁ*l{a)+i (v+0*vT)a—K
ot / x Y x ox x

2.7)

(2.8)



@ -equation

b0 _ o 0, *wz+i{
Ox

0w
Y rov,) 22 29
o ax, Tk ax, v JVT)ax} &9

j j
There are some modifications made to the standard K- @ model. Wilcox’s modified

K- @ model, SST K- @ model are examples to those modified models.

2.2 Numerical Methods for Solution

Numerical differentiation is a technique of numerical analysis to produce an
estimate of the derivative of a mathematical function using values from the function
and other knowledge about the function. It is widely used for solution of
engineering problems, especially for fluid flow. The idea is based on evaluating the

derivative of a function with the knowledge of its value on some points.

The method selected depends on the nature of the equation that is going to be
solved. There are various methods with different accuracy levels, convergence rates

and computational times required to find the solution.

Several methods are used for the solution of Navier-Stokes equations, energy

equation, turbulence equations, and continuity equation.

The unsteady, incompressible, Navier-Stokes equations are a mixed set of
hyperbolic-elliptic equations, which are difficult to solve because of the differences
in numerical techniques required to solve for hyperbolic and elliptic type equations.
Nearly all successful solutions of the incompressible Navier-Stokes equations have
employed the unsteady form of the equations. The steady-state solution is obtained
by marching the solution in time until convergence is achieved. The procedure is
called time-dependent approach and is used for the solution of momentum

equations.



Both explicit and implicit finite-difference schemes have been used with the time-
dependent approach to solve the incompressible Navier-Stokes equations. Nearly all
of these methods are second order accurate in space and either first or second order
accurate in time. If only the steady-state solution is required, it is often
advantageous to employ a scheme, which is not time accurate since the steady-state

solution may be achieved with fewer time steps.

Because of the added complexity, only a handful of third-order or higher methods
have appeared in the literature to solve the incompressible Navier-Stokes equations.
A second-order accurate scheme is thought to be the optimum choice in the sense of

computing time and accuracy.

2.2.1 Explicit MacCormack Method

When the original MacCormack scheme [29] is applied to the incompressible
Navier-Stokes equations the following algorithm results: The explicit scheme is
second-order accurate in both space and time. General forms of the equations are
given in forward differencing for the predictor step, and backward differencing is

used in the corrector step.

The terms in Navier Stokes equations are grouped such as:

oU OE OoF
+—+—=

—+—+—=0 (2.10)
o oOx Oy

The property U, can be predicted in the first step as:

2.11)

i,j+l i,])

Py At At
n+l __ n n n n n
Ui,;'— _Ui,j_E(Em,j_Ei,j)_A_y(F - F"

and corrected in the second step as:
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1 — At 5 el At el
n+l n n+l n+l n+l n+l n+l
Ui,j :E{Ui,j +Ui,j _E(Ei,j _Ei—l,j) _A_y(F;j _F;,j—l)j| (2.12)

The forward and backward differencing can be alternated between predictor and
corrector steps as well as between the two spatial derivatives in a sequential fashion.
This eliminates the bias due to one-sided differencing. An example is given in the

table below:

Table 2.1 Differencing Sequence for MacCormack Scheme

PREDICTOR CORRECTOR
STEP x-derivative y-derivative x-derivative y-derivative
1 F F B B
2 B B F F
3 F F B B
4 B F F B
5 F B B F
6 B F F B
7 F B B F
8 B B F F

F, forward difference; B, backward difference

The derivatives appearing in the viscous terms of E and F must be differenced
correctly in order to maintain the second order accuracy. This is accomplished in
the following manner. The x derivative terms appearing in E are differenced in the

opposite direction to that used for OE/0x while the y-derivatives are approximated

with central differences.

Explicit MacCormack algorithm is a suitable method for solving both steady and
unsteady flows at moderate to low Reynolds numbers. However, it is not a
satisfactory method for solving high Reynolds number flows where the viscous
regions become very thin. For these flows mesh must be highly refined in order to

accurately solve the viscous regions. This leads to small time steps and

11



subsequently long computational times if an explicit scheme such as MacCormack

method is used.

There are certain modifications made to MacCormack method to provide higher
convergence rate and stability. There are also works on using different time

increments in X and y directions, therefore decreasing the computational time [30].

A time averaging method similar to MacCormack method is used for the developed

code [31]. Mesh is refined near the solid surface.

2.2.2 Hopscotch Method

In Hopscotch algorithm, there are two sweeps of the solution domain carried out. In
the first sweep, the properties are approximated at the nodes where i+j+n is even,;
then in the second sweep, the properties at the nodes where i+j+n is odd are

calculated.

The mixed derivative terms appearing in the Navier-Stokes equations create a
problem in Hopscotch scheme. If those terms are differenced in the usual manner,
the Hopscotch method is no longer explicit and requires a matrix inversion. This

problem can be circumvented by lagging the mixed derivative term.

2.2.3 Brailovskaya Method

Brailovskaya method is a two-step scheme, second order accurate in space and first
order accurate in time. It does not give acceptable results except the steady-state

solutions. If the solution requires second-order accuracy, MacCormack or Lax-

Wendroff method must be used.

12



2.2.4 Allen-Cheng Method

Allen-Cheng method is an improvement to the Brailovskaya method. The viscous
term is differenced in a different way providing that it is more stable. Stability
condition for the Allen-Cheng method is independent of viscosity giving it a distinct
advantage over the other methods except the Hopscotch method. But it is first order

accurate in time, thus it can not be used for the solution of a transient problem.

2.2.5 Lax-Wendroff Method

Lax-Wendroff scheme is similar to MacCormack scheme. It is a two-step predictor-
corrector type scheme using the flow parameters between the nodes, instead of at

the nodes.

It is first-order accurate in time and second-order accurate in space, but it is
required to compute the variables at the half nodes thus the computational time
increases. There are some works in the literature to increase the time accuracy of
this method to second-order, using n+/ time levels in the predictor step instead of

n+1/2.

2.2.6 Implicit Methods

Implicit methods are widely used for the solution of the Navier-Stokes equations.
Solution procedure is generally more complicated for this type of methods. The
term implicit means that the dependent variable and the independent variables can
not be separated on opposite sides of the equations. Therefore, the set of equations
form a matrix, that is generally upper or lower bi-diagonal or triangular. Matrix
inversion or decomposition techniques should be used for the solution of those

methods.

13



Implicit methods generally require more computational time, but they are
convergent also for coarser mesh sizes. The stability restrictions of the explicit

methods do not exist in implicit methods.
2.3 Comparison of the Finite-Differencing Methods

For the numerical solution of the partial differential equations, finite-differencing
must be carried out based on the solution domain as a grid of discrete points are

substituted for the partial derivatives in the equations of interest.

The equations that are obtained after transformation and stretching must be finite
differenced in order to be solved. Finite-differencing must be made according to the

nature of the problem.

The continuity, momentum, energy, turbulence and conservation of species
equations contain the first and second partial derivatives of the flow properties with

respect to the coordinates and time.

The direction of differencing depends on the nature of the problem. There are three

options for first order differencing; backward, central and forward differencing.
2.3.1 Backward Differencing

Backward differencing of any partial derivative uses the information of the present
node and the previous node with respect to the flow direction to approximate the
derivative. If the flow properties of the present node are mainly affected by the
previous node, this is the ideal differencing scheme. It is also called “upwind

differencing”. It is given by the formula:

(a—”j = Bty (2.13)
ox ), ; Ax
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Here the index i represents the node number in x-direction and j represents the node

number in n-direction. Ax is the distance of the nodes in x-direction.

2.3.2 Central Differencing

Central differencing of any partial derivative uses the information of both the next
node and the previous node to approximate the derivative. If the flow properties of

the present node are affected by both nodes equally, this is the ideal differencing

scheme. It is given by the formula:

(a_u) _ ui+1,j _ui—l,j (2 14)
ox ), 2 Ax

2.3.3 Forward Differencing
Forward differencing of any partial derivative uses the information of both the next

node and the current node to approximate the derivative. This scheme can be used

to capture backflow. It is given by the formula:

(G_uj _ Uiy Ty (2.15)
ox ), ; Ax

The scheme used for the computer code is described in detail in section 6.1.
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CHAPTER 3

DESCRIPTON OF THE PHYSICAL MODEL

3.1 Physical Model

The physical model is a “flow over a flat plate” with constant regression rate and
constant surface temperature. Figure 3.1 shows the schematic of the model.

Boundary conditions are given in Chapter 4.

INLET

SRR RN

Figure 3.1 Definition of the Physical Model
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The main objective of this study is to develop a computer code to calculate the
velocity and temperature distribution, taking the effect of turbulence into
consideration for the given problem. The gas domain is assumed turbulent,

incompressible with boundary layer approximations.

It is assumed that:

- the flow is near-parallel

the inlet velocity is uniform

- regression is uniform throughout the boundary and constant
- physical properties are constant

- gasisideal

- solid surface is isothermal

The mathematical model, which describes the physical model given above, is

presented in next chapter.
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CHAPTER 4

MODELING OF THE GAS FLOW

4.1 Modeling of the Gas Flow

The gas flow over a solid surface is assumed to be two-dimensional, turbulent,
incompressible and subsonic with boundary layer approximations. The conservation
equations based on boundary layer approximations for an unsteady flow of a gas are
given as follows:

4.1.1 Continuity Equation

The general form of the continuity equation in two-dimensional cartesian

coordinates is [1]:

op  Opu)  O(pv) _ (4.1)
ot ox oy '

For the incompressible flow case, the continuity equation reduces to:

ou Ov
—+ =

—+—=0 4.2
ox Oy (42)

The continuity equation (4.2) is used in the code to calculate the vertical

velocity(v).

18



4.1.2 Momentum Equation

The x-momentum equation is used in the code to predict the horizontal velocity(u ).

General form of the momentum equation in x-direction is [1]:

a(pu)+8(pu2)+8(puv)+8_p_g gﬂ“ N Oou _ov _Qﬂ__ u_ovil_,
ot ox o oax |3 7 Tax o) oyl oy ex

(4.3)
The effective viscosity in this equation is defined as:
Hy = H+ 4, (4.4)
where the eddy (turbulent) viscosity is given by:
KZ
H =P Cy - (45)
&£
. . . op
For the incompressible case, where u_ is assumed constant, the pressure term -
X

drops out. If the kinetic and potential energy changes of the fluid and viscous
dissipation are neglected, parabolic form of the x-momentum equation (4.3) reduces

to [2]:

DYy Hloo 4.6

This parabolic form of the momentum equation assumes that the viscous dissipation

in x-direction is negligible therefore drops out.
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4.1.3 Energy Equation
General form of the energy equation is [1]:

0 0 0 0 oT 0 oT
5[(cv)pT]+a(cppuTH@(cpva)—*(k )——(k

O ﬁff/'"a ay eﬁ'g
auY (o) (ou v
na 4 2] 4 2] o[22 |0
‘ ox oy oy Ox

The flow 1is incompressible, subsonic and assumed near-parallel therefore

)_
(4.7)

conduction in x-direction and viscous dissipation terms are neglected. Fluid

properties are assumed constant. Therefore, equation (4.7) becomes:

oT or or, o0 oT
pc,(—+ru—+v-—)=—(k,; —) (4.8)
ot Ox gy’ oy 7 Oy

where the effective thermal conductivity is given by:

ky =k+k, (4.9)
the turbulent thermal conductivity is:

g = ot (4.10)
Pr

Energy equation is used in the code to predict temperature (7") of the gas.
4.1.4 K-¢ Equations

K and ¢ are, turbulent kinetic energy and turbulent dissipation energy respectively.
These variables are determined from the equations 2.5 and 2.6. For this study, these

equations are parabolized and the following equations are obtained:
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turbulent kinetic energy (K-equation)

2 2
oK ,OK_ oK _(pu, _#H |OK wfou) (4.11)
ot Ox o \p pPre )y p \oy
turbulent dissipation energy (g-equation)
2 2 2
6_8+ua_€+va_8: E+L a_f+cglﬂi a_u _ngg_ (412)
ot ox oy \p pPr.)oy p K\ oy K

the constants of the K-¢ model adopted for this study are given as [4]:

C,=0.09 C,=145 C,=20 Pr, =10 Pr,=13 (4.13)

4.1.5 Boundary and Initial Conditions

To close the mathematical formulation, the following boundary and initial

conditions are necessary for the gas domain:

u=u, v=10

TOP
BOUNDARY T =T,
e=0 K=0

INLET EXIT

u=u,

v=0

=

e=0

e

&l === SURFACE
T. = const,
=0 v=20
E=0 =0

Figure 4.1 Boundary conditions
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at the solid surface, y =h+r(x,t)

u=0 (4.14)
v =r (regression rate=constant) (4.15)
T, = const. (4.16)
K=0 (4.17)
e=0 (4.18)

at the top boundary, y=0

u=u, (4.19)
y=0 (4.20)
T=T (4.21)
K=0 (4.22)
£=0 (4.23)

at the inlet, x=0

u=u, (4.24)
y=0 (4.25)
T=T, (4.26)
K =0 (4.27)
£=0 (4.28)

initially, at # =0, for the whole domain except the bottom, top and inlet boundaries:

w=u, (4.29)
v=0 (4.30)
T=T, (4.31)
K=0 (4.32)
£=0 (4.33)
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4.2 Final Form of the Mathematical Model

Based on the above assumptions, equations used in the mathematical model are
(4.2) (4.6) (4.8) (4.11) and (4.12). These governing differential equations for the
present study are solved under the boundary and initial conditions given in section

4.1.5.

23



CHAPTER 5

MOVING BOUNDARY TRANSFORMATION AND STRETCHING

5.1 Introduction

The governing equations given in Chapter 4 for this study cannot be solved for
moving boundary without mathematical transformation. An appropriate
transformation as described below, is used to create a fixed boundary, orthogonal
domain where these governing equations can be solved. Furthermore, the equations
are stretched in vertical direction to increase the accuracy of the numerical solution
near the wall where high velocity and temperature gradients exist. Details of the

proposed transformation and stretching used in this study are given below.

5.2 Transformation of the equations

The boundary of the solid surface and the gas is a moving boundary, because of the
regression of the solid surface. The boundary between the solid and the gas is
moving as a function of x and t, therefore all the equations must be transformed into
a fixed, orthogonal coordinate system. There is no need to normalize the equations
in x-direction since x-coordinates are not affected by the regression. The model of
the domain can be seen in Figure 7.1, where the original position of the surface
before regression is shown with dashed line and the height of the gas before

regression is given as h.
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=

H=h+r(x 1) h

Figure 5.1 Schematic of the Moving Boundary

In order to deal with the moving boundary condition, the coordinate system is

changed from x-y to x-c. The transformation is given in the following sections.

It is shown in Figure 5.1 that regression rate is non-uniform, but throughout this

study it is set as constant and uniform.
5.2.1 Transformation of the gas domain

Gas domain is transformed from x-y coordinates into x-c coordinate system by the

given formulas:

(5.1)

]
H

where H is the time dependent total height of the gas. It is defined as:
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H(x,t)=h+r(x,t) (5.2)

Based on the transformation given above, the first order time derivative of any

variable in the gas domain is calculated from:

0 0 oo 0
=20+ 2 53
at() az() Py aG() (5.3)
where 22 oo o, __o, (5.4)
ot H ot H H
The first order derivative with respect to horizontal coordinate x is defined as:
0 0 oo 0
O =2()+—="2 55
ax() 8x() o a6() (5.5)
where 22 ool o, (5.6)
ox H ox H
The first order derivative with respect to vertical coordinate y is defined as:
0 oo 0
—0=—7--0 (5.7)
oy oy 0o
where 2% = 1 (5.8)
oy H

The second-order partial derivative with respect to vertical coordinate y is defined

as:
0, 0)y_000 000
5(5())— & a0( o aG()) (5.9)
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The transformation of a sample equation, turbulent kinetic energy equation, can be

seen in Appendix A.

5.2.2 Changes in Mathematical Domain After Transformation

Mathematical domain before the transformation is given in Figure 5.2.

Figure 5.2 Sketch of the Mathematical Domain Before Transformation (x-y

domain)

After the transformation, the mathematical domain is normalized in vertical

direction. Therefore, the cells became identical.
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Figure 5.3 Sketch of the Mathematical Domain After Transformation (x-c domain)
5.3 Stretching of the equations

The transformed governing differential equations in the gas domain must be
stretched to generate a finer mesh at the boundaries. The gradients of the flow
parameters are very high in the boundary layer; therefore, it is essential to have

finer mesh close to the boundary.

Stretching is carried out in vertical direction using a logarithmic transformation.
The coordinate system is changed from x-c to x-n after stretching. The formula

used during stretching is given as [15]:

({8 +[c(1+2a)/ h]-2a}/{p - [c(1+2a)/ h]+2a})
n[(g+1)/(8~1)]

n=a+(+a)x

(5.10)

In this transformation if « is selected as « =0, therefore the mesh is refined only
at o = h, at the solid-gas boundary. If ¢ was selected as « = 0.5 the mesh will be

refined equally at the bottom and top boundaries of the gas domain. The other
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parameter § has values such thatl.0 < f <o. In this study it is selected as [1]
p=1.15.

To transform the governing differential equations to the new x-n coordinate system,

the chain rule of the derivatives is used as:

9 19106

80'()_60' 677() (5.11)
where

" on 28(1-a)2a+1) (5.12)

~ o0 g ~[oar+ 1) h-2alfinl(g 1)1

After stretching, the computational domain becomes as shown in Figure 5.4. Mesh
is highly refined near the solid-gas boundary, where there is high energy interaction,

high velocity and temperature gradients.

b 4 HX

ATy

Figure 5.4 Sketch of the Mathematical Domain After Stretching (x-n domain)
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After the flow field is predicted in the stretched computational domain, the

following inverse transformation is used to go back to the physical domain.

o =

(B 2a)(B+1)/(5-1)] e ~p+2a 55
Ca+1) |1+ [p+1)i(p-1)] e |

The stretching of a sample equation, turbulent kinetic energy equation, is provided

in Appendix A.

5.4 Final Form of the Transformed and Stretched Governing Differential

Equations
After transformation and stretching, the governing differential equations become:

Continuity:

u_o, M, 1, & g (5.14)

ox H'en "o

Momentum:

ouw_ o ~ow _ou_ o ou 1 ou_
P P ey P TP ey TP T o

5.15
L 282“_0 ( )
'ue..fsznc 8772
Energy

T Gr a—T+ cua—— ¢ ZTru a—T+

PpathHﬂaa Ppapp xﬂo’an
) (5.16)

oT 1 , 0T
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Turbulent Kinetic Energy:

oK o 0K 0K o oK 1 oK
A, N 0'_+u___x 0'_+_V770'_:
o H 0 ox H on H on
, (5.17)
Lip, # | 20K p 1 of0u]) o
H*\p pPr, ) o> p H* 7 \on
Turbulent Dissipation Energy:
oe o oe o o© oe 1 oe
o T e ot U Ul —— VI =
o0 H on ox H on H on
(5.18)

1 2 2 2
ﬁ—’_ Ith 770'2 8 62‘ +C£1 ii%no’z 8_” _C52 8_
g on K p H on
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CHAPTER 6

NUMERICAL SOLUTION TECHNIQUE

6.1 Introduction

The governing differential equations are non-linear although parabolic in nature.
For solution an explicit, segregated, second order accurate finite difference
technique will be adapted. The transformed and stretched governing differential
equations (5.14), (5.15), (5.16), (5.17) and (5.18) will be linearized for the

computational domain given in Figure 6.1 and Figure 6.2.

6.2 Final Numerical Domain

Sample meshes of the instantaneous computational domain relative to fixed
reference of frame are given in the following figures. Mesh is given for two

different times, at the beginning and end of simulation, at t =0s and ¢ =0.08s. i-j

indicates the nodal coordinates.
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Figure 6.1 Numerical Domain for 21x61 Mesh Size at the Beginning of Simulation

(¢t =0s, Solid Surface at Vertical Distance = 0m)
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Figure 6.2 Numerical Domain for 21x61 Mesh Size at the End of Simulation,
(t=0.08s, #=0.015m/s, Solid Surface at Vertical Distance =—1.05x10"m)
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6.3 Numerical Technique and Differencing Scheme Used in the Previous Study

The transformed and stretched equations are finite-differenced in order to be solved

by computer. A single-step explicit scheme was used in the previous study [2].

Momentum, energy and turbulence equations are in the form similar to the form

given in [15]:

o¢p o¢p op O o¢
—+pu—+pv—=—| 1—|+8 6.1
p@t pu@x pv@y Oy( oy (¢

where the first term is “inertia of ¢”, second term is “convection of ¢ in x-
direction”, third term is “convection of ¢ in y-direction”, fourth term is “diffusion
of ¢ in y-direction” and the last term is “source term”. In this equation lambda -

diffusion coefficient- is constant. Turbulent K—& equations contain additional

terms, which are called viscous dissipation terms in y-direction.

The viscous dissipation terms in the turbulent kinetic energy and turbulent energy

dissipation equations are:

2
A ou)ond 6.2)
p 0y
a 2
o i%(a—”] 63)
p ly

After transformation and stretching of the equations, while chain differentiation of

o . . oo
derivatives with respect to x and t, additional terms appear because =
t

oo
and — are not zero.
Oox
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In the previous computer code:

1. backward differencing is used during linearization of convective terms
which has derivatives with respect to x, and inertia terms which have

derivatives with respect to t

1. central differencing is used during linearization of convective and inertia

terms which have derivatives with respect to 7, dissipation terms and

diffusive terms
1il. source term does not contain any derivative, so it is not differenced
In Appendix A, linearization of a sample equation, turbulent kinetic energy
equation is given for the present computer code. The differencing at the predictor
step of the present computer code is exactly the same as the whole differencing of

the previous computer code. Finite differencing of each term can be found in A.3.

The following equations are used to predict the following flow properties:

1. continuity equation - vertical velocity (v)

1i. Xx-momentum equation - horizontal velocity (u )
1. energy equation - temperature (7')

1v. K-equation - turbulent kinetic energy ( K )

V. g-equation - turbulent dissipation energy (&)

6.4 Numerical Technique and Differencing Scheme Used in the Present Study
The single-step explicit scheme used in the original program is replaced by a two-

step, time averaging method that is second order accurate in time. The same

equations are used for the prediction of the flow field.
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In the present computer code:

1. in both predictor and corrector stages, backward differencing is used

during linearization of convective terms which has derivatives with

respect to X, and inertia terms which have derivatives with respect to t

1. in both predictor and corrector stages, central differencing is used during

linearization of convective and inertia terms which have derivatives with

respect to 77, dissipation terms and diffusive terms

1il. in both predictor and corrector stages, source term does not contain any

derivative, so it is not differenced

In Appendix A, differencing of each term of a sample equation, turbulent kinetic

energy equation, is given in detail.

6.5 Final Form of the Linearized and Discretized Equations

A similar differencing given in Appendix A is applied to the equations (5.14),

(5.15), (5.16), (5.18) and the following linearized and discretized equations given

below are obtained. During the discretization, properties and the coefficients of

transformation and stretching are assumed constant.

Continuity equation:

First time step (n+1)

el ontl

Vii =Viint An

Ax

nl e+l (H)n U —Uiq,
ij
s

n+l n+l

o n UWije Ui
(O oy B DM 6.4
(H x775),,] 2An ©4)
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Second time step (n+2)

n+2

- w2 _ - Y
n+2 __ n+2 i-1,j n i,j+l i,j-1
Vi,j - lj+1 +A77(_O_)lj Ax _(Erxno-)i,j 2A77
Time averaging at (n+1)
n+2
i Vig Vi
ij 2
Momentum equation:
First time step (n+1)
o u'.  —u'. u'. —u', .
_p(_’;no—)zj i,j+1 i,j-1 _I_pu:i i,j i-1,j
H 2An / Ax
— At o u' o —u u o —u
ulf =+ S = p(E )y, +p(—vr7 [
L] L] p H xro 1] 2A77 (o lj 2A77
_{ 1 in 2}" (u,j+1 2u! +u; 1)
2 Mefftlo
H ij (Aﬂ)
Second time step (n+2)
o prv R o
i, j+1 i,j—1 n+l 71, i-1,j
= p(1m,),— .
H " 2An v Ax
o o At n+l _ n+l n+l _ n+l
2 1 n+l i, j+1 i,j—1 n+1 i, j+1 i,j—1
R e B e B
P 2An 2An
1 n+l 1
_|: 1 - 2j|n 4 ﬁ(uzn;rH 2ul; +up 1)
H % (An)’

Time averaging at (n+1)

n+2

1/[ “r 1/[
n+l __

i,j 2
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Energy equation:

First time step (n+1)

—pC (grn )n]::l/“'l _7—;:[/—1 +le, un 7—;:[/_]—;:?]'
TCHUY T 2An PR Ax
atl At o) R 1 L =T
T =T" +—|—pc (—rnpu) ——"+pc (—vn ) - S 6.10
i,j i,j mp mp(H xﬂo‘ )l,/ 2A77 ﬂ.p(H 770)[,_1 2A77 ( )
‘F" . } (1, —21 47,
H2 eff 'lo y (A?])z
Second time step (n+2)
G o -
o n i,j+1 i,j-1 n+l T i,J i—l,j
— —rn ) —— u
mP(H tno)z,] 2A77 WP AX'
- T R
_ “r n _un+l i,j+1 i,j—-1
I pc,,(H o )i, T oan
=T +— — — (6.11)
'Ocp pe (LU )n vﬁ Ti,j+1 _Ti,j—l
PRH YN oAg
e |kl (o -2 73
H (an)?
Time averaging at (n+1)
T + T
n+l _ L) L]
T I (6.12)
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Turbulent Kinetic Energy Equation:

First time step (n+1)

n n n n
_(O- rn )n Ki,_/“ _Ki,j—l +u" Kl',j _Kifl,j
t'to/i,j i
H ’ 2An J Ax
n n n n
Ki,j+1 -K n ij+l Ki,_j—l

i 1
i,j—1
+(—vn ).
A7 (}1 Mo )i, A7

n n n n 6.13
1 (y 4, J 2} (k7. -2k, +K7 ) (6.13)
7 (An)®

O- n
B (E ROl
ntl _ prn _
K=K/ + At

Second time step (n+2)

n+l n+l n+l n+l

_(grn )! Ki,/’+1 _Ki,j—l n+l Kz/ _K'—lj
t i j Ny

H " 2An A Ax

n+l n+l n+l n+l
_(g ),, nt I<i,j+1 _Ki,_j—l 1 no o+l Ki,j+1 _Ki,./fl
r5)i U

+(— R VA
H 2A77 (Hno')l,j L] 2A77

[ i n+ n+l el 6.14
| Ho_H (Ki,«/il _2Ki,/’1+Ki,J’ll) (6.14)
|1\ p pPr )7 (An)’

— — \2
n o n+l n+l
L | Ui T U o e
_ Wﬂo‘ M T?] +&;

l’.]

n+2 _ o+l
K=K+ Ar

Time averaging at (n+1)

n n+2
Ki, + K

n+l
Kij=———" (6.15)
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Turbulent Dissipation Energy Equation:

First time step (n+1)

n

H

n+l o
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O
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o n €
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Second time step (n+2)
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6.6 Remarks on the Initial Conditions

Because of computational necessity, initial values of turbulent kinetic energy and
turbulent dissipation energy are taken as small values near zero, instead of setting

them equal to zero.

at the solid surface, y =h+r(x,1)
K =1.0x10"" (6.19)
£=1.0x10"" (6.20)

at the top boundary, y=0

K =1.0x10" (6.21)
£=2.1523x10" (6.22)

at the inlet, x=0
K =1.0x1077 (6.23)

£=0 (6.24)

initially, at # =0, for the whole domain except the bottom, top and inlet boundaries:

K =1.1x10"" (6.25)
£=2.1523x107 (6.26)
6.7 Time Delay

Both the computer codes of the previous and current studies employ a time delay
algorithm. At the beginning, both programs start with the given initial conditions
except the surface temperature and regression rate and waited until time
t =0.0098s . Then both the regression and the solid surface temperature is set to the
prescribed value. At the beginning, until ¢ = 0.0098s, regression rate 7 = 0m/s and

temperature of the solid surfaceis 7, =7, .
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6.8 Numerical Solution Procedure
Numerical solution procedure of the present computer code is as follows:

1. Read input operational parameters: u,,,T,,T,, p,.,l 1,7 (= 1;)
2. Read input geometrical parameters: H, L

3. Read input turbulence parameters: (K, ¢) Pr.,Pr.,C,,,C,,

initial
4. Read input computational parameters: IN,JN,¢ .,

5. Read properties of the gas: c,,c k, 1, R

6. Calculate the density from ideal gas relation as a function of p,7: p
7. Assign the initial conditions to flow field: (u,v, T.K ,E)Z i

8. Assign 7 =0,7, =T,

9. Predict Tl? from the energy equation (6.10)

10. Predict ul”?, from the momentum equation (6.7)
11. DO i=2,IN -1

DO j=JN-1,2

Predict vl”? , from the continuity equation (6.4)

END DO
END DO

12. Extrapolate ujy  and v};',, at the exit boundary

13. Predict K l”? , from the turbulent kinetic energy equation (6.13)
14. Predict gl”? , from the turbulent dissipation energy equation (6.16)
15. Predict (,ut )ﬁ , from (4.5)

16. Predict Tl”? from the energy equation (6.11)

17. Predict ul”? , from the momentum equation (6.8)

42



18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

DO i=2,IN-1
DO j=JN-1,2

Predict v;';", from the continuity equation (6.5)

END DO
END DO

Predict K", from the turbulent kinetic energy equation (6.14)

n+2

Predict &;”, from the turbulent dissipation energy equation (6.17)

Predict u;; v/, T, K, &, using the time averaging equations (6.6),
(6.9), (6.12), (6.15), (6.18)
Predict (1,)'"', from (4.5)

n+l n+l

Extrapolate u;, ; and vy ;, at the exit boundary

Update the vertical physical position of the solid surface according to the
regression rate
Update the vertical physical coordinates of the gas domain according to the

regression rate

Write the variables to output file: (u,v,7T,K, ¢, 4, ):7;1

Check if time <  delay

YES — return step 9,

ELSE — continue

Assign the prescribed values of the regression rate and surface temperature:
AT,

Check if time <t ,,,

YES — return step 9,

ELSE — continue

. . . n+l
Write the variables to output file: (u,v,T,K, &, 1,);

END of program
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6.9 Computer Code

A Fortran code (program) has been developed which implements the solution
procedure given in section 6.8. In Chapter 7, it is verified that the computer
program works independent of time increment and mesh size, and the results of the
program is compared to Blasius velocity profile and turbulent velocity profiles

given by other studies. Flowchart of the computer code is given in Appendix B.

Computer program is run under various conditions and all the results presented in

following chapters are obtained from those runs.
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CHAPTER 7

VERIFICATION OF THE COMPUTER CODE

7.1 Introduction

This chapter starts with a comparison of the results of the present program with
Blasius solution for laminar flow over a flat plate. Then, for the turbulent case, the
results of the present program are compared to experimental and numerical results
by other researchers. Finally, it is proven that the results of the program are

independent of both the mesh size and time increment.

7.2 Comparison of the Numerical Solution with Blasius Solution

The computer code of the present study is verified by comparing to Blasius solution
for flow over a flat plate. Blasius solution is valid only for laminar flows, with
Reynolds number less than 1.0x10°. All the presented results in this section are for
lower Reynolds numbers. Both the previous computer code and the computer code
of the present study are run for zero regression rate. Effect of turbulence is set to
zero, since the analysis is for laminar case. The program is allowed to run 0.08s and
stopped since steady-state values are reached. List of the input parameters are given

in Table 7.1.

Table 7.1 List of Input Parameters Used in Runs with Number 1, 2

PARAMETER |DESCRIPTION VALUE
u, free stream horizontal velocity 20 m/s
T, free stream gas temperature 293 K
T, temperature of the solid surface 293 K
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INxJN number of nodes in x and y directions 21x61

At time increment at each iteration 1.0x107"s

L plate length 0.0381 m

H total height of the gas domain 0.004 m

2 regression rate of the solid surface 0 m/s

P density of the gas 1.3137 kg/m3

H absolute viscosity of the gas 1.5x10° N .S/ m’
¢, specific heat of the gas 922.00kJ /kg.K
M, turbulent viscosity ON.s/m’

Two runs are made in this section. Run number 1 is done with the computer code of
the previous study, while the run number 2 is done with the code of the present

study.

Table 7.2 List of Runs for Blasius Profile Comparison

RUN NUMBER DESCRIPTION Re

Laminar flow, computer code of the

| previous study, for comparison with the

Blasius solution, run parameters given in
Table 7.1

5.33x10*

Laminar flow, computer code of the

2 present study, for comparison with the

Blasius solution, run parameters given in
Table 7.1

5.33x10*

During the analysis, data of velocity profiles are stored for 3 different horizontal

distances. The Blasius profile given for non-dimensional variables 7and u/u,, are

found in [14] and 7 is transformed into y coordinate according to the following

equation:
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n=y |2 (7.1)

Values of horizontal velocity predicted by the previous and present computer codes
and the Blasius solution are tabulated for the 18™ node, where x =3.24x107%m. It

can be found in Appendix C. It is seen from the table that the maximum deviation

from the Blasius solution is around 38.6% close to the boundary, whereas it is

0.21% at y =2.81x107 m . Velocity profiles at three different positions are given as

follows:

0.004 —

0.003
é |
& L
o
-E |
T 0002
o n
0
u |
_S = —F— present program
t —%—— hlasius solution
g D previous program

0001

? L
%
horizontal velocity -u- (m/fs)

Figure 7.1 Comparison of the Results of the Previous Program, Present Program
and the Blasius Solution at x=3.81x10"m (u, =20m/s, Re=6.67x10",
t=0.08s)
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8 B blasius solution
bt » —@— previous program
g
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@
=

0.001

horizontal velocity -u- (m/fs)

Figure 7.2 Comparison of the Results of the Previous Program, Present Program
and the Blasius Solution at x=1.905x107m (u, =20m/s, Re=3.34x10",
t =0.08s)
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0.004 —

0.003 -

0.002 -

i present program
- blasius solution

previous program

vertical coordinate -yp-(m)

0.001

horizontal velocity -u- (m/s)

Figure 7.3 Comparison of the Results of the Previous Program, Present Program
and the Blasius Solution at x=3.24x107m (u, =20m/s, Re=5.68x10",
t=0.08s)
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7.3 Comparison of the Turbulent Boundary Layer Velocity Profile with

Various Studies
The turbulence model used for this study is standard K —¢ model, and it is given in
Chapter 4 in detail. To validate the application of this turbulence model in the

present study, a couple of cases are studied.

The laminar and turbulent boundary layer profiles given by Schetz [32] are:

1 L
= [
2 0.8 —&—— laminar
= - ——&—— turbulent [32]
E -
° N
8 06|
= B
= i
=
£ N
w 04
|
s B
E L
=
ot B
2 02F

0= i e

—I | | | I 1 1 1 I 1 1 1 I 1 | | I | 1 1 I
0 0.2 0.4 0.6 08 1
non-dimensional horizontal velocity (u/ 1, )

Figure 7.4 Comparison of the Turbulent and Laminar Boundary Layer Velocity
Profiles [32]

Turbulent velocity profiles measured by Schetz [32], predicted by Antoniou [9] and

present study are as follows.
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& turbulent [32]
——B—— present program
08 —&—— turbulent[9]

non-dimensional vertical distance (y/J)

non-dimensional horizontal velocity (u/ 1, )

Figure 7.5 Comparison of the Turbulent Boundary Layer Velocity Profiles
Measured by Schetz [32], Predicted by Antoniou [9] and Present Program

Antoniou [9] used an implicit scheme for the solution of the compressible,
hyperbolic finite-difference equations. For the present study, an explicit scheme is

adopted which is given in Chapter 6.

As it can be observed from Figure 7.5, the velocity predicted by the present
program is underestimated near the wall with respect to other two studies, because it

is parabolic.
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7.4 Grid Independence Study

The computer code of the previous study used a mesh size of 21x61. In order to
verify that the solution is independent of mesh size, several runs are made with
three different mesh sizes, 21x41, 21x61, 31x61, where the first number indicates
the mesh size in x-direction and second number indicates the mesh size in y-

direction.

Results are found slightly dependent on the mesh size, with maximum difference of
5% for horizontal velocity between 21x41 and 31x61 mesh sizes. Properties vary
less than 1% between 21x61 and 31x61. Therefore, for the parametric study, 21x61

mesh size is used.

Following variables are plotted: horizontal velocity, temperature. Velocity and

temperature distribution is given at x =1.905x10m.

Input parameters in Table 7.3 are used for the runs 4,6,7.

Table 7.3 List of Input Parameters Used in Runs with Number 3-13

PARAMETER DESCRIPTION VALUE

T, free stream gas temperature 293 K

T, temperature of the solid surface 600 K

L delay delay time after which regression starts 0.0098s

L plate length 0.0381 m

H total height of the gas domain 0.004 m

7 regression rate of the solid surface 0.015 m/s

P density of the gas 13137 kg/m*
M absolute viscosity of the gas 1.5x10° N .s/ m*
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¢, specific heat of the gas 922.00kJ kg K

Table 7.4 List of Runs for Grid Independence Study

RUN NUMBER DESCRIPTION MESH SIZE

Turbulent flow, computer code of the
present study, Re=5.33x10",
F=0.015m/s,At =1.0x107" s ,

run parameters given in Table 7.3

21x61

Turbulent flow, computer code of the
present study, Re=5.33x10*,
F=0.015m/s,At =1.0x107"s ,

run parameters given in Table 7.3

21x41

Turbulent flow, computer code of the
present study, Re= 5.33x10%,

F=0.015m/s,At=1.0x10""s ,
run parameters given in Table 7.3

31x61

7.4.1 Horizontal Velocity Profiles

Horizontal velocity profiles for 3 different mesh size are plotted at horizontal
distance x =1.905x107m . Maximum variation of u is less than 5% between mesh

sizes 21x41 and 31x61.
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Figure 7.6 Horizontal Velocity Profiles at x =1.905x107m , for 3 Different Mesh

Sizes (1, =100m /s, Re =1.67x10°, 7 =0.015m/s)
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7.4.2 Temperature Profiles

Temperature profiles for 3 different mesh size are plotted at horizontal

distance x =1.905x10 2 m . Maximum variation of 7 is less than 2% between mesh

sizes 21x41 and 31x61.

0.004

0.003
o 00027 — F— mesh size=21x41
Q ——— mesh size=21%61
g - | —<— mesh size=31x61
2 i
S 0.001
8
2

0
-0.001
| I L L 1 L I 1 1 L L I 1 1 L L I L 1 1 1 I L 1 1 1 I 1 L L 1
300 350 400 450 500 550 6500
temperature -T- (K)

Figure 7.7 Temperature Profiles at x =1.905x107m, for 3 Different Mesh Sizes

(u, =100m/s, Re =1.67x10°, 7#=0.015m/s,T, = 600K )
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7.5 Time Increment and Convergence Study

In order to verify that the solution is independent of time increment, several runs are

made with three different time increments, Af=0.5x10"s, Asr=1.0x10"s,
At =1.5x107"s . It is found out that the results are independent of time increment.

Therefore, At=1.0x10"s is during the parametric study. Following variables are

plotted: horizontal velocity, temperature.

Values of horizontal velocity, vertical velocity, temperature and turbulent viscosity
are stored at every 1000 iterations, for 9 nodes. Then this data is used to create
histogram plots at those nodes. Nodes are selected such that 3 of them are close to

the inlet, 3 of them are in the middle of the plate and three of them are close to the

exit of the control volume. Histogram plots at node (3,59) where x =3.81x10"m

and initially y = 3.95x10 " m , are given.

In the histogram of temperature at node (3,59), Figure 7.6 , the temperature remains
constant for 0.0098s and then rapidly increases. This is because of the delay time

concept given in section 6.5. At £ =0.0098 s, temperature at the lower boundary (at

the surface of the solid surface) is set to 600K as well as the regression rate is set to

a constant value other than 0. Starting from 7 =0.0098 s, the lower boundary moves

downward because of the regression of the solid surface.

Values of the input parameters for all runs in Chapter 7 and 8 are given in the

following table. Some of the runs in Chapter 9 also use the same input parameters.
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Table 7.5 List of Runs for Time Increment Independency Study

RUN NUMBER

DESCRIPTION

TIME INCREMENT

Turbulent flow, computer code of the
present study,

Re=5.33x10%,u, =100m /s,

7 =0.015m /s, mesh size 21x61, run
parameters given in Table 7.3

0.5x107" s

Turbulent flow, computer code of the
present study, Re=5.33x1 0*,
u, =100m/s, 7 =0.015m/s, mesh

size 21x61,
run parameters given in Table 7.3

1.0x1077s

Turbulent flow, computer code of the
present study, Re=5.33x10",
u, =100m/s, 7 =0.015m/s , mesh

size 21x61,
run parameters given in Table 7.3

1.5x107" s

7.5.1 Horizontal Velocity

The values of horizontal velocities (u) are stored in data files for every 1000

iterations. These files are used to create the histogram plots, which shows the

variation of horizontal velocities with time, at node (3,59). Position of that node

initially corresponds to x =3.81x107m, y =3.95x10"m and changes because of

regression of the solid surface. The horizontal velocity tends to increase as the

position of the node moves away from the boundary.
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Figure 7.8 Histogram of Horizontal Velocities at Node (3,59), Initially at

x=3.81x10"m,y =3.95x10" m, for 3 Different Time Increments (u, =100m/s,

Re =3.37x10%,7=0.015m/s)

The following figure shows the development of the boundary layer. Program starts

with the initial conditions given in data files and converges to a steady-state value.

This value is independent of time increment. As already explained before,

regression rate is 0 until ¢z =¢

state values.

delay
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Figure 7.9 Histogram of Horizontal Velocities at Node (3,59) in Logarithmic Time
Scale, Initially at x=3.81x10"m,y=3.95x10"m, for 3 Different Time

Increments (u,, =100m/s, Re =3.37x10%,7 =0.015m/s)
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Horizontal velocity distribution is plotted at horizontal distance x =1.905x10 7 m .

0.004

0.003
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Figure 7.10 Horizontal Velocity Profiles at x =1.905x10>m, for 3 Different Time

Increments (u, =100m /s, Re =1.67x10°,7=0.015m/s)
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7.5.2 Temperature

The values of temperatures (7) are stored in data files for every 1000 iterations.
These files are used to create the histogram plots, which shows the variation of
temperatures with time, at node (3,59). Position of that node initially corresponds to
x=3.81x10"m, y=3.95x10"m and changes because of regression of the solid
surface. The gas temperature tends to decrease as the position of the node moves

away from the boundary.
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Figure 7.11 Histogram of Temperatures at Node (3,59), Ilinitially at

x=3.81x10"m,y =3.95x10" m, for 3 Different Time Increments (u, =100m/s

Re =3.37x10%,7=0.015m/s)
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7.6 Singular Points in Histogram Plots

There are singular points in histogram plots of horizontal velocity, vertical velocity,
temperature and turbulent viscosity. Singular points in the plots are originated from
the low resolution of the graphs or insufficient number of points are stored during

simulation.

Singular points in temperature histograms are caused by the time delay, while

surface temperature suddenly increases to 600K at time 0.0098s.

Figure 7.13 shows the close-look to the singular point of the histogram plot of
horizontal velocity, Figure 7.4. It can be seen that there is a curve instead of a

singular point. Similar results are obtained for other plots.
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Figure 7.12 Close-look to the Histogram of Horizontal Velocity at Node (3,59),
Initially atx =3.81x10"m, y =3.95x10" m
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CHAPTER 8

COMPARISON OF THE RESULTS OF THE PRESENT AND PREVIOUS

PROGRAMS

8.1 Introduction

Both the previous and present computer codes are run with same input parameters.

The obtained results are plotted in the following sections.

Velocity profiles, vector plots of velocity, contour plots of horizontal velocity,
temperature and turbulent viscosity shows that boundary layer predicted by the
present program is thinner with respect to the previous program. This is mainly,

because of the viscosity predicted by the present program is lower.

Run number 8§ is carried out with the computer code of the previous study, while the

run number 4 is done with the code of the present study.

Table 8.1 List of Runs for Comparison of Present and Previous Studies

RUN NUMBER DESCRIPTION

Turbulent case, computer code of the present study, for
comparison with the previous program

4 21x61 mesh size, u, =100m/s, Re =1.67x10°,
7=0.015m/s,T, =600K ,At=1.0x10"s,
input run parameters given in Table 7.3

Turbulent case, computer code of the previous study, for
comparison with the present program

8 21x61 mesh size, u, =100m/s, Re =1.67x10°,
#=0.015m/s,T. = 600K , At =1.0x107"s
input run parameters given in Table 7.3
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8.1.1 Horizontal Velocity Profiles

In this section, velocity profiles of the present and previous program is plotted at

three different horizontal distances.
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© | previous program
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S 0,001}
t N
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0 b
-0.001
horizontal velocity -u- (m/s)

Figure 8.1 Velocity Profiles of the Previous and Present Programs at
x=381x10"m (u, =100m/s, Re=3.34x10*, =0.08s, 7=0.015m/s,
T =600K)
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Figure 8.2 Velocity Profiles of the Previous and Present Programs at

x=1.905x10%m (u, =100m/s, Re=1.67x10°, t=0.08s, #=0.015m/s,
T. = 600K )
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Figure 8.3 Velocity Profiles of the Previous and Present Programs at
x=3.24x10"m (u, =100m/s, Re=2.84x10°, ¢=0.08s, #=0.015m/s,
T =600K)
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8.1.2 Velocity Vectors and Contours

Velocity vectors for both the previous and present programs can be found in the
following figures. In data files information of the whole domain is written, however

to illustrate more clearly vectors at some of the horizontal distances are shown.
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Figure 8.4 Velocity Vectors of Previous Program (¢#=0.08s, 7=0.015m/s,
u, =100m/s, T. =600K)
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Figure 8.5 Velocity Vectors of Present Program (¢#=0.08s, 7=0.015m/s,
u, =100m/s, T, = 600K )
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8.1.3 Temperature Contours

The temperature contours at the end of analysis, at time 0.08s, are given in Figure

8.8 for the previous program and in Figure 8.9 for the present program.
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Figure 8.6 Temperature Contours of Previous Program (¢ =0.08s, #=0.015m/s,

u, =100m/s, T. = 600K )
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Figure 8.7 Temperature Contours of Present Program (¢ =0.08s, 7 =0.015m/s,

u, =100m/s, T, = 600K )



8.1.4 Turbulent Viscosity Contours

The turbulent viscosity contours at the end of analysis, at time 0.08s, are given in

Figure 8.10 for the previous program and in Figure 8.11 for the present program.
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Figure 8.8 Turbulent Viscosity Contours of Previous Program (¢=0.08s,

u, =100m/s, 7r=0.015m/s, T, = 600K )
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Figure 8.9 Turbulent Viscosity Contours of Present Program (#=0.08s,
u, =100m/s, 7r=0.015m/s, T, = 600K )
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8.1.5 Histogram Plots of Selected Variables

The values of horizontal velocities and temperatures are plotted for run numbers 4
and 8. There is a slight difference between two programs for the predicted value of
temperature, less than 1%. For the horizontal velocity, this difference is as high as

28%.
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Figure 8.10 Variation of the Horizontal Velocities with Time at Node (11,59)
which is Initially at x =1.905x107m,y=3.95x10"m (¢t=0.08s, u, =100m/s,
7=0.015m/s, T, =600K )
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Figure 8.11 Variation of the Temperatures with Time at Node (11,59) which is
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CHAPTER 9

PARAMETRIC STUDY

9.1 Study with Different Regression Rates
Present program is run with three different regression rates and results are presented
in the following pages. It is observed that program worked successfully and no

degeneration of the results near the boundary 1s found.

Table 9.1 List of Runs for Different Regression Rate Study

RUN NUMBER DESCRIPTION REGRESSION RATE

Turbulent flow, computer code of the
present study,
Re=5.33x10*,7=0.015m/s , run
parameters given in Table 7.3

r=0.015m/s

Turbulent flow, computer code of the

9 present §tudg,()l};= 5/.3396104 ) F=0.012m/s
r=20. mjs

run parameters given in Table 7.3

Turbulent flow, computer code of the

10 present study, Re=5.33x10*, = 0.018m/ s
r=0.018m/s '
run parameters given in Table 7.3

9.1.1 Horizontal Velocity Profiles

Horizontal velocity profiles at x =1.905x107m is given in the following figure at
the end of simulation, 7 =0.08s. Regression caused the bounds of the physical

domain to change, therefore plots start from different points in vertical direction.
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Figure 9.1 Horizontal Velocity Profiles at x=1.905x10"m, for 3 Different

Regression Rates (1, =100m /s, Re =1.67x10°,¢ = 0.08s)

9.1.2 Temperature Contours

In the following figures, temperature contours at the end of simulation for
regression rates 7 =0.012m/s and 7=0.015m/s are given. In Figure 9.4, for
7=0.018m/s instantaneous temperature contours are given for various times. The

regression of the boundary between gas and solid surface can be observed.
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Figure 9.2 Temperature Contours of Present Study (7 =0.012m/s, u, =100m/s,

Re =3.34x10°,¢ = 0.08s)
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Figure 9.3 Temperature Contours of Present Study (7 =0.015m/s, u, =100m/s,

Re =3.34x10°,¢ = 0.08s)
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Figure 9.4 Temperature Contours of Present Study (7 =0.018m/s, u, =100m/s,

Re =3.34x10°,¢ = 0.08s)
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Figure 9.5a Temperature Contours of Present Study (7 = 0.018m/s, u, =100m/s,

Re =3.34x10°,¢ = 0s)
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Figure 9.5b Temperature Contours of Present Study (7 =0.018m/s, u, =100m/s,

Re =3.34x10°,¢ = 0.02s)
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Figure 9.5d Temperature Contours of Present Study (7 =0.018m/s, u, =100m/s,
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Figure 9.5e Temperature Contours of Present Study (7 =0.018m/s, u, =100m/s,
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9.2 Study with Different Reynolds Numbers

Present program is run with three different Reynolds numbers and results are
presented in the following pages. The boundary layer became thinner as the

horizontal velocity increased.

Table 9.2 List of Runs for Different Reynolds Number Study

RUN REYNOLDS
NUMBER DESCRIPTION NUMBER
Turbulent flow, computer code of the
present study, s
4 Re =3.34x10

u, =100m/s,Re =3.34x10°,7 = 0.015m/s
, run parameters given in Table 7.3
Turbulent flow, computer code of the

present study, u, =150m/s,Re =5.01x10°,

11 _ Re =5.01x10°
7 =0.015m/s
run parameters given in Table 7.3
Turbulent flow, computer code of the
— _ 5
12 present study, u, =150m/s,Re =6.01x10", Re =6.01x10°

F=0.015m/s
run parameters given in Table 7.3

9.2.1 Horizontal Velocity Profiles and Contours
Horizontal velocity profiles at x =1.905x107m is given in the following figure at

the end of simulation, #=0.08s are plotted in Figure 9.5. Horizontal velocity

contours can be seen in figures 9.6, 9.7 and 9.8 for different free stream velocities.
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Figure 9.6 Horizontal Velocity Profiles at x=1.905x107m, for 3 Different
Reynolds Numbers (7 = 0.015m /s, t = 0.08s)
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Figure 9.7 Horizontal Velocity Contours of Present Study (7=0.015m/s,

u, =100m/s, Re =3.34x10,¢ = 0.08s)
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Figure 9.8 Horizontal Velocity Contours of Present Study (7 =0.015m/s,

u, =150m/s, Re =5.01x10°,¢ = 0.08s)
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Figure 9.9 Horizontal Velocity Contours of Present Study (7=0.015m/s,
u, =180m/s, Re =6.01x10°,¢ = 0.08s)

9.2.2 Temperature Contours

Temperature contours can be seen in figures 9.9, 9.10 and 9.11 for different free

stream velocities. The temperature field is slightly affected by the free stream
horizontal velocity. Variation of T between Re =3.34x10° and Re=6.01x10" is

less than 3%.

84



0.004

0.003

TiK)

. 580

560
540
520
500
480
460
440
420
400
380
360
340
320
300

0.002

0.001

vertical distance {m)

-0.001

0 0.01 0.02 0.03
horizontal distance {m)

Figure 9.10 Temperature Contours of Present Study (7 =0.015m/s, u, =100m/s,

Re =3.34x10°,¢ = 0.08s)
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Figure 9.11 Temperature Contours of Present Study (7 =0.015m/s, u, =150m/s,

Re =5.01x10°,¢£=0.08s)
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Figure 9.12 Temperature Contours of Present Study (7 =0.015m/s, u, =180m/s,

Re =6.01x10°,7=0.08s)

9.3 Study with Different Surface Temperatures
The present program is run with two different surface temperatures and results are

plotted in this section. The list of runs are given in Table 9.3. The thermal boundary

layer is found to be slightly thicker for 7, = 700K .

Table 9.3 List of Runs for Different Surface Temperatures

RUN SURFACE
NUMBER DESCRIPTION TEMPERATURE
Turbulent flow, computer code of the
present study,
T =600K
4 u, =100m/s,Re =3.34x10",7 = 0.015m/s *
, run parameters given in Table 7.3
Turbulent flow, computer code of the
— _ 5

13 present study, u_ =100m/s,Re =3.34x10°, T =700K

F=0.015m/s
run parameters given in Table 7.3
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9.3.1 Temperature Contours

Temperature contours for different surface temperatures are as follows:
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Figure 9.13 Temperature Contours of Present Study (7 =0.015m/s, u, =100m/s,

Re =3.34x10°,£=0.08s, T, = 600K )
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Figure 9.14 Temperature Contours of Present Study (7 =0.015m/s, u, =100m/s,

Re =3.34x10°,¢=0.08s, T, = 700K )
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CHAPTER 10

CONCLUSIONS

In this study, an attempt was made to obtain stable and accurate solutions of the

standard K-¢ turbulence model equations for non-reacting turbulent flows over an

isothermal solid surface in regression. The accomplishments of this effort and the

conclusions drawn from the results of the numerical study can be summarized as

follows:

1.

A time-dependent coordinate transformation has been successfully used in
handling the moving boundary condition (due to the uniform regression of
the isothermal solid surface.)

Previously proposed two-step time averaging (which is a second order
accurate numerical scheme) has been successfully adopted to discretize the
temporal terms in the governing equations of the mathematical model.

The unsteady and parabolic form of the two-equation (standard K-¢)
turbulence model can be considered modestly successful in predicting the
turbulent behavior of the flow inside the boundary layer. (It should be noted
that the velocities are underestimated by this model as one moves close to
the wall.)

The results of the parametric study indicate that the solution algorithm

adopted for the proposed numerical model results in solutions of the
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unsteady turbulent flow and temperature fields which are rapidly converging
and stable for the Reynolds number and temperature ranges studied.

5. Numerical solutions are shown to be stable for uniform regressions rates
between 0.001 and 0.02 m/sec. As expected, no detachment of the viscous or

thermal boundary layers has been observed for the regression rates studied.
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CHAPTER 11

RECOMMENDATIONS

As noted in the previous chapters of this thesis, the mathematical model adopted for
this study is based on various assumptions (such as incompressible flow and
boundary layer approximations.) These assumptions result in a parabolized form of
the governing equations. The two-equation turbulence model equations used in this
study is also of the parabolized type. This form of the turbulence equations is
known to underestimate the velocities very near to the moving surface.
Furthermore, the discretization schemes used for the first order spatial derivates (the
one for the convective terms in the horizontal direction) are first order accurate.
Therefore, following recommendations are suggested to improve the numerical

accuracy of the study:

1. The hyperbolic-parabolic version of the Navier-Stokes equations should be
used to define the flow field.

2. Hyperbolic form of the turbulence model should be adopted for the study.

3. A modified version of the standard K-¢ model (the one that gives better
results near to the wall) should be used in the study.

4. To improve the accuracy of the numerical scheme, an alternating direction
(backward then forward) finite difference scheme should be used in

discretizing the convective terms in the horizontal direction.
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5. The stretching and transformation coefficients should be updated for the
prediction at the second time step.

6. The stability and convergence of the solutions obtained by the proposed
numerical solution algorithm should be checked for high regression rates of
the solid surface.)

7. Finally, the solution algorithm should be used to obtain solutions of the
governing equations when the regression rate is non-uniform, that is, it

changes as one moves along the surface.
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APPENDIX A

TRANSFORMATION, STRETCHING AND LINEARIZATION OF
PARABOLIC TURBULENT KINETIC ENERGY EQUATION

A.1 TRANSFORMATION OF TURBULENT KINETIC ENERGY EQUATION

The parabolic turbulent kinetic energy equation as given in (4.11) is:

5 (A.1)

2 2
oK oK 6K_[y+ m Ja K+,u,[8uj L,

- u— V—=—4+— L,
ot ox oy \p pPr, )y’ p

Each term in the above equation is transformed according to (5.3), (5.5) and (5.7) to

x — o coordinate axis as follows:

oK oK o oK

2 2.2 A2
o o H'oo (a.2)
ox ox H ~ Oo

v@_K:ivé_K (A.4)
oy H oo

2 2

L 812(: 12 sy A alf (A.5)

p pPr, oy H\p pPr, oo
2 2

H [ ou _ﬂL(a_”j (A.6)

o\ oy p H*\ oo '
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—&  (remains the same) (A.7)
The final form of the transformed turbulent kinetic energy equation is:

oK o 0K oK o oK 1 oK

_ _ —_—t — vy —=

r,—+u r.u
o H OJo ox H oo H oo (A.8)

2 2
(s, |OK lz(a_u] .
H*p pPry,)0c” p H \Oo
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A.2 STRETCHING OF TURBULENT KINETIC ENERGY EQUATION

Each term in equation (A.8) is stretched in the vertical direction using equation (5.13)

as follows:

K _o, K K _o, K (A9)
o8 H'oéc o H''°op

ox H ~ Oo ox H - on

Lva—K:ivnaa—K (A.11)
H oo H on
1 ‘K1 ‘K
B PO A S A (A.12)
H*\p pPr, )oc™ H \p pPr, on
1 (oY 1 ou)
&_2(_”) R e (A.13)
p H*\ oo p H on
-¢  (remains the same) (A.14)
The final form of the stretched turbulent kinetic energy equation is:
oK o oK 0K o oK 1 oK
T e ot U U, VI, =
o H on ox H on H on
(A.15)

1 02K 1 ou’
2 ﬁ—l_ ﬂt 770'2 2 +& 2 770'2 _u _g
H\p pPry on~ pH on
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A.3 LINEARIZATION OF TURBULENT KINETIC ENERGY EQUATION

Linearization procedure is discussed in detail and can be found in Chapter 6. Each

term of the transformed and stretched turbulent kinetic energy equation (A.15) is as

follows:

FISRT TIME STEP

K™ K"
56_’::# (A.16)
o oK (o} [nj+1_ inj—l
——7 —_— =7 ’.1, - 2 A17
7 on (H 01 A7 (A.17)
K' —K" .
uaa_Kzun i, Ax l*l,_/ (AIS)
x 1]
(o} oK (o} Kinj+1 _Kinjfl
_o L N il ~ A.19
H X 770' 8 (H X )1,] 2A77 ( )
1 oK 1 L KK
E o‘a_: (Evno—)i,J : 12A = (A20)
n n
1 (ﬁ+ 4, ]77 , 0°K |1 (ﬁ+ 7 ]77 > (Kir,ljn -2K;; +Kir,lj—1)
H? P pPrg 7 a772 H* P pPry 0 ij (An)z
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Predicted value of turbulent K, at time n+1:

n
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SECOND TIME STEP
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(A.23)

(A.24)

Same differencing scheme used for the second time step, and the predicted value of

turbulent K at time n+2 is:

n+l n+l n+l n+l
_ (2”7 ) i+l i n+l Ki,_/ - KH,_/
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Time averaging to find the final value of turbulent K, at time n+1:

n n+2
K, +K;;

n+l _
Ki,j -
2

(A.26)
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APPENDIX B

FLOWCHART OF THE COMPUTER CODE

Figure B.1 Flowchart of the Computer Code (new added subroutines are marked in

red)

PROGRAM START

[ READCP.DAT ]—’ READCP
A 4
[ READOP.DAT ]—’ READOP
A 4
READGP.DAT ]—’ READGP [—>

'

A 4

SOLIDINIT

A 4

iy

GASINIT [—»
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NP, NHP

PREF, TSO,
TINTIL, TF,
TINF, UINF,
TGO, TO, REGO,
TIMED

X0, BETA,
ALPHA

TS

TG

VoV VNV




Figure B.1 cont’d

KG, ROG, CPG,
VISG, VISKG

KGO,
ROGO PROPGAS

HGG, REG, RP,

REGINIT

UINF,
DELETA,
SIG,
ROGO,
VISKO, R,
HG, HGG

ok
VVQQV

UVINIT

INTK.DAT, . K. TE
INTE.DAT TKTEINIT >
v VISKGT
TURVISKG >
TG, ROG,
ETASIG,
DELETA, G
ROG, TG, TEMPG L
U, V, DX,
R, RP, SIG,
HG, N, JN
4
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Figure B.1 cont’d

UV, IN,
JN, DX,
VISKG,
DT, ROG,
KG, R, RP,
DELETA,
SIG, HG,
ETASIG

UVELG

A 4

VBOUNDARY

4

UBOUNDARY

UV, N,
JN, DX,
TG, DT,
DELETA,
HG, SIG, R,
RP, UINFT,
ROG,
ETASIG

TK, TE, IN,
N, U, V,
VISKG,
DX, DT,

VVELG

A 4

SIG,
DELETA,
R, HG, RP,

TURBULENTK

ROG,
ETASIG,
PRK

TK, TE, IN,
IN,U,V,
VISKG,
DX, DT,

\4

TK

N VN NV

SIG,
DELETA,
R, HG, RP,

TURBULENTE

ROG,
ETASIG,
PRE, CI,
C2
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Figure B.1 cont’d

TURVISKG

TG, ROG,
ETASIG,

DELETA,
ROG, TG,

TEMPG2

U, V, DX,
R, RP, SIG,
HG, IN, IN

U,V, IN,
IN, DX,
VISKG,

A 4

DT, ROG,
KG, R, RP,

UVELG2

DELETA,
SIG, HG,
ETASIG

y

VBOUNDARY
2

A 4

2

UBOUNDARY |

U,V, N,
JN, DX,
TG, DT,

A 4

VISKGT

TG

DELETA,
HG, SIG, R,

VVELG2

RP, UINFT,
ROG,
ETASIG
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Figure B.1 cont’d

TK, TE, IN,
IN,U, V,
VISKG,
DX, DT,
SIG,
DELETA,
R, HG, RP,
ROG,
ETASIG,
PRK

TK, TE, IN,
IN,U, V,
VISKG,
DX, DT,
SIG,
DELETA,
R, HG, RP,
ROG,
ETASIG,
PRE, Cl1,
2

TURBULENTK2

A 4

TURBULENTE2

A 4

BOUNDARYGAS
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Figure B.1 cont’d

IN, IN,
JSN, U, V,
TS, TG,
TK, TE, R,
RP, HS,
HG, TINT,
REG, ROG,
YFL, YOX,
YPR

REGRES

BOUGSI

PHYDOM

STACK

IF KC=(TFIN/DT)/NP

OR KC=0

TG, TS

YG, YS

U, V, TS, TG,

TK, TE, R, RP,

HS, HG, TINT,
REG, ROG,
YFL. YOX.

NV NV

CONTPLOT
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Figure B.1 cont’d

t

'd N\
VECTORPLOT.DAT
VECTORPLOT >
. J
4 TINHISTIN.DAT N
TINHISTINI.DAT
TSHIST.DAT
TGHISTIN.DAT
TIME. TS TGHISTIN1.DAT
TG. REG. JV TGHISTIN2.DAT
T HISTEXPO.DAT
ROG, U, IN, >
N HISTPLOT > REGHIST1.DAT
REGHIST2.DAT
U,V,TG,VISKGT,TK, TE
(3,59),(3,30),(3,3)
(11,59),(11,30),(11,3)
(18,59),(18,30),(18,3).D
\_ A Y,
IRUN, TS,
TG, IN, JN,
SIG, X,
TIME, HG,
U, V, YG, v SURFACETEMP.DAT
HGG GASTEMP.DAT
’ WRITEOUT
TK,TE, OUTPUT.DAT
ROG,
VISKGT
Y
ELSE
END OF DO LOOP
: CONTOURTEMP.DAT
| CONTPLOT
®
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Figure B.1 cont’d

2
VECTORPLOT.DAT
VECTORPLOT
4 TINHISTIN.DAT N
TINHISTIN1.DAT
TSHIST.DAT
TGHISTIN.DAT
fg\éEﬁg% TGHISTIN1.DAT
O, ROO: v TGHISTIN2.DAT
,IN,JN, HISTPLOT > HISTEXPO.DAT
REGHISTI.DAT
REGHIST2.DAT
U,V,TG,VISKGT,TK,TE
(3,59),(3,30),(3,3)
(11,59),(11,30),(11,3)
(18,59),(18,30),(18,3).D
\_ M Y,
IRUN, TS,
TG, IN, JN,
SIG, X,
TIIJM\I;Z,YHGG, v SURFACETEMP.DAT
, V.YG, GASTEMP.DAT
HGG, WRITEOUT OUTPUT.DAT
TK,TE,
ROG,
VISKGT
\ 4
END OF PROGRAM
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Table B.1 List of Subroutines Used in the Computer Code

NAME OF THE OUTPUT
SUBROUTINE DESCRIPTION PARAMETERS
READCP read input computational parameters %\II{PII{IN, TFIN, NP,
IRUN, PREF,
. . TSO, TINF,
READOP read input operational parameters UINF, REGO,
TIMED
IRUN, XO, HSS,
read input geometrical parameters | ETASIG,
READGP and calculate stretching parameters | ETASIGS,
VLAX, X, SIG
SOLIDINIT set 'the initial temperature of the TS
solid surface
GASINIT set the initial temperature of the gas | TG
KG, CPG,
define and calculate properties of ROGO, CPGO,
PROPGAS gas VISG, VISGO,
ROG
REGINIT set initial regression rate values HGG, RO
UVINIT set zmnal vah{e‘s of horizontal and U. V. UB, VB
vertical velocities
TKTEINIT set the initial values of K-¢ TK, TE
TURVISKG calculate the turbulent eddy viscosity | VISGT
PHYDOM update .the height of the gas domain YG
every time step
WRITEOUT Yvrtte the values of various variables |
in output files
CONTPLOT create file to enable plf)ttmg of )
temperature contours in TecPlot
create file to enable plotting of
VECTORPLOT velocity vectors contours in TecPlot |~
HISTPLOT creqte the histograms of various )
variables
TEMPG calculate the temperature of the gas | TG
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Table B.1 cont’d

UVELG calculate the horizontal velocity U
UBOUNDARYG calculate or set the horizontal U
velocities at boundaries
VVELG calculate the vertical velocity \%
VBOUNDARYG calculate or set the vertical velocities v
at boundaries
TURBULENTK predict the turbulent kinetic energy | TK
TURBULENTE predict the rate of dissipation of the TE
turbulent kinetic energy
BOUNDARYGAS update the temperatures of the gas at TG
the boundaries
BOUNDARYSOLID update the temperatures of the solid TS
surface
update the values of variables every | TG, HG, TK, TE,
STACK time step ROG
TURVISKG calculate the turbulent eddy viscosity | VISKGT
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Table B.2 List of Variables Used in the Computer Code

BETA y-direction stretching factor for gas

CEl coefficient 1 for turbulence

CE2 coefficient 2 for turbulence

CM coefficient for turbulent viscosity for turbulence
CPG specific heat for constant pressure for gas
CPGO initial specific heat for constant pressure for gas
DELETA non-dimensional space increment in y-direction
DT time increment

DX space increment in x-direction for gas

ETASIG y-direction stretching coefficient for gas

HG height of the gas at any time

HGG total height of the gas

IN number of nodes in x-direction

IRUN run number

N number of nodes in y-direction

KEFF effective thermal conductivity of gas

KG absolute thermal conductivity of gas

KGO initial absolute thermal conductivity of gas
KGTURB turbulent thermal conductivity of gas

NP number of zones created in plots

NPH number of points in histogram

NPH number of points in histogram

PRANDTGT turbulent Prandtl number

PRE turbulent Prandtl number for dissipation energy
PRK turbulent Prandtl number for kinetic energy

R regression at any time

REG regression rate at any time

REGDUMMY dummy regression rate

REGO initial regression rate
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Table B.2 cont’d

RG
ROG
ROGO

RU
SIG
TE
TFIN
TG
TGO
TIME
TINF
TK

UB
UINF

A\

VB
VISKEF
VISKGT
VISG
VISGO
X

gas constant

density of gas at any time

initial density of gas

regression at previous time

universal gas constant

stretching variable for gas domain

turbulent dissipation energy

final time

temperature of gas at any time

initial temperature of gas

time

reference temperature of gas

turbulent kinetic energy

horizontal velocity component of gas at any time
boundary value of horizontal velocity component
reference horizontal velocity

vertical velocity component of gas

boundary value of vertical velocity component of gas
effective viscosity

turbulent viscosity

absolute viscosity

initial absolute viscosity

horizontal distance for gas
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APPENDIX C

LAMINAR BOUNDARY LAYER

Table C.1 Comparison of the Results of the Present Solution and Blasius Solution
for the Laminar Case x =3.24x107m

horizontal horizontal . percgnt.age percgnt.age
. : . horizontal deviation deviation
-vertical velocity velocity o
. . : velocity given between between
distance- | predicted by | predicted by .
) by Blasius present and | present study
(m) present previous study : : )
solution (m/s) previous and Blasius
study (m/s) (m/s) ) ;
studies solution
0.0000000 | 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000254 | 1.0599740 1.0599740 0.7645720 0.0000000 | 38.6362516
0.0000517 | 2.1614569 2.1614569 1.5588560 0.0000000 | 38.6566104
0.0000791 | 3.3043873 3.3043873 2.3835400 0.0000000 | 38.6336011
0.0001076 | 4.4872150 4.4872150 3.2383200 0.0000000 | 38.5661400
0.0001371 | 5.7064038 5.7064038 4.1241400 0.0000000 | 38.3659096
0.0001678 | 6.9558906 6.9558906 5.0389400 0.0000000 | 38.0427344
0.0001996 | 8.2265642 8.2265642 5.9809000 0.0000000 | 37.5472628
0.0002326 | 9.5058757 9.5058757 6.9492400 0.0000000 | 36.7901481
0.0002668 | 10.7777339 | 10.7777339 7.9411600 0.0000000 | 35.7198942
0.0003023 | 12.0228697 | 12.0228697 8.9469400 0.0000000 | 34.3796844
0.0003390 | 13.2198126 | 13.2198126 9.9616200 0.0000000 | 32.7074576
0.0003771 | 14.3465090 | 14.3465090 10.9793000 | 0.0000000 | 30.6687039
0.0004166 | 15.3824117 | 15.3824117 11.9902400 | 0.0000000 | 28.2911079
0.0004574 | 16.3106729 | 16.3106729 12.9830600 | 0.0000000 | 25.6304208
0.0004996 | 17.1199700 | 17.1199700 13.9451800 | 0.0000000 | 22.7662172
0.0005433 | 17.8055612 | 17.8055612 14.8629000 | 0.0000000 | 19.7987017
0.0005885 | 18.3693763 | 18.3693763 15.7230000 | 0.0000000 | 16.8312428
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Table C.1 cont’d

0.0006352 | 18.8192008 | 18.8192008 16.5133200 | 0.0000000 | 13.9637627
0.0006834 | 19.1672153 | 19.1672153 17.2236600 | 0.0000000 | 11.2842176
0.0007332 | 19.4282368 | 19.4282368 17.8471400 | 0.0000000 8.8591048
0.0007846 | 19.6179970 | 19.6179970 18.3800600 | 0.0000000 6.7352174
0.0008376 | 19.7517020 | 19.7517020 18.8229400 | 0.0000000 4.9342026
0.0008923 | 19.6179970 | 19.8430096 19.1657000 | 1.1339641 2.3599294
0.0009486 | 19.7517020 | 19.9034497 19.4317200 | 0.7624192 1.6466993
0.0010066 | 19.8430096 | 19.9422369 19.6312800 | 0.4975737 1.0785318
0.0010663 | 19.9034497 | 19.9663762 19.7700200 | 0.3151623 0.6749094
0.0011277 | 19.9422369 | 19.9809511 19.8624400 | 0.1937556 0.4017478
0.0011908 | 19.9663762 | 19.9894928 19.9235800 | 0.1156439 0.2148018
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