

MEASUREMENT BASED SOFTWARE PROCESS IMPROVEMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYSUN ENER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

NOVEMBER 2007

Approval of the thesis:

MEASUREMENT BASED SOFTWARE PROCESS IMPROVEMENT

submitted by AYSUN ENER in partial fulfillment of the requirement for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Dr. Ece Schmidt
Electrical and Electronics Engineering Dept., METU

Dr. Altan Koçyiğit
Informatics Institute, METU

 Date: 30.11.2007

 iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and

ethical conduct. I also declare that, as required by these rules and

conduct, I have cited and referenced all material and results that are

not original to this work.

 Name, Last Name: Aysun Ener

Signature:

 iv

ABSTRACT

MEASUREMENT BASED SOFTWARE PROCESS

IMPROVEMENT

ENER, Aysun

M. S., Electrical and Electronics Engineering Department

Supervisor: Prof. Dr. Semih BİLGEN

November 2007, 115 pages

This thesis is a study on improving the software requirements

management processes of embedded software department of a company.

The literature on software process improvement and requirements

engineering is reviewed. After determining the problems related to the

current requirements management processes of the department, an

improved process is proposed addressing these problems. The static

process descriptions and the models of the current and improved

requirements management processes are formed. A recently proposed

pre-enactment model for measuring process quality is used for measuring

the quality of the current and improved requirements management

processes. Finally, the results of the process quality measurements are

compared and evaluated.

Keywords: Software Process Improvement, Requirements Process

Improvement

 v

ÖZ

ÖLÇÜME DAYALI YAZILIM SÜRECİ İYİLEŞTİRME

ENER, Aysun

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih BİLGEN

Kasım 2007, 115 sayfa

Bu tez bir firmanın gömülü yazılım bölümünün gereksinim yönetimi

süreçlerini iyileştirme üzerinedir. Yazılım süreci iyileştirme ve gereksinim

mühendisliği üzerine olan literatür incelenmiştir. Bölümde yürürlükte olan

gereksinim yönetimi süreciyle ilgili problemler belirlendikten sonra, bu

problemleri ele alan iyileştirilmiş bir süreç önerilmiştir. Bölümde yürürlükte

olan ve iyileştirilmiş gereksinim mühendisliği süreçlerinin statik süreç

tanımları ve modelleri oluşturulmuştur. Yürürlükteki ve iyileştirilmiş

gereksinim mühendisliği süreçlerinin kalitesini ölçmek için yakın bir

zamanda önerilmiş olan süreç kalitesinin uygulama öncesi ölçülebilmesini

sağlayan bir model kullanılmıştır. Son olarak, süreç kalite ölçümlerinin

sonuçları karşılaştırılmış ve değerlendirilmiştir.

Anahtar Kelimeler: Yazılım Süreç İyileştirme, Gereksinim Süreç İyileştirme

 vi

To My Family & Emrah

 vii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Prof. Dr.

Semih BİLGEN for his continuous support, patience and valuable

guidance throughout this thesis.

I would like to thank to my husband, Emrah and my family for their

encouragement, understanding and endless patience.

I also would like to thank to my colleagues in my department for their

valuable contributions and support.

 viii

TABLE OF CONTENTS

ABSTRACT.. İV

ÖZ .. Vİ

ACKNOWLEDGEMENTS ..Vİİ

TABLE OF CONTENTS..Vİİİ

LIST OF FIGURES... İX

LIST OF TABLES.. X

LIST OF ABBREVIATIONS ...Xİİ

CHAPTERS

1. INTRODUCTION ... …….1

2. LITERATURE... 6

2.1 Software Process Improvement .. 6

2.2 Requirement Engineering Process Improvement.. 11

2.3 A Pre-Enactment Model for Measuring Process Quality 19

3. CURRENT REQUIREMENTS MANAGEMENT PROCESSES................................... 24

3.1 On-Paper Software Requirements Management Processes 25

3.1.1 Software Requirements Analysis ... 26

3.1.2 Software Requirements Analysis Review .. 26

3.2 AS-IS Software Requirements Management Processes....................................... 27

3.3 Measurement of AS-IS Software Requirements Management Processes 39

3.4 Problems of the Current Process and Suggestions .. 41

3.4.1 No Documentation of Requirements .. 41

3.4.2 Not Having a Formal Requirements Change Management Process............. 44

3.4.3 Not Having a Requirements Re-use Mechanism... 46

4. IMPROVED REQUIREMENTS MANAGEMENT PROCESSES 50

4.1 TO-BE Software Requirements Management Processes..................................... 50

4.2 Measurement of TO-BE Software Requirements Management Processes.......... 67

 4.3 Comparison of AS-IS and TO-BE Software Requirements Management Processes
 69

5. EVALUATION AND CONCLUSION .. 76

5.1 Evaluation .. 76

5.2 Conclusion ... 80

REFERENCES... 83

APPENDIX A.. 88

APPENDIX B.. 96

APPENDIX C ... 104

 ix

LIST OF FIGURES

Figure 2-1 Waterfall Model... 12

Figure 2-2 Requirements Engineering Activities.. 13

Figure 2-3 Software Development Life-Cycle .. 14

Figure 2-4 Relative Cost to Repair a Defect at Different Lifecycle Phases 16

Figure 3-1 AS-IS Software Requirements Analysis Process Part 1 32

Figure 3-2 AS-IS Software Requirements Analysis Process Part 2 33

Figure 3-3 AS-IS Software Requirements Analysis Process Part 3 34

Figure 3-4 AS-IS Software Requirements Analysis Process Part 4 35

Figure 3-5 AS-IS Software Requirements Change Management Process Part 1........... 37

Figure 3-6 AS-IS Software Requirements Change Management Process Part 2........... 38

Figure 4-1 TO-BE Software Requirements Analysis Process Part 1............................... 57

Figure 4-2 TO-BE Software Requirements Analysis Process Part 2............................... 58

Figure 4-3 TO-BE Software Requirements Analysis Process Part 3............................... 59

Figure 4-4 TO-BE Software Requirements Analysis Process Part 4............................... 60

Figure 4-5 TO-BE Software Requirements Analysis Process Part 5............................... 61

Figure 4-6 AS-IS Software Requirements Change Management Process Part 1........... 64

Figure 4-7 AS-IS Software Requirements Change Management Process Part 2........... 65

Figure 4-8 AS-IS Software Requirements Change Management Process Part 3........... 66

 x

LIST OF TABLES

Table 2-1 Defect Summary..15

Table 3-1 AS-IS Software Requirements Analysis Process..29

Table 3-2 AS-IS Software Requirements Change Management Process................... .36

Table 3-3 AS-IS Measurement Results...40

Table 4-1 Comparison of AS-IS and TO-BE Software Requirements Analysis

Processes..52

Table 4-2 Comparison of AS-IS and TO-BE Software Requirements Change

Management Processes..62

Table 4-3 TO-BE Measurement Results..68

Table 4-4 Comparison of AS-IS and TO-BE Software Requirements Analysis Process

Measurement Results..74

Table 4-5 Comparison of AS-IS and TO-BE Software Requirements Change

Management Process Measurement Results……...75

Table A-1-1 AS-IS Analysis Process Metrics 1-3...88

Table A-1-2 AS-IS Analysis Process Metrics 4-5...89

Table A-1-3 AS-IS Analysis Process Metrics 6-9...90

Table A-1-4 AS-IS Analysis Process Metrics 10-13...90

Table A-1-5 AS-IS Analysis Process Metrics 14-17...92

Table A-2-1 AS-IS Change Management Process Metrics 1-3......................................93

Table A-2-2 AS-IS Change Management Process Metrics 4-5......................................93

Table A-2-3 AS-IS Change Management Process Metrics 6-9......................................94

Table A-2-4 AS-IS Change Management Process Metrics 10-13..................................94

Table A-2-5 AS-IS Change Management Process Metrics from 14-17..........................95

Table B-1-1 TO-BE Software Requirements Analysis Process………...........................96

Table B-2-1 TO-BE Software Requirements Change Management Process...............102

Table C-1-1 TO-BE Analysis Process Metrics 1-3..104

Table C-1-2 TO-BE Analysis Process Metrics 4-5..106

Table C-1-3 TO-BE Analysis Process Metrics 6-9..107

Table C-1-4 TO-BE Analysis Process Metrics 10-13..108

Table C-1-5 TO-BE Analysis Process Metrics 14-17..109

Table C-2-1 TO-BE Change Management Process Metrics 1-3...................................110

 xi

Table C-2-2 TO-BE Change Management Process Metrics 4-5...................................111

Table C-2-3 TO-BE Change Management Process Metrics 6-9...................................112

Table C-2-4 TO-BE Change Management Process Metrics 10-13...............................113

Table C-2-5 TO-BE Change Management Process Metrics from 14-17.......................115

 xii

LIST OF ABBREVIATIONS

BSA: Business Software Alliance

CMM: Capability Maturity Model

CMMI: Capability Maturity Model Integration

DoD: Department of Defense

ESD: Embedded Software Department

IDC: International Data Corporation

INCOSE: The International Council on Systems Engineering

IT: Information Technology

KPA: Key Process Area

NIST: National Institute of Standards and Technology

PDD: Product Description Document

RCRR: Requirement Change Request Report

RE: Requirements Engineering

REGPG: Requirements Engineering – A Good Practice Guide

REPM: Requirements Engineering Process Maturity

RM: Requirements Management

ROI: Return On Investment

RTM: Requirements Traceability Matrix

SEI: Software Engineering Institute

SME: Small and Medium sized Enterprise

SPICE: Software Process Improvement and Capability dEtermination

SRA: Software Requirements Analysis

SRCM: Software Requirements Change Management

SRCRD: System Requirement Change Request Document

SRS: Software Requirements Specification

SRTM: Software Requirements Traceability Matrix

SysRD: System Requirements Document

TSD: Technical Specifications Document

 1

1CHAPTER 1

INTRODUCTION

In today’s world software has become very pervasive across all

businesses, industries and our everyday lives. Not only systems of many

fields such as consumer electronics, military, telecommunications,

medical and transportation depend on software, but also their

development, production, and after-sales support depend on software.

Software also facilitates research and leads to innovations in fields

ranging from nanotechnology to human genetics.

All of these make software a very important factor affecting the global

economy. According to the “Global Economic Impact Study” (2003) of

Business Software Alliance (BSA) and International Data Corporation

(IDC), information technology (IT) generates an estimated $420 billion in

North America, $289 billion in Europe, $175 billion in Asia Pacific, $24

billion in Latin America, and $13 billion in the Middle East & Africa

annually [1]. Since software is such a huge industry it is important to

develop software in a cost-effective way.

On the other hand, according to a study (2002) commissioned by the US

Department of Commerce's National Institute of Standards and

Technology (NIST), software bugs, or errors, are so prevalent and so

detrimental that they cost the US economy an estimated $59.5 billion

annually, or about 0.6 percent of the gross domestic product[2]. The cost

of software bugs is so high that it seems there is something wrong in the

current way of developing software.

 2

The survey conducted by The Standish Group in 1994 [3] is another

widely cited source on the economic impact of software and its quality. A

later report [4] by the same group has shown that by 2003, major

improvement efforts have caused significant benefits to software users

and industry.

Although there seems to be an improvement in the success of software

projects in recent years, they are still suffering from cost and time

overruns. Moreover, most of the time, the delivered software has a lot of

bugs and lacks many of the specified features. All of these result in an

increase in the number of unsatisfied customers, and accordingly the level

of trust in software companies decreases.

Many software process models such as waterfall model, incremental

model, iterative model, prototyping, spiral model [10] and the Unified

Process [11] have been proposed in order to bring order to the chaotic

way of software development [8]. Although the proposed process models

have brought some order, the aforementioned survey results of The

Standish Group [3, 4] and NIST [2] show that organizations’ software

development processes still need to be improved.

Since every organization has a different culture and develops different

kinds of software such as embedded, real-time, commercial product or

information systems in different domains, they can not just select a

process model and apply it directly without any modifications.

Organizations should first select the process that is most suitable for them

and afterwards tailor the process to themselves. Then they should

continuously improve their processes to produce high quality software on

time and on budget.

There are many models and standards related to software process

 3

improvement such as CMM [12], CMMI [13, 14], ISO/IEC 15504 [21], ISO

9001 [23], Six Sigma [27] and BOOTSTRAP [26]. CMM and CMMI

present sets of recommended practices in a number of key process areas

(KPA) that have been shown to enhance software-development and

maintenance capability. On the other hand, ISO/IEC 15504 is a

framework for the assessment of software processes. BOOTSTRAP is a

combination of software process assessment and improvement

methodologies. ISO 9001 standard is used for external quality assurance.

Although ISO 9001 is not specifically developed for software quality

assurance, ISO 9000-3 [24] provides guidelines for the application of ISO

9001 to the development, supply and maintenance of software. Last but

not least, Six Sigma is a set of practices to increase customer satisfaction

by systematically improving processes through prevention and elimination

of defects. All of them can be used to improve software development

processes, but they should also be tailored to the organization before

using, to get maximum benefit.

In this thesis, a pre-enactment model for measuring process quality

proposed by Güceğlioğlu [51] is used in improvement of software

requirements management processes of Embedded Software Department

(ESD) of the company in which the author is employed as a software

engineer. To preserve confidentiality, the company is referred to as

Company A. Since the duration of this thesis study is not long enough to

put the improved processes into practice and then evaluate the results,

Güceğlioğlu’s model [51] is used to compare the quality of the improved

processes to the currently applied ones before deploying the improved

processes. The reason why Güceğlioğlu’s approach has been applied is

that, as its description with the term “pre-enactment” implies, it can be

effectively applied purely on process models rather than observation and

live evaluation of active processes. Naturally, while this is the reason for

its appeal, the level of its realism may be considered questionable. An

evaluation in this context is made within the scope of this thesis study.

 4

In order to measure the quality of the current (AS-IS) processes, static

process descriptions of the AS-IS processes have been formed. Also, in

order to facilitate measurements, the AS-IS software requirements

processes have been modeled. Descriptions of the related processes

written in regulatory documents have also been found in order to use in

measurements, and they are referred to as on-paper (in-theory)

processes. Then using AS-IS and on-paper process descriptions, the

quality of the current software requirements management processes have

been measured by applying Güceğlioğlu’s model. The problems of the

current requirements management processes have been determined, and

improved processes addressing that problems have been proposed. The

quality attributes of the improved processes have been measured by

applying Güceğlioğlu’s model and using the static process descriptions

and the models of the proposed processes. Then the quality of the current

and proposed models are compared and evaluated.

The remainder of this thesis is organized as follows:

The literature on software process improvement, software requirements

engineering and software requirements process improvement is given in

Chapter 2.

Static descriptions and models of on-paper and AS-IS software

requirements management processes of ESD are given in Chapter 3. The

quality attribute measurements of the AS-IS processes, the problems

related to current processes and solution suggestions to these problems

are also included in Chapter 3.

Chapter 4 consists of the static descriptions and models of the improved

processes. The quality attribute measurements of the improved processes

and their comparison to AS-IS quality attribute measurement results are

 5

also included in Chapter 4.

Chapter 5 consists of the evaluation and conclusion of the study including

the limitations and future work.

 6

2CHAPTER 2

LITERATURE

2.1 Software Process Improvement

In his famous article “No Silver Bullet: Essence and Accidents of Software

Engineering” [5] Brooks says that even there are some potentials, there is

no silver bullet to make software costs drop as rapidly as computer

hardware costs do. According to him complexity, conformity,

changeability, and invisibility are the essential difficulties inherent in the

nature of software systems.

Future software-intensive systems will be larger and more complex than

today. Boehm’s “A View of 20th and 21st Century Software Engineering”

[7] paper gives insight into history and future of software. According to him

in the next decade the ability of organizations to survive will depend on

their ability to integrate related software-intensive systems into systems of

systems.

Kruchten [9] lists the differences between software engineering and the

other engineering disciplines as follows:

• Absence of a fundamental theory,

• Ease of change,

• Rapid evolution of technologies,

• Very low manufacturing costs,

• No borders.

 7

According to Kruchten, software industry has tried to apply the processes

similar to the processes of other engineering disciplines, but failed

because of the differences given above.

1960s, 1970s and 1980s were the years of software crisis. The symptoms

of the crisis were as follows:

• Projects running over-budget,

• Projects running over-time ,

• Software was of low quality,

• Software often did not meet requirements,

• Projects were unmanageable and code difficult to maintain.

In order to overcome the problems related to software development and

get rid of the crisis, a lot of research has been done. To produce high

quality software meeting the specified requirements on time and on

budget has been the main aim. In order to achieve this, many new

software development methods and technologies are introduced up to

1980’s. But the problems had not been solved and the developers

realized that their fundamental problem was their inability to manage the

software process [6]. Better tools and better methods couldn’t do much in

an undisciplined, chaotic process. So efforts to improve software process

began.

In 1984, US Department of Defense (DoD) established the Software

Engineering Institute (SEI) to resolve the software crisis. SEI developed

the Capability Maturity Model (CMM) [12] in early 1990’s. According to

SEI, continuous process improvement is based on many small,

evolutionary steps and the CMM provides a framework for organizing

these evolutionary steps into five maturity levels [6]. The CMM presents

sets of recommended practices in a number of key process areas (KPA)

that have been shown to enhance software-development and

 8

maintenance capability. As the aim of the current study is not a CMM-

based improvement, further details of this approach will not be elaborated

here.

SEI has also developed the IDEAL Model [15] to provide a usable,

understandable approach to continuous improvement by outlining the

steps necessary to establish a successful improvement program. The

IDEAL model is named for the five phases it describes: initiating,

diagnosing, establishing, acting, and learning.

• I – Initiating: Laying the groundwork for a successful improvement

effort.

• D – Diagnosing: Determining where you are relative to where you

want to be.

• E – Establishing: Planning the specifics of how you will reach your

destination.

• A – Acting: Doing the work according to the plan.

• L – Learning: Learning from the experience and improving your

ability to adopt new technologies in the future.

After CMM’s successful adoption and usage in many domains, other

CMMs were developed for other disciplines and functions such as

systems engineering, people, integrated product development and

software acquisition. In 2000, all of these CMM’s are integrated into a

common model framework named Capability Maturity Model Integration

(CMMI) [13]. The latest version of CMMI (Version 1.2) [16] was released

in August 2006.

According to the SEI Process Maturity Profile (2007) [18] CMMI has been

applied in different industries by organizations of different sizes in

approximately 50 countries. Although CMM and CMMI are very

widespread, they are often criticized for being too big, complex and being

 9

designed to operate in large organizations doing projects with very high

budgets ([19], [20]).

There is a typical misconception that achieving a higher maturity level is

the most important goal in the software process improvement effort. While

achieving a higher maturity level is one of the objectives of an

improvement effort, it should not be the end goal. Too often, organizations

attempt to drive themselves to the next maturity level very quickly. This

approach inhibits organizational understanding of why the improvement

effort is beneficial, which results in loss of organizational support for the

effort [17].

ISO/IEC 15504 [21] also known as SPICE (Software Process

Improvement and Capability dEtermination) is a framework for the

assessment of software processes. Since software process assessment

can be a part of software process improvement or software capability

determination, ISO/IEC 15504 can be used for both. ISO/IEC 15504

includes a reference process model which is used as the basis on which

software process assessment can be executed. It has two dimensions,

one of which is the process dimension and the other is the capability

dimension.

ISO/IEC 15504 also provides a guide for performing an assessment and

an assessment model which is the detailed version of the reference model

[21]. Although ISO/IEC 15504 contains an assessment model, other

models can also be used if they meet ISO/IEC 15504’s criteria. For

example SEI continues to work to make CMMI more compliant with

ISO/IEC 15504. Model changes made in CMMI Version1.2 made it more

compliant with ISO/IEC 15504 [22].

ISO 9000 is a series of standards dealing with quality systems that can be

used for external quality assurance. ISO 9001 [23] deals with design,

 10

development, production, installation and servicing. Therefore it is the one

that is related to software development. In addition, ISO 9000-3 [24]

provides guidelines for the application of ISO 9001 to the development,

supply and maintenance of software.

The result of an ISO 9001 assessment can have only two possibilities of

outcome: fail or pass. On the other hand, the result of a CMMI

assessment gives the rating of maturity level of the organization in staged

representation, or it gives the rating of capability level of the organization

in a specific process area in continuous representation. Therefore CMMI

provides much better measure of quality of processes, whereas ISO

focuses more on whether an organization satisfies minimal requirements

for a quality system or not [25].

Other approaches such as BOOTSTRAP [26] and Six Sigma [27] have

also been proposed and applied in various industrial environments (e.g.

[30], [31]).

In order to benefit from the proposed models, they should be tailored to

the organization before being applied. Tailoring is especially important for

small organizations. Since they can benefit from direct communication,

processes with a lot of bureaucracy bring a lot of overhead to them. Also

generally they do not have full-time staff that can be dedicated to software

process improvement studies. SPI studies are generally carried out by

senior developers as a part-time work. Since the majority of software

organizations are small, it is important to find ways on how to apply

software process assessment and improvement methods to small

organizations.

According to a 2001 survey conducted in Brazil, only 8 percent of small

software companies (1-49 employees) used ISO 9001, and only 2 percent

used CMM. These results compare to 43 percent of large organizations

 11

(100+ employees) using ISO 9001 and 11 percent of large organizations

using CMM [28]. Wangenheim et al. [28] developed the MARES method,

which is a set of well-structured guidelines for conducting ISO/IEC 15504-

conformant software process assessments in small companies. Demirörs

et al. [29] developed and implemented a work plan to provide an ISO

9001 compliant quality system in a small software organization. Both of

these studies show that small organizations can also get benefit from

software process assessment and improvement models and standards.

According to another survey [32] on the implementation of SPI in 85 UK

companies, gaining management commitment to SPI, tailoring SPI to the

needs of the organization and aligning SPI goals with organizational goals

are found to be the most important success factors of SPI. 68% of

companies consider SPI to have been successful whereas 23% consider

SPI to have been less than successful. Only 29% measured the impact of

SPI, whereas 54% measured effort spent for SPI. This shows that

companies tend to measure the cost of SPI without considering its

benefits and its return on investment (ROI).

2.2 Requirement Engineering Process Improvement

SPI need not be applied to the whole software development process; it

may also be applied to one or more phases. The waterfall model of

software development process is given in Figure 2-1. This is the basic

model and it can be said that all other models are based on this model

more or less. A typical software development process is composed of

requirements, design, coding, testing and integration phases.

 12

Figure 2-1 Waterfall Model

A software requirement is defined as [35]:

• A software capability needed by the user to solve a problem to

achieve an objective

• A software capability that must be met or possessed by a system

or system component to satisfy a contract, standard, specification,

or other formally imposed documentation

Requirements engineering (RE) involves the systematic process of

eliciting, understanding, analyzing, documenting and managing

requirements throughout a product’s life cycle [34]. RE activities can be

decomposed into two as requirements development and requirements

management. Requirements development process consists of eliciting,

analyzing, documenting and validating requirements. Requirements

management is the process of managing changes to software

requirements. RE activities are given in Figure 2-2.

 13

Figure 2-2 Requirements Engineering Activities

Figure 2-3 [39] shows the phases of software development life-cycle and

related testing and acceptance phases. As it can be seen from the figure,

software requirements are not only used in preliminary design, but also in

planning software system test.

 14

Figure 2-3 Software Development Life-Cycle [39]

In a large system development, the software requirements specification

may play a variety of roles [33]:

• For customers, the requirements typically document what should

be delivered and may provide the contractual basis for the

development.

• For managers it may provide the basis for scheduling and a

yardstick for measuring progress.

• For the software designers, it may provide the “design–to”

specification.

• For coders it defines the range of acceptable implementations and

is the final authority on the outputs that must be produced.

• For quality assurance personnel, it is the basis for validation, test

planning and verification.

The purpose of requirements phase is always stated to be to define what

to build without specifying how to build. Unfortunately the border between

“what” and “how” is not so clear. Therefore there exists a “what versus

how” dilemma which can be defined as “One person’s how is another

person’s what” [42]. Davis [42] gives a detailed explanation of this

 15

dilemma.

Brooks states the characteristics of requirements engineering in “No

Silver Bullet” [5] very well as:

“The hardest single part of building a software system is deciding

precisely what to build... No other part of the work so cripples the resulting

system if done wrong. No other part is more difficult to rectify later.”

According to The Standish Group’s Chaos Report [3], lack of user input,

incomplete requirements & specifications, and changing requirements &

specifications are the most important factors that cause projects to be

challenged, that is completed but over-budget, over the time estimate,

and with fewer features than originally specified. Moreover it is found that

incompleteness of requirements is the most important factor that causes

projects to be cancelled. These results show the importance of

requirements engineering activities in the software development process.

C. Jones [36] provided data regarding the likely number of potential

defects introduced in various phases of a software development project

and the typical efficiency with which a development organization removes

those defects. The data is summarized in Table 2-1.

Table 2-1 Defect Summary

Defect Origins Defect
Potentials

Removal
Efficiency

Delivered
Defects

Requirements 1.00 77% 0.23
Design 1.25 85% 0.19
Coding 1.75 95% 0.09
Documentation 0.60 80% 0.12
Bad fixes 0.40 70% 0.12
Total 5.00 85% 0.75

 16

As it can be seen from the table, one of every 5 defects is introduced in

the requirements phase, and their removal efficiency is the lowest.

Moreover one third of delivered defects are introduced in the

requirements phase, and their cost is too high.

Relative cost to repair a defect at different lifecycle phases is given in

Figure 2-4. If the cost of fixing a defect in the coding phase is one, its cost

is between 0.1 and 0.2 in the requirements phase and it is 20 in the

maintenance phase [35]. Therefore 200:1 cost saving results from finding

errors in the requirements phase versus finding errors in the maintenance

phase. The reason for this is that erroneous requirements cause

erroneous design which in turn causes erroneous coding. So the amount

of rework increases as defects are found later in the process.

Figure 2-4 Relative Cost to Repair a Defect at Different Lifecycle
Phases [35]

 17

Although it is evident that requirements process improvement will provide

great benefits to organizations, very few organizations have an explicitly-

defined and standardized requirements engineering process [34].

According to Neill and Laplante’s survey of requirements engineering’s

state of practice [37], 33 percent of respondent companies don’t use any

methodology for requirements analysis and modeling. 52 percent of

respondents don’t think that their company does enough requirements

engineering whereas 29 percent are satisfied with the amount of their

organization’s requirement efforts.

Davis and Hickey [38] suggested that a reason why the results of

requirements engineering research are not used in practice is that

requirements engineering researchers do not practice what they preach:

they do not analyze the problems of requirements engineering practice,

and therefore their solutions do not address these problems. According to

them if requirements engineering researchers would follow the first rule of

any requirements engineer, i.e., ‘Know the customer’, more of the

research would prove to be helpful in practice.

Being relatively a new field, there are some studies on requirements

process improvement. Damian et al. [40, 41] present findings from a case-

study of an organization that undertook a requirements process

improvement initiative. Before the requirements process improvement

initiative, the requirements were compiled in a document containing one-

line description of the features. The requirements were not fully

understood by developers and they were ambiguous in stating the

required functionality. The requirements engineering process was revised

to include requirements analysis sessions to refine the feature requests

and derive more detailed functional requirements. After a full life-cycle of

a project with improved requirements process, engineers unanimously

agreed that the requirements process revealed further details,

dependencies and complexities of features. 64 percent of respondents felt

 18

that there had been less rework under the revised process and 90 percent

thought that requirements artifacts had been helpful to validate the

coverage of features. Also over 80% of respondents found that the

thorough analysis of features was important in estimating effort required

during design and implementation.

Sommerville and Sawyer developed a requirements process maturity

model and an associated method for requirements process assessment

which are documented in Requirements Engineering – A Good Practice

Guide (REGPG) [44]. There are three levels of maturity in the model

which are Initial, Repeatable, and Defined. These levels are similar to

CMM levels. REGPG includes 66 good practice guidelines and a method

of assigning scores to them. The process maturity assessment method

assesses the use of RE practices in an organization and determines the

maturity level of the organization according to the results.

Sommerville and Ransom [43] conducted an empirical study of industrial

RE process assessment and improvement. They used Sommerville and

Sawyer’s requirements process maturity model [44] to assess the

requirements process of 9 companies from different domains. According

to the assessment results, they made proper improvement suggestions to

the companies. After 10 months of process improvement efforts, the

companies were reassessed. Reassessment results showed that

companies had managed to improve their requirements processes as

they increased the number and the usage level of requirements practices.

Moreover some of the companies increased their requirements

engineering process maturity levels.

The Requirements Engineering Process Maturity (REPM) [45] is a model

that was developed in order to assess an organization’s requirements

process in a fast and cost-effective way. The model is especially targeted

at Small and Medium sized Enterprises (SMEs) which lack the resources

 19

to apply exhaustive assessments using other models like CMMI. It is a

staged model with five levels. There are actions each of which is

associated with a level from one to five and classified according to three

process activities: Elicitation, Analysis and Negotiation, and Management.

The results of the pilot study involving four SMEs indicate that the method

yields useful results.

Davis and Zowghi, being devoted to the field of requirements as active

researchers and practitioners, think that although there are many good

requirements practices exist they are neither necessary nor sufficient for a

project’s success [46]. According to them, it is possible that you do a

perfect job of requirements but if the subsequent design and coding

stages introduce millions of errors it is clear that the project will not be

successful. Although it is not very frequent, it is also possible for a project

to be successful without applying good requirements practices.

2.3 A Pre-Enactment Model for Measuring Process Quality

ISO/IEC 9126 [47-50] standard provides a comprehensive model for

evaluating quality of software products. It can be used for developing or

selecting high quality software. The software product is evaluated for

every relevant quality characteristics in the model by using validated and

widely accepted metrics. There are six characteristics defined in the

model which serve as the building blocks of software product quality.

These characteristics are: Maintainability, Reliability, Functionality,

Usability, Efficiency and Portability. Each of these quality characteristics is

further refined into sub-characteristics. For example analyzability,

changeability, stability, testability and compliance are the sub-

characteristics of maintainability. ISO/IEC 9126 also defines one or more

metrics to measure each of its sub-characteristics.

 20

Güceğlioğlu [51] developed a model for measuring the software process

quality. The model is based on the ISO/IEC 9126 Software Product

Quality Model and adapts or redefines some of ISO/IEC 9126’s software

quality metrics to the process concept. It also defines some new metrics

that can be used for measuring the process quality. Güceğlioğlu suggests

using the model in software process improvement studies in order to

measure impacts of the process improvement studies on process quality.

Güceğlioğlu [51] used the relationship between the software product and

the process in his study. He claims that when logical structures of

software product and process are compared, it can be recognized that

“software product” logically matches with “process”, and “function” of the

software product with “activity” of the process. The relation between

process and activity can be described as “activity is one of the subunits of

the process and represents a logical completeness in its context.” A

similar relation exists between software product and function. Both of

them constitute a part of the whole and have interactions with other parts.

Moreover, high quality is of prime importance for both of them.

In order to measure the process quality two basic inputs are used. The

first one is the static process definitions of processes (“AS-IS” in practice).

The second one is available regulatory or guideline documents (“process

in theory” or “on paper”) about the processes in the organization where

the processes are operated currently. Graphical modeling of both inputs

facilitates the measurements, since interactions between processes and

activities can be easily identified. Using the proposed model, “AS-IS”

models of processes can be compared to the “on paper” models [51].

Instead of “AS-IS” modeling “TO-BE” modeling can also be used to

compare “TO-BE” models of processes to processes in regulatory or

guideline documents. Also both “AS-IS” models and “TO-BE” models can

be used in order to find out the impacts of new arrangements on the

 21

processes [51].

The model is designed with a four-leveled structure. The first level is

called as category and there is one category as “quality” in the model. The

second level is called as characteristic. Each category has its own

characteristics. The quality category includes maintainability, reliability,

functionality and usability characteristics. The third level is for sub-

characteristics and finally, fourth level is for metrics for measuring the

process quality attributes [51].

The characteristics, sub-characteristics and metrics for quality category

are as follows [51]:

• Maintainability

o Analyzability Metrics

� Complexity

� Coupling

• Reliability

o Fault Tolerance Metrics

� Failure avoidance

o Recoverability Metrics

� Restorability

� Restoration effectiveness

• Functionality

o Suitability Metrics

� Functional adequacy

� Functional completeness

o IT Based Functionality Metrics

� IT usage

� IT density

o Accuracy Metrics

� Computational accuracy

o Interoperability Metrics

 22

� Data exchangeability

o Security Metrics

� Access auditability

• Usability

o Understandability Metrics

� Functional understandability

o Learnability Metrics

� Existence in documents

o Operability Metrics

� Input validity checking

� Undoability

o Attractiveness Metrics

� Attractive interaction

The “AS-IS” and/or “TO-BE” and “on paper” process models are used in

measurements related to each metric. The results of the measurements

can be used to find out the conformance of static process definitions (“AS-

IS”) to processes in organization’s documents (“on paper”) or to compare

“TO-BE” models of processes to processes in regulatory or guideline

documents. Also both “AS-IS” models and “TO-BE” models can be used

in order to find out the impacts of new arrangements on the processes. By

this way, before putting “TO-BE” models into practice, an organization can

measure its quality improvements. This method has the advantage of

quantitatively comparing quality attributes of a proposed software process

model to current “AS-IS” or “on paper” models before deploying the

proposed model. This is expected to speed up and decrease cost of

software improvement studies [51].

Sezer [52] conducted a study using Güceğlioğlu’s model [51] in order to

find out the impacts of software design verification process improvement

in one of the software engineering departments of a company. He

concludes that there is a need for weighting the activities in the processes

 23

according to their contribution or influence. In the current model,

unimportant, straightforward activities and vital activities have the same

contribution to the measurements. According to him, this may result in

wrong conclusions about measurements.

Seçkin [53] also used Güceğlioğlu’s model [51] in a study to evaluate a

software requirements analysis and validation process. According to him

the methodology can be used as a first step in software process

improvement activities in order to decrease failure rate of software

process improvement initiatives, but it is not sufficient for determining

whether the improvement is applicable or not.

 24

3CHAPTER 3

CURRENT REQUIREMENTS MANAGEMENT

PROCESSES

In this chapter, current on-paper and AS-IS software requirements

management processes, their quality attribute measurements and the

problems of the current processes are presented. Section 3.1 gives the

on-paper definitions of the software requirements management processes

of Embedded Software Department (ESD) of Company A. Section 3.2

gives the static process definitions and models of the current AS-IS

software requirements management processes. In Section 3.3, quality

attribute measurements of the AS-IS processes calculated using the

metrics given in Güceğlioğlu’s study [51] are given. Finally, in Section 3.4,

the problems of the current software requirements management

processes and improvement suggestions based on these problems are

given.

There are two on-paper requirements management processes defined in

ESD which are:

1. Software Requirements Analysis Process

2. Software Requirements Analysis Review Process

These two processes together are called as analysis in the regulatory

documents and their descriptions are given in Section 3.1.

On the other hand, software requirements analysis review process which

 25

is described in regulatory documents is not explicitly done in ESD, it is

done as a part of the software requirements analysis process.

The AS-IS software requirements management processes applied in ESD

are:

1. Software Requirements Analysis Process

2. Software Requirements Change Management Process (Does not

have an on-paper definition)

The static process descriptions and models of AS-IS software

requirements management processes are given in Section 3.2.

3.1 On-Paper Software Requirements Management
Processes

In the analysis process, software requirements and constraints should be

determined using system requirements. Review should be done in order

to verify that software requirements are complete, consistent, traceable

and acceptable. After review, software requirements should be approved

by the authorities.

Project Design Manager, Analyst, Architect and Designer involve in

software requirements analysis and review activities. Their roles are

described as follows:

• Project Design Manager: Project Design Manager is responsible

for planning and auditing the activities throughout the software

development life-cycle.

• Analyst: Analyst is responsible for determining the software

requirements using the system requirements and analyzing them.

• Architect: Architect is responsible for designing the architecture of

software.

 26

• Designer: Designer is responsible for designing the software

module that is assigned to him. The design should meet the related

requirements.

3.1.1 Software Requirements Analysis

Inputs:

• Product Description Document (PDD)

• Technical Specifications Document (TSD)

• System Requirements Document (SysRD)

To Do:

A1. Analyze requirements.

A2. Evaluate the feasibility of requirements. If needed request change

and/or corrections.

A3. Determine software requirements.

A4. Prepare Software Requirements Specification (SRS)

A5. Prepare Software Requirements Traceability Matrix (SRTM)

Outputs:

• PDD and/or SysRD Change Report

• Software Requirements Specification (SRS)

• Software Requirements Traceability Matrix (SRTM)

Staff:

• Project Design Manager

• Analyst

• Architect

3.1.2 Software Requirements Analysis Review

Inputs:

• Product Description Document (PDD)

 27

• System Requirements Document (SysRD)

• Software Requirements Specification (SRS)

• ESD Review Guide

To Do:

R1. Review SRS.

R2. Verify that SRS satisfies all of the requirements related to software

in PDD and/or SysRD.

R3. Update SRS.

Outputs:

• Software Requirements Analysis Review Report

• Software Requirements Specification (SRS)

Staff:

• Project Design Manager

• Analyst

• Architect

• Designer

3.2 AS-IS Software Requirements Management Processes

In this section, the requirements management processes, as actually

applied in Embedded Software Department (ESD) of Company A will be

described. This description has been compiled based on the author’s own

observations and interviews with several design leaders and senior

design leaders. The process model constructed in this way was then

reviewed by a senior design leader.

The AS-IS software requirements management processes applied in ESD

are:

1. Software Requirements Analysis Process

2. Software Requirements Change Management Process (Does not

have an on-paper definition)

 28

The organization of Embedded Software Department (ESD) of Company

A is as follows: There exists a department manager and under his

management there are some software development units. Each unit

consists of approximately 6 developers and a unit leader who is a senior

design leader. In every unit there are design leaders and software

engineers each of which take the role of a software architect, a

requirements analyst, a designer, a coder or a unit tester as necesary.

Static process definition of software requirements analysis process as

actually applied in ESD is given in Table 3-1. Models of software

requirements analysis process are given in Figures 3-1, 3-2, 3-3 and 3-4.

Static process definition of software requirements change management

process as actually applied in ESD is given in Table 3-2. Models of

software requirements change management process are given in Figures

3-5 and 3-6.

 29

Table 3-1 AS-IS Software Requirements Analysis Process

No Activity Name Activity Definition Staff

Forms/ Documents/
Archival Records/
Tools/ Applications/
Other Medias

1
Allocation
Meeting

System requirements
allocated to software are
identified in a series of
meetings.

Project
Manager,
Department
Managers,
Design
Leaders

Conversation, TSD,
PDD, SysRD (Does not
generally exist),
Minutes of Allocation
Meeting (Does not
generally exist)

2

Send TSD,
PDD and
SysRD for
review

ESD Manager sends TSD,
PDD and SysRD to design
leaders in ESD in order to
ask their opinions on
feasibility of system
requirements allocated to
software.

ESD
Manager,
Design
Leaders

TSD, PDD,
SysRD (Does not
generally exist),
E-mail

3
Review TSD,
PDD and
SysRD

Design leaders in ESD
review TSD, PDD and
SysRD and send their
opinions on feasibility of
system requirements
allocated to software to
ESD Manager.

ESD
Manager,
Design
Leaders

TSD, PDD,
SysRD (Does not
generally exist),
E-mail

4
Feasibility
meeting

Collected opinions on
feasibility of system
requirements allocated to
software are evaluated in
the feasibility meeting.

ESD
Manager,
Design
Leaders

Conversation, Minutes
of Feasibility Meeting
(Does not generally
exist)

5

Decide whether
TSD, PDD or
SysRD (if
exists) should
be changed or
not

ESD Manager decides
whether TSD, PDD or
SysRD (if exists) should
be changed or not,
according to the
discussions in the
feasibility meeting

ESD
Manager -

6
Send change
requests

If ESD Manager thinks that
TSD, PDD or SysRD
should be changed,
change requests are sent
to Project Manager.

ESD
Manager,
Project
Manager

E-mail

 30

Table 3-1 Continued

No Activity Name Activity Definition Staff

Forms/ Documents/
Archival Records/
Tools/ Applications/
Other Medias

7
High level software
requirements
meeting

High level software
requirements are
identified by ESD
Manager and design
leaders.

ESD
Manager,
Design
Leaders

Conversation,
Minutes of High Level
Software
Requirements
Meeting (Does not
generally exist),
Undocumented
Software
Requirements

8

Decide whether all
high level software
requirements are
clear enough to
proceed with
determining low
level software
requirements or not

High level software
requirements meetings
are repeated until ESD
Manager thinks that all
high level software
requirements are clear
enough to proceed with
determining low level
software requirements.

ESD
Manager

-

9
Low level software
requirements
meeting

High level requirements
are analyzed and
elaborated to identify
detailed low level
software requirements.

Unit Leader,
Developers

Conversation,
Minutes of Low Level
Software
Requirements
Meeting (Generally
exists),
Undocumented
Software
Requirements

10

Decide whether all
low level
requirements are
clear enough to
proceed with design
or not

Low level software
requirements meetings
are repeated for every
module until unit leader
thinks that all low level
requirements are clear
enough to proceed with
design.

Unit Leader -

11
Hardware interface
requirements
meeting

Hardware interface
requirements are
determined in a meeting
attended by hardware
engineers, developers
and the unit leader that
is responsible for the
software module
interfacing hardware.

Unit Leader,
Developers,
Hardware
Engineers

Conversation,
Minutes of Hardware
Interface
Requirements
Meeting (Does not
generally exist),
Undocumented
Software
Requirements

 31

Table 3-1 Continued

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival
Records/ Tools/
Applications/
Other Medias

12

Decide whether
all hardware
interface
requirements are
clear enough to
proceed with
design or not

Hardware interface
requirements meetings are
repeated for each module
interfacing hardware until the
related unit leader thinks that all
hardware interface
requirements for a module are
clear enough to proceed with
design.

Unit Leader -

13

Meeting to
determine
software modules
to be re-used

Software modules to be re-
used are determined.

Unit Leader,
Developers

Conversation,
Minutes of Re-use
Meeting (Does not
generally exist)

14

Decide whether it
is necessary to
make some
modifications to
the modules to
be re-used

Unit Leader decides whether it
is necessary to make some
modifications to the modules to
be re-used.

Unit Leader -

15

Reverse
engineer
modules to be re-
used

If unit leader thinks that it is
necessary to make some
modifications to modules to be
re-used, these modules are
reverse engineered from code
to design and then from design
to requirements, since there are
no formal software
requirements specification or
software design description
documents and code is the only
formal source.

Unit Leader,
Developers

Undocumented
Software
Requirements

16

Decide whether a
proof-of-concept
(throw-away)
prototype exists
or not

ESD Manager decides whether
a proof-of-concept (throw-
away) prototype exists or not
(Very simple decision but exists
as an activity for the sake of
completeness).

ESD
Manager

-

17

Update software
requirements
according to
evaluation of the
prototype

If a proof-of-concept (throw-
away) prototype exists,
software requirements are
updated according to
customer’s requests and
evaluation of the prototype.

ESD
Manager,
Design
Leaders

Customer’s
requests (Written
or oral),
Undocumented
Software
Requirements

 32

TSD, PDD,
SysRD (If

exists) Ready

Allocation
Meeting

Project Manager,
Department
Managers,

Design Leaders

Minutes of
Allocation

Meeting (Does
not generally

exist)

E-mail

Send TSD,
PDD and

SysRD for
review

TSD, PDD,
SysRD (Does
not generally

exist)

TSD, PDD,
SysRD (Does
not generally

exist)

Review TSD,
PDD and

SysRD

TSD, PDD,
SysRD (Does
not generally

exist)

E-mail

Feasibility
meeting

Minutes of
Feasibility

Meeting (Does
not generally

exist)

Continue as
A

Design
Leaders

ESD
Manager

ESD
Manager

Design
Leaders

Design
Leaders, ESD

Manager

Figure 3-1 AS-IS Software Requirements Analysis Process Part 1

 33

E-mail

Minutes of High Level
Software Requirements
Meeting (Does not
generally exist),
Undocumented Software
Requirements

Continue as
B

A

Should TSD, PDD or SysRD
be changed?

Send change
requests

High level
software

requirements
meeting

 No

ESD
Manager

Project
Manager

ESD
Manager

Are high level sw. reqs.
clear?

ESD
Manager

Y
e

s

Design
Leaders, ESD

Manager

A1

A1

No

Y
e

s

A2

Figure 3-2 AS-IS Software Requirements Analysis Process Part 2

 34

Continue as
C

B

Low level
software

requirements
meeting

Unit Leader,
Developers

Minutes of Low Level
Software Requirements
Meeting (Generally
exists), Undocumented
Software Requirements

Unit Leader

Y
e

s

Hardware
interface reqs.

meeting

Are hw. interface reqs. clear
enough for design?

Unit Leader,
Developers,

Hardware
Engineers

Y
e

s

Minutes of Hardware
Interface Requirements
Meeting (Does not
generally exist),
Undocumented Software
Requirements

Unit Leader

Are low level sw. reqs. clear
enough for design?

B2

No

B1

B2

B1

No

Figure 3-3 AS-IS Software Requirements Analysis Process Part 3

 35

END

C

Unit Leader

Reverse
engineer

modules to be
re-used

Is there a proof-of-concept
prototype?

ESD Manager,
Design

Leaders

Minutes of Re-
use Meeting
(Does not
generally exist)

Software
modules to be

re-used
meetingUnit Leader,

Developers

Are some modifications
necessary to the modules to

be re-used?

Unit Leader,
Developers

Undocumented
Software
Requirements

Update sw.
reqs according
to customer’s

requests

Undocumented
Software
Requirements

No

No

ESD
Manager

Customer’s
requests
(Written or oral)

Is there any other sw.
module whose requirements

are not specified?

A2

 Yes

Figure 3-4 AS-IS Software Requirements Analysis Process Part 4

 36

Table 3-2 AS-IS Software Requirements Change Management

Process

No Activity Name Activity Definition Staff

Forms/ Documents/
Archival Records/
Tools/ Applications/
Other Medias

1
Receive a
requirement
change request.

ESD Manager receives a
requirement change
request. It may be written
or oral, and sourced by
system engineers or
customer.

ESD
Manager

Requirement Change
Request (Written or
oral), E-mail,
Telephone, Interview
with customer

2

Meeting on
feasibility of the
requirement
change request

Feasibility of the
requirement change
request is analyzed in a
meeting attended by ESD
Manager and related
design leaders.

ESD
Manager,
Design
Leaders

Conversation, Minutes
of Feasibility Meeting
(Does not generally
exist), Requirement
Change Request
(Written or oral)

3

Decide whether
the requirement
change is
acceptable,
partially
acceptable or not
acceptable.

ESD Manager and design
leaders decide whether the
requirement change is
acceptable, partially
acceptable or not
acceptable.

ESD
Manager,
Design
Leaders

-

4
Accept the
requirement
change request

If ESD Manager and
design leaders conclude
that the requirement
change request is feasible,
ESD Manager accepts it
by replying the source of
change request via
telephone or e-mail.

ESD
Manager

E-mail, Telephone,
Undocumented
Software Requirements

5
Partially accept
the requirement
change request

If ESD Manager and
design leaders conclude
that the requirement
change request is partially
feasible, ESD Manager
partially accepts it by
replying the source of
change request via
telephone or e-mail.

ESD
Manager

E-mail, Telephone,
Undocumented
Software Requirements

6
Reject the
requirement
change request

If ESD Manager and
design leaders conclude
that the requirement
change request is
infeasible, ESD Manager
rejects it by replying the
source of change request
via telephone or e-mail.

ESD
Manager E-mail, Telephone

 37

Continue as
S

Receive the
requirement

change
request.

E-mail

ESD
Manager

Requirement
Change
Request
(Written or oral)

A requirement
change

requested

Feasibility
meeting

Design
Leaders, ESD

Manager

Requirement
Change
Request
(Written or oral)

Interview with
customer

Minutes of
Feasibility

Meeting (Does
not generally

exist)

Figure 3-5 AS-IS Software Requirements Change Management
Process Part 1

 38

Accept the
change
requestESD

Manager

S

Is the requirement change
request totally/partially/not

acceptable?

Design
Leaders, ESD

Manager

Source of
the change

request

S1 S2
P

a
rtia

lly
A

cce
p

ta
b

le

N
o

t A
cce

p
ta

b
le

E-mail

T
o

ta
lly A

cce
p

ta
b

le

S1

Partially accept
the change

request

ESD
Manager

Source of
the change

request

E-mail

S2

Reject the
change
requestESD

Manager

Source of
the change

request

E-mail

END

END

END

Undocumented
Software
Requirements

Undocumented
Software
Requirements

Figure 3-6 AS-IS Software Requirements Change Management
Process Part 2

 39

3.3 Measurement of AS-IS Software Requirements
Management Processes

The quality of the AS-IS software requirements management processes

are measured according to the method proposed in Güceğlioğlu’s study

[51]. Firstly, the process descriptions and the models of the software

requirements management processes as actually applied in ESD, which

are given in the previous section, are formed. Then measurements are

performed on these process descriptions and graphical process models

using the process quality metrics given in Güceğlioğlu’s study.

The measurement details of AS-IS software requirements analysis

process are given in Tables from A-1-1 to A-1-5, and the measurement

details of AS-IS software requirements change management process are

given in Tables from A-2-1 to A-2-5.

The summary of the results of the AS-IS process measurements is given

in Table 3.3.

 40

Table 3-3 AS-IS Measurement Results

Metrics

Software Requirements

Analysis AS-IS Process

(17 activities)

Software Requirements

Change Management AS-

IS Process

(6 activities)

Complexity

X(1) = 1 / 17 = 0.059

X(2) = 5 / 17 = 0.294

X(3) = 0 / 17 = 0

X(1) = 0 / 6 = 0

X(2) = 1 / 6 = 0.167

X(3) = 0 / 6 = 0

Coupling X = 4 / 17 = 0.235 X = 4 / 6 = 0.667

Failure Avoidance X = 1 / 17 = 0.059 X = 0 / 6 = 0

Restorability X = 4 / 17 = 0.235 X = 4 / 6 = 0.667

Restoration Effectiveness

(Number of total activities is

used in the formula)

X = 4 / 17 = 0.235 X = 4 / 6 = 0.667

Functional Adequacy X = 17 / 17 = 1
Not applicable (On-paper

process does not exist)

Functional Completeness

(Number of on-paper activities

is used in formula)

X = 1 - 5 / 8 = 0.375

(A1, A2, A3 are done, but

A4, A5, R1, R2 and R3 are

not done.)

Not applicable (On-paper

process does not exist)

IT Usage X = 4 / 17 = 0.235 X = 4 / 6 = 0.667

IT Density X = 4 / 4 = 1 X = 4 / 4 = 1

Computational Accuracy X = 0 / 5 = 0 X = 0 / 2 = 0

Data Exchangeability X = 2 / 4 = 0.5 X = 3 / 4 = 0.75

Access Auditability X = 4 / 4 = 1 X = 4 / 4 = 1

Functional Understandability X = 3 / 17 = 0.176 X = 4 / 6 = 0.667

Existence in Documents X = 0 / 17 = 0 X = 0 / 6 = 0

Input Validity Checking X = 0 / 17 = 0 X = 0 / 6 = 0

Undoability X = 4 / 17 = 0.235 X = 4 / 6 = 0.667

Attractive Interaction (Number

of total activities is used in

formula)

X = 0 / 17 = 0 X = 0 / 6 = 0

 41

3.4 Problems of the Current Process and Suggestions

In this section, the problems that are related to the current software

requirements management processes in ESD and solution suggestions to

them are given. These problems and suggestions have been identified by

the author according to her personal experience in Company A, and then

discussed with several design leaders, and finally reviewed by a senior

design leader.

The current software requirements management processes in ESD can

be assessed as immature in many ways. This causes a lot of problems in

both development and maintenance phases of software development.

The software requirements management related problems that are faced

in ESD are given in the following sections.

3.4.1 No Documentation of Requirements

Problem: The first problem is that there is no documentation of

requirements. In some of the meetings the decisions related to what to

build, i.e. requirements, are taken, but no document related to

requirements is prepared. Sometimes minutes of meeting is prepared, but

even this does not always take place. Some of the undocumented

requirements are written in minutes of meetings, some of them are written

in some of the participants’ notes, some of them exist in process

participants’ minds, but the others are forgotten.

Outcomes of the Problem: The results of not documenting requirements

are very catastrophic.

1. Forgotten requirements cause producing software that does not

meet customer’s needs.

 42

2. Incomplete requirements cause incomplete design, which in turn

causes incomplete coding.

3. Not documenting requirements makes it impossible to review the

requirements, and this causes a lot of misunderstandings. As a

result, faulty and inconsistent designs come on the scene.

4. Since requirements are not documented, testing the final product to

find out whether it meets the requirements or not is impossible. So

this test is done later by the customer. When the customer finds

out that some requirements are missing, a lot of rework has to be

done to repair the faulty design and coding. Moreover, design is

not documented, and this deteriorates the condition further.

5. Traceability links between the requirements are also not

documented. This prevents taking the necessary steps when a

requirement is changed. Since the traceability links between the

requirements are not documented, the other requirements or the

design blocks that should be changed when a requirement is

changed are not known precisely. This leads to incomplete or

inconsistent designs.

6. The other result of not documenting requirements is that it makes

the company dependant on the developers to have information

about the requirements. In case the developers having knowledge

on requirements quit the job, the company will be in big trouble.

Example Situations: Many example situations can be given related to

the problem of not documenting requirements. Two of them are as

follows:

1. During the acceptance tests of project P1, the customers

recognized that the product was not behaving as they wanted.

Later it was found out that the requirements of a feature was

misunderstood, and therefore implemented wrongly.

2. Since the requirements are not documented, test team does not

know what to test in detail. During the acceptance tests of Project

 43

P1, developers were invited to test a complex feature, since they

were the only ones that knew the details of the feature and how to

test it.

Suggestions: In order to eliminate the bad consequences of the problem

of not documenting the requirements, following suggestions are made by

the author and several design leaders:

1. Requirements Management Tool: Requirements management

tools facilitate the requirements management processes by

providing an IT based, easy to use interface to document the

requirements. They provide traceability links not only between

software requirements, but also between software requirements

and design blocks, system requirements and test cases. Moreover

measurements can be taken using the tool such as number of

requirements covered in a release, number of changed

requirements and so on. These measurements can be used to

improve the process continually. DOORS1 is a tool that has these

features and can be used in ESD.

2. Assigning Unique Numbers to Requirements: Assigning unique

numbers to requirements will facilitate communicating

requirements and tracing the relationships between requirements.

3. Software Requirements Specification (SRS): The requirements

stored in the requirements management tool database can then be

imported to a Word Document. This document is the Software

Requirements Specification (SRS) and includes all types of

software requirements such as functional and non-functional. This

document can be put under version control and can be used to

communicate requirements with other departments.

1
 DOORS is used in other departments of Company A. There are some other RM tools

such as RequisitePro, AnalystPro, ARTS and RTM that have similar features. INCOSE
Requirements Management Tools Survey [54] provides a detailed comparison of the
features of approximately 40 requirements management tools.

 44

4. Requirements Traceability Matrix (RTM): The traceability links

between the requirements can be documented in Requirements

Traceability Matrix. This document can also be formed using the

requirements management tool. RTM contains not only the

relationships between requirements, but also between software

requirements and design blocks, system requirements and test

cases. When a requirement has to be changed, the other

requirements that depend on the requirement to be changed can

be found using RTM. Then, if necessary the dependent

requirements can be changed, too.

5. SRS & RTM Templates: SRS and RTM templates can be used to

facilitate preparing and managing SRS and RTM documents by

providing a common format.

6. Minutes of Meeting: To document the decisions taken in the

meetings and the rationales of them, it is decided to write minutes

of meeting in all meetings.

7. Review of Requirements and Requirements Review Guideline:

Since the requirements will be documented in the improved

process, it will be possible to review them. Reviewing is necessary

to ensure that the requirements are correct, unambiguous,

complete, consistent, traceable and verifiable. Requirements

Review Guideline will guide in reviews by providing the necessary

steps to be taken to check whether the requirements are correct,

unambiguous, complete, consistent, traceable and verifiable.

3.4.2 Not Having a Formal Requirements Change Management
Process

Problem: The second problem of ESD’s requirements process is not

having a formal requirements change management process. When a

requirement has to be changed, someone (customer or systems engineer

or product engineer) tells this to a design leader or the manager, and the

 45

task of implementing related things according to this change is given to a

related developer. Again nothing is documented, and this information

exists in a couple of people’s minds convenient to be forgotten or

misunderstood.

Outcomes of the Problem: Not having a formal requirements change

management process has some costs.

1. Since nothing is documented about the change, and the

information about the changed requirements exists in several

people’s minds, if these people quit the job, no one will be aware

of this requirement change.

2. Sometimes requirement change requests are deferred to be

accomplished later. In this case, since the requests are not

documented, they may be forgotten or implemented incompletely.

Example Situations: Two experiences related to this problem are as

follows:

1. The requirements of a service that is provided by project P1 was

only known by a senior design leader. After that senior design

leader quit the job, the customer requested a change about that

service. But since the requirements are not documented and the

only staff that had information on the requirements of the service

quit the job, several developers worked hard to find out the design

from the code, and then the requirements from the design to

implement the required change.

2. In project P2, the customer requested a feature to be removed

which was not needed by them anymore. The feature was

removed but the removal request was not documented. During the

integration tests, test engineers tried to test that removed feature

and concluded that the test had failed. Later, it was understood

that the feature had been removed and therefore its test is

obsolete.

 46

Suggestions: Following suggestions can help to improve the

requirements change management process applied in ESD:

1. Requirement Change Request Report (RCRR): When a

requirement change request is received from the customer,

preparing Requirement Change Request Report will help to

communicate the request in ESD. The report will contain the

unique numbers of the requirements that are requested to be

changed and the other requirements and software modules that

depend on the requirements that are requested to be changed.

After the feasibility meeting about the change request, RCRR will

be updated to contain the decision taken related to the request.

2. Requirements Management Tool: Use of requirements

management tool will facilitate tracing the relationships between

the requirements to be changed and the requirements and

software modules that depend on them.

3.4.3 Not Having a Requirements Re-use Mechanism

Problem: In most cases ESD does not start a project from scratch, but

starts building a new project on previous ones. This type of development

is very difficult to manage. This confuses the developers, since it is hard

to remember undocumented requirements of different projects which are

very similar but having some nuances. Actually, not starting projects from

scratch is not a problem; it is a fact, but the way this fact is handled is

problematic in the current situation.

Outcomes of the Problem: Some of the outcomes of this situation are as

follows:

1. When building new projects on previous ones generally it is

needed to reuse some of the software modules of the previous

 47

projects. Sometimes a few modifications are needed to be done to

the modules to be reused. Since there are no requirements or

design documents, there are two ways to understand what a

module does in detail. The first one is to find the developer related

to this module and ask some questions to him. If you are lucky you

can manage to find the developer worked on this module in the

previous projects. Most of the time, this is not the case, and you

work hard to get the design from the code and get the

requirements from the design.

2. Building new projects on previous ones cause inconsistencies

between projects. For example assume Project X is in

maintenance phase, and a problem is reported by the customer.

After the problem is solved by developers, the same problem

continues to exist in several new projects built on Project X. There

is not a document showing whether the requirement related to this

problem is also a requirement for the new projects built on Project

X or not. This is a very prevalent and detrimental problem in ESD.

Example Situations: Two experiences related to this problem are as

follows:

1. Project P4 was based on Project P3. It had to cover all the features

of Project P3 and besides some new features. Neither the

requirements nor the designs and codes of Project P3 were re-

usable and documented. Moreover the teams of Project P4 and

Project P3 were different. So the project started from the

requirements phase with a different team. Team of Project P4

arranged many meetings with the team of Project P3. These

meetings wasted the time of both teams. At the end the customer

was surprised, because the services that have the same names

were showing different behaviors in Projects P3 and P4.

2. Project P5 which is in maintenance phase included the features of

Project P2 which is in maintenance phase, either. Project P6 had to

 48

include the features of Project P5. A problem about a feature of

Project P2, which was also included in Projects P5 and P6, was

reported by the customer. The developers solved the problem and

corrected in Project P2, but the problem continued to exist in

Projects P5 and P6. Later, the same problem is reported for

Projects P5 and P6.

Suggestions: The following suggestions can be helpful to solve this

problem.

1. Requirements Management Tool: All of the requirements of the

projects should be stored in requirements management tool

database with unique numbers. The traceability links between re-

used requirements of different projects should be formed.

2. Requirements Traceability Matrix (RTM): The traceability links

between re-used requirements of different projects formed in the

requirements management tool should be documented using

RTMs.

All of these problems cause chaos not only in the requirements

management process, but also in the other software development

processes. Moreover, all of these problems directly or indirectly cause

wasting of time and accordingly most of the projects can not be finished

on time and on budget.

One may think that how it is possible to produce acceptable products in

spite of all of these problems. The answer is that the domain of the

software projects developed in ESD has been approximately the same.

The projects are similar to each other. Most of the time, new projects are

developed by adding some improved features to old projects.

There are domain experts that have a good understanding of the domain

of software projects. Therefore an intense elicitation process has not been

 49

needed. There has not been a systematical process for determining and

managing requirements. The undocumented knowledge of these domain

experts have informally been communicated throughout the projects and

by this way the department managed to produce successful products.

The projects are getting bigger and more complex in ESD. Also the

domain gets wider and more people are joined to the development

process. Under these circumstances, it is impossible for domain experts

to handle all of the requirements in their minds. Therefore it is necessary

to improve the ad-hoc requirements management process of ESD and

maintain a systematical requirements management process.

 50

4CHAPTER 4

IMPROVED REQUIREMENTS MANAGEMENT

PROCESSES

In this chapter, improved software requirements analysis and software

requirements change management processes are given. The

improvements are based on the solution suggestions to the problems

given in Section 3.4. The improvements are proposed by the author

according to interviews with several design leaders. The improvements

are then reviewed by a senior design leader.

Section 4.1 presents the improved (TO-BE) software requirements

management processes. Section 4.2 gives the results of the

measurements calculated using Güceğlioğlu’s [51] proposed method.

Section 4.3 is composed of a discussion and comparison of the

measurements of the AS-IS and TO-BE software requirements

management processes of ESD.

4.1 TO-BE Software Requirements Management
Processes

In this section, improved versions of software requirements processes are

given. Table 4-1 gives the comparison of activities of AS-IS and TO-BE

software requirements analysis processes. The changes between AS-IS

and TO-BE processes and their rationales are specified in the table.

 51

Figures 4-1, 4-2, 4-3, 4-4 and 4-5 present the model of TO-BE software

requirements analysis process. The static process description of TO-BE

software requirements analysis process is given in Table B-1-1, in

Appendix B.

Table 4-2 gives the comparison of activities of AS-IS and TO-BE software

requirements change management processes. The changes between AS-

IS and TO-BE processes and their rationales are specified in the table.

Figures 4-6, 4-7 and 4-8 present the model of TO-BE software

requirements change management process. The static process

description of TO-BE software requirements change management

process is given in Table B-2-1, in Appendix B.

 52

Table 4-1 Comparison of AS-IS and TO-BE Software Requirements

Analysis Processes

AS-IS Activities TO-BE Activities Change & Rationale

1. Allocation Meeting: Using
PDD, TSD and SysRD (if
exists), system requirements
allocated to software are
identified in a series of
meetings attended by Project
Manager, Department
Managers and Design Leaders.

1. Allocation Meeting: Using PDD, TSD and
SysRD (if exists), system requirements allocated
to software are identified in a series of meetings
attended by Project Manager, Department
Managers and Design Leaders. Minutes of
Allocation Meeting and Allocation Document
which specifies system requirements that are
allocated to software are prepared.

Minutes of Allocation
Meeting: To document
the decisions and their
rationales.
Allocation Document:
To clearly document
which system
requirements are
allocated to software.

2. Send TSD, PDD and
SysRD for review: ESD
Manager sends TSD, PDD and
SysRD (if exists) to design
leaders in ESD in order to ask
their opinions on feasibility of
system requirements allocated
to software.

2. Send TSD, PDD, SysRD and Allocation
Document for review: ESD Manager sends
TSD, PDD, SysRD (if exists) and Allocation
Document to design leaders in ESD in order to
ask their opinions on feasibility of system
requirements allocated to software.

Sending Allocation
Document: Allocation
Document is sent to
clearly specify which
system requirements are
allocated to software.

3. Review TSD, PDD and
SysRD: Design leaders in ESD
review TSD, PDD and SysRD
(if exists) and send their
opinions on feasibility of
system requirements allocated
to software to ESD Manager.

3. Review TSD, PDD, SysRD and Allocation
Document: Design leaders in ESD review TSD,
PDD, SysRD (if exists) and Allocation Document
and send their opinions on feasibility of system
requirements allocated to software to ESD
Manager.

Reviewing Allocation
Document: Allocation
Document is reviewed to
clearly understand which
system requirements are
allocated to software.

4. Feasibility Meeting:
Collected opinions on feasibility
of system requirements
allocated to software are
evaluated in the feasibility
meeting attended by ESD
Manager and design leaders.

4. Feasibility Meeting: Collected opinions on
feasibility of system requirements allocated to
software are evaluated in the feasibility meeting
attended by ESD Manager and design leaders.
Minutes of Feasibility Meeting is prepared.

Minutes of Feasibility
Meeting: To document
the decisions and their
rationales.

5. Decide whether TSD, PDD
or SysRD should be changed
or not: ESD Manager decides
whether TSD, PDD or SysRD
(if exists) should be changed or
not, according to the
discussions in the feasibility
meeting.

5. Decide whether TSD, PDD or SysRD should
be changed or not: ESD Manager decides
whether TSD, PDD or SysRD (if exists) should
be changed or not, according to the discussions
in the feasibility meeting.

No change

6. Send change requests: If
ESD Manager thinks that TSD,
PDD or SysRD (if exists)
should be changed, change
requests are sent to Project
Manager via e-mail.

6. Send change requests: If ESD Manager
thinks that TSD, PDD or SysRD (if exists) should
be changed, he prepares System Requirement
Change Request Document (SRCRD) and sends
it to Project Manager via e-mail.

Preparing and Sending
System Requirement
Change Request
Document (SRCRD): To
document system
requirement change
requests.

7. High level software
requirements meeting: High
level software requirements are
identified in a meeting attended
by ESD Manager and design
leaders.

7. High level software requirements meeting:
High level software requirements are identified in
a meeting attended by ESD Manager and design
leaders. Minutes of High Level Software
Requirements Meeting is prepared.

Minutes of High Level
Software Requirements
Meeting: To document
the decisions and their
rationales.

 53

Table 4-1 Continued

AS-IS Activities TO-BE Activities Change & Rationale

Does not exist.

8. Prepare/Update SRS and RTM: Design
leaders store identified high level requirements
with a unique number in a database by the help
of a requirements management tool. SRS and
RTM are prepared/updated by the help of the
requirements management tool and using SRS
and RTM Templates.

Prepare/Update SRS&RTM:
To document and uniquely
identify software
requirements. To trace
relationships between
requirements; and also
between requirements and
software modules.
Requirements Management
Tool: To facilitate recording,
tracing and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and
managing documents by
providing a common format.

Does not exist.

9. Review & Update SRS and RTM: ESD
Manager reviews SRS and RTM in order to
ensure that the requirements are correct,
unambiguous, complete, consistent, traceable
and verifiable. ESD Manager uses Requirements
Review Guideline and the requirements
management tool while reviewing and updating
SRS and RTM.

Review & Update SRS and
RTM: To ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable.
Requirements Review
Guideline: To guide in
reviewing SRS and RTM in
order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable.

8. Decide whether all
high level software
requirements are clear
enough to proceed with
determining low level
software requirements or
not

10. Decide whether all high level software
requirements are clear enough to proceed
with determining low level software
requirements or not

No change

9. Low level software
requirements meeting:
High level requirements
are analyzed and
elaborated by unit leaders
and developers to identify
detailed low level software
requirements.

11. Low level software requirements meeting:
High level requirements are analyzed and
elaborated by unit leaders and developers to
identify detailed low level software requirements.
To capture requirements, use- case analysis is
done by the help of a UML modeling tool.
Minutes of Low Level Software Requirements
Meeting is prepared.

Use-case analysis: To
facilitate capturing functional
requirements by clearly
visualizing the interaction
between the software and an
external agent.
Minutes of Low Level
Software Requirements
Meeting: To document the
decisions and their rationales.

 54

Table 4-1 Continued

AS-IS Activities TO-BE Activities Change & Rationale

Does not exist.

12. Update SRS and RTM: Developers store the
identified low level requirements with a unique
number in a database by the help of a
requirements management tool. SRS and RTM
are updated by the help of the requirements
management tool and using SRS and RTM
Templates.

Update SRS&RTM: To
document and uniquely
identify software
requirements. To trace
relationships between
requirements; and also
between requirements and
software modules.
Requirements
Management Tool: To
facilitate recording, tracing
and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and
managing documents by
providing a common
format.

Does not exist.

13. Review & Update SRS and RTM: Unit
Leader reviews SRS and RTM in order to ensure
that the requirements are correct, unambiguous,
complete, consistent, traceable and verifiable.
Unit Leader uses Requirements Review
Guideline and the requirements management
tool while reviewing and updating SRS and RTM.

Review & Update SRS
and RTM: To ensure that
the requirements are
correct, unambiguous,
complete, consistent,
traceable and verifiable.
Requirements Review
Guideline: To guide in
reviewing SRS and RTM in
order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable.

10. Decide whether all low
level requirements are clear
enough to proceed with
design or not

14. Decide whether all low level requirements
are clear enough to proceed with design or
not

No change

11. Hardware interface
requirements meeting:
Hardware interface
requirements are determined
in a meeting attended by
hardware engineers,
developers and the unit leader
that is responsible for the
software module interfacing
hardware.

15. Hardware interface requirements meeting:
Hardware interface requirements are determined
in a meeting attended by hardware engineers,
developers and the unit leader that is responsible
for the software module interfacing hardware.
Minutes of Hardware Interface Requirements
Meeting is prepared.

Minutes of Hardware
Interface Requirements
Meeting: To document the
decisions and their
rationales.

Does not exist.

16. Update SRS and RTM: Identified hardware
interface requirements are stored with a unique
number in a database by the help of a
requirements management tool. SRS and RTM
are updated by the help of the requirements
management tool and using SRS and RTM
Templates.

Update SRS&RTM: To
document and uniquely
identify software
requirements. To trace
relationships between
requirements; and also
between requirements and
software modules.
Requirements
Management Tool: To
facilitate recording, tracing
and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and
managing documents by
providing a common
format.

 55

Table 4-1 Continued

AS-IS Activities TO-BE Activities Change & Rationale

Does not exist.

17. Review & Update SRS and RTM: Unit
Leader reviews SRS and RTM in order to ensure
that the requirements are correct, unambiguous,
complete, consistent, traceable and verifiable.
Unit Leader uses Requirements Review
Guideline and the requirements management
tool while reviewing and updating SRS and RTM.

Review & Update SRS
and RTM: To ensure
that the requirements
are correct,
unambiguous,
complete, consistent,
traceable and
verifiable.
Requirements Review
Guideline: To guide in
reviewing SRS and
RTM in order to ensure
that the requirements
are correct,
unambiguous,
complete, consistent,
traceable and
verifiable.

12. Decide whether all
hardware interface
requirements are clear
enough to proceed with
design or not

18. Decide whether all hardware interface
requirements are clear enough to proceed
with design or not

No change

13. Meeting to determine
software modules to be re-
used: Software modules to be re-
used are determined in a meeting
attended by the related unit
leader and developers.

19. Meeting to determine software modules to
be re-used: Software modules to be re-used are
determined in a meeting attended by the related
unit leader and developers. Minutes of Re-use
Meeting is prepared.

Minutes of Re-use
Meeting: To document
the decisions and their
rationales.

14. Decide whether it is
necessary to make some
modifications to the modules
to be re-used

20. Decide whether it is necessary to make
some modifications to the modules to be re-
used

No change

15. Reverse engineer modules
to be re-used: If unit leader
thinks that it is necessary to
make some modifications to
modules to be re-used, these
modules are reverse engineered
from code to design and then
from design to requirements,
since there are no formal
software requirements
specification or software design
description documents and code
is the only formal source.

21. Get the requirements of the modules to be
re-used: If unit leader thinks that it is necessary
to make some modifications to the modules to be
re-used, he gathers the requirements of the
modules from the related RTM and SRS using
the requirements management tool and prepares
Requirements Re-use Report.

Gather the
requirements using
the requirements
management tool: To
facilitate gathering the
requirements of the
module to be re-used
and the other
requirements that
depend on them.
Requirements Re-use
Report: To document
the requirements
related to the module to
be re-used.

 56

Table 4-1 Continued

AS-IS Activities TO-BE Activities Change & Rationale

Does not exist.

22. Update SRS and RTM: Requirements of the
modules to be re-used are modified and stored
with a unique number in a database by the help
of a requirements management tool. SRS and
RTM are updated by the help of the
requirements management tool and using
Requirements Re-use Report, SRS and RTM
Templates.

Update SRS&RTM: To document
and uniquely identify software
requirements. To trace
relationships between
requirements; and also between
requirements and software
modules.
Requirements Management
Tool: To facilitate recording,
tracing and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and managing
documents by providing a common
format.

Does not exist.

23. Review & Update SRS and RTM: Unit
Leader reviews SRS and RTM in order to ensure
that the requirements are correct, unambiguous,
complete, consistent, traceable and verifiable.
Unit Leader uses Requirements Review
Guideline and the requirements management
tool while reviewing and updating SRS and RTM.

Review & Update SRS and RTM:
To ensure that the requirements
are correct, unambiguous,
complete, consistent, traceable
and verifiable.
Requirements Review Guideline:
To guide in reviewing SRS and
RTM in order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and verifiable.

16. Decide whether
a proof-of-concept
(throw-away)
prototype exists or
not

24. Decide whether a proof-of-concept
(throw-away) prototype exists or not

No change

17. Update software
requirements
according to
evaluation of the
prototype

25. Update SRS and RTM according to
evaluation of the prototype: If a proof-of-
concept (throw-away) prototype exists, stored
software requirements are updated according to
customer’s requests and evaluation of the
prototype by the help of a requirements
management tool. SRS and RTM are updated by
the help of the requirements management tool
and using Customer Prototype Evaluation
Report, SRS and RTM Templates.

Update SRS&RTM: To document
and uniquely identify software
requirements. To trace
relationships between
requirements; and also between
requirements and software
modules.
Requirements Management
Tool: To facilitate recording,
tracing and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and managing
documents by providing a common
format.
Customer Prototype Evaluation
Report: To have customer’s
feedback and requests about the
prototype documented.

Does not exist.

26. Review & Update SRS and RTM: ESD
Manager reviews SRS and RTM in order to
ensure that the requirements are correct,
unambiguous, complete, consistent, traceable
and verifiable. ESD Manager uses Requirements
Review Guideline and the requirements
management tool while reviewing and updating
SRS and RTM.

Review & Update SRS and RTM:
To ensure that the requirements
are correct, unambiguous,
complete, consistent, traceable
and verifiable.
Requirements Review Guideline:
To guide in reviewing SRS and
RTM in order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and verifiable.

 57

TSD, PDD,
SysRD(if

exists) Ready

Allocation
Meeting

Project Manager,
Department
Managers,

Design Leaders

Minutes of
Allocation
Meeting,

Allocation
Document

E-mail

Send TSD,
PDD, SysRD,

Allocation
Document

TSD, PDD,
SysRD(if exists),

Allocation
Document

TSD, PDD,
SysRD(if exists)

Review TSD,
PDD, SysRD,

Allocation
Document

E-mail

Feasibility
meeting

Minutes of
Feasibility

Meeting

Continue as
A

Design
Leaders

ESD
Manager

ESD
Manager

Design
Leaders

Design
Leaders, ESD

Manager

TSD, PDD,
SysRD(if exists),

Allocation
Document

Figure 4-1 TO-BE Software Requirements Analysis Process Part 1

 58

E-mail

Continue as
B

A

Should TSD, PDD or SysRD
be changed?

Send change
requests

High level
software

requirements
meeting

ESD
Manager

Project
Manager

ESD
Manager

Are high level sw. reqs.
clear?

ESD
Manager

Y
e

s
Design

Leaders, ESD
Manager

A1

A1

No

Y
e

s

A2
Minutes of High
Level Software
Requirements

Meeting

Prepare/
Update SRS

and RTM

Review &
Update SRS

and RTM

Sys. Req.
Change

Request Doc.

Design
Leaders

SRS
Template,

RTM
Template

ESD
Manager

No

SRS Template,
RTM Template,
Req Review

Guideline

 SRS, RTM

Req Mngmt
Tool

Figure 4-2 TO-BE Software Requirements Analysis Process Part 2

 59

Continue as
C

B

Low level
software

requirements
meeting Unit Leader,

Developers

Unit Leader

Hardware
interface reqs.

meeting
Unit Leader,
Developers,

Hardware
Engineers

Are low level sw. reqs. clear
enough for design?

B1
B2

B1

 No

Minutes of Low
Level Software
Requirements

Meeting

Update SRS
and RTM

Review &
Update SRS

and RTM

Developers

SRS
Template,

RTM
Template

Unit Leader

SRS Template,
RTM Template,

Req Review
Guideline

 SRS, RTM

Req Mngmt
Tool

Minutes of
Hardware

Interface Reqs.
Meeting

UML Use-
Case

Models

Figure 4-3 TO-BE Software Requirements Analysis Process Part 3

 60

Continue as
D

C

Unit Leader,
Developers

Are hw. interface reqs. clear
enough for design?

B2

No

Update SRS
and RTM

Review &
Update SRS

and RTM

SRS
Template,

RTM
Template

SRS Template,
RTM Template,

Req Review
Guideline

 SRS, RTM

Req Mngmt
Tool

Minutes of
Re-use
Meeting

Software
modules to be

re-used
meeting

Are some modifications
necessary to the modules to

be re-used?

Get the reqs.
of the modules
to be re-used

D1

No

Req Mngmt
Tool

Unit
Leader

SRS, RTM

Unit
Leader

Unit
Leader

Unit
Leader

Developers

Requirements
Re-use
Report

Figure 4-4 TO-BE Software Requirements Analysis Process Part 4

 61

END

D

Is there a proof-of-concept
prototype?

Is there any other sw.
module whose requirements

are not specified?

A2

Yes

Update SRS
and RTM

Review &
Update SRS

and RTM

SRS Template,
RTM Template,
Reqs. Re-use

Report

SRS Template,
RTM Template,

Req Review
Guideline, Reqs.

Re-use Report

 SRS, RTM

Req Mngmt
Tool

Unit
Leader

Developers

Update SRS
and RTM

Review &
Update SRS

and RTM

Customer
Prototype

Evaluation Report,
SRS Template,
RTM Template

Customer Prototype
Evaluation Report,

SRS Template, RTM
Template, Req

Review Guideline
 SRS, RTM

Req Mngmt
Tool

ESD
Manager

Design
Leaders

ESD
Manager

D1

D2No

D2

Figure 4-5 TO-BE Software Requirements Analysis Process Part 5

 62

Table 4-2 Comparison of AS-IS and TO-BE Software Requirements

Change Management Processes

AS-IS Activities TO-BE Activities Change & Rationale

1. Receive a requirement change
request: ESD Manager receives a
requirement change request. It may
be written or oral, and sourced by
system engineers or customer.

1. Receive a requirement change request:
ESD Manager receives a requirement change
request. It may be written or oral, and sourced by
system engineers or customer.

No change

Does not exist

2 Prepare Requirement Change Request
Report: A design leader assigned by ESD
Manager prepares Requirement Change
Request Report (RCRR), which contains the
unique numbers of the requirements to be
changed. The design leader also looks up the
RTM using the requirements management tool to
find out which requirements and which modules
depend on the requirements to be changed, and
adds the unique numbers of these requirements
and modules to RCRR.

Preparing Requirement
Change Request Report:
To uniquely identify and
document which
requirements are requested
to be changed.
Requirements
Management Tool: To
facilitate recording, tracing
and managing
requirements.

2. Meeting on feasibility of the
requirement change request:
Feasibility of the requirement
change request is analyzed in a
meeting attended by ESD Manager
and related design leaders.

3. Meeting on feasibility of the requirement
change request: Feasibility of the requirement
change request is analyzed in a meeting
attended by ESD Manager and related design
leaders using Requirement Change Request
Report.

Requirement Change
Request Report: To
uniquely identify
requirements that are
requested to be changed.
Minutes of Feasibility
Meeting: To document the
decisions and their
rationales.

3. Decide whether the
requirement change is
acceptable, partially acceptable
or not acceptable

4. Decide whether the requirement change is
acceptable, partially acceptable or not
acceptable:

No change

4. Accept the requirement
change request: If ESD Manager
and design leaders conclude that
the requirement change request is
feasible, ESD Manager accepts it
by replying the source of change
request via telephone or e-mail.

5. Accept the requirement change request: If
If ESD Manager and design leaders conclude
that the requirement change request is feasible,
ESD Manager accepts it by replying the source
of change request via telephone or e-mail. The
decision of acceptance of the request is added to
RCRR.

Updating Requirement
Change Request Report:
To document decisions and
their rationales related to
requirements that are
requested to be changed.

5. Partially accept the
requirement change request: If
ESD Manager and design leaders
conclude that the requirement
change request is partially feasible,
ESD Manager partially accepts it by
replying the source of change
request via telephone or e-mail.

6. Partially accept the requirement change
request: If ESD Manager and design leaders
conclude that the requirement change request is
partially feasible, ESD Manager partially accepts
it by replying the source of change request via
telephone or e-mail. The decision of partial
acceptance of the request is added to RCRR.
Also, an explanation about the parts of the
request that are accepted is added to RCRR.

Updating Requirement
Change Request Report:
To document decisions and
their rationales related to
requirements that are
requested to be changed.

6. Reject the requirement change
request: If ESD Manager and
design leaders conclude that the
requirement change request is
infeasible, ESD Manager rejects it
by replying the source of change
request via telephone or e-mail.

7. Partially accept the requirement change
request: If ESD Manager and design leaders
conclude that the requirement change request is
infeasible, ESD Manager rejects it by replying
the source of change request via telephone or e-
mail. The decision of rejection of the request is
added to RCRR.

Updating Requirement
Change Request Report:
To document decisions and
their rationales related to
requirements that are
requested to be changed.

 63

Table 4-2 Continued

AS-IS Activities TO-BE Activities Change & Rationale

Does not exist.

8. Update SRS and RTM: A design leader
assigned by ESD Manager updates stored
software requirements according to Requirement
Change Request Report by the help of a
requirements management tool. SRS and RTM
are updated according to the accepted change
request using the requirements management
tool and templates of SRS and RTM.

Update SRS&RTM: To
document and uniquely
identify software
requirements. To trace
relationships between
requirements; and also
between requirements and
software modules.
Requirements
Management Tool: To
facilitate recording, tracing
and managing
requirements.
SRS&RTM Templates: To
facilitate preparing and
managing documents by
providing a common format.

Does not exist.

9. Review & Update SRS and RTM: ESD
Manager reviews SRS and RTM in order to
ensure that the requirements are correct,
unambiguous, complete, consistent, traceable
and verifiable. ESD Manager uses Requirements
Review Guideline and the requirements
management tool while reviewing and updating
SRS and RTM.

Review & Update SRS and
RTM: To ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable.
Requirements Review
Guideline: To guide in
reviewing SRS and RTM in
order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable.

 64

Continue as
S

Receive the
requirement

change
request.

E-mail

ESD
Manager

Requirement
Change
Request

(Written or oral)

A requirement
change

requested

Feasibility
meeting

ESD Manager,
Design

Leaders

Interview with

customer

Minutes of
Feasibility
Meeting

Prepare Req.
Change
Request
Report

Design
Leader

Req Mngmt
Tool

Reqs.
Traceability

Matrix (RTM)

Req. Change
Request
Report

Req. Change
Request
Report

Figure 4-6 AS-IS Software Requirements Change Management

Process Part 1

 65

Accept the
change
request

ESD
Manager

S

Is the requirement change
request totally/partially/not

acceptable?

Design
Leaders, ESD

Manager

Source of
the change

request

S1 S2

E-mail

S1

Partially accept
the change

request

ESD
Manager

Source of
the change

request

E-mail

S2

Reject the
change
request

ESD
Manager

Source of
the change

request

E-mail

R

R

END

Req. Change
Request
Report

Req. Change
Request
Report

Req. Change
Request
Report

Figure 4-7 AS-IS Software Requirements Change Management

Process Part 2

 66

R

END

Update SRS
and RTM

Review &
Update SRS

and RTM

SRS
Template,

RTM
Template

SRS Template,
RTM Template,

Req Review
Guideline

 SRS, RTM

Req Mngmt
Tool

ESD
Manager

Design
Leader

 SRS, RTM

Req. Change
Request
Report

Req. Change
Request
Report

Req Mngmt
Tool

Figure 4-8 AS-IS Software Requirements Change Management

Process Part 3

 67

4.2 Measurement of TO-BE Software Requirements
Management Processes

The quality of the TO-BE software requirements management processes

are measured according to the method proposed in Güceğlioğlu’s study

[51]. Firstly, the process descriptions and the models of the improved

(TO-BE) software requirements management processes, which are given

in the previous section, are formed. Then measurements are performed

on these process descriptions and graphical process models using the

process quality metrics given in Güceğlioğlu’s study.

The measurement details of TO-BE software requirements analysis

process are given in Tables from C-1-1 to C-1-5, and the measurement

details of TO-BE software requirements change management process are

given in Tables from C-2-1 to C-2-5.

The summary of the results of the TO-BE process measurements is given

in Table 4.3.

 68

Table 4-3 TO-BE Measurement Results

Metrics

Software

Requirements

Analysis TO-BE

Process

(26 activities)

Software Requirements

Change Management TO-

BE Process

(9 activities)

Complexity

(X(1): Structured Decisions,

X(2): Unstructured Decisions,

X(3): Semi-strctured Decisions)

X(1) = 1 / 26 = 0.038

X(2) = 5 / 26 = 0.192

X(3) = 0 / 26 = 0

X(1) = 0 / 9 = 0

X(2) = 1 / 9 = 0.111

X(3) = 0 / 9 = 0

Coupling X = 4 / 26 = 0.154 X = 4 / 9 = 0.444

Failure Avoidance X = 11 / 26 = 0.423 X = 2 / 9 = 0.222

Restorability X = 20 / 26 = 0.769 X = 8 / 9 = 0.889

Restoration Effectiveness

(Number of total activities is

used in the formula)

X = 20 / 26 = 0.769 X = 8 / 9 = 0.889

Functional Adequacy X = 26 / 26 = 1 X = 9 / 9 = 1

Functional Completeness

(Number of TO-BE activities is

used in the formula)

X = 1 - 0 / 26 = 1

X = 1 - 0 / 9 = 1

IT Usage X = 20 / 26 = 0. 769 X = 8 / 9 = 0.889

IT Density X = 20 / 20 = 1 X = 8 / 8 = 1

Computational Accuracy X = 5 / 5 = 1 X = 2 / 2 = 1

Data Exchangeability X = 2 / 4 = 0.5 X = 3 / 4 = 0.75

Access Auditability X = 20 / 20 = 1 X = 8 / 8 = 1

Functional Understandability X = 17 / 26 = 0.654 X = 8 / 9 = 0.889

Existence in Documents X = 26 / 26 = 1 X = 9 / 9 = 1

Input Validity Checking X = 0 / 26 = 0 X = 1 / 9 = 0.111

Undoability X = 20 / 26 = 0.769 X = 8 / 9 = 0.889

Attractive Interaction (Number of

total activities is used in the

formula)

X = 18 / 26 = 0.692 X = 7 / 9 = 0.778

 69

4.3 Comparison of AS-IS and TO-BE Software
Requirements Management Processes

In this section, the measurement results of AS-IS and TO-BE software

requirements management processes are compared. Table 4-4

summarizes the comparison of the measurement results of AS-IS and

TO-BE software requirements analysis (SRA) processes. Table 4-5

summarizes the comparison of the measurement results of AS-IS and

TO-BE software requirements change management (SRCM) processes.

The detailed discussion on values of metric calculations is given below

with the short descriptions of metrics. The metric descriptions are based

on the Güceğlioğlu’s [51] study.

Complexity (0 < = X < = 1, The lower value of X (1), X (2), X (3), the

better analyzability): Complexity is based on the ratio of activities

including decision points. It has 3 types:

• Structured Decision (X(1)): Well-defined, programmable, repetitive

decisions.

• Unstructured Decision (X(2)): Requires creativity, the situation is

not clear and requires fuzzy logic.

• Semi-structured Decision (X(3)): May be repetitive and routine, but

requires human intuition.

SRA: The values of X(1) and X(2) have been decreased in the improved

process. This is caused by the increase in the number of activities in the

TO-BE model. X(3) remains 0, since there are not any semi-structured

decisions in AS-IS and TO-BE models.

SRCM: The value of X(2) has been decreased in the improved process.

This is caused by the increase in the number of activities in the TO-BE

model. X(1) and X(3) remain 0, since there are not any structured or semi-

structured decisions in AS-IS and TO-BE models.

Coupling (0 < = X < = 1, The lower value of X, the better

 70

analyzability): Coupling is based on the ratio of activities that include

interactions with other processes.

SRA, SRCM: The value is decreased due to the increase in the number

of activities.

Failure Avoidance (0 < = X < = 1, The higher value of X, the better

failure avoidance): Failure avoidance is based on the ratio of activities

that include reviews, checklists, templates etc.

SRA, SRCM : The value is increased, since the number of activities that

include reviews, checklists and templates is increased.

Restorability (0 < = X < = 1, The higher value of X, the better

restorability): Restorability is based on the ratio of activities that are

recorded.

SRA, SRCM: The value is increased, since the number of activities that

are recorded increased by documenting the requirements and minutes of

meetings.

Restoration Effectiveness (0 < = X < = 1, The higher value of X, the

better restorability effectiveness): Restoration Effectiveness is based

on the ratio of activities that can be restored by using hard or soft back-up

copies of documents.

SRA, SRCM: The value is increased, since the number of activities that

are recorded in an IT based environment increased.

Functional Adequacy (0 < = X < = 1, The higher value of X, the better

functional adequacy): Functional Adequacy is based on the ratio of

activities that are adequate to the process descriptions in regulatory

documents.

SRA: The value is 1 in both AS-IS and TO-BE models. Since the process

descriptions are not very detailed in regulatory documents, the AS-IS

activities are assumed to be implicit in on-paper process descriptions. All

 71

TO-BE activities are adequate to the proposed process descriptions.

SRCM: Since SRCM process is not described in regulatory documents,

the value can not be calculated for the AS-IS process. The value is 1 for

the TO-BE process, since all TO-BE activities are adequate to the

proposed process descriptions.

Functional Completeness (0 < = X < = 1, The higher value of X, the

better functional completeness): Functional Completeness is based on

the ratio of activities which are defined in regulatory documents but

missed in practice.

SRA: The value is increased, since all proposed TO-BE activities are

assumed to be put into practice.

SRCM: Since SRCM process is not described in regulatory documents,

the value can not be calculated for the AS-IS process. The value is 1 for

the TO-BE process, since all proposed TO-BE activities are assumed to

be put into practice.

IT Usage (0 < = X < = 1, The higher value of X, the more IT usage): IT

Usage is based on the ratio of activities in which IT applications are used.

SRA, SRCM: The value is increased, since requirements management

tool is proposed to be used in many activities and documentation based

on IT is increased.

IT Density (0 < = X < = 1, The higher value of X, the more IT density):

IT Density is based on the ratio of documents in which IT applications are

used to prepare, update and search documents.

SRA, SRCM: The value is not changed and it is 1 in both AS-IS and TO-

BE processes. Although documentation is increased in the TO-BE

process, the ratio of documents that are prepared, updated or searched

with IT applications to all documents is 1 in both AS-IS and TO-BE

processes. This is due to using IT applications whenever a document is

prepared, updated or searched in both AS-IS and TO-BE processes.

 72

Computational Accuracy (0 < = X < = 1, The higher value of X, the

more accurate): Computational Accuracy is based on the ratio of

activities in which accuracy requirements have been implemented as

defined in the regulatory documents.

SRA: The value is increased, since reviews are included in the improved

process.

SRCM: The value is increased, since reviews and preparing Requirement

Change Request Report are included the improved process.

Data Exchangeability (0 < = X < = 1, The higher value of X, the more

data exchangeability): Data Exchangeability is based on the ratio of

activities in which no operation such as parsing or extracting is performed

on the received data before using it.

SRA, SRCM: The value is the same since the data received from other

processes remains the same.

Access Auditability (0 < = X < = 1, The higher value of X, the more

auditable): Access Auditability is based on the ratio of activities in which

there is access to data and the access can be audited.

SRA, SRCM: The value is not changed and it is 1 in both AS-IS and TO-

BE processes. Although access to data is increased in the TO-BE

process, the ratio of activities involving auditable access to data to all

activities involving access to data is 1 in both AS-IS and TO-BE

processes. This is due to using IT applications whenever data is accessed

in both AS-IS and TO-BE processes.

Functional Understandability (0 < = X < = 1, The higher value of X,

the more understandable): Functional Understandability is based on the

ratio of activities that are easily understandable by the staff.

SRA, SRCM: The value is increased since documentation is increased in

the improved process.

 73

Existence in Documents (0 < = X < = 1, The higher value of X, the

more complete documentation): Existence in Documents is based on

the ratio of activities described in the available documents.

SRA, SRCM: The value is increased from 0 to 1 since the actual

regulatory documents do not give details of the activities, but the activities

of the TO-BE process is described in detail.

Input Validity Checking (0 < = X < = 1, The higher value of X, the

better input validity checking): Input Validity Checking is based on the

number of activities in which checking for valid data is provided for input

parameters.

SRA: The value is the same and equal to 0 for AS-IS and TO-BE

processes since no input validity checking takes place.

SRCM: The value is increased, since in TO-BE process, the requirements

change request is checked to find out whether there exists a

corresponding requirement or not.

Undoability (0 < = X < = 1, The higher value of X, the better better

undoability): Undoability is based on the ratio of the recorded activities

which can be undone after they are completed.

SRA, SRCM: The value is increased, since the number of activities

recorded in an IT based environment is increased.

Attractive Interaction (0 < = X < = 1, The higher value of X, the more

attractive interaction): Attractive Interaction is based on the ratio of

activities which have attractive appearance and provide staff with

easiness in preparation, deletion or updating documents.

SRA, SRCM: The value is increased, since the usage of templates and

tools is increased.

 74

Table 4-4 Comparison of AS-IS and TO-BE Software Requirements

Analysis Process Measurement Results

Metrics

Software Requirements

Analysis AS-IS Process

(17 activities)

Software

Requirements Analysis

TO-BE Process

(26 activities)

Complexity

(X(1): Structured Decisions,

X(2): Unstructured Decisions,

X(3): Semi-strctured Decisions)

X(1) = 1 / 17 = 0.059

X(2) = 5 / 17 = 0.294

X(3) = 0 / 17 = 0

X(1) = 1 / 26 = 0.038

X(2) = 5 / 26 = 0.192

X(3) = 0 / 26 = 0

Coupling X = 4 / 17 = 0.235 X = 4 / 26 = 0.154

Failure Avoidance X = 1 / 17 = 0.059 X = 11 / 26 = 0.423

Restorability X = 4 / 17 = 0.235 X = 20 / 26 = 0.769

Restoration Effectiveness

(Number of total activities is

used in the formula)

X = 4 / 17 = 0.235 X = 20 / 26 = 0.769

Functional Adequacy X = 17 / 17 = 1 X = 26 / 26 = 1

Functional Completeness

(Number of TO-BE activities is

used in formula)

X = 1 - 5 / 8 = 0.375

(A1, A2, A3 are done, but

A4, A5, R1, R2 and R3 are

not done.)

X = 1 - 0 / 26 = 1

IT Usage X = 4 / 17 = 0.235 X = 20 / 26 = 0. 769

IT Density X = 4 / 4 = 1 X = 20 / 20 = 1

Computational Accuracy X = 0 / 5 = 0 X = 5 / 5 = 1

Data Exchangeability X = 2 / 4 = 0.5 X = 2 / 4 = 0.5

Access Auditability X = 4 / 4 = 1 X = 20 / 20 = 1

Functional Understandability X = 3 / 17 = 0.176 X = 17 / 26 = 0.654

Existence in Documents X = 0 / 17 = 0 X = 26 / 26 = 1

Input Validity Checking X = 0 / 17 = 0 X = 0 / 26 = 0

Undoability X = 4 / 17 = 0.235 X = 20 / 26 = 0.769

Attractive Interaction (Number of

total activities is used in formula)
X = 0 / 17 = 0 X = 18 / 26 = 0.692

 75

Table 4-5 Comparison of AS-IS and TO-BE Software Requirements

Change Management Process Measurement Results

Metrics

Software Requirements

Change Management AS-

IS Process

(6 activities)

Software Requirements

Change Management TO-

BE Process

(9 activities)

Complexity

(X(1): Structured Decisions,

X(2): Unstructured Decisions,

X(3): Semi-strctured Decisions)

X(1) = 0 / 6 = 0

X(2) = 1 / 6 = 0.167

X(3) = 0 / 6 = 0

X(1) = 0 / 9 = 0

X(2) = 1 / 9 = 0.111

X(3) = 0 / 9 = 0

Coupling X = 4 / 6 = 0.667 X = 4 / 9 = 0.444

Failure Avoidance X = 0 / 6 = 0 X = 2 / 9 = 0.222

Restorability X = 4 / 6 = 0.667 X = 8 / 9 = 0.889

Restoration Effectiveness

(Number of total activities is

used in the formula)

X = 4 / 6 = 0.667 X = 8 / 9 = 0.889

Functional Adequacy
Not applicable (On-paper

process does not exist)
X = 9 / 9 = 1

Functional Completeness

(Number of TO-BE activities is

used in formula)

Not applicable (On-paper

process does not exist)

X = 1 - 0 / 9 = 1

IT Usage X = 4 / 6 = 0.667 X = 8 / 9 = 0.889

IT Density X = 4 / 4 = 1 X = 8 / 8 = 1

Computational Accuracy X = 0 / 2 = 0 X = 2 / 2 = 1

Data Exchangeability X = 3 / 4 = 0.75 X = 3 / 4 = 0.75

Access Auditability X = 4 / 4 = 1 X = 8 / 8 = 1

Functional Understandability X = 4 / 6 = 0.667 X = 8 / 9 = 0.889

Existence in Documents X = 0 / 6 = 0 X = 9 / 9 = 1

Input Validity Checking X = 0 / 6 = 0 X = 1 / 9 = 0.111

Undoability X = 4 / 6 = 0.667 X = 8 / 9 = 0.889

Attractive Interaction (Number

of total activities is used in

formula)

X = 0 / 6 = 0 X = 7 / 9 = 0.778

 76

5CHAPTER 5

EVALUATION AND CONCLUSION

5.1 Evaluation

In this thesis, improving the software requirements management

processes of Embedded Software Department (ESD) of Company A is

studied. Güceğlioğlu’s method [51] is decided to be used to evaluate and

compare the qualities of actual (AS-IS) and improved (TO-BE) processes.

This method is expected to speed-up process improvement studies, since

it allows to quantitatively compare quality attributes of a proposed

software process model to actual (AS-IS) process model before putting

the proposed model into practice.

In order to evaluate the quality attributes of the current (AS-IS) software

requirements analysis and change management processes, the static

process descriptions and the models of the current processes were

constructed. This was a very exhaustive work, since the requirements

management activities in ESD were ad-hoc and not carried out in a pre-

determined way. For example, although most of the time, minutes of

meetings are not prepared, they are prepared in some of the meetings.

Similarly, System Requirements Document exists in some projects, and

does not exist in many others. There are many examples like that, and

there is not a specific reason behind doing or not doing an activity in many

cases.

 77

Güceğlioğlu’s model does not specify how to model the processes that

are not always operated in the same way. In this thesis, the activities or

documents that take place most of the time, are accepted as parts of the

AS-IS process. The activities that are operated differently in different

times make it difficult to calculate the metric values, since most of the

metric values are defined as the ratio of activities done in a specific way to

number of all activities.

The other difficulty experienced in this study related to metric calculations

is not having a detailed definition of the processes in regulatory

documents. The on-paper processes were not detailed and therefore it

was difficult to calculate the values of the metrics that depend on on-

paper processes. For example Functional Adequacy metric is defined as

the ratio of activities that are adequate to the regulatory documents to

total number of activities. If the on-paper processes are not detailed, and

contain only a few sentences on how to accomplish a task, how can this

metric be calculated? Since the details of the activities are not given, most

of the AS-IS activities that have the purpose of accomplishing the tasks

written in the on-paper process descriptions can be assessed as

adequate.

Güceğlioğlu’s model assumes that regulatory documents of the

organization define the processes in detail by giving information on

activity flow, staff and documents. The model does not tell how to

calculate the metric values when the organization does not have a defined

process.

Generally the organizations that have a defined process are more mature

than the organizations that do not have a defined process. Güceğlioğlu’s

model will be more easily applied by immature organizations, if it is

updated to include guidance on applying the model to organizations that

do not have defined processes. Also if the method is updated to include

 78

guidance on applying the model to organizations that have ad-hoc,

indeterminate AS-IS processes, it will be easier for them to apply the

model.

Some metric definitions in the model may also be updated. Data

Exchangeability is defined as the ratio of the number of activities in which

no change is performed on the received data before using it to the

number of activities which have interactions with other processes. This

definition assumes that if there is an interaction with a process, data is

received from the interacting process. However, this may not be case,

and data may be sent to interacting processes without receiving any data.

So the definition of Data Exchangeability metric should be updated as

follows:

Data Exchangeability: X = A / B

A: The number of activities in which no change is performed on the

received data before using it

B: The number of activities in which data is received from other

interacting processes

Restorability metric is defined as the ratio of the number of activities which

are recorded to total number of activities. The quality of recording is not

measured with this definition. For example, if the output data of an activity

is sent via e-mail to a related person, this activity can be assessed as

recorded, since e-mails are saved in a backed-up environment. However,

when it is needed to access the recorded data, it will be hard to search

and find the required data. Therefore, the author thinks that a new metric

should be added to the model that calculates the quality of documents.

Documents with unique numbers or identifiers, documents that are under

version control and documents that have templates are easier to access

and update, and therefore are of high quality.

 79

IT-Density metric is defined as the ratio of the number of documents in

which IT is used in preparing, updating, or searching the documents to

total number of documents. The quality of the IT usage is not measured

with this definition. For example, if the output data of an activity is sent via

e-mail to a related person, this activity can be assessed as using IT in

preparing the output data. However this type of IT usage does not

facilitate preparing the data so much. Therefore, the author thinks that a

new metric should be added to the model that calculates the quality of IT

usage. Commercial or in-house IT applications that are specifically

constructed for process activities facilitate the process a lot, and therefore

are of high quality.

Another suggestion is on the name of Computational Accuracy Metric.

The source of this metric is ISO/IEC 9126 Software Product Quality

Model. Software products may have “computational” accuracy

requirements. However, the definition of this metric in Güceğlioğlu’s

model is based on the activities that have any kind of accuracy

requirements, not only computational. Therefore the name is misleading,

and should be corrected as Accuracy Metric.

Even though there are some difficulties in modeling the ad-hoc AS-IS

activities and calculating the values of metrics that depend on on-paper

processes, which are not detailed, Güceğlioğlu’s model is clear and easy-

to-implement. It helps to gain an insight into the effects of applying a

proposed process model before putting it into practice.

The comparison of the calculations of AS-IS and TO-BE processes

revealed that the quality attribute values of the improved processes are

better than the current processes. TO-BE processes are more reliable,

functional and usable than AS-IS processes according to the results of the

measurements. Increased reliability of requirements management

processes will facilitate finding and fixing defects in the process which, in

 80

turn, helps to develop software products with less defects. Increased

functionality of requirements management processes will reduce the ad-

hoc characteristics of the current processes. And finally, increased

usability will help to easily operate the processes.

The improved process models are evaluated in interviews with several

design leaders and senior design leaders. They think that the improved

processes are applicable to ESD and can address the problems related to

requirements management processes of ESD. According to them,

documenting requirements, using a requirements management tool and

tracing the relationships by using a Requirements Traceability Matrix are

the most important improvements.

The model helps to compare the quality attributes of the AS-IS and TO-

BE processes, however it does not take into account the side effects of

the improvements. For example it can be said that approximately no

documentation takes place in AS-IS processes. On the other hand, a lot

of documentation takes place in TO-BE processes. This increase in

documentation may increase the time that is spent for requirements

processes. And that result may found to be unacceptable by the Project

Manager when the improved process is put into practice.

Therefore, although Güceğlioğlu’s model helps to measure the quality

attributes of an improved process, it can not be used alone to decide

whether an improved process is feasible or not. However it can be used in

feasibility studies to guide in whether the quality attributes of a proposed

process are better than the present process applied.

5.2 Conclusion

This study aimed to improve the software requirements analysis and

software requirements change management processes of Embedded

 81

Software Department (ESD) of Company A. Since the duration of this

thesis study is not long enough to put the improved processes into

practice and then evaluate the results, a pre-enactment method that is

recently proposed by Güceğlioğlu [51] for measuring process quality is

used to compare the quality of the improved processes to the current

ones.

In order to measure the quality of the current processes as actually

applied in ESD, the static descriptions and models of the current (AS-IS)

processes are constructed. The regulatory document that describes the

processes of the organization is inspected. Then static process

descriptions, AS-IS models and on-paper description of the processes

written in the regulatory document are used in calculating the metrics of

quality attributes defined in Güceğlioğlu’s model.

The problems of the current process and solution suggestions addressing

the problems are discussed by the author and several design leaders.

These problems and solution suggestions are then reviewed by a senior

design leader. Based on these solutions, improved (TO-BE) software

requirements analysis and software requirements change management

processes are constructed. The static process descriptions and models of

the improved processes are formed. These descriptions and models are

then used to calculate the quality attribute metrics of the improved

processes.

The comparison of the calculations of AS-IS and TO-BE processes

revealed that the quality attribute values of the improved processes are

better than the current processes. TO-BE processes are more reliable,

functional and usable than AS-IS processes according to the results of the

measurements.

The improved process models are evaluated in interviews with several

 82

design leaders and senior design leaders. They think that the improved

processes are applicable to ESD and can address the problems related to

requirements management processes of ESD.

While conducting this study, two main difficulties are faced. The first one

is that the AS-IS software requirements management processes of ESD

are not operated in the same way in all times. The processes are ad-hoc

and undeterministic. This situation made it difficult to model the AS-IS

processes and calculate the metric values associated to them.

The second difficulty faced is not having detailed on-paper process

descriptions in regulatory documents. The descriptions are very rough

and this situation made it difficult to calculate the metric values that

depend on on-paper processes.

As a future work, this method can be applied to other software

development processes of ESD. Also, applying this model to processes in

ESD that have detailed on-paper process descriptions and determinate

AS-IS processes will yield interesting results to compare with this study.

If another study is conducted on improving the requirements management

processes of ESD, it will also be interesting to calculate its quality

attributes and compare them with the ones in this study.

 83

6REFERENCES

1. J. Horwitz, “Human Capital & Software Sector Growth: A First Look

at the Role of Labor Markets in Low and Middle Income Countries”,

Carnegie Mellon University, April 21, 2004

2. M. Newman, “Software Errors Cost U.S. Economy $59.5 Billion

Annually”, National Institute of Standards and Technology (NIST),

http://www.nist.gov/public_affairs/releases/n02-10.htm, June 28,

2002, Last date accessed: August 10, 2007

3. The Standish Group, "The Standish Group Report-Chaos", 1994

4. The Standish Group, “Chaos Chronicles Version 3.0”, 2003

5. F. P. Brooks, “No Silver Bullet: Essence and Accidents of Software

Engineering”, IEEE Computer, 10-19, April1987

6. M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, “Capability

Maturity Model, Version 1.1”, IEEE Software, July 1993

7. B. Boehm, “A View of 20th and 21st Century Software

Engineering”, ACM, ICSE’06, May 20–28, 2006

8. R. S. Pressman, “Software Engineering-A Practitioner’s Approach”,

Fifth Ed., McGraw-Hill , 2001

9. P. Kruchten, “Putting the “Engineering” into “Software

Engineering””, Proceedings of the 2004 Australian Software

Engineering Conference (ASWEC’04), IEEE 2004

10. B. W. Boehm, "A Spiral Model of Software Development and

Enhancement," IEEE Computer, Vol. 21, 1988, pp. 61-72

11. P. Kruchten, “The Rational Unified Process: An Introduction”, 3

Ed., Addison-Wesley, Boston, 2004.

12. M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, “Capability

Maturity Model for Software, Version 1.1”, Software Engineering

 84

Institute, CMU/SEI-93-TR-24, February 1993.

13. SEI, “Capability Maturity Model Integration (CMMI), Version 1.1

CMMI for Software Engineering (CMMI-SW, V1.1) Continuous

Representation”, CMU/SEI-2002-TR-028, August 2002

14. SEI, “Capability Maturity Model Integration (CMMI), Version 1.1

CMMI for Software Engineering (CMMI-SW, V1.1) Staged

Representation”, CMU/SEI-2002-TR-029, August 2002

15. B. McFeeley, “IDEAL: A User’s Guide for Software Process

Improvement”, SEI, CMU/SEI-96-HB-001, February 1996

16. CMMI Product Team, “CMMI for Development, Version 1.2”, SEI,

CMU/SEI-2006-TR-008, ESC-TR-2006-008, August 2006

17. S. Boycan, J. Mattingly, M. Lewis, “Air Force Software Process

Improvement”, STSC CrossTalk, February 1995

18. “SEI Process Maturity Profile CMMI v1.1 SCAMPI v1.1 Class A

Appraisal Results 2006 End-Year Update”, SEI, March 2007

19. B. Pierce, “Is CMMI Ready for Prime Time”, STSC CrossTalk,

July 2000

20. L. Heinz, “CMMI Myths and Realities”, STSC CrossTalk, June 2004

21. ISO/IEC IS 15504 – 2: Software Engineering – Process

Assessment – Part 2: Performing an Assessment, International

Organization for Standardization & International Electrotechnical

Commission, 2003.

22. SEI, “ISO/IEC IS 15504 “, http://www.sei.cmu.edu/cmmi/faq/15504-

faq.html, Last date accessed: August 13, 2007

23. ISO 9001 Quality systems – Model for quality assurance in

design/development, production, installation, and servicing, First

edition, International Organization for Standardization, March 1987

24. ISO 9000-3. Quality management and quality assurance standards

– Part 3: Guidelines for the application of ISO 9001 to the

development, supply, and maintenance of software, First edition,

International Organization for Standardization, June 1991

25. S. Godfrey, J. Andary, L. Rosenberg, “Using Pilots to Assess the

 85

Value and Approach of CMMI Implementation”, Goddard Space

Flight Center, SEPG 2003 2/03.

26. P. Kuvaja, J. Simila, L. Krzanik, A. Bicego, G. Saukkonen,

“Software Process Assessment and Improvement”, The

BOOTSTRAP Approach. Blackwell Publishers, 1994

27. J. Siviy, M. L. Penn, E. Harper, “Relationships Between CMMI and

Six Sigma”, Technical Note CMU/SEI-2005-TN-005, December

2005

28. C. Gresse, A. Anacleto, C. F. Salviano, “Helping Small Companies

Assess Software Processes”, IEEE Software January/February

2006

29. E. Demirörs, O. Demirörs, O. Dikenelli, B. Keskin, “Process

Improvement Towards ISO 9001 Certification in a Small Software

Organization”, 20th International Conference on Software

Engineering (ICSE'98), 1998

30. M. Diaz, J. Sligo, “How Software Process Improvement Helped

Motorola”, IEEE Software Vol 14 No 5, September/October 1997

31. B. C. Hardgrave, D. J. Armstrong, “Software Process Improvement:

It’s a Journey, Not a Destination”, Communications of the ACM Vol

48 No 11, November 2005

32. T. Hall, A. Rainer, N. Baddoo, “Implementing Software Process

Improvement: An Empirical Study”, Software Process Improvement

and Practice 2002 – 7

33. R. H. Thayer, M. Dorfman, “Software Requirements Engineering”

Second Edition, IEEE Computer Society Press, 1997

34. G. Kotonya, I. Sommerville, “Requirements Engineering:

Processes and Techniques”, John Wiley & Sons Ltd., 1998

35. D. Leffingwell, D. Widrig, “Managing Software Requirements: A

Unified Approach”, Addison Wesley, 1999

36. C. Jones, "Revitalizing Software Project Management", American

Programmer 6, 7, June 1994

37. C. J. Neill, P. A. Laplante, “Requirements Engineering: The State

 86

of the Practice”, IEEE Software November/December 2003

38. A. M. Davis, A. M. Hickey, “Requirements Researchers: Do We

Practice What We Preach?”, Requirements Engineering Journal

7:107–111, 2002

39. IEEE Recommended Practice for Software Requirements

Specifications, IEEE Std 830-1998 (Revision of IEEE Std 830-

1993), IEEE, New York,1998

40. D. Damian, D. Zowghi, L. Vaidyanathasamy, Y. Pal, “An Industrial

Case Study of Immediate Benefits of Requirements Engineering

Process Improvement at the Australian Center for Unisys

Software”, Empirical Software Engineering 9, 45–75, 2004

41. D. Damian, J. Chisan, L. Vaidyanathasamy, Y. Pal, “An Industrial

Case Study of the Impact of Requirements Engineering on

Downstream Development”, Proceedings of the 2003 International

Symposium on Empirical Software Engineering (ISESE’03), IEEE

2003

42. A. M. Davis, “Software Requirements (Revised): Objects,

Functions, and States”, Prentice Hall, New Jersey, 1993

43. I. Sommerville, J. Ransom, “An Empirical Study of Industrial

Requirements Engineering Process Assessment and

Improvement”, ACM Transactions on Software Engineering and

Methodology, Vol. 14, No. 1, January 2005, Pages 85–117

44. I. Sommerville, P. Sawyer, “Requirements Engineering – A Good

Practice Guide”, John Wiley, 1997

45. T. Gorschek, M. Svahnberg, K. Tejle, “Introduction and Application

of a Lightweight Requirements Engineering Process Evaluation

Method”, Proc. Requirements Engineering Foundations for

Software Quality '03 (REFSQ'03), Klagenfurt/Velden, Austria, 2003

46. A. M. Davis, D. Zowghi, “Good requirements practices are neither

necessary nor sufficient”, Requirements Eng. 11: 1–3, 2006

47. ISO/IEC, "ISO/IEC 9126-1 Software engineering - Product quality -

Part 1: Quality model", 2001

 87

48. ISO/IEC, "ISO/IEC 9126-2 Software engineering - Product quality -

Part2: External metrics", 2002

49. ISO/IEC, "ISO/IEC 9126-3 Software engineering - Product quality -

Part3: Internal metrics", 2002

50. ISO/IEC, "ISO/IEC 9126-4 Software engineering - Product quality -

Part4: Quality In Use metrics", 2002

51. S. Güceğlioğlu, “A Pre-Enactment Model for Measuring Process

Quality”, Ph.D. Thesis, Middle East Technical University,

Department of Information Systems, 2006

52. B. Sezer, “Software Engineering Process Improvement”, M.Sc.

Thesis, Middle East Technical University, Department of Electrical

and Electronics Engineering, 2007

53. H. Seçkin, “Software Process Improvement Based On Static

Process Evaluation”, M.Sc. Thesis, Middle East Technical

University, Department of Electrical and Electronics Engineering,

2006

54. The International Council on Systems Engineering (INCOSE),

“INCOSE Requirements Management Tools Survey”,

http://www.paper-review.com/tools/rms/read.php, Last date

accessed: November 1, 2007

 88

AAPPENDIX A

AS-IS PROCESS MEASUREMENT DETAILS

A.1 AS-IS Software Requirements Analysis Process

Measurement Details

Table A-1-1 AS-IS Analysis Process Metrics 1-3

Activity
Number

Complexity
(1)

Coupling
(2)

Failure
Avoidance

(3)

1 No decision

There is an interaction with the software
project management and systems
engineering processes. TSD, PDD and
SysRD (if exists) should have been prepared
before the allocation meeting. Project
manager as well as managers and design
leaders from all related departments attend
the allocation meeting.

No review,
inspection,
checkpoint or
similar
techniques

2, 4, 7, 9,
13, 15

No decision No interaction

No review,
inspection,
checkpoint or
similar
techniques

3 No decision No interaction

Design leaders
in ESD review
TSD, PDD and
SysRD (if
exists).

5

Unstructured Decision: Deciding
whether TSD, PDD or SysRD
should be changed or not is a
complex task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

6 No decision

There is an interaction with the software
project management process. If ESD
Manager thinks that TSD, PDD or SysRD
should be changed, he sends change
requests to Project Manager.

No review,
inspection,
checkpoint or
similar
techniques

8

Unstructured Decision: Deciding
whether all high level software
requirements are clear enough
to proceed with determining low
level software requirements or
not is a complex task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

 89

Table A-1-1 Continued

Activity
Number

Complexity
(1)

Coupling
(2)

Failure
Avoidance

(3)

10

Unstructured Decision: Deciding
whether all low level
requirements are clear enough
to proceed with design or not is
a complex task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

11 No decision

There is an interaction with the
hardware engineering process.
Hardware engineers attend the
interface requirements meeting.

No review,
inspection,
checkpoint or
similar
techniques

12

Unstructured Decision: Deciding
whether all hardware interface
requirements interfacing
hardware are clear enough to
proceed with design or not is a
complex task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

14

Unstructured Decision: Deciding
whether it is necessary to make
some modifications to the
modules to be re-used is a
complex task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

16

Structured Decision: Deciding whether
a proof-of-concept (throw-away)
prototype exists or not is a very simple
decision. It simply exists or not.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

17 No decision

There is an interaction with the
customer’s evaluation of the proof-of-
concept prototype process.
Customer’s requests resulted from the
evaluation of the prototype are used to
update software requirements.

No review,
inspection,
checkpoint or
similar
techniques

Table A-1-2 AS-IS Analysis Process Metrics 4-5

Activity
Number

Restorability (4)
Restoration

Effectiveness
(5)

1, 4, 7, 11, 13 Not recorded: There is not a formal document prepared after the meeting,
also minutes of meeting does not generally exist.

No restoration

2, 3, 6 Recorded: E-mail is stored in the network. Restorable

5, 8, 10, 12,
14, 15, 16, 17 Not recorded No restoration

9
Recorded: There is not a formal requirements document prepared after the
meeting, but minutes of meeting is generally prepared and stored as an
archive file in the network.

Restorable

 90

Table A-1-3 AS-IS Analysis Process Metrics 6-9

Activity
Number

Functional Adequacy
(6)

Functional
Completeness

(7)

IT
Usage

(8)

IT
Density

(9)

1, 4, 5, 7, 8,
10, 11, 12,
13, 14, 15,
16, 17

Adequate: On-paper
process descriptions are not
very detailed, but this
activity is implicit in on-paper
process descriptions.

This metric is
measured using on-
paper process
definitions.

No IT usage Generally no formal
documents are
prepared.

2, 3, 6

Adequate: On-paper
process descriptions are not
very detailed, but this
activity is implicit in on-paper
process descriptions.

This metric is
measured using on-
paper process
definitions.

IT usage in
sending e-mail.

E-mail is sent with
Microsoft Outlook.

9

Adequate: On-paper
process descriptions are not
very detailed, but this
activity is implicit in on-paper
process descriptions.

This metric is
measured using on-
paper process
definitions.

IT usage in
preparing
minutes of
meeting and
storing it.

Minutes of meeting
is prepared with
Microsoft Word and
stored with PVCS.

Table A-1-4 AS-IS Analysis Process Metrics 10-13

Activity
Number

Computational
Accuracy (10)

Data
Exchangeability (11)

Access
Auditability

(12)

Functional Understandability
(13)

1

No accuracy
requirements
defined in the
regulatory
documents

No change is
performed on TSD,
PDD and SysRD (if
exists) before using
them.

No access to
data

Difficulties and
misunderstandings in allocating
system requirements to software
requirements, since SysRD does
not always exist and PDD is used
instead

2

No accuracy
requirements
defined in the
regulatory
documents

No interaction

Auditable: E-
mail

No difficulties or
misunderstandings

3

No accuracy
requirements
defined in the
regulatory
documents

No interaction

Auditable: E-
mail

Difficulties and
misunderstandings in evaluating
the feasibility of system
requirements allocated to
software, since there is not a
document describing which
system requirements are
allocated to software.

4

No accuracy
requirements
defined in the
regulatory
documents

No interaction

No access to
data: Minutes of
meeting does
not generally
exist.

Difficulties and
misunderstandings in evaluating
the feasibility of system
requirements allocated to
software, since there is not a
document describing which
system requirements are
allocated to software.

5

No accuracy
requirements
defined in the
regulatory
documents

No interaction

No access to
data

Difficulties and
misunderstandings in deciding
whether TSD, PDD or SysRD
should be changed or not, since
there is not a document
describing which system
requirements are allocated to
software.

 91

Table A-1-4 Continued

Activity
Number

Computational
Accuracy (10)

Data
Exchangeability (11)

Access
Auditability

(12)

Functional
Understandability (13)

6
No accuracy
requirements defined in
the regulatory documents

There is an
interaction, but no
data is received from
other processes, data
is sent to other
processes.

Auditable: E-
mail

No difficulties or
misunderstandings

7

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This
requirement is not
implemented.

No interaction

No access to
data: Minutes
of meeting
does not
generally exist.

Difficulties and
misunderstandings in
determining high level
software requirements

8
No accuracy
requirements defined in
the regulatory documents

No interaction

No access to
data

Difficulties and
misunderstandings in
deciding whether all high
level software requirements
are clear enough to proceed
with determining low level
software requirements or
not

9

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This
requirement is not
implemented.

No interaction

Auditable:
PVCS

Difficulties and
misunderstandings in
determining low level
software requirements

10
No accuracy
requirements defined in
the regulatory documents

No interaction

No access to
data

Difficulties and
misunderstandings in
deciding whether all low
level requirements are clear
enough to proceed with
design or not

11

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This
requirement is not
implemented.

Data received from
hardware engineers
is converted into
software
requirements.

No access to
data: Minutes
of meeting
does not
generally exist.

Difficulties and
misunderstandings in
determining hardware
interface requirements

12
No accuracy
requirements defined in
the regulatory documents

No interaction

No access to
data

Difficulties and
misunderstandings in
deciding whether all
hardware interface
requirements are clear
enough to proceed with
design or not

13
No accuracy
requirements defined in
the regulatory documents

No interaction

No access to
data: Minutes
of meeting
does not
generally exist.

Difficulties and
misunderstandings in
determining modules to be
re-used

 92

Table A-1-4 Continued

Activity
Number

Computational Accuracy
(10)

Data
Exchangeability

(11)

Access
Auditability

(12)

Functional
Understandability (13)

14
No accuracy requirements
defined in the regulatory
documents

No interaction

No access to
data

Difficulties and
misunderstandings in
deciding whether it is
necessary to make some
modifications to the
modules to be re-used

15

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This requirement
is not implemented.

No interaction

No access to
data

Difficulties and
misunderstandings in
reverse engineering
modules to be re-used.

16
No accuracy requirements
defined in the regulatory
documents

No interaction
No access to
data

No difficulties or
misunderstandings

17

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This requirement
is not implemented.

Customers’ requests
are converted into
technical software
requirements.

No access to
data

Difficulties and
misunderstandings in
converting customers’
requests into technical
software requirements.

Table A-1-5 AS-IS Analysis Process Metrics 14-17

Activity
Number

Existence in
Documents

(14)

Input
Validity

Checking
(15)

Undoability (16) Attractive Interaction (17)

1, 4, 7,
11, 13

Not
Described

No input
validity
checking

Not recorded: There is not
a formal document
prepared after the meeting,
also minutes of meeting
does not generally exist.

Not recorded: There is not a formal
document prepared after the
meeting, also minutes of meeting
does not generally exist.

2, 3, 6 Not
Described

No input
validity
checking

Undoable: E-mail
can be called back.

Not attractive interaction: It is an
ordinary e-mail; there is not a
template prepared for this activity.

5, 8, 10,
12, 14,
15, 16, 17

Not
Described

No input
validity
checking

Not recorded Not recorded

9 Not
Described

No input
validity
checking

Undoable: Minutes of
meeting is prepared with
Microsoft Word and stored
with PVCS.

Not attractive interaction: There is
not a formal requirements document
prepared after the meeting; there is
a template for minutes of meeting,
but later it is hard to search for the
minutes of meeting that contains the
low level software requirements.

 93

A.2 AS-IS Software Requirements Change Management

Process Measurement Details

Table A-2-1 AS-IS Change Management Process Metrics 1-3

Activity
Number

Complexity
(1)

Coupling
(2)

Failure
Avoidance

(3)

1 No decision

There is an interaction with the systems
engineering process. Requirement change
request may be sourced by system
engineers. It may also be sourced by
customers; they may request some changes
during development or maintenance phases.

No review,
inspection,
checkpoint or
similar
techniques

2 No decision No interaction

No review,
inspection,
checkpoint or
similar
techniques

3

Unstructured Decision:
Deciding whether the
requirement change is
acceptable, partially acceptable
or not acceptable is a complex
task.

No interaction

No review,
inspection,
checkpoint or
similar
techniques

4, 5, 6 No decision

There is an interaction with the systems
engineering process. The reply to the
requirement change request is sent to the
source of the request which may either be the
systems engineers or the customer.

No review,
inspection,
checkpoint or
similar
techniques

Table A-2-2 AS-IS Change Management Process Metrics 4-5

Activity
Number

Restorability (4)
Restoration

Effectiveness
(5)

1, 4, 5,
6 Recorded: E-mail is stored in the network. Restorable

2 Not recorded: There is not a formal document prepared after the meeting, also
minutes of meeting does not generally exist.

No restoration

3 Not recorded No restoration

 94

Table A-2-3 AS-IS Change Management Process Metrics 6-9

Activity
Number

Functional Adequacy
(6)

Functional
Completeness

(7)

IT
Usage

(8)

IT
Density

(9)

1, 4, 5,
6

Inadequate: There is not any defined
on-paper software requirements
change management process in
regulatory documents.

This metric is measured
using on-paper process
definitions.

IT usage in
sending e-
mail.

E-mail is sent with
Microsoft Outlook.

2, 3

Inadequate: There is not any defined
on-paper software requirements
change management process in
regulatory documents.

This metric is measured
using on-paper process
definitions.

No IT
usage.

Generally no
formal documents
are prepared.

Table A-2-4 AS-IS Change Management Process Metrics 10-13

Activity
Number

Computational Accuracy
(10)

Data
Exchangeability (11)

Access
Auditability

(12)

Functional
Understandability (13)

1
No accuracy requirements
defined in the regulatory
documents

Requirement change
request is converted
into technical software
requirement.

Auditable: E-
mail

Difficulties and
misunderstandings in
requirement change
requests

2
No accuracy requirements
defined in the regulatory
documents

No interaction

No access to
data: Minutes
of meeting
does not
generally exist.

Difficulties and
misunderstandings in
evaluating the feasibility
of requirement change
requests

3
No accuracy requirements
defined in the regulatory
documents

No interaction

No access to
data

Difficulties and
misunderstandings in
deciding whether the
requirement change is
acceptable, partially
acceptable or not
acceptable.

4, 5

According to on-paper
process, software
requirements should be
reviewed in order to verify
that they are complete,
consistent, traceable and
acceptable. This
requirement is not
implemented.

There is an
interaction, but no
data is received from
other processes, data
is sent to other
processes.

Auditable: E-
mail

No difficulties or
misunderstandings

6
No accuracy requirements
defined in the regulatory
documents

There is an
interaction, but no
data is received from
other processes, data
is sent to other
processes.

Auditable: E-
mail

No difficulties or
misunderstandings

 95

Table A-2-5 AS-IS Change Management Process Metrics from 14-17

Activity
Number

Existence in
Documents

(14)

Input
Validity

Checking
(15)

Undoability (16) Attractive Interaction (17)

1, 4, 5,
6

Not Described
No input
validity
checking

Undoable: E-mail can be called
back.

Not attractive interaction: It is
an ordinary e-mail; there is not
a template prepared for this
activity.

2 Not Described
No input
validity
checking

Not recorded: There is not a
formal document prepared after
the meeting, also minutes of
meeting does not generally
exist.

Not recorded: There is not a
formal document prepared
after the meeting, also minutes
of meeting does not generally
exist.

3 Not Described
No input
validity
checking

Not recorded Not recorded

 96

BAPPENDIX B

TO-BE STATIC PROCESS DEFINITIONS

B.1 TO-BE Software Requirements Analysis Process

Table B-1-1 TO-BE Software Requirements Analysis Process

No Activity Name Activity Definition Staff

Forms/ Documents/
Archival Records/
Tools/ Applications/
Other Medias

1
Allocation
Meeting

System requirements
allocated to software are
identified and documented in
Allocation Document in a
series of meetings.

Project
Manager,
Department
Managers,
Design
Leaders

Conversation, TSD,
PDD, SysRD (if
exists), Minutes of
Allocation Meeting,
Allocation Document

2

Send TSD,
PDD, SysRD
and Allocation
Document for
review

ESD Manager sends TSD,
PDD, SysRD (if exists) and
Allocation Document to
design leaders in ESD in
order to ask their opinions on
feasibility of system
requirements allocated to
software.

ESD
Manager,
Design
Leaders

TSD, PDD,
SysRD (if exists),
Allocation Document
E-mail

3

Review TSD,
PDD, SysRD
(if exists) and
Allocation
Document

Design leaders in ESD review
TSD, PDD, SysRD (if exists)
and Allocation Document and
send their opinions on
feasibility of system
requirements allocated to
software to ESD Manager.

ESD
Manager,
Design
Leaders

TSD, PDD, SysRD (if
exists), Allocation
Document,
E-mail

 97

Table B-1-1 Continued

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival
Records/ Tools/
Applications/
Other Medias

4 Feasibility meeting

Collected opinions on feasibility
of system requirements
allocated to software are
evaluated in the feasibility
meeting.

ESD
Manager,
Design
Leaders

Conversation,
Minutes of
Feasibility Meeting

5

Decide whether
TSD, PDD or
SysRD (if exists)
should be
changed or not

ESD Manager decides whether
TSD, PDD or SysRD (if exists)
should be changed or not,
according to the discussions in
the feasibility meeting.

ESD
Manager -

6
Send change
requests

If ESD Manager thinks that TSD,
PDD or SysRD (if exists) should be
changed, he prepares System
Requirement Change Request
Document (SRCRD) and sends it
to Project Manager via e-mail.

ESD
Manager,
Project
Manager

System
Requirement
Change Request
Document, E-mail

7

High level
software
requirements
meeting

High level software
requirements are identified by
ESD Manager and design
leaders.

ESD
Manager,
Design
Leaders

Conversation,
Minutes of High
Level Software
Requirements
Meeting

8
Prepare/Update
SRS and RTM

Identified high level
requirements are stored with a
unique number in a database
by the help of a requirements
management tool. SRS and
RTM are prepared/updated
using the tool.

Design
Leaders

Requirements
Management Tool,
SRS Template,
RTM Template,
SRS, RTM

9
Review & Update
SRS and RTM

ESD Manager reviews SRS
and RTM in order to ensure
that the requirements are
correct, unambiguous,
complete, consistent, traceable
and verifiable. ESD Manager
uses Requirements Review
Guideline and the requirements
management tool while
reviewing and updating SRS
and RTM.

ESD
Manager

Requirements
Management Tool,
Requirements
Review Guideline,
SRS Template,
RTM Template,
SRS, RTM

 98

Table B-1-1 Continued

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival Records/
Tools/
Applications/
Other Medias

10

Decide whether all
high level software
requirements are
clear enough to
proceed with
determining low
level software
requirements or not

High level software
requirements meetings are
repeated until ESD Manager
thinks that all high level
software requirements are
clear enough to proceed with
determining low level
software requirements.

ESD
Manager

-

11
Low level software
requirements
meeting

High level requirements are
analyzed and elaborated to
identify detailed low level
software requirements. To
capture requirements, use-
case analysis is done by the
help of a UML modeling tool.

Unit
Leader,
Developers

Conversation,
Minutes of Low
Level Software
Requirements
Meeting, UML
Modeling Tool,
UML Use-Case
Models

12
Update SRS and
RTM

Identified low level
requirements are stored with
a unique number in a
database by the help of a
requirements management
tool. SRS and RTM are
updated using the tool.

Developers

Requirements
Management Tool,
SRS Template,
RTM Template,
SRS, RTM

13
Review & Update
SRS and RTM

Unit Leader reviews SRS
and RTM in order to ensure
that the requirements are
correct, unambiguous,
complete, consistent,
traceable and verifiable. Unit
Leader uses Requirements
Review Guideline and the
requirements management
tool while reviewing and
updating SRS and RTM.

Unit Leader

Requirements
Management Tool,
Requirements
Review Guideline,
SRS Template,
RTM Template,
SRS, RTM

14

Decide whether all
low level
requirements are
clear enough to
proceed with
design or not

Low level software
requirements meetings are
repeated for every module
until unit leader thinks that
all low level requirements
are clear enough to proceed
with design.

Unit Leader -

 99

Table B-1-1 Continued

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival Records/
Tools/
Applications/
Other Medias

15

Hardware
interface
requirements
meeting

Hardware interface
requirements are determined
in a meeting attended by
hardware engineers,
developers and the unit
leader that is responsible for
the software module
interfacing hardware.

Unit Leader,
Developers,
Hardware
Engineers

Conversation,
Minutes of
Hardware Interface
Requirements
Meeting

16
Update SRS and
RTM

Identified hardware interface
requirements are stored with
a unique number in a
database by the help of a
requirements management
tool. SRS and RTM are
updated using the tool.

Developers

Requirements
Management Tool,
SRS Template,
RTM Template,
SRS, RTM

17
Review & Update
SRS and RTM

Unit Leader reviews SRS
and RTM in order to ensure
that the requirements are
correct, unambiguous,
complete, consistent,
traceable and verifiable. Unit
Leader uses Requirements
Review Guideline and the
requirements management
tool while reviewing and
updating SRS and RTM.

Unit Leader

Requirements
Management Tool,
Requirements
Review Guideline,
SRS Template,
RTM Template,
SRS, RTM

18

Decide whether
all hardware
interface
requirements are
clear enough to
proceed with
design or not

Hardware interface
requirements meetings are
repeated for each module
interfacing hardware until the
related unit leader thinks that
all hardware interface
requirements for a module
are clear enough to proceed
with design.

Unit Leader -

19

Meeting to
determine
software modules
to be re-used

Software modules to be re-
used are determined.

Unit Leader,
Developers

Conversation,
Minutes of Re-use
Meeting

20

Decide whether it
is necessary to
make some
modifications to
the modules to be
re-used

Unit Leader decides whether
it is necessary to make some
modifications to the modules
to be re-used.

Unit Leader -

 100

Table B-1-1 Continued

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival Records/
Tools/
Applications/
Other Medias

21

Get the
requirements of
the modules to
be re-used

If unit leader thinks that it is
necessary to make some
modifications to the modules to
be re-used, the requirements
of the modules are gathered
from the related RTM and SRS
using the requirements
management tool.

Unit Leader

Requirements
Management Tool,
SRS, RTM,
Requirements Re-
use Report

22

Update SRS and
RTM with the
modified
requirements of
the modules to
be re-used

Requirements of the modules
to be re-used are modified and
stored with a unique number in
a database by the help of a
requirements management
tool. SRS and RTM are
updated using the tool.

Developers

Requirements
Management Tool,
Requirements Re-
use Report, SRS
Template, RTM
Template, SRS,
RTM

23
Review &
Update SRS
and RTM

Unit Leader reviews SRS and
RTM in order to ensure that the
requirements are correct,
unambiguous, complete,
consistent, traceable and
verifiable. Unit Leader uses
Requirements Review
Guideline and the
requirements management tool
while reviewing and updating
SRS and RTM.

Unit Leader

Requirements
Management Tool,
Requirements
Review Guideline,
SRS Template,
RTM Template,
SRS, RTM

24

Decide whether
a proof-of-
concept (throw-
away) prototype
exists or not

ESD Manager decides whether
a proof-of-concept (throw-
away) prototype exists or not
(Very simple decision but
exists as an activity for the
sake of completeness).

ESD
Manager

-

25

Update SRS and
RTM according
to evaluation of
the prototype

If a proof-of-concept (throw-
away) prototype exists, stored
software requirements are
updated according to
customer’s requests and
evaluation of the prototype by
the help of a requirements
management tool. SRS and
RTM are updated using the
tool.

Design
Leaders

Customer Prototype
Evaluation Report,
Requirements
Management Tool,
SRS Template,
RTM Template,
SRS, RTM

 101

Table B-1-1 Continued

No
Activity
Name Activity Definition Staff

Forms/ Documents/
Archival Records/
Tools/ Applications/
Other Medias

26

Review &
Update
SRS and
RTM

ESD Manager reviews SRS and RTM
in order to ensure that the
requirements are correct,
unambiguous, complete, consistent,
traceable and verifiable. ESD
Manager uses Requirements Review
Guideline and the requirements
management tool while reviewing and
updating SRS and RTM.

ESD
Manager

Requirements
Management Tool,
Requirements Review
Guideline, SRS
Template, RTM
Template, SRS, RTM

 102

B.2 TO-BE Software Requirements Change Management

Process

Table B-2-1 TO-BE Software Requirements Change Management

Process

No Activity Name Activity Definition Staff

Forms/
Documents/
Archival
Records/ Tools/
Applications/
Other Medias

1
Receive a
requirement
change request

ESD Manager receives a
requirement change request. It
may be written or oral, and
sourced by system engineers or
customer.

ESD
Manager

Requirement
Change Request
(Written or oral),
E-mail,
Telephone,
Interview with
customer

2

Prepare
Requirement
Change Request
Report

A design leader assigned by
ESD Manager prepares
Requirement Change Request
Report (RCRR), which contains
the unique numbers of the
requirements to be changed. The
design leader also looks up the
RTM using the requirements
management tool to find out
which requirements and which
modules depend on the
requirements to be changed, and
adds the unique numbers of
these requirements and modules
to RCRR.

Design
Leader

Requirements
Management
Tool, RCRR, RTM

3

Meeting on
feasibility of the
requirement
change request

Feasibility of the requirement
change request is analyzed in a
meeting attended by ESD
Manager and related design
leaders.

ESD
Manager,
Design
Leaders

Conversation,
RCRR, Minutes of
Feasibility Meeting

4

Decide whether
the requirement
change is
acceptable,
partially
acceptable or not
acceptable.

ESD Manager and design
leaders decide whether the
requirement change is
acceptable, partially acceptable
or not acceptable.

ESD
Manager,
Design
Leaders

-

 103

Table B-2-1 Continued

No
Activity
Name

Activity Definition Staff

Forms/
Documents/
Archival Records/
Tools/
Applications/ Other
Medias

5

Accept the
requirement
change
request

If ESD Manager and design leaders
conclude that the requirement
change request is feasible, ESD
Manager accepts it by replying the
source of change request via
telephone or e-mail. The decision of
acceptance of the request is added
to RCRR.

ESD
Manager

E-mail, Telephone,
RCRR

6

Partially
accept the
requirement
change
request

If ESD Manager and design leaders
conclude that the requirement
change request is partially feasible,
ESD Manager partially accepts it by
replying the source of change
request via telephone or e-mail.
The decision of partial acceptance
of the request is added to RCRR.
Also, an explanation about the parts
of the request that are accepted is
added to RCRR.

ESD
Manager

E-mail, Telephone,
RCRR

7

Reject the
requirement
change
request

If ESD Manager and design leaders
conclude that the requirement
change request is infeasible, ESD
Manager rejects it by replying the
source of change request via
telephone or e-mail. The decision of
rejection of the request is added to
RCRR.

ESD
Manager

E-mail, Telephone,
RCRR

8
Update SRS
and RTM

A design leader assigned by ESD
Manager updates SRS and RTM
according to the accepted change
request using the requirements
management tool.

Design
Leader

Requirements
Management Tool,
RCRR, SRS
Template, RTM
Template, SRS,
RTM

9
Review &
Update SRS
and RTM

ESD Manager reviews SRS and
RTM in order to ensure that the
requirements are correct,
unambiguous, complete, consistent,
traceable and verifiable. ESD
Manager uses Requirements
Review Guideline and the
requirements management tool
while reviewing and updating SRS
and RTM.

ESD
Manager

Requirements
Management Tool,
Requirements
Review Guideline,
RCRR, SRS
Template, RTM
Template, SRS,
RTM

 104

CAPPENDIX C

TO-BE PROCESS MEASUREMENT DETAILS

C.1 TO-BE Software Requirements Analysis Process

Measurement Details

Table C-1-1 TO-BE Analysis Process Metrics 1-3

Activity
Number

Complexity
(1)

Coupling
(2)

Failure
Avoidance

(3)

1 No decision

There is an interaction with the software
project management and systems
engineering processes. TSD, PDD and
SysRD (if exists) should have been prepared
before the allocation meeting. Project
manager as well as managers and design
leaders from all related departments attend
the allocation meeting.

No review, inspection,
checkpoint or similar
techniques

2, 4, 7,
11, 19,
21

No decision No interaction
No review, inspection,
checkpoint or similar
techniques

3 No decision No interaction
Design leaders in ESD
review TSD, PDD and
SysRD (if exists).

5

Unstructured Decision:
Deciding whether TSD,
PDD or SysRD should
be changed or not is a
complex task.

No interaction
No review, inspection,
checkpoint or similar
techniques

6 No decision

There is an interaction with the software
project management process. If ESD
Manager thinks that TSD, PDD or SysRD
should be changed, he sends change
requests to Project Manager.

No review, inspection,
checkpoint or similar
techniques

8, 12, 16,
22

No decision No interaction
SRS and RTM are
prepared using SRS
and RTM Templates

9, 13, 17,
23, 26

No decision No interaction

SRS and RTM are
reviewed using the
Requirements Review
Guideline, SRS
Template and RTM
Template

 105

Table C-1-1 Continued

Activity
Number

Complexity
(1)

Coupling
(2)

Failure
Avoidance

(3)

10

Unstructured Decision: Deciding
whether all high level software
requirements are clear enough to
proceed with determining low level
software requirements or not is a
complex task.

No interaction

No review,
inspection,
checkpoint or
similar techniques

14

Unstructured Decision: Deciding
whether all low level requirements
are clear enough to proceed with
design or not is a complex task.

No interaction

No review,
inspection,
checkpoint or
similar techniques

15 No decision

There is an interaction with the
hardware engineering process.
Hardware engineers attend the interface
requirements meeting.

No review,
inspection,
checkpoint or
similar techniques

18

Unstructured Decision: Deciding
whether all hardware interface
requirements are clear enough to
proceed with design or not is a
complex task.

No interaction

No review,
inspection,
checkpoint or
similar techniques

20

Unstructured Decision: Deciding
whether it is necessary to make
some modifications to the modules
to be re-used is a complex task.

No interaction

No review,
inspection,
checkpoint or
similar techniques

24

Structured Decision: Deciding
whether a proof-of-concept (throw-
away) prototype exists or not is a
very simple decision. It simply exists
or not.

No interaction

No review,
inspection,
checkpoint or
similar techniques

25 No decision

There is an interaction with the
customer’s evaluation of the proof-of-
concept prototype process. Customer’s
requests resulted from the evaluation of
the prototype are used to update
software requirements.

SRS and RTM
are prepared
using SRS and
RTM Templates

 106

Table C-1-2 TO-BE Analysis Process Metrics 4-5

Activity
Number

Restorability (4)
Restoration

Effectiveness (5)

1 Recorded: Minutes of Allocation Meeting and
Allocation Document are prepared.

Restorable: Word documents are stored
in PVCS Database

2, 3 Recorded: E-mail is stored in the
network.

Restorable: E-mail is stored in the
network

4 Recorded: Minutes of Feasibility Meeting is
prepared.

Restorable: Word documents are stored
in PVCS Database

5, 10, 14, 18, 20,
24

Not recorded No restoration

6
Recorded: System Requirement Change
Request Document and e-mail are stored in
the network.

Restorable: Word documents are stored
in PVCS Database, e-mail is stored in the
network

7 Recorded: Minutes of High Level Software
Requirements Meeting is prepared.

Restorable: Word documents are stored
in PVCS Database

8, 9, 12, 13, 16,
17, 22, 23, 25, 26 Recorded: SRS and RTM are updated.

Restorable: SRS and RTM are stored in
Requirements Management Tool
Database.

11 Recorded: Minutes of Low Level Software
Requirements Meeting is prepared.

Restorable: Word documents and UML
Models are stored in PVCS Database

15 Recorded: Minutes of Hardware Interface
Requirements Meeting is prepared.

Restorable: Word documents are stored
in PVCS Database

19 Recorded: Minutes of Re-use Meeting is
prepared.

Restorable: Word documents are stored
in PVCS Database

21 Recorded: Requirements Re-use Report is
prepared.

Restorable: Word documents are stored
in PVCS Database

 107

Table C-1-3 TO-BE Analysis Process Metrics 6-9

Activity
Number

Functional
Adequacy

(6)

Functional
Completeness

(7)

IT
Usage

(8)

IT
Density

(9)

1, 4, 7, 15,
19 Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
preparing and
storing
documents.

Documents are prepared with
Microsoft Word and stored in
PVCS Database

2, 3 Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
sending e-mail.

E-mail is sent with Microsoft
Outlook

5, 10, 14,
18, 20, 24

Adequate

This metric is
measured using on-
paper process
definitions.

No IT usage No documents

6 Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
preparing, storing
documents and
sending e-mail.

Documents are prepared with
Microsoft Word and stored in
PVCS Database; e-mail is sent
with Microsoft Outlook

8, 9, 12, 13,
16, 17, 22,
23, 25, 26

Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
preparing and
storing
documents.

SRS and RTM are prepared and
stored in Requirements
Management Tool Database.

11 Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
preparing and
storing
documents.

Documents are prepared with
Microsoft Word, UML Use-Case
Models are prepared with UML
Modeling Tool and all of them are
stored in PVCS Database

21 Adequate

This metric is
measured using on-
paper process
definitions.

IT usage in
searching,
preparing and
storing
documents.

Requirements to be re-used are
found using Requirements
Management Tool, documents
are prepared with Microsoft Word
and stored in PVCS Database

 108

Table C-1-4 TO-BE Analysis Process Metrics 10-13

Activity
Number

Computational
Accuracy (10)

Data
Exchangeability (11)

Access
Auditability

(12)

Functional
Understandability (13)

1
No accuracy
requirements defined in
the regulatory documents

No change is
performed on TSD,
PDD and SysRD (if
exists) before using
them.

Auditable:
PVCS
Database

Difficulties and
misunderstandings in
allocating system
requirements to software
requirements, since SysRD
does not always exist and
PDD is used instead

2, 3
No accuracy
requirements defined in
the regulatory documents

No interaction
Auditable: E-
mail

No difficulties or
misunderstandings

4, 21
No accuracy
requirements defined in
the regulatory documents

No interaction
Auditable:
PVCS
Database

No difficulties or
misunderstandings

5, 20, 24
No accuracy
requirements defined in
the regulatory documents

No interaction
No access to
data

No difficulties or
misunderstandings

6
No accuracy
requirements defined in
the regulatory documents

There is an
interaction, but no
data is received from
other processes, data
is sent to other
processes.

Auditable:
PVCS
Database, E-
mail

No difficulties or
misunderstandings

7
No accuracy
requirements defined in
the regulatory documents

No interaction
Auditable:
PVCS
Database

Difficulties and
misunderstandings in
determining high level
software requirements

8, 12,
16, 22

No accuracy
requirements defined in
the regulatory documents

No interaction

Auditable:
Requirements
Management
Tool

No difficulties or
misunderstandings

9, 13,
17, 23,
26

According to on-paper
process, software
requirements should be
reviewed in order to
verify that they are
complete, consistent,
traceable and
acceptable. This
requirement is
implemented.

No interaction

Auditable:
Requirements
Management
Tool

No difficulties or
misunderstandings

10
No accuracy
requirements defined in
the regulatory documents

No interaction
No access to
data

Difficulties and
misunderstandings in
deciding whether all high
level software requirements
are clear enough to
proceed with determining
low level software
requirements or not

11
No accuracy
requirements defined in
the regulatory documents

No interaction
Auditable:
PVCS
Database

Difficulties and
misunderstandings in
determining low level
software requirements

14
No accuracy
requirements defined in
the regulatory documents

No interaction No access to
data

Difficulties and
misunderstandings in
deciding whether all low
level requirements are clear
enough to proceed with
design or not

 109

Table C-1-4 Continued

Activity
Number

Computational
Accuracy (10)

Data Exchangeability
(11)

Access
Auditability (12)

Functional
Understandability (13)

15

No accuracy
requirements
defined in the
regulatory
documents

Data received from
hardware engineers is
converted into software
requirements.

Auditable: PVCS
Database

Difficulties and
misunderstandings in
determining hardware
interface requirements

18

No accuracy
requirements
defined in the
regulatory
documents

No interaction
No access to
data

Difficulties and
misunderstandings in deciding
whether all hardware interface
requirements are clear enough
to proceed with design or not

19

No accuracy
requirements
defined in the
regulatory
documents

No interaction
Auditable: PVCS
Database

Difficulties and
misunderstandings in
determining modules to be re-
used

25

No accuracy
requirements
defined in the
regulatory
documents

Customers’ requests
are converted into
technical software
requirements.

Auditable:
Requirements
Management
Tool

Difficulties and
misunderstandings in
converting customers’
requests into technical
software requirements.

Table C-1-5 TO-BE Analysis Process Metrics 14-17

Activity
Number

Existence in
Documents

(14)

Input
Validity

Checking
(15)

Undoability (16) Attractive Interaction (17)

1, 4, 7, 11,
15, 19

Described in
documents

No input
validity
checking

Undoable: Word and
PVCS usage

Attractive Interaction: There is a
template for Minutes of
Meeting.

2, 3 Described in
documents

No input
validity
checking

Undoable: E-mail can be
called back.

Not attractive interaction: It is
an ordinary e-mail; there is not
a template prepared for this
activity.

5, 10, 14, 18,
20, 24

Described in
documents

No input
validity
checking

Not recorded
No interaction with documents
or archival records.

6 Described in
documents

No input
validity
checking

Undoable: Word, PVCS
and e-mail usage.

Attractive Interaction: There is a
template for System
Requirement Change Request
Document

8, 9, 12, 13,
16, 17, 22,
23, 25, 26

Described in
documents

No input
validity
checking

Undoable: Requirements
Management Tool
usage.

Attractive Interaction: SRS and
RTM are updated using
templates and Requirements
Management Tool.

21 Described in
documents

No input
validity
checking

Undoable: Requirements
Management Tool, Word
and PVCS usage.

Attractive Interaction:
Requirements Management
Tool is used.

 110

C.2 TO-BE Software Requirements Change Management

Process Measurement Details

Table C-2-1 TO-BE Change Management Process Metrics 1-3

Activity

Number

Complexity

(1)

Coupling

(2)

Failure

Avoidance

(3)

1 No decision

There is an interaction with the systems

engineering process. Requirement

change request may be sourced by

system engineers. It may also be

sourced by customers; they may request

some changes during development or

maintenance phases.

No review, inspection,

checkpoint or similar

techniques

2, 3 No decision No interaction

No review, inspection,

checkpoint or similar

techniques

4

Unstructured Decision:

Deciding whether the

requirement change is

acceptable, partially

acceptable or not acceptable

is a complex task.

No interaction

No review, inspection,

checkpoint or similar

techniques

5, 6, 7 No decision

There is an interaction with the systems

engineering process. The reply to the

requirement change request is sent to

the source of the request which may

either be the systems engineers or the

customer.

No review, inspection,

checkpoint or similar

techniques

8 No decision No interaction

SRS and RTM are

prepared using SRS and

RTM Templates

9 No decision No interaction

SRS and RTM are

reviewed using the

Requirements Review

Guideline, SRS

Template and RTM

Template

 111

Table C-2-2 TO-BE Change Management Process Metrics 4-5

Activity

Number
Restorability (4)

Restoration

Effectiveness

(5)

1 Recorded: E-mail is stored in the network. Restorable

2 Recorded: Requirement Change Request Report (RCRR) is stored in PVCS. Restorable

3 Recorded: Minutes of Feasibility Meeting is stored in PVCS Database. Restorable

4 Not recorded No restoration

5, 6, 7 Recorded: E-mail is stored in the network, RCRR is stored in PVCS Database. Restorable

8, 9
Recorded: SRS and RTM are stored in Requirements Management Tool

Database.
Restorable

 112

Table C-2-3 TO-BE Change Management Process Metrics 6-9

Activity

Number

Functional

Adequacy

(6)

Functional

Completeness

(7)

IT

Usage

(8)

IT

Density

(9)

1 Adequate

This metric is

measured using on-

paper process

definitions.

IT usage in sending

e-mail.

E-mail is sent with Microsoft

Outlook.

2 Adequate

This metric is

measured using on-

paper process

definitions.

IT usage in

preparing and

storing documents.

RCRR is prepared using

Requirements Management Tool

and Microsoft Word. RCRR is

stored in PVCS Database.

3 Adequate

This metric is

measured using on-

paper process

definitions.

IT usage in

preparing and

storing documents.

Minutes of Meeting is prepared

with Microsoft Word and stored

in PVCS Database.

4 Adequate

This metric is

measured using on-

paper process

definitions.

Not recorded No documents

5, 6, 7 Adequate

This metric is

measured using on-

paper process

definitions.

IT usage in sending

e-mail, preparing

and storing

documents.

RCRR is updated using Microsoft

Word and stored in PVCS

Database. E-mail is sent with

Microsoft Outlook.

8, 9 Adequate

This metric is

measured using on-

paper process

definitions.

IT usage in

preparing and

storing documents.

SRS and RTM are prepared and

stored in Requirements

Management Tool Database.

 113

Table C-2-4 TO-BE Change Management Process Metrics 10-13

Activity

Number

Computational Accuracy

(10)

Data Exchangeability

(11)

Access

Auditability

(12)

Functional

Understandability

(13)

1

No accuracy requirements

defined in the regulatory

documents

Requirement change

requests are received

from system engineers

or customers. The

requests can be written

or oral. Data conversion

is done in the next

activity.

Auditable: E-

mail

Difficulties and

misunderstandings in

requirement change

requests

2

The unique numbers

corresponding to the

requirements that are

requested to be changed

should be found. Also, the

unique numbers of

requirements and modules

that depend on the

requirements to be changed

should be found. These are

done in the activity.

The unique numbers

corresponding to the

requirements that are

requested to be changed

are found.

Auditable:

Requirements

Management

Tool, PVCS

No difficulties or

misunderstandings

3

No accuracy requirements

defined in the regulatory

documents

No interaction
Auditable:

PVCS

No difficulties or

misunderstandings

4

No accuracy requirements

defined in the regulatory

documents

No interaction
No access to

data

No difficulties or

misunderstandings

5, 6, 7

No accuracy requirements

defined in the regulatory

documents

There is an interaction,

but no data is received

from other processes,

data is sent to other

processes.

Auditable: E-

mail, PVCS

No difficulties or

misunderstandings

8

No accuracy requirements

defined in the regulatory

documents

No interaction

Auditable:

Requirements

Management

Tool

No difficulties or

misunderstandings

 114

Table C-2-4 Continued

Activity

Number
Computational Accuracy (10)

Data

Exchangeability

(11)

Access

Auditability (12)

Functional

Understandability

(13)

9

According to on-paper process,

software requirements should be

reviewed in order to verify that they

are complete, consistent, traceable

and acceptable. This requirement

is implemented.

No interaction

Auditable:

Requirements

Management

Tool

No difficulties or

misunderstandings

 115

Table C-2-5 TO-BE Change Management Process Metrics from 14-17

Activity

Number

Existence in

Documents

(14)

Input Validity Checking

(15)
Undoability (16) Attractive Interaction (17)

1
Described in

documents
No input validity checking

Undoable: E-mail can

be called back.

Not attractive interaction: It

is an ordinary e-mail; there

is not a template prepared

for this activity.

2
Described in

documents

Input validity checking:

Checking whether there

exist requirements

corresponding to the

change request.

Undoable:

Requirements

Management Tool,

PVCS, Word usage

Attractive interaction:

Requirements

Management Tool, PVCS

and Word usage

3
Described in

documents
No input validity checking

Undoable: PVCS,

Word usage

Attractive interaction:

PVCS and Word usage

4
Described in

documents
No input validity checking Not recorded

No interaction with

documents or archival

records.

5, 6, 7
Described in

documents
No input validity checking

Undoable: E-mail can

be called back;

PVCS and Word

usage

Attractive interaction:

PVCS and Word usage.

8, 9
Described in

documents
No input validity checking

Undoable:

Requirements

Management Tool

usage

Attractive Interaction: SRS

and RTM are updated

using templates and

Requirements

Management Tool.

