

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO PROCESSOR
FOR AES AND DES ALGORITHMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUFAN EGEMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

Approval of the thesis:

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO

PROCESSOR FOR AES AND DES ALGORITHMS

submitted by Tufan Egemen in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering, Middle East
Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen _____________________

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Murat Aşkar _____________________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Rüyal Ergül _____________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Murat Aşkar _____________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Hasan Güran _____________________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Yücel _____________________
Electrical and Electronics Engineering Dept., METU

Dr. Hamdi Murat Yıldırım _____________________
Computer Tech. & Information Sys. Dept., Bilkent University

Date: 05.12. 2007

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Tufan Egemen

Signature :

iv

ABSTRACT

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO

PROCESSOR FOR AES AND DES ALGORITHMS

Egemen, Tufan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Aşkar

December 2007, 129 pages

This thesis study presents design and SystemC implementation of a Crypto Processor

for Advanced Encryption Standard (AES), Data Encryption Standard (DES) and

Triple DES (TDES) algorithms. All of the algorithms are implemented in single

architecture instead of using separate architectures for each of the algorithm. There is

an Instruction Set Architecture (ISA) implemented for this Crypto Processor and the

encryption and decryption of algorithms can be performed by using the proper

instructions in the ISA.

v

A permutation module is added to perform bit permutation operations, in addition to

some basic structures of general purpose micro processors. Also the Arithmetic

Logic Unit (ALU) structure is modified to process some crypto algorithm-specific

operations.

The design of the proposed architecture is studied using SystemC. The architecture is

implemented in modules by using the advantages of SystemC in modular structures.

The simulation results from SystemC are analyzed to verify the proposed design. The

instruction sets to implement the crypto algorithms are presented and a detailed

hardware synthesis study has been carried out using the tool called SystemCrafter.

Keywords: AES, DES, TDES, Crypto Processor, Encryption, Bit Permutation

vi

ÖZ

AES VE DES ALGORİTMALARI İÇİN BİR KRİPTO İŞLEMCİSİ

TASARIMI VE SYSTEMC İLE GERÇEKLENMESİ

Egemen, Tufan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Aşkar

Aralık 2007, 129 sayfa

Bu tezde, İleri Şifreleme Standardı (AES), Veri Şifreleme Standardı (DES) ve Üçlü

Veri Şifreleme Standardı (TDES) algoritmaları için bir Kripto İşlemcisi tasarımı ve

SystemC gerçekleştirimi sunulmaktadır. Her bir algoritma için ayrı bir yapı

kullanmak yerine, üç algoritma da tek bir yapı içerisinde gerçekleştirilmiştir. Kripto

işlemcisi için ayrı bir Komut Küme Yapısı (ISA) oluşturulmuştur; şifreleme ve

çözme algoritma işlemleri bu Komut Küme Yapısındaki uygun komutların kullanımı

ile yapılabilir.

vii

Genel amaçlı mikro işlemcilerdeki bazı temel yapılara ek olarak, bit permütasyon

işlemlerini gerçekleştirmek üzere bir permütasyon modülü eklenmiştir. Bunun

yanında Aritmetik Mantık Birimi (ALU) yapısı da kullanılan bazı kripto

algoritmalarına has fonksiyonları işlemek için değiştirilmiştir.

Önerilen yapının tasarımı SystemC kullanılarak çalışılmıştır. Bu yapı SystemC’nin

modüler yapılardaki avantajlarını kullanan modüller halinde gerçeklenmiştir.

SystemC’den elde edilen simülasyon sonuçları, önerilen tasarımın doğruluğunu

kontrol etmek için analiz edilmiştir. Kripto algoritmalarını gerçeklemek için Komut

seti sunulmuş ve SystemCrafter adlı program kullanılarak detaylı bir donanım sentez

çalışması yapılmıştır.

Keywords: AES, DES, TDES, Kripto İşlemci, Şifreleme, Bit Permütasyon

viii

To My Family

ix

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Murat Aşkar for

his guidance and great support in the development of this thesis work.

I would also like to thank my dear family for their support, understanding and

encouragement during this thesis work.

x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS... x

LIST OF TABLES ..xiii

LIST OF FIGURES .. xiv

CHAPTER

 1. INTRODUCTION... 1

 2. CHARACTERISTICS OF CRYPTO ALGORITHMS 5

 2.1 Introduction ... 5

 2.2 Types of Cryptographic Algorithms ... 5

 2.2.1 Symmetric-key Algorithms.. 5

 2.2.1.1 Block Ciphers.. 7

 2.2.1.2 Stream Ciphers .. 7

 2.2.2 Asymmetric (Public-Key) Algorithms... 8

 2.2.3 Hash Algorithms .. 9

 2.3 AES Algorithm ... 9

 2.3.1 Galois Field (28) ... 12

 2.3.1.1 Addition and Subtraction .. 13

 2.3.1.2 Multiplication.. 13

 2.3.2 Encryption Process of AES.. 15

 2.3.2.1 The SubBytes Transformation .. 17

 2.3.2.2 The ShiftRows Transformation... 18

 2.3.2.3 MixColumns Transformation.. 19

 2.3.2.4 AddRoundKey Transformation... 20

 2.3.3 Decryption Process of AES.. 21

 2.3.4 Key Expansion and Round Key Selection 24

xi

 2.4 DES Algorithm ... 27

 2.4.1 DES Rounds... 28

 2.4.1.1 Initial Permutation... 28

 2.4.1.2 Cipher Function... 30

 2.4.1.3 Inverse Initial Permutation.. 33

 2.4.2 Key Expansion Part.. 34

 2.5 TDES Algorithm ... 27

 3. CRYPTO PROCESSOR ARCHITECTURES ... 39

 3.1 Introduction ... 39

 3.2 Different Processor Implementations.. 39

 3.3 Bit Permutation Instructions ... 57

 3.3.1 GRP instruction.. 58

 3.3.2 PPERM3R and PPERM instructions ... 59

 3.3.3 CROSS instruction... 60

 3.3.4 OMFLIP instruction... 62

 3.3.5 SWPERM and SIEVE instruction.. 62

 4. IMPLEMENTATION OF THE CRYPTO PROCESSOR 64

 4.1 Introduction ... 64

 4.2 Architecture of the Crypto Processor.. 64

 4.3 Control Unit Module ... 66

 4.4 Data Input/Output Module .. 67

 4.5 Memory Module ... 68

 4.6 Arithmetic Logic Unit (ALU) Module.. 69

 4.6.1 SBox Memory Unit .. 72

 4.7 Permutation Module.. 74

 4.8 Instruction Set Architecture .. 83

 4.9 Simulations and Implementation Results.. 100

 5. CONCLUSION... 112

REFERENCES... 112

APPENDICES

 Appendix A: SBox Tables .. 119

 Appendix B: Sample Programming Codes ... 125

xii

LIST OF TABLES

TABLES

Table 2.1: Round numbers (Nr) for different data and key lengths 12

Table 2.2: The Shift Row operation offset values for different data lengths 18

Table 2.3: Initial Permutation Table .. 28

Table 2.4: E Bit Selection Table .. 31

Table 2.5: SBox S1 Table .. 32

Table 2.6: P Permutation Table.. 32

Table 2.7: Inverse Initial Permutation Table ... 33

Table 2.8: PC-1 Permutation Table.. 34

Table 2.9: PC-2 Permutation Table.. 35

Table 2.10: Left Shift Offset Value Table ... 35

Table 3.1: Cryptonite architecture results .. 42

Table 3.2: Estimated results of CryptoManiac architecture....................................... 45

Table 4.1: ALU Commands ... 71

Table 4.2: Slices values for some crypto specific blocks... 106

Table 4.3: Approximately Slices values for SBox and Permutation blocks 107

Table 4.4: Machine Cycles for performed Crypto Algorithms 107

Table 4.5: Comparison between Machine Cycles of Programmable Crypto

Processors... 107

A.1 DES SBox S1 .. 119

A.2 DES SBox S2 .. 119

A.3 DES SBox S3 .. 120

A.4 DES SBox S4 .. 120

A.5 DES SBox S5 .. 121

A.6 DES SBox S6 .. 121

A.7 DES SBox S7 .. 122

xiii

A.8 DES SBox S8 .. 122

A.9 AES SBox ... 123

A.10 AES Inverse SBox... 124

xiv

LIST OF FIGURES

FIGURES

Figure 2.1: Symmetric Key Algorithms... 6

Figure 2.2: Asymmetric Key Algorithms... 8

Figure 2.3: Data State (for 128-bit data Nb = 4)... 11

Figure 2.4: Key State (for 192-bit key data Nk = 6)... 11

Figure 2.5: Multiplication of b(x) and x AES Encryption ... 14

Figure 2.6: AES Encryption... 16

Figure 2.7: Affine Transformation... 17

Figure 2.8: Byte Sub transformation on States .. 18

Figure 2.9: The multiplication of State Column and c(x) .. 19

Figure 2.10: Mix Column operation ... 20

Figure 2.11: Round Key Addition.. 20

Figure 2.12: AES Decryption... 22

Figure 2.13: The multiplication of State Column and d(x).. 23

Figure 2.14: Key Expansion for 128 and 192 bits ... 25

Figure 2.15: Key Expansion for 256 bits ... 26

Figure 2.16: Round Key Selection ... 27

Figure 2.17: DES Algorithm.. 29

Figure 2.18: DES Cipher Function .. 30

Figure 2.19: DES Key Expansion .. 36

Figure 2.20: TDES Encryption Operation ... 37

Figure 2.21: TDES Decryption Operation ... 37

Figure 3.1: Cryptonite architecture .. 40

Figure 3.2: Vectored Memory Access ... 41

Figure 3.3: Schematic of CryptoManiac Architecture ... 43

Figure 3.4: Schematic of a single functional unit .. 44

xv

Figure 3.5: SBox and Mix Column computation using BRAM................................. 46

Figure 3.6: The switch structure.. 49

Figure 3.7: The architecture of AES Core .. 50

Figure 3.8: Block diagram of the AESTHETIC processor .. 51

Figure 3.9: Block diagram of the implemented architecture...................................... 52

Figure 3.10: Block diagram of the one DES circuit... 54

Figure 3.11: Pipelined cell structure .. 55

Figure 3.12: The third proposed architecture... 56

Figure 3.13 : An 8-bit GRP operation.. 59

Figure 3.14: An 8-bit Benes network for CROSS instruction 61

Figure 3.15: SWPERM instruction .. 63

Figure 4.1: The main architecture of the implemented Crypto Processor 65

Figure 4.2: Control Unit – Data Input/Output Module Interface 68

Figure 4.3: Control Unit – Memory Module Interface .. 68

Figure 4.4: Control Unit – ALU Interface ... 69

Figure 4.5: SBox memory unit... 72

Figure 4.6: SBox memory unit organization for DES ... 74

Figure 4.7: Control Unit – Permutation Module Interface... 75

Figure 4.8: DES Initial Permutation... 76

Figure 4.9: DES Inverse Initial Permutation.. 77

Figure 4.10: DES E Table Permutation.. 78

Figure 4.11: DES Cipher (P) Permutation ... 80

Figure 4.12: DES Key PC1 Permutation ... 81

Figure 4.13: DES Key PC2 Permutation ... 82

Figure 4.14: Register State values before shift operation .. 85

Figure 4.15: Register State values after shift operation ... 86

Figure 4.16: BMAP function ... 95

Figure 4.17: DES Encryption Console Output... 100

Figure 4.18: DES Decryption Console Output .. 101

Figure 4.19: TDES Encryption Console Output .. 101

Figure 4.20: TDES Decryption Console Output .. 102

xvi

Figure 4.21: AES-128 Encryption Console Output ... 102

Figure 4.22: AES-128 Decryption Console Output ... 103

Figure 4.23: AES-192 Encryption Console Output ... 103

Figure 4.24: AES-192 Decryption Console Output ... 104

Figure 4.25: AES-256 Encryption Console Output ... 104

Figure 4.26: AES-256 Decryption Console Output ... 105

Figure 4.27: Instruction read .. 108

Figure 4.28: Instruction exk0 .. 108

Figure 4.29: Instruction rord .. 109

Figure 4.30: Instruction cipp... 109

Figure 4.31: Instruction mix.. 110

Figure 4.32: Instruction sbox .. 110

Figure 4.33: Instruction shift 128 .. 111

Figure 4.34: Instruction rorb .. 111

1

CHAPTER 1

INTRODUCTION

Cryptography is the science of encryption and decryption of data. With the help of

cryptography, people aim to hide some important information as secret. Generally,

cryptography is used for the privacy of information, while it facilitates

communication between two points. This requirement can be realized by encrypting

the plaintext data with a key to a ciphertext, and then decrypting the ciphertext back

to its original form on the other side of the communication channel. Nowadays

authentication, digital signatures, and secure computation are other important

application areas of cryptography.

The most commonly used crypto algorithms are the Advanced Encryption Algorithm

(AES) [1] - [3], which is the standard announced for block ciphers, the previous Data

Encryption Standard (DES) [4], and Triple Data Encryption Algorithm (TDEA), also

known as Triple DES (TDES) [4] algorithm.

The designs for crypto systems are generally implemented using a specific algorithm

and using special hardware architecture which is dedicated to that algorithm. With

such architecture, it is much easier to configure the hardware according to the desired

specification; hence the crypto algorithm process is much faster.

There are several strategies to make the design of architecture specific to the

algorithm. The area and the throughput of the chip are the main parameters while

determining the structure of the design according to the desired specification.

2

To maximize the throughput of the selected algorithm when there is no area

constraint in the design, all the iterated rounds of the algorithm can be implemented

in the chip layout. For example as given in [9] [10], for AES, the throughput can be

increased with inner-round and outer-round pipeline structure. The data path of the

structure is also an important parameter in the algorithm-specific design. The data

path can be set to the input plaintext length for fast applications, or it can be set to

smaller data lengths for area limited operations. There are many categories in the

market, which have different data path characteristics. In [15], the data path and bit

length discussions are presented.

Another parameter for the algorithm-specific designs is the key schedule part. The

key schedule can be arranged as on-the-fly key generation method, which produces

the keys in each clock, simultaneously with the round process. Therefore, it is not

necessary to use internal registers for the round keys, as explained for AES in [6]

[13]. The second key schedule method produces all the round keys before encryption

or decryption process and then performs the algorithm’s round operations. This

method requires storage registers for the round keys.

Basic crypto operations of algorithms can be executed on using general purpose

micro processors. But in general purpose processors, there are no special

instructions, or any special block to perform cryptographic operations, making it

difficult to process a crypto algorithm in a general purpose processor. Besides

general purpose processors, there are crypto processors, which are designed for

crypto operations and have crypto specific blocks. Most of these crypto processors

are designed to process only a single algorithm with configurable parameters. For

example such a structure is discussed in [11] [14] for AES algorithm. Some of the

crypto processors can perform several algorithms in a single design. Most of the time

there is one disjoint block for each included crypto algorithm. These kinds of

structures are not area efficient and they are used mainly for high throughput

applications.

3

There are programmable crypto processors, which are able to process more than one

crypto algorithm in a single architecture, such as the joint implementations of AES,

DES and TDEA as presented in [7] [8]. The most important property of these kinds

of processors is their programmable architectures. The processors can be

programmed according to the applied crypto algorithm.

The objective of this work is the implementation of a programmable Crypto

processor architecture using the SystemC tool. The Advanced Encryption Algorithm

(AES), which is the standard announced for block ciphers, the previous Data

Encryption Standard (DES), and Triple Data Encryption Algorithm (TDEA), also

known as Triple DES (TDES) algorithms are chosen for the implementation of the

architecture. The Crypto architecture is implemented in the SystemC [24]

environment. SystemC is based on C++, with some additional class libraries to

model the hardware based features like clock, signals, logic and delay elements.

SystemC allows modeling from the system level to Register Transfer Level (RTL).

This modeling structure provides higher productivity than other modeling

environments due to its easier and faster implementation. In the SystemC approach

the design is implemented in modular structures. With this property of SystemC, the

design can be modified to add new hardware blocks without changing the general

structure.

In this thesis, instead of implementing two different blocks for each algorithm, the

architecture is implemented as a common unit, which can perform operations of the

chosen crypto algorithms. The implemented architecture is fully programmable and

all the algorithms’ operations are performed according to the instructions. The

architecture is similar to general microcontroller's structure, but there are some

differences for crypto operations. The internal structure of the implemented

architecture is based on 32-bit data length and all crypto operations are performed in

32-bit arithmetic.

4

The operations are controlled by a Control Unit module and performed in Arithmetic

Logic Unit (ALU) module or Permutation module according to Control Unit signals.

The main operations are performed in the ALU. ALU is responsible for performing

the crypto specific instructions as well as general purpose instructions. There is an

internal memory block implemented inside the ALU for Substitution Table (SBox)

operations. The SBox values for both of the AES and DES algorithms are stored in

this memory unit.

Besides ALU, which performs the logic and arithmetic operations, a Permutation

module is added into the design. In general applications, the bit permutation

operation is implemented as a memory based structure or as a hardware routing

structure. But in this implemented architecture, all of the bit permutation operations

are performed in a single permutation module block. The bit permutation operations

are used in Data Encryption Standard (DES) algorithm; therefore, the main purpose

of this permutation module is performing DES permutations. But it can also perform

other bit permutations depending on the applications.

The characteristics of Crypto Algorithms are described in Chapter 2. The types of the

crypto algorithms are described in the first section of this chapter. Then the

transformations of AES and DES algorithms and their basic process structures are

explained in the following two sections. In Chapter 3, different implementations of

Crypto processors in literature are discussed. In the first part of this chapter, the

structures dedicates to a single algorithm and in the second part, crypto processors,

which are capable of performing several algorithms, are discussed. The implemented

architecture and its module structures are given in Chapter 4, where each module in

the architecture is explained in detail. Also, the implemented Instruction Set

Architecture and the instruction descriptions are given in this chapter. Finally, a

conclusion for this work and proposed future works are presented in Chapter 5.

5

CHAPTER 2

CHARACTERISTICS OF CRYPTO ALGORITHMS

2.1 Introduction

This chapter explains the general description of the cipher algorithms and detailed

structure of Advanced Encryption Standard and Data Encryption Standard

algorithms. In the first section, the types and properties of the cryptographic

algorithms are described. The AES algorithm, the DES algorithm and their

operations are discussed in the second and third sections, respectively.

2.2 Types of Cryptographic Algorithms

Cryptography becomes a more important parameter with today’s increasing security

issues on communication area. There are lots of activities over communication

networks of different applications and the security of the data in these applications

are provided by using different cryptographic algorithms. These algorithms can be

divided into three groups, as symmetric-key algorithms, public-key algorithms and

hash algorithms.

2.2.1 Symmetric-key Algorithms

The encryption and decryption processes in the symmetric-key algorithms are

performed with one key. There is only one secret key between the two sides of

communication. The plaintext is encrypted by using the secret key and transmitted.

6

Then this ciphered data is decrypted by using the same secret key, which is used in

the encryption part [5] [20]. This communication structure can be seen in Figure 2.1.

Figure 2.1: Symmetric Key Algorithms

The power of the symmetric algorithm is directly dependent to the key length.

Because of the decryption process can be performed with trying all possible key

combinations. Therefore the resistance of the symmetric algorithm against possible

key trials is much higher with the increasing key length.

Symmetric algorithms can be divided into two groups as stream ciphers and block

ciphers. The difference between these two groups is, the block ciphers use always the

same sized data chunks in the encryption or decryption operations, but stream ciphers

use different sized data in encryption or decryption operation.

PlainText

CipherText

Key A Encryption
Operation

CipherText

Key A
Decryption
Operation

PlainText

7

2.2.1.1 Block Ciphers

Encryption and decryption operations are performed over blocks of data in the Block

ciphers. Each block is used sequentially in the cipher operations. More clearly, a set

of Boolean operations are performed on a definite length of bit vectors in a block

cipher [1] [5].

There are normally two main techniques used in the Block ciphers. These are

confusion and diffusion techniques. The aim of the confusion is making the output of

the encryption as much as different from the input plaintext. Therefore the relation

between input and output of the encryption will be more unpredictable. The

substitution operation is mainly used in confusion technique.

On the other hand the diffusion technique is used to distribute the redundancy of the

plaintext as much as possible into the cipher text. The main operation used for

diffusion technique is permutation operation.

2.2.1.2 Stream Ciphers

Unlike block ciphers, stream ciphers operate on data context, with different bit

lengths. Encryption or decryption is processed over these different sized data [5].

There are keys for each stream, which are generated by a key stream generator. The

lengths of the key data is depends on the length of the data stream. Therefore the

sequential key stream’s length may show differences. In the encryption these keys

and the plain data streams are XORed to get the ciphered data. Also in the decryption

the same operation is performed. The same key stream data is XORed with the

ciphered data, in this case to get the plaintext back.

In the stream cipher operation, the power of the operation is directly related to the

key stream generator performance.

8

2.2.2 Asymmetric (Public-Key) Algorithms

Unlike symmetric algorithms, the asymmetric algorithms use different keys for

encryption and decryption algorithms. There are two types of keys in the asymmetric

algorithms. One of them is called private key and this key is known only by its

owner. The other key type is called public key and this is known by all users in the

communication [5].

In the asymmetric algorithms the relation between encryption side and decryption

side is given in Figure 2.2. The encryption operation is processed by using the public

key. Unlike encryption, decryption operation is processed only with the private key.

The important point in the decryption is the private key’s owner issue. The private

key should belong to the unit, which encrypted data with its public key, for a correct

decryption.

Figure 2.2: Asymmetric Key Algorithms

PlainText

CipherText

Public Key A Encryption
Operation

CipherText

Decryption
Operation

PlainText

Private Key A

9

2.2.3 Hash Algorithms

Hash algorithms are a kind of pseudo random number generators in cryptography.

There is no any formal description of Hash algorithms, but there are some general

properties for it.

• For a given input message, there should be not any second input message,

which gives the same hash output as the first input message. This property is

known as collision resistance.

• For a given hash algorithm output, it should be hard to compute the input

message. This property depends on the one-way function characteristic of the

hash algorithms.

In the Hash algorithms, the input plaintext length is not fixed and can have a variety

of lengths. But the output ciphered data of the Hash algorithm has a fixed data

length. This property is achieved generally by processing the input data in equal-

sized blocks and performed a one-way compression on the blocks. Therefore a very

small change at the input side can create a very big change at the output side [1].

2.3 AES Algorithm

The Advanced Encryption Standard (AES) is a new Federal Information Processing

Standard (FIPS) which was announced after an encryption algorithm standard

competition by National Institute of Standards and Technology [5]. AES is also

known as Rijndael [1] [2], but there are some small differences between AES and

original Rijndael. The input data length is fixed to 128-bit in AES, while it can be

128, 192 or 256 bits in Rijndael.

10

The AES algorithm is a symmetric key algorithm and operates the encryption and

decryption processes in blocks. The input data and key data of AES can be

considered as one-dimensional array [1]. Each element of the array consists of 8-bit

data. The one dimensional array of the incoming plaintext data (P) can be denoted by

P = p0p1p2p3····p4*Nb-1,

where p0 is the first byte and p4*Nb-1 is the last byte of plaintext. The incoming

plaintext data is then mapped into a two dimensional matrix, which is called State

[1]. All the AES operations are performed on the State matrix. The State matrix has a

variable column number for different data and key lengths, with four rows. The

column numbers are denoted by Nb for data state matrix and defined as;

Nb = input data length / 32.

The elements of the two dimensional State matrix can be defined as;

ai,j = pi+4j, 0 ≤ i < 4, 0 ≤ j < Nb,

where ai,j denotes the byte in row i and column j.

Similarly, the input key is also mapped into a two dimensional matrix. The row

number of key matrix is also four like in state matrix, and the column number is

denoted by Nk, which is defined as below;

Nk = input key length / 32.

If we denote the one dimensional array of the key data (Z) by

Z = z0z1z2z3····z4*Nk-1,

where z0 is the first byte and z4*Nk-1 is the last byte of key, then the two dimensional

matrix elements can be defined as below;

ki,j = zi+4j, 0 ≤ i < 4, 0 ≤ j < Nk.

11

The input key bytes are mapped onto key state matrix in the order k0,0, k1,0, k2,0, k3,0,

k0,1, k1,1, k2,1,… [1]. The Data State matrix for 128-bit data is shown in Figure 2.3

and the Key State matrix for 192-bit key is shown in Figure2.4. The Nb value is 4 for

AES, because the data input is fixed at 128-bit. Nk can have the values of 4, 6 and 8

for 128-bit, 192-bit and 256-bit, respectively.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

Figure 2.3: Data State (for 128-bit data Nb = 4)

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5

Figure 2.4: Key State (for 192-bit key data Nk = 6)

12

The rounds have sequential operations to perform encryption or decryption. The

round numbers (Nr) are also depending on the Nb and Nk values. The Table 2.1 gives

the round numbers for different data and key lengths for Rijndael.

Table 2.1: Round numbers (Nr) for different data and key lengths

Nr Nb = 4 Nb = 6 Nb = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14 14

In the AES algorithm, most of the operations are based on mathematical operations

in Galois Field (28). Therefore, a brief explanation of the Galois Field (28) is

discussed in the next part.

2.3.1 Galois Field (28)

The byte level operations in the AES algorithm are defined in the finite field (or

Galois Field) GF (28) [1]. There are only a finite number of elements in a finite field

and this number of elements is given as pn, where p is a prime number and n is a

positive integer.

13

The Galois Field (28) is an extension field of Galois Field (2) and it is represented by

the coefficients of {0, 1}. A finite field can be represented as polynomials of degree

smaller than the degree of the irreducible, reduction polynomial. A byte polynomial

representation is given below;

 b(x) = b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2 + b1 x
1 + b0 x

0 .

The arithmetic operations in the finite field are different from standard arithmetic and

they will be explained in the following part. When the elements are represented as

polynomials, then the arithmetic operations are performed modulo m. m is an

irreducible polynomial over the Galois field with the same degree. For AES

algorithm this irreducible polynomial is given by;

m(x) = x8 + x4 + x3 + x + 1

2.3.1.1 Addition and Subtraction

The addition and subtraction of the polynomials in a finite field is a simple EXOR

operation and same for both of addition and subtraction.

2.3.1.2 Multiplication

In the finite field the multiplication operation can be expressed as multiplication of

the polynomials with using an irreducible reducing polynomial for a modulus

operation [1]. The irreducible polynomial for AES is given in m(x). The

multiplication operation between a polynomial b(x) and “x” can be expressed in

Figure 2.5.

14

First of all the polynomial is shifted to the left with a concatenated “0” on the

leftmost bit. If the leftmost bit of the b(x) is ”1”, an EXOR operation is performed

between the polynomial b(x) and the irreducible polynomial m(x), else EXOR

operation is not performed. The result polynomial is the rightmost eight bits. The

multiplication with “x” can be assumed as a fundamental operation in multiplication.

Because of other polynomial multiplications can be considered as a sequence of

multiplication with “x” [6].

Figure 2.5: Multiplication of b(x) and x

Concatenate a
“0” to the right

Leftmost
bit = 1

m(x) = x8 + x4 + x3 + x + 1

Result =
Rightmost 8 bit

Yes No

b(x)

15

2.3.2 Encryption Process of AES

The encryption process performed the inner state transformations over the plaintext

data and as a result of these transformations the ciphertext data is given as output.

The encryption diagram of the AES is given in Figure 2.6. There are four different

transformations operation in the encryption process of AES algorithm. These are;

• SubBytes operation

• ShiftRows operation

• MixColumns operation

• AddRoundKey operation

The encryption process starts with an EXOR operation of plaintext and initial key

data. Then the main iterated block, which consist of SubBytes, ShiftRows,

MixColumns and AddRoundKey operations respectively. This main block repeats

itself Nr – 1 times. In the final round only MixColumns operation is missing as a

difference of main iterative block. The output of the final round is called as

ciphertext data.

16

Figure 2.6: AES Encryption

 Plain Text

SubBytes

ShiftRows

MixColumns

SubBytes

ShiftRows

 Cipher Text

Final
Round

Encryption
(Nr-1) Rounds

Final Key

AddRound Key

Initial Key

17

2.3.2.1 The SubBytes Transformation

In the SubBytes operation each State byte is replaced with the related substitution

table element, which is determined according the State byte's value. The Substitution

operation is the only nonlinear operation and the table is invertible.

In the construction of the SBox table, there are two operations. Firstly, the

multiplicative inverse of the State byte is calculated in GF (28) .Then an affine

transformation is applied, which is given in below Figure.

Figure 2.7: Affine Transformation

1
1
0
0
0
1
1
0

=

ao
a1

a2
a3
a4
a5
a6
a7

bo
b1

b2
b3
b4
b5
b6
b7

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

+

18

Figure 2.8: SubBytes Transformation on State

2.3.2.2 The ShiftRows Transformation

In this operation the rows of the State matrix are shifted to the right cyclically. For

each data length and for each State matrix row, there is a different shift offset. The

offset values are given for data length and row numbers in Table 2.2.

Table 2.2: The ShiftRows operation offset values for different data lengths

Row number

/Data length

128 192 256

Row0 0 0 0

Row1 1 1 1

Row2 2 2 3

Row3 3 3 4

b0,0 b0,1 b0,2 b0,3 b0,4 b0,5

b1,0 b1,1 b1,2 b1,3 b1,4 b1,5

b2,0 b2,1 b2,2 b2,3 b2,4 b2,5

b3,0 b3,1 b3,2 b3,3 b3,4 b3,5

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

 b i,j a i,j

S-box

19

2.3.2.3 MixColumns Transformation

The MixColumns Transformation is a polynomial multiplication operation over GF

(28). Each column of the State is considered as a unique polynomial and multiplied

with a constant and invertible polynomial c(x), which is co prime to x4+1.

c(x) = ‘03’ x3 + ‘01’ x2 + ’01’ x + ’02’

The multiplication of the State column a(x) with the constant polynomial c(x) and the

result State column b(x) can be written in a matrix form as given in Figure 2.9.

b(x) = c(x) * a(x) (mod x4+1)

Figure 2.9: The multiplication of State Column and c(x)

b0
b1
b2
b3

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

a0
a1
a2
a3

20

=

Figure 2.10: MixColumns operation

2.3.2.4 AddRoundKey Transformation

In AddRoundKey Addition operation the round data and AddRoundKey data is

subjected to an EXOR operation.

Figure 2.11: AddRoundKey Addition

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

b0,0 b0,1 b0,2 b0,3 b0,4 b0,5

b1,0 b1,1 b1,2 b1,3 b1,4 b1,5

b2,0 b2,1 b2,2 b2,3 b2,4 b2,5

b3,0 b3,1 b3,2 b3,3 b3,4 b3,5

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

a 0,j

a 1,j

a 2,j

a 3,j

b 0,j

b 1,j

b 2,j

b 3,j

 C(x)

21

2.3.3 Decryption Process of AES

The decryption process is the inverse operation of the encryption process. The

transformations in the encryption round are reversed in the mean of the sequence.

The decryption diagram of the AES is given in Figure 2.12.

The transformations used in encryption operation are also inversed in the decryption

process. The InvSubBytes transformation is the inverse operation of the SubBytes.

The InvSubBytes transformation uses the inverse table of the normal SBox table.

The inverse SBox table is obtained by applying the inverse of the affine

transformation followed by taking the multiplicative inverse in GF(28) [1]. For

example the SBox value of the input 0x81 is 0x0c. And in the inverse SBox table the

output of the 0x0c is 0x81.

The inverse SBox table is given in Table A.10 in Appendix A. In the Inverse

ShiftRows transformation the shift operation is performed to the right instead of the

left side in the encryption process. The offset values in the both shift transformations

are same.

22

Figure 2.12: AES Decryption

23

The Inverse MixColumns transformation is similar to MixColumns in encryption.

But the coefficients of the constant polynomial are changed. The constant

polynomial for the Inverse MixColumns transformation is named as d(x), where

d(x) = ‘0B’ x3 + ‘0D’ x2 + ’09’ x + ’0E’,

and c(x) · d(x) ≡ 01 (mod x4+1).

Figure 2.13: The multiplication of State Column and d(x)

The round number is same for decryption process. But the AddRoundKey is applied

in reverse order. The first operation of the decryption is EXOR operation between

the final round key and the ciphered data, which is the input of the decryption

process.

Then inverse ShiftRows and Inverse SubBytes are performed sequentially. The

iterated rounds start with the AddRoundKey transformation and then continue with

Inverse MixColumns, Inverse ShiftRows and Inverse SubBytes transformations. As a

last operation the EXOR operation with the first round key is performed to get the

plaintext.

24

2.3.4 Key Expansion and Round Key Selection

The Key Expansion part is responsible to provide the round keys for relevant rounds

of cipher operation. While the round number can be different for different key

lengths, the operation of the Key Expansion can show differences. The operation is

same for 128-bit and 192-bit key length but it is different for 256-bit key length.

The operations in the Key Expansion is made over 32 bits, named as word “W”. The

input key is assigned as the first Nk words of the Key Expansion. All of the other

words are obtained recursively of these words. The expansion operation of the

remaining words is given in Figure 2.14 for 128 and 192 bits and in Figure 2.15 for

256 bits.

The recursive operation for obtaining the following words after first Nk word uses the

previous words, the Nk positions earlier words and round constants. The recursive

function is directly related to the position of the word. If the current position “i” is

not a multiple of the Nk, then a simple XOR operation between previous word (W[i-

1]) and Nk earlier word (W[i – Nk]) gives the current word value (W[i]). In the other

situation, if “i” is a multiple of the Nk, the current word W[i] is the result of the

EXOR operation of Nk earlier word and the nonlinear function of the previous word

W[i – 1]. This nonlinear function consists of a cyclically rotation operation to right

by one byte, which is called RotByte, a nonlinear byte substitution operation for each

byte in the word element, which is called SubByte, and addition of a round constant

value. The round constants are independent of the Nk value, and defined by a

recursion rule in GF (28) as shown below.

 Rcon [1] = x0 (i.e. 01)

 Rcon [2] = x1 (i.e. 02)

 Rcon [k] = x * Rcon [k-1] = xk-1 , k > 2.

25

Figure 2.14: Key Expansion for 128 and 192 bits

W[i-1]

RotByte

SubByte

Rcon
value

i % Nk == 0

W[i– Nk]

W[i]

W[i-1]

26

Figure 2.15: Key Expansion for 256 bits

W[i-1]

RotByte

SubByte

Rcon
value

i % Nk == 0

W[i– Nk]

W[i]

W[i-1]

W[i-1]

i % Nk == 4

SubByte

27

The round keys are chosen from the word array of Key Expansion part. The round

keys’ length should be equal to the input plaintext length. Hence the round key

consists of array elements from word W [Nb*i] to word W [Nb * (i+1)].

The round key selection is illustrated in Figure 2.16.

Figure 2.16: Round Key Selection

2.4 DES Algorithm

The Data Encryption Standard (DES) was developed by IBM in 1970s and then

approved as a standardized crypto algorithm by Federal Information Processing

Standard (FIPS) [4] in 1977. DES is a symmetric crypto algorithm, which operates

on 64-bit block size within 16 rounds. The input plaintext and the output ciphered

text are 64-bit. The encryption or decryption operation is achieved by a 64-bit key

data. But only the 56bits of the whole key data is effective. The remaining 8 bits

have no effect on the encryption/decryption process of the DES. The encryption and

decryption processes use the same key due to symmetric nature of the algorithm.

Also the ciphering flow is same for both the encryption and decryption.

W0 W1 W2 W3 W4 W5 W6 W7 W8

Round Key 0 Round Key 1

28

The only difference is the order of the round keys. The round keys are in reverse

order for the decryption process. The block diagram of the DES encryption algorithm

is given in Figure 2.17. The DES algorithm can be analyzed in two parts. The first

part is the Key Expansion part, which generates the necessary round keys. And the

second part is the encryption part. In the second part the encryption or decryption

process is operated with the contribution of the round keys. Also the encryption part

can be divided into two group of operation. First one is the permutation operations,

which are the first and last operations of the cipher part, and the second group

consists of rounds operation between these permutations.

2.4.1 DES Rounds

2.4.1.1 Initial Permutation

The Initial Permutation is the first operation in the DES encryption algorithm. The

incoming 64-bit plaintext data is subjected to initial permutation table, which is given

in Table2.3. According to the table the first bit of the output data is the 58. bit of the

input data, the second bit of the output is the 50. bit of the input data and so on.

Table 2.3: Initial Permutation Table

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

29

Figure 2.17: DES Algorithm

Left

Left

Left

EXOR

EXOR

30

The main round processes start after the Initial permutation. The data is split into two

groups of 32 bits as shown in Figure 2.17. These groups of data are named as “R”

right half and “L” left half. The Right half is joined to the encryption or decryption

process with the round key data. The key-dependent operation, substitution tables

operations are processed in a function, called cipher function.

2.4.1.2 Cipher Function

The operations in the Cipher function are given in Figure 2.18. There are two

permutation operations, which are E Table permutation and P permutation, a

Substitution operation and an EXOR operation with the round key data.

Figure 2.18: DES Cipher Function

31

Table 2.4: E Bit Selection Table

 32 1 2 3 4 5

 4 5 6 7 8 9

 8 9 10 11 12 13

 12 13 14 15 16 17

 16 17 18 19 20 21

 20 21 22 23 24 25

 24 25 26 27 28 29

28 29 30 31 32 1

The E Bit Selection table is the first operation in the Cipher function. The round keys

in the DES algorithm are 48 bits, while the round data from group R is 32 bits. The E

Bit Selection table matches the number of bits of the round data to the round key

data, as duplicating some of the bits, which is given in Table 2.4.

After this operation an EXOR operation performed between the key data and round

data. The output of the EXOR operation is fed into a SBox array. Each one of the

eight SBox units takes 6-bit data as input and gives 4-bit data as output.

The SBox Table S1 is given below. The whole SBox tables from S1 to S8 appear in

Appendix A.

32

Table 2.5: SBox S1 Table

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Each of the SBox units has 64 memory elements. The input 6-bit data is replaced

with one of the SBox memory elements according to its value. The first and last bits

of the incoming data to the SBox unit determines the row number and the middle 4

bits represent the column number of the output data in the SBox unit. The output data

of the SBox units is 32-bit data again. Hence the expanded round data is reduced

again to its normal bit length with this operation. The output data of the SBox

undergoes to another permutation, P permutation, which is defined in Table 2.6.

Table 2.6: P Permutation Table

16 7 20 21

 29 12 28 17

 1 15 23 26

 5 18 31 10

 2 8 24 14

32 27 3 9

19 13 30 6

 22 11 4 25

33

The definition of the table is same with other permutation tables. The first bit of the

output is the 16. bit, the second bit is the seventh bit of the input and so on.

The P permutation is the last operation of the Cipher function. Then the output of the

Cipher function and the Left part of the round data is XORed. The result of the XOR

operation will be the Right part of the next round data. And the Right data of the

current round becomes the Left part of the next round data. This swap operation

between Left part and Right part is not performed in the 16.th round.

2.4.1.3 Inverse Initial Permutation

The Left and Right data of the 16.th round are concatenated and named as preoutput

block. This preoutput block data is subjected to the Inverse Initial permutation. This

permutation is the last operation of the DES encryption/decryption process and it is

the inverse operation of the Initial permutation.

Table 2.7: Inverse Initial Permutation Table

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit

8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the

output.

34

2.4.2 Key Expansion Part

The Key Expansion part takes the 64-bit key data as input and prepares the 16 round

key data for encryption process. However the input data is 64-bit length, only 56-bit

data is used for the round keys preparation. The eight bits of the each byte is

dropped. In some cases the 8th bits can be used as parity bit for error detection in key

generation. There are three parts of the Key Expansion part. In the first part the input

data is subjected to the PC-1 permutation. The permutation table of the PC-1 is given

in Table 2.8. Then the output data are split into two parts like in encryption process,

but here the divided parts are 28-bit long. The second part of the Key Expansion is

cyclic left shift operation applied each of these two 28-bit parts individually. The two

parts are shifted to left with predefined offset values before calculating the round

key. The offset values for each round are given in Table 2.10. The last process in the

Key Expansion is PC-2 permutation, which permutation table is given in Table 2.9.

The input of the PC-2 permutation is 56-bit data and the output is 48-bit data. There

is compressing process applied into the key data with the PC-2 permutation. After

each left shift operation the data is subjected to the PC-2 permutation and the result

of this operation is the round key data.

Table 2.8: PC-1 Permutation Table

57 49 41 33 25 17 9

 1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

 7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

35

Table 2.9: PC-2 Permutation Table

14 17 11 24 1 5

 3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Table 2.10: Left Shift Offset Value Table

Round Number Left Shift Offset
1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

36

Figure 2.19: DES Key Expansion

Key Data

PC – 1

 C Data D Data

Shift Left Shift Left

PC – 2

Round
Key 1

PC – 2

Round
Key 16

 C Data D Data

Shift Left Shift Left

 C Data D Data

37

2.5 Triple DES (TDES) Algorithm

The Triple Data Encryption Algorithm (TDEA), more commonly Triple DES is an

approved cryptographic algorithm, which is enlarge the key space of the DES

algorithm. There are three DES keys in the TDES operation, which are called as

Key1, Key2, Key3 and referred to as a key bundle (KEY). These three keys are used

in two allowed option to form the key bundle. In the first option, all three keys are

mutually independent (i.e. Key
1
, Key

2
and Key

3
, where Key

1
≠ Key

2
≠ Key

3
≠ Key

1
).

And in the second option, there are mutually independent keys and a third key that is

the same as the first key (i.e. Key
1
, Key

2
and Key

3
, where Key

1
≠ Key

2
and Key

3
=

Key
1
). The simple encryption and decryption operations of the TDES are given in

Figure 2.20 and Figure 2.21 respectively. In the TDES encryption operation, the

algorithm process begins with the DES encryption by using Key1 , then continue with

DES decryption operation by using Key2 and it is finished with DES encryption

operation by using Key3.

Figure 2.20: TDES Encryption Operation

Figure 2.21: TDES Decryption Operation

DES EK1 DES DK2 DES EK3 Plaintext Ciphertext

DES DK3 DES EK2 DES DK1 Ciphertext

Plaintext

38

In this chapter the AES, DES and TDES algorithms have been discussed. The crypto

algorithm types, the encryption and decryption structures of the AES, DES and

TDES algorithm and the transformations used in algorithms are explained. The next

chapter presents the different implementations of these algorithms.

39

CHAPTER 3

CRYPTO PROCESSOR ARCHITECTURES

3.1 Introduction

In Section 3.2, different architectures and implementations of these architectures are

discussed. In Section 3.3 bit permutation instructions in the literature, are described.

3.2 Different Processor Implementations

There are many studies about the crypto processors in the literature. Some of these

studies are focused on only a single crypto algorithm, and some others are designed

to support several algorithms in a single architecture. The different architectures are

discussed in this chapter.

Crypto processor architecture, called Cryptonite, is presented by Rainer Buchty,

Nevin Heintze and Dino Oliva in [7]. This study is about a programmable

architecture for the cryptographic applications. DES, TDES, AES, IDEA, RC6,

MD5, and SHA-1 algorithms are supported by this architecture.

This architecture has a different instruction set for cryptographic processing such as

parallel 8-way permutation lookups, parameterized 64-bit/32-bit rotation, and XOR-

based fold operations.

40

These instructions are used for the core functions of different crypto algorithms and

show differences than general purpose instructions. All instructions are executed in a

single cycle. 64-bit and 32-bit computations are supported in this study. The main

architecture of the Cryptonite is given in Figure 3.1.

Figure 3.1: Cryptonite architecture

Local Memory Local Memory

Data I/O Data I/O Add. Unit Add. Unit

ALU 1 ALU 2

C
O
N
T
R
O
L

U
N
I
T

Ext. Access

41

The Control unit controls the system according to the instructions. There is a two-

cluster architecture presented in the study. There is an ALU and its accompanying

data I/O unit for each of cluster. The data unit of the ALU is responsible of the data

access between local data memory and ALU. There is an interlink between the ALUs

to enable the data change in complex computations.

Furthermore the new XOR unit implementation into the data path, a parameterizable

permutation engine, a DES specific unit and some AES supporting functions are

implemented in the architecture. The DES specific unit is implemented into the

memory unit instead of the ALU.

The XOR unit of this architecture has 6 input. These inputs come from ALU

registers, memory unit and as immediate value. The aim of this 6-input XOR unit is

to avoid the sequential operations between multi input XOR operations.

The other new unit is the parameterizable permutation engine. The permutation

operations are performed with a lookup table, which can be used up to 8 parallel

lookups. The vector memory unit, which is used as reconfigurable permutation

engine, receives a vector of indexes and a scalar base address to address the

memories of a vector. The collections of addressed memories form the result data

vector. The structure of the vectored memory access is given in Figure 3.2.

The results of the Cryptonite architecture are given in Table 3.1.

42

Figure 3.2: Vectored Memory Access

Table 3.1: Cryptonite architecture results

Algorithm Throughput

(Mbit/s)

Cycle count Speed (MHz)

DES 732 35 400

TDES 244 105 400

AES 731 70 400

MD5 421 504 400

43

Another architecture for the programmable processor is presented by Lisa Wu, Chris

Weaver and Todd Austin [8]. The presented architecture, called CryptoManiac, is a

4-wide, 4-stage 32-bit VLIW processor with a three input operand ISA. There is a

simple branch predicter in the processor, but it does not have a cache. The code and

data is stored in a static RAM. The branch predicter is used to make predictions

about the next target address when there are more than one branch instructions in an

instruction word.

Figure 3.3: Schematic of CryptoManiac Architecture

The interface between a host processor and CryptoManiac is provided by input and

output request queues. A request scheduler distributes the requests of host processor

to CryptoManiac processor in the order of receive. The Keystore part is a high-

density storage element for storing key data and substitution tables. Simultaneous

session processing on the same processor is available by storing key-specific data in

the shared keystore.

Result Format Request Format

requests

InQ

session action data... Id session result...
CM
Proc

CM
Proc

CM
Proc

Keystore

Reg
Sch.ed

results

OutQ

44

This data includes substitution data, permutation counters, and other internal

algorithm state data. This part is only used for multisession applications and not

necessary for single session applications. There are four parallel functional units in

the CryptoManiac architecture. The process in the architecture is started with

fetching a single VLIW instruction word that contains four independent instructions.

The instruction set consists of 32-bit instructions and enhanced for the cryptographic

processes by combining general arithmetic instructions with logical instructions,

substitutions with logical instructions, and rotate operations with logical instructions.

Each instruction has three operands as input and one operand for the output, again to

combine some instructions.

Figure 3.4: Schematic of a single functional unit

45

The Figure 3.4 shows the internal structure of a functional unit. Each functional unit

consists of two logical units, one adder, one 1k-byte SBox cache, and one rotator.

The multiplier block is added to only two blocks. The XOR, AND operations are

processed in the logical units. SBox cache is responsible for holding all the data, key

and SBox parameters instead of using a memory. The estimated result of the

CryptoManiac is given in Table 3.2.

Table 3.2: Estimated results of CryptoManiac architecture

Algorithm Throughput

(Mbit/s)

Cycle count Speed (MHz)

TDES 68 336 360

TDES corr. 59 392 360

AES 128/128 511 90 360

AES 128/128 corr. 353 130 360

In another study by Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis and

Leonel Sousa [9] the AES encryption/decryption algorithm with a memory based

hardware design is proposed. In the memory based design both the SubBytesand the

polynomial multiplication are implemented in internal memories of the FPGA

(BRAM).

There are two AES encryption/ decryption cores presented. One of them is a

completely unrolled loop structure capable of achieving a throughput above 34

Gbits/s, with an implementation cost of 3513 slices and 80 BRAMs; and the other

one is a fully folded structure, requiring only 515 slices and 12 BRAMs, capable of a

throughput above 2 Gbits/s.

46

The first structure has not any area constraints and it is designed for the higher

throughput requirements. The second structure is designed for the area constraints. In

the general AES block implementation they use dual port memory blocks such as

BRAM's in the FPGA's for the SBox and MixColumns processes. In the BRAM's 2

SubBytesstitutions and 2 full multiplications can be mapped in a single memory

block.

Figure 3.5: SBox and MixColumns computation using BRAM

After implementing the BRAM structure, the paper proposes two architectures for

the AES operation. AES unfolded core is designed with adding sequentially all the

rounds and AES folded core is designed with only one core which repeats the rounds.

47

In a study by Alireza Hodjat, Ingrid Verbauwhede [10] an area-throughput trade-off

for an ASIC implementation of the Advanced Encryption Standard is presented. The

paper presents throughputs of 30 Gbits/s to 70 Gbits/s with loop unrolling and inner-

round and outer-round pipelining techniques, using a 0,18 µm CMOS technology.

Also, the possibility of achieving a throughput of over 30 Gbits/s encryption using

the AES algorithm with minimum area cost is explored in this paper. The main goal

of the paper is combining the pipelining with a composite field implementation. The

paper calculates the SBox values using the Galois Field operations. The input byte

(element of GF (28)) is mapped to two elements of GF (24). Then, the multiplicative

inverse is calculated using GF (24) operators. Then, the two GF (24) elements are

inverse mapped to one element in GF (28). In the end, the affine transformation is

performed. There is also used pipelined structure in the SBox calculation structure to

avoid the high latency in the Galois field operations.By using a pipelined structure in

the SBox process, the area is reduced up to 35 percent and by designing an offline

key scheduling unit for the high speed AES processor, an area reduction of an extra

28 percent is achieved according to the paper.

In another study by Oscar Perez, Yves Berviller, Camel Tanougast and Serge Weber

[11] the experimental results of different strategies of implementation of AES

encryption algorithm is presented. There is given a comparison between different

techniques at the beginning of the study.

These techniques are Inner-Round pipelining, Outer-Round pipelining, Full Loop

Unrolling, Iterative looping and reconfiguration. They divided the algorithm into two

parts, which are Key Expansion part and Cipher Part. The above strategies are used

in the implementation of these two parts and then a comparison is made between the

cost and the performance of the implemented techniques. The paper offers three

strategies to compare the performances.

48

1. Unrolling the loop and reconfiguration techniques

2. Iterative looping and the reconfiguration techniques

3. Pipelined technique

The performance tests are implemented on the FPGA Xilinx XC2V6000. According

to the results the best throughput is achieved by config1. But the weak side of this

technique is reconfiguration time. By contrast, in config2 who uses reconfiguration

and the reusing of operators, the throughput is very low, but it offers two advantages:

the use of few resources and a density of calculation quite near the other

implementations. The performance, surface is interesting because these values are

close to the best implementation. On the other hand, they are penalized in terms of

latency by the time used for the reconfiguration. The pipelined technique also has

good throughput results, but it uses higher BRAM capacity.

A reconfigurable processor implementation is proposed by Yongzhi Fu, Lin Hao and

Xuejie Zhang [12]. This study is about the implementation of a counter mode AES

based on the Xilinx Virtex2 FPGA platform. In the AES design there is loop

unrolling, inner and outer round and mixed pipelining. The clock frequency of the

fully mixed inner and outer round pipelined architecture has achieved 212.5MHz and

that translate to throughput of 27.1Gb/s. The difference of this article is using a

switch between MixColumns operation and AddRoundKey operation.

For the SBox operation Look Up Tables are used and the ShiftRows is implemented

by configuring the routing resources. In the MixColumns operation they use shift and

accumulation method, which is shift the incoming data 0 bit left when the

polynomial constant is ‘02’ and then XOR the results. The AddRoundKeys are

computed before the encryption process for a pipelined structure. According to the

several implementation tests the best result is achieved using the mixed structure,

which includes inner and outer pipelining, and loop unrolling.

49

Figure 3.6: The switch structure

In another study by Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and

Ingrid Verbauwhede [13] an AES crypto processor, which can handle both feedback

and non feedback modes of operation is presented. It is reported that this

implementation can achieve a throughput of 3.84 Gbps at a 330 MHz clock

frequency. For the implementation of the non-feedback modes of the operation the

design has a non-pipelined structure. In this design all implementation is based on

the single clock cycle. All rounds are designed for this purpose. In the SBox

operation the LUT are used and in the MixColumns operation there are used a chain

of XORs.

 Round Key Module

 Add Round Keys

 Mix Columns

 Sub Bytes

 Shift Rows

 Add Round Keys

 Input Key Input Block

50

Figure 3.7: The architecture of AES Core

The proposed crypto coprocessor can be programmed through the memory-mapped

interface of an embedded CPU core. The embedded CPU core can read or write to

the registers by accessing different memory locations. The memory-mapped interface

decodes the memory addresses and updates the registers’ values.

Another configurable AES processor and its experimental results are presented by

Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang and Cheng-Wen Wu [14]. This

study proposes a configurable AES processor, which can run both the original AES

and the extended AES algorithm. The extended AES algorithm has some additional

properties like providing some flexibility to the configuring to parameters of each

transform defined in AES. They provide the flexibility by configuring the parameters

given below;

51

1. Irreducible polynomial in SBox

2. Fixed polynomial values in MixColumns

3. Affine transformation in SBox

The AES core is called AESTHETIC. The original AES algorithm and the extended

AES algorithm are reconfigured depending on the application.

Figure 3.8: Block diagram of the AESTHETIC processor

The AESTHETIC core is similar like the original AES operations. In the design the

SBox operation is implemented as using Galois Field arithmetic operations. And for

the MixColumns operation there are 64 GF ((24)2) multipliers to process the data

block in parallel. The design generates the AddRoundKeys on the fly method.

The implementation results of this design are;

Input Data

Output Data

DATA

 IO
 Interface

AESTHETIC Processor

 Output Block Converter

AESTHETIC

Engine

 Output FIFO Buffer

 Input FIFO Buffer

 Input Block Converter Main
Controller

Key
Generator

Config.ROMs/
Logics

ADDR

IO
Control
Signals

52

844.8 Mbps for 128-bit keys @66MHz clock frequency

704.0 Mbps for 192-bit keys @66MHz clock frequency

603.4 Mbps for 256-bit keys @66MHz clock frequency

In another study by Refik Sever, A. Neslin İsmailoğlu, Yusuf C. Tekmen and Murat

Aşkar [6] the VLSI design and implementation of Rijndael algorithm is presented. In

this study, both of the encryption and decryption algorithms are implemented for all

data and key sizes on a single ASIC, with a non pipelined structure. The main

diagram of the implemented architecture is given in Figure 3.9.

 Figure 3.9: Block diagram of the implemented architecture

A single round of the algorithm is completed in one clock cycle. There are 32-S box

to complete one round of the algorithm in one clock cycle.

53

The SBox part is implemented using combinatorial logic instead of using Look up

Table. There are two separate EXOR blocks. The last round of the encryption of the

current block and the first round of the encryption of the next block are processed at

the same time. This two separate EXOR blocks are necessary for not loosing one

clock cycle. Key Generator module consists of three sub modules: Key Expansion

module, Key Storage module and Key selection module. All the keys needed for

encryption and decryption processes are produced by Key Expansion module and

stored by Key Storage module.

All the keys are generated and stored before encryption or decryption starts. The

implementation results are given below,

• 0.35 µm CMOS technology

• Modules are described using Verilog HDL, and then synthesized with

Synopsys Design Analyzer

• The chip area is 12.8 mm²

• There are 149K gates

• The worst case clock frequency is 132 Mhz

• The maximum throughput is 2.41 Gbps

In a study by Toby Schaffer, Alan Glaser and Paul D. Franzon [18] the design and

implementation of a DES processor is presented. The processor has three separate

circuit, each can operate on an individual data stream to perform DES algorithm, or

three can operate together to perform TDES algorithm. The block diagram of one

block is given in Figure 3.10.

54

Figure 3.10: Block diagram of the one DES circuit

The iterated rounds of DES algorithm are implemented in a 16 pipelined stage

structure. There are two different pseudo-random number generators (PRNG), one

for key generation and one for the cipher functions. The encryption or decryption

operations are chosen according to the opmode signal. This opmode signal controls

the shifting of the key values to right or left side. In encryption the keys are shifted to

left in a round sequence and in decryption they shifted to right to satisfy the inverse

structure.

55

Figure 3.11: Pipelined cell structure

Figure 3.11 shows the structure of a pipelined cell structure. There are eight cells in

one stage of the 16- stage pipelined structure. The operation of a single cell consist of

the EXOR operations between the cipher function output data and left half data of

previous stage, the EXOR operation of the key data and the result of previous EXOR

operation and the SBox operation. At the output of each pipelined cell structure, the

P permutation and E Table permutation are implemented separately. TDES operation

throughput is reported over 7 Gb/s at 110 Mhz clock frequency, as a result of this

study.

56

In the study by P. Kitsos, S. Goudevenos and O. Koufopavlou [19] three different

hardware implementations of TDES algorithm are presented. Two of the proposed

structures have pipelined structure and the third proposed structure consists of

sequential iterations. In the first proposed architecture there are used 48 pipeline

registers between each round to improve the throughput. The keys are shifted to the

reverse direction of the encryption operation to perform decryption. In the proposed

architecture initial permutations of the second and third DES and the inverse initial

permutations of the first and the second DES are not implemented. As a result of this

property it is reported that a gain in time delay is achieved. The key expansion is

performed with using on the fly technique.

Figure 3.12: The third proposed architecture

Ki

Plaintext

Ciphertext

Register
 64

 64

 IP

MUX

 Basic Round

 64

 IP-1

 64

Key

Round Key

 64

 64

 PC1

MUX

 Basic Key Round

 64

 PC2

57

In the second architecture 16 registers are used between the rounds. The key

expansion is similar with the first architecture. This architecture has the capability of

processing 16 independent data blocks simultaneously for higher throughput.

The structure of the third architecture is given in Figure 3.12. There is only one

round implemented and its output of this round is registered and routed to a

multiplexer. The multiplexer determines whether the output of the round is used as

input or the data from permutation module is used. This architecture is proposed for

are restricted applications.

The three architectures are implemented in two different Xilinx devices with using

Look Up tables in one device and ROMs in the second device. The maximum

throughput values are achieved on the device with ROMs and they are 7.36 Gbps for

the first one, 2.45 Gbps for the second one and 121 Mbps for the third one.

3.3 Bit Permutation Instructions

Generally bit permutation operations can be performed with common instructions

like “and”, “or” and “rotate”. But with these instructions the bit permutation

operation in any cryptography algorithm cannot be made very efficient. Every bit of

the source register is extracted from source, then placed to its new position in

destination register and finally combined with other bits to make the result register.

Because the complex bit permutation operations may use the common instructions

for several times to form the result destination register and this operation will take to

much time for a permutation operation [16]. Another way of implementing the bit

permutation is using look up tables. In this type of operation there should be only one

table with 2n elements, each element is n bits, or m look up tables, with 2(n/m)

elements in each table. For example to permute 16 bits data one table can be used

with 216 elements, each element is 16 bits. Or the look up table number can be

chosen as two and in this situation each table should have 28 elements, where each

element is 16-bit wide [16] [20].

58

In addition of the conventional methods there are some bit permutation instructions

implemented. These instructions aimed to solve the problems of the current

microprocessor. Some of the most popular bit permutation instructions, like GRP,

CROSS, OMFLIP, PPERM and SWPERM are discussed in the following part.

3.3.1 GRP instruction

GRP instruction [22] is very similar to the current microprocessor instructions

structure with two operands and one result. The GRP instruction is defined as below;

GRP R3, R1, R2

R3: destination register

R1: source register

R2: source register

The data bits are divided into two groups, a left group and a right group, according to

the value of the control bits. If the bit “i” in control bits is 0 the bit “i” in data goes to

the left group, and it goes to the right group otherwise.

During this process, the relative positions of bits within the same group do not

change. The Figure 3.13 gives an 8-bit GRP operation. In this operation, since the

control bits of b, c, e, and h are 0, these four bits are placed in the left group in result

register. a, d, f, and g are placed in the right group in result register because their

control bit is 1.

59

Figure 3.13: An 8-bit GRP operation

3.3.2 PPERM3R and PPERM instructions

PPERM3R and the new version PPERM [16] instructions explicitly specify the

original position of each bit in the destination register. There is a control register to

specify the destination positions. There should be nlg(n) bits in the control registers

to permute n bit data. The PPERM3R instruction does not specify all nlg(n) bits in a

single instruction. Instead, it specifies the original position only for a subset of bits,

and a sequence of PPERM3R instructions specify the original position for all the bits

in the destination.

The PPERM3R instruction is defined as:

PPERM3R, x Rd, Rs1, Rs2

Rs1: source register (data bits)

Rs2: source register (control bits)

A B C D E F G H

A B C D E F G H

1 0 0 1 0 1 1 0

Input Data

Control Data

Output Data

60

Rd: destination register

x: specifies which subset in Rd will be updated with the bits extracted from Rs1.

The bits to be updated are consecutive. Except the bits in the subset, other bits in Rd

remain unchanged.

3.3.3 CROSS instruction

The CROSS instruction [21] is formed by concatenating a butterfly network and an

inverse butterfly network. As a property of the butterfly network a bit at any position

in input, can be directed to any position in output with proper connections in network

stages.

An n-bit butterfly network consists of lg(n) stages. In each stage, n bits are divided

into n/2 pairs. Two bits are controlled by one control bit. Each one of the two bits

are located in different pairs, and the control bit determines, whether these bits are

kept their positions in the next stage or exchange their bit positions with the other bit.

So n/2 control bits are needed in each stage to specify the path for n/2 data pairs. The

stages in a butterfly network are differentiated by how bits are paired. In the first

stage of butterfly network the distance between paired bits is n/2 bits. In the each

following stage this distance is reduced by a factor two. For example for an 8-bit

permutation the distance between paired bits is 4 bits. And in the second stage the

distance is reduced by two to 2 bits and so on.

The inverse butterfly network can be constructed by reversing the stages in a

butterfly network. The last stage in the butterfly network, for example, becomes the

first stage in the inverse butterfly network.

The CROSS instruction is defined as:

CROSS, m1, m2 Rd, Rs, Rc

Rs: source register (data bits)

Rc: source register (control bits)

Rd: destination register

61

m1: the lower n/2 bits of the control bits

m2: the higher n/2 bits of the control bits

Figure 3.14 shows the combination of the Butterfly network and Inverse Butterfly

network for 8 bits permutation.

Figure 3.14: An 8-bit Benes network for CROSS instruction

62

3.3.4 OMFLIP instruction

The OMFLIP instruction [21] structure is similar to CROSS instruction structure.

The OMFLIP is constructed by combination of an omega network and a flip

network. A flip network is the mirror image of a network. For n bits input data both

networks have lg(n) identical stages. An OMFLIP instruction permutes bits with two

stages of an omega-flip network, and lg(n) instructions can perform an arbitrary n-bit

permutation. This looks similar to the CROSS instruction.

But the difference is the omega flip network has only two distinct stages, because all

omega stages and flip stages are identical.

Hence, only two omega stages and two flip stages are enough to do the OMFLIP

instructions. Unlike CROSS, the number of stages does not depend on the number of

bits to be permuted; only four stages are sufficient to implement an OMFLIP

instruction for any word size.

3.3.5 SWPERM and SIEVE instruction

The SWPERM instruction [23] is similar to the PPERM instruction. The difference

from PPERM is the fixed subword size in the SWPERM. The subword size in the

SWPERM instructions is fixed at four bits.

The SWPERM instruction is given in the Figure 3.15. The positions of the bits in the

destination are exactly specified with the control bits of SWPERM instruction.

For a 64-bit data permutation there are sixteen 4-bit subwords. Four bits are used to

identify one of the sixteen 4-bit subwords in the source register. In total, sixteen 4-bit

subwords in the destination register need exactly 64 bits, which can be put in the

second operand.

63

The instruction SWPERM is defined as:

SWPERM Rd, Rs, Rc

Rs: source register (data bits)

Rc: source register (control bits)

Rd: destination register

A single SWPERM instruction can perform arbitrary permutation of subwords of

size four bits or greater.

Figure 3.15: SWPERM instruction

64

CHAPTER 4

IMPLEMENTATION OF THE CRYPTO PROCESSOR

4.1 Introduction

In this chapter, the architecture and implementation of the Crypto Processor for the

Advanced Encryption Standard (AES) and Data Encryption Standard (DES)

algorithms are explained. The main blocks of the architecture are described in the

following section. After that the Instruction Set Architecture is presented for this

implemented architecture. Finally the simulation results are given in the last section.

4.2 Architecture of the Crypto Processor

The implemented architecture is based on a combination of different modules. The

main architecture and its modules are given in Figure 4.1. The modules are;

• Control Unit Module

• Data Input Output Module

• Memory Module

• Arithmetic Logic Unit (ALU) Module

• Permutation Module

The properties of each module are discussed in the following sections.

65

Figure 4.1: The main architecture of the implemented Crypto Processor

66

4.3 Control Unit Module

Control Unit is the main module of the architecture. The main function of this

module is to control the others modules activities according to the instructions. The

instructions are fetched from the Memory module, and then the fetched instruction is

decoded and copied to the internal registers.

After the decode process of the instruction the execution process is activated. In this

process the Control Unit sends the proper control signal to the related modules with

the proper operand data. Then the result data is copied back to related registers to

finish one instruction operation.

One machine cycle in the implemented architecture consists of 4 clock cycles.

During a machine cycle, fetch, decode and execute operations are performed. The

most of the instructions are one machine cycle instructions, but some of the

instructions are processed in three or four cycles. The Instruction Set Architecture for

this implemented Crypto Processor is given in the last section of this chapter.

There are sixteen 32-bit internal data registers in the Control Unit module [15]. Half

of these sixteen registers are used as general purpose registers. The number of the

general purpose registers is chosen as eight, because of holding all the state data info

once in a register set. And the maximum data length in AES and DES algorithm is

256 bits, which is used in AES algorithm.

The remaining eight data registers are used just for data storing of internal state

values of general purpose registers. These are necessary because in some operations

the next state value is calculated with the operations between the previous state value

and some intermediate values obtained by previous state value.

67

There is also a different register block in the Control Unit module. This register

block is used to store the round key values for the performed crypto algorithm. The

number of the register block is determined in respect of the maximum necessary

round key value. Therefore to supply all the round key numbers the register block

consists of 120 32-bit registers.

4.4 Data Input/Output Module

The external access to the implemented Crypto processor is provided by the Data

Input/Output Module. The Data I/O module has two different 32 bits external

interface. One of the interfaces is assigned as input to the processor and the other one

is assigned as output.

The input and output processes are performed according to the I/O commands, which

are sent by Control Unit. There are eight different operations in the Data I/O module.

These operations are categorized in respect of the crypto algorithms data lengths. The

data lengths can have four different data length as 64-bit, 128-bit, 192-bit and 256-

bit. The I/O commands specify the data length and the data are processed in

sequential clock cycles. For the 64-bit input data the first 32-bit is stored in the input

buffer register of the I/O module in the first clock cycle. In the second cycle this data

is fed to the Control Unit internal registers, while the second 32-bit data is taken

from input interface and stored in the buffer register. In the third clock cycle this 32-

bit data is also transferred to the Control Unit internal registers. The input and output

operations are performed in a similar way for the other data lengths.

68

Figure 4.2: Control Unit – Data Input/Output Module Interface

4.5 Memory Module

The memory unit consists of a ROM block. The instructions are stored in the ROM

block and they are subjected to the Control Unit with an 8-bit wide data link between

Control Unit and Memory Module.

 Figure 4.3: Control Unit – Memory Module Interface

Control
Unit

Memory Unit

ENABLE

ADDRESS

DATA

Control
Unit Data I/O

ENABLE

IOCOMMAND

DATA OUT

DATA IN

69

The control of the read operation is provided by the enable signal. The ROM block is

activated only when there is a low enable signal. The instructions are called from

memory according to the Address data. The Control Unit assigns the next address

data to the Address link between Control Unit and Memory Unit or determines the

next address data according to some control signals, created by the last instruction.

4.6 Arithmetic Logic Unit (ALU) Module

ALU module process the incoming data according to the commands from Control

Unit. The basic operations are performed in the implemented ALU module, like

Boolean functions, addition – subtraction operations, shift operations. Further to that

some AES and DES specific operations can also handled in the ALU module.

Figure 4.4: Control Unit – ALU Interface

Control
Unit ALU

ALU_IN_A

ALU_IN_B

ALU_CDM

ALU_OUT_A

ALU_OUT_B

70

There are four 32-bit data links between Control Unit and ALU. The current data

registers values are directed from Control Unit to the ALU by two of these four 32-

bit data registers (AluInA and AluInB). And the remaining two data links are from

ALU to Control Unit for the output of the processed data in the ALU (AluOutA and

AluOutB).

The alucmd link is for the ALU commands, created by the Control Unit module

according to the decoded instruction. ALU module process the data according to

these incoming commands.

The main operations are performed over 32 bits data, but there are some exceptions

for both of AES and DES algorithms. There are some operations performed over

bytes. In this case the incoming 32 bits data is divided into suitable data chunks and

then the operations are performed.

In addition of general logic operations, the SBox operations are performed also in the

ALU module. For this purpose ALU module has a memory unit, which stores the

SBox values for both of AES and DES algorithms. The structure of this memory unit

will be discussed in detail in the next section. The ALU command set is given in

Table 4.1.

71

Table 4.1: ALU Commands

Code Command

0x00 Alu_DES_ROR

0x01 Alu_DES_ROL

0x02 Alu_DES_SBOX1

0x03 Alu_SBOX

0x04 Alu_XTIME

0x05 Alu_MIX

0x06 ALU_BIT_MAP

0x07 Alu_SWAP

0x08 Alu_AES_SBOX

0x09 Alu_EXOR

0x0a Alu_ROR_BYTE

0x0b Alu_ROL_BYTE

0x0c Alu_STORE0

0x0d Alu_STORE1

0x0e Alu_STORE2

0x0f Alu_SHIFT128_0

0x10 Alu_SHIFT128_1

0x11 Alu_SHIFT192_0

0x12 Alu_SHIFT192_1

0x13 Alu_SHIFT192_2

0x14 Alu_SHIFT256_0

0x15 Alu_SHIFT256_1

0x16 Alu_SHIFT256_2

0x17 Alu_SHIFT256_3

0x18 Alu_NOP

72

4.6.1 SBox Memory Unit

The SBox operation plays an important role for both of AES and DES algorithms.

The main structure of the SBox operation is different for these algorithms. In AES

algorithm the SBox operation is performed over bytes. Each byte in the State matrix

is replaced with a SBox table element. And the address of the table element is given

directly the input byte data itself. On the other hand in the DES algorithm the SBox

operation is performed with 6-bit data input and 4-bit data output. The address of the

4-bit output data is calculated according to some rules on the input 6-bit data. But

when the address calculation operations of the DES are handled in a way, the next

operation for both algorithms can be performed with using Look up Tables. The

implemented Look up Table structure is given in Figure 4.5.

Figure 4.5: SBox memory unit

Add. 0

Add. 1

Add. 2

Add. 255

Add. 256

Add. 511

Add. 510

Add. 509

Sbox values for AES
algorithm

Sbox values for DES
algorithm

73

The Look up Table consists of 512 memory elements; each one is 8-bit wide. There

are 256 memory elements for the AES algorithm [1]. These values for AES

algorithm are stored in memory from address 0 to address 255.

There are 8 different SBox table in the DES algorithm. There are 64 memory

elements; each one is 4-bit data in each table. With a proper organization these SBox

data can be arranged as 32 memory element, and each element as 8-bit data. And for

eight SBox tables in DES there should be 256 memory elements, which are 8-bit

data. The DES algorithm SBox values are stored in memory from address 256 to

address 511.

As discussed before the SBox operation for AES algorithm is performed directly

with a single instruction. The data is replaced with a SBox memory element, that the

address of the result data is the incoming data itself.

The SBox operation in the DES algorithm is a bit more complex than AES algorithm.

The input of a SBox table is 6-bit data. The memory address of the output element is

obtained by another instruction, because of providing a common use to the SBox

instruction.

The output data of the SBox table is 4-bit data. But in the memory unit the data is

stored as 8-bit data. Therefore the two sequential SBox table output data is stored in

the memory unit in the same address. For example the output data of row 0 / column

0 and row 0 / column 1 are stored in the same memory address. The high part of the

memory data is the output data of row 0 / column 0 and the low part is the output

data of row 0 / column 1. After replacing the memory element with the input data of

the SBox table, the high 4-bit or the low 4-bit is chosen according to some control

signals.

74

Figure 4.6: SBox memory unit organization for DES

4.7 Permutation Module

Bit Permutation is an important operation in the Block ciphers. In the bit permutation

operations, the incoming data is subjected to the some bit position changes according

to the permutation type. The using aim of the bit permutation is mainly for the

diffusing objective. With diffusion the redundancy of the plaintext data is spread

over a large part of the cipher text.

The bit permutation operations have a big process part in DES and TDES algorithms.

In many other solutions for DES algorithm these blocks are mainly implemented as

look up tables or implemented as hardware routing for only DES unique processors

or implemented with current microprocessor instructions like “and”, “rotate” and

“or”. But these kind of solutions have some disadvantages like slow process time and

area inefficiency.

Add. 256

Add. 257

Add. 511

Add. 510

Add. 509

Row 0 / column 1 data of STable 1

Row 0 / column 0 data of STable 1

Row 3 / column 15 data of STable 8

Row 3 / column 14 data of STable 8

75

Therefore a separate permutation module is implemented in the architecture. The

main purpose of this module is directly dedicated to bit permutation operations and

the main structure is based on Butterfly network structure.

Figure 4.7: Control Unit – Permutation Module Interface

The Permutation Module interface is similar to the ALU interface. There are four 32-

bit data links between the Control Unit and Permutation Module. The operation type

is same with ALU. The Permutation module is activated by the permcmd signal.

Besides of the activation function permcmd determines that which permutation

operation is performed in the module. The interface between Control Unit and

Permutation module is given in Figure 4.7. The implemented permutation module is

a combination of a Butterfly network and Inverse Butterfly network [16]. This

module is designed for permutations of 64 bits data. Therefore there are 12 stages in

the module, 6 stages belong to Butterfly network and the remaining 6 stages belong

to Inverse Butterfly network. The transition between stages is controlled by the

dedicated control registers for each stage, so there are 12 control bit registers. Each

control register is 32-bit wide and each control bit determines the next stage position’

of two different bits in current stage.

Control
Unit

Permutation
Module

PERM_IN_A

PERM_IN_B

PERM _CDM

PERM _OUT_A

PERM _OUT_B

76

The necessary stage control bits and the bit positions between sequential stages are

given in below figures for each permutation operation of DES algorithm. In the

simulation of permutation operations same input is applied to the permutation

module for each permutation operation of DES. From the simulation figures of DES

permutation operations, it can be seen easily that, there are a different bit transitions

map between sequential network stages according to the relevant permutation

operation control bits.

Figure 4.8: DES Initial Permutation

The stage control bits for Initial Permutation in the permutation module are;

Initial_Perm_Control[0] = 0x55555555;

Initial_Perm_Control[1] = 0x0f0f0f0f;

Initial_Perm_Control[2] = 0x33333333;

Initial_Perm_Control[3] = 0x55555555;

77

Initial_Perm_Control[4] = 0x55555555;

Initial_Perm_Control[5] = 0xffffffff;

Initial_Perm_Control[6] = 0x5a5a5a5a;

Initial_Perm_Control[7] = 0x69966996;

Initial_Perm_Control[8] = 0x33cccc33;

Initial_Perm_Control[9] = 0xaaaaaaaa;

Initial_Perm_Control[10] = 0xcccccccc;

Initial_Perm_Control[11] = 0x0f0f0f0f;

The Initial Permutation is performed, when the permute command is 0x01 and then

these values are transferred to the stage control bits to process the data correctly.

Figure 4.9: DES Inverse Initial Permutation

The stage control bits for Inverse Initial Permutation in the permutation module are;

78

Inverse_Initial_Perm_Control[0] = 0x0f0f0f0f;

Inverse_Initial_Perm_Control[1] = 0x33333333;

Inverse_Initial_Perm_Control[2] = 0x55555555;

Inverse_Initial_Perm_Control[3] = 0x33333333;

Inverse_Initial_Perm_Control[4] = 0x55555555;

Inverse_Initial_Perm_Control[5] = 0xffffffff;

Inverse_Initial_Perm_Control[6] = 0x66669999;

Inverse_Initial_Perm_Control[7] = 0x96966969;

Inverse_Initial_Perm_Control[8] = 0xaa5555aa;

Inverse_Initial_Perm_Control[9] = 0xcccccccc;

Inverse_Initial_Perm_Control[10] = 0xf0f0f0f0;

Inverse_Initial_Perm_Control[11] = 0x55555555;

The permute command should be 0x03 for the Inverse Initial Permutation operation.

Figure 4.10: DES E Table Permutation

79

The stage control bits for E Table Permutation in the permutation module are;

EBit_Selection_Control[0] = 0xfe0181ff;

EBit_Selection_Control[1] = 0x7f39fe19;

EBit_Selection_Control[2] = 0xbd777f01;

EBit_Selection_Control[3] = 0xbbbbbbff;

EBit_Selection_Control[4] = 0xf7f7ffff;

EBit_Selection_Control[5] = 0xffffffff;

EBit_Selection_Control[6] = 0x142800f0;

EBit_Selection_Control[7] = 0xb63733fa;

EBit_Selection_Control[8] = 0xaa7969f2;

EBit_Selection_Control[9] = 0x7acdcc00;

EBit_Selection_Control[10] = 0x39f3ff0c;

EBit_Selection_Control[11] = 0xfec00f3f;

The permute command should be 0x0b for the E Table Permutation operation.

80

Figure 4.11: DES Cipher (P) Permutation

The stage control bits for Cipher (P) Permutation in the permutation module are;

CipPer_Perm_Control[0] = 0xffffffff;

CipPer_Perm_Control[1] = 0x3fb7ffff;

CipPer_Perm_Control[2] = 0xf5ffffff;

CipPer_Perm_Control[3] = 0xfff5ffff;

CipPer_Perm_Control[4] = 0xfd7fffff;

CipPer_Perm_Control[5] = 0xffffffff;

CipPer_Perm_Control[6] = 0xf142ffff;

CipPer_Perm_Control[7] = 0x5711ffff;

CipPer_Perm_Control[8] = 0x1515ffff;

CipPer_Perm_Control[9] = 0x628effff;

CipPer_Perm_Control[10] = 0xd524ffff;

81

CipPer_Perm_Control[11] = 0xffffffff;

The permute command should be 0x05 for the Cipher (P) Permutation operation.

Figure 4.12: DES Key PC1 Permutation

The stage control bits for Key PC1 Permutation in the permutation module are;

Key_PC1_Control[0] = 0x8f8f8f8f;

Key_PC1_Control[1] = 0x9b9bb3b3;

Key_PC1_Control[2] = 0xadadd5d5;

Key_PC1_Control[3] = 0x7777ffff;

Key_PC1_Control[4] = 0xffffffff;

Key_PC1_Control[5] = 0xffffffff;

Key_PC1_Control[6] = 0x3c3c0f0f;

Key_PC1_Control[7] = 0x21de00ff;

82

Key_PC1_Control[8] = 0x0000ffff;

Key_PC1_Control[9] = 0xa5a5aaaa;

Key_PC1_Control[10] = 0xc3c3cc3c;

Key_PC1_Control[11] = 0xf0f0f0f0;

The permute command should be 0x07 for the Key PC1 Permutation operation.

Figure 4.13: DES Key PC2 Permutation

The stage control bits for Key PC2 Permutation in the permutation module are;

Key_PC2_Control[0] = 0x0fffffff;

Key_PC2_Control[1] = 0x4ce70b71;

Key_PC2_Control[2] = 0x7d4d5d5f;

Key_PC2_Control[3] = 0x593bf1bd;

83

Key_PC2_Control[4] = 0xd75ffddf;

Key_PC2_Control[5] = 0xffffffff;

Key_PC2_Control[6] = 0xe76df657;

Key_PC2_Control[7] = 0xe18ea5bd;

Key_PC2_Control[8] = 0x29e3ab32;

Key_PC2_Control[9] = 0x794750cc;

Key_PC2_Control[10] = 0x47540cba;

Key_PC2_Control[11] = 0x0fffffff;

The permute command should be 0x09 for the Key PC2 Permutation operation.

4.8 Instruction Set Architecture

The Instruction Set Architecture is implemented to execute the basic parts of the

crypto algorithms easily. Firstly, DES and AES algorithms are analyzed carefully to

obtain the common properties for both of algorithms and some instructions are

assigned to perform these common operations in DES and AES. The SBox, round

key addition, round key store operations are some examples for the common blocks

in DES and AES algorithms. After that the basic blocks of the algorithms are studied,

and the instructions in the ISA are implemented according to these basic parts of

algorithms. Therefore each instruction in the ISA performs one simple operation in

the crypto algorithms. The purpose of this implementation is making the hardware

design simpler.

The TDES algorithm is also performed with this ISA. Because of the TDES

algorithm is an extension of DES algorithm, the instructions used in TDES are the

same instructions, which are used in DES algorithm. But to execute the TDES

algorithm correctly, there is only an additional control operation implemented in the

Control Unit module.

84

XTME

Opcode: 0x40 to 0x47

Operation: xtime operation on MixColumns operation of AES algorithm

Syntax: xtme register

Description: This instruction is used for the xtime operations [1] [6] for AES

algorithm. The multiplication with the “x” coefficient in the Galois field is called as

“xtime” and this instruction calculates the xtime value of the data in register and

result data is stored again in the initial register.

MIX

Opcode: 0x48 to 0x4f

Operation: mix operation on MixColumns of AES algorithm

Syntax: mix registera , registerb

Description: mix instruction is used for the exor operations after the xtime instruction

[6]. The MixColumns transformation in AES algorithm is a combination of the xtime

and mix instruction. The data is taken from registera and registerb and the result data

is written to the registera back.

SBOX

Opcode: 0x30 to 0x37

Operation: SBox operation for both of AES and DES algorithms

Syntax: SBox register

Description: This instruction is used for the SBox operations. The data in register is

replaced with the relevant memory data and result data is stored in the initial register.

85

SHIFT

Opcode: 0x38

Operation: AES 128-bit ShiftRows operation

Syntax: shft 128

Description: shift 128 instruction is used for the AES ShiftRows operation. The

ShiftRows operation is operated over the rows in original AES state matrix. In the

implemented architecture the data is stored in registers as given in Figure 4.14. The

row elements of the original matrix are placed in the same byte of sequential

registers. If we assume the sequential registers as a matrix, the original state rows are

the column elements of the registers. Therefore the ShiftRows operation is performed

in a different way in the architecture. This instruction is 3 machine cycle instructions.

In first cycle it sends two 32-bit data (reg1 and reg2 values) to the ALU. In the

second cycle two more 32-bit data (reg3 and reg4 values) is sent, also it takes two

32-bit result data (oreg1 and oreg2 values) and stored them in the relevant registers

(reg1 and reg2) back. In the last cycle last two 32-bit data (oreg3 and oreg4 values) is

taken from ALU and stored in registers (reg3 and reg4). The result register matrix is

given in Figure 4.15. The incoming data is placed into the 32-bit data registers as

given below.

 Col3 Col2 Col1 Col0

Reg1

Reg2

Reg3

Reg4

Figure 4.14: Register State values before shift operation

Byte3 Byte2 Byte1 Byte0

Byte7 Byte6 Byte5 Byte4

Byte11 Byte10 Byte9 Byte8

Byte15 Byte14 Byte13 Byte12

86

And the expected output data should be placed as given below.

OReg1

OReg2

OReg3

OReg4

Figure 4.15: Register State values after shift operation

SHIFT

Opcode: 0x39

Operation: AES 192-bit ShiftRows operation

Syntax: shft 192

Description: shift 192 instruction is used for the AES ShiftRows operation. This

instruction is 4-cycle instruction. This instruction’s structure is same like shift 128

instruction. But this needs one more cycle due to its increased data size.

SHIFT

Opcode: 0x3a

Operation: AES 256-bit ShiftRows operation

Syntax: shft 256

Description: shift 256 instruction is used for the AES ShiftRows operation. This

instruction is 5-cycle instruction. Also this instruction is same like shift 128 and shift

192 instruction.

Byte15 Byte10 Byte5 Byte0

Byte3 Byte14 Byte9 Byte4

Byte7 Byte2 Byte13 Byte8

Byte11 Byte6 Byte1 Byte12

87

EXOR

Opcode: 0x24 to 0x2c

Operation: Bitwise EXOR operation

Syntax: exor registera, registerb

Description: EXOR instruction does a bitwise "EXCLUSIVE OR" operation between

registera and registerb, leaving the resulting value in registera. The value of registerb

is not changed.

MOV1

Opcode: 0x50

Operation: Store accumulator group1 values

Syntax: mov1

Description: This instruction is used to store the accumulator registers group1 values

in a different group of registers. This is necessary because of the accumulator values

were used in some inner stage operations to calculate intermediate results and then

another calculations with these intermediate results.

MOV2

Opcode: 0x51

Operation: Store accumulator group2 values

Syntax: mov2

Description: This instruction is used to store the accumulator registers group2 values

in a different group of registers.

88

MOV

Opcode: 0x52 to 0x54

Operation: Move a value to a constant

Syntax: mov constant , #value

Description: These instructions are necessary for predetermining some internal

values in intermediate operations of the algorithms.

MOV

Opcode: 0x55 to 0x59

Operation: Copy a register value to another register

Syntax: mov registera , registerb

Description: This instruction copies the registerb value to the registera.

EXK0

Opcode: 0x60 to 0x6f

Operation: Key exor operation

Syntax: exk0 #number

Description: The round data and key data EXOR operation is provided with this

instruction. This instruction is continued three clock cycles. In the first clock the first

half of the round data and its corresponding key data is forwarded to the ALU for the

EXOR operation. In the second clock the output of the first operation is written back

to the first accumulator register reg0 and also the second half of the round data and

key data is processed. And in the third clock the result data is stored in the reg1.

89

EXK1

Opcode: 0x70 to 0x7f

Operation: Key exor operation

Syntax: exk1 #number

Description: Same as exk0 structure. The necessity of this instruction is due to the

increased data and key length. The EXK0instruction has only a limited capacity for

EXOR operation.

EXK2

Opcode: 0x80 to 0x8f

Operation: Key exor operation

Syntax: exk2 #number

Description: Same as EXK0

EXK3

Opcode: 0x90 to 0x9f

Operation: Key exor operation

Syntax: exk3 #number

Description: Same as EXK0

MVK0

Opcode: 0xd0 to 0xdf

Operation: Store AddRoundKey values

Syntax: mvk0 #number

90

Description: This instruction is used to store the AddRoundKey values in the

predefined registers for further AddRoundKey operations. There is a specific portion

in the register module, dedicated to the AddRoundKey data.

MVK1

Opcode: 0xe0 to 0xef

Operation: Store AddRoundKey values

Syntax: mvk1 #number

Description: Same as MVK0

RCON

Opcode: 0xf0 to 0xff

Operation: Load Rcon values to reg0

Syntax: rcon #number

Description: The RCON values are predefined constants which are used in key

expansion of AES. Therefore this instruction is AES specific and used for load the

Rcon values to accumulator register reg0.

PC1P

Opcode: 0xb0

Operation: DES Permute Key PC1

Syntax: pc1p registera , registerb

Description: PC1P instruction is used for Key PC1 permutation in the Key

Expansion of the DES algorithm.

91

*In all the permutation operations the registera as left half data and registerb as right

half data and writes the resulting value into that registers back.

PC2P

Opcode: 0xb1

Operation: DES Permute Key PC2

Syntax: pc2p registera , registerb

Description: PC2P instruction is used in the PC2 permutation of DES Key

Expansion.

INIP

Opcode: 0xb2

Operation: DES Initial Permutation

Syntax: inip registera, registerb

Description: INIP is used for the Initial Permutation of DES. This is the first

operation in the DES algorithm.

ETBP

Opcode: 0xb3

Operation: DES E Table Permutation

Syntax: etbp registera, registerb

Description: This permutation is used for bit permutations in the DES cipher

operation. In this permutation bit mapping is used. The number of the incoming data

is increased by using some bits more than once.

92

CIPP

Opcode: 0xb4

Operation: DES Cipher Permutation

Syntax: cipp registera , registerb

Description: Cipher permutation is used at the end of the cipher operation.

INVP

Opcode: 0xb5

Operation: DES Inverse Initial Permutation

Syntax: invp registera , registerb

Description: INVP is used for the Inverse Initial Permutation of DES. This is the last

operation in the DES algorithm.

DIFP

Opcode: 0xb6

Operation: Any 64 bits Permutation

Syntax: difp registera , registerb

Description: DIFP instruction is used to permute any 64-bit data. The permutation

block is capable of permute 64-bit data according to the control bits. The internal

control bits are only for the DES permutation operations. This instruction use the

control bits, which are loaded to the internal control registers with the LDPM

instruction

93

RORB

Opcode: 0xa0

Operation: Rotate byte to right

Syntax: rorb register

Description: RORB instruction is used for rotating the register data to the right by 8-

bit. The rightmost 8 bit is loaded to the leftmost 8-bit part of the result data.

RORD

Opcode: 0xa1

Operation: Rotate bit to right in DES

Syntax: rord registera , registerb

Description: RORD instruction is used for the DES key expansion and it is specific

to the DES algorithm.

The round key data are rotated to left according to different offset values for each

round. Also the rotated data is divided into two 28-bit units and each unit is rotated

independently. There is not a unique process to divide the data, because it is already

separated by storing the data in 32-bit registers.

The leftmost 4 bit in the registers is not important for this operation. Because of in

each register there is 28-bit data. These data are called C-data and D-data in the DES

algorithm specification. The result data is stored back to the same registers.

94

BMAP

Opcode: 0xa2

Operation: DES Bit Mapping

Syntax: bmap registera , registerb

Description: This instruction is used for the bit repetitions on the permutation

operations. The data in registera is mapped according to the control data in registerb

and the result data is stored in registerb. The data register registera is not affected. In

the DES algorithm the E Table Selection operation is include some bit repetitions.

The input of the E Table Selection permutation is 32-bit data and the output is 48-bit.

The bit repetitions cannot be solved with the permute instruction.

Therefore a specific instruction for this purpose is implemented. The data and control

data are 32-bit. This instruction takes two operands. One of them is the data, which

will be permuted and the other one is the control data for determining the bit

repetitions. The output of this instruction is 32-bit repetition data. Therefore at one

time only 32-bit data mapping operation can be made.

The input data bits are mapped to the output data according to the control data bits. If

the control data bit is “1” the respective data bit is mapped to the output data. The

mapping instruction figure is given below.

95

Figure 4.16: BMAP function

SBAD

Opcode: 0xa3

Operation: DES SBox address calculation

Syntax: sbad registera , registerb

Description: des SBox address instruction is used for the DES SBox operation. The

address information is computed for memory access operation. The operands are

taken from registers and the result data is written back to the registers. In the DES

algorithm the SBox operation is performed in a different way compared to AES

algorithm. The result value position in the SBox table is calculated according to

some rules of the input data. And this instruction calculates the memory address data

for the SBox operation.

96

SWAP

Opcode: 0xa5

Operation: Swap register values

Syntax: swap registera , registerb

Description: SWAP instruction is used to change the registera and registerb values.

DREX

Opcode: 0xa6

Operation: Des round data exor

Syntax: drex registera , registerb

Description: This instruction is used in the end of the each round of the DES. In each

end of the round the half of data swapped with other half. In this swap operation on

half of the data is EXORed with the output of the cipher operation. To avoid a

sequential of exor and move operations this single instruction exor the data and store

it to correct place.

COPY

Opcode: 0x11 , 0x15

Operation: copy data from IO Module or to IO Module

Syntax: copy ibuffer or copy obuffer

Description: This instruction is used to copy the input buffer registers of the IO

Module to internal registers of the Control Unit and the state register values of

Control Unit to the output buffers of IO Module.

97

READ

Opcode: 0x18

Operation: Read data from external interface

Syntax: read iport

Description: This instruction is used to read data from external interface.

WRTE

Opcode: 0x19

Operation: Write data to external interface

Syntax: wrte oport

Description: This instruction is used to write the output data to external interface.

INSX

Opcode: 0xc0 to 0xc7

Operation: inverse SBox operation for AES algorithm

Syntax: insx register

Description: This instruction is used for the inverse SBox operations. The data in

register is replaced with the relevant memory data and result data is stored in the

initial register for Inverse SBox operation.

98

INMX

Opcode: 0xc8 to 0xcf

Operation: inverse MixColumns operation for AES algorithm

Syntax: inmx register

Description: This instruction is used for the inverse MixColumns operations. The

Inverse MixColumns operation in the AES algorithm is more complex than the

normal MixColumns operation. There are the x3, x2 parameters in the Inverse

operation. These operations can be performed as cascaded the xtime block several

times. With this instruction the xtime block is used several times and Inverse

MixColumns operation is performed.

ISFT

Opcode: 0x3b

Operation: AES 128-bit Inverse ShiftRows operation

Syntax: isft 128

Description: This instruction is used in Inverse ShiftRows operation of AES

algorithm. The principle of this instruction is same with normal shift operation. Only

the structure is modified according to shift direction.

ISFT

Opcode: 0x3c

Operation: AES 192-bit Inverse ShiftRows operation

Syntax: isft 192

Description: same as ISFT 128

99

ISFT

Opcode: 0x3d

Operation: AES 256-bit Inverse ShiftRows operation

Syntax: isft 256

Description: same as ISFT 128

LDSB

Opcode: 0x02

Operation: Load SBox memory elements

Syntax: ldsb

Description: The internal data of the SBox memory can be reloaded to perform other

applications. The first 256 memory element is allowed to reload and reuse in

different applications.

LDPM

Opcode: 0x03

Operation: Load Permutation Control Bits

Syntax: ldpm

Description: There are a predefined control bits in the permutation bit, which are

dedicated for the any other 64-bit permutation independently of DES permutation

control bits. These control bits can be used only with the DIFP instruction.

100

4.9 Simulations and Implementation Results

The simulations are performed to verify the implemented design. Firstly the

encryption operations of DES, TDES and AES algorithms are simulated. In the

console output figures the first input data are input key data to the simulator. Then a

random plaintext data is applied to the simulator for encryption. After that for

decryption operation the ciphertext output of the encryption part is applied as input to

simulator. Then a comparison between the input of encryption and the output of

decryption is made.

Figure 4.17: DES Encryption Console Output

101

Figure 4.18: DES Decryption Console Output

Figure 4.19: TDES Encryption Console Output

102

Figure 4.20: TDES Decryption Console Output

Figure 4.21: AES-128 Encryption Console Output

103

Figure 4.22: AES-128 Decryption Console Output

Figure 4.23: AES-192 Encryption Console Output

104

Figure 4.24: AES-192 Decryption Console Output

Figure 4.25: AES-256 Encryption Console Output

105

Figure 4.26: AES-256 Decryption Console Output

For the implementation results, main parts of ALU module and Permutation module

in SystemC descriptions are compiled into hardware using the SystemCrafter tool.

And then the outputs of the SystemCrafter tool is used in synthesis process together

with Xilinx tool into Spartan3AXC3S200A device. The results of this process are

given in Table 4.2. The SBox Table and Permutation module are also compiled into

hardware using the SystemCrafter tool. But due to compiler limit problems of

SystemCrafter tool, the basic parts of the SBox and Permutation module are

compiled into hardware and synthesized with Xilinx tools. Then some assumptions

are made to get an idea about the SBox and Permutation blocks areas. The results of

these assumptions are given in Table 4.3.

106

Table 4.2: Slices values for some crypto specific blocks

 SWAP XTIME MIX SHIFT
256

Logic Utilization
Number of Slice Flip Flops 142 82 139 222
Number of 4 input LUTs 129 65 265 360
Logic Distribution
Number of occupied slices 107 63 178 227
 Only related logic 107 63 178 227
 Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 129 65 97 129
IOB Flip Flops 64 32 64 64
Total equivalent gate count for design 2425 1341 3361 4417
 SHIFT

192
SHIFT
128

DESS
ADD

EXOR

Logic Utilization
Number of Slice Flip Flops 211 198 28 112
Number of 4 input LUTs 334 275 19 65
Logic Distribution
Number of occupied slices 215 197 18 77
 Only related logic 215 197 18 77
 Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 129 129 39 97
IOB Flip Flops 64 64 6 64
Total equivalent gate count for design 4328 4013 389 1897
 DES

ROR
ROR
BYTE

DESS
DATA

XTIME
2

Logic Utilization
Number of Slice Flip Flops 123 83 58 138
Number of 4 input LUTs 109 73 49 257
Logic Distribution
Number of occupied slices 94 60 39 182
 Only related logic 94 60 39 182
 Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 119 65 49 65
IOB Flip Flops 54 32 16 32
Total equivalent gate count for design 2073 1361 889 3097

107

Table 4.3: Approximately Slices values for SBox and Permutation blocks

Crypto Specific Block Number of occupied
Slices

SBox 4960
Permutation 1672

Table 4.4 gives the machine cycle values of the implemented Crypto processor for

the related algorithms, and Table 4.5 gives a machine cycles comparison for the

performed crypto algorithms by the implemented crypto processor and other

programmable crypto processors.

Table 4.4: Machine Cycles for performed Crypto Algorithms

Crypto Algorithm Machine Cycle
128 AES 213
192 AES 397
256 AES 517
DES 196
TDES 596

Table 4.5 Comparison between Machine Cycles of Programmable Crypto Processors

 128-bit
AES

DES TDES Expected
Area

Structure

Cryptonite 70 35 105 3A Complex
CryptoManiac 90 130 392 4A Complex
Impl. Processor 213 196 596 A Simple

Below figures are the simulation outputs of some instructions used in the crypto

algorithms.

108

Figure 4.27: Instruction read

Figure 4.28: Instruction exk0

109

Figure 4.29: Instruction rord

Figure 4.30: Instruction cipp

110

Figure 4.31: Instruction mix

Figure 4.32: Instruction sbox

111

Figure 4.33: Instruction shift 128

Figure 4.34: Instruction rorb

112

CHAPTER 5

CONCLUSION

In this thesis study, a programmable Crypto Processor is implemented for AES, DES

and TDES algorithms, containing both encryption and decryption in the same design

for all data and key lengths. A new Instruction Set Architecture is suggested and

implemented to process all different modes easily.

The objective of this implementation is to combine the features of the AES and DES

algorithms in single architecture and to utilize the reuse capability of the processor’s

instructions. Since the bit permutation operations are not so easy to be implemented

with general ALU operations like “shift”, “and”, “or”, “rotate”, a special permutation

module is added into the architecture to perform bit permutation operations. In

several applications, the bit permutation operation is implemented in memory based

structures or in hardware routing structure, which are dedicated to only single

permutation.

Due to its architecture, the permutation module is used to do all of the bit

permutation operations. All the DES permutation operations are performed in this

permutation module, as well as other permutation operations. This permutation

module is capable of doing any other 64-bit permutations. By loading the proper

control bits, any 64-bit permutation can be performed in a single structure with the

implemented Permutation Module.

113

The Data Substitution operation is performed using Look-up-tables. The Look-up-

table is unified for AES and DES algorithms. In AES algorithm, the substitution

operation is performed over bytes, but in DES algorithm the output of this operation

is 4-bit data. Therefore, with a proper addressing scheme for DES substitution

outputs, a single SBox memory is used for both of algorithms. The same instruction

is used for data substitution operation within AES and DES algorithms.

Data stored in the SBox memory is easily modified to adapt this structure to new

algorithms. In normal cases, the internal memory data is used for standard AES and

DES applications. But if it is necessary, the first 256 memory element of the SBox

memory can be reconfigured. With the proper instruction in the ISA, the memory

elements are reloaded according to desired application.

The DES algorithm consists of an SBox block, an EXOR block and six different

permutation blocks, which are Initial Permutation, Inverse Initial Permutation, E-

Table Permutation, Cipher (P) Permutation, PC1 Permutation and PC2 Permutation.

The AES algorithm consists of an SBox block, a ShiftRows block, a MixColumns

block and an EXOR block, and there are some additional blocks that are necessary

for the key expansion of AES.

In this architecture, all the permutation blocks are combined in a single permutation

module. Some parts of the SBox operations are implemented in a common structure.

Of course, there is an additional work for the DES SBox operation, due to the

preference for the correct part of the SBox module. All EXOR operations are

performed in the same block of the ALU module with a single instruction.

The shift operations for AES and DES operations are different, because of the

difference in algorithms’ structure. Therefore, there are two different shift blocks in

the architecture; one for bit-based shift operations and the other one is for the byte-

based shift operations. DES uses bit-based shift operations, whereas AES uses byte-

based shift operations.

114

The MixColumns block is based on the xtime function. This function describes the

multiplication the data with “x” in the Galois Field (28). All the multiplication with

“x” in Galois Field (28) can be performed with the xtime instruction in the

implemented architecture, including the Inverse MixColumns operation in the

decryption algorithm of AES. But this function is decreasing the throughput in the

decryption operation due to multiple uses for the different coefficients in Inverse

MixColumns operation.

As a result of common blocks and different blocks of the implemented architecture,

DES algorithm can be performed using 21 different instructions with the proposed

ISA. On the other hand, AES-128 algorithm can be performed using 32 different

instructions. There are 9 common instructions like SBOX, EXOR and MVK0 (store

round key values) in the ISA, which are used for both of the DES and AES

algorithms. Therefore, it is clear that implementing AES and DES algorithms in a

single design is an efficient way to decrease the area.

The hardware architecture of this design is implemented using SystemC. The main

architecture is divided into modules and each module is implemented separately. The

advantage of using modules is, changing one of the modules’ internal parameters

without affecting the other modules’ parameters. Therefore, the module parameters

of the implemented architecture can be changed to satisfy different algorithm's

specifications for future work of this study. The simulation results are analyzed to

verify the implemented architecture. The encryption and decryption algorithms for

AES, DES and TDES are simulated for different data and key lengths.

There is always a tradeoff between area and speed parameters of the implemented

design. In this design, the area is considered to be optimized and the design is

implemented so as to minimize the total area.

115

Most of the instructions in the ISA are implemented as single cycle instructions. The

purpose of this structure is making the hardware design simpler and as a result, the

implemented instructions are the basic parts of the algorithms. Each instruction

performs one simple operation in the crypto algorithms. However, this property

brings the disadvantage of low throughput capability, because of the long processing

time compared with other programmable crypto architectures, Cryptonite and

CryptoManiac as given in [7] and [8] respectively. The main advantages of

Cryptonite and CryptoManiac are their complex hardware architectures. In those

architectures, there are special hardware blocks, which can perform several

instructions faster, in less machine cycles. Consequently, total machine cycles of

those architectures are relatively small, however they occupy comparatively large

area.

The designed ISA structure performs AES encryption/decryption in 213 cycles,

excluding the key expansion operations. DES encryption/decryption is performed in

about 200 cycles. The performance results for Cryptonite processor are 70 cycles for

AES and 35 cycles for DES. For CryptoManiac processor, the results are 90 cycles

for AES and 130 cycles for DES. These results have been achieved at the expense of

area. Cryptonite processor uses two different ALU modules and CryptoManiac uses

4 different functional units. Besides they have dedicated memory units to ALU and

address generation. The area of these processors is expected to be at least three times

larger than the area of the structure suggested in this thesis.

The ISA structures in this thesis can be modified and two or more instructions may

be combined into one instruction to perform a specific block of the algorithm to

increase the throughput as a future work. Another important issue for a future work

may be using a reduced SBox memory structure for further area minimization. In the

implemented design, the SBox memory occupies more than 40% of the total area.

Therefore, reducing the SBox memory to half will be very efficient for small area

applications. In that case there should be only one 256 byte memory block, and

according to the application the necessary SBox elements should be loaded to the

memory block before algorithm operations.

116

REFERENCES

[1] The Design of Rijndael AES – The Advanced Encryption Standard, John Daemen

and Vincent Rijmen, Springer-Verlag, 2002.

[2] AES Proposal: Rijndael, John Daemen and Vincent Rijmen, September 3, 1999.

[3] Advanced Encryption Standard (AES), available:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] Data Encryption Standard (DES), available:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[5] National Institute of Standards and Technology Computer Security Resource

Center: http://csrc.nist.gov/

[6] Refik Sever, A. Neslin İsmailoğlu, Yusuf C. Tekmen and Murat Aşkar, A High

Speed ASIC Implementation of The Rijndael Algorithm, IEEE International

Symposium on Circuits and Systems, 2004.

[7] Rainer Buchty, Nevin Heintze, and Dino Oliva, Cryptonite – A Programmable

Crypto Processor Architecture for High-Bandwidth Applications, ARCS 2004,

LNCS 2981, pp. 184–198, 2004.

[8] Lisa Wu, Chris Weaver, and Todd Austin, CryptoManiac: A Fast Flexible

Architecture for Secure Communication, in 28th Annual International Symposium on

Computer Architecture, June 2001.

117

[9] Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis and Leonel Sousa,

Reconfigurable Memory Based AES Co-Processor, 20th International Parallel and

Distributed Processing Symposium, 2006.

[10] Alireza Hodjat and Ingrid Verbauwhede, Area-Throughput Trade-Offs for Fully

Pipelined 30 to 70 Gbits/s AES Processors, IEEE Transactions on Computers, April

2006.

[11] Oscar Perez, Yves Berviller, Camel Tanougast and Serge Weber, Comparison of

various strategies of implementation of the algorithm of encryption AES on FPGA,

IEEE International Symposium on Industrial Electronics, 2006.

[12] Yongzhi Fu, Lin Hao and Xuejie Zhang, Design of An Extremely High

Performance Counter Mode AES Reconfigurable Processor, IEEE Computer

Society, 2005.

[13] Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and Ingrid

Verbauwhede, A 3.84 Gbits/s AES Crypto Coprocessor with Modes of Operation in a

0.18-µm CMOS Technology, GLSVLSI 2005.

[14] Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang and Cheng-Wen Wu, A

Configurable AES Processor for Enhanced Security, Asia and South Pacific Design

Automation Conference, 2005.

[15] S. Pongyupinpanich, S. Phathumvanh, and S. Choomchuay, A 32 Bits

Architecture For an AES System, International Symposium on Communications and

Information Technologies, 2004.

[16] R. B. Lee, Z. Shi, and X. Yang, Efficient permutation instructions for fast

software cryptography, IEEE Micro, vol. 21, pp. 56–69, December 2001.

118

[17] Nazar A. Saqib, Francisco Rodriguez-Henriquez and Arturo Diaz-Perez, AES

Algorithm Implementation - An efficient approach for Sequential and Pipeline

Architectures, Proceedings of the Fourth Mexican International Conference on

Computer Science, 2003.

[18] Toby Schaffer, Alan Glaser and Paul D. Franzon, Chip-Package Co-

Implementation of a Triple DES Processor, IEEE Transactions on Advanced

Packaging, vol. 27, no. 1, February 2004.

[19] P. Kitsos, S. Goudevenos and O. Koufopavlou, VLSI Implementations of The

Triple-DES Block Cipher, IEEE International Conference on Electronics, Circuits

and Systems, 2003.

[20] Zhijie Shi, Xiao Yang and Ruby B. Lee, Arbitrary Bit Permutations in One or

Two Cycles, IEEE 14th International Conference on Application-Specific Systems,

Architectures and Processors, June 2003.

[21] Zhijie Jerry Shi and Ruby B. Lee, Implementation Complexity of Bit

Permutation Instructions, 37th Annual Asilomar Conference on Signals, Systems and

Computers, 2003.

[22] Yedidya Hilewitz, Zhijie Jerry Shi

and Ruby B. Lee, Comparing Fast

Implementations of Bit Permutation Instructions, 38th Annual Asilomar Conference

on Signals, Systems and Computers, November 2004.

[23] John P. McGregor and Ruby B. Lee, Architectural Techniques for Accelerating

Subword Permutations With Repetitions, IEEE Transactions on VLSI Systems, vol.

11, no. 3, June 2003.

[24] SystemC 2.0.1 Language Reference Manual, Open SystemC Initiative, 2003.

[25] SystemCrafter Sc, available: http://www.sytemcrafter.com/

119

Appendix A: SBox Tables

Table A.1: DES SBox S1

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table A.2: DES SBox S2

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

120

Table A.3: DES SBox S3

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table A.4: DES SBox S4

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

121

Table A.5: DES SBox S5

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table A.6: DES SBox S6

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

122

Table A.7: DES SBox S7

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table A.8: DES SBox S8

Column Number Row

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

123

Table A.9: AES SBox

x\y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

124

Table A.10: AES Inverse SBox

x\y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

125

Appendix B: Sample Programming Codes

B.1 128-bit AES Programming Code

Programming Code Opcode Machine Cycle

move enkey , 0x1 0x05 1
read iport 0x18 4
copy ibuffer 0x11 3
move key_value , 0x4 0x52 1
mvk0 0xd0 1
move reg_djnz , 0x0a 0x04 1
keyexp: mov1 state_reg0 0x50 1
rorb reg3 0xa0 1
sbox reg3 0x33 1
rcon 0xf0 1
exor reg3 , reg0 0x2b 1
move reg0 , reg8 0x55 1
exor reg0 , reg3 0x2c 1
move reg3 , reg11 0x59 1
exor reg1 , reg0 0x24 1
exor reg2 , reg1 0x25 1
exor reg3 , reg2 0x26 1
mvk0 0xd0 1
djnz reg_djnz , keyexp 0x01 2
move enkey , 0x0 0x06 1
read iport 0x18 4
copy ibuffer 0x11 3
exk0 0x60 2
exk1 0x70 2
move reg_djnz , 0x09 0x04 1
round: sbox reg0 0x30 1
sbox reg1 0x31 1
sbox reg2 0x32 1
sbox reg3 0x33 1
shft 128 0x38 3
mov1 state_reg0 0x50 1
xtme reg0 0x40 1
mix reg0 , reg8 0x48 1
xtme reg1 0x41 1
mix reg1 , reg9 0x49 1

126

xtme reg2 0x42 1
mix reg2 , reg10 0x4a 1
xtme reg3 0x43 1
mix reg3 , reg11 0x4b 1
exk0 0x61 2
exk1 0x71 2
djnz reg_djnz , round 0x01 2
sbox reg0 0x30 1
sbox reg1 0x31 1
sbox reg2 0x32 1
sbox reg3 0x33 1
shft 128 0x38 3
exk0 0x60 2
exk1 0x70 2
copy obuffer 0x15 3
wrte oport 0x19 4

total machine cycle for key expansion and encryption process : 364 cycles

B.2 TDES Programming Code

Programming Code Opcode Machine Cycle

move enkey , 0x1 0x05 1
read iport 0x18 4
copy ibuffer 0x11 3
move key_value , 0x2 0x5a 1
pc1p reg0 , reg1 0xb0 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
move reg_djnz , 0x06 0x04 1
keypart1: mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1

127

pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
djnz reg_djnz , keypart1 0x01 2

mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
move reg_djnz , 0x06 0x04 1
keypart2: mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
djnz reg_djnz , keypart2 0x01 2
mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1

move enkey 1 0x05 1
read iport 0x18 4
copy ibuffer 0x11 3
move key_value , 0x2 0x5a 1
pc1p reg0 , reg1 0xb0 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
move reg_djnz , 0x06 0x04 1
keypart1: mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
djnz reg_djnz , keypart1 0x01 2
mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1

128

mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
move reg_djnz , 0x6 0x04 1

keypart2: mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
rord reg0 , reg1 0xa1 1
mov1 state_reg0 0x50 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1
djnz reg_djnz , keypart2 0x01 2
mov1 back_state_reg0 0x5b 1
rord reg0 , reg1 0xa1 1
pc2p reg0 , reg1 0xb1 1
mvk0 0xd0 1

move enkey , 0x0 0x06 1
read iport 0x18 4
copy ibuffer 0x11 3

inip reg0 , reg1 0xb2 1
move reg_djnz , 0x10 0x04 1
round1: mov1 state_reg0 0x50 1
bmap reg0 , reg1 0xa2 1
etbp reg0 , reg1 0xb3 1
exk0 0x60 2
sbad reg0 , reg1 0xa3 1
sbox reg0 0x30 1
sbox reg1 0x31 1
cipp reg0 , reg1 0xb4 1
drex reg0 , reg1 0xa6 1
djnz reg_djnz , round1 0x01 2
swap reg0 , reg1 0xa5 1
invp reg0 , reg1 0xb5 1

inip reg0 , reg1 0xb2 1
move reg_djnz , 0x10 0x04 1
round1: mov1 state_reg0 0x50 1
bmap reg0 , reg1 0xa2 1
etbp reg0 , reg1 0xb3 1
exk0 0x60 2
sbad reg0 , reg1 0xa3 1
sbox reg0 0x30 1
sbox reg1 0x31 1

129

cipp reg0 , reg1 0xb4 1
drex reg0 , reg1 0xa6 1
djnz reg_djnz , round1 0x01 2
swap reg0 , reg1 0xa5 1
invp reg0 , reg1 0xb5 1

inip reg0 , reg1 0xb2 1
move reg_djnz , 0x10 0x04 1
round1: mov1 state_reg0 0x50 1
bmap reg0 , reg1 0xa2 1
etbp reg0 , reg1 0xb3 1
exk1 0x70 2
sbad reg0 , reg1 0xa3 1
sbox reg0 0x30 1
sbox reg1 0x31 1
cipp reg0 , reg1 0xb4 1
drex reg0 , reg1 0xa6 1
djnz reg_djnz , round1 0x01 2
swap reg0 , reg1 0xa5 1
invp reg0 , reg1 0xb5 1

copy obuffer 0x15 3
wrte oport 0x19 4

total machine cycle for key expansion and encryption process : 847 cycles

