DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO PROCESSOR
FOR AES AND DES ALGORITHMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUFAN EGEMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

Approval of the thesis:

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO
PROCESSOR FOR AES AND DES ALGORITHMS

submitted by Tufan Egemen in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering, Middle East
Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. ismet Erkmen

Head of Department, Electrical and Electronics Engineering

Prof. Dr. Murat Askar
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Riiyal Ergiil
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Murat Askar
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Hasan Giiran
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Yiicel
Electrical and Electronics Engineering Dept., METU

Dr. Hamdi Murat Yildirim
Computer Tech. & Information Sys. Dept., Bilkent University

Date: 05.12. 2007

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name : Tufan Egemen

Signature

iii

ABSTRACT

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO
PROCESSOR FOR AES AND DES ALGORITHMS

Egemen, Tufan
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Askar

December 2007, 129 pages

This thesis study presents design and SystemC implementation of a Crypto Processor
for Advanced Encryption Standard (AES), Data Encryption Standard (DES) and
Triple DES (TDES) algorithms. All of the algorithms are implemented in single
architecture instead of using separate architectures for each of the algorithm. There is
an Instruction Set Architecture (ISA) implemented for this Crypto Processor and the
encryption and decryption of algorithms can be performed by using the proper

instructions in the ISA.

v

A permutation module is added to perform bit permutation operations, in addition to
some basic structures of general purpose micro processors. Also the Arithmetic
Logic Unit (ALU) structure is modified to process some crypto algorithm-specific

operations.

The design of the proposed architecture is studied using SystemC. The architecture is
implemented in modules by using the advantages of SystemC in modular structures.
The simulation results from SystemC are analyzed to verify the proposed design. The
instruction sets to implement the crypto algorithms are presented and a detailed

hardware synthesis study has been carried out using the tool called SystemCrafter.

Keywords: AES, DES, TDES, Crypto Processor, Encryption, Bit Permutation

0z

AES VE DES ALGORITMALARI iCIN BIR KRiPTO ISLEMCISi
TASARIMI VE SYSTEMC ILE GERCEKLENMESI

Egemen, Tufan
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Murat Askar

Aralik 2007, 129 sayfa

Bu tezde, Ileri Sifreleme Standardi (AES), Veri Sifreleme Standardi (DES) ve Uclii
Veri Sifreleme Standard: (TDES) algoritmalar1 icin bir Kripto Islemcisi tasarimi ve
SystemC gerceklestirimi sunulmaktadir. Her bir algoritma icin ayr1 bir yapi
kullanmak yerine, ii¢ algoritma da tek bir yapi icerisinde gerceklestirilmistir. Kripto
islemcisi i¢in ayr1 bir Komut Kiime Yapist (ISA) olusturulmustur; sifreleme ve
cozme algoritma islemleri bu Komut Kiime Yapisindaki uygun komutlarin kullanimi

ile yapilabilir.

Vi

Genel amacgh mikro islemcilerdeki bazi temel yapilara ek olarak, bit permiitasyon
islemlerini gergeklestirmek tiizere bir permiitasyon modiilii eklenmistir. Bunun
yaninda Aritmetik Mantik Birimi (ALU) yapis1 da kullanilan bazi kripto

algoritmalarina has fonksiyonlar1 islemek i¢in degistirilmistir.

Onerilen yapmin tasarrmi SystemC kullanilarak ¢aligilmistir. Bu yapr SystemC’nin
modiiler yapilardaki avantajlarin1 kullanan modiiller halinde gerceklenmistir.
SystemC’den elde edilen simiilasyon sonuglari, Onerilen tasarimin dogrulugunu
kontrol etmek icin analiz edilmistir. Kripto algoritmalarini gerceklemek i¢in Komut
seti sunulmus ve SystemCrafter adli program kullanilarak detayli bir donanim sentez

calismas1 yapilmstir.

Keywords: AES, DES, TDES, Kripto Islemci, Sifreleme, Bit Permiitasyon

Vil

To My Family

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Prof. Dr. Murat Agskar for

his guidance and great support in the development of this thesis work.

I would also like to thank my dear family for their support, understanding and

encouragement during this thesis work.

X

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt b et ettt ettt esbeenteeaeesseenseeneens v

OZ oottt vi

ACKNOWLEDGEMENTS ...ttt sttt sttt s X

TABLE OF CONTENTS ...ttt st s X

LIST OF TABLES ...ttt sttt xiii

LIST OF FIGURESooiiiiitiiiieeeee ettt Xiv
CHAPTER

1. INTRODUCTION.....cccttiiitieieeietete ettt sttt et seeen 1

2. CHARACTERISTICS OF CRYPTO ALGORITHMScccooiiiiiieieiieene 5

2.1 INErOUCTION ...ttt st 5

2.2 Types of Cryptographic Algorithmscccceeviiiiiiiiniiiiniieiieeeieeee, 5

2.2.1 Symmetric-key AIZOrithms..........ccceeeviieriiieniiieriee e 5

2.2.1.1 BIOCK CIPRETS...cccuiiiiiiieeiiieeiieeeiee ettt esvee e e eivee e 7

2.2.1.2 Stream CIPRETSceeviiiiriiieiiieeeiteeeite ettt 7

2.2.2 Asymmetric (Public-Key) Algorithms........c.ccccoviiiiniiiiniiinniienneen. 8

2.2.3 Hash AIOTItRIMSoevieiiiiiiieeiiieeieeeee e 9

2.3 AES AIZOTItRIMeoiiiiiiiiieeiee et e 9

2.3.1 Galois Field (2%)ovuveeeeeeeeeeeeeeeeeee e 12

2.3.1.1 Addition and Subtractioncceceeveereueeneerieeeneenieereeseeenes 13

2.3. 1.2 MUltipliCationcuveeeiiieeiieeeiieeeiee et 13

2.3.2 Encryption Process of AES........ccooiioiiieiiiieeececeeee e 15

2.3.2.1 The SubBytes Transformationcccecceeevieerniiiennieennneennnee. 17

2.3.2.2 The ShiftRows Transformation............cceceeevueernieennveennineennnee. 18

2.3.2.3 MixColumns Transformation..........cccceeeueereeriienneeniieeneennennne. 19

2.3.2.4 AddRoundKey Transformation............ccecceeerveeerveeenveeennveeennen. 20

2.3.3 Decryption Process of AES........ccooiiiiiiiiiiieiiececeeeee e 21

2.3.4 Key Expansion and Round Key Selectioncccceecveevviienneennnen. 24

2.4 DES AIZOTItRIMeoiiiiiiiiieeiie ettt 27

2.4.1 DES ROUNAS ...ttt 28

2.4.1.1 Initial Permutation.........ccoceecueereeriieeneenieeeeeeeeee e 28

2.4.1.2 Cipher FUNCHION.......ccccviiiiiieeiieeeeeecie e e 30

2.4.1.3 Inverse Initial Permutation..........c..ccocceevieeniiniennienieeceneee 33

2.4.2 Key EXpansion Part...........cccoooveiiiiiiiiiiiniiieieeeeeceeeeeeee e 34

2.5 TDES AIZOTTtRIM ..coouiiiiiiiiiiiiieeeeeeeeee e 27

3. CRYPTO PROCESSOR ARCHITECTUREScccceiiiiiiieiineeeeecee 39

3.1 INErOUCTION ...ttt st 39

3.2 Different Processor Implementations............cceocveeeriieenieeenieeenieeniieenne 39

3.3 Bit Permutation INSIruCtionscoceeveeriiiinicniieeneenieeeeneeeeeeeeeee 57

3.3.1 GRP INSIIUCHON ...ttt 58

3.3.2 PPERM3R and PPERM inStructionscccceeeereeieneenieeneeneennenns 59

3.3.3 CROSS INSIUCHIONeeeutiiiiieieeniieeitesiee et 60

3.3.4 OMFLIP INSIIUCTIONcvvteiieeieenireeitesite ettt 62

3.3.5 SWPERM and SIEVE inStruction..........c.ccccecueevieenienneenieenieenieenne 62

4. IMPLEMENTATION OF THE CRYPTO PROCESSORcccccoceviininnenne. 64

4.1 INrOAUCTION ...ttt st 64

4.2 Architecture of the Crypto Processor.........cooueeeviiiiniieinieennieeeieeeeeene 64

4.3 Control Unit ModUIE.........c.coiiiiiiiiiiiiiiicieceeeceeee e 66

4.4 Data Input/Output Modulecceeeviiiiiiiieiiiecieeeeeee e 67

4.5 Memory ModUlecoooiiiiiiiiiiiiiieee e 68

4.6 Arithmetic Logic Unit (ALU) Module............ccoooviiiniiiiniiiniiiiiieeeeee 69

4.6.1 SBOX MemOTY UNIt...ccccuiiiiiieeiiieeiieeeieeeeieeeeieeesveeeaeeeeveeeereeenns 72

4.7 Permutation Module...........cooiieiiiiiiiiiiiiieieececeeese e 74

4.8 Instruction Set ArChiteCturecoceeveerieeiiierierieenieeeeeee e 83

4.9 Simulations and Implementation Results..........c.cccoovveerniiennieennieennen. 100

5. CONCLUSION ...ttt ettt sttt et sttt st beeneeseeens 112

REFERENCES ...ttt ettt et sttt st e naeens 112
APPENDICES

Appendix A: SBOX TabIesoooviiiiiiiiiiiiiiiieeete e 119

Appendix B: Sample Programming Codesccoocueeeviieiniiennieennieenieeeeeene 125

X1

LIST OF TABLES

TABLES

Table 2.1: Round numbers (N;) for different data and key lengthscccoccne.. 12
Table 2.2: The Shift Row operation offset values for different data lengths............. 18
Table 2.3: Initial Permutation Tablecccoceeiiiiiiiiiiniiieeceececeen 28
Table 2.4: E Bit Selection Tablecoccuoiiiiiiiiiiiiiiiiceeeeeeeeeeee e 31
Table 2.5: SBOX ST TabIEooiiiiiiiiiieieeeeeee e 32
Table 2.6: P Permutation Table...........ccociviiiiiiiiiiiiiiiieeccceecee e 32
Table 2.7: Inverse Initial Permutation Tableccccceeriiiiiiniiiiiniiceeee 33
Table 2.8: PC-1 Permutation Table..........cccccoooiiiiiiiiiiiiiiiiieiceeeceeeeeee e 34
Table 2.9: PC-2 Permutation Table..........cccccoooiiiiiiiiiiiiiiiieceeeceeeeeeeeen 35
Table 2.10: Left Shift Offset Value Tablecccooviiiiiniiniiiiiecceecee 35
Table 3.1: Cryptonite architecture reSultsoceeeviieiriieiniiieiriieeieeeeeeeeeeeeen 42
Table 3.2: Estimated results of CryptoManiac architecture............cccceeevveeeruveennnenn. 45
Table 4.1: ALU COmMMANASoovuiiriiiiiiiiieiieeieete ettt 71
Table 4.2: Slices values for some crypto specific blocks..........cocoueerviiiiniiinnieennnen. 106
Table 4.3: Approximately Slices values for SBox and Permutation blocks............. 107
Table 4.4: Machine Cycles for performed Crypto Algorithms..........cccceeveeenveennnee. 107
Table 4.5: Comparison between Machine Cycles of Programmable Crypto
PIrOCESSOTS ...ttt ettt et 107
AT DES SBOX ST ittt 119
A2ZDES SBOX S2 .. 119
A3 DES SBOX S3 ettt ettt et et naeens 120
AL DES SBOX S4 ...ttt 120
ALS DES SBOX S5 ettt 121
ALODES SBOX SO ..ottt et naeens 121
AT DES SBOX S7 ettt ettt ettt ettt et naeen 122

Xii

A.8 DES SBox S8..........
A.9 AES SBOX
A.10 AES Inverse SBox

Xiii

LIST OF FIGURES

FIGURES

Figure 2.1: Symmetric Key AlgOrithms..........ccooouvieiiiiiiiieeiieeieecee e 6
Figure 2.2: Asymmetric Key Algorithms...........ccccooviiiiiiiiiiiiiiiiiiniiceeceeeceeee 8
Figure 2.3: Data State (for 128-bit data Ny =4).cc.eeeeviiiiniiiiiiiiiieeieeeeeeeeeeeen 11
Figure 2.4: Key State (for 192-bit key data Nx = 6)...ccccoviiriiiiniiniiiniiiienieeeeee. 11
Figure 2.5: Multiplication of b(x) and x AES Encryptionccccceeevveeevveenrveennnenn. 14
Figure 2.6: AES ENCIYPUONooiiiiiiiiiiiiieeiteeite ettt st 16
Figure 2.7: Affine Transformation...........cceoviiiiriiiiniieiiieeecceeeeeeee e 17
Figure 2.8: Byte Sub transformation on Statesccceeeevveeriieeriieerieeeieeeeee e 18
Figure 2.9: The multiplication of State Column and ¢(X)ceeoverveeriersieeniennieennnen. 19
Figure 2.10: Mix CoOlUmMN OPETationccocueeeriieeniieeniiieeieeeieeeeireeeireeeireeeieee s 20
Figure 2.11: Round Key Addition.........ccocueeiiiiiiniiiiiieeiieeieeeeeeeee e 20
Figure 2.12: AES DECTYPION. ...ccccuiiiiiiieeiieeeiieeeiteeeieeesiee e e eseveeeveeeereeeareeenneeas 22
Figure 2.13: The multiplication of State Column and d(X).......cccceeerveeerveeenreennnenn. 23
Figure 2.14: Key Expansion for 128 and 192 bitsccoceeviiiiiiiiiniiiiiiieeieeeee 25
Figure 2.15: Key Expansion for 256 Ditsccovuiieiiiiiniieiiiiiiieeeieeeieeeeeeeie 26
Figure 2.16: Round Key Selection...........ccceeviiieriieeriieeniie et 27
Figure 2.17: DES AlGOTTtRMoiiiiiiiiiiiiiiieeeeeeeeeee e 29
Figure 2.18: DES Cipher FUNCHONccocueiiiiiiiiiiiiiieeiiececeeteeeeeeee e 30
Figure 2.19: DES Key EXPansioncccceeeiiiiiniiiiniieeiieeieceeee e 36
Figure 2.20: TDES Encryption Operationcccceccueeerveeenieeenveeereeeenireeesnreeesnneens 37
Figure 2.21: TDES Decryption OPerationccueeeeveeerueeeniueeenveeerveeesreeesnveessnneens 37
Figure 3.1: Cryptonite archite€Cturecoocueeeriieeniiieeniieeiieeieeeeee e 40
Figure 3.2: Vectored MemoOTry ACCESS ...cc.ueieruiiieriieeniiieeniiieeieeeieee et 41
Figure 3.3: Schematic of CryptoManiac ArchiteCtureccceeevveeerveeenveeerreeennenns 43
Figure 3.4: Schematic of a single functional unitccceeevvieeriieeriieeenieeeieeeeen 44

Xiv

Figure 3.5: SBox and Mix Column computation using BRAM...........cccccceevvveennnenn. 46

Figure 3.6: The SWItCh SLIUCTUIE.....ccoouiiiriiiiiieeiieeieeeee e 49
Figure 3.7: The architecture of AES COTIeccccceeeviiiiiiiiiiiiiiiieceeeiceeeeee 50
Figure 3.8: Block diagram of the AESTHETIC processorcccceevveeerveeenveennnenn. 51
Figure 3.9: Block diagram of the implemented architecture.............cccceevveeerveennnenn. 52
Figure 3.10: Block diagram of the one DES circuit...........cccocueeiiiiinniiinniiiniicenneen. 54
Figure 3.11: Pipelined cell StrUCTUTEcc.eeeriiiiiiiiiiieeiieeeeeeeeeeee e 55
Figure 3.12: The third proposed architeCture...........cccuveerveeeriieeniieeriee e eeee e 56
Figure 3.13 : An 8-bit GRP Operation..........ccoceevueeiiiiiiiiniiiieiceeeeeeeeeee e 59
Figure 3.14: An 8-bit Benes network for CROSS instructionc.ccceeeeeveeneeennen. 61
Figure 3.15: SWPERM INSIIUCHIONeeeiiiiiiiieeiiieeiieeiete ettt 63
Figure 4.1: The main architecture of the implemented Crypto Processor 65
Figure 4.2: Control Unit — Data Input/Output Module Interface...........ccceeeuveeennen. 68
Figure 4.3: Control Unit — Memory Module Interfaceccooceevvieiniiiinnicennneen. 68
Figure 4.4: Control Unit — ALU INterfaceccccceeevvieeniiiiniiiiiieeieeeiceeeeeeeen 69
Figure 4.5: SBOX MEMOTY UNIE...ccuviiiiiiieiiiieeiieeeiieeeieeesieeesteeereeeeeeeareeeereeeeneeas 72
Figure 4.6: SBox memory unit organization for DEScccccoviiiiiiiiiniie. 74
Figure 4.7: Control Unit — Permutation Module Interface.............ccocceevviieniicennneen. 75
Figure 4.8: DES Initial Permutation............cooceeeriiiiniieiniieiiieeeeeeeee e 76
Figure 4.9: DES Inverse Initial Permutation............cccceevvieeiiieeniieerieeeieeeiee e 77
Figure 4.10: DES E Table Permutation..............cccveeruieeriieeniieeiieeieeeiieeeivee e 78
Figure 4.11: DES Cipher (P) Permutationccoccueeeiiiiiniiiiniieiieeeieeeieeeeieenn 80
Figure 4.12: DES Key PC1 Permutationccccceeviieiniiiiniienniieeiieeeiiee e 81
Figure 4.13: DES Key PC2 Permutationccccveerieeeriieeniiieenieeeieeeiveeeivee e 82
Figure 4.14: Register State values before shift operationccceeevveeevieeenveennnnn. 85
Figure 4.15: Register State values after shift operation...........ccecceeevieiiiiienieennnenn. 86
Figure 4.16: BMAP fUNCHONccouviiiiiiiiiiiiiiiceicceeeee e 95
Figure 4.17: DES Encryption Console OUtput...........ccceeveveeerieeerieeerieeerieeeivee e 100
Figure 4.18: DES Decryption Console Outputccceeecvveerieeerieeenieeeieeeieee e 101
Figure 4.19: TDES Encryption Console Outputccccuveevieeerieeenieeenieeeiree e 101
Figure 4.20: TDES Decryption Console OUtpUL..........ccovveeerieerriieriieenieeeiieeeaee 102

XV

Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:

AES-128 Encryption Console OUtputccccveercireerieeenieeerieeeeneens 102
AES-128 Decryption Console Output..........coccveeerieeenieeenieenieenieeen. 103
AES-192 Encryption Console OUtputcoccveeevieeenieeenieenieeneeen. 103
AES-192 Decryption Console Output...........ccceceeevueeniennieenieenieeneenne. 104
AES-256 Encryption Console OUtputccccveerciieerieeenieeerreeeeneens 104
AES-256 Decryption Console Output..........coccveeerieeenieeenieennieenieeen. 105
INSITUCHION 7€Ad ...ttt 108
INSEIUCHION EXKO ..ottt 108
INSEIUCHION FOFA ..o 109
INSEIUCTION CIPP..nrrrrriiiiiiieieeeecteeeee e e 109
INSIIUCTION MUX...eoneiiiiiiiiieiecicee e 110
INSEIUCHION SDOX ..ttt 110
INSIUCHION SAIft 128 oo 111
INSIUCHION FOTD ...t 111

XVvi

CHAPTER 1

INTRODUCTION

Cryptography is the science of encryption and decryption of data. With the help of
cryptography, people aim to hide some important information as secret. Generally,
cryptography is used for the privacy of information, while it facilitates
communication between two points. This requirement can be realized by encrypting
the plaintext data with a key to a ciphertext, and then decrypting the ciphertext back
to its original form on the other side of the communication channel. Nowadays
authentication, digital signatures, and secure computation are other important

application areas of cryptography.

The most commonly used crypto algorithms are the Advanced Encryption Algorithm
(AES) [1] - [3], which is the standard announced for block ciphers, the previous Data
Encryption Standard (DES) [4], and Triple Data Encryption Algorithm (TDEA), also
known as Triple DES (TDES) [4] algorithm.

The designs for crypto systems are generally implemented using a specific algorithm
and using special hardware architecture which is dedicated to that algorithm. With
such architecture, it is much easier to configure the hardware according to the desired

specification; hence the crypto algorithm process is much faster.

There are several strategies to make the design of architecture specific to the
algorithm. The area and the throughput of the chip are the main parameters while

determining the structure of the design according to the desired specification.

To maximize the throughput of the selected algorithm when there is no area
constraint in the design, all the iterated rounds of the algorithm can be implemented
in the chip layout. For example as given in [9] [10], for AES, the throughput can be
increased with inner-round and outer-round pipeline structure. The data path of the
structure is also an important parameter in the algorithm-specific design. The data
path can be set to the input plaintext length for fast applications, or it can be set to
smaller data lengths for area limited operations. There are many categories in the
market, which have different data path characteristics. In [15], the data path and bit

length discussions are presented.

Another parameter for the algorithm-specific designs is the key schedule part. The
key schedule can be arranged as on-the-fly key generation method, which produces
the keys in each clock, simultaneously with the round process. Therefore, it is not
necessary to use internal registers for the round keys, as explained for AES in [6]
[13]. The second key schedule method produces all the round keys before encryption
or decryption process and then performs the algorithm’s round operations. This

method requires storage registers for the round keys.

Basic crypto operations of algorithms can be executed on using general purpose
micro processors. But in general purpose processors, there are no special
instructions, or any special block to perform cryptographic operations, making it
difficult to process a crypto algorithm in a general purpose processor. Besides
general purpose processors, there are crypto processors, which are designed for
crypto operations and have crypto specific blocks. Most of these crypto processors
are designed to process only a single algorithm with configurable parameters. For
example such a structure is discussed in [11] [14] for AES algorithm. Some of the
crypto processors can perform several algorithms in a single design. Most of the time
there is one disjoint block for each included crypto algorithm. These kinds of
structures are not area efficient and they are used mainly for high throughput

applications.

There are programmable crypto processors, which are able to process more than one
crypto algorithm in a single architecture, such as the joint implementations of AES,
DES and TDEA as presented in [7] [8]. The most important property of these kinds
of processors is their programmable architectures. The processors can be

programmed according to the applied crypto algorithm.

The objective of this work is the implementation of a programmable Crypto
processor architecture using the SystemC tool. The Advanced Encryption Algorithm
(AES), which is the standard announced for block ciphers, the previous Data
Encryption Standard (DES), and Triple Data Encryption Algorithm (TDEA), also
known as Triple DES (TDES) algorithms are chosen for the implementation of the
architecture. The Crypto architecture is implemented in the SystemC [24]
environment. SystemC is based on C++, with some additional class libraries to
model the hardware based features like clock, signals, logic and delay elements.
SystemC allows modeling from the system level to Register Transfer Level (RTL).
This modeling structure provides higher productivity than other modeling
environments due to its easier and faster implementation. In the SystemC approach
the design is implemented in modular structures. With this property of SystemC, the
design can be modified to add new hardware blocks without changing the general

structure.

In this thesis, instead of implementing two different blocks for each algorithm, the
architecture is implemented as a common unit, which can perform operations of the
chosen crypto algorithms. The implemented architecture is fully programmable and
all the algorithms’ operations are performed according to the instructions. The
architecture is similar to general microcontroller's structure, but there are some
differences for crypto operations. The internal structure of the implemented
architecture is based on 32-bit data length and all crypto operations are performed in

32-bit arithmetic.

The operations are controlled by a Control Unit module and performed in Arithmetic
Logic Unit (ALU) module or Permutation module according to Control Unit signals.
The main operations are performed in the ALU. ALU is responsible for performing
the crypto specific instructions as well as general purpose instructions. There is an
internal memory block implemented inside the ALU for Substitution Table (SBox)
operations. The SBox values for both of the AES and DES algorithms are stored in

this memory unit.

Besides ALU, which performs the logic and arithmetic operations, a Permutation
module is added into the design. In general applications, the bit permutation
operation is implemented as a memory based structure or as a hardware routing
structure. But in this implemented architecture, all of the bit permutation operations
are performed in a single permutation module block. The bit permutation operations
are used in Data Encryption Standard (DES) algorithm; therefore, the main purpose
of this permutation module is performing DES permutations. But it can also perform

other bit permutations depending on the applications.

The characteristics of Crypto Algorithms are described in Chapter 2. The types of the
crypto algorithms are described in the first section of this chapter. Then the
transformations of AES and DES algorithms and their basic process structures are
explained in the following two sections. In Chapter 3, different implementations of
Crypto processors in literature are discussed. In the first part of this chapter, the
structures dedicates to a single algorithm and in the second part, crypto processors,
which are capable of performing several algorithms, are discussed. The implemented
architecture and its module structures are given in Chapter 4, where each module in
the architecture is explained in detail. Also, the implemented Instruction Set
Architecture and the instruction descriptions are given in this chapter. Finally, a

conclusion for this work and proposed future works are presented in Chapter 5.

CHAPTER 2

CHARACTERISTICS OF CRYPTO ALGORITHMS

2.1 Introduction

This chapter explains the general description of the cipher algorithms and detailed
structure of Advanced Encryption Standard and Data Encryption Standard
algorithms. In the first section, the types and properties of the cryptographic
algorithms are described. The AES algorithm, the DES algorithm and their

operations are discussed in the second and third sections, respectively.

2.2 Types of Cryptographic Algorithms

Cryptography becomes a more important parameter with today’s increasing security
issues on communication area. There are lots of activities over communication
networks of different applications and the security of the data in these applications
are provided by using different cryptographic algorithms. These algorithms can be
divided into three groups, as symmetric-key algorithms, public-key algorithms and

hash algorithms.

2.2.1 Symmetric-key Algorithms

The encryption and decryption processes in the symmetric-key algorithms are

performed with one key. There is only one secret key between the two sides of

communication. The plaintext is encrypted by using the secret key and transmitted.

Then this ciphered data is decrypted by using the same secret key, which is used in

the encryption part [5] [20]. This communication structure can be seen in Figure 2.1.

PlainText CipherText
A 4 y
Encryption Decryption
KeyA — Operation Operation Key A
A A
CipherText PlainText

Figure 2.1: Symmetric Key Algorithms

The power of the symmetric algorithm is directly dependent to the key length.
Because of the decryption process can be performed with trying all possible key
combinations. Therefore the resistance of the symmetric algorithm against possible

key trials is much higher with the increasing key length.

Symmetric algorithms can be divided into two groups as stream ciphers and block
ciphers. The difference between these two groups is, the block ciphers use always the
same sized data chunks in the encryption or decryption operations, but stream ciphers

use different sized data in encryption or decryption operation.

2.2.1.1 Block Ciphers

Encryption and decryption operations are performed over blocks of data in the Block
ciphers. Each block is used sequentially in the cipher operations. More clearly, a set
of Boolean operations are performed on a definite length of bit vectors in a block

cipher [1] [5].

There are normally two main techniques used in the Block ciphers. These are
confusion and diffusion techniques. The aim of the confusion is making the output of
the encryption as much as different from the input plaintext. Therefore the relation
between input and output of the encryption will be more unpredictable. The

substitution operation is mainly used in confusion technique.

On the other hand the diffusion technique is used to distribute the redundancy of the
plaintext as much as possible into the cipher text. The main operation used for

diffusion technique is permutation operation.

2.2.1.2 Stream Ciphers

Unlike block ciphers, stream ciphers operate on data context, with different bit

lengths. Encryption or decryption is processed over these different sized data [5].

There are keys for each stream, which are generated by a key stream generator. The
lengths of the key data is depends on the length of the data stream. Therefore the
sequential key stream’s length may show differences. In the encryption these keys
and the plain data streams are XORed to get the ciphered data. Also in the decryption
the same operation is performed. The same key stream data is XORed with the

ciphered data, in this case to get the plaintext back.

In the stream cipher operation, the power of the operation is directly related to the

key stream generator performance.

2.2.2 Asymmetric (Public-Key) Algorithms

Unlike symmetric algorithms, the asymmetric algorithms use different keys for
encryption and decryption algorithms. There are two types of keys in the asymmetric
algorithms. One of them is called private key and this key is known only by its
owner. The other key type is called public key and this is known by all users in the

communication [5].

In the asymmetric algorithms the relation between encryption side and decryption
side is given in Figure 2.2. The encryption operation is processed by using the public
key. Unlike encryption, decryption operation is processed only with the private key.
The important point in the decryption is the private key’s owner issue. The private
key should belong to the unit, which encrypted data with its public key, for a correct
decryption.

PlainText CipherText
y A 4
. Encryption Decryption i
Public Key A —» Operation Operation Private Key A
A A
CipherText PlainText

Figure 2.2: Asymmetric Key Algorithms

2.2.3 Hash Algorithms

Hash algorithms are a kind of pseudo random number generators in cryptography.
There is no any formal description of Hash algorithms, but there are some general

properties for it.

e For a given input message, there should be not any second input message,
which gives the same hash output as the first input message. This property is
known as collision resistance.

e For a given hash algorithm output, it should be hard to compute the input
message. This property depends on the one-way function characteristic of the

hash algorithms.

In the Hash algorithms, the input plaintext length is not fixed and can have a variety
of lengths. But the output ciphered data of the Hash algorithm has a fixed data
length. This property is achieved generally by processing the input data in equal-
sized blocks and performed a one-way compression on the blocks. Therefore a very

small change at the input side can create a very big change at the output side [1].

2.3 AES Algorithm

The Advanced Encryption Standard (AES) is a new Federal Information Processing
Standard (FIPS) which was announced after an encryption algorithm standard
competition by National Institute of Standards and Technology [5]. AES is also
known as Rijndael [1] [2], but there are some small differences between AES and
original Rijndael. The input data length is fixed to 128-bit in AES, while it can be
128, 192 or 256 bits in Rijndael.

The AES algorithm is a symmetric key algorithm and operates the encryption and
decryption processes in blocks. The input data and key data of AES can be
considered as one-dimensional array [1]. Each element of the array consists of 8-bit

data. The one dimensional array of the incoming plaintext data (P) can be denoted by

P = popip2p3----Pa*Nb-1,

where pg is the first byte and ps«nb-; 1S the last byte of plaintext. The incoming
plaintext data is then mapped into a two dimensional matrix, which is called State
[1]. All the AES operations are performed on the State matrix. The State matrix has a
variable column number for different data and key lengths, with four rows. The

column numbers are denoted by Ny, for data state matrix and defined as;
Ny = input data length / 32.
The elements of the two dimensional State matrix can be defined as;
aij = Pirdj 051<4,0<j <Ny,

where a; j denotes the byte in row i and column j.

Similarly, the input key is also mapped into a two dimensional matrix. The row
number of key matrix is also four like in state matrix, and the column number is

denoted by Ny, which is defined as below;
Ni = input key length / 32.
If we denote the one dimensional array of the key data (Z) by
7 = 70212273 Z4*Nk-1,

where z is the first byte and z4«nk-1 1S the last byte of key, then the two dimensional

matrix elements can be defined as below;

Kij=12i44,0<1<4,0<j< Ny

10

The input key bytes are mapped onto key state matrix in the order ko, ki 0, k2,0, k3.0,
ko1, ki1, ko1,... [1]. The Data State matrix for 128-bit data is shown in Figure 2.3
and the Key State matrix for 192-bit key is shown in Figure2.4. The Ny, value is 4 for
AES, because the data input is fixed at 128-bit. Ny can have the values of 4, 6 and 8
for 128-bit, 192-bit and 256-bit, respectively.

a0 | a1 a12 | a13

a0 | a1 a2 | A3

a30 (aA31 | a32 | a33

Figure 2.3: Data State (for 128-bit data N, = 4)

koo | ko1 |koz2 |kos |kosa |Kkos

kio | kii |kiz2 |[kiz [kia | Kkis

ko [kt | ko2 | ko3 | kos | kos

kio | k31 |ks2 | kss |kssa |Kkss

Figure 2.4: Key State (for 192-bit key data Ny = 6)

11

The rounds have sequential operations to perform encryption or decryption. The

round numbers (N;) are also depending on the Ny, and Ny values. The Table 2.1 gives

the round numbers for different data and key lengths for Rijndael.

Table 2.1: Round numbers (N,) for different data and key lengths

N, Np =4 Np=6 Np =8
Ny =4 10 12 14
Nk=6 12 12 14
N =8 14 14 14

In the AES algorithm, most of the operations are based on mathematical operations
in Galois Field (28). Therefore, a brief explanation of the Galois Field (28) is

discussed in the next part.

2.3.1 Galois Field (2°%)

The byte level operations in the AES algorithm are defined in the finite field (or
Galois Field) GF (28) [1]. There are only a finite number of elements in a finite field
and this number of elements is given as p", where p is a prime number and n is a

positive integer.

12

The Galois Field (28) is an extension field of Galois Field (2) and it is represented by
the coefficients of {0, 1}. A finite field can be represented as polynomials of degree
smaller than the degree of the irreducible, reduction polynomial. A byte polynomial

representation is given below;

b(x)=b7x" +bs X’ +bs x> +bax* + b3 x> + by x> + by x' + by x°.

The arithmetic operations in the finite field are different from standard arithmetic and
they will be explained in the following part. When the elements are represented as
polynomials, then the arithmetic operations are performed modulo m. m is an
irreducible polynomial over the Galois field with the same degree. For AES

algorithm this irreducible polynomial is given by;

m(X):X8+X4+X3+X+1

2.3.1.1 Addition and Subtraction

The addition and subtraction of the polynomials in a finite field is a simple EXOR

operation and same for both of addition and subtraction.

2.3.1.2 Multiplication

In the finite field the multiplication operation can be expressed as multiplication of
the polynomials with using an irreducible reducing polynomial for a modulus
operation [l]. The irreducible polynomial for AES is given in m(x). The
multiplication operation between a polynomial b(x) and “x” can be expressed in

Figure 2.5.

13

First of all the polynomial is shifted to the left with a concatenated “0” on the
leftmost bit. If the leftmost bit of the b(x) is ”1”, an EXOR operation is performed
between the polynomial b(x) and the irreducible polynomial m(x), else EXOR
operation is not performed. The result polynomial is the rightmost eight bits. The
multiplication with “x” can be assumed as a fundamental operation in multiplication.
Because of other polynomial multiplications can be considered as a sequence of

multiplication with “x” [6].

b(x)

l

Concatenate a
“0” to the right

Yes Leftmost No
s 4 v bit=1
mx)=x"+x +x +x+1 T\
%

\ 4

Result =
Rightmost 8 bit

Figure 2.5: Multiplication of b(x) and x

14

2.3.2 Encryption Process of AES

The encryption process performed the inner state transformations over the plaintext
data and as a result of these transformations the ciphertext data is given as output.
The encryption diagram of the AES is given in Figure 2.6. There are four different

transformations operation in the encryption process of AES algorithm. These are;

e SubBytes operation
¢ ShiftRows operation
¢ MixColumns operation

¢ AddRoundKey operation

The encryption process starts with an EXOR operation of plaintext and initial key
data. Then the main iterated block, which consist of SubBytes, ShiftRows,
MixColumns and AddRoundKey operations respectively. This main block repeats
itself N; — 1 times. In the final round only MixColumns operation is missing as a
difference of main iterative block. The output of the final round is called as

ciphertext data.

15

Plain

Text

Initial Key

»

Ve
N

1

-

AddRound Kev

SubBytes

A

y

ShiftRows

A

y

MixColumns

v

N

N

Encryption
(Nr-1) Rounds

<

Final Kev

SubBytes

A

y

ShiftRows

N

N

_

N

L/

Final
Round

A

y

Cipher Text

Figure 2.6: AES Encryption

16

2.3.2.1 The SubBytes Transformation

In the SubBytes operation each State byte is replaced with the related substitution
table element, which is determined according the State byte's value. The Substitution

operation is the only nonlinear operation and the table is invertible.

In the construction of the SBox table, there are two operations. Firstly, the
multiplicative inverse of the State byte is calculated in GF (2%) .Then an affine

transformation is applied, which is given in below Figure.

b, 10001111 Ao 1
b; 11000111 aj 1
b, 1 1100011 Q 0
b; | - |1 1 110001 a | 0
by 11111000 ay 0
bs 01111100 as 1
be 00111110 ag 1
by 000111T11 az 0

Figure 2.7: Affine Transformation

17

9,0 do,1 o2 ? A4 Q5 boo | boi b@ bo,3 bos | bos
a0 | Al a Lj |3 | &4 | s bio [bis b ij |3 bia | bis
Qo | a1 [ap [a3 | a4 | as byo | bai [B2z [bas | bay | bas
a0 a3 a3 a3 34 a5 bso | b3y bsy | bz bss | bss

Figure 2.8: SubBytes Transformation on State

2.3.2.2 The ShiftRows Transformation
In this operation the rows of the State matrix are shifted to the right cyclically. For

each data length and for each State matrix row, there is a different shift offset. The

offset values are given for data length and row numbers in Table 2.2.

Table 2.2: The ShiftRows operation offset values for different data lengths

Row number 128 192 256
/Data length

Row0 0 0 0
Rowl 1 1 1
Row?2 2 2 3
Row3 3 3 4

18

2.3.2.3 MixColumns Transformation

The MixColumns Transformation is a polynomial multiplication operation over GF
(2%). Each column of the State is considered as a unique polynomial and multiplied
with a constant and invertible polynomial c¢(x), which is co prime to x*+1.

c(x) = 03" x>+ 01’ x> +°01° x +°02’

The multiplication of the State column a(x) with the constant polynomial c(x) and the

result State column b(x) can be written in a matrix form as given in Figure 2.9.

b(x) =c(x) *a(x) (mod x*+1)

b0 02 03 01 01 a0
bl | — | 01 02 03 01 al
b2 | — |01 01 02 03 a2
b3 03 01 01 02 a3

Figure 2.9: The multiplication of State Column and c(x)

19

a0, b o,
/ \
0 |21 |4 I /ao,s boo | bos N\ b boa | bos
ay;j / x 1,j
a0 a1 4 9(,4 ars bio by, b 4 bys
aq; b,
0 A 4 2 2.4 A5 bao by, | 2] b 4 bys
az o a3z ; 9 . A3 4 ass b3 b [. 34 b3,5
a 3, b 3

Figure 2.10: MixColumns operation

2.3.2.4 AddRoundKey Transformation

In AddRoundKey Addition operation the round data and AddRoundKey data is
subjected to an EXOR operation.

0,0 | Q0,1 | 02 | Q03 Koo | kot | ko2 | ko3 boo | boi | boz | bos
Ao | A1 | A2 | 413 Kio | kit | kiz | kis big | bii | biz| bis
A0 | Q2,1 | 22 | Q23 © koo | kot | koo | ka3 - byo | bai | b2z | bas
A30 | Q3,1 | 32 | A33 kao | ka1 [ksz | ka3 bsg | bsi | bsa | bas

Figure 2.11: AddRoundKey Addition

20

2.3.3 Decryption Process of AES

The decryption process is the inverse operation of the encryption process. The
transformations in the encryption round are reversed in the mean of the sequence.

The decryption diagram of the AES is given in Figure 2.12.

The transformations used in encryption operation are also inversed in the decryption
process. The InvSubBytes transformation is the inverse operation of the SubBytes.

The InvSubBytes transformation uses the inverse table of the normal SBox table.

The inverse SBox table is obtained by applying the inverse of the affine
transformation followed by taking the multiplicative inverse in GF(ZS) [1]. For
example the SBox value of the input 0x81 is 0xOc. And in the inverse SBox table the
output of the OxOc is 0x81.

The inverse SBox table is given in Table A.10 in Appendix A. In the Inverse
ShiftRows transformation the shift operation is performed to the right instead of the
left side in the encryption process. The offset values in the both shift transformations

are same.

21

Final Eevy

Ciphered Text

A J

I.‘/-

o1

Eound Eey

K’."

N
(Inwerze
§ ShiftEow

~
Inwerze

. ByteSubstitution

"\'I I

I’/—‘_

o)

Initial Eey

N\

Inverse
L MMizCaolumn

rImre rse
| ShiftEow

.
Inverse

| Bvtesubstitution

-

NN

Wy

[/

Flain Text

Figure 2.12: AES Decryption

22

First
Eound

Decryption
(Ir-1)
Eounds

Final
Eound

The Inverse MixColumns transformation is similar to MixColumns in encryption.
But the coefficients of the constant polynomial are changed. The constant
polynomial for the Inverse MixColumns transformation is named as d(x), where

d(X) — ‘OB, X3 + ‘OD, X2+ 509’ X + ,OE,,

and ¢(x) - d(x) =01 (mod x*+1).

b0 Og Ob 04 0% all
b1 | — [0% O Ob 04 - al
b2 | — | 0d 0% De Ob az
b3 Ob 04 09 Oe a3

Figure 2.13: The multiplication of State Column and d(x)

The round number is same for decryption process. But the AddRoundKey is applied
in reverse order. The first operation of the decryption is EXOR operation between
the final round key and the ciphered data, which is the input of the decryption

process.

Then inverse ShiftRows and Inverse SubBytes are performed sequentially. The
iterated rounds start with the AddRoundKey transformation and then continue with
Inverse MixColumns, Inverse ShiftRows and Inverse SubBytes transformations. As a
last operation the EXOR operation with the first round key is performed to get the

plaintext.

23

2.3.4 Key Expansion and Round Key Selection

The Key Expansion part is responsible to provide the round keys for relevant rounds
of cipher operation. While the round number can be different for different key
lengths, the operation of the Key Expansion can show differences. The operation is

same for 128-bit and 192-bit key length but it is different for 256-bit key length.

The operations in the Key Expansion is made over 32 bits, named as word “W”. The
input key is assigned as the first Ny words of the Key Expansion. All of the other
words are obtained recursively of these words. The expansion operation of the
remaining words is given in Figure 2.14 for 128 and 192 bits and in Figure 2.15 for

256 bits.

The recursive operation for obtaining the following words after first Ny word uses the
previous words, the Ny positions earlier words and round constants. The recursive
function is directly related to the position of the word. If the current position “i” is
not a multiple of the Ny, then a simple XOR operation between previous word (W/[i-
1]) and N earlier word (W/[i — N]) gives the current word value (W[i]). In the other
situation, if “i” is a multiple of the Ny, the current word W[i] is the result of the
EXOR operation of Ny earlier word and the nonlinear function of the previous word
WIi — 1]. This nonlinear function consists of a cyclically rotation operation to right
by one byte, which is called RotByte, a nonlinear byte substitution operation for each
byte in the word element, which is called SubByte, and addition of a round constant
value. The round constants are independent of the Ny value, and defined by a

recursion rule in GF (28) as shown below.
Reon [1]=x" (ie.01)

Reon [2] =x' (i.e. 02)
Rcon [k] =x * Rcon [k-1] = x<! L k>2.

24

RotByte
\\§ J
A 4 A 4
4 N\
SubByte W(i-1]
& J

A

4
Rcon , < }
value

WIi— Nil ﬁ‘(#‘

Figure 2.14: Key Expansion for 128 and 192 bits

25

WIi-1]

WIi-1]

<
RotByte [SubByte }

y

Rcon
value

WIi— Ni|

SubByte

) 4

~P

WIi-1]

Figure 2.15: Key Expansion for 256 bits

26

The round keys are chosen from the word array of Key Expansion part. The round
keys’ length should be equal to the input plaintext length. Hence the round key

consists of array elements from word W [Ny*i] to word W [Ny * (i+1)].

The round key selection is illustrated in Figure 2.16.

Wo | Wy W, W3 Wi | Ws We | Wy Wg

N AN y
Y Y

Round Key 0 Round Key 1

Figure 2.16: Round Key Selection

2.4 DES Algorithm

The Data Encryption Standard (DES) was developed by IBM in 1970s and then
approved as a standardized crypto algorithm by Federal Information Processing
Standard (FIPS) [4] in 1977. DES is a symmetric crypto algorithm, which operates
on 64-bit block size within 16 rounds. The input plaintext and the output ciphered
text are 64-bit. The encryption or decryption operation is achieved by a 64-bit key
data. But only the 56bits of the whole key data is effective. The remaining 8 bits
have no effect on the encryption/decryption process of the DES. The encryption and
decryption processes use the same key due to symmetric nature of the algorithm.

Also the ciphering flow is same for both the encryption and decryption.

27

The only difference is the order of the round keys. The round keys are in reverse
order for the decryption process. The block diagram of the DES encryption algorithm
is given in Figure 2.17. The DES algorithm can be analyzed in two parts. The first
part is the Key Expansion part, which generates the necessary round keys. And the
second part is the encryption part. In the second part the encryption or decryption
process is operated with the contribution of the round keys. Also the encryption part
can be divided into two group of operation. First one is the permutation operations,
which are the first and last operations of the cipher part, and the second group

consists of rounds operation between these permutations.

2.4.1 DES Rounds

2.4.1.1 Initial Permutation

The Initial Permutation is the first operation in the DES encryption algorithm. The
incoming 64-bit plaintext data is subjected to initial permutation table, which is given
in Table2.3. According to the table the first bit of the output data is the 58. bit of the
input data, the second bit of the output is the 50. bit of the input data and so on.

Table 2.3: Initial Permutation Table

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

<N W W= 00 AN RN

28

Plain Text

|

{ Initial Permmutation }

‘\.\I
Left Data Eight Data

Found

15
Founds
Left Data | Eaght Data
L J w
Left Data Right Data | Treoviput

Diata

v

Tnw. Tnitial Pernatation

Y -

v

Ciphered Tezxt

-

Figure 2.17: DES Algorithm

29

The main round processes start after the Initial permutation. The data is split into two
groups of 32 bits as shown in Figure 2.17. These groups of data are named as “R”
right half and “L” left half. The Right half is joined to the encryption or decryption
process with the round key data. The key-dependent operation, substitution tables

operations are processed in a function, called cipher function.

2.4.1.2 Cipher Function

The operations in the Cipher function are given in Figure 2.18. There are two

permutation operations, which are E Table permutation and P permutation, a

Substitution operation and an EXOR operation with the round key data.

Right D.

k4

E Takle Perm. |

KEEY 4’69 EXOR

k4

=1 S| | =3 | =4 S5 =e| | ST S8

k. J

P Permutation

k4

Cipher Func. Cutput

Figure 2.18: DES Cipher Function

30

Table 2.4: E Bit Selection Table

32 1 2 3 4 5

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

The E Bit Selection table is the first operation in the Cipher function. The round keys
in the DES algorithm are 48 bits, while the round data from group R is 32 bits. The E
Bit Selection table matches the number of bits of the round data to the round key

data, as duplicating some of the bits, which is given in Table 2.4.

After this operation an EXOR operation performed between the key data and round
data. The output of the EXOR operation is fed into a SBox array. Each one of the
eight SBox units takes 6-bit data as input and gives 4-bit data as output.

The SBox Table S1 is given below. The whole SBox tables from S1 to S8 appear in
Appendix A.

31

Table 2.5: SBox S1 Table

Row | Column Number

Num (O |1 |2 |3 (4 |5 |6 |7 (8 |9 (10|11 |12 13|14 15

0 1414 (13|12 (1511 |8 |3 |10|6 [12|5 |9 |0 |7

1 0O |15(7 |4]14|2 (13|1 106 |12 (11|{9 |5 |3 |8

2 4 |1 (148136 |2 |11 (15129 |7 |3 [10|5 |O

Each of the SBox units has 64 memory elements. The input 6-bit data is replaced
with one of the SBox memory elements according to its value. The first and last bits
of the incoming data to the SBox unit determines the row number and the middle 4
bits represent the column number of the output data in the SBox unit. The output data
of the SBox units is 32-bit data again. Hence the expanded round data is reduced
again to its normal bit length with this operation. The output data of the SBox

undergoes to another permutation, P permutation, which is defined in Table 2.6.

Table 2.6: P Permutation Table

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

32

The definition of the table is same with other permutation tables. The first bit of the

output is the 16. bit, the second bit is the seventh bit of the input and so on.

The P permutation is the last operation of the Cipher function. Then the output of the
Cipher function and the Left part of the round data is XORed. The result of the XOR
operation will be the Right part of the next round data. And the Right data of the
current round becomes the Left part of the next round data. This swap operation

between Left part and Right part is not performed in the 16.th round.

2.4.1.3 Inverse Initial Permutation

The Left and Right data of the 16.th round are concatenated and named as preoutput
block. This preoutput block data is subjected to the Inverse Initial permutation. This
permutation is the last operation of the DES encryption/decryption process and it is

the inverse operation of the Initial permutation.

Table 2.7: Inverse Initial Permutation Table

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit
8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the

output.

33

2.4.2 Key Expansion Part

The Key Expansion part takes the 64-bit key data as input and prepares the 16 round
key data for encryption process. However the input data is 64-bit length, only 56-bit
data is used for the round keys preparation. The eight bits of the each byte is
dropped. In some cases the 8" bits can be used as parity bit for error detection in key
generation. There are three parts of the Key Expansion part. In the first part the input
data is subjected to the PC-1 permutation. The permutation table of the PC-1 is given
in Table 2.8. Then the output data are split into two parts like in encryption process,
but here the divided parts are 28-bit long. The second part of the Key Expansion is
cyclic left shift operation applied each of these two 28-bit parts individually. The two
parts are shifted to left with predefined offset values before calculating the round
key. The offset values for each round are given in Table 2.10. The last process in the
Key Expansion is PC-2 permutation, which permutation table is given in Table 2.9.
The input of the PC-2 permutation is 56-bit data and the output is 48-bit data. There
is compressing process applied into the key data with the PC-2 permutation. After
each left shift operation the data is subjected to the PC-2 permutation and the result

of this operation is the round key data.

Table 2.8: PC-1 Permutation Table

57 49 41 33 25 17 9

1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15

7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

34

Table 2.9: PC-2 Permutation Table

14 17 11 24 1 5

328 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 2.10: Left Shift Offset Value Table

Round Number | Left Shift Offset
1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

35

Key Data

PC -1

C Data

)
A
G

A 4

Shift Left

D Data

A 4

Shift Left

.

Shift Left

.

Shift Left

Figure 2.19: DES Key Expansion

36

2.5 Triple DES (TDES) Algorithm

The Triple Data Encryption Algorithm (TDEA), more commonly Triple DES is an
approved cryptographic algorithm, which is enlarge the key space of the DES
algorithm. There are three DES keys in the TDES operation, which are called as
Key;, Key,, Key; and referred to as a key bundle (KEY). These three keys are used
in two allowed option to form the key bundle. In the first option, all three keys are
mutually independent (i.e. Key,, Key, and Key,, where Key, # Key, # Key, # Key,).
And in the second option, there are mutually independent keys and a third key that is

the same as the first key (i.e. Key, Key, and Key,, where Key, # Key, and Key, =
Key,). The simple encryption and decryption operations of the TDES are given in

Figure 2.20 and Figure 2.21 respectively. In the TDES encryption operation, the
algorithm process begins with the DES encryption by using Key; , then continue with
DES decryption operation by using Key, and it is finished with DES encryption

operation by using Keys.

Plaintext — DES Ex; =y DES Dx, =y DES Ex; = Ciphertext

Figure 2.20: TDES Encryption Operation

Ciphertext —) DES Dks — DES Ex» — DES Dg; —> Plaintext

Figure 2.21: TDES Decryption Operation

37

In this chapter the AES, DES and TDES algorithms have been discussed. The crypto
algorithm types, the encryption and decryption structures of the AES, DES and
TDES algorithm and the transformations used in algorithms are explained. The next

chapter presents the different implementations of these algorithms.

38

CHAPTER 3

CRYPTO PROCESSOR ARCHITECTURES

3.1 Introduction

In Section 3.2, different architectures and implementations of these architectures are

discussed. In Section 3.3 bit permutation instructions in the literature, are described.

3.2 Different Processor Implementations

There are many studies about the crypto processors in the literature. Some of these
studies are focused on only a single crypto algorithm, and some others are designed
to support several algorithms in a single architecture. The different architectures are

discussed in this chapter.

Crypto processor architecture, called Cryptonite, is presented by Rainer Buchty,
Nevin Heintze and Dino Oliva in [7]. This study is about a programmable
architecture for the cryptographic applications. DES, TDES, AES, IDEA, RC6,
MDS5, and SHA-1 algorithms are supported by this architecture.

This architecture has a different instruction set for cryptographic processing such as
parallel 8-way permutation lookups, parameterized 64-bit/32-bit rotation, and XOR-

based fold operations.

39

These instructions are used for the core functions of different crypto algorithms and
show differences than general purpose instructions. All instructions are executed in a
single cycle. 64-bit and 32-bit computations are supported in this study. The main

architecture of the Cryptonite is given in Figure 3.1.

A 4 A 4 C
O
» ALU1 ¢ > ALU2 ¢ N
T
R
O
L
U
A 4 A 4 A 4 A 4 N
I
Data I/O Add. Unit Add. Unit Data I/0 T
A A A A
A
A 4 A 4
Local Memory Local Memory Ext. Access

Figure 3.1: Cryptonite architecture

40

The Control unit controls the system according to the instructions. There is a two-
cluster architecture presented in the study. There is an ALU and its accompanying
data I/O unit for each of cluster. The data unit of the ALU is responsible of the data
access between local data memory and ALU. There is an interlink between the ALUs

to enable the data change in complex computations.

Furthermore the new XOR unit implementation into the data path, a parameterizable
permutation engine, a DES specific unit and some AES supporting functions are
implemented in the architecture. The DES specific unit is implemented into the

memory unit instead of the ALU.

The XOR unit of this architecture has 6 input. These inputs come from ALU
registers, memory unit and as immediate value. The aim of this 6-input XOR unit is

to avoid the sequential operations between multi input XOR operations.

The other new unit is the parameterizable permutation engine. The permutation
operations are performed with a lookup table, which can be used up to 8 parallel
lookups. The vector memory unit, which is used as reconfigurable permutation
engine, receives a vector of indexes and a scalar base address to address the
memories of a vector. The collections of addressed memories form the result data

vector. The structure of the vectored memory access is given in Figure 3.2.

The results of the Cryptonite architecture are given in Table 3.1.

41

LAR
rawvidin

S-box index

Resulting Diatn

:.==||IIIII
e |

Figure 3.2: Vectored Memory Access

Table 3.1: Cryptonite architecture results

Algorithm Throughput Cycle count = Speed (MHz)
(Mbit/s)
DES 732 35 400
TDES 244 105 400
AES 731 70 400
MD5 421 504 400

42

Another architecture for the programmable processor is presented by Lisa Wu, Chris
Weaver and Todd Austin [8]. The presented architecture, called CryptoManiac, is a
4-wide, 4-stage 32-bit VLIW processor with a three input operand ISA. There is a
simple branch predicter in the processor, but it does not have a cache. The code and
data is stored in a static RAM. The branch predicter is used to make predictions
about the next target address when there are more than one branch instructions in an

instruction word.

Request Format Result Format

session action Id session result...

InQ

| Reg
J Sch.ed

requests

OutQ

>

results

A

Proc

Keystore

Figure 3.3: Schematic of CryptoManiac Architecture

The interface between a host processor and CryptoManiac is provided by input and
output request queues. A request scheduler distributes the requests of host processor
to CryptoManiac processor in the order of receive. The Keystore part is a high-
density storage element for storing key data and substitution tables. Simultaneous
session processing on the same processor is available by storing key-specific data in

the shared keystore.

43

This data includes substitution data, permutation counters, and other internal
algorithm state data. This part is only used for multisession applications and not
necessary for single session applications. There are four parallel functional units in
the CryptoManiac architecture. The process in the architecture is started with

fetching a single VLIW instruction word that contains four independent instructions.

The instruction set consists of 32-bit instructions and enhanced for the cryptographic
processes by combining general arithmetic instructions with logical instructions,
substitutions with logical instructions, and rotate operations with logical instructions.
Each instruction has three operands as input and one operand for the output, again to

combine some instructions.

Logical Unat

Fip elirfed 1k Byte 32-Bit 32-Bit
32-Bit SBOX Adder Rotator
UL Cache

Figure 3.4: Schematic of a single functional unit

44

The Figure 3.4 shows the internal structure of a functional unit. Each functional unit
consists of two logical units, one adder, one 1k-byte SBox cache, and one rotator.
The multiplier block is added to only two blocks. The XOR, AND operations are
processed in the logical units. SBox cache is responsible for holding all the data, key
and SBox parameters instead of using a memory. The estimated result of the

CryptoManiac is given in Table 3.2.

Table 3.2: Estimated results of CryptoManiac architecture

Algorithm Throughput Cycle count = Speed (MHz)
(Mbit/s)
TDES 68 336 360
TDES corr. 59 392 360
AES 128/128 511 90 360
AES 128/128 corr. 353 130 360

In another study by Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis and
Leonel Sousa [9] the AES encryption/decryption algorithm with a memory based
hardware design is proposed. In the memory based design both the SubBytesand the
polynomial multiplication are implemented in internal memories of the FPGA

(BRAM).

There are two AES encryption/ decryption cores presented. One of them is a
completely unrolled loop structure capable of achieving a throughput above 34
Gbits/s, with an implementation cost of 3513 slices and 80 BRAMs; and the other
one is a fully folded structure, requiring only 515 slices and 12 BRAMs, capable of a
throughput above 2 Gbits/s.

45

The first structure has not any area constraints and it is designed for the higher
throughput requirements. The second structure is designed for the area constraints. In
the general AES block implementation they use dual port memory blocks such as
BRAM's in the FPGA's for the SBox and MixColumns processes. In the BRAM's 2
SubBytesstitutions and 2 full multiplications can be mapped in a single memory

block.

Port B TPort b

G

2 E&
a a3
8% 85 =hox SBox

sBox sBox gﬁ g BRAM g ﬁ ®

~

8%? Sﬂ* Mult Mult

Mult Mult uﬂuﬂ ﬂﬂﬂﬂ
4004 4114 - = =l g

Port By Port Aoy

Figure 3.5: SBox and MixColumns computation using BRAM

After implementing the BRAM structure, the paper proposes two architectures for
the AES operation. AES unfolded core is designed with adding sequentially all the

rounds and AES folded core is designed with only one core which repeats the rounds.

46

In a study by Alireza Hodjat, Ingrid Verbauwhede [10] an area-throughput trade-off
for an ASIC implementation of the Advanced Encryption Standard is presented. The
paper presents throughputs of 30 Gbits/s to 70 Gbits/s with loop unrolling and inner-
round and outer-round pipelining techniques, using a 0,18 um CMOS technology.
Also, the possibility of achieving a throughput of over 30 Gbits/s encryption using
the AES algorithm with minimum area cost is explored in this paper. The main goal
of the paper is combining the pipelining with a composite field implementation. The
paper calculates the SBox values using the Galois Field operations. The input byte
(element of GF (2%)) is mapped to two elements of GF (2%. Then, the multiplicative
inverse is calculated using GF (24) operators. Then, the two GF (24) elements are
inverse mapped to one element in GF (2%). In the end, the affine transformation is
performed. There is also used pipelined structure in the SBox calculation structure to
avoid the high latency in the Galois field operations.By using a pipelined structure in
the SBox process, the area is reduced up to 35 percent and by designing an offline
key scheduling unit for the high speed AES processor, an area reduction of an extra

28 percent is achieved according to the paper.

In another study by Oscar Perez, Yves Berviller, Camel Tanougast and Serge Weber
[11] the experimental results of different strategies of implementation of AES
encryption algorithm is presented. There is given a comparison between different

techniques at the beginning of the study.

These techniques are Inner-Round pipelining, Outer-Round pipelining, Full Loop
Unrolling, Iterative looping and reconfiguration. They divided the algorithm into two
parts, which are Key Expansion part and Cipher Part. The above strategies are used
in the implementation of these two parts and then a comparison is made between the
cost and the performance of the implemented techniques. The paper offers three

strategies to compare the performances.

47

1. Unrolling the loop and reconfiguration techniques
2. Iterative looping and the reconfiguration techniques

3. Pipelined technique

The performance tests are implemented on the FPGA Xilinx XC2V6000. According
to the results the best throughput is achieved by configl. But the weak side of this
technique is reconfiguration time. By contrast, in config2 who uses reconfiguration
and the reusing of operators, the throughput is very low, but it offers two advantages:
the use of few resources and a density of calculation quite near the other
implementations. The performance, surface is interesting because these values are
close to the best implementation. On the other hand, they are penalized in terms of
latency by the time used for the reconfiguration. The pipelined technique also has

good throughput results, but it uses higher BRAM capacity.

A reconfigurable processor implementation is proposed by Yongzhi Fu, Lin Hao and
Xuejie Zhang [12]. This study is about the implementation of a counter mode AES
based on the Xilinx Virtex2 FPGA platform. In the AES design there is loop
unrolling, inner and outer round and mixed pipelining. The clock frequency of the
fully mixed inner and outer round pipelined architecture has achieved 212.5MHz and
that translate to throughput of 27.1Gb/s. The difference of this article is using a

switch between MixColumns operation and AddRoundKey operation.

For the SBox operation Look Up Tables are used and the ShiftRows is implemented
by configuring the routing resources. In the MixColumns operation they use shift and
accumulation method, which is shift the incoming data O bit left when the
polynomial constant is ‘02’ and then XOR the results. The AddRoundKeys are
computed before the encryption process for a pipelined structure. According to the
several implementation tests the best result is achieved using the mixed structure,

which includes inner and outer pipelining, and loop unrolling.

48

Input Key Input Block

|

Add Round Keys

A 4

\ 4

Round Key Module @

v
Sub Bytes

Shift Rows

v
Mix Columns

[

VY

_/

v
Add Round Keys

.

Figure 3.6: The switch structure

In another study by Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and
Ingrid Verbauwhede [13] an AES crypto processor, which can handle both feedback
and non feedback modes of operation is presented. It is reported that this
implementation can achieve a throughput of 3.84 Gbps at a 330 MHz clock
frequency. For the implementation of the non-feedback modes of the operation the
design has a non-pipelined structure. In this design all implementation is based on
the single clock cycle. All rounds are designed for this purpose. In the SBox
operation the LUT are used and in the MixColumns operation there are used a chain

of XORs.

49

Input]
— — - Round K

Data :_ — [] — N ound Key
e ey B b [o -
| e 1 L
- | | ————»] | |
| L || Mix ||
— —%— B Col |—#—
| - - 2 |

—» M - > HOE ™ ™

|| - - Mix -
— — — | ™ ol >
— — i 3 I
] N N] o a
s F—) é/gg— L o |

|

Figure 3.7: The architecture of AES Core

The proposed crypto coprocessor can be programmed through the memory-mapped
interface of an embedded CPU core. The embedded CPU core can read or write to
the registers by accessing different memory locations. The memory-mapped interface

decodes the memory addresses and updates the registers’ values.

Another configurable AES processor and its experimental results are presented by
Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang and Cheng-Wen Wu [14]. This
study proposes a configurable AES processor, which can run both the original AES
and the extended AES algorithm. The extended AES algorithm has some additional
properties like providing some flexibility to the configuring to parameters of each
transform defined in AES. They provide the flexibility by configuring the parameters

given below;

50

1. Irreducible polynomial in SBox
2. Fixed polynomial values in MixColumns

3. Affine transformation in SBox

The AES core is called AESTHETIC. The original AES algorithm and the extended

AES algorithm are reconfigured depending on the application.

AESTHETIC Processor
0 Input Data
Interface Input FIFO Buffer
10 |
Control — Main B Input Block Converter
Signals Controller [
| |
Key AESTHETIC
Generator | Engine
ADDR —»]
|
Config ROMs/ | |
DATA <+—3 Logics] Output FIFO Buffer
|
Output Block Converter
Output Data

Figure 3.8: Block diagram of the AESTHETIC processor

The AESTHETIC core is similar like the original AES operations. In the design the
SBox operation is implemented as using Galois Field arithmetic operations. And for
the MixColumns operation there are 64 GF (299 multipliers to process the data
block in parallel. The design generates the AddRoundKeys on the fly method.

The implementation results of this design are;

51

844.8 Mbps for 128-bit keys @66MHz clock frequency
704.0 Mbps for 192-bit keys @66MHz clock frequency
603.4 Mbps for 256-bit keys @66MHz clock frequency

In another study by Refik Sever, A. Neslin Ismailoglu, Yusuf C. Tekmen and Murat
Askar [6] the VLSI design and implementation of Rijndael algorithm is presented. In
this study, both of the encryption and decryption algorithms are implemented for all
data and key sizes on a single ASIC, with a non pipelined structure. The main

diagram of the implemented architecture is given in Figure 3.9.

" ENCrypt

Input i I
Jﬁ-;-ﬁ# Bupf}fer OUIDUN o,
_DZ": Key Generator B

— y °

! i
—= Controller - j_m Decryp

111

Figure 3.9: Block diagram of the implemented architecture

A single round of the algorithm is completed in one clock cycle. There are 32-S box

to complete one round of the algorithm in one clock cycle.

52

The SBox part is implemented using combinatorial logic instead of using Look up
Table. There are two separate EXOR blocks. The last round of the encryption of the
current block and the first round of the encryption of the next block are processed at
the same time. This two separate EXOR blocks are necessary for not loosing one
clock cycle. Key Generator module consists of three sub modules: Key Expansion
module, Key Storage module and Key selection module. All the keys needed for
encryption and decryption processes are produced by Key Expansion module and

stored by Key Storage module.

All the keys are generated and stored before encryption or decryption starts. The
implementation results are given below,

¢ (.35 um CMOS technology

® Modules are described using Verilog HDL, and then synthesized with

Synopsys Design Analyzer

® The chip area is 12.8 mm?

e There are 149K gates

¢ The worst case clock frequency is 132 Mhz

e The maximum throughput is 2.41 Gbps

In a study by Toby Schaffer, Alan Glaser and Paul D. Franzon [18] the design and
implementation of a DES processor is presented. The processor has three separate
circuit, each can operate on an individual data stream to perform DES algorithm, or
three can operate together to perform TDES algorithm. The block diagram of one

block is given in Figure 3.10.

53

sCan

l Pads

? !
scan —=| Key PRNG | | Data PRNG ‘ Key PRNG [=— scan
| | 1
; 1
Input source 21 /
1I"n__."'l
R R S
Dratapipe scan '-i
¢l scan —= ~— Key 2 5can
Key | s . DES Pipeline h
opitiode —=|
scanmode ——=|

; |: e RS

- = data out

can —=
e SAR &= SAR scanout
sglect —=

Figure 3.10: Block diagram of the one DES circuit

The iterated rounds of DES algorithm are implemented in a 16 pipelined stage
structure. There are two different pseudo-random number generators (PRNG), one
for key generation and one for the cipher functions. The encryption or decryption
operations are chosen according to the opmode signal. This opmode signal controls
the shifting of the key values to right or left side. In encryption the keys are shifted to
left in a round sequence and in decryption they shifted to right to satisfy the inverse

structure.

54

Figure 3.11: Pipelined cell structure

Figure 3.11 shows the structure of a pipelined cell structure. There are eight cells in
one stage of the 16- stage pipelined structure. The operation of a single cell consist of
the EXOR operations between the cipher function output data and left half data of
previous stage, the EXOR operation of the key data and the result of previous EXOR
operation and the SBox operation. At the output of each pipelined cell structure, the
P permutation and E Table permutation are implemented separately. TDES operation
throughput is reported over 7 Gb/s at 110 Mhz clock frequency, as a result of this
study.

55

In the study by P. Kitsos, S. Goudevenos and O. Koufopavlou [19] three different
hardware implementations of TDES algorithm are presented. Two of the proposed
structures have pipelined structure and the third proposed structure consists of
sequential iterations. In the first proposed architecture there are used 48 pipeline
registers between each round to improve the throughput. The keys are shifted to the
reverse direction of the encryption operation to perform decryption. In the proposed
architecture initial permutations of the second and third DES and the inverse initial
permutations of the first and the second DES are not implemented. As a result of this
property it is reported that a gain in time delay is achieved. The key expansion is

performed with using on the fly technique.

Plaintext Key

A\ 4 l Y
MUX MUX
y y
. 64 7 64 7
Register v Ki v
| — Basic Round | ! PC2 Basic Key Round
64 64
| —— |:|:|
\ 4
; Round Key
1P
64 Ciphertext

Figure 3.12: The third proposed architecture

56

In the second architecture 16 registers are used between the rounds. The key
expansion is similar with the first architecture. This architecture has the capability of

processing 16 independent data blocks simultaneously for higher throughput.

The structure of the third architecture is given in Figure 3.12. There is only one
round implemented and its output of this round is registered and routed to a
multiplexer. The multiplexer determines whether the output of the round is used as
input or the data from permutation module is used. This architecture is proposed for
are restricted applications.

The three architectures are implemented in two different Xilinx devices with using
Look Up tables in one device and ROMs in the second device. The maximum
throughput values are achieved on the device with ROMs and they are 7.36 Gbps for
the first one, 2.45 Gbps for the second one and 121 Mbps for the third one.

3.3 Bit Permutation Instructions

Generally bit permutation operations can be performed with common instructions

v

like “and”, “or” and “rotate”. But with these instructions the bit permutation
operation in any cryptography algorithm cannot be made very efficient. Every bit of
the source register is extracted from source, then placed to its new position in
destination register and finally combined with other bits to make the result register.
Because the complex bit permutation operations may use the common instructions
for several times to form the result destination register and this operation will take to
much time for a permutation operation [16]. Another way of implementing the bit
permutation is using look up tables. In this type of operation there should be only one
table with 2" elements, each element is n bits, or m look up tables, with 2(n/m)
elements in each table. For example to permute 16 bits data one table can be used
with 2'¢ elements, each element is 16 bits. Or the look up table number can be

chosen as two and in this situation each table should have 2° elements, where each

element is 16-bit wide [16] [20].

57

In addition of the conventional methods there are some bit permutation instructions
implemented. These instructions aimed to solve the problems of the current
microprocessor. Some of the most popular bit permutation instructions, like GRP,

CROSS, OMFLIP, PPERM and SWPERM are discussed in the following part.

3.3.1 GRP instruction

GRP instruction [22] is very similar to the current microprocessor instructions

structure with two operands and one result. The GRP instruction is defined as below;

GRP R3,R1,R2
R3: destination register
R1: source register

R2: source register

The data bits are divided into two groups, a left group and a right group, according to
the value of the control bits. If the bit “i”” in control bits is O the bit “i” in data goes to
the left group, and it goes to the right group otherwise.

During this process, the relative positions of bits within the same group do not
change. The Figure 3.13 gives an 8-bit GRP operation. In this operation, since the
control bits of b, c, e, and h are 0, these four bits are placed in the left group in result
register. a, d, f, and g are placed in the right group in result register because their

control bit is 1.

58

G| H| F| E| D| C| B| A Input Data

110{1[0]1]10]0](1 Control Data

H| E| C| B| G| F| D| A Output Data

Figure 3.13: An 8-bit GRP operation

3.3.2 PPERM3R and PPERM instructions

PPERM3R and the new version PPERM [16] instructions explicitly specify the
original position of each bit in the destination register. There is a control register to
specify the destination positions. There should be nlg(n) bits in the control registers
to permute n bit data. The PPERM3R instruction does not specify all nlg(n) bits in a
single instruction. Instead, it specifies the original position only for a subset of bits,
and a sequence of PPERM3R instructions specify the original position for all the bits

in the destination.

The PPERM3R instruction is defined as:

PPERM3R, x Rd, Rs1, Rs2

Rs1: source register (data bits)

Rs2: source register (control bits)

59

Rd: destination register
x: specifies which subset in Rd will be updated with the bits extracted from Rs]1.
The bits to be updated are consecutive. Except the bits in the subset, other bits in Rd

remain unchanged.

3.3.3 CROSS instruction

The CROSS instruction [21] is formed by concatenating a butterfly network and an
inverse butterfly network. As a property of the butterfly network a bit at any position
in input, can be directed to any position in output with proper connections in network
stages.

An n-bit butterfly network consists of Ig(n) stages. In each stage, n bits are divided
into n/2 pairs. Two bits are controlled by one control bit. Each one of the two bits
are located in different pairs, and the control bit determines, whether these bits are
kept their positions in the next stage or exchange their bit positions with the other bit.
So n/2 control bits are needed in each stage to specify the path for n/2 data pairs. The
stages in a butterfly network are differentiated by how bits are paired. In the first
stage of butterfly network the distance between paired bits is n/2 bits. In the each
following stage this distance is reduced by a factor two. For example for an 8-bit
permutation the distance between paired bits is 4 bits. And in the second stage the
distance is reduced by two to 2 bits and so on.

The inverse butterfly network can be constructed by reversing the stages in a
butterfly network. The last stage in the butterfly network, for example, becomes the
first stage in the inverse butterfly network.

The CROSS instruction is defined as:

CROSS, m1, m2 Rd, Rs, Rc
Rs: source register (data bits)
Rc: source register (control bits)

Rd: destination register

60

ml: the lower n/2 bits of the control bits
m?2: the higher n/2 bits of the control bits

Figure 3.14 shows the combination of the Butterfly network and Inverse Butterfly

network for 8 bits permutation.

El::terfly

IMetwork:

S
~

E?E rse

Butterfls
Ietworl

BV VAN
A=A

/X XN
XA

EATA

OUTPUT

Figure 3.14: An 8-bit Benes network for CROSS instruction

61

3.3.4 OMFLIP instruction

The OMFLIP instruction [21] structure is similar to CROSS instruction structure.
The OMFLIP is constructed by combination of an omega network and a flip
network. A flip network is the mirror image of a network. For n bits input data both
networks have 1g(n) identical stages. An OMFLIP instruction permutes bits with two
stages of an omega-flip network, and 1g(n) instructions can perform an arbitrary n-bit
permutation. This looks similar to the CROSS instruction.

But the difference is the omega flip network has only two distinct stages, because all
omega stages and flip stages are identical.

Hence, only two omega stages and two flip stages are enough to do the OMFLIP
instructions. Unlike CROSS, the number of stages does not depend on the number of
bits to be permuted; only four stages are sufficient to implement an OMFLIP

instruction for any word size.

3.3.5 SWPERM and SIEVE instruction

The SWPERM instruction [23] is similar to the PPERM instruction. The difference
from PPERM is the fixed subword size in the SWPERM. The subword size in the
SWPERM instructions is fixed at four bits.

The SWPERM instruction is given in the Figure 3.15. The positions of the bits in the
destination are exactly specified with the control bits of SWPERM instruction.

For a 64-bit data permutation there are sixteen 4-bit subwords. Four bits are used to
identify one of the sixteen 4-bit subwords in the source register. In total, sixteen 4-bit
subwords in the destination register need exactly 64 bits, which can be put in the

second operand.

62

The instruction SWPERM is defined as:
SWPERM Rd, Rs, Rc
Rs: source register (data bits)

Rc: source register (control bits)

Rd: destination register

A single SWPERM instruction can perform arbitrary permutation of subwords of

size four bits or greater.

Rs [S15] 514813812 [S1a[S10] So [Ss [S7 [S6[Ss|sa]S3]82]81]%0

y N vy A J
Rd [syslsy3lspsyilsissol so | sg{ sz so]sglsolsolsolsolsp]

Re LEIDICIBIF[A[O[8[T]O0]6]0]0fO0]O[O

Figure 3.15: SWPERM instruction

63

CHAPTER 4

IMPLEMENTATION OF THE CRYPTO PROCESSOR

4.1 Introduction

In this chapter, the architecture and implementation of the Crypto Processor for the
Advanced Encryption Standard (AES) and Data Encryption Standard (DES)
algorithms are explained. The main blocks of the architecture are described in the
following section. After that the Instruction Set Architecture is presented for this

implemented architecture. Finally the simulation results are given in the last section.

4.2 Architecture of the Crypto Processor

The implemented architecture is based on a combination of different modules. The

main architecture and its modules are given in Figure 4.1. The modules are;

¢ Control Unit Module

¢ Data Input Output Module

e Memory Module

e Arithmetic Logic Unit (ALU) Module

e Permutation Module

The properties of each module are discussed in the following sections.

64

Data Input Memory
Qutput Unit
bt — | UMb (g
Input | Registers ROM
pott |
32kt — ﬁ ﬁ
Cutput | p
port | Instruction Key Storage
Control \ Fetch, Decode | | Registers
Unit
y
Reset —* (eneral Purp. | | Control Block
Registers
5,
Read/ *+— ﬁ ﬁ
LliE Arithmetic Permutation
Logic Unit Unit
(Teneral Crypto Permutation
Purpose Block specitic Block Elock

Figure 4.1: The main architecture of the implemented Crypto Processor

65

4.3 Control Unit Module

Control Unit is the main module of the architecture. The main function of this
module is to control the others modules activities according to the instructions. The
instructions are fetched from the Memory module, and then the fetched instruction is

decoded and copied to the internal registers.

After the decode process of the instruction the execution process is activated. In this
process the Control Unit sends the proper control signal to the related modules with
the proper operand data. Then the result data is copied back to related registers to

finish one instruction operation.

One machine cycle in the implemented architecture consists of 4 clock cycles.
During a machine cycle, fetch, decode and execute operations are performed. The
most of the instructions are one machine cycle instructions, but some of the
instructions are processed in three or four cycles. The Instruction Set Architecture for

this implemented Crypto Processor is given in the last section of this chapter.

There are sixteen 32-bit internal data registers in the Control Unit module [15]. Half
of these sixteen registers are used as general purpose registers. The number of the
general purpose registers is chosen as eight, because of holding all the state data info
once in a register set. And the maximum data length in AES and DES algorithm is

256 bits, which is used in AES algorithm.

The remaining eight data registers are used just for data storing of internal state
values of general purpose registers. These are necessary because in some operations
the next state value is calculated with the operations between the previous state value

and some intermediate values obtained by previous state value.

66

There is also a different register block in the Control Unit module. This register
block is used to store the round key values for the performed crypto algorithm. The
number of the register block is determined in respect of the maximum necessary
round key value. Therefore to supply all the round key numbers the register block

consists of 120 32-bit registers.

4.4 Data Input/Output Module

The external access to the implemented Crypto processor is provided by the Data
Input/Output Module. The Data I/O module has two different 32 bits external
interface. One of the interfaces is assigned as input to the processor and the other one

is assigned as output.

The input and output processes are performed according to the I/O commands, which
are sent by Control Unit. There are eight different operations in the Data I/O module.
These operations are categorized in respect of the crypto algorithms data lengths. The
data lengths can have four different data length as 64-bit, 128-bit, 192-bit and 256-
bit. The I/O commands specify the data length and the data are processed in
sequential clock cycles. For the 64-bit input data the first 32-bit is stored in the input
buffer register of the I/O module in the first clock cycle. In the second cycle this data
is fed to the Control Unit internal registers, while the second 32-bit data is taken
from input interface and stored in the buffer register. In the third clock cycle this 32-
bit data is also transferred to the Control Unit internal registers. The input and output

operations are performed in a similar way for the other data lengths.

67

ENABLE

\ 4

IOCOMMAND
Control Data /O
. ata
Unit DATA OUT
DATA IN

A

Figure 4.2: Control Unit — Data Input/Output Module Interface

4.5 Memory Module

The memory unit consists of a ROM block. The instructions are stored in the ROM
block and they are subjected to the Control Unit with an 8-bit wide data link between
Control Unit and Memory Module.

ENABLE
Control ADDRESS .| Memory Unit
Unit o

DATA

A
\ 4

Figure 4.3: Control Unit — Memory Module Interface

68

The control of the read operation is provided by the enable signal. The ROM block is
activated only when there is a low enable signal. The instructions are called from
memory according to the Address data. The Control Unit assigns the next address
data to the Address link between Control Unit and Memory Unit or determines the

next address data according to some control signals, created by the last instruction.

4.6 Arithmetic Logic Unit (ALU) Module

ALU module process the incoming data according to the commands from Control
Unit. The basic operations are performed in the implemented ALU module, like
Boolean functions, addition — subtraction operations, shift operations. Further to that

some AES and DES specific operations can also handled in the ALU module.

ALU_IN_A
ALU_IN_B
ALU_CDM g
Control >
Unit ALU
ALU_OUT_A
A ALU_OUT_B

Figure 4.4: Control Unit — ALU Interface

69

There are four 32-bit data links between Control Unit and ALU. The current data
registers values are directed from Control Unit to the ALU by two of these four 32-
bit data registers (AlulnA and AlulnB). And the remaining two data links are from
ALU to Control Unit for the output of the processed data in the ALU (AluOutA and
AluOutB).

The alucmd link is for the ALU commands, created by the Control Unit module
according to the decoded instruction. ALU module process the data according to

these incoming commands.

The main operations are performed over 32 bits data, but there are some exceptions
for both of AES and DES algorithms. There are some operations performed over
bytes. In this case the incoming 32 bits data is divided into suitable data chunks and

then the operations are performed.

In addition of general logic operations, the SBox operations are performed also in the
ALU module. For this purpose ALU module has a memory unit, which stores the
SBox values for both of AES and DES algorithms. The structure of this memory unit
will be discussed in detail in the next section. The ALU command set is given in

Table 4.1.

70

Table 4.1: ALU Commands

Code Command

0x00 Alu_DES_ROR
0x01 Alu_DES_ROL
0x02 Alu_DES_SBOX1
0x03 Alu_SBOX

0x04 Alu_XTIME
0x05 Alu_MIX

0x06 ALU_BIT_MAP
0x07 Alu_SWAP

0x08 Alu_AES_SBOX
0x09 Alu_EXOR

0x0a Alu_ROR_BYTE
0x0b Alu_ROL_BYTE
0x0c Alu_STOREO
0x0d Alu_STOREI1
0x0e Alu_STORE2
0x0f Alu_SHIFT128_0
0x10 Alu_SHIFT128_1
Ox11 Alu_SHIFT192_0
0x12 Alu_SHIFT192_1
0x13 Alu_SHIFT192_2
0x14 Alu_SHIFT256_0
0x15 Alu_SHIFT256_1
0x16 Alu_SHIFT256_2
0x17 Alu_SHIFT256_3
0x18 Alu_NOP

71

4.6.1 SBox Memory Unit

The SBox operation plays an important role for both of AES and DES algorithms.
The main structure of the SBox operation is different for these algorithms. In AES
algorithm the SBox operation is performed over bytes. Each byte in the State matrix
is replaced with a SBox table element. And the address of the table element is given
directly the input byte data itself. On the other hand in the DES algorithm the SBox
operation is performed with 6-bit data input and 4-bit data output. The address of the
4-bit output data is calculated according to some rules on the input 6-bit data. But
when the address calculation operations of the DES are handled in a way, the next
operation for both algorithms can be performed with using Look up Tables. The

implemented Look up Table structure is given in Figure 4.5.

Add. 0 A
Add. 1
Add. 2
> Sbox values for AES
' algorithm
Add. 255 <
Add. 256
Sbox values for DES
> algorithm
Add. 509
Add. 510
Add. 511
J

Figure 4.5: SBox memory unit

72

The Look up Table consists of 512 memory elements; each one is 8-bit wide. There
are 256 memory elements for the AES algorithm [1]. These values for AES

algorithm are stored in memory from address O to address 255.

There are 8 different SBox table in the DES algorithm. There are 64 memory
elements; each one is 4-bit data in each table. With a proper organization these SBox
data can be arranged as 32 memory element, and each element as 8-bit data. And for
eight SBox tables in DES there should be 256 memory elements, which are 8-bit
data. The DES algorithm SBox values are stored in memory from address 256 to

address 511.

As discussed before the SBox operation for AES algorithm is performed directly
with a single instruction. The data is replaced with a SBox memory element, that the

address of the result data is the incoming data itself.

The SBox operation in the DES algorithm is a bit more complex than AES algorithm.
The input of a SBox table is 6-bit data. The memory address of the output element is
obtained by another instruction, because of providing a common use to the SBox

instruction.

The output data of the SBox table is 4-bit data. But in the memory unit the data is
stored as 8-bit data. Therefore the two sequential SBox table output data is stored in
the memory unit in the same address. For example the output data of row 0 / column
0 and row 0 / column 1 are stored in the same memory address. The high part of the
memory data is the output data of row 0 / column 0 and the low part is the output
data of row 0 / column 1. After replacing the memory element with the input data of
the SBox table, the high 4-bit or the low 4-bit is chosen according to some control

signals.

73

Row 0/ column O data of STable 1
—/_/: Row 0/ column 1 data of STable 1

Add. 256 |—|

Add. 257

Add. 509
Add. 510

Add. 511 —(

Q: Row 3/ column 15 data of STable 8
Row 3 / column 14 data of STable 8

Figure 4.6: SBox memory unit organization for DES

4.7 Permutation Module

Bit Permutation is an important operation in the Block ciphers. In the bit permutation
operations, the incoming data is subjected to the some bit position changes according
to the permutation type. The using aim of the bit permutation is mainly for the
diffusing objective. With diffusion the redundancy of the plaintext data is spread

over a large part of the cipher text.

The bit permutation operations have a big process part in DES and TDES algorithms.
In many other solutions for DES algorithm these blocks are mainly implemented as
look up tables or implemented as hardware routing for only DES unique processors
or implemented with current microprocessor instructions like “and”, “rotate” and
“or”. But these kind of solutions have some disadvantages like slow process time and

area inefficiency.

74

Therefore a separate permutation module is implemented in the architecture. The
main purpose of this module is directly dedicated to bit permutation operations and

the main structure is based on Butterfly network structure.

PERM_IN_A

PERM_IN B

PERM CDM)
Control —» Permutation
Unit Module

PERM OUT_A

PERM OUT_B

Figure 4.7: Control Unit — Permutation Module Interface

The Permutation Module interface is similar to the ALU interface. There are four 32-
bit data links between the Control Unit and Permutation Module. The operation type
is same with ALU. The Permutation module is activated by the permcmd signal.
Besides of the activation function permcmd determines that which permutation
operation is performed in the module. The interface between Control Unit and
Permutation module is given in Figure 4.7. The implemented permutation module is
a combination of a Butterfly network and Inverse Butterfly network [16]. This
module is designed for permutations of 64 bits data. Therefore there are 12 stages in
the module, 6 stages belong to Butterfly network and the remaining 6 stages belong
to Inverse Butterfly network. The transition between stages is controlled by the
dedicated control registers for each stage, so there are 12 control bit registers. Each
control register is 32-bit wide and each control bit determines the next stage position’

of two different bits in current stage.

75

The necessary stage control bits and the bit positions between sequential stages are
given in below figures for each permutation operation of DES algorithm. In the
simulation of permutation operations same input is applied to the permutation
module for each permutation operation of DES. From the simulation figures of DES
permutation operations, it can be seen easily that, there are a different bit transitions
map between sequential network stages according to the relevant permutation

operation control bits.

Permutation Module Implementation
Initial Permutation

Control Bits

Stagel control hits: 19181601 010191816101816010160168181
Stage2 control hits: AEE611116000081111800@1111AAAA1111
Stage3 control hits: A9118011001100116881180110011686811
Staged control hits: A18181 01010131 8181818181 A1 A1 @181
Stageb control hits: A1P19101010191818101819101018141
Stageb control hits: 1113141443311 43133314939934131339111
Stage? control hits: A1P811PA100161191981011P1801011614
StageB control hits: A1191AA11001A11AA11A168A110AA10114
Stage? control hits: 911901111 60A118011061108001166811
Stageld control hits: 18181816161 019191818181816101618
Stagell control hits: 118P110811600118011061168116801108
Stagel2 control hits: A8BP11110000111168800111180BA1111
Input data:z 881 AEA1 AR01 BAA1 PRP1 BAA1 A1 ABB1HA1 1 APERARAA1110A1111181111818111
Stage 1 data: PPA1AAARAAANA1AEA1A1MAAA1A1A1A101AA11AAA1AAA110A111611181118018011
Stage 2 data: HE81H000100AAA1A1A1H1AAAAA]1A101AAAR111611AAA1AA1118110AA11AA116811
Stage 3 data: BPPBAREA1AAA181610181MAAARA1A1A1A0AAA119110011801116681A811181110681
Stage 4 data: ©HEA1AAEAA1A1AAA1AARAEALA1A1A0A1A1ABA116110AA11A01118A10A111A1116A1
Stage 5 data: B91880000010168108008001H010001A16101801110A1160A011A1180611611161168
Stage & data: 1888000010101 AABRARR1H1000101016016880110110011AA11180180111601110608
Stage g data: 1888AAMAA11AH1BARAAAELAA1AA1AA11A160A01110A10A1A1A111A681A160116811168

Stage data: 18PEBAEA11600HEBA1800H116000010110010AA111AA10101816811818198110161108
Stage ? data: 188800001101 6006H1180HAEAA111000EE11801010A01A1010168110168168111601681
Stage 18 data: 1988000011018068111PAAAA11ANAAEEA1BAAEAR110A11111111°06880AAE1161111
Stage 11 data: 11880001101 680EH1 A1 BAEAAL1ARAAEA11HAABAAA1A1111108110ABRA111681111
Stage 12 data: 1188000011018008191PPHAAA11AAAARA1180AAANA1A111110A11°0080A11161111

OQutput data: 119800PA1171111117A188AAA110A111111ARARRAA1 A1 0AA001 18800011 1 ARABA

ved file closed
Press any key to continue

Figure 4.8: DES Initial Permutation

The stage control bits for Initial Permutation in the permutation module are;

Initial_Perm_Control[0] = 0x55555555;
Initial_Perm_Control[1] = 0x0fOfOfOf;

Initial_Perm_Control[2] = 0x33333333;
Initial_Perm_Control[3] = 0x55555555;

76

Initial_Perm_Control[4] = 0x55555555;
Initial_Perm_Control[5] = Oxffffffff;

Initial_Perm_Control[6] = 0x5a5a5a5a;
Initial_Perm_Control[7] = 0x69966996;
Initial_Perm_Control[8] = 0x33cccc33;

Initial_Perm_Control[9] = Oxaaaaaaaa;
Initial_Perm_Control[10] = Oxccceccecc;
Initial_Perm_Control[11] = 0x0fOf0f0f;
The Initial Permutation is performed, when the permute command is 0x01 and then

these values are transferred to the stage control bits to process the data correctly.

Permutation Module Implementation
Inversze Initial Permutation

Control Bits

Stagel control hits: APRA111108EA111189888111100001111
Stage2 control hits: A911A011A8118W110811AA1 1808118811
Stage3 control bhits: A18171 A1 7108161 016816181 A1 018168181
Staged control hits: AW11A0A11 0811880110811 AA1 1081168811
Stage5 control hits: A1919A1 017108101 A10A181A1 101810181
Stageb control hits: 111414443133434333333443133113311131
Stage? control hits: A1198110011881 10188117301 188110881
Stage8 control hits: 1A81A1101 8018110801181 7AA1 0117816881
Stage? control hits: 1810161 6060181818168181810119101016
Stagel® control bits: 118811 001168011 00118011 0011001100
Stagell control hits: 111160001111 88861111°80001111060608
Stagel? control bhits: A1919191810818101018191 01801018181

Input data: 800916001 B8E1 BEE1 H881 BB01 0001 PRA1 AH11AREEEEEA11168111118111168168111

data: B8818808080881111000011701160601011168116800130ABBA0111110001116168881
data: ©881688118081111106081100AA0H1 811000110001 A0E1WAA11111A001 110388801
data: 08081011100611A11080A111A000A1 0781 ARA11AAA1ABA1AAA1111°AAAA1 114818801
data: B8118181868111801000011 0106100001 08081 8611060681 80011101001 611618881
data: 011091010118117A000AA11 61001681 ARA1AAA1 10018001 401181 °A01 0116160100
data: 10811010168681117AAAAAR111A00AL 10001 AAA1AA]1RAAALBAA111A00AA11118168600
data: 16810809110191811A00HAA1110001 881 ARA1 898101 0018018001 118001 0111081880
Stage data: 10100811101 A811AAAAA1A11A01 A1 ARAARA]1A1 0018010001 A111AAA1110816800
Stage data: B818181188181110A000117010601100000008A18110000110A010801161 6116616818
Stage 10 data: 8918111106101 0100101881 3001 A1 00A000H111 1 AHAA1HAA1 191181 3188810818
Stage 11 data: B16A111110668171010001A0081AAA1A10A0A11A11111 18881 A0RABAAL A1 AREAA1 A1 A
Stage 12 data: 8181111106101 0100018881 00010100011 81111118881 10000001 01 AEHAA10108

Output data: 8191111168181 81898818881 00010100011A11111183861 A0A0BRA1 01 A000E16016

ved file closed
Press any key to continue_

Stage
Stage
Stage
Stage
Stage
Stage
Stage

L =1--R -y dy NIt R L]

Figure 4.9: DES Inverse Initial Permutation

The stage control bits for Inverse Initial Permutation in the permutation module are;

77

Inverse Initial Perm_Control[0
Inverse_Initial Perm_Control[1
Inverse_Initial Perm_Control[2
Inverse Initial Perm_Control[3

Inverse Initial Perm_Control[4

Inverse_Initial Perm_Control[6
Inverse Initial Perm_Control[7
Inverse Initial Perm_Control[8

Inverse_Initial Perm_Control[9

[
[
[
[
[
Inverse_Initial Perm_Control[5
[
[
[
[
[

= 0xO0fOfOf0f;
=0x33333333;
= 0x55555555;
=0x33333333;
= 0x55555555;
= OxfTfftfe;

= 0x96966969;
= (0xaa5555aa;

= Oxcccececeecc;

Inverse_Initial_Perm_Control[10] = OxfOfOf0f0;
Inverse_Initial_Perm_Control[11] = 0x55555555;

|
]
]
]
|
]
] = 0x66669999;
]
]
|
0
1

The permute command should be 0x03 for the Inverse Initial Permutation operation.

Control Bits

FPermutation Module Implementation
Table Permutation

Stagel control hits: 1111111 AAAAAAAA11AAAAAA111111111
Stage2 control hits: P11111119811168811111111°A00A1 1001
Stage3 control hits: 19111191911168111601111111A00006A1
Staged control hits: 10111681118111681116811181111111111
Staged control hits: 111189111111181111313141311311111111
Stageb control hits: 1111111313311343333113431431439393111
Stage? control hits: #8081 11 38AA1 11 HIABAAERAGBA1 111 A0AA
Staged control hits: 101191180811 0111801188111111168168
Stage? control hits: 1910191891111801811918011111881 8
Stagel@ control bhits: A1111016A1168118111°881 1 300RARAEAA
Stagell control hits: 91119911111 8A1111111111A08A1188
Stagel2 control bits: 1111111611 A0RAARAAAA1111AR111111

Input data:

Stage 1 data:
Stage 2 data:
Stage 3 data:
Stage 4 data:
Stage 5 data:
Stage 6 data:
Stage 7 data:
Stage 8 data:
Stage 92 data:

Stage 18 data:
Stage 11 data:
Stage 12 data:
Output data:

ved file closed

ArA1 ARA1 90A1 ARA1 ARA1 BAR1 ARA]1 ARA1 A1 19AAAARAA111011111A1111A1A111

AA11A0A1 AAA1 ARAEAR1RA1ARA111A18111 A1 ARARARAA1111A1111 811 ARA1 BBAL
B081 8001 801 0PE11011 060811161811 6601111 91 88801 811180631 0861 ABBE1 AE1
ARA1ARA1AAA1ARA1117A1A11A19A11 3801 AAAE1A111A1111 A1 ARBA1 ABA1 ARBA] BAL
B081 80018801 00E1 811011818061 181 180110816111 1688681 1 A1 8801 1081 BEEE
A1 3881 ARA1AAA1 AR1RA1A111A1AA1117A11°8AA1A11A111 18001 ARA1 ARAL 1 ARRAA
198810001 8001 AAAA1101611100\119811168601 818811111861 3881 BOE1 081 ABEEA
18881 ARA1 ARA1AAAA11AA111A1AA119A111°8A1 3184111118081 ABA1 AA1 A1 ARAA
A01 8801 31 90ABP1HA1101181A0A1 811111808181 88111 060118001 BB01 801 1 ABEEA
AP18801 AAA1 A1 AEAE1A1111°ARRA16111161611086111 0011001 BB6A1 0061 AR1 8
A01 81 0AA1 ARP1 HARE1A1110161111 60011 ARRAAE1A111111°A061 BB01 00610016
ARE180A1 9191 A1 8EA1 111 ARR1¥111ARAA1ARA11911061170118800RAAA11118
8081890010191 0018801 60111A001 81116800601 8061189116881170118000000811118

80818001 1801 801 8801 ARERABNE111100AA1AAA181118811A118111888101118

Press any key to continue_

Figure 4.10: DES E Table Permutation
78

The stage control bits for E Table Permutation in the permutation module are;

EBit_Selection_Control[0] = Oxfe0181ff;
EBit_Selection_Control[1] = 0x7f39fel9;
EBit_Selection_Control[2] = 0xbd777101;
EBit_Selection_Control[3] = 0xbbbbbbff;
EBit_Selection_Control[4] = Oxf7f7ffff;
EBit_Selection_Control[5] = Oxffffffff;
EBit_Selection_Control[6] = 0x14280010;
EBit_Selection_Control[7] = 0xb63733fa;
EBit_Selection_Control[8] = 0xaa7969f2;
EBit_Selection_Control[9] = 0x7acdcc00;
EBit_Selection_Control[10] = 0x39f3ff0c;
EBit_Selection_Control[11] = Oxfec00f3f;

The permute command should be 0x0b for the E Table Permutation operation.

79

Contro

Stagel
Stage2
Stage3
Staged
Stageb
Stageb
Stage?
StageB
Stage?

1 Bits

control
control
control
control
control
control
control
control
control

Permutation Module Implementation
Cipher <(P>» Permutation

hits: 1111311113311 19333311333141131313111
hits: BA1111111A11A1141444443434443444
hits: 111181811111 1413133133431431443433111
hits: 1111111311111 601811111313111111313111
hits: 1111118168111 111313111131311111313111
hits: 1111111313141 43434444434344343344
hits: 1111800101 0AAA1A11111111114131111
hits: PiP1911100010AA11111111111111111
hits: HEP1918186801018111111111111131111

StagelB control bits: 911000101 AAA111A1111441414441444
Stagell control hits: 11818181981 AA1AA11111111114131111
Stagel2 control hits: 1111311333313 3933331333333314333111

Input

Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage

Qutput
ved Fil

data:

data:
data:
data:
data:
data:
data:
data:
data:
data:
18 data:
11 data:
12 data:

W00 =] TR W L DN

data:

e closed

8001 9601 AAE1 BRA1 AEA1 BEA1 ABA1 ABA1 861 19A0ABBOA111681111181111A1A111

AP11800AAAA11191111161111 61811106081 061 0001 081 B0E1 0001 IEE1 BEE1
AP111A1118A11111111 1 H88AA1 BAA1 1 BHAR1 ARE1 HRA1 HEB1 ARAE1 ABA1 HEH1 BEAE1
18011111868111 0118186811 61111 388086081 8801 ABA1 A0A1ABA1 ARA1 ARA1 BAA1
11111AA118110AA11 811 AA1 AA1 A1 881 A1 AAA1 PAA1 ARA1 ARE1 POA1 ARA1 ARAE1 BOAL
1111811611100118801 10881101 8810101 0001 AB81 ABE1 00A1A8A1 ARE1 B0R1 66
1111100111411 0861 8011861 A31 631181 31 A8A1 1EH1 BEE1 BRG] HEE1 BEAE1 BEA1 BEA
1111811611811 010801 1 861 881 81 81 1 981 B881 A861 A0A1 ABA1 ARA1 ABR1 AAA1AA
11118A1111A11A18801 1 A1 AA1 A1 AA1 1 AAA1 PAA1 ARA1 ARE1 PBA1 ARA1 ARAE1 BRAL
1111801118601111801 6061178061 81116081 A0A1 0801 081 A0E1 0001 IEE1 BEE1
189180811111 A11118A1 3611173061 A1 1 HAK1 ARAE1 HRA1 HEV1 ARAE1 ABA1 HEH1 BEAE1
ARBAA111116801 0111611861 18811681 11868818801 801 8001 A0A1 ARA1 ARA1 BAA1
ARAAA111119A1A111011AA119AA118111AAA1 BAA1 ARA1 ARA1 POA1 ARA1 ARAE1 BRAL

B8d1 90081 BAA1 ARE1 HRG1 HEAN1 ABE1 HRA1 HERAR11111°AB1611108116081189@118111

Pressz any key to continue_

Figure 4.11: DES Cipher (P) Permutation

The stage control bits for Cipher (P) Permutation in the permutation module are;

CipPer_Perm_Control[0] = Oxffffffft;
CipPer_Perm_Control[1] = 0x3fb7ffff;
CipPer_Perm_Control[2] = Oxf5ffffft;
CipPer_Perm_Control[3] = Oxfff5ffft;
CipPer_Perm_Control[4] = 0xfd7ffftf;
CipPer_Perm_Control[5] = Oxffffffff;
CipPer_Perm_Control[6] = 0xf142ffff;
CipPer_Perm_Control[7] = 0x5711ffff;
CipPer_Perm_Control[8] = 0x1515ffff;
CipPer_Perm_Control[9] = 0x628effft;
CipPer_Perm_Control[10] = 0xd524ffff;

80

CipPer_Perm_Control[11] = Oxffffffft;

The permute command should be 0x05 for the Cipher (P) Permutation operation.

Control Bits

Stagel control
Stage2 control
Stage3d control
Staged control
Staged control
Stageb control
Stage? control
StageB control
Stage? control

Permutation Module Implementation
Hey PC1 Permutation

bhits: 1AAA11111°AAA1111198A11111AAA1111
bhits: 1A81108111AA11A1118118011181168811
hits: 1919119118108118111818108111818181
bhits: A111911191116811111113113111111131
bhits: 1111131313133 433333313343314311331
bhits: 111113131131133313311311331311311331
bhits: Ar1111AAAA111100AAAA111100801111
bhits: A1 AAEAA11161111A00ABAAA11111111
bhits: AANARNARNARAAA1111111111111111

Stageld control hits: 181881811 9180191181 0191818101818
Stagell control hits: 1190801111 800A1111080118800111 1088
Stagel? control hits: 11118A0AA1111AAAA1111A80A111188BA

Input data:

data:
data:
data:
data:
data:
data:
data:

Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage data:
Stage data:
Stage 10 data:
Stage 11 data:
Stage 12 data:

L=R== =y N1 - FLY L)

Output data:z

vecd file closed

80618001 0801 HEE1 ABE1 001 ARA1 A1 001 1HAR0AAAA11181111181111818111

ABA1 ¥ARNARA1 1119189114111 881 8111401 1 AEA1 ANAEAAR1 A1 1 1 84001 A1 31 AAA1
188110111081 61110001 A00AARA1111 8001 1 ARA1 ANA1 AAA1 A11 10801 A1 AAAAA1
1881A11117A811 61160001 110000A1 AA1 AAA1 1 AAA1 ABA1 BAA1 A1 1 ARA61 A1 A1 AAAL
1111AAA11A11 168101 301 81 A1 AEAR1 ARAE1 AA1 1 G001 BAE1 ARA1 A11 AAAAL A1 A1
111181 8811180911 30801811801 BAAA1 ARA1 BA1 1801 AEA1 HAA1 801 191 A1 BAA1 A1
1111106881181 1681 08101 381 A1 881 AB\1 ARA1 1981 BEH1 ARA1 HAAA1 181 AAA1 818
1111817811191 6801 081081181 0801 A0A1 ARA1 19001 A1 01 AAAA1 1 881 AAA1 A1
111181 AA1119A11001 AAAAA1 1 A1 ARA1 A1 ARA1 1 AAA1 ARA1 AAA1 A1 801 ARA1 A1 A1
111181 AA1110A1 10081 BA0AA1 1 A1 AAEA1 A1 1 AA1 ARAA]1 ARA1 881 AA1 AA1 HA1 A1 RAAL
1111818811171 1880010800131 880001 1 31 AAEARG1 1801 108001 AEAA1 1618011
AR1181181A1A1111111 088081 1 ABARRARRAAARNRA11 31 HAHAA1 01 HAAHW11 801111
V1191181 A19111111 10800081 1 AGHARNARAAAANG11 01 900AA1 01 090W11881111

ArRAR11A11611111 61 81 A80A1 1 ABEAREAR1 1 AARA1 01 ARREA1110AABA11AA1111

Press any key to continue_

Figure 4.12: DES Key PC1 Permutation

The stage control bits for Key PC1 Permutation in the permutation module are;

Key_PC1_Control[0] = Ox8f8f8f8f;
Key_PC1_Control[1] = 0x9b9bb3b3;
Key_PC1_Control[2] = Oxadadd5d5;
Key_PC1_Control[3] = 0x7777fftf;
Key_PC1_Control[4] = Oxffffffff;
Key_PC1_Control[5] = Oxffffffft;
Key_PC1_Control[6] = 0x3c3c0f0f;
Key_PC1_Control[7] = 0x21de00ff;

81

Key_PC1_Control[8] = 0x0000ffff;
Key_PC1_Control[9] = 0OxaSa5aaaa;
Key_PC1_Control[10] = Oxc3c3cc3c;
Key_PC1_Control[11] = 0xfOf0f010;

The permute command should be 0x07 for the Key PC1 Permutation operation.

Control Bits

Permutation Module Implementation
Key PC2 Permutation

Stagel control hits: APAA11111111111113111311311311111
Stage2 control hits: A19011AA111A0111 008016811011 16801
Stage3d control hits: A11111A101801181610811181681@11111
Staged control hits: A1A110010A1116A111111868A11A1111081
Stage5 control hits: 11818111681 A1114141114118111@141431
Stageb control hits: 1114414443443 443444444443143414434
Stage? control hits: 111AA111A11A118111118118018168111
Stage8 control hits: 111AAAA11AAA111681 81 0016011A111181
Stage? control hits: ArR1310A11110A611181 016811686811 68168
Stageld control hits: A1111 061018068111 61 31 880A1 18601 16868
Stagell control hits: A19AA111 06181731 80000011881 611181 8
Stagel2 control hits: AEBA1I 1111441444444 444443343434331

Input data:

Stage 1 data:
Stage 2 data:
Stage 3 data:
Stage 4 data:
Stage 5 data:
Stage 6 data:
Stage 7 data:
Stage B data:
Stage 7 data:

Stage 18 data:
Stage 11 data:
Stage 12 data:
OQutput data:z

vecd file closed

ArA1 ARA1 NAA1 A1 ARA1 BAA1 ARA1 BAAE1 AR1 1 AAROARRA1 1181111181111 A18111

ArA1 ARAARAAA111A11111A1111 A1 6811184781 1 AAA1 ABA1 BAA1 ARA1 AAA1 ABA1 RAAL
A10110AA118011111 81108681 1A0A1 811 AAA1 1 AAA1 ABA1 BAA1 ARA1 AAA1 ABA1 RAAL
B168110111611618108116811060881 3011001 1 8881 G081 ARE1 BR01 BEA1 AEE1 BRE1
A1811168811801 61118108111 A8011 8801 A0A1 AR 1 A0A1 BAH1 ARA1 BAA1 ABH1 ARA1
A19110011980111191 8108111118801 A8A1 HA1 10801 1HA1 1801 AAA1 ARA1 HAA1 84
1818811801171101 0191181111801 8001 AWA1 1801 H801 AHA1 BAA1 ABA1 BAA1 BAA
A1811A18018111186011081111 1801 A38HA1 HA1 1001 H0A1 081 BAA1 ABW1 BRAA1 AA
A1911A180181161111808111A011 881 BA1 AAA11 A1 HAARAR1 AA1 ARA1 HAA1 A1
A1111 0680118168611 01101101 881 8881 181 1 9181 HAARA1 1 ARAAR1 ARA1 HARRAAAL 1
A1818A811111 1613081 01 8118116881 81 8081 1 A1 HAA1 A01 ARAAR1 ARA1 BARRAAAL 1
AnA18A11111A1118601 101801 8111 8801 A01 1 ARRAR1 AERA1 BAA1 AW1 1 HAAAA1 BA1
AnA18A11111A111801101 80181118801 301 1 ARAA1 AERA1 8801 A011 HAAEA1 B8l

A8A1 HAENA1 HABA1 BEA1 0811 00HAP1AP1AR11A11111601118011 818091 61118881

Press any key to continue

Figure 4.13: DES Key PC2 Permutation

The stage control bits for Key PC2 Permutation in the permutation module are;

Key_PC2_Control[0] = OxOfffffft;

Key_PC2_Control[1] = 0x4ce70b71;
Key_PC2_Control[2] = 0x7d4d5d5f;
Key_PC2_Control[3] = 0x593bflbd;

82

Key_PC2_Control[4] = 0xd75ffddf;
Key_PC2_Control[5] = Oxffffffff;
Key_PC2_Control[6] = 0xe76df657;
Key_PC2_Control[7] = 0Oxel8ea5bd;
Key_PC2_Control[8] = 0x29e3ab32;
Key_PC2_Control[9] = 0x794750cc;
Key_PC2_Control[10] = 0x47540cba;
Key_PC2_Control[11] = OxOffffftt;

The permute command should be 0x09 for the Key PC2 Permutation operation.

4.8 Instruction Set Architecture

The Instruction Set Architecture is implemented to execute the basic parts of the
crypto algorithms easily. Firstly, DES and AES algorithms are analyzed carefully to
obtain the common properties for both of algorithms and some instructions are
assigned to perform these common operations in DES and AES. The SBox, round
key addition, round key store operations are some examples for the common blocks
in DES and AES algorithms. After that the basic blocks of the algorithms are studied,
and the instructions in the ISA are implemented according to these basic parts of
algorithms. Therefore each instruction in the ISA performs one simple operation in
the crypto algorithms. The purpose of this implementation is making the hardware
design simpler.

The TDES algorithm is also performed with this ISA. Because of the TDES
algorithm is an extension of DES algorithm, the instructions used in TDES are the
same instructions, which are used in DES algorithm. But to execute the TDES
algorithm correctly, there is only an additional control operation implemented in the

Control Unit module.

83

XTME

Opcode: 0x40 to 0x47
Operation: xtime operation on MixColumns operation of AES algorithm

Syntax: xtme register

Description: This instruction is used for the xtime operations [1] [6] for AES
algorithm. The multiplication with the “x” coefficient in the Galois field is called as
“xtime” and this instruction calculates the xtime value of the data in register and

result data is stored again in the initial register.

MIX

Opcode: 0x48 to 0x4f
Operation: mix operation on MixColumns of AES algorithm

Syntax: mix registera , registerb

Description: mix instruction is used for the exor operations after the xtime instruction
[6]. The MixColumns transformation in AES algorithm is a combination of the xtime
and mix instruction. The data is taken from registera and registerb and the result data

is written to the registera back.

SBOX

Opcode: 0x30 to 0x37

Operation: SBox operation for both of AES and DES algorithms

Syntax: SBox register

Description: This instruction is used for the SBox operations. The data in register is

replaced with the relevant memory data and result data is stored in the initial register.

84

SHIFT

Opcode: 0x38
Operation: AES 128-bit ShiftRows operation
Syntax: shft 128

Description: shift 128 instruction is used for the AES ShiftRows operation. The
ShiftRows operation is operated over the rows in original AES state matrix. In the
implemented architecture the data is stored in registers as given in Figure 4.14. The
row elements of the original matrix are placed in the same byte of sequential
registers. If we assume the sequential registers as a matrix, the original state rows are
the column elements of the registers. Therefore the ShiftRows operation is performed
in a different way in the architecture. This instruction is 3 machine cycle instructions.
In first cycle it sends two 32-bit data (regl and reg2 values) to the ALU. In the
second cycle two more 32-bit data (reg3 and reg4 values) is sent, also it takes two
32-bit result data (oregl and oreg2 values) and stored them in the relevant registers
(regl and reg2) back. In the last cycle last two 32-bit data (oreg3 and oreg4 values) is
taken from ALU and stored in registers (reg3 and reg4). The result register matrix is
given in Figure 4.15. The incoming data is placed into the 32-bit data registers as

given below.

Col3 Col2 Coll ColO
Byte3 Byte2 Bytel ByteO Regl
Byte7 Byte6 Byte5 Byte4 Reg2
Bytell Bytel0 Byte9 Byte8 Reg3
Bytel5 Bytel4 Bytel3 Bytel2 Regd

Figure 4.14: Register State values before shift operation

85

And the expected output data should be placed as given below.

Bytel5 Bytel0 Byte5 ByteO ORegl
Byte3 Bytel4 Byte9 Byte4 OReg?2
Byte7 Byte2 Bytel3 Byte8 OReg3
Bytell Byte6 Bytel Bytel2 OReg4

Figure 4.15: Register State values after shift operation

SHIFT

Opcode: 0x39
Operation: AES 192-bit ShiftRows operation
Syntax: shft 192

Description: shift 192 instruction is used for the AES ShiftRows operation. This
instruction is 4-cycle instruction. This instruction’s structure is same like shift 128

instruction. But this needs one more cycle due to its increased data size.

SHIFT

Opcode: 0x3a
Operation: AES 256-bit ShiftRows operation
Syntax: shft 256

Description: shift 256 instruction is used for the AES ShiftRows operation. This
instruction is 5-cycle instruction. Also this instruction is same like shift 128 and shift

192 instruction.

86

EXOR

Opcode: 0x24 to 0x2c
Operation: Bitwise EXOR operation

Syntax: exor registera, registerb

Description: EXOR instruction does a bitwise "EXCLUSIVE OR" operation between
registera and registerb, leaving the resulting value in registera. The value of registerb

is not changed.

MOV1

Opcode: 0x50
Operation: Store accumulator group1 values

Syntax: movl

Description: This instruction is used to store the accumulator registers groupl values
in a different group of registers. This is necessary because of the accumulator values
were used in some inner stage operations to calculate intermediate results and then

another calculations with these intermediate results.

MOV2

Opcode: 0x51

Operation: Store accumulator group?2 values

Syntax: mov2

Description: This instruction is used to store the accumulator registers group2 values

in a different group of registers.

87

MOV

Opcode: 0x52 to 0x54
Operation: Move a value to a constant

Syntax: mov constant , #value

Description: These instructions are necessary for predetermining some internal

values in intermediate operations of the algorithms.

MOV

Opcode: 0x55 to 0x59
Operation: Copy a register value to another register

Syntax: mov registera , registerb

Description: This instruction copies the registerb value to the registera.

EXKO0

Opcode: 0x60 to 0x6f
Operation: Key exor operation

Syntax: exkO #number

Description: The round data and key data EXOR operation is provided with this
instruction. This instruction is continued three clock cycles. In the first clock the first
half of the round data and its corresponding key data is forwarded to the ALU for the
EXOR operation. In the second clock the output of the first operation is written back
to the first accumulator register reg0 and also the second half of the round data and

key data is processed. And in the third clock the result data is stored in the regl.

88

EXK1

Opcode: 0x70 to 0x7f
Operation: Key exor operation

Syntax: exk! #number

Description: Same as exk(structure. The necessity of this instruction is due to the
increased data and key length. The EXKOinstruction has only a limited capacity for
EXOR operation.

EXK2

Opcode: 0x80 to 0x8f

Operation: Key exor operation

Syntax: exk2 #number

Description: Same as EXKO

EXK3

Opcode: 0x90 to 0x9f

Operation: Key exor operation

Syntax: exk3 #number

Description: Same as EXKO

MVKO0

Opcode: 0xdO to Oxdf

Operation: Store AddRoundKey values

Syntax: mvkQO #number

89

Description: This instruction is used to store the AddRoundKey values in the
predefined registers for further AddRoundKey operations. There is a specific portion

in the register module, dedicated to the AddRoundKey data.

MVK1

Opcode: 0xe0 to Oxef

Operation: Store AddRoundKey values

Syntax: mvkl #number

Description: Same as MVKO

RCON

Opcode: 0xf0 to Oxff
Operation: Load Rcon values to reg0

Syntax: rcon #number

Description: The RCON values are predefined constants which are used in key
expansion of AES. Therefore this instruction is AES specific and used for load the
Rcon values to accumulator register reg0.

PC1P

Opcode: 0xb0

Operation: DES Permute Key PC1

Syntax: pclp registera, registerb

Description: PCIP instruction is used for Key PCl permutation in the Key

Expansion of the DES algorithm.

90

*In all the permutation operations the registera as left half data and registerb as right

half data and writes the resulting value into that registers back.

PC2P

Opcode: Oxbl
Operation: DES Permute Key PC2

Syntax: pc2p registera, registerb

Description: PC2P instruction is used in the PC2 permutation of DES Key

Expansion.

INIP

Opcode: 0xb2
Operation: DES Initial Permutation

Syntax: inip registera, registerb

Description: INIP is used for the Initial Permutation of DES. This is the first

operation in the DES algorithm.

ETBP

Opcode: 0xb3
Operation: DES E Table Permutation

Syntax: etbp registera, registerb
Description: This permutation is used for bit permutations in the DES cipher

operation. In this permutation bit mapping is used. The number of the incoming data

is increased by using some bits more than once.

91

CIPP

Opcode: Oxb4
Operation: DES Cipher Permutation
Syntax: cipp registera, registerb

Description: Cipher permutation is used at the end of the cipher operation.

INVP

Opcode: 0xb5
Operation: DES Inverse Initial Permutation

Syntax: invp registera, registerb

Description: INVP is used for the Inverse Initial Permutation of DES. This is the last

operation in the DES algorithm.

DIFP

Opcode: 0xb6
Operation: Any 64 bits Permutation

Syntax: difp registera, registerb

Description: DIFP instruction is used to permute any 64-bit data. The permutation
block is capable of permute 64-bit data according to the control bits. The internal
control bits are only for the DES permutation operations. This instruction use the
control bits, which are loaded to the internal control registers with the LDPM

instruction

92

RORB

Opcode: 0xa0
Operation: Rotate byte to right

Syntax: rorb register

Description: RORB instruction is used for rotating the register data to the right by 8-
bit. The rightmost 8 bit is loaded to the leftmost 8-bit part of the result data.

RORD

Opcode: Oxal
Operation: Rotate bit to right in DES

Syntax: rord registera, registerb

Description: RORD instruction is used for the DES key expansion and it is specific

to the DES algorithm.

The round key data are rotated to left according to different offset values for each
round. Also the rotated data is divided into two 28-bit units and each unit is rotated
independently. There is not a unique process to divide the data, because it is already

separated by storing the data in 32-bit registers.
The leftmost 4 bit in the registers is not important for this operation. Because of in

each register there is 28-bit data. These data are called C-data and D-data in the DES

algorithm specification. The result data is stored back to the same registers.

93

BMAP

Opcode: Oxa2
Operation: DES Bit Mapping

Syntax: bmap registera , registerb

Description: This instruction is used for the bit repetitions on the permutation
operations. The data in registera is mapped according to the control data in registerb
and the result data is stored in registerb. The data register registera is not affected. In
the DES algorithm the E Table Selection operation is include some bit repetitions.
The input of the E Table Selection permutation is 32-bit data and the output is 48-bit.

The bit repetitions cannot be solved with the permute instruction.

Therefore a specific instruction for this purpose is implemented. The data and control
data are 32-bit. This instruction takes two operands. One of them is the data, which
will be permuted and the other one is the control data for determining the bit
repetitions. The output of this instruction is 32-bit repetition data. Therefore at one

time only 32-bit data mapping operation can be made.
The input data bits are mapped to the output data according to the control data bits. If

the control data bit is “1” the respective data bit is mapped to the output data. The

mapping instruction figure is given below.

94

Input:Data

Of 0| 1 o 1 0] 1| 1
0 1l 1l 0 ol 1] O
Control Data
XX Xl X o 1] oof 1
Qutput Data

Figure 4.16: BMAP function

SBAD

Opcode: 0xa3
Operation: DES SBox address calculation

Syntax: sbad registera , registerb

Description: des SBox address instruction is used for the DES SBox operation. The
address information is computed for memory access operation. The operands are
taken from registers and the result data is written back to the registers. In the DES
algorithm the SBox operation is performed in a different way compared to AES
algorithm. The result value position in the SBox table is calculated according to
some rules of the input data. And this instruction calculates the memory address data

for the SBox operation.

95

SWAP

Opcode: 0xa5
Operation: Swap register values

Syntax: swap registera , registerb

Description: SWAP instruction is used to change the registera and registerb values.

DREX

Opcode: Oxa6
Operation: Des round data exor

Syntax: drex registera , registerb

Description: This instruction is used in the end of the each round of the DES. In each
end of the round the half of data swapped with other half. In this swap operation on
half of the data is EXORed with the output of the cipher operation. To avoid a
sequential of exor and move operations this single instruction exor the data and store

it to correct place.

COPY

Opcode: 0x11, 0x15

Operation: copy data from IO Module or to 10 Module

Syntax: copy ibuffer or copy obuffer

Description: This instruction is used to copy the input buffer registers of the IO

Module to internal registers of the Control Unit and the state register values of

Control Unit to the output buffers of IO Module.

96

READ

Opcode: 0x18
Operation: Read data from external interface

Syntax: read iport

Description: This instruction is used to read data from external interface.

WRTE

Opcode: 0x19

Operation: Write data to external interface

Syntax: wrte oport

Description: This instruction is used to write the output data to external interface.
INSX

Opcode: 0xc0 to 0xc7

Operation: inverse SBox operation for AES algorithm

Syntax: insx register

Description: This instruction is used for the inverse SBox operations. The data in

register is replaced with the relevant memory data and result data is stored in the

initial register for Inverse SBox operation.

97

INMX

Opcode: 0xc8 to Oxcf
Operation: inverse MixColumns operation for AES algorithm

Syntax: inmx register

Description: This instruction is used for the inverse MixColumns operations. The
Inverse MixColumns operation in the AES algorithm is more complex than the
normal MixColumns operation. There are the x3, x? parameters in the Inverse
operation. These operations can be performed as cascaded the xtime block several
times. With this instruction the xtime block is used several times and Inverse

MixColumns operation is performed.

ISFT

Opcode: 0x3b

Operation: AES 128-bit Inverse ShiftRows operation

Syntax: isft 128

Description: This instruction is used in Inverse ShiftRows operation of AES
algorithm. The principle of this instruction is same with normal shift operation. Only
the structure is modified according to shift direction.

ISFT

Opcode: 0x3c

Operation: AES 192-bit Inverse ShiftRows operation

Syntax: isft 192

Description: same as ISFT 128

98

ISFT

Opcode: 0x3d
Operation: AES 256-bit Inverse ShiftRows operation
Syntax: isft 256

Description: same as ISFT 128

LDSB

Opcode: 0x02
Operation: Load SBox memory elements

Syntax: ldsb

Description: The internal data of the SBox memory can be reloaded to perform other
applications. The first 256 memory element is allowed to reload and reuse in

different applications.

LDPM

Opcode: 0x03

Operation: Load Permutation Control Bits

Syntax: ldpm

Description: There are a predefined control bits in the permutation bit, which are

dedicated for the any other 64-bit permutation independently of DES permutation

control bits. These control bits can be used only with the DIFP instruction.

99

4.9 Simulations and Implementation Results

The simulations are performed to verify the implemented design. Firstly the
encryption operations of DES, TDES and AES algorithms are simulated. In the
console output figures the first input data are input key data to the simulator. Then a
random plaintext data is applied to the simulator for encryption. After that for
decryption operation the ciphertext output of the encryption part is applied as input to

simulator. Then a comparison between the input of encryption and the output of

decryption is made.

Input -
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data
Input -
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data
Input -
the instruction
Output Low 32-Bit Data

Output High 32-Bit Data

vcd file closed
Press any key to continue_

Output Module Implementation

value 18..ccccencncncnnnnnnns

................ BxffE£0888
................ Bx5555dddd

Output Module Implementation

value iS....cccencncncnnannnns

................ Bx33336666
................ Bx44447777

Output Module Implementation

value is....cccenincncnnnnnens

................ Bx3h31d886
................ Bxaacchabb

Figure 4.17: DES Encryption Console Output

100

Input -
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data
Input -
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data
Input -
the instruction
Qutput Low 32-Bit Data

OQutput High 32-Bit Data

ved file closed
Press any key to continue

Figure 4.18: DES

Input —

the instruction

Input Low 32—Bit Data
Input High 32-Bit Data
Input —
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data
Input —
the instruction
Input Low 32-Bit Data
Input High 32-Bit Data

Input —
the instruction
Output Low 32-Bit Data
Output High 32—-Bit Data

vcd file closed
Press any key to continue_

Figure 4.19

Output Module Implementation

value is....cciciininiainiiana @x1@
................ BxfFEf£2888
................ BAx5555dddd

Output Module Implementation

value is....cciciininiainiiana @x1@
................ BAx3h31d886
................ Bxaacchabt

Output Module Implementation

value is....cciciininiainiiana Bx14
................ Bx33336666
................ Bxc144477°77
Decryption Console Output

Output Module Implementation

value iS...c.icccccccmmnnnnnnnn Bx18
................ OxfFEFE888
................ Ax555580008

Output Module Implementation

value is..cc i cmmi e e e e i e e Ax18
................ Bx33336666
................ Bxccce?777?

Output Module Implementation

value iS...c.icccccccmmnnnnnnnn Bx18
................ Bx?P292222
................ Bx11114444

Output Module Implementation

value iS...c.icccccccmmnnnnnnnn Bx14

HBxacael?d1l
Ax78A4cdYc

: TDES Encryption Console Output

101

Input — Output Module Implementation
the instruction value is.....c.ccccccececncnnn= Bx18
Input Low 32-Bit Data = = = ..o ccicecccccnannn BOxfEFf£8888
Input High 32-Bit Data = = ..o ciicccacannan Ax555500688
Input — Output Module Implementation
the instruction value iS....c.ccccmcncncncann= Bx18
Input Low 32-Bit Data = = ... c.icicccaacana HUx33336666
Input High 32-Bit Data = = = . ccccicacacanannn Bxcccc??Y?
Input — Output Module Implementation
the instruction walue iS....c.icceicccnccnnnnnnn Bx18
Input Low 32-Bit Data = = ... cccceaaaana Uxacaed?@l
Input High 32-Bit Data = =ccoccaoa.- Hx7084cd?c
Input — Output Module Implementation
the instruction value is.... ... mcmcncnannn- Bxl4
Output Low 32-Bit Data = =c--a--a.- HAx2?9992222
Output High 32-Bit Data = = (... .icccacaaaa Bx11114444

vcd file closed
Pre=s=s any key to continue

Figure 4.20: TDES Decryption Console Output

Input — Output Module Implementation

the instruction value 1Is.....ccc.ieiceccncnnnnns

Input Low 32-Bit Data
Input Second 32-Bit Data
Input Third 32-Bit Data
Input High 32-Bit Data

.Bxd44bhe?66
.Bx3bh2cBaef
.Bx59fadcBE
.Bx2e2b3l4ca

Input — Output Module Implementation

the instruction value is... mennannn

Output Low 32-Bit Data
Output Second 32-Bit Data
Output Third 32-Bit Data
Output High 32-Bit Data

vcd file closed
Press any key to continue_

.Bx4ahd?5£7?
Bxd79eel52
Bxfalldd3i3
.BxhcBde?2B8

Figure 4.21: AES-128 Encryption Console Output

102

Input Low 32-Bit Data
Input Second 32-Bit Data
Input Third 32-Bit Data
Input High 32-Bit Data

Output Low 32-Bit Data
Output Second 32-Bit Data
Output Third 32-Bit Data
Output High 32-Bit Data

vcd file closed
Press any key to continue_

the instruction value is

the instruction value is

Input — Output Module Implementation

Bx4abd?5f7
Bxd7?9ee252
Bxfalld313
Bxbc8de?28

Input — Output Module Implementation

Bxd44be?66
Bx3b2cBaef
Bx59fadc88
BxZe2bhidca

Figure 4.22: AES-128 Decryption Console Output

Input — Output Module Implementation

the instruction walue is

Low 32-Bit Data
Second 32-Bit Data
Third 32-Bit Data
Fourth 32-Bit Data
Fifth 32-Bit Data
High 32-Bit Data

Input
Input
Input
Input
Input
Input

Axe28h34ch
Axc4ha@d7a8
Bx8762hdab
Bxa247818c
Bxe?62ed3

BxhbE?a?f7a

Input — Output Module Implementation

the instruction walue is

Low 32-Bit Data
Second 32-Bit Data
Third 32-Bit Data
Fourth 32-Bit Data
Fifth 32-Bit Data
High 32-Bit Data

Output
Output
Output
Output
Output
Output

vcd file closed
Press any key to continue_

Bx13ef9deb
Bx1cf853c2
Bx7482c21f
Bxbalbed2b
Bxch@5alnh
Ax3da34cald

Figure 4.23: AES-192 Encryption Console Output

103

Input — Output Module Implementation

the instruction value is.....ccceecceccncnnns

Input Low 32-Bit Data = = . .iciiciecneacnaan Bx13ef9deh
Input Second 32-Bit Data =-...-. Bx1cfB853c2
Input Third 32-Bit Data = ... ccciccmeanaan Bx?482c21f
Input Fourth 32-Bit Data @ = ..cccciccmecnaan Bxbalbed26
Input Fifth 32-Bit Data = = ..ic.iceeeericnnnns BxcbB5a165
Input High 32-Bit Data @ = . .icciciecmecnaan Bx3daldcald

Input — Output Module Implementation

the instruction value is.....ccceecceccncnnns

Output Low 32-Bit Data @ = . .icceiceeceecnaas Bxe28h34ch
Output Second 32-Bit Data Bxc4bald?0ad
Output Third 32-Bit Data = = ..cccccccccaannns Bx8762hdal
Output Fourth 32-Bit Data =ccceiceeanaan BxaZ247818c
Output Fifth 32-Bit Data =-. Bxe762e43

Output High 32-Bit Data = =cceeiceecnaan Bxh89a7f?a

vcd file closed
Presz any key to continue_

Figure 4.24: AES-192 Decryption Console Output

Input — Output Module Implementation

the instruction value is.....cciccccincncnnnnnns
Input Low 32-Bit Data = = .c.iieeecccnnnnnns Bx7?e22ch
Input Second 32-Bit Data = = ... ccccecmnenann- Bx3be5h74A
Input Third 32-Bit Data = =-..... Bx6578b75¢c
Input Fourth 32-Bit Data = .c.icicieecccnennns BxYabhB8e2?
Input Fifth 32-Bit Data = =-... Bx6623f626
Input Sixth 32-Bit Data = = Bxd?baaad?
Input Seventh 32-Bit Data @ ..icceeceicmecann- Bx23617388
Input High 32-Bit Data @ = .ciceeiceccecnann- Bxf3Bafcal

Input — Output Module Implementation

the instruction value is. ... eccnccnennns

Output Low 32-Bit Data @ = ..icceemeenmcannnn Bx7ed4378

Output Second 32-Bit Data Bxad32?c31
Output Third 32-Bit Data = ..ceceeccannannns Bx5e?3adle
Output Fourth 32-Bit Data @ ...ccemeenmcnnnnn Bxa?2hbafs
Output Fifth 32-Bit Data @ Bx%cfidbbe
Output Sixth 32-Bit Data = = .c.ieceeccnnnnnnns Bx887de438
Output Seventh 32-Bit Data = ... c.ccenmcannnn Bxbh?ch?a2
Output High 32-Bit Data = =--..... Bxe?5%elf2

vcd file closed
Press any key to continue_

Figure 4.25: AES-256 Encryption Console Output

104

Input — Output Module Implementation

the instruction wvalue is

Low 32-Bit Data
Second 32-Bit Data
Third 32-Bit Data
Fourth 32-Bit Data
Fifth 32-Bit Data
Sixth 32-Bit Data
Seventh 32-Bit Data
High 32-Bit Data

Input Low 32-Bit Data @ =
Input
Input
Input
Input
Input
Input
Input

Input - Output Module

the instruction value is

Low 32-Bit Data
Second 32-Bit Data
Third 32-Bit Data
Fourth 32-Bit Data
Fifth 32-Bit Data
Sixth 32-Bit Data
Output Seventh 32-Bit Data
Output High 32-Bit Data
ved file closed
Press any key to continue

Output
Output
Output
Output
Output
Output

BxPed4398

Bxad32?c3l
Bx5e?3alle
Bxa?2bhbafs
Bx9cfi14bbe
Bx887de438
Bxbbh?ch?a2
Bxe?5%e1f2

Implementation

Bx?7e22ch
Bx3bhe5h748
Bx6578h75c
BxPabBe2?

Bx6623F626
Bxd?baaad?
Bx236193688
Bxf3Bafcal

Figure 4.26: AES-256 Decryption Console Output

For the implementation results, main parts of ALU module and Permutation module
in SystemC descriptions are compiled into hardware using the SystemCrafter tool.
And then the outputs of the SystemCrafter tool is used in synthesis process together
with Xilinx tool into Spartan3AXC3S200A device. The results of this process are
given in Table 4.2. The SBox Table and Permutation module are also compiled into
hardware using the SystemCrafter tool. But due to compiler limit problems of
SystemCrafter tool, the basic parts of the SBox and Permutation module are
compiled into hardware and synthesized with Xilinx tools. Then some assumptions

are made to get an idea about the SBox and Permutation blocks areas. The results of

these assumptions are given in Table 4.3.

105

Table 4.2: Slices values for some crypto specific blocks

SWAP XTIME | MIX SHIFT
256
Logic Utilization
Number of Slice Flip Flops 142 82 139 222
Number of 4 input LUTs 129 65 265 360
Logic Distribution
Number of occupied slices 107 63 178 227
Only related logic 107 63 178 227
Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 129 65 97 129
10B Flip Flops 64 32 64 64
Total equivalent gate count for design | 2425 1341 3361 4417
SHIFT SHIFT DESS EXOR
192 128 ADD
Logic Utilization
Number of Slice Flip Flops 211 198 28 112
Number of 4 input LUTs 334 275 19 65
Logic Distribution
Number of occupied slices 215 197 18 77
Only related logic 215 197 18 77
Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 129 129 39 97
10B Flip Flops 64 64 6 64
Total equivalent gate count for design | 4328 4013 389 1897
DES ROR DESS XTIME
ROR BYTE DATA 2
Logic Utilization
Number of Slice Flip Flops 123 83 58 138
Number of 4 input LUTs 109 73 49 257
Logic Distribution
Number of occupied slices 94 60 39 182
Only related logic 94 60 39 182
Unrelated logic 0 0 0 0
Total Number of 4 input LUTs
Number of bonded IOBs 119 65 49 65
10B Flip Flops 54 32 16 32
Total equivalent gate count for design | 2073 1361 889 3097

106

Table 4.3: Approximately Slices values for SBox and Permutation blocks

Crypto Specific Block Number of occupied
Slices

SBox 4960

Permutation 1672

Table 4.4 gives the machine cycle values of the implemented Crypto processor for
the related algorithms, and Table 4.5 gives a machine cycles comparison for the
performed crypto algorithms by the implemented crypto processor and other

programmable crypto processors.

Table 4.4: Machine Cycles for performed Crypto Algorithms

Crypto Algorithm Machine Cycle
128 AES 213
192 AES 397
256 AES 517
DES 196
TDES 596

Table 4.5 Comparison between Machine Cycles of Programmable Crypto Processors

128-bit DES TDES Expected | Structure
AES Area
Cryptonite 70 35 105 3A Complex
CryptoManiac 90 130 392 4A Complex
Impl. Processor 213 196 596 A Simple

Below figures are the simulation outputs of some instructions used in the crypto

algorithms.

107

ADDRESS s [T A ¥ iz i W0 i H0: 1%
ALUCMD hs : W

ALUNPUTHIGH [hefE12623 | e

ALUNPUTLOW {00000 T HO0000

ALUOUTPUTHIGH {0000000 ‘ I

ALUOUTRUTLOW | h00000002) I

CLOCK, Hl f

CRYFTOINPUT (k00000000 | hOODOTOOD | hid44hedEE) habZ2cBae!) hE3iadcal) hle2bddca
CRYPTOQUTRUT { HOOOOO0D : RO000000

DATACONTROL {HO]_\ [[[

INSTRUCTION ~ [hi0 [H h18]
[OEMD il hl RO}] I] RO [[hT | hill
[OMODULEREAD {HO l [[[[
[OOUTCONTROL | HOOOOOO0D | RO000000

FERMCMD il [hild

FERMINPUTHIGH | hOO00000D : RO0000000

FERMINFUTLOW | HOOO00O0D RO0000000

FERMOUTRUTHIGI | HO0000000 | hO0000000

FERMOUTRUTLOY { HO000000D | hO0000000

STIMSENDDATA {HO ! [] [[] [

Figure 4.27: Instruction read

ADDRESS hoos? [FOETY_ HI0EZ I HOES :
ALUCHD h2a [N I

ALUINPUTHIGH { he17c3a4 [TBT7C3a0 || Telbelbd | W1e200% [helTea | [
ALUINPUTLOW {h32s670: [F7e57000 1] hatesradd | heblcile s] [
ALUDUTPUTHIGH {h3235664 ‘ F3ZEEEEN]

ALUDUTPUTLOW (h35423a [Toobizsaqn | Faabdhiy | (IR EEEEER) FEchdead0
CLOCK VR 0 I
CRYPTOINPUT | h2e2b34e ! Rl

CRYPTOOUTPUT | hogooooc ‘ HDA00000

DATACONTROL [ho :

DATAIN ho |

DATADUT 0 !

INSTRUCTION [h38 [W0 I]

I0CMD hQo . 0

10N hODDO0C | FOI0000

IDMODULEREAD | ho !

Ioout h2e2b34c : [

PERMCMD hQo |]

PERMINPUTHIGH | hodooaac I HADA00000

PERMINPUTLOW | hooooooc ‘ FOI0000

PERMOUTPUTHIG | hooooooc : FOI0000

PERMOUTPUTLOW | hadoooac | HADA00000

Figure 4.28: Instruction exk0

108

CRPTONPLT (e | D

CRYPTODUTRLT (o0 : T

e I D R O R T T S . T

TR0 [T R B — |

T G T] T | W] B

BLLNPUTLOY [] T e JI0I

LUNPUTHEH (g] T e 000

LLOUTRUTLOW (el 0 T 1 | I

ALLOUTPUTHEH {0] T T

03 0 } il

w0 [T 18]

FERMNPUTLIY () Tl 1 i

FERMNPLTHGH (D e ! I

FERMDLTRLTLOH a0 T W

FERMDLTRLTH s AL W

o e AN AR r
I

Figure 4.29: Instruction rord

(RUPTONRLT e | e

T [:]

wREss s [m I L L I

NSTALCTIN [t 0] i I T

T G W] i (18] B

AONPTLOY (5 | TN | it s, 1 B

ANPUTHEY [z 5] | [T

ooy [t [e |1 iR 1 0

LUOUTRUTHE [ttt | B

|] i

R [0 [] m

e [g { o

FERHIPLTHEH {paize I ! B

FERMLTRUTLI A D] e

FERMLTRUTHG e]] T

wx o AN OO A A T A U
|

Figure 4.30: Instruction cipp

109

..|....|........|....|....|....|....'....|...|....|....|....|....|...|....|...
]]

ADDRESS hild2 [T H041 " w2 hi4a hi044
ALUCMD hla I ha | WM | ha :I W5 | hla | W | ks | hE
ALUINPUTHIGH [hea?3chbe hiea/3ckhe 0 h33c3adb) hdac!
ALUNPUTLOW [ro9c03adb [hofloarer | TR T [EEREET ! [ERIRH e
ALUDUTPUTHIGH [h43:03:33 ‘ [ERIREH
ALUDUTPUTLOW | F293b74ad R R, hafcahdha | TS 1
CLOCK 1A | 1 o O S
CRYPTOINPUT | h2e2b3ea I et Hhca
CRYPTOOUTPUT | hDOODDO ’ HONO000]
DATACONTROL |H0 :
INSTRUCTION | ha2 TER 2 T i ! I ! h
I0CMD 0D ']
IDMODULEREAD |H0 f
IDOUTCONTROL | h2s2b34ca | hoehHica
PERMEMD 0D |]
PERMINPUTHIGH | 00000000 ! HOMDO00]
PERMINPUTLOW | HODO0D0O : HOMDO00]
FERMOUTRUTHIG! | h00000000 | h0000000
FERMOUTRUTLO' | h00000000 | h0000000
STIMSENDDATA k0 !
Figure 4.31: Instruction mix
— —
ADDRESS k039 [T I [R T E H03E
ALUCMD hla hig | hla 1 hod] hla :I ROB | h2a J hOB | hda J hOc | WOF] hla | hIO |
ALUNPUTHIGH [haafbfbfd haafbfbi3 |)) hA3733a33
ALUINPUTLOW [hf9113efa HERTEa7s ! TETTEET | R v [TEEE
ALUOUTPUTHIGH {H00000007 ROTOIO0D7 [Tealdcbe]| W
ALUOUTPUTLOW [h9dcObzte (] heacll3chd | ke, | Gd | Wigen | i | B
CLOCK o U T A U i i i A i
CRYPTOINPUT | h2e2b34ea T el
CRYPTOOUTPUT | 00000 R
DATACONTROL |H0 :
INSTRUCTION [€1 !]) i3
I0CHD 0o T
IDMODULEREAD |H0 f
IDOUTCONTROL | h2e2b34ca | ek
PERMCMD 00 W
PERMINPUTHIGH | 0000000 T HON0I0
PERMINPUTLOW | 0000000 — Fiomn
FERMOUTRUTHIG! | h00000000 | hi00g0oog
FERMOUTRUTLOY | h00000000 | hi00g000g
STIMSENDDATA k0 !

Figure 4.32: Instruction sbox

110

L I hill

ADDRESS i3 I FIT%

ALUCHD K2 ME | s | W | W | e | R0] s
ALUNPUTHIGH | st T W TR

ALUNPUTLOW | W2afa286 O W e

ALUDUTPUTHIGH | haoonoou? RO, x Fealickhe x RIS
ALUDUTPUTLOW | he3733a33 [] e e x R x R
CLOCK 1S I S e I v S S
CRYPTONRUT {hs2b3dea I [P

CRYPTOOUTRUT {hazoonoos ’ R0

DATACONTROL [0 :

INSTRUCTION {33 i3] E x
IDEMD hi !]

IDMODULEREAD {0 f

IDDUTEONTROL {h2s2bdea . Rk

FERMCMD hi |]

FERMINPUTHIGH {hotootonn ! RO

FERMINPUTLOW | hooozons : RO

PERMOUTPUTHIG!{ hazoonooo | 000000

PERMOUTPUTLOW | hozoonooo I 000000

STIMSENDDATA [h0 '

Figure 4.33: Instruction shift 128

)))) |] I H

ADDRESS hams h21 AIE] hi4 "hOTs h1e h0tY AIE]

ALUCMD ha [hla I hOa | hZa | W08 | hla IR h
ALUINPUTHIGH [ha3arrdfz h3357HE2) ! h00000
ALUINPUTLOW [h000000O7 ! hO0000007 | h33aclilh | hilb33act ! hbeed!|
ALUDUTPUTHIGH [hoooooaa? | | " h0000oooz

ALUDUTRUTLOW [hD0DOOOOS | | hO0000003 , | hOb33acli | h2beed1 76 ! hehee!
CLOCK b AU AL L T LA U UL
CRYPTOINFUT | h0000D000 | h00000000

CRYPTOOUTRUT | hODDODO00 " OO0

DATACONTROL k0 |

INSTRUCTION | h50 hll T T ™ T O
[OCMD il ' 2]

[OMODULEREAD ~ {h0 l

[OOUTCONTROL | hODDODO00 | hi00oo0oo

PERMCMD] [[0

PERMINPUTHIGH | h00000000 " hO00oogo

PERMINPUTLOYW | hODD0DO00 : H0D00000

PERMOUTRUTHIGI | h00000000 | h0ogng

PERMOUTRUTLO { hO0000000 | h00o0o

ETIMSENDDATA kO !

Figure 4.34: Instruction rorb

111

CHAPTER 5

CONCLUSION

In this thesis study, a programmable Crypto Processor is implemented for AES, DES
and TDES algorithms, containing both encryption and decryption in the same design
for all data and key lengths. A new Instruction Set Architecture is suggested and

implemented to process all different modes easily.

The objective of this implementation is to combine the features of the AES and DES
algorithms in single architecture and to utilize the reuse capability of the processor’s
instructions. Since the bit permutation operations are not so easy to be implemented
with general ALU operations like “shift”, “and”, “or”, “rotate”, a special permutation
module is added into the architecture to perform bit permutation operations. In
several applications, the bit permutation operation is implemented in memory based
structures or in hardware routing structure, which are dedicated to only single

permutation.

Due to its architecture, the permutation module is used to do all of the bit
permutation operations. All the DES permutation operations are performed in this
permutation module, as well as other permutation operations. This permutation
module is capable of doing any other 64-bit permutations. By loading the proper
control bits, any 64-bit permutation can be performed in a single structure with the

implemented Permutation Module.

112

The Data Substitution operation is performed using Look-up-tables. The Look-up-
table is unified for AES and DES algorithms. In AES algorithm, the substitution
operation is performed over bytes, but in DES algorithm the output of this operation
is 4-bit data. Therefore, with a proper addressing scheme for DES substitution
outputs, a single SBox memory is used for both of algorithms. The same instruction

is used for data substitution operation within AES and DES algorithms.

Data stored in the SBox memory is easily modified to adapt this structure to new
algorithms. In normal cases, the internal memory data is used for standard AES and
DES applications. But if it is necessary, the first 256 memory element of the SBox
memory can be reconfigured. With the proper instruction in the ISA, the memory

elements are reloaded according to desired application.

The DES algorithm consists of an SBox block, an EXOR block and six different
permutation blocks, which are Initial Permutation, Inverse Initial Permutation, E-
Table Permutation, Cipher (P) Permutation, PC1 Permutation and PC2 Permutation.
The AES algorithm consists of an SBox block, a ShiftRows block, a MixColumns
block and an EXOR block, and there are some additional blocks that are necessary

for the key expansion of AES.

In this architecture, all the permutation blocks are combined in a single permutation
module. Some parts of the SBox operations are implemented in a common structure.
Of course, there is an additional work for the DES SBox operation, due to the
preference for the correct part of the SBox module. All EXOR operations are

performed in the same block of the ALU module with a single instruction.

The shift operations for AES and DES operations are different, because of the
difference in algorithms’ structure. Therefore, there are two different shift blocks in
the architecture; one for bit-based shift operations and the other one is for the byte-
based shift operations. DES uses bit-based shift operations, whereas AES uses byte-

based shift operations.

113

The MixColumns block is based on the xtime function. This function describes the
multiplication the data with “x” in the Galois Field (2%). All the multiplication with
“x” in Galois Field (28) can be performed with the xtime instruction in the
implemented architecture, including the Inverse MixColumns operation in the
decryption algorithm of AES. But this function is decreasing the throughput in the
decryption operation due to multiple uses for the different coefficients in Inverse

MixColumns operation.

As a result of common blocks and different blocks of the implemented architecture,
DES algorithm can be performed using 21 different instructions with the proposed
ISA. On the other hand, AES-128 algorithm can be performed using 32 different
instructions. There are 9 common instructions like SBOX, EXOR and MVKO (store
round key values) in the ISA, which are used for both of the DES and AES
algorithms. Therefore, it is clear that implementing AES and DES algorithms in a

single design is an efficient way to decrease the area.

The hardware architecture of this design is implemented using SystemC. The main
architecture is divided into modules and each module is implemented separately. The
advantage of using modules is, changing one of the modules’ internal parameters
without affecting the other modules’ parameters. Therefore, the module parameters
of the implemented architecture can be changed to satisfy different algorithm's
specifications for future work of this study. The simulation results are analyzed to
verify the implemented architecture. The encryption and decryption algorithms for

AES, DES and TDES are simulated for different data and key lengths.
There is always a tradeoff between area and speed parameters of the implemented

design. In this design, the area is considered to be optimized and the design is

implemented so as to minimize the total area.

114

Most of the instructions in the ISA are implemented as single cycle instructions. The
purpose of this structure is making the hardware design simpler and as a result, the
implemented instructions are the basic parts of the algorithms. Each instruction
performs one simple operation in the crypto algorithms. However, this property
brings the disadvantage of low throughput capability, because of the long processing
time compared with other programmable crypto architectures, Cryptonite and
CryptoManiac as given in [7] and [8] respectively. The main advantages of
Cryptonite and CryptoManiac are their complex hardware architectures. In those
architectures, there are special hardware blocks, which can perform several
instructions faster, in less machine cycles. Consequently, total machine cycles of
those architectures are relatively small, however they occupy comparatively large

area.

The designed ISA structure performs AES encryption/decryption in 213 cycles,
excluding the key expansion operations. DES encryption/decryption is performed in
about 200 cycles. The performance results for Cryptonite processor are 70 cycles for
AES and 35 cycles for DES. For CryptoManiac processor, the results are 90 cycles
for AES and 130 cycles for DES. These results have been achieved at the expense of
area. Cryptonite processor uses two different ALU modules and CryptoManiac uses
4 different functional units. Besides they have dedicated memory units to ALU and
address generation. The area of these processors is expected to be at least three times

larger than the area of the structure suggested in this thesis.

The ISA structures in this thesis can be modified and two or more instructions may
be combined into one instruction to perform a specific block of the algorithm to
increase the throughput as a future work. Another important issue for a future work
may be using a reduced SBox memory structure for further area minimization. In the
implemented design, the SBox memory occupies more than 40% of the total area.
Therefore, reducing the SBox memory to half will be very efficient for small area
applications. In that case there should be only one 256 byte memory block, and
according to the application the necessary SBox elements should be loaded to the

memory block before algorithm operations.

115

REFERENCES

[1] The Design of Rijndael AES — The Advanced Encryption Standard, John Daemen
and Vincent Rijmen, Springer-Verlag, 2002.

[2] AES Proposal: Rijndael, John Daemen and Vincent Rijmen, September 3, 1999.

[3] Advanced Encryption Standard (AES), available:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] Data Encryption Standard (DES), available:
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[5] National Institute of Standards and Technology Computer Security Resource

Center: http://csrc.nist.gov/

[6] Refik Sever, A. Neslin 1smailoglu, Yusuf C. Tekmen and Murat Askar, A High
Speed ASIC Implementation of The Rijndael Algorithm, IEEE International

Symposium on Circuits and Systems, 2004.

[7] Rainer Buchty, Nevin Heintze, and Dino Oliva, Cryptonite — A Programmable
Crypto Processor Architecture for High-Bandwidth Applications, ARCS 2004,
LNCS 2981, pp. 184-198, 2004.

[8] Lisa Wu, Chris Weaver, and Todd Austin, CryptoManiac: A Fast Flexible

Architecture for Secure Communication, in 28"™ Annual International Symposium on

Computer Architecture, June 2001.

116

[9] Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis and Leonel Sousa,
Reconfigurable Memory Based AES Co-Processor, 20™ International Parallel and
Distributed Processing Symposium, 2006.

[10] Alireza Hodjat and Ingrid Verbauwhede, Area-Throughput Trade-Offs for Fully
Pipelined 30 to 70 Gbits/s AES Processors, IEEE Transactions on Computers, April
2006.

[11] Oscar Perez, Yves Berviller, Camel Tanougast and Serge Weber, Comparison of
various strategies of implementation of the algorithm of encryption AES on FPGA,

IEEE International Symposium on Industrial Electronics, 2006.

[12] Yongzhi Fu, Lin Hao and Xuejie Zhang, Design of An Extremely High
Performance Counter Mode AES Reconfigurable Processor, IEEE Computer
Society, 2005.

[13] Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and Ingrid
Verbauwhede, A 3.84 Gbits/s AES Crypto Coprocessor with Modes of Operation in a
0.18-um CMOS Technology, GLSVLSI 2005.

[14] Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang and Cheng-Wen Wu, A
Configurable AES Processor for Enhanced Security, Asia and South Pacific Design

Automation Conference, 2005.
[15] S. Pongyupinpanich, S. Phathumvanh, and S. Choomchuay, A 32 Bits
Architecture For an AES System, International Symposium on Communications and

Information Technologies, 2004.

[16] R. B. Lee, Z. Shi, and X. Yang, Efficient permutation instructions for fast
software cryptography, IEEE Micro, vol. 21, pp. 56-69, December 2001.

117

[17] Nazar A. Saqib, Francisco Rodriguez-Henriquez and Arturo Diaz-Perez, AES
Algorithm Implementation - An efficient approach for Sequential and Pipeline
Architectures, Proceedings of the Fourth Mexican International Conference on

Computer Science, 2003.

[18] Toby Schaffer, Alan Glaser and Paul D. Franzon, Chip-Package Co-
Implementation of a Triple DES Processor, IEEE Transactions on Advanced

Packaging, vol. 27, no. 1, February 2004.

[19] P. Kitsos, S. Goudevenos and O. Koufopavlou, VLSI Implementations of The
Triple-DES Block Cipher, IEEE International Conference on Electronics, Circuits
and Systems, 2003.

[20] Zhijie Shi, Xiao Yang and Ruby B. Lee, Arbitrary Bit Permutations in One or
Two Cycles, IEEE 14th International Conference on Application-Specific Systems,

Architectures and Processors, June 2003.

[21] Zhijie Jerry Shi and Ruby B. Lee, Implementation Complexity of Bit
Permutation Instructions, 37" Annual Asilomar Conference on Signals, Systems and

Computers, 2003.

[22] Yedidya Hilewitz, Zhijie Jerry Shi and Ruby B. Lee, Comparing Fast
Implementations of Bit Permutation Instructions, 38" Annual Asilomar Conference

on Signals, Systems and Computers, November 2004.

[23] John P. McGregor and Ruby B. Lee, Architectural Techniques for Accelerating
Subword Permutations With Repetitions, IEEE Transactions on VLSI Systems, vol.
11, no. 3, June 2003.

[24] SystemC 2.0.1 Language Reference Manual, Open SystemC Initiative, 2003.

[25] SystemCrafter Sc, available: http://www.sytemcrafter.com/

118

Appendix A: SBox Tables

Table A.1: DES SBox S1

Row Column Number

Num |0 |1 (2 |34 |5 (6 |7 |8 |9 |10 |11 |12 |13 |14 15
0 14(4 (13|12 |15]11 (8 |3 (106 |[12(5 |9 |0 |7
1 O |15(7 |4]14|2 (13|1 (106 |12 (11|{9 |5 |3 |8
2 4 |1 (148136 |2 |11 (15129 |7 |3 [10|5 |O
3 5(12/8 |24 |9 |1 |7 |5 |(11|3 |14{10|0 |6 |13

Table A.2: DES SBox S2

Row Column Number

Num |0 |1 (2 |3 |4 |5 |6 |7 |8 9|10 11|12 |13 |14 15
0 5(1 (8 |14|6 |11 (3 (4 |9 |72 |[13]12]0 |5 |10
1 3 |13(/4 |7 |15(2 |8 |(14(12]|0|1 [10]|6 |9 |11]|5
2 0O (147 |11]10(4 (13 |1 |5 |8 |12]|6 (9 |3 |2 |15
3 13(8 (101 |3 |[15(4 (2 |11|6 |7 |12]/0 |5 |14]9

119

Table A.3: DES SBox S3

Row Column Number

Num |0 |1 |2 |3 (4|5 |6 |7 |8 |9 |[10|11 12|13 |14 |15
0 10(0 |9 |14]|6 |3 |I15|5 |1 [(13|12|7 |11 |4 |2 |8
1 13(7 (0 |9 |34 |6 (1012 |8 |5 |14 (12|11 |15]1
2 13(6 (4 |9 [8|15]3 |0 (11 |1 |2 |[12(5 10|14 |7
3 1 (10130 |69 |8 |7 (4 [15]|14|3 |11 |5 |2 |12

Table A.4: DES SBox S4

Row Column Number

Num (O (1 |2 (34 |5 (6 |7 |8 |9 |10 |11 12|13 |14 |15
0 7 |13 (1430 [6 |9 |10|1 |2 |8 |5 (11124 |15
1 138 |11|{5]6 |[I15]0 |3 |4 |7 (2 |12]|1 |10|1419
2 106 |9 |0 12117 |13 |15|1 (3 |14]|5 |2 |8 |4
3 3 [15(0 |6 |10(|1 (13 (8 (9 (4 |5 |11 (127 |2 |14

120

Table A.5: DES SBox S5

Row Column Number

Num |0 |1 |2 |3 |4 (5 |6 |7 |8 |9 |10|11 12|13 |14 |15
0 2 |12(4 |1 |7 |10(11]|6 |8 |5 [3 |15(13|0 |[14|9
1 41112 (1214 |7 |[13|1 |5 |0 |[15(10{3 |9 |8 |6
2 4 (2 |1 (1110|137 |8 |15|9 |12|5 |6 |3 |0 |14
3 18 (12|17 |1 |14}2 |13]6 |15]0 |9 |10|4 |5 |3

Table A.6: DES SBox S6

Row Column Number

Num |0 |1 |2 |3 (4|5 |6 |7 |8 |9 [10|11|12]13 |14 |15
0 12(1 (101592 |6 |8 |0 [13|3 |4 |14 |7 |5 |11
1 10(15/4 |2 |7]12]9 |5 |6 |1 |13 |14(0 |11 |3 |8
2 9 [14|15|5 |2|8 |12(3 |7 |0 |4 |10|1 [13|11]6
3 4 13 (2 |12|9 |5 |15]10(11 (141 |7 |6 |0 [8 |13

121

Table A.7: DES SBox S7

Row Column Number

Num |0 |1 |2 |3 (4 |5|6 |7 |8 |9 |[10|11 12|13 |14 |15
0 4 112 14150 |8 |13 (3 (12|19 |7 |5 |10|6 |1
1 13(0 (117 |4 |9|1 [10(14 |3 |5 |12]2 [15|8 |6
2 1 (4 (11 |13}12(3 |7 |[14|10(15]|6 |8 |0 |5 |9 |2
3 6 (11 |13|8 |1 (4107 |9 |5 |0 |I15(14 2 |3 |12

Table A.8: DES SBox S8

Row Column Number

Num |0 |1 |2 [3 (4 |5 |6 |7 |8 |9 [10|11|12]13 |14 |15
0 13(2 (8 |46 |15]11 |1 (109 |3 |14(5 |0 |12|7
1 1 (1513|8103 |7 |4 |(12|5 |6 |11]|0 (149 |2
2 7 (11|14 |1]9 |12|14(2 (0 |6 |[10|13(15|3 |5 |8
3 2 (1 |14|714 |[10]|8 [13|15(12]|9 |0 |3 |5 |6 |11

122

Table A.9: AES SBox

=z
<

63

Tc

77

7b

2

6b

6f

c5

30

01

67

2b

fe

d7

ab

76

ca

82

c9

7d

fa

59

47

0

ad

d4

a2

af

9¢

a4

72

c0

b7

fd

93

26

36

3f

CcC

34

a5

e5

f1

71

d8

31

15

04

c7

23

c3

18

96

05

9a

07

12

80

e2

eb

27

b2

75

09

83

2c

la

1b

6e

Sa

a0

52

3b

dé

b3

29

e3

2f

84

53

dl

00

ed

20

fc

bl

5b

6a

cb

be

39

4a

4c

58

cf

do

ef

aa

43

4d

33

85

45

9

02

7f

50

3c

of

al

51

a3

40

8f

92

9d

38

5

bc

b6

da

21

10

ff

3

d2

cd

Oc

13

€C

5t

97

44

17

c4

a7

Te

3d

64

5d

19

73

O 0| N N R WIN = O

60

81

4f

dc

22

2a

90

88

46

€e

b8

14

de

Se

Ob

db

el

32

3a

Oa

49

06

24

5c

c2

d3

ac

62

91

95

ed

79

o | &

e’

c8

37

6d

8d

d5

4de

a9

6¢

56

4

€a

65

Ta

ac

08

ba

78

25

2e

1c

a6

b4

c6

el

dd

74

1f

4b

bd

8b

8a

[=]

70

3e

b5

66

48

03

f6

Oe

61

35

57

b9

86

cl

1d

Oe

a

el

8

98

11

69

d9

8e

94

9b

le

87

€9

ce

55

28

df

=

8c

al

89

0d

bf

eb

42

68

41

99

2d

of

b0

54

bb

16

123

Table A.10: AES Inverse SBox

=z
<

52

09

6a

d5

30

36

a5

38

bf

40

a3

9e

81

3

d7

Tc

e3

39

82

9b

2f

ff

87

34

8e

43

44

c4

de

e9

cb

54

7b

94

32

a6

c2

23

3d

€c

4c

95

0b

42

fa

c3

4e

08

2e

al

66

28

do

24

b2

76

5b

a2

49

6d

8b

dl

25

72

8

6

64

86

68

98

16

d4

a4

5c

CC

5d

65

b6

92

6¢

70

48

50

fd

ed

b9

da

Se

15

46

57

a7

8d

9d

84

90

d8

ab

00

8c

bc

d3

Oa

e4

58

05

b8

b3

45

06

do

2c

le

8f

ca

3f

of

02

cl

af

bd

03

01

13

8a

6b

3a

91

11

41

4f

67

dc

ca

97

2

cf

ce

0

b4

eb

73

O 0| N N R WIN = O

96

ac

74

22

e7

ad

35

85

e2

9

37

el

1c

75

df

6e

47

f1

la

71

1d

29

c5

89

6f

b7

62

Oe

aa

18

be

1b

o | &

fc

56

3e

4b

c6

d2

79

20

9a

db

c0

fe

78

cd

S5a

4

1f

dd

ag

33

88

07

c7

31

bl

12

10

59

27

80

€C

5f

[o TN @]

60

51

7t

a9

19

b5

4a

0d

2d

e5

7a

of

93

c9

9¢

ef

a

a0

el

3b

4d

ac

2a

f5

b0

c8

eb

bb

3c

83

53

99

61

=

17

2b

04

Te

ba

77

dé

26

el

69

14

63

55

21

Oc

7d

124

Appendix B: Sample Programming Codes

B.1 128-bit AES Programming Code

Programming Code Opcode Machine Cycle
move enkey , Ox1 0x05 1
read iport 0x18 4
copy ibuffer Ox11 3
move key_value , 0x4 0x52 1
mvk0 0xd0 1
move reg_djnz , 0x0Oa 0x04 1
keyexp: movl state_reg(0x50 1
rorb reg3 0xa0 1
sbox reg3 0x33 1
rcon 0xf0 1
exor reg3 , reg0 0x2b 1
move reg0 , reg8 0x55 1
exor reg0 , reg3 0x2c 1
move reg3 , regl1 0x59 1
exor regl , reg0 0x24 1
exor reg2 , regl 0x25 1
exor reg3 , reg2 0x26 1
mvkO 0xd0 1
djnz reg_djnz , keyexp 0x01 2
move enkey , 0x0 0x06 1
read iport 0x18 4
copy ibuffer Ox11 3
exkO 0x60 2
exkl 0x70 2
move reg_djnz , 0x09 0x04 1
round: sbox reg(0x30 1
sbox regl 0x31 1
sbox reg2 0x32 1
sbox reg3 0x33 1
shft 128 0x38 3
movl1 state_reg0 0x50 1
xtme reg0 0x40 1
mix reg0 , reg8 0x48 1
xtme regl 0x41 1
mix regl , reg9 0x49 1

125

xtme reg2 0x42 1
mix reg2 , regl0 Ox4a 1
xtme reg3 0x43 1
mix reg3 , regll 0x4b 1
exk0 0x61 2
exkl 0x71 2
djnz reg_djnz , round 0x01 2
sbox reg0 0x30 1
sbox regl 0x31 1
sbox reg2 0x32 1
sbox reg3 0x33 1
shft 128 0x38 3
exk0 0x60 2
exkl 0x70 2
copy obuffer 0x15 3
wrte oport 0x19 4

total machine cycle for key expansion and encryption process : 364 cycles

B.2 TDES Programming Code

Programming Code Opcode Machine Cycle
move enkey , Ox1 0x05 1
read iport 0x18 4
copy ibuffer Ox11 3
move key_value , 0x2 0x5a 1
pclp reg0, regl 0xb0 1
rord reg0 , regl Oxal 1
movl1 state_reg0 0x50 1
pc2p reg0, regl Oxbl 1
mvkO 0xd0O 1
mov1 back_state_reg0 0x5b 1
rord reg0 , regl Oxal 1
mov1 state_reg0 0x50 1
pc2p reg0 , regl Oxb1 1
mvk0 0xd0 1
move reg_djnz , 0x06 0x04 1
keypartl: movl back_state_reg(Q 0x5b 1
rord reg0 , regl Oxal 1
rord reg0 , regl Oxal 1
movl1 state_reg0 0x50 1

126

pc2p reg0, regl
mvkO
djnz reg_djnz , keypartl

mov1 back_state_reg0
rord reg0 , regl

mov|1 state_reg0

pc2p reg0, regl

mvkO

move reg_djnz , 0x06
keypart2: mov1 back_state_reg0
rord reg0 , regl

rord reg0 , regl

mov|1 state_reg0

pc2p reg0, regl

mvkO

djnz reg_djnz , keypart2
mov|1 back_state_reg0
rord reg0 , regl

pc2p reg0, regl

mvkO

move enkey 1

read iport

copy ibuffer

move key_value , 0x2
pclp reg0, regl

rord reg0 , regl

mov1 state_reg0

pc2p reg0, regl
mvkO

mov1 back_state_reg0
rord reg0 , regl

mov|1 state_reg0

pc2p reg0, regl
mvkO

move reg_djnz , 0x06
keypartl: mov1 back_state_reg0
rord reg0 , regl

rord reg0 , regl

mov|1 state_reg0

pc2p reg0, regl
mvkO

djnz reg_djnz , keypartl
mov|1 back_state_reg0
rord reg0 , regl

127

Oxbl
0xdo
0x01

0x5b
Oxal
0x50
0Oxbl
0xdoO
0x04
0x5b
Oxal
Oxal
0x50
0Oxb1
0xdO
0x01
0x5b
Oxal
0Oxbl
0xdoO

0x05
0x18
0x11
0x5a
0xb0
Oxal
0x50
0Oxbl
0xdoO
0x5b
Oxal
0x50
0Oxbl
0xdoO
0x04
0x5b
Oxal
Oxal
0x50
0xb1
0xdO
0x01
0x5b
Oxal

p—

— e = = N = b e e e e e e e e e

— e DN = = s e e e e e e e e e e e e e e = Q) N

mov|1 state_reg0
pc2p reg0, regl
mvkO

move reg_djnz , 0x6

keypart2: movl back_state_reg(O

rord reg0 , regl

rord reg0 , regl

mov|1 state_reg0

pc2p reg0 , regl

mvkO

djnz reg_djnz , keypart2
mov1 back_state_reg0
rord reg0 , regl

pc2p reg0, regl

mvkO

move enkey , 0x0
read iport
copy ibuffer

inip reg0 , regl

move reg_djnz , 0x10
roundl: movl state_reg0
bmap reg0, regl

etbp reg0, regl

exkO

sbad reg0 , regl

sbox reg0

sbox regl

cipp reg0, regl

drex reg0 , regl

djnz reg_djnz , roundl
swap reg0 , regl

invp reg0, regl

inip reg0, regl

move reg_djnz , 0x10
roundl: movl state_reg0
bmap reg0, regl

etbp reg0, regl

exkO

sbad reg0 , regl

sbox reg0

sbox regl

128

0x50
Oxb1l
0xdO
0x04

0x5b
Oxal
Oxal
0x50
0Oxbl
0xdO
0x01
0x5b
Oxal
0Oxb1
0xdO

0x06
0x18
0x11

0xb2
0x04
0x50
Oxa2
0xb3
0x60
Oxa3
0x30
0x31
0Oxb4
0Oxa6
0x01
Oxa5
0xb5

0xb2
0x04
0x50
Oxa2
0xb3
0x60
Oxa3
0x30
0x31

AN e a \° H e e e e N e e

[S)

i P e e e e e N B e e e N e T

—_ = N = = e e

cipp reg0, regl
drex reg0 , regl
djnz reg_djnz , roundl
swap reg0 , regl
invp reg0, regl

inip reg0, regl

move reg_djnz , 0x10
roundl: movl state_reg0
bmap reg0, regl

etbp reg0, regl

exkl

sbad reg0 , regl

sbox reg0

sbox regl

cipp reg0, regl

drex reg0 , regl

djnz reg_djnz , roundl
swap reg0 , regl

invp reg0, regl

copy obuffer
wrte oport

Oxb4
Oxa6
0x01
Oxa5
0xb5

0xb2
0x04
0x50
Oxa2
0xb3
0x70
Oxa3
0x30
0x31
0Oxb4
0Oxa6
0x01
Oxa5
0xb5

0x15
0x19

U NG J S

e \° H e e e e N B e e e N e T

total machine cycle for key expansion and encryption process : 847 cycles

129

