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ABSTRACT 

 

 

DESIGN AND SYSTEMC IMPLEMENTATION OF A CRYPTO 

PROCESSOR FOR AES AND DES ALGORITHMS 

 

 

Egemen, Tufan  

M.Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Murat Aşkar  

 

December 2007, 129 pages 

 

 

 

This thesis study presents design and SystemC implementation of a Crypto Processor 

for Advanced Encryption Standard (AES), Data Encryption Standard (DES) and 

Triple DES (TDES) algorithms. All of the algorithms are implemented in single 

architecture instead of using separate architectures for each of the algorithm. There is 

an Instruction Set Architecture (ISA) implemented for this Crypto Processor and the 

encryption and decryption of algorithms can be performed by using the proper 

instructions in the ISA. 
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A permutation module is added to perform bit permutation operations, in addition to 

some basic structures of general purpose micro processors. Also the Arithmetic 

Logic Unit (ALU) structure is modified to process some crypto algorithm-specific 

operations.  

 

The design of the proposed architecture is studied using SystemC. The architecture is 

implemented in modules by using the advantages of SystemC in modular structures.  

The simulation results from SystemC are analyzed to verify the proposed design. The 

instruction sets to implement the crypto algorithms are presented and a detailed 

hardware synthesis study has been carried out using the tool called SystemCrafter.  
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ÖZ 

 

 

AES VE DES ALGORİTMALARI İÇİN BİR KRİPTO İŞLEMCİSİ 

TASARIMI VE SYSTEMC İLE GERÇEKLENMESİ 

 

 

Egemen, Tufan  

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Murat Aşkar  

 

Aralık 2007,  129 sayfa 

 

 

 

Bu tezde,  İleri Şifreleme Standardı (AES), Veri Şifreleme Standardı (DES) ve Üçlü 

Veri Şifreleme Standardı (TDES) algoritmaları için bir Kripto İşlemcisi tasarımı ve 

SystemC gerçekleştirimi sunulmaktadır. Her bir algoritma için ayrı bir yapı 

kullanmak yerine, üç algoritma da tek bir yapı içerisinde gerçekleştirilmiştir. Kripto 

işlemcisi için ayrı bir Komut Küme Yapısı (ISA) oluşturulmuştur; şifreleme ve  

çözme algoritma  işlemleri bu Komut Küme Yapısındaki uygun komutların kullanımı 

ile yapılabilir. 
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Genel amaçlı mikro işlemcilerdeki bazı temel yapılara ek olarak, bit permütasyon 

işlemlerini gerçekleştirmek üzere bir permütasyon modülü eklenmiştir.  Bunun 

yanında Aritmetik Mantık Birimi (ALU)  yapısı da kullanılan bazı kripto 

algoritmalarına has fonksiyonları işlemek için değiştirilmiştir. 

 

Önerilen yapının tasarımı SystemC kullanılarak çalışılmıştır. Bu yapı SystemC’nin 

modüler yapılardaki avantajlarını kullanan modüller halinde gerçeklenmiştir. 

SystemC’den elde edilen simülasyon sonuçları, önerilen tasarımın doğruluğunu 

kontrol etmek için analiz edilmiştir. Kripto algoritmalarını gerçeklemek için Komut 

seti sunulmuş ve  SystemCrafter adlı program kullanılarak detaylı bir donanım sentez 

çalışması yapılmıştır. 

 

 

Keywords: AES, DES, TDES, Kripto İşlemci, Şifreleme, Bit Permütasyon 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

Cryptography is the science of encryption and decryption of data. With the help of 

cryptography, people aim to hide some important information as secret. Generally, 

cryptography is used for the privacy of information, while it facilitates 

communication between two points. This requirement can be realized by encrypting 

the plaintext data with a key to a ciphertext, and then decrypting the ciphertext back 

to its original form on the other side of the communication channel. Nowadays 

authentication, digital signatures, and secure computation are other important 

application areas of cryptography. 

 

The most commonly used crypto algorithms are the Advanced Encryption Algorithm 

(AES) [1] - [3], which is the standard announced for block ciphers, the previous Data 

Encryption Standard (DES) [4], and Triple Data Encryption Algorithm (TDEA), also 

known as Triple DES (TDES) [4] algorithm.  

 

The designs for crypto systems are generally implemented using a specific algorithm 

and using special hardware architecture which is dedicated to that algorithm. With 

such architecture, it is much easier to configure the hardware according to the desired 

specification; hence the crypto algorithm process is much faster.  

 

There are several strategies to make the design of architecture specific to the 

algorithm. The area and the throughput of the chip are the main parameters while 

determining the structure of the design according to the desired specification.  
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To maximize the throughput of the selected algorithm when there is no area 

constraint in the design, all the iterated rounds of the algorithm can be implemented 

in the chip layout. For example as given in [9] [10], for AES, the throughput can be 

increased with inner-round and outer-round pipeline structure. The data path of the 

structure is also an important parameter in the algorithm-specific design. The data 

path can be set to the input plaintext length for fast applications, or it can be set to 

smaller data lengths for area limited operations. There are many categories in the 

market, which have different data path characteristics. In [15], the data path and bit 

length discussions are presented.  

 

Another parameter for the algorithm-specific designs is the key schedule part. The 

key schedule can be arranged as on-the-fly key generation method, which produces 

the keys in each clock, simultaneously with the round process. Therefore, it is not 

necessary to use internal registers for the round keys, as explained for AES in [6] 

[13]. The second key schedule method produces all the round keys before encryption 

or decryption process and then performs the algorithm’s round operations. This 

method requires storage registers for the round keys.  

 

Basic crypto operations of algorithms can be executed on using general purpose 

micro processors. But in general purpose processors, there are no special 

instructions, or any special block to perform cryptographic operations, making it 

difficult to process a crypto algorithm in a general purpose processor. Besides 

general purpose processors, there are crypto processors, which are designed for 

crypto operations and have crypto specific blocks. Most of these crypto processors 

are designed to process only a single algorithm with configurable parameters. For 

example such a structure is discussed in [11] [14] for AES algorithm. Some of the 

crypto processors can perform several algorithms in a single design. Most of the time 

there is one disjoint block for each included crypto algorithm. These kinds of 

structures are not area efficient and they are used mainly for high throughput 

applications.  
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There are programmable crypto processors, which are able to process more than one 

crypto algorithm in a single architecture, such as the joint implementations of AES, 

DES and TDEA as presented in [7] [8]. The most important property of these kinds 

of processors is their programmable architectures. The processors can be 

programmed according to the applied crypto algorithm.  

 

The objective of this work is the implementation of a programmable Crypto 

processor architecture using the SystemC tool. The Advanced Encryption Algorithm 

(AES), which is the standard announced for block ciphers, the previous Data 

Encryption Standard (DES), and Triple Data Encryption Algorithm (TDEA), also 

known as Triple DES (TDES) algorithms are chosen for the implementation of the 

architecture. The Crypto architecture is implemented in the SystemC [24] 

environment. SystemC is based on C++, with some additional class libraries to 

model the hardware based features like clock, signals, logic and delay elements. 

SystemC allows modeling from the system level to Register Transfer Level (RTL). 

This modeling structure provides higher productivity than other modeling 

environments due to its easier and faster implementation. In the SystemC approach 

the design is implemented in modular structures. With this property of SystemC, the 

design can be modified to add new hardware blocks without changing the general 

structure.  

 

In this thesis, instead of implementing two different blocks for each algorithm, the 

architecture is implemented as a common unit, which can perform operations of the 

chosen crypto algorithms. The implemented architecture is fully programmable and 

all the algorithms’ operations are performed according to the instructions. The 

architecture is similar to general microcontroller's structure, but there are some 

differences for crypto operations. The internal structure of the implemented 

architecture is based on 32-bit data length and all crypto operations are performed in 

32-bit arithmetic.         
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The operations are controlled by a Control Unit module and performed in Arithmetic 

Logic Unit (ALU) module or Permutation module according to Control Unit signals. 

The main operations are performed in the ALU. ALU is responsible for performing 

the crypto specific instructions as well as general purpose instructions. There is an 

internal memory block implemented inside the ALU for Substitution Table (SBox) 

operations. The SBox values for both of the AES and DES algorithms are stored in 

this memory unit.  

 

Besides ALU, which performs the logic and arithmetic operations, a Permutation 

module is added into the design. In general applications, the bit permutation 

operation is implemented as a memory based structure or as a hardware routing 

structure. But in this implemented architecture, all of the bit permutation operations 

are performed in a single permutation module block. The bit permutation operations 

are used in Data Encryption Standard (DES) algorithm; therefore, the main purpose 

of this permutation module is performing DES permutations. But it can also perform 

other bit permutations depending on the applications.  

 

The characteristics of Crypto Algorithms are described in Chapter 2. The types of the 

crypto algorithms are described in the first section of this chapter. Then the 

transformations of AES and DES algorithms and their basic process structures are 

explained in the following two sections. In Chapter 3, different implementations of 

Crypto processors in literature are discussed. In the first part of this chapter, the 

structures dedicates to a single algorithm and in the second part, crypto processors, 

which are capable of performing several algorithms, are discussed. The implemented 

architecture and its module structures are given in Chapter 4, where each module in 

the architecture is explained in detail. Also, the implemented Instruction Set 

Architecture and the instruction descriptions are given in this chapter. Finally, a 

conclusion for this work and proposed future works are presented in Chapter 5. 
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CHAPTER 2  

 

 

CHARACTERISTICS OF CRYPTO ALGORITHMS 

 

 

 

2.1 Introduction  

 

This chapter explains the general description of the cipher algorithms and detailed 

structure of Advanced Encryption Standard and Data Encryption Standard 

algorithms. In the first section, the types and properties of the cryptographic 

algorithms are described. The AES algorithm, the DES algorithm and their 

operations are discussed in the second and third sections, respectively.   

 

2.2 Types of Cryptographic Algorithms  

 

Cryptography becomes a more important parameter with today’s increasing security 

issues on communication area. There are lots of activities over communication 

networks of different applications and the security of the data in these applications 

are provided by using different cryptographic algorithms. These algorithms can be 

divided into three groups, as symmetric-key algorithms, public-key algorithms and 

hash algorithms.  

 

2.2.1 Symmetric-key Algorithms 

 

The encryption and decryption processes in the symmetric-key algorithms are 

performed with one key. There is only one secret key between the two sides of 

communication. The plaintext is encrypted by using the secret key and transmitted. 
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Then this ciphered data is decrypted by using the same secret key, which is used in 

the encryption part [5] [20]. This communication structure can be seen in Figure 2.1.  

 

 

 

Figure 2.1: Symmetric Key Algorithms 

 

 

 

The power of the symmetric algorithm is directly dependent to the key length. 

Because of the decryption process can be performed with trying all possible key 

combinations. Therefore the resistance of the symmetric algorithm against possible 

key trials is much higher with the increasing key length.  

 

Symmetric algorithms can be divided into two groups as stream ciphers and block 

ciphers. The difference between these two groups is, the block ciphers use always the 

same sized data chunks in the encryption or decryption operations, but stream ciphers 

use different sized data in encryption or decryption operation.  
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2.2.1.1 Block Ciphers 

 

Encryption and decryption operations are performed over blocks of data in the Block 

ciphers. Each block is used sequentially in the cipher operations. More clearly, a set 

of Boolean operations are performed on a definite length of bit vectors in a block 

cipher [1] [5]. 

 

There are normally two main techniques used in the Block ciphers. These are 

confusion and diffusion techniques. The aim of the confusion is making the output of 

the encryption as much as different from the input plaintext. Therefore the relation 

between input and output of the encryption will be more unpredictable. The 

substitution operation is mainly used in confusion technique. 

 

On the other hand the diffusion technique is used to distribute the redundancy of the 

plaintext as much as possible into the cipher text. The main operation used for 

diffusion technique is permutation operation. 

 

2.2.1.2 Stream Ciphers 

 

Unlike block ciphers, stream ciphers operate on data context, with different bit 

lengths. Encryption or decryption is processed over these different sized data [5]. 

 

There are keys for each stream, which are generated by a key stream generator. The 

lengths of the key data is depends on the length of the data stream. Therefore the 

sequential key stream’s length may show differences. In the encryption these keys 

and the plain data streams are XORed to get the ciphered data. Also in the decryption 

the same operation is performed. The same key stream data is XORed with the 

ciphered data, in this case to get the plaintext back. 

 

In the stream cipher operation, the power of the operation is directly related to the 

key stream generator performance. 
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2.2.2 Asymmetric (Public-Key) Algorithms 

 

Unlike symmetric algorithms, the asymmetric algorithms use different keys for 

encryption and decryption algorithms. There are two types of keys in the asymmetric 

algorithms. One of them is called private key and this key is known only by its 

owner. The other key type is called public key and this is known by all users in the 

communication [5]. 

 

In the asymmetric algorithms the relation between encryption side and decryption 

side is given in Figure 2.2. The encryption operation is processed by using the public 

key. Unlike encryption, decryption operation is processed only with the private key. 

The important point in the decryption is the private key’s owner issue. The private 

key should belong to the unit, which encrypted data with its public key, for a correct 

decryption. 

 

 

 

Figure 2.2: Asymmetric Key Algorithms 
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2.2.3 Hash Algorithms 

 

Hash algorithms are a kind of pseudo random number generators in cryptography. 

There is no any formal description of Hash algorithms, but there are some general 

properties for it.    

 

• For a given input message, there should be not any second input message, 

which gives the same hash output as the first input message.  This property is 

known as collision resistance. 

• For a given hash algorithm output, it should be hard to compute the input 

message. This property depends on the one-way function characteristic of the 

hash algorithms. 

 

In the Hash algorithms, the input plaintext length is not fixed and can have a variety 

of lengths. But the output ciphered data of the Hash algorithm has a fixed data 

length. This property is achieved generally by processing the input data in equal-

sized blocks and performed a one-way compression on the blocks. Therefore a very 

small change at the input side can create a very big change at the output side [1]. 

 

 

 

2.3 AES Algorithm  

 

The Advanced Encryption Standard (AES) is a new Federal Information Processing 

Standard (FIPS) which was announced after an encryption algorithm standard 

competition by National Institute of Standards and Technology [5]. AES is also 

known as Rijndael [1] [2], but there are some small differences between AES and 

original Rijndael. The input data length is fixed to 128-bit in AES, while it can be 

128, 192 or 256 bits in Rijndael.  
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The AES algorithm is a symmetric key algorithm and operates the encryption and 

decryption processes in blocks. The input data and key data of AES can be 

considered as one-dimensional array [1]. Each element of the array consists of 8-bit 

data. The one dimensional array of the incoming plaintext data (P) can be denoted by 

P = p0p1p2p3····p4*Nb-1, 

where p0 is the first byte and p4*Nb-1 is the last byte of plaintext. The incoming 

plaintext data is then mapped into a two dimensional matrix, which is called State 

[1]. All the AES operations are performed on the State matrix. The State matrix has a 

variable column number for different data and key lengths, with four rows. The 

column numbers are denoted by Nb for data state matrix and defined as; 

Nb = input data length / 32. 

The elements of the two dimensional State matrix can be defined as; 

ai,j = pi+4j, 0 ≤ i < 4, 0 ≤ j < Nb, 

where ai,j denotes the byte in row i and column j.  

 

Similarly, the input key is also mapped into a two dimensional matrix. The row 

number of key matrix is also four like in state matrix, and the column number is 

denoted by Nk, which is defined as below; 

Nk = input key length / 32. 

If we denote the one dimensional array of the key data (Z) by 

Z = z0z1z2z3····z4*Nk-1, 

where z0 is the first byte and z4*Nk-1 is the last byte of key, then the two dimensional 

matrix elements can be defined as below;  

ki,j = zi+4j, 0 ≤ i < 4, 0 ≤ j < Nk. 
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The input key bytes are mapped onto key state matrix in the order k0,0, k1,0, k2,0, k3,0, 

k0,1, k1,1, k2,1,… [1]. The Data State matrix for 128-bit data is shown in Figure 2.3 

and the Key State matrix for 192-bit key is shown in Figure2.4. The Nb value is 4 for 

AES, because the data input is fixed at 128-bit. Nk can have the values of 4, 6 and 8 

for 128-bit, 192-bit and 256-bit, respectively. 

 

 

 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

 

Figure 2.3: Data State (for 128-bit data Nb = 4) 

 

 

 

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5 

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5 

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5 

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5 

 

Figure 2.4: Key State (for 192-bit key data Nk = 6) 
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The rounds have sequential operations to perform encryption or decryption. The 

round numbers (Nr) are also depending on the Nb and Nk values. The Table 2.1 gives 

the round numbers for different data and key lengths for Rijndael. 

 

 

Table 2.1: Round numbers (Nr) for different data and key lengths 

 

Nr Nb = 4 Nb = 6 Nb = 8 

Nk = 4 10 12 14 

Nk = 6 12 12 14 

Nk = 8 14 14 14 

 

 

 

In the AES algorithm, most of the operations are based on mathematical operations 

in Galois Field (28). Therefore, a brief explanation of the Galois Field (28) is 

discussed in the next part. 

 

2.3.1 Galois Field (28)  

 
The byte level operations in the AES algorithm are defined in the finite field (or 

Galois Field) GF (28) [1]. There are only a finite number of elements in a finite field 

and this number of elements is given as pn, where p is a prime number and n is a 

positive integer.  
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The Galois Field (28) is an extension field of Galois Field (2) and it is represented by 

the coefficients of {0, 1}. A finite field can be represented as polynomials of degree 

smaller than the degree of the irreducible, reduction polynomial. A byte polynomial 

representation is given below; 

 

 b(x) = b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2 + b1 x
1 + b0 x

0 . 

 

The arithmetic operations in the finite field are different from standard arithmetic and 

they will be explained in the following part. When the elements are represented as 

polynomials, then the arithmetic operations are performed modulo m. m is an 

irreducible polynomial over the Galois field with the same degree. For AES 

algorithm this irreducible polynomial is given by; 

 

m(x) = x8 + x4 + x3 + x + 1 

 

 

2.3.1.1 Addition and Subtraction 

 

The addition and subtraction of the polynomials in a finite field is a simple EXOR 

operation and same for both of addition and subtraction. 

 

 

2.3.1.2 Multiplication 

 

In the finite field the multiplication operation can be expressed as multiplication of 

the polynomials with using an irreducible reducing polynomial for a modulus 

operation [1]. The irreducible polynomial for AES is given in m(x). The 

multiplication operation between a polynomial b(x) and “x” can be expressed in 

Figure 2.5.  
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First of all the polynomial is shifted to the left with a concatenated “0” on the 

leftmost bit. If the leftmost bit of the b(x) is ”1”, an EXOR operation is performed 

between the polynomial b(x) and the irreducible polynomial m(x), else EXOR 

operation is not performed. The result polynomial is the rightmost eight bits. The 

multiplication with “x” can be assumed as a fundamental operation in multiplication. 

Because of other polynomial multiplications can be considered as a sequence of 

multiplication with “x” [6].  

 

 

 

 

 
Figure 2.5: Multiplication of b(x) and x 

 
 

Concatenate a 
“0” to the right  

Leftmost 
bit = 1 

m(x) = x8 + x4 + x3 + x + 1 

Result = 
Rightmost 8 bit  

Yes No 

b(x) 
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2.3.2 Encryption Process of AES  

 

The encryption process performed the inner state transformations over the plaintext 

data and as a result of these transformations the ciphertext data is given as output. 

The encryption diagram of the AES is given in Figure 2.6. There are four different 

transformations operation in the encryption process of AES algorithm. These are; 

 

• SubBytes operation 

• ShiftRows operation 

• MixColumns operation 

• AddRoundKey operation 

 

The encryption process starts with an EXOR operation of plaintext and initial key 

data. Then the main iterated block, which consist of SubBytes, ShiftRows, 

MixColumns and AddRoundKey operations respectively. This main block repeats 

itself Nr – 1 times. In the final round only MixColumns operation is missing as a 

difference of main iterative block. The output of the final round is called as 

ciphertext data. 
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Figure 2.6: AES Encryption 

 

     Plain Text  

SubBytes 

ShiftRows 

MixColumns 

SubBytes 

ShiftRows 

  Cipher Text 

Final 
Round 

Encryption  
(Nr-1) Rounds  

 

 

Final Key 

AddRound Key 
 

Initial Key 
 



 

17 
 

2.3.2.1 The SubBytes Transformation 

 

In the SubBytes operation each State byte is replaced with the related substitution 

table element, which is determined according the State byte's value. The Substitution 

operation is the only nonlinear operation and the table is invertible.  

 

 

In the construction of the SBox table, there are two operations. Firstly, the 

multiplicative inverse of the State byte is calculated in GF (28) .Then an affine 

transformation is applied, which is given in below Figure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Affine Transformation 

 

 

 

 

 

 

 

 

 

 

1 
1 
0 
0 
0 
1 
1 
0 

= 

ao 
a1 

a2 
a3 
a4 
a5 
a6 
a7 

bo 
b1 

b2 
b3 
b4 
b5 
b6 
b7 

1   0   0   0   1   1   1   1   
1   1   0   0   0   1   1   1 
1   1   1   0   0   0   1   1 
1   1   1   1   0   0   0   1 
1   1   1   1   1   0   0   0 
0   1   1   1   1   1   0   0 
0   0   1   1   1   1   1   0 
0   0   0   1   1   1   1   1 

+ 
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Figure 2.8: SubBytes Transformation on State 

 

 

 

2.3.2.2 The ShiftRows Transformation 

 

In this operation the rows of the State matrix are shifted to the right cyclically. For 

each data length and for each State matrix row, there is a different shift offset. The 

offset values are given for data length and row numbers in Table 2.2. 

 

 

 

Table 2.2: The ShiftRows operation offset values for different data lengths 

 

Row number 

/Data length 

128 192 256 

Row0 0 0 0 

Row1 1 1 1 

Row2 2 2 3 

Row3 3 3 4 

 

b0,0 b0,1 b0,2 b0,3 b0,4 b0,5 

b1,0 b1,1 b1,2 b1,3 b1,4 b1,5 

b2,0 b2,1 b2,2 b2,3 b2,4 b2,5 

b3,0 b3,1 b3,2 b3,3 b3,4 b3,5 

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 

 b i,j  a i,j 

S-box 
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2.3.2.3 MixColumns Transformation 

 

The MixColumns Transformation is a polynomial multiplication operation over GF 

(28). Each column of the State is considered as a unique polynomial and multiplied 

with a constant and invertible polynomial c(x), which is co prime to x4+1. 

 

c(x) = ‘03’ x3 + ‘01’ x2 + ’01’ x + ’02’ 

 

The multiplication of the State column a(x) with the constant polynomial c(x) and the 

result State column b(x) can be written in a matrix form as given in Figure 2.9.  

 

b(x) = c(x) * a(x) (mod x4+1) 

 

 
 
 
 
 
 
 
 

Figure 2.9: The multiplication of State Column and c(x) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b0 
b1 
b2 
b3 

02   03   01   01 
01   02   03   01 
01   01   02   03 
03   01   01   02 

a0 
a1 
a2 
a3 
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= 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

Figure 2.10:  MixColumns operation 
 
 
 
 
 
2.3.2.4 AddRoundKey Transformation 
 
 
In AddRoundKey Addition operation the round data and AddRoundKey data is 

subjected to an EXOR operation.  

 
 
 

 
 
 
 
 
 
 
 

 

 
Figure 2.11: AddRoundKey Addition 

 
 
 
 
 
 
 

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 

b0,0 b0,1 b0,2 b0,3 b0,4 b0,5 

b1,0 b1,1 b1,2 b1,3 b1,4 b1,5 

b2,0 b2,1 b2,2 b2,3 b2,4 b2,5 

b3,0 b3,1 b3,2 b3,3 b3,4 b3,5 

a0,0 a0,1 a0,2 a0,3 

a1,0 a1,1 a1,2 a1,3 

a2,0 a2,1 a2,2 a2,3 

a3,0 a3,1 a3,2 a3,3 

k0,0 k0,1 k0,2 k0,3 

k1,0 k1,1 k1,2 k1,3 

k2,0 k2,1 k2,2 k2,3 

k3,0 k3,1 k3,2 k3,3 

b0,0 b0,1 b0,2 b0,3 

b1,0 b1,1 b1,2 b1,3 

b2,0 b2,1 b2,2 b2,3 

b3,0 b3,1 b3,2 b3,3 

a 0,j 

a 1,j 

a 2,j 

a 3,j 

 

b 0,j 

b 1,j 

b 2,j 

b 3,j 

 

 

   C(x) 
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2.3.3 Decryption Process of AES  
 
The decryption process is the inverse operation of the encryption process. The 

transformations in the encryption round are reversed in the mean of the sequence. 

The decryption diagram of the AES is given in Figure 2.12. 

 

The transformations used in encryption operation are also inversed in the decryption 

process. The InvSubBytes transformation is the inverse operation of the SubBytes. 

The InvSubBytes transformation uses the inverse table of the normal SBox table.  

 

The inverse SBox table is obtained by applying the inverse of the affine 

transformation followed by taking the multiplicative inverse in GF(28) [1]. For 

example the SBox value of the input 0x81 is 0x0c. And in the inverse SBox table the 

output of the 0x0c is 0x81.  

 

The inverse SBox table is given in Table A.10 in Appendix A. In the Inverse 

ShiftRows transformation the shift operation is performed to the right instead of the 

left side in the encryption process. The offset values in the both shift transformations 

are same. 
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Figure 2.12: AES Decryption 
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The Inverse MixColumns transformation is similar to MixColumns in encryption. 

But the coefficients of the constant polynomial are changed. The constant 

polynomial for the Inverse MixColumns transformation is named as d(x), where  

 

d(x) = ‘0B’ x3 + ‘0D’ x2 + ’09’ x + ’0E’, 

 

and c(x) · d(x) ≡ 01  (mod x4+1). 

 

 

 

 

 

 

 

Figure 2.13: The multiplication of State Column and d(x) 

 

 

The round number is same for decryption process. But the AddRoundKey is applied  

in reverse order. The first operation of the decryption is EXOR operation between 

the final round key and the ciphered data, which is the input of the decryption 

process.  

 

Then inverse ShiftRows and Inverse SubBytes are performed sequentially. The 

iterated rounds start with the AddRoundKey transformation and then continue with 

Inverse MixColumns, Inverse ShiftRows and Inverse SubBytes transformations. As a 

last operation the EXOR operation with the first round key is performed to get the 

plaintext. 
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2.3.4 Key Expansion and Round Key Selection 
 
 
The Key Expansion part is responsible to provide the round keys for relevant rounds 

of cipher operation. While the round number can be different for different key 

lengths, the operation of the Key Expansion can show differences. The operation is 

same for 128-bit and 192-bit key length but it is different for 256-bit key length. 

 

The operations in the Key Expansion is made over 32 bits, named as word “W”. The 

input key is assigned as the first Nk words of the Key Expansion. All of the other 

words are obtained recursively of these words. The expansion operation of the 

remaining words is given in Figure 2.14 for 128 and 192 bits and in Figure 2.15 for 

256 bits. 

 

The recursive operation for obtaining the following words after first Nk word uses the 

previous words, the Nk positions earlier words and round constants. The recursive 

function is directly related to the position of the word. If the current position “i” is 

not a multiple of the Nk, then a simple XOR operation between previous word (W[i-

1]) and Nk earlier word   (W[i – Nk]) gives the current word value (W[i]). In the other 

situation, if  “i” is a multiple of the Nk, the current word W[i] is the result of the 

EXOR operation of Nk earlier word and the nonlinear function of the previous word 

W[i – 1]. This nonlinear function consists of a cyclically rotation operation to right 

by one byte, which is called RotByte, a nonlinear byte substitution operation for each 

byte in the word element, which is called SubByte, and addition of a round constant 

value. The round constants are independent of the Nk value, and defined by a 

recursion rule in GF (28) as shown below. 

 

 Rcon [1] = x0   (i.e. 01) 

 Rcon [2] = x1   (i.e. 02) 

 Rcon [k] = x * Rcon [k-1] = xk-1 , k > 2. 
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Figure 2.14: Key Expansion for 128 and 192 bits 
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Figure 2.15: Key Expansion for 256 bits 
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The round keys are chosen from the word array of Key Expansion part. The round 

keys’ length should be equal to the input plaintext length. Hence the round key 

consists of array elements from word W [Nb*i] to word W [Nb * (i+1)].  

 

The round key selection is illustrated in Figure 2.16. 

 

 

Figure 2.16: Round Key Selection 

 

 

2.4 DES Algorithm  

 

The Data Encryption Standard (DES) was developed by IBM in 1970s and then 

approved as a standardized crypto algorithm by Federal Information Processing 

Standard (FIPS) [4] in 1977. DES is a symmetric crypto algorithm, which operates 

on 64-bit block size within 16 rounds. The input plaintext and the output ciphered 

text are 64-bit. The encryption or decryption operation is achieved by a 64-bit key 

data. But only the 56bits of the whole key data is effective. The remaining 8 bits 

have no effect on the encryption/decryption process of the DES. The encryption and 

decryption processes use the same key due to symmetric nature of the algorithm. 

Also the ciphering flow is same for both the encryption and decryption.  

 

W0 W1 W2 W3 W4 W5 W6 W7 W8 .... 

Round Key 0 Round Key 1 
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The only difference is the order of the round keys. The round keys are in reverse 

order for the decryption process. The block diagram of the DES encryption algorithm 

is given in Figure 2.17. The DES algorithm can be analyzed in two parts. The first 

part is the Key Expansion part, which generates the necessary round keys. And the 

second part is the encryption part. In the second part the encryption or decryption 

process is operated with the contribution of the round keys. Also the encryption part 

can be divided into two group of operation. First one is the permutation operations, 

which are the first and last operations of the cipher part, and the second group 

consists of rounds operation between these permutations. 

 

2.4.1 DES Rounds 

 

2.4.1.1 Initial Permutation  

 

The Initial Permutation is the first operation in the DES encryption algorithm. The 

incoming 64-bit plaintext data is subjected to initial permutation table, which is given 

in Table2.3. According to the table the first bit of the output data is the 58. bit of the 

input data, the second bit of the output is the 50. bit of the input data and so on. 

 

 

Table 2.3: Initial Permutation Table 

 

58    50   42    34    26   18    10    2 

60    52   44    36    28   20    12    4 

62    54   46    38    30   22    14    6 

64    56   48    40    32   24    16    8 

57    49   41    33    25   17     9     1 

59    51   43    35    27   19    11    3 

61    53   45    37    29   21    13    5 

63    55   47    39    31   23    15    7 
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Figure 2.17: DES Algorithm 
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The main round processes start after the Initial permutation. The data is split into two 

groups of 32 bits as shown in Figure 2.17. These groups of data are named as “R” 

right half and “L” left half. The Right half is joined to the encryption or decryption 

process with the round key data. The key-dependent operation, substitution tables 

operations are processed in a function, called cipher function. 

 

2.4.1.2 Cipher Function 

 

The operations in the Cipher function are given in Figure 2.18. There are two 

permutation operations, which are E Table permutation and P permutation, a 

Substitution operation and an EXOR operation with the round key data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: DES Cipher Function 
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Table 2.4: E Bit Selection Table 

 

 32   1      2     3      4         5 

  4       5      6     7      8         9 

   8        9    10   11    12      13 

 12     13    14   15    16      17 

 16     17    18   19    20      21 

 20     21    22   23    24      25 

 24     25    26   27    28      29 

28    29    30   31    32        1 

 

 

 

The E Bit Selection table is the first operation in the Cipher function. The round keys 

in the DES algorithm are 48 bits, while the round data from group R is 32 bits. The E 

Bit Selection table matches the number of bits of the round data to the round key 

data, as duplicating some of the bits, which is given in Table 2.4.   

 

After this operation an EXOR operation performed between the key data and round 

data. The output of the EXOR operation is fed into a SBox array. Each one of the 

eight SBox units takes 6-bit data as input and gives 4-bit data as output.  

The SBox Table S1 is given below. The whole SBox tables from S1 to S8 appear in 

Appendix A.  
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Table 2.5: SBox S1 Table 

 
Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

 
 
 
 
Each of the SBox units has 64 memory elements. The input 6-bit data is replaced 

with one of the SBox memory elements according to its value. The first and last bits 

of the incoming data to the SBox unit determines the row number and the middle 4 

bits represent the column number of the output data in the SBox unit. The output data 

of the SBox units is 32-bit data again. Hence the expanded round data is reduced 

again to its normal bit length with this operation. The output data of the SBox 

undergoes to another permutation, P permutation, which is defined in Table 2.6.  

                                

 

Table 2.6: P Permutation Table 

 
16 7 20 21 

 29  12  28 17 

 1  15  23 26 

 5  18  31 10 

 2  8  24 14 

32 27 3 9 

19 13 30 6 

 22  11  4 25 
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The definition of the table is same with other permutation tables. The first bit of the 

output is the 16. bit, the second bit is the seventh bit of the input and so on. 

The P permutation is the last operation of the Cipher function. Then the output of the 

Cipher function and the Left part of the round data is XORed. The result of the XOR 

operation will be the Right part of the next round data. And the Right data of the 

current round becomes the Left part of the next round data. This swap operation 

between Left part and Right part is not performed in the 16.th round. 

2.4.1.3 Inverse Initial Permutation  

 

The Left and Right data of the 16.th round are concatenated and named as preoutput 

block. This preoutput block data is subjected to the Inverse Initial permutation. This 

permutation is the last operation of the DES encryption/decryption process and it is 

the inverse operation of the Initial permutation. 

 

 

Table 2.7: Inverse Initial Permutation Table 

 

40     8   48    16    56   24    64   32 

39     7   47    15    55   23    63   31 

38     6   46    14    54   22    62   30 

37     5   45    13    53   21    61   29 

36     4   44    12    52   20    60   28 

35     3   43    11    51   19    59   27 

34     2   42    10    50   18    58   26 

33     1   41     9    49   17    57   25 

 

 

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 

8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the 

output.  
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2.4.2 Key Expansion Part 

The Key Expansion part takes the 64-bit key data as input and prepares the 16 round 

key data for encryption process.  However the input data is 64-bit length, only 56-bit 

data is used for the round keys preparation. The eight bits of the each byte is 

dropped. In some cases the 8th bits can be used as parity bit for error detection in key 

generation. There are three parts of the Key Expansion part. In the first part the input 

data is subjected to the PC-1 permutation. The permutation table of the PC-1 is given 

in Table 2.8. Then the output data are split into two parts like in encryption process, 

but here the divided parts are 28-bit long. The second part of the Key Expansion is 

cyclic left shift operation applied each of these two 28-bit parts individually. The two 

parts are shifted to left with predefined offset values before calculating the round 

key. The offset values for each round are given in Table 2.10.  The last process in the 

Key Expansion is PC-2 permutation, which permutation table is given in Table 2.9. 

The input of the PC-2 permutation is 56-bit data and the output is 48-bit data. There 

is compressing process applied into the key data with the PC-2 permutation. After 

each left shift operation the data is subjected to the PC-2 permutation and the result 

of this operation is the round key data. 

 

 

 

Table 2.8: PC-1 Permutation Table 

 

57   49    41   33    25    17     9 

  1   58    50   42    34    26   18 

10     2    59   51    43    35   27 

19   11      3   60    52    44   36 

63   55    47   39    31    23   15 

  7   62    54   46    38    30   22 

14     6    61   53    45    37   29 

21   13      5   28    20    12     4 
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Table 2.9: PC-2 Permutation Table 

 

14   17    11   24      1      5 

  3   28    15     6    21    10 

23   19    12     4    26      8 

16     7    27   20    13      2 

41   52    31   37    47    55 

30   40    51   45    33    48 

44   49    39   56    34    53 

46   42    50   36    29    32 

 

 

 

Table 2.10: Left Shift Offset Value Table 

 

Round Number     Left Shift Offset 
1 1 
2 1 
3 2 
4 2 
5 2 
6 2 
7 2 
8 2 
9 1 
10 2 
11 2 
12 2 
13 2 
14 2 
15 2 
16 1 
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Figure 2.19: DES Key Expansion 
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2.5 Triple DES (TDES) Algorithm  

 

The Triple Data Encryption Algorithm (TDEA), more commonly Triple DES is an 

approved cryptographic algorithm, which is enlarge the key space of the DES 

algorithm. There are three DES keys in the TDES operation, which are called as 

Key1, Key2, Key3 and referred to as a key bundle (KEY). These three keys are used 

in two allowed option to form the key bundle. In the first option, all three keys are 

mutually independent (i.e. Key
1
, Key

2 
and Key

3
, where Key

1 
≠ Key

2 
≠ Key

3 
≠ Key

1
). 

And in the second option, there are mutually independent keys and a third key that is 

the same as the first key (i.e. Key
1
, Key

2 
and Key

3
, where Key

1 
≠ Key

2 
and Key

3 
= 

Key
1
). The simple encryption and decryption operations of the TDES are given in 

Figure 2.20 and Figure 2.21 respectively. In the TDES encryption operation, the 

algorithm process begins with the DES encryption by using Key1 , then continue with 

DES decryption operation by using Key2 and it is finished with DES encryption 

operation by using Key3. 

 

 

Figure 2.20: TDES Encryption Operation 
 
 
 
 

Figure 2.21: TDES Decryption Operation 
 
 

DES EK1 DES DK2 DES EK3 Plaintext Ciphertext 
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38 
 

In this chapter the AES, DES and TDES algorithms have been discussed. The crypto 

algorithm types, the encryption and decryption structures of the AES, DES and 

TDES algorithm and the transformations used in algorithms are explained. The next 

chapter presents the different implementations of these algorithms. 
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CHAPTER 3 

 

 

CRYPTO PROCESSOR ARCHITECTURES 

 

 
 
3.1 Introduction  

 

In Section 3.2, different architectures and implementations of these architectures are 

discussed. In Section 3.3 bit permutation instructions in the literature, are described.  

 

3.2 Different Processor Implementations 

 

There are many studies about the crypto processors in the literature. Some of these 

studies are focused on only a single crypto algorithm, and some others are designed 

to support several algorithms in a single architecture. The different architectures are 

discussed in this chapter. 

 

Crypto processor architecture, called Cryptonite, is presented by Rainer Buchty, 

Nevin Heintze and Dino Oliva in [7]. This study is about a programmable 

architecture for the cryptographic applications. DES, TDES, AES, IDEA, RC6, 

MD5, and SHA-1 algorithms are supported by this architecture. 

This architecture has a different instruction set for cryptographic processing such as 

parallel 8-way permutation lookups, parameterized 64-bit/32-bit rotation, and XOR-

based fold operations. 
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These instructions are used for the core functions of different crypto algorithms and 

show differences than general purpose instructions. All instructions are executed in a 

single cycle. 64-bit and 32-bit computations are supported in this study. The main 

architecture of the Cryptonite is given in Figure 3.1. 

 

Figure 3.1: Cryptonite architecture 
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The Control unit controls the system according to the instructions. There is a two-

cluster architecture presented in the study. There is an ALU and its accompanying 

data I/O unit for each of cluster. The data unit of the ALU is responsible of the data 

access between local data memory and ALU. There is an interlink between the ALUs 

to enable the data change in complex computations.  

Furthermore the new XOR unit implementation into the data path, a parameterizable 

permutation engine, a DES specific unit and some AES supporting functions are 

implemented in the architecture. The DES specific unit is implemented into the 

memory unit instead of the ALU.  

The XOR unit of this architecture has 6 input. These inputs come from ALU 

registers, memory unit and as immediate value. The aim of this 6-input XOR unit is 

to avoid the sequential operations between multi input XOR operations.  

The other new unit is the parameterizable permutation engine. The permutation 

operations are performed with a lookup table, which can be used up to 8 parallel 

lookups. The vector memory unit, which is used as reconfigurable permutation 

engine, receives a vector of indexes and a scalar base address to address the 

memories of a vector. The collections of addressed memories form the result data 

vector. The structure of the vectored memory access is given in Figure 3.2. 

The results of the Cryptonite architecture are given in Table 3.1. 
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Figure 3.2: Vectored Memory Access 

 

 

 

 

Table 3.1: Cryptonite architecture results 

 

Algorithm Throughput 

(Mbit/s) 

Cycle count Speed (MHz) 

DES 732  35 400 

TDES 244 105 400 

AES 731 70 400 

MD5 421 504 400 
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Another architecture for the programmable processor is presented by Lisa Wu, Chris 

Weaver and Todd Austin [8]. The presented architecture, called CryptoManiac, is a 

4-wide, 4-stage 32-bit VLIW processor with a three input operand ISA. There is a 

simple branch predicter in the processor, but it does not have a cache. The code and 

data is stored in a static RAM. The branch predicter is used to make predictions 

about the next target address when there are more than one branch instructions in an 

instruction word. 

Figure 3.3: Schematic of CryptoManiac Architecture 

 

The interface between a host processor and CryptoManiac is provided by input and 

output request queues. A request scheduler distributes the requests of host processor 

to CryptoManiac processor in the order of receive. The Keystore part is a high-

density storage element for storing key data and substitution tables. Simultaneous 

session processing on the same processor is available by storing key-specific data in 

the shared keystore.   
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This data includes substitution data, permutation counters, and other internal 

algorithm state data. This part is only used for multisession applications and not 

necessary for single session applications. There are four parallel functional units in 

the CryptoManiac architecture. The process in the architecture is started with 

fetching a single VLIW instruction word that contains four independent instructions.  

The instruction set consists of 32-bit instructions and enhanced for the cryptographic 

processes by combining general arithmetic instructions with logical instructions, 

substitutions with logical instructions, and rotate operations with logical instructions. 

Each instruction has three operands as input and one operand for the output, again to 

combine some instructions.  

 

 

 

Figure 3.4: Schematic of a single functional unit 
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The Figure 3.4 shows the internal structure of a functional unit. Each functional unit 

consists of two logical units, one adder, one 1k-byte SBox cache, and one rotator. 

The multiplier block is added to only two blocks. The XOR, AND operations are 

processed in the logical units. SBox cache is responsible for holding all the data, key 

and SBox parameters instead of using a memory. The estimated result of the 

CryptoManiac is given in Table 3.2. 

 

 

Table 3.2: Estimated results of CryptoManiac architecture 

 

Algorithm Throughput 

(Mbit/s) 

Cycle count Speed (MHz) 

TDES 68 336 360 

TDES corr. 59 392 360 

AES 128/128 511 90 360 

AES 128/128 corr. 353 130 360 

 

 

 
 
In another study by Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis and 

Leonel Sousa [9] the AES encryption/decryption algorithm with a memory based 

hardware design is proposed. In the memory based design both the SubBytesand the 

polynomial multiplication are implemented in internal memories of the FPGA 

(BRAM).  

 

There are two AES encryption/ decryption cores presented. One of them is a 

completely unrolled loop structure capable of achieving a throughput above 34 

Gbits/s, with an implementation cost of 3513 slices and 80 BRAMs; and the other 

one is a fully folded structure, requiring only 515 slices and 12 BRAMs, capable of a 

throughput above 2 Gbits/s.  
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The first structure has not any area constraints and it is designed for the higher 

throughput requirements. The second structure is designed for the area constraints. In 

the general AES block implementation they use dual port memory blocks such as 

BRAM's in the FPGA's for the SBox and MixColumns processes. In the BRAM's 2 

SubBytesstitutions and 2 full multiplications can be mapped in a single memory 

block.  

 

 

 

Figure 3.5: SBox and MixColumns computation using BRAM  

 

 

 

After implementing the BRAM structure, the paper proposes two architectures for 

the AES operation. AES unfolded core is designed with adding sequentially all the 

rounds and AES folded core is designed with only one core which repeats the rounds.  
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In a study by Alireza Hodjat, Ingrid Verbauwhede [10] an area-throughput trade-off 

for an ASIC implementation of the Advanced Encryption Standard is presented. The 

paper presents throughputs of 30 Gbits/s to 70 Gbits/s with loop unrolling and inner-

round and outer-round pipelining techniques, using a 0,18 µm CMOS technology. 

Also, the possibility of achieving a throughput of over 30 Gbits/s encryption using 

the AES algorithm with minimum area cost is explored in this paper. The main goal 

of the paper is combining the pipelining with a composite field implementation. The 

paper calculates the SBox values using the Galois Field operations. The input byte 

(element of GF (28)) is mapped to two elements of GF (24). Then, the multiplicative 

inverse is calculated using GF (24) operators. Then, the two GF (24) elements are 

inverse mapped to one element in GF (28). In the end, the affine transformation is 

performed. There is also used pipelined structure in the SBox calculation structure to 

avoid the high latency in the Galois field operations.By using a pipelined structure in 

the SBox process, the area is reduced up to 35 percent and by designing an offline 

key scheduling unit for the high speed AES processor, an area reduction of an extra 

28 percent is achieved according to the paper.  

 

 

 

In another study by Oscar Perez, Yves Berviller, Camel Tanougast and Serge Weber 

[11] the experimental results of different strategies of implementation of AES 

encryption algorithm is presented. There is given a comparison between different 

techniques at the beginning of the study.  

 

These techniques are Inner-Round pipelining, Outer-Round pipelining, Full Loop 

Unrolling, Iterative looping and reconfiguration. They divided the algorithm into two 

parts, which are Key Expansion part and Cipher Part. The above strategies are used 

in the implementation of these two parts and then a comparison is made between the 

cost and the performance of the implemented techniques. The paper offers three 

strategies to compare the performances. 
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1. Unrolling the loop and reconfiguration techniques  

2. Iterative looping and the reconfiguration techniques  

3. Pipelined technique  

 

The performance tests are implemented on the FPGA Xilinx XC2V6000. According 

to the results the best throughput is achieved by config1. But the weak side of this 

technique is reconfiguration time. By contrast, in config2 who uses reconfiguration 

and the reusing of operators, the throughput is very low, but it offers two advantages: 

the use of few resources and a density of calculation quite near the other 

implementations. The performance, surface is interesting because these values are 

close to the best implementation. On the other hand, they are penalized in terms of 

latency by the time used for the reconfiguration. The pipelined technique also has 

good throughput results, but it uses higher BRAM capacity. 

 

 

A reconfigurable processor implementation is proposed by Yongzhi Fu, Lin Hao and 

Xuejie Zhang [12]. This study is about the implementation of a counter mode AES 

based on the Xilinx Virtex2 FPGA platform. In the AES design there is loop 

unrolling, inner and outer round and mixed pipelining. The clock frequency of the 

fully mixed inner and outer round pipelined architecture has achieved 212.5MHz and 

that translate to throughput of 27.1Gb/s. The difference of this article is using a 

switch between MixColumns operation and AddRoundKey operation.  

 

For the SBox operation Look Up Tables are used and the ShiftRows is implemented 

by configuring the routing resources. In the MixColumns operation they use shift and 

accumulation method, which is shift the incoming data 0 bit left when the 

polynomial constant is ‘02’ and then XOR the results. The AddRoundKeys are 

computed before the encryption process for a pipelined structure. According to the 

several implementation tests the best result is achieved using the mixed structure, 

which includes inner and outer pipelining, and loop unrolling. 
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Figure 3.6:  The switch structure 

 

 

 

In another study by Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and 

Ingrid Verbauwhede [13] an AES crypto processor, which can handle both feedback 

and non feedback modes of operation is presented. It is reported that this 

implementation can achieve a throughput of 3.84 Gbps at a 330 MHz clock 

frequency. For the implementation of the non-feedback modes of the operation the 

design has a non-pipelined structure. In this design all implementation is based on 

the single clock cycle. All rounds are designed for this purpose. In the SBox 

operation the LUT are used and in the MixColumns operation there are used a chain 

of XORs. 
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Figure 3.7:  The architecture of AES Core 

 

 

 

The proposed crypto coprocessor can be programmed through the memory-mapped 

interface of an embedded CPU core. The embedded CPU core can read or write to 

the registers by accessing different memory locations. The memory-mapped interface 

decodes the memory addresses and updates the registers’ values. 

 

 

Another configurable AES processor and its experimental results are presented by 

Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang and Cheng-Wen Wu [14]. This 

study proposes a configurable AES processor, which can run both the original AES 

and the extended AES algorithm. The extended AES algorithm has some additional 

properties like providing some flexibility to the configuring to parameters of each 

transform defined in AES. They provide the flexibility by configuring the parameters 

given below;  
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1. Irreducible polynomial in SBox 

2. Fixed polynomial values in MixColumns 

3. Affine transformation in SBox 

 

The AES core is called AESTHETIC. The original AES algorithm and the extended 

AES algorithm are reconfigured depending on the application.  

 

 

Figure 3.8: Block diagram of the AESTHETIC processor 

 

 

The AESTHETIC core is similar like the original AES operations. In the design the 

SBox operation is implemented as using Galois Field arithmetic operations. And for 

the MixColumns operation there are 64 GF ((24)2) multipliers to process the data 

block in parallel. The design generates the AddRoundKeys on the fly method.  

The implementation results of this design are; 
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844.8 Mbps for 128-bit keys @66MHz clock frequency 

704.0 Mbps for 192-bit keys @66MHz clock frequency 

603.4 Mbps for 256-bit keys @66MHz clock frequency 

 

 

In another study by Refik Sever, A. Neslin İsmailoğlu, Yusuf C. Tekmen and Murat 

Aşkar [6] the VLSI design and implementation of Rijndael algorithm is presented. In 

this study, both of the encryption and decryption algorithms are implemented for all 

data and key sizes on a single ASIC, with a non pipelined structure. The main 

diagram of the implemented architecture is given in Figure 3.9. 

 

 

 

 Figure 3.9: Block diagram of the implemented architecture 

 

 

A single round of the algorithm is completed in one clock cycle. There are 32-S box 

to complete one round of the algorithm in one clock cycle.  
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The SBox part is implemented using combinatorial logic instead of using Look up 

Table. There are two separate EXOR blocks. The last round of the encryption of the 

current block and the first round of the encryption of the next block are processed at 

the same time. This two separate EXOR blocks are necessary for not loosing one 

clock cycle. Key Generator module consists of three sub modules: Key Expansion 

module, Key Storage module and Key selection module. All the keys needed for 

encryption and decryption processes are produced by Key Expansion module and 

stored by Key Storage module.  

 

All the keys are generated and stored before encryption or decryption starts. The 

implementation results are given below, 

• 0.35 µm CMOS technology 

• Modules are described using Verilog HDL, and then synthesized with 

Synopsys Design Analyzer 

• The chip area is 12.8 mm² 

• There are 149K gates 

• The worst case clock frequency is 132 Mhz 

• The maximum throughput is 2.41 Gbps 

 

 

 

In a study by Toby Schaffer, Alan Glaser and Paul D. Franzon [18] the design and 

implementation of a DES processor is presented. The processor has three separate 

circuit, each can operate on an individual data stream to perform DES algorithm, or 

three can operate together to perform TDES algorithm. The block diagram of one 

block is given in Figure 3.10. 
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Figure 3.10: Block diagram of the one DES circuit 

 

 

 

The iterated rounds of DES algorithm are implemented in a 16 pipelined stage 

structure. There are two different pseudo-random number generators (PRNG), one 

for key generation and one for the cipher functions.   The encryption or decryption 

operations are chosen according to the opmode signal. This opmode signal controls 

the shifting of the key values to right or left side. In encryption the keys are shifted to 

left in a round sequence and in decryption they shifted to right to satisfy the inverse 

structure. 
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Figure 3.11: Pipelined cell structure 

 
 
 

Figure 3.11 shows the structure of a pipelined cell structure. There are eight cells in 

one stage of the 16- stage pipelined structure. The operation of a single cell consist of 

the EXOR operations between  the cipher function output data and left half data of 

previous stage, the EXOR operation of the key data and the result of previous EXOR 

operation and the SBox operation. At the output of each pipelined cell structure, the 

P permutation and E Table permutation are implemented separately. TDES operation 

throughput is reported over 7 Gb/s at 110 Mhz clock frequency, as a result of this 

study.  
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In the study by P. Kitsos, S. Goudevenos and O. Koufopavlou [19] three different 

hardware implementations of TDES algorithm are presented. Two of the proposed 

structures have pipelined structure and the third proposed structure consists of 

sequential iterations. In the first proposed architecture there are used 48 pipeline 

registers between each round to improve the throughput. The keys are shifted to the 

reverse direction of the encryption operation to perform decryption. In the proposed 

architecture initial permutations of the second and third DES and the inverse initial 

permutations of the first and the second DES are not implemented. As a result of this 

property it is reported that a gain in time delay is achieved. The key expansion is 

performed with using on the fly technique.  

 

 

 

 

Figure 3.12: The third proposed architecture 
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In the second architecture 16 registers are used between the rounds. The key 

expansion is similar with the first architecture. This architecture has the capability of 

processing 16 independent data blocks simultaneously for higher throughput. 

 

The structure of the third architecture is given in Figure 3.12. There is only one 

round implemented and its output of this round is registered and routed to a 

multiplexer. The multiplexer determines whether the output of the round is used as 

input or the data from permutation module is used. This architecture is proposed for 

are restricted applications. 

The three architectures are implemented in two different Xilinx devices with using 

Look Up tables in one device and ROMs in the second device. The maximum 

throughput values are achieved on the device with ROMs and they are 7.36 Gbps for 

the first one, 2.45 Gbps for the second one and 121 Mbps for the third one.  

 

 

3.3 Bit Permutation Instructions 

 

Generally bit permutation operations can be performed with common instructions 

like “and”, “or” and “rotate”. But with these instructions the bit permutation 

operation in any cryptography algorithm cannot be made very efficient. Every bit of 

the source register is extracted from source, then placed to its new position in 

destination register and finally combined with other bits to make the result register.  

Because the complex bit permutation operations may use the common instructions 

for several times to form the result destination register and this operation will take to 

much time for a permutation operation [16]. Another way of implementing the bit 

permutation is using look up tables. In this type of operation there should be only one 

table with 2n elements, each element is n bits, or m look up tables, with 2(n/m) 

elements in each table. For example to permute 16 bits data one table can be used 

with 216 elements, each element is 16 bits. Or the look up table number can be 

chosen as two and in this situation each table should have 28 elements, where each 

element is 16-bit wide [16] [20]. 
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In addition of the conventional methods there are some bit permutation instructions 

implemented.  These instructions aimed to solve the problems of the current 

microprocessor. Some of the most popular bit permutation instructions, like GRP, 

CROSS, OMFLIP, PPERM and SWPERM are discussed in the following part. 

 

3.3.1 GRP instruction 

 

GRP instruction [22] is very similar to the current microprocessor instructions 

structure with two operands and one result. The GRP instruction is defined as below; 

 

GRP  R3, R1, R2 

R3: destination register 

R1: source register 

R2: source register 

 

The data bits are divided into two groups, a left group and a right group, according to 

the value of the control bits. If the bit “i” in control bits is 0 the bit “i” in data goes to 

the left group, and it goes to the right group otherwise.  

During this process, the relative positions of bits within the same group do not 

change. The Figure 3.13 gives an 8-bit GRP operation. In this operation, since the 

control bits of b, c, e, and h are 0, these four bits are placed in the left group in result 

register. a, d, f, and g are placed in the right group in result register because their 

control bit is 1.  
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Figure 3.13: An 8-bit GRP operation 

 

 

 

3.3.2 PPERM3R and PPERM instructions  

 

PPERM3R and the new version PPERM [16] instructions explicitly specify the 

original position of each bit in the destination register. There is a control register to 

specify the destination positions. There should be nlg(n) bits in the control registers 

to permute n bit data. The PPERM3R instruction does not specify all nlg(n) bits in a 

single instruction. Instead, it specifies the original position only for a subset of bits, 

and a sequence of PPERM3R instructions specify the original position for all the bits 

in the destination.  

 

The PPERM3R instruction is defined as:  

 

PPERM3R, x Rd, Rs1, Rs2 

 
Rs1: source register (data bits) 

Rs2: source register (control bits) 
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Rd: destination register 

x: specifies which subset in Rd will be updated with the bits extracted from Rs1.  

The bits to be updated are consecutive. Except the bits in the subset, other bits in Rd 

remain unchanged. 

 

 

3.3.3 CROSS instruction 

 

The CROSS instruction [21] is formed by concatenating a butterfly network and an 

inverse butterfly network. As a property of the butterfly network a bit at any position 

in input, can be directed to any position in output with proper connections in network 

stages.  

An n-bit butterfly network consists of lg(n) stages. In each stage, n bits are divided 

into n/2 pairs.  Two bits are controlled by one control bit. Each one of the two bits 

are located in different pairs, and the control bit determines, whether these bits are 

kept their positions in the next stage or exchange their bit positions with the other bit. 

So n/2 control bits are needed in each stage to specify the path for n/2 data pairs. The 

stages in a butterfly network are differentiated by how bits are paired. In the first 

stage of butterfly network the distance between paired bits is n/2 bits. In the each 

following stage this distance is reduced by a factor two. For example for an 8-bit 

permutation the distance between paired bits is 4 bits. And in the second stage the 

distance is reduced by two to 2 bits and so on.  

The inverse butterfly network can be constructed by reversing the stages in a 

butterfly network. The last stage in the butterfly network, for example, becomes the 

first stage in the inverse butterfly network.  

The CROSS instruction is defined as: 

 

CROSS, m1, m2 Rd, Rs, Rc 

Rs: source register (data bits) 

Rc: source register (control bits) 

Rd: destination register 
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m1: the lower n/2 bits of the control bits 

m2: the higher n/2 bits of the control bits 

 

Figure 3.14 shows the combination of the Butterfly network and Inverse Butterfly 

network for 8 bits permutation. 

 

 

 

 

 

Figure 3.14: An 8-bit Benes network for CROSS instruction 
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3.3.4 OMFLIP instruction  

 

The OMFLIP instruction [21] structure is similar to CROSS instruction structure. 

The OMFLIP is constructed by combination of an omega network and a flip 

network. A flip network is the mirror image of a network. For n bits input data both 

networks have lg(n) identical stages. An OMFLIP instruction permutes bits with two 

stages of an omega-flip network, and lg(n) instructions can perform an arbitrary n-bit 

permutation. This looks similar to the CROSS instruction.  

But the difference is the omega flip network has only two distinct stages, because all 

omega stages and flip stages are identical. 

Hence, only two omega stages and two flip stages are enough to do the OMFLIP 

instructions. Unlike CROSS, the number of stages does not depend on the number of 

bits to be permuted; only four stages are sufficient to implement an OMFLIP 

instruction for any word size.  

 

 

3.3.5 SWPERM and SIEVE instruction  

 

The SWPERM instruction [23] is similar to the PPERM instruction. The difference 

from PPERM is the fixed subword size in the SWPERM. The subword size in the 

SWPERM instructions is fixed at four bits.  

The SWPERM instruction is given in the Figure 3.15. The positions of the bits in the 

destination are exactly specified with the control bits of SWPERM instruction. 

For a 64-bit data permutation there are sixteen 4-bit subwords. Four bits are used to 

identify one of the sixteen 4-bit subwords in the source register. In total, sixteen 4-bit 

subwords in the destination register need exactly 64 bits, which can be put in the 

second operand.  

 

 

 

 

 



 

63 
 

The instruction SWPERM is defined as: 

 

SWPERM Rd, Rs, Rc 

 

Rs: source register (data bits) 

Rc: source register (control bits) 

Rd: destination register 

 

A single SWPERM instruction can perform arbitrary permutation of subwords of 

size four bits or greater.  

 

 

 

 

 

Figure 3.15: SWPERM instruction 
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CHAPTER 4 

 

 

IMPLEMENTATION OF THE CRYPTO PROCESSOR  

 

 
 
4.1 Introduction  

 

In this chapter, the architecture and implementation of the Crypto Processor for the 

Advanced Encryption Standard (AES) and Data Encryption Standard (DES) 

algorithms are explained. The main blocks of the architecture are described in the 

following section. After that the Instruction Set Architecture is presented for this 

implemented architecture. Finally the simulation results are given in the last section. 

 

4.2 Architecture of the Crypto Processor 

 

The implemented architecture is based on a combination of different modules. The 

main architecture and its modules are given in Figure 4.1. The modules are;   

 

• Control Unit Module 

• Data Input Output Module 

• Memory Module  

• Arithmetic Logic Unit (ALU) Module 

• Permutation Module 

 

The properties of each module are discussed in the following sections. 
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Figure 4.1: The main architecture of the implemented Crypto Processor 
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4.3 Control Unit Module  

 

Control Unit is the main module of the architecture. The main function of this 

module is to control the others modules activities according to the instructions. The 

instructions are fetched from the Memory module, and then the fetched instruction is 

decoded and copied to the internal registers.  

 

After the decode process of the instruction the execution process is activated. In this 

process the Control Unit sends the proper control signal to the related modules with 

the proper operand data. Then the result data is copied back to related registers to 

finish one instruction operation.  

 

One machine cycle in the implemented architecture consists of 4 clock cycles. 

During a machine cycle, fetch, decode and execute operations are performed. The 

most of the instructions are one machine cycle instructions, but some of the 

instructions are processed in three or four cycles. The Instruction Set Architecture for 

this implemented Crypto Processor is given in the last section of this chapter. 

 

There are sixteen 32-bit internal data registers in the Control Unit module [15]. Half 

of these sixteen registers are used as general purpose registers. The number of the 

general purpose registers is chosen as eight, because of holding all the state data info 

once in a register set. And the maximum data length in AES and DES algorithm is 

256 bits, which is used in AES algorithm. 

 

The remaining eight data registers are used just for data storing of internal state 

values of general purpose registers. These are necessary because in some operations 

the next state value is calculated with the operations between the previous state value 

and some intermediate values obtained by previous state value. 
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There is also a different register block in the Control Unit module. This register 

block is used to store the round key values for the performed crypto algorithm. The 

number of the register block is determined in respect of the maximum necessary 

round key value. Therefore to supply all the round key numbers the register block 

consists of 120 32-bit registers.  

 

 

4.4 Data Input/Output Module 

 

The external access to the implemented Crypto processor is provided by the Data 

Input/Output Module. The Data I/O module has two different 32 bits external 

interface. One of the interfaces is assigned as input to the processor and the other one 

is assigned as output.  

 

The input and output processes are performed according to the I/O commands, which 

are sent by Control Unit. There are eight different operations in the Data I/O module.  

These operations are categorized in respect of the crypto algorithms data lengths. The 

data lengths can have four different data length as 64-bit, 128-bit, 192-bit and 256-

bit. The I/O commands specify the data length and the data are processed in 

sequential clock cycles. For the 64-bit input data the first 32-bit is stored in the input 

buffer register of the I/O module in the first clock cycle. In the second cycle this data 

is fed to the Control Unit internal registers, while the second 32-bit data is taken 

from input interface and stored in the buffer register. In the third clock cycle this 32-

bit data is also transferred to the Control Unit internal registers. The input and output 

operations are performed in a similar way for the other data lengths. 
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Figure 4.2: Control Unit – Data Input/Output Module Interface 

 

 

 

4.5 Memory Module  

 

The memory unit consists of a ROM block. The instructions are stored in the ROM 

block and they are subjected to the Control Unit with an 8-bit wide data link between 

Control Unit and Memory Module.  

 

 Figure 4.3: Control Unit – Memory Module Interface 
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The control of the read operation is provided by the enable signal. The ROM block is 

activated only when there is a low enable signal. The instructions are called from 

memory according to the Address data. The Control Unit assigns the next address 

data to the Address link between Control Unit and Memory Unit or determines the 

next address data according to some control signals, created by the last instruction. 

 

 

4.6 Arithmetic Logic Unit (ALU) Module  

 

ALU module process the incoming data according to the commands from Control 

Unit. The basic operations are performed in the implemented ALU module, like 

Boolean functions, addition – subtraction operations, shift operations.  Further to that 

some AES and DES specific operations can also handled in the ALU module.  

 

 

 

Figure 4.4: Control Unit – ALU Interface 
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There are four 32-bit data links between Control Unit and ALU. The current data 

registers values are directed from Control Unit to the ALU by two of these four 32-

bit data registers (AluInA and AluInB). And the remaining two data links are from 

ALU to Control Unit for the output of the processed data in the ALU (AluOutA and 

AluOutB).  

 

The alucmd link is for the ALU commands, created by the Control Unit module 

according to the decoded instruction. ALU module process the data according to 

these incoming commands. 

 

The main operations are performed over 32 bits data, but there are some exceptions 

for both of AES and DES algorithms. There are some operations performed over 

bytes. In this case the incoming 32 bits data is divided into suitable data chunks and 

then the operations are performed. 

 

In addition of general logic operations, the SBox operations are performed also in the 

ALU module. For this purpose ALU module has a memory unit, which stores the 

SBox values for both of AES and DES algorithms. The structure of this memory unit 

will be discussed in detail in the next section. The ALU command set is given in 

Table 4.1.  
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Table 4.1: ALU Commands 

 

Code Command 

0x00 Alu_DES_ROR 

0x01 Alu_DES_ROL 

0x02 Alu_DES_SBOX1 

0x03 Alu_SBOX 

0x04 Alu_XTIME 

0x05 Alu_MIX 

0x06 ALU_BIT_MAP 

0x07 Alu_SWAP 

0x08 Alu_AES_SBOX 

0x09 Alu_EXOR 

0x0a Alu_ROR_BYTE 

0x0b Alu_ROL_BYTE 

0x0c Alu_STORE0 

0x0d Alu_STORE1 

0x0e Alu_STORE2 

0x0f Alu_SHIFT128_0 

0x10 Alu_SHIFT128_1 

0x11 Alu_SHIFT192_0 

0x12 Alu_SHIFT192_1 

0x13 Alu_SHIFT192_2 

0x14 Alu_SHIFT256_0 

0x15 Alu_SHIFT256_1 

0x16 Alu_SHIFT256_2 

0x17 Alu_SHIFT256_3 

0x18 Alu_NOP 
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4.6.1 SBox Memory Unit 

 

The SBox operation plays an important role for both of AES and DES algorithms. 

The main structure of the SBox operation is different for these algorithms. In AES 

algorithm the SBox operation is performed over bytes. Each byte in the State matrix 

is replaced with a SBox table element. And the address of the table element is given 

directly the input byte data itself. On the other hand in the DES algorithm the SBox 

operation is performed with 6-bit data input and 4-bit data output. The address of the 

4-bit output data is calculated according to some rules on the input 6-bit data. But 

when the address calculation operations of the DES are handled in a way, the next 

operation for both algorithms can be performed with using Look up Tables. The 

implemented Look up Table structure is given in Figure 4.5. 

 

 

 

 

 

Figure 4.5: SBox memory unit 
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The Look up Table consists of 512 memory elements; each one is 8-bit wide. There 

are 256 memory elements for the AES algorithm [1]. These values for AES 

algorithm are stored in memory from address 0 to address 255.  

 

There are 8 different SBox table in the DES algorithm. There are 64 memory 

elements; each one is 4-bit data in each table. With a proper organization these SBox 

data can be arranged as 32 memory element, and each element as 8-bit data. And for 

eight SBox tables in DES there should be 256 memory elements, which are 8-bit 

data. The DES algorithm SBox values are stored in memory from address 256 to 

address 511. 

 

As discussed before the SBox operation for AES algorithm is performed directly 

with a single instruction. The data is replaced with a SBox memory element, that the 

address of the result data is the incoming data itself. 

 

The SBox operation in the DES algorithm is a bit more complex than AES algorithm. 

The input of a SBox table is 6-bit data. The memory address of the output element is 

obtained by another instruction, because of providing a common use to the SBox 

instruction. 

 

The output data of the SBox table is 4-bit data. But in the memory unit the data is 

stored as 8-bit data. Therefore the two sequential SBox table output data is stored in 

the memory unit in the same address. For example the output data of row 0 / column 

0 and row 0 / column 1 are stored in the same memory address. The high part of the 

memory data is the output data of row 0 / column 0 and the low part is the output 

data of row 0 / column 1. After replacing the memory element with the input data of 

the SBox table, the high 4-bit or the low 4-bit is chosen according to some control 

signals. 
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Figure 4.6: SBox memory unit organization for DES  

 

 

 

4.7 Permutation Module 

 

Bit Permutation is an important operation in the Block ciphers. In the bit permutation 

operations, the incoming data is subjected to the some bit position changes according 

to the permutation type.  The using aim of the bit permutation is mainly for the 

diffusing objective. With diffusion the redundancy of the plaintext data is spread 

over a large part of the cipher text. 

 

The bit permutation operations have a big process part in DES and TDES algorithms. 

In many other solutions for DES algorithm these blocks are mainly implemented as 

look up tables or implemented as hardware routing for only DES unique processors 

or implemented with current microprocessor instructions like “and”, “rotate” and 

“or”. But these kind of solutions have some disadvantages like slow process time and 

area inefficiency. 
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Therefore a separate permutation module is implemented in the architecture. The 

main purpose of this module is directly dedicated to bit permutation operations and 

the main structure is based on Butterfly network structure.  

 

 

Figure 4.7: Control Unit – Permutation Module Interface 

 

 

 

The Permutation Module interface is similar to the ALU interface. There are four 32-

bit data links between the Control Unit and Permutation Module. The operation type 

is same with ALU. The Permutation module is activated by the permcmd signal. 

Besides of the activation function permcmd determines that which permutation 

operation is performed in the module. The interface between Control Unit and 

Permutation module is given in Figure 4.7. The implemented permutation module is 

a combination of a Butterfly network and Inverse Butterfly network [16]. This 

module is designed for permutations of 64 bits data. Therefore there are 12 stages in 

the module, 6 stages belong to Butterfly network and the remaining 6 stages belong 

to Inverse Butterfly network. The transition between stages is controlled by the 

dedicated control registers for each stage, so there are 12 control bit registers. Each 

control register is 32-bit wide and each control bit determines the next stage position’ 

of two different bits in current stage. 
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The necessary stage control bits and the bit positions between sequential stages are 

given in below figures for each permutation operation of DES algorithm. In the 

simulation of permutation operations same input is applied to the permutation 

module for each permutation operation of DES. From the simulation figures of DES 

permutation operations, it can be seen easily that, there are a different bit transitions 

map between sequential network stages according to the relevant permutation 

operation control bits. 

 

 

 

 
Figure 4.8: DES Initial Permutation 

 
 
 
The stage control bits for Initial Permutation in the permutation module are; 
 
Initial_Perm_Control[0]  = 0x55555555;  

Initial_Perm_Control[1]  = 0x0f0f0f0f;   

Initial_Perm_Control[2]  = 0x33333333; 

Initial_Perm_Control[3]  = 0x55555555; 
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Initial_Perm_Control[4]  = 0x55555555; 

Initial_Perm_Control[5]  = 0xffffffff; 

Initial_Perm_Control[6]  = 0x5a5a5a5a; 

Initial_Perm_Control[7]  = 0x69966996; 

Initial_Perm_Control[8]  = 0x33cccc33; 

Initial_Perm_Control[9]  = 0xaaaaaaaa; 

Initial_Perm_Control[10] = 0xcccccccc; 

Initial_Perm_Control[11] = 0x0f0f0f0f; 

The Initial Permutation is performed, when the permute command is 0x01 and then 

these values are transferred to the stage control bits to process the data correctly.  

 

 

 

 
 

Figure 4.9: DES Inverse Initial Permutation 
 
 
 

The stage control bits for Inverse Initial Permutation in the permutation module are; 
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Inverse_Initial_Perm_Control[0]  = 0x0f0f0f0f;  

Inverse_Initial_Perm_Control[1]  = 0x33333333;   

Inverse_Initial_Perm_Control[2]  = 0x55555555; 

Inverse_Initial_Perm_Control[3]  = 0x33333333; 

Inverse_Initial_Perm_Control[4]  = 0x55555555; 

Inverse_Initial_Perm_Control[5]  = 0xffffffff; 

Inverse_Initial_Perm_Control[6]  = 0x66669999; 

Inverse_Initial_Perm_Control[7]  = 0x96966969; 

Inverse_Initial_Perm_Control[8]  = 0xaa5555aa; 

Inverse_Initial_Perm_Control[9]  = 0xcccccccc; 

Inverse_Initial_Perm_Control[10] = 0xf0f0f0f0; 

Inverse_Initial_Perm_Control[11] = 0x55555555; 

The permute command should be 0x03 for the Inverse Initial Permutation operation.  
 
 
 
 

 
 

Figure 4.10: DES E Table Permutation 
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The stage control bits for E Table Permutation in the permutation module are; 
 
EBit_Selection_Control[0]  = 0xfe0181ff;  

EBit_Selection_Control[1]  = 0x7f39fe19;   

EBit_Selection_Control[2]  = 0xbd777f01; 

EBit_Selection_Control[3]  = 0xbbbbbbff; 

EBit_Selection_Control[4]  = 0xf7f7ffff; 

EBit_Selection_Control[5]  = 0xffffffff; 

EBit_Selection_Control[6]  = 0x142800f0; 

EBit_Selection_Control[7]  = 0xb63733fa; 

EBit_Selection_Control[8]  = 0xaa7969f2; 

EBit_Selection_Control[9]  = 0x7acdcc00; 

EBit_Selection_Control[10] = 0x39f3ff0c; 

EBit_Selection_Control[11] = 0xfec00f3f; 

The permute command should be 0x0b for the E Table Permutation operation.  
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Figure 4.11: DES Cipher (P) Permutation 
 
 
 
The stage control bits for Cipher (P) Permutation in the permutation module are; 
 
CipPer_Perm_Control[0]  = 0xffffffff; 

CipPer_Perm_Control[1]  = 0x3fb7ffff;  

CipPer_Perm_Control[2]  = 0xf5ffffff;   

CipPer_Perm_Control[3]  = 0xfff5ffff; 

CipPer_Perm_Control[4]  = 0xfd7fffff; 

CipPer_Perm_Control[5]  = 0xffffffff; 

CipPer_Perm_Control[6]  = 0xf142ffff; 

CipPer_Perm_Control[7]  = 0x5711ffff; 

CipPer_Perm_Control[8]  = 0x1515ffff; 

CipPer_Perm_Control[9]  = 0x628effff; 

CipPer_Perm_Control[10] = 0xd524ffff; 
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CipPer_Perm_Control[11] = 0xffffffff; 

The permute command should be 0x05 for the Cipher (P) Permutation operation.  
 
 
 
 

 
 

Figure 4.12: DES Key PC1 Permutation 
 
 
 

The stage control bits for Key PC1 Permutation in the permutation module are; 
 
Key_PC1_Control[0]  = 0x8f8f8f8f;  

Key_PC1_Control[1]  = 0x9b9bb3b3;   

Key_PC1_Control[2]  = 0xadadd5d5; 

Key_PC1_Control[3]  = 0x7777ffff; 

Key_PC1_Control[4]  = 0xffffffff; 

Key_PC1_Control[5]  = 0xffffffff; 

Key_PC1_Control[6]  = 0x3c3c0f0f; 

Key_PC1_Control[7]  = 0x21de00ff; 
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Key_PC1_Control[8]  = 0x0000ffff; 

Key_PC1_Control[9]  = 0xa5a5aaaa; 

Key_PC1_Control[10] = 0xc3c3cc3c; 

Key_PC1_Control[11] = 0xf0f0f0f0; 

The permute command should be 0x07 for the Key PC1 Permutation operation.  
 
 
 
 

 
 

Figure 4.13: DES Key PC2 Permutation 
 
 
 

The stage control bits for Key PC2 Permutation in the permutation module are; 
 
Key_PC2_Control[0]  = 0x0fffffff;  

Key_PC2_Control[1]  = 0x4ce70b71;   

Key_PC2_Control[2]  = 0x7d4d5d5f; 

Key_PC2_Control[3]  = 0x593bf1bd; 

 



 

83 
 

Key_PC2_Control[4]  = 0xd75ffddf; 

Key_PC2_Control[5]  = 0xffffffff; 

Key_PC2_Control[6]  = 0xe76df657; 

Key_PC2_Control[7]  = 0xe18ea5bd; 

Key_PC2_Control[8]  = 0x29e3ab32; 

Key_PC2_Control[9]  = 0x794750cc; 

Key_PC2_Control[10] = 0x47540cba; 

Key_PC2_Control[11] = 0x0fffffff; 

The permute command should be 0x09 for the Key PC2 Permutation operation. 

 
 
 
4.8 Instruction Set Architecture 
 

The Instruction Set Architecture is implemented to execute the basic parts of the 

crypto algorithms easily. Firstly, DES and AES algorithms are analyzed carefully to 

obtain the common properties for both of algorithms and some instructions are 

assigned to perform these common operations in DES and AES. The SBox, round 

key addition, round key store operations are some examples for the common blocks 

in DES and AES algorithms. After that the basic blocks of the algorithms are studied, 

and the instructions in the ISA are implemented according to these basic parts of 

algorithms. Therefore each instruction in the ISA performs one simple operation in 

the crypto algorithms. The purpose of this implementation is making the hardware 

design simpler.  

The TDES algorithm is also performed with this ISA. Because of the TDES 

algorithm is an extension of DES algorithm, the instructions used in TDES are the 

same instructions, which are used in DES algorithm. But to execute the TDES 

algorithm correctly, there is only an additional control operation implemented in the 

Control Unit module. 
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XTME 

 

Opcode: 0x40 to 0x47 

Operation: xtime operation on MixColumns operation of AES algorithm 

Syntax: xtme   register 

 

Description: This instruction is used for the xtime operations [1] [6] for AES 

algorithm. The multiplication with the “x” coefficient in the Galois field is called as 

“xtime” and this instruction calculates the xtime value of the data in register and 

result data is stored again in the initial register. 

 

MIX 

 

Opcode: 0x48 to 0x4f 

Operation: mix operation on MixColumns of AES algorithm 

Syntax: mix registera , registerb 

 

Description: mix instruction is used for the exor operations after the xtime instruction 

[6]. The MixColumns transformation in AES algorithm is a combination of the xtime 

and mix instruction. The data is taken from registera and registerb and the result data 

is written to the registera back. 

 

 

SBOX 

 

Opcode: 0x30 to 0x37 

Operation: SBox operation for both of AES and DES algorithms 

Syntax: SBox   register 

 

Description: This instruction is used for the SBox operations. The data in register is 

replaced with the relevant memory data and result data is stored in the initial register. 
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SHIFT 

 

Opcode: 0x38 

Operation: AES 128-bit ShiftRows operation 

Syntax: shft   128 

 

Description: shift 128 instruction is used for the AES ShiftRows operation. The 

ShiftRows operation is operated over the rows in original AES state matrix. In the 

implemented architecture the data is stored in registers as given in Figure 4.14. The 

row elements of the original matrix are placed in the same byte of sequential 

registers. If we assume the sequential registers as a matrix, the original state rows are 

the column elements of the registers. Therefore the ShiftRows operation is performed 

in a different way in the architecture. This instruction is 3 machine cycle instructions. 

In first cycle it sends two 32-bit data (reg1 and reg2 values) to the ALU. In the 

second cycle two more 32-bit data (reg3 and reg4 values) is sent, also it takes two 

32-bit result data (oreg1 and oreg2 values) and stored them in the relevant registers 

(reg1 and reg2) back. In the last cycle last two 32-bit data (oreg3 and oreg4 values) is 

taken from ALU and stored in registers (reg3 and reg4). The result register matrix is 

given in Figure 4.15. The incoming data is placed into the 32-bit data registers as 

given below. 

 

 

 

          Col3      Col2    Col1   Col0 
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Reg3 

Reg4 

 

Figure 4.14: Register State values before shift operation 
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And the expected output data should be placed as given below. 

 

 

 

OReg1 

OReg2 

OReg3 

OReg4 

 

Figure 4.15: Register State values after shift operation 
 

 

SHIFT 

 

Opcode: 0x39 

Operation: AES 192-bit ShiftRows operation 

Syntax: shft   192 

 

Description: shift 192 instruction is used for the AES ShiftRows operation. This 

instruction is 4-cycle instruction. This instruction’s structure is same like shift 128 

instruction. But this needs one more cycle due to its increased data size. 

 

SHIFT 

 

Opcode: 0x3a 

Operation: AES 256-bit ShiftRows operation 

Syntax: shft  256 

 

Description: shift 256 instruction is used for the AES ShiftRows operation. This 

instruction is 5-cycle instruction. Also this instruction is same like shift 128 and shift 

192 instruction. 
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EXOR 

 

Opcode: 0x24 to 0x2c 

Operation: Bitwise EXOR operation 

Syntax: exor registera, registerb 

 

Description: EXOR instruction does a bitwise "EXCLUSIVE OR" operation between 

registera and registerb, leaving the resulting value in registera. The value of registerb 

is not changed. 

 

 

MOV1 

 

Opcode: 0x50 

Operation: Store accumulator group1 values 

Syntax: mov1 

 

Description: This instruction is used to store the accumulator registers group1 values 

in a different group of registers. This is necessary because of the accumulator values 

were used in some inner stage operations to calculate intermediate results and then 

another calculations with these intermediate results. 

 

 

MOV2 

 

Opcode: 0x51 

Operation: Store accumulator group2 values 

Syntax: mov2 

 

Description: This instruction is used to store the accumulator registers group2 values 

in a different group of registers. 
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MOV 

 

Opcode: 0x52 to 0x54 

Operation: Move a value to a constant   

Syntax: mov constant , #value 

 

Description: These instructions are necessary for predetermining some internal 

values in intermediate operations of the algorithms. 

 

 

MOV 

 

Opcode: 0x55 to 0x59 

Operation: Copy a register value to another register 

Syntax: mov registera , registerb 

 

Description: This instruction copies the registerb value to the registera. 

 

 

EXK0 

 

Opcode: 0x60 to 0x6f 

Operation: Key exor operation 

Syntax: exk0  #number 

 

Description: The round data and key data EXOR operation is provided with this 

instruction. This instruction is continued three clock cycles. In the first clock the first 

half of the round data and its corresponding key data is forwarded to the ALU for the 

EXOR operation.  In the second clock the output of the first operation is written back 

to the first accumulator register reg0 and also the second half of the round data and 

key data is processed. And in the third clock the result data is stored in the reg1. 
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EXK1 

 

Opcode: 0x70 to 0x7f 

Operation: Key exor operation 

Syntax: exk1  #number 

 

Description: Same as exk0 structure. The necessity of this instruction is due to the 

increased data and key length. The EXK0instruction has only a limited capacity for 

EXOR operation. 

 

EXK2 

 

Opcode: 0x80 to 0x8f 

Operation: Key exor operation 

Syntax: exk2  #number 

 

Description: Same as EXK0 

 

EXK3 

 

Opcode: 0x90 to 0x9f 

Operation: Key exor operation 

Syntax: exk3  #number 

 

Description: Same as EXK0 

 

MVK0 

 

Opcode: 0xd0 to 0xdf 

Operation: Store AddRoundKey values 

Syntax: mvk0  #number 
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Description: This instruction is used to store the AddRoundKey values in the 

predefined registers for further AddRoundKey operations. There is a specific portion 

in the register module, dedicated to the AddRoundKey data. 

 

MVK1 

 

Opcode: 0xe0 to 0xef 

Operation: Store AddRoundKey values 

Syntax: mvk1  #number 

 

Description: Same as MVK0 

 

RCON 

 

Opcode: 0xf0 to 0xff 

Operation: Load Rcon values to reg0 

Syntax: rcon   #number 

 

Description: The RCON values are predefined constants which are used in key 

expansion of AES. Therefore this instruction is AES specific and used for load the 

Rcon values to accumulator register reg0. 

 

 

PC1P 

 

Opcode: 0xb0 

Operation: DES Permute Key PC1 

Syntax: pc1p  registera , registerb 

 

Description: PC1P instruction is used for Key PC1 permutation in the Key 

Expansion of the DES algorithm. 
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*In all the permutation operations the registera as left half data and registerb as right 

half data and writes the resulting value into that registers back. 

 

PC2P 

 

Opcode: 0xb1 

Operation: DES Permute Key PC2 

Syntax: pc2p  registera , registerb 

 

Description: PC2P instruction is used in the PC2 permutation of DES Key 

Expansion. 

 

 

INIP 

 

Opcode: 0xb2 

Operation: DES Initial Permutation 

Syntax: inip  registera, registerb 

 

Description: INIP is used for the Initial Permutation of DES. This is the first 

operation in the DES algorithm. 

 

ETBP 

 

Opcode: 0xb3 

Operation: DES E Table Permutation 

Syntax: etbp  registera, registerb 

 

Description: This permutation is used for bit permutations in the DES cipher 

operation. In this permutation bit mapping is used. The number of the incoming data 

is increased by using some bits more than once. 
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CIPP 

 

Opcode: 0xb4 

Operation: DES Cipher Permutation 

Syntax: cipp  registera , registerb 

Description: Cipher permutation is used at the end of the cipher operation. 

 

 

INVP 

 

Opcode: 0xb5 

Operation: DES Inverse Initial Permutation 

Syntax: invp  registera , registerb 

 

Description: INVP is used for the Inverse Initial Permutation of DES. This is the last 

operation in the DES algorithm. 

 

 

 

DIFP 

 

Opcode: 0xb6 

Operation: Any 64 bits Permutation 

Syntax: difp  registera , registerb 

 

Description: DIFP instruction is used to permute any 64-bit data. The permutation 

block is capable of permute 64-bit data according to the control bits. The internal 

control bits are only for the DES permutation operations. This instruction use the 

control bits, which are loaded to the internal control registers with the LDPM 

instruction 
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RORB 

 

Opcode: 0xa0 

Operation: Rotate byte to right 

Syntax: rorb  register 

 

Description: RORB instruction is used for rotating the register data to the right by 8-

bit. The rightmost 8 bit is loaded to the leftmost 8-bit part of the result data. 

 

 

RORD 

 

Opcode: 0xa1 

Operation: Rotate bit to right in DES 

Syntax: rord  registera , registerb 

 

Description: RORD instruction is used for the DES key expansion and it is specific 

to the DES algorithm. 

 

The round key data are rotated to left according to different offset values for each 

round. Also the rotated data is divided into two 28-bit units and each unit is rotated 

independently. There is not a unique process to divide the data, because it is already 

separated by storing the data in 32-bit registers.  

 

The leftmost 4 bit in the registers is not important for this operation. Because of in 

each register there is 28-bit data. These data are called C-data and D-data in the DES 

algorithm specification. The result data is stored back to the same registers. 
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BMAP 

 

Opcode: 0xa2 

Operation: DES Bit Mapping 

Syntax: bmap registera , registerb 

  

Description: This instruction is used for the bit repetitions on the permutation 

operations. The data in registera is mapped according to the control data in registerb 

and the result data is stored in registerb. The data register registera is not affected. In 

the DES algorithm the E Table Selection operation is include some bit repetitions. 

The input of the E Table Selection permutation is 32-bit data and the output is 48-bit. 

The bit repetitions cannot be solved with the permute instruction.  

 

Therefore a specific instruction for this purpose is implemented. The data and control 

data are 32-bit. This instruction takes two operands. One of them is the data, which 

will be permuted and the other one is the control data for determining the bit 

repetitions. The output of this instruction is 32-bit repetition data. Therefore at one 

time only 32-bit data mapping operation can be made. 

 

The input data bits are mapped to the output data according to the control data bits. If 

the control data bit is “1” the respective data bit is mapped to the output data. The 

mapping instruction figure is given below. 
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Figure 4.16: BMAP function 

 

 

 

SBAD 

 

Opcode: 0xa3 

Operation: DES SBox address calculation 

Syntax: sbad registera , registerb 

 

Description: des SBox address instruction is used for the DES SBox operation. The 

address information is computed for memory access operation. The operands are 

taken from registers and the result data is written back to the registers. In the DES 

algorithm the SBox operation is performed in a different way compared to AES 

algorithm. The result value position in the SBox table is calculated according to 

some rules of the input data. And this instruction calculates the memory address data 

for the SBox operation. 
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SWAP 

 

Opcode: 0xa5 

Operation: Swap register values 

Syntax: swap registera , registerb 

 

Description: SWAP instruction is used to change the registera and registerb values. 

 

 

DREX 

 

Opcode: 0xa6 

Operation: Des round data exor 

Syntax: drex registera , registerb 

 

Description: This instruction is used in the end of the each round of the DES. In each 

end of the round the half of data swapped with other half. In this swap operation on 

half of the data is EXORed with the output of the cipher operation. To avoid a 

sequential of exor and move operations this single instruction exor the data and store 

it to correct place. 

 

 

COPY 

 

Opcode: 0x11 , 0x15 

Operation: copy data from IO Module or to IO Module 

Syntax: copy ibuffer or copy obuffer 

 

Description: This instruction is used to copy the input buffer registers of the IO 

Module to internal registers of the Control Unit and the state register values of 

Control Unit to the output buffers of IO Module.  
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READ 

 

Opcode: 0x18 

Operation: Read data from external interface 

Syntax: read  iport 

 

Description: This instruction is used to read data from external interface.  

 

WRTE 

 

Opcode: 0x19 

Operation: Write data to external interface 

Syntax: wrte oport 

 

Description: This instruction is used to write the output data to external interface.  

 

INSX 

 

Opcode: 0xc0 to 0xc7 

Operation: inverse SBox operation for AES algorithm 

Syntax: insx   register 

 

Description: This instruction is used for the inverse SBox operations. The data in 

register is replaced with the relevant memory data and result data is stored in the 

initial register for Inverse SBox operation. 
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INMX 

 

Opcode: 0xc8 to 0xcf 

Operation: inverse MixColumns operation for AES algorithm 

Syntax: inmx   register 

 

Description: This instruction is used for the inverse MixColumns operations. The 

Inverse MixColumns operation in the AES algorithm is more complex than the 

normal MixColumns operation. There are the x3, x2 parameters in the Inverse 

operation. These operations can be performed as cascaded the xtime block several 

times. With this instruction the xtime block is used several times and Inverse 

MixColumns operation is performed.  

 

ISFT 

 

Opcode: 0x3b 

Operation: AES 128-bit Inverse ShiftRows operation 

Syntax: isft   128 

 

Description: This instruction is used in Inverse ShiftRows operation of AES 

algorithm. The principle of this instruction is same with normal shift operation. Only 

the structure is modified according to shift direction. 

 

 

ISFT 

 

Opcode: 0x3c 

Operation: AES 192-bit Inverse ShiftRows operation 

Syntax: isft   192 

 

Description: same as ISFT 128 
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ISFT 

 

Opcode: 0x3d 

Operation: AES 256-bit Inverse ShiftRows operation 

Syntax: isft   256 

 

Description: same as ISFT 128 

 

 

LDSB 

 

Opcode: 0x02 

Operation: Load SBox memory elements 

Syntax: ldsb 

 

Description: The internal data of the SBox memory can be reloaded to perform other 

applications. The first 256 memory element is allowed to reload and reuse in 

different applications. 

 

 

LDPM 

 

Opcode: 0x03 

Operation: Load Permutation Control Bits 

Syntax: ldpm 

 

Description: There are a predefined control bits in the permutation bit, which are 

dedicated for the any other 64-bit permutation independently of DES permutation 

control bits. These control bits can be used only with the DIFP instruction. 
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4.9 Simulations and Implementation Results 
 
The simulations are performed to verify the implemented design. Firstly the 

encryption operations of DES, TDES and AES algorithms are simulated. In the 

console output figures the first input data are input key data to the simulator. Then a 

random plaintext data is applied to the simulator for encryption. After that for 

decryption operation the ciphertext output of the encryption part is applied as input to 

simulator. Then a comparison between the input of encryption and the output of 

decryption is made. 

 
 
 
 

 
 

 

Figure 4.17: DES Encryption Console Output 
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Figure 4.18: DES Decryption Console Output 

 

 
 

Figure 4.19: TDES Encryption Console Output 
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Figure 4.20: TDES Decryption Console Output 

 
 

 
 

Figure 4.21: AES-128 Encryption Console Output 
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Figure 4.22: AES-128 Decryption Console Output 

 
 
 
 

 
Figure 4.23: AES-192 Encryption Console Output 
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Figure 4.24: AES-192 Decryption Console Output 

 

 
Figure 4.25: AES-256 Encryption Console Output 
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Figure 4.26: AES-256 Decryption Console Output 

 
 
 
 

 
For the implementation results, main parts of ALU module and Permutation module 

in SystemC descriptions are compiled into hardware using the SystemCrafter tool. 

And then the outputs of the SystemCrafter tool is used in synthesis process together 

with Xilinx tool into Spartan3AXC3S200A device. The results of this process are 

given in Table 4.2. The SBox Table and Permutation module are also compiled into 

hardware using the SystemCrafter tool. But due to compiler limit problems of 

SystemCrafter tool, the basic parts of the SBox and Permutation module are 

compiled into hardware and synthesized with Xilinx tools. Then some assumptions 

are made to get an idea about the SBox and Permutation blocks areas. The results of 

these assumptions are given in Table 4.3. 
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Table 4.2: Slices values for some crypto specific blocks 
 

 SWAP XTIME MIX SHIFT 
256 

Logic Utilization     
Number of Slice Flip Flops 142 82 139 222 
Number of 4 input LUTs 129 65 265 360 
Logic Distribution     
Number of occupied slices 107 63 178 227 
   Only related logic 107 63 178 227 
   Unrelated logic 0 0 0 0 
Total Number of 4 input LUTs     
Number of bonded IOBs 129 65 97 129 
IOB Flip Flops 64 32 64 64 
Total equivalent gate count for design 2425 1341 3361 4417 
 SHIFT 

192 
SHIFT 
128 

DESS 
ADD 

EXOR 

Logic Utilization     
Number of Slice Flip Flops 211 198 28 112 
Number of 4 input LUTs 334 275 19 65 
Logic Distribution     
Number of occupied slices 215 197 18 77 
   Only related logic 215 197 18 77 
   Unrelated logic 0 0 0 0 
Total Number of 4 input LUTs     
Number of bonded IOBs 129 129 39 97 
IOB Flip Flops 64 64 6 64 
Total equivalent gate count for design 4328 4013 389 1897 
 DES 

ROR 
ROR 
BYTE 

DESS 
DATA 

XTIME
2 

Logic Utilization     
Number of Slice Flip Flops 123 83 58 138 
Number of 4 input LUTs 109 73 49 257 
Logic Distribution     
Number of occupied slices 94 60 39 182 
   Only related logic 94 60 39 182 
   Unrelated logic 0 0 0 0 
Total Number of 4 input LUTs     
Number of bonded IOBs 119 65 49 65 
IOB Flip Flops 54 32 16 32 
Total equivalent gate count for design 2073 1361 889 3097 
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Table 4.3: Approximately Slices values for SBox and Permutation blocks 
 

Crypto Specific Block Number of occupied 
Slices 

SBox 4960 
Permutation 1672 

 

 

 

Table 4.4 gives the machine cycle values of the implemented Crypto processor for 

the related algorithms, and Table 4.5 gives a machine cycles comparison for the 

performed crypto algorithms by the implemented crypto processor and other 

programmable crypto processors. 

 
 
 
 

Table 4.4: Machine Cycles for performed Crypto Algorithms 
 

Crypto Algorithm Machine Cycle 
128 AES 213 
192 AES 397 
256 AES 517 
DES 196 
TDES 596 

 

 

 

Table 4.5 Comparison between Machine Cycles of Programmable Crypto Processors 
 

 128-bit 
AES 

DES TDES Expected 
Area 

Structure 

Cryptonite 70 35 105 3A Complex 
CryptoManiac 90 130 392 4A Complex 
Impl. Processor 213 196 596 A Simple 

 

 

Below figures are the simulation outputs of some instructions used in the crypto 

algorithms. 
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Figure 4.27: Instruction read  

 

 
Figure 4.28: Instruction exk0  
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Figure 4.29: Instruction rord  

 

 

Figure 4.30: Instruction cipp 
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Figure 4.31: Instruction mix 

 

 

Figure 4.32: Instruction sbox 
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Figure 4.33: Instruction shift 128 

 

 

Figure 4.34: Instruction rorb 
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CHAPTER 5  

 

 

CONCLUSION 

 

 

 

In this thesis study, a programmable Crypto Processor is implemented for AES, DES 

and TDES algorithms, containing both encryption and decryption in the same design 

for all data and key lengths. A new Instruction Set Architecture is suggested and 

implemented to process all different modes easily. 

 

The objective of this implementation is to combine the features of the AES and DES 

algorithms in single architecture and to utilize the reuse capability of the processor’s 

instructions. Since the bit permutation operations are not so easy to be implemented 

with general ALU operations like “shift”, “and”, “or”, “rotate”, a special permutation 

module is added into the architecture to perform bit permutation operations. In 

several applications, the bit permutation operation is implemented in memory based 

structures or in hardware routing structure, which are dedicated to only single 

permutation.  

 

Due to its architecture, the permutation module is used to do all of the bit 

permutation operations. All the DES permutation operations are performed in this 

permutation module, as well as other permutation operations. This permutation 

module is capable of doing any other 64-bit permutations. By loading the proper 

control bits, any 64-bit permutation can be performed in a single structure with the 

implemented Permutation Module. 
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The Data Substitution operation is performed using Look-up-tables. The Look-up-

table is unified for AES and DES algorithms. In AES algorithm, the substitution 

operation is performed over bytes, but in DES algorithm the output of this operation 

is 4-bit data. Therefore, with a proper addressing scheme for DES substitution 

outputs, a single SBox memory is used for both of algorithms. The same instruction 

is used for data substitution operation within AES and DES algorithms. 

 
Data stored in the SBox memory is easily modified to adapt this structure to new 

algorithms. In normal cases, the internal memory data is used for standard AES and 

DES applications. But if it is necessary, the first 256 memory element of the SBox 

memory can be reconfigured. With the proper instruction in the ISA, the memory 

elements are reloaded according to desired application.  

 

The DES algorithm consists of an SBox block, an EXOR block and six different 

permutation blocks, which are Initial Permutation, Inverse Initial Permutation, E-

Table Permutation, Cipher (P) Permutation, PC1 Permutation and PC2 Permutation. 

The AES algorithm consists of an SBox block, a ShiftRows block, a MixColumns 

block and an EXOR block, and there are some additional blocks that are necessary 

for the key expansion of AES.  

 

In this architecture, all the permutation blocks are combined in a single permutation 

module. Some parts of the SBox operations are implemented in a common structure. 

Of course, there is an additional work for the DES SBox operation, due to the 

preference for the correct part of the SBox module. All EXOR operations are 

performed in the same block of the ALU module with a single instruction.  

 

The shift operations for AES and DES operations are different, because of the 

difference in algorithms’ structure. Therefore, there are two different shift blocks in 

the architecture; one for bit-based shift operations and the other one is for the byte-

based shift operations. DES uses bit-based shift operations, whereas AES uses byte-

based shift operations. 
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The MixColumns block is based on the xtime function. This function describes the 

multiplication the data with “x” in the Galois Field (28). All the multiplication with 

“x” in Galois Field (28) can be performed with the xtime instruction in the 

implemented architecture, including the Inverse MixColumns operation in the 

decryption algorithm of AES. But this function is decreasing the throughput in the 

decryption operation due to multiple uses for the different coefficients in Inverse 

MixColumns operation.  

 

As a result of common blocks and different blocks of the implemented architecture, 

DES algorithm can be performed using 21 different instructions with the proposed 

ISA. On the other hand, AES-128 algorithm can be performed using 32 different 

instructions. There are 9 common instructions like SBOX, EXOR and MVK0 (store 

round key values) in the ISA, which are used for both of the DES and AES 

algorithms. Therefore, it is clear that implementing AES and DES algorithms in a 

single design is an efficient way to decrease the area.  

 

The hardware architecture of this design is implemented using SystemC. The main 

architecture is divided into modules and each module is implemented separately. The 

advantage of using modules is, changing one of the modules’ internal parameters 

without affecting the other modules’ parameters. Therefore, the module parameters 

of the implemented architecture can be changed to satisfy different algorithm's 

specifications for future work of this study. The simulation results are analyzed to 

verify the implemented architecture. The encryption and decryption algorithms for 

AES, DES and TDES are simulated for different data and key lengths. 

 
There is always a tradeoff between area and speed parameters of the implemented 

design. In this design, the area is considered to be optimized and the design is 

implemented so as to minimize the total area.  
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Most of the instructions in the ISA are implemented as single cycle instructions. The 

purpose of this structure is making the hardware design simpler and as a result, the 

implemented instructions are the basic parts of the algorithms. Each instruction 

performs one simple operation in the crypto algorithms. However, this property 

brings the disadvantage of low throughput capability, because of the long processing 

time compared with other programmable crypto architectures, Cryptonite and 

CryptoManiac as given in [7] and [8] respectively. The main advantages of 

Cryptonite and CryptoManiac are their complex hardware architectures. In those 

architectures, there are special hardware blocks, which can perform several 

instructions faster, in less machine cycles. Consequently, total machine cycles of 

those architectures are relatively small, however they occupy comparatively large 

area.  

 
The designed ISA structure performs AES encryption/decryption in 213 cycles, 

excluding the key expansion operations. DES encryption/decryption is performed in 

about 200 cycles. The performance results for Cryptonite processor are 70 cycles for 

AES and 35 cycles for DES. For CryptoManiac processor, the results are 90 cycles 

for AES and 130 cycles for DES. These results have been achieved at the expense of 

area. Cryptonite processor uses two different ALU modules and CryptoManiac uses 

4 different functional units. Besides they have dedicated memory units to ALU and 

address generation. The area of these processors is expected to be at least three times 

larger than the area of the structure suggested in this thesis. 

 

The ISA structures in this thesis can be modified and two or more instructions may 

be combined into one instruction to perform a specific block of the algorithm to 

increase the throughput as a future work. Another important issue for a future work 

may be using a reduced SBox memory structure for further area minimization. In the 

implemented design, the SBox memory occupies more than 40% of the total area. 

Therefore, reducing the SBox memory to half will be very efficient for small area 

applications. In that case there should be only one 256 byte memory block, and 

according to the application the necessary SBox elements should be loaded to the 

memory block before algorithm operations. 
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Appendix A: SBox Tables 

 

 

 

Table A.1: DES SBox S1 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

 

 

 

Table A.2: DES SBox S2 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 
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Table A.3: DES SBox S3 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

 

 

 

Table A.4: DES SBox S4 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 
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Table A.5: DES SBox S5 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

 

 

 

 

 

Table A.6: DES SBox S6 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 
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Table A.7: DES SBox S7 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 

3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

 

 

 

 

 

Table A.8: DES SBox S8 

 

Column Number Row 

Num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 
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Table A.9: AES SBox 

 

x\y 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 

 
 

 

 

 

 

 

 

 

 



 

124 
 

 

Table A.10: AES Inverse SBox 

 

x\y 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb 

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb 

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e 

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25 

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92 

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84 

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06 

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b 

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73 

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e 

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b 

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4 

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f 

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef 

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61 

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

125 
 

 

Appendix B: Sample Programming Codes 

 

B.1 128-bit AES Programming Code 

Programming Code    Opcode  Machine Cycle 
 
move enkey , 0x1    0x05    1 
read iport     0x18    4 
copy ibuffer     0x11    3 
move key_value , 0x4    0x52    1 
mvk0      0xd0    1 
move   reg_djnz , 0x0a   0x04    1 
keyexp: mov1 state_reg0   0x50    1 
rorb reg3     0xa0    1 
sbox reg3     0x33    1 
rcon      0xf0    1 
exor reg3 , reg0    0x2b    1 
move reg0 , reg8    0x55    1 
exor reg0 , reg3    0x2c    1 
move reg3 , reg11    0x59    1 
exor reg1 , reg0    0x24    1 
exor reg2 , reg1    0x25    1  
exor reg3 , reg2    0x26    1 
mvk0      0xd0    1 
djnz    reg_djnz , keyexp   0x01     2 
move enkey , 0x0    0x06    1 
read iport     0x18    4 
copy ibuffer     0x11    3 
exk0        0x60    2 
exk1        0x70    2  
move reg_djnz , 0x09    0x04    1 
round:  sbox reg0    0x30    1 
sbox reg1     0x31    1 
sbox reg2     0x32    1 
sbox reg3     0x33    1 
shft   128     0x38    3 
mov1 state_reg0    0x50    1 
xtme   reg0     0x40    1 
mix reg0 , reg8    0x48    1 
xtme   reg1     0x41    1 
mix reg1 , reg9    0x49    1 
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xtme   reg2     0x42    1 
mix reg2 , reg10    0x4a    1 
xtme   reg3     0x43    1 
mix reg3 , reg11    0x4b    1 
exk0        0x61    2 
exk1        0x71    2 
djnz   reg_djnz , round   0x01    2 
sbox reg0     0x30    1 
sbox reg1     0x31    1 
sbox reg2     0x32    1 
sbox reg3     0x33    1 
shft   128     0x38    3 
exk0        0x60    2 
exk1      0x70    2 
copy obuffer     0x15    3 
wrte oport     0x19    4 
 

total machine cycle for key expansion and encryption process : 364 cycles 

 
B.2 TDES Programming Code 

Programming Code    Opcode  Machine Cycle 
 
 
move enkey , 0x1    0x05    1 
read iport     0x18    4 
copy ibuffer     0x11    3 
move key_value , 0x2    0x5a    1 
pc1p  reg0 , reg1    0xb0    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
move   reg_djnz , 0x06   0x04    1 
keypart1:  mov1 back_state_reg0  0x5b    1 
rord reg0 , reg1    0xa1    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
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pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
djnz    reg_djnz , keypart1   0x01     2 
 
 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
move   reg_djnz , 0x06   0x04    1 
keypart2:  mov1 back_state_reg0  0x5b    1 
rord reg0 , reg1    0xa1    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
djnz    reg_djnz , keypart2   0x01     2 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
 
move enkey 1     0x05    1 
read iport     0x18    4 
copy ibuffer     0x11    3 
move key_value , 0x2    0x5a    1 
pc1p  reg0 , reg1    0xb0    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
move   reg_djnz , 0x06   0x04    1 
keypart1:  mov1 back_state_reg0  0x5b    1 
rord reg0 , reg1    0xa1    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
djnz    reg_djnz , keypart1   0x01     2 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
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mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
move   reg_djnz , 0x6    0x04    1 
 
 
keypart2:  mov1 back_state_reg0  0x5b    1 
rord reg0 , reg1    0xa1    1 
rord reg0 , reg1    0xa1    1 
mov1 state_reg0    0x50    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
djnz    reg_djnz , keypart2   0x01     2 
mov1 back_state_reg0   0x5b    1 
rord reg0 , reg1    0xa1    1 
pc2p  reg0 , reg1    0xb1    1 
mvk0      0xd0    1 
     
move enkey , 0x0    0x06    1 
read iport      0x18    4 
copy ibuffer     0x11    3 
 
inip  reg0 , reg1    0xb2    1 
move reg_djnz , 0x10    0x04    1 
round1:   mov1 state_reg0   0x50    1 
bmap  reg0 , reg1    0xa2    1 
etbp  reg0 , reg1    0xb3    1 
exk0        0x60    2 
sbad reg0 , reg1    0xa3    1 
sbox reg0     0x30    1 
sbox reg1     0x31    1 
cipp  reg0 , reg1    0xb4    1 
drex reg0 , reg1    0xa6    1 
djnz    reg_djnz , round1   0x01     2 
swap reg0 , reg1    0xa5    1 
invp  reg0 , reg1    0xb5    1 
 
inip  reg0 , reg1    0xb2    1 
move reg_djnz , 0x10    0x04    1 
round1:   mov1 state_reg0   0x50    1 
bmap  reg0 , reg1    0xa2    1 
etbp  reg0 , reg1    0xb3    1 
exk0        0x60    2 
sbad reg0 , reg1    0xa3    1 
sbox reg0     0x30    1 
sbox reg1     0x31    1 
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cipp  reg0 , reg1    0xb4    1 
drex reg0 , reg1    0xa6    1 
djnz    reg_djnz , round1   0x01     2 
swap reg0 , reg1    0xa5    1 
invp  reg0 , reg1    0xb5    1 
 
 
 
inip  reg0 , reg1    0xb2    1 
move reg_djnz , 0x10    0x04    1 
round1:   mov1 state_reg0   0x50    1 
bmap  reg0 , reg1    0xa2    1 
etbp  reg0 , reg1    0xb3    1 
exk1        0x70    2 
sbad reg0 , reg1    0xa3    1 
sbox reg0     0x30    1 
sbox reg1     0x31    1 
cipp  reg0 , reg1    0xb4    1 
drex reg0 , reg1    0xa6    1 
djnz    reg_djnz , round1   0x01     2 
swap reg0 , reg1    0xa5    1 
invp  reg0 , reg1    0xb5    1 
  
copy obuffer     0x15    3 
wrte oport     0x19    4 
 

total machine cycle for key expansion and encryption process : 847 cycles 

 


