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Prof. Dr. İsmail Hakkı Tuncer

Head of Department, Aerospace Engineering

Prof. Dr. Yusuf Özyörük
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ABSTRACT

ASSESSMENT OF AN ITERATIVE APPROACH FOR SOLUTION OF FREQUENCY

DOMAIN LINEARIZED EULER EQUATIONS FOR NOISE PROPAGATION THROUGH

TURBOFAN JET FLOWS

Dı̇zemen, İlke Evrı̇m

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Yusuf Özyörük

December 2007, 45 pages

This study, explores the use of an iterative solution approach for the linearized Euler equations

formulated in the frequency domain for fan tone noise propagation and radiation through bypass

jets. The aim is to be able to simulate high frequency propagation and radiation phenomena

with this code, without excessive computational resources. All computations are performed

in parallel using MPI library routines on a computer cluster. The linearized Euler equations

support the Kelvin-Helmholtz type convective physical instabilities in jet shear flows. If these

equations are solved directly in frequency domain, the unstable modes may be filtered out for

the frequencies of interest. However, direct solutions are memory intensive and the reachable

frequency is limited. Results provided shown that iterative solution of LEE is more efficient

when considered memory requirement and might solve a wider scope of frequencies, if the

instabilities are controlled.

Keywords: Aeroacoustic, Propagation, Iterative Methods, Frequency Domain, Kelvin-Helmholtz

Instability.
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ÖZ

TURBOFAN JET AKIŞLARI BOYUNCA YAYILAN GÜRÜLTÜNÜN FREKANS

ALANINDA DOĞRUSALLAŞTIRILMIŞ EULER DENKLEMLERİ İLE ÇÖZÜMÜNDE

YENİLEMELİ YÖNTEMİN DEĞERLENDİRİLMESİ

Dı̇zemen, İlke Evrı̇m

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Yusuf Özyörük

Aralık 2007, 45 sayfa

Bu çalışmada, paralel jet akışları boyunca yayılan gürültünün frekans alanında doğrusallaştırılmış

Euler denklemleri (DED) ile çözümünde yenilemeli yöntemin kullanımı incelenmiştir. Geliştirilen

kod ile yüksek frekanslarda sesin yayılımını aşırı bilgisayar gücü gerektirmeden modellemek

amaçlandı. Bütün hesaplamalar MPI kütüphanesı kullanılarak gerçekleştirildi. Doğrusallaştırılmış

Euler denklemleri jet akışı karışım bölgesinde Kelvin-Helmholtz tipi yayılan fiziksel düzensizlikleri

desteklemektedir. Bu denklemler frekans alanında doğrudan çözüldüğü taktirde incelenen

frekanslar için bu düzensizlikler elenebilir. Ancak doğrudan çözümler bilgisayar hafızası ihtiyacı

açsından hasastır ve çözülebilen frekans aralığı limitlidir. Sunulan sonuçlar DED’nin yenilemeli

yöntem ile çözümünün bilgisayar hafızası ihtiyacı ve daha geniş bir frekans aralığında çözüm elde

edilebilmesi göz önüne alındığında düzensizliklerin daha verimli kontrol edildiğini göstermektedir.

Anahtar Kelimeler: Aeroakustik, Yayılma, Yenilemeli Metod; Frekans Alanı, Kelvin-Helmhotz

Düzensizliği.
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PREFACE

The sound radiation became a critical issue with increasing air traffic. Researchers in

this area cleared some aspects of noise radiation from aircraft problem. Today, although the

developed methods are qualified the noise restrictions around some airports force researches

to make quieter models. Frequency domain proved its ability on impedance boundaries. The

iterative method applied in this study also help the method to make simulate noise radiation

with less computational memory requirements.

You can report all comments to the following e-mail address:

İlke Evrim Dizemen

gudik@ae.metu.edu.tr

All comments are welcome.

METU, Ankara

January 2008
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Modern airliners of today are commonly using turbofan engines. Due to the increasing by-pass

ratio, fan diameter and fan loads the sound generated by and propagated from the turbofan

engines increased significantly. This high noise level of turbofan engines is an important problem

for the passengers onboard and the people living around airports. Especially for the people

living under the the takeoff/landing pattern of airports (as shown in fig. 1.1) the noise levels of

turbofan engines may be unacceptable during intense air traffic hours. Hence, noise emission

from turbofan engines is an up-to-date topic of research. But there is still a need for significant

effort to reduce the sound emitted from the exhaust section of turbofan engines. There are

various challenges in predicting noise propagation and radiation through highly nonuniform

exhaust flows of such engines. The prediction of sound from such flows has two stages. One is

the characterization of the source which is in the scope of generation studies and the other is

the propagation through the sheared layer. The real challenge of the noise emitted by exhaust

section of turbofan engines is there occurs in a jet mixing layer. Noise issuing from an exhaust

duct must propagate through jet shear layers before it radiates to far-field as shown in fig. 1.2

from [2]. Prediction of noise propagation through jets is not straightforward, as shear related

physical instabilities may be captured and alias propagated fan tones.
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Figure 1.1: ICAO Annex 16 Certification, take-off and landing profile [1].

Figure 1.2: Jet Noise Schematic [2].

Acoustic perturbations are so small compared to the background (mean) flow that their

contribution to the unsteady jet flow itself is negligible as stated by P.J. Morris et al. [3].

Therefore acoustic waves can be described by using linearized flow equations. Additionally,

since the viscosity has a negligible effect on sound propagation, the viscous terms can also be

neglected. Neglecting the viscous terms from flow equations results in the Euler equations. By

linearizing the Euler equations about a time averaged flow (namely background or mean flow)

one can realistically describe the sound propagation in a moving medium.

However, in addition to sound waves, the linearized Euler equations also support convective

instabilities that, for a jet, are known as Kelvin-Helmholtz instabilities [3]. In a temporal

calculation these convective instabilities can completely ruin the acoustic wave solution as they

propagate downstream. On the contrary, direct solution of LEE in frequency domain does not
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support the Kelvin-Helmholtz instability waves as shown by P.J. Morris et al. [3]. However,

the direct solution of LEE equations require excessive computational resources, in particular

memory. Memory need for an example calculation with a direct method in frequency domain

using SuperLU and MUMPS are shown by Özyörük and Dizemen [4] as in Table 1.1.

Table 1.1: Direct Solution Results

CASE

SuperLU MUMPS
Peak memory Wall clock Peak memory Wall clock
per process time per process time

(Mb.) (seconds) (Mb.) (seconds)
1 85 152 126 25
2 442 466 459 76
3 3994 6371 2533 451

Iterative solution of LEE in frequency domain can be considered when the computational

power is the matter of concern. With decreased memory requirement larger solution domains

or higher frequencies can be investigated. However, iterative solution might support instability

waves and can ruin the solution at some frequencies. As shown by Michalke [5] radiation

throughout an inviscid shear layer will be stable if the frequency of the acoustic wave is large

enough. Assuming an incompressible, isothermal, parallel shear layer between a jet and a fluid

at rest for stable solution the frequency of the acoustic wave should satisfy

ωθm

U0
> 0.25 (1.1)

where θm is the momentum thickness of the shear layer, U0 is the jet velocity and ω is the

circular frequency. Using the formula of Michalke one can predict the minimum frequency

of the acoustic wave that might be solved using LEE without running into Kelvin-Helmholtz

instabilities. It should be noted that the formula of Michalke is valid if the shear layer is thin

enough, namely θm < 0.08R where R is the jet radius.

1.2 Thesis Scope and Outline

The scope of this study is to develop an iterative solution approach for the linearized Euler

equations formulated in the frequency domain for fan tone noise propagation and radiation

through bypass jets. The aim is to be able to see the frequency capabilities of an iterative

3



method in solution of propagation and radiation through high speed jets mixing layer, without

excessive computational resources and filtering the instability waves. There are several possi-

bilities for iterative approaches in the literature. Linearization of the Euler equations is made

about a mean flow that comes from CFD solutions, so that its effects on sound propagation

are included in computations more realistically. In the present study the iterative approach

described by Y.B. Ulusoy [6] is extended to realistic engine geometries. Parallelization method-

ology of distributed memory architectures with domain decomposition and the Message Passing

Interface (MPI) for inter-processor communications appliedin this code. Solution domain is di-

vided into subdomains of nearly equal grid point loads for equal solution times among the

subdomains. The equality of the solution time is important since the lag between the com-

munication of each subdomain might significantly increase the overall solution time. It would

be particularly important for exhaust radiation from turbofans that the shear layer emanating

from the shroud of the engine may cause significant diffraction and refraction of the emitted

sound waves. Hence, mathematical modelling of the shear layer growing throughout the trailing

edge of exhaust nacelles has great importance.

Today, either experimental or 3-D numerical direct methods are so difficult to handle. Fre-

quency domain approach may be applied with an iterative method for the solution of system of

equations. Direct solution of discretized equations also requires large amount of memory which

limits the reachable size of the solution domain.

Chapter 2 is about Mathematical Model applied throughout this study. In the chapter,

frequency domain equations are given. Applied Kirchhoff technique and boundary conditions

are also described in the chapter.

Chapter 3 describes the Numerical Method for solutions. This chapter also contains de-

scription of the parallel processing strategy applied.

Chapter 4 presents the results of and discussion on the test cases. This chapter also con-

tains the comparison of test cases with the results of the direct frequency domain LEE solver

FLESTURN developed by Özyörük et al. [7].

Chapter 5 will include conclusions from the study from a physical and numerical aspect.

4



CHAPTER 2

MATHEMATICAL MODEL

2.1 Introduction

In this chapter, the mathematical model employed to compute the frequency domain solution of

turbofan noise is summarized. In general, a mean flow is computed for steady state conditions.

Then, the obtained background flow is used for frequency domain solution. The full solution

domain is divided into sub-zones. The computations for each sub-zone are performed in parallel.

MPI message passing library routines are used in the parallel solution algorithm. For far-field

prediction Kirchhoff method is used. Additionally, non-reflecting boundary conditions , namely

Perfectly Matching Layer (PML) and Asymptotic Characteristic Based conditions are applied

to the far-field and duct inlet boundaries to defeat the wave reflections from these boundaries.

A generic overview of the solution domain is shown in figure 2.1.
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Figure 2.1: General configuration.

2.2 Governing Equations

2.2.1 Linearized Euler Equation

The linearized equations are given in cylindrical co-ordinates by,

∂ρ′

∂t
+ ρ0(

∂u′

∂x
+ ∂v′

∂r
+ v′

r
+ 1

r
∂w′

∂θ
) + u0

∂ρ′

∂x
+ v0(

∂ρ′

∂r
+ ρ′

r
) + ρ′(∂u0

∂x
+ ∂v0

∂r
) + u′ ∂ρ0

∂x
+ v′ ∂ρ0

∂r
= 0

∂u′

∂t
+ u0

∂u′

∂x
+ v0

∂u′

∂r
+ u′ ∂u0

∂x
+ v′ ∂u0

∂r
+ 1

ρ0

∂p′

∂x
= 0

∂v′

∂t
+ u0

∂v′

∂x
+ v0

∂v′

∂r
+ u′ ∂v0

∂x
+ v′ ∂v0

∂r
+ 1

ρ0

∂p′

∂x
= 0

∂w′

∂t
+ u0

∂w′

∂x
+ v0

∂w′

∂r
+ 1

ρ0r
∂p′

∂θ
+ v0w′

r
= 0

∂p′

∂t
+ u0

∂p′

∂x
+ v0

∂w′

∂r
+ u′ ∂p0

∂x
+ v′ ∂p0

∂r
+ γp0(

∂u′

∂x
+ ∂v′

∂r
+ v′

r
+ 1

r
∂u′

∂θ
) + γp′(∂u0

∂r
+ ∂v0

∂r
+ v0

r
) = 0

(2.1)

The 3-D, time domain, LEE equations are transformed into the frequency domain assuming

that perturbations of the primitive-dependent variables of the form;

q′(x, t) = ℜ [q̂ (x, r, ω)eiωt+imθ] (2.2)

where,

q′ = [ρ′, u′, v′, w′, p′]T , q̂ = [ρ̂, û, v̂, ŵ, p̂]T (2.3)

and i =
√
−1, ρ′, u′, v′, w′, p′ are density, velocity and pressure perturbations, respectively,

in the cylindrical (x,r,θ) coordinates. A hat on the variable indicates a complex quantity. In

Equation 2.2, ω is the circular frequency and integer m represents the azimuthal mode number.

Substitution of equation 2.2 into the linearized Euler equations 2.1, in cylindrical co-ordinates

the equations governing the complex amplitudes of the flow perturbations become,
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iωρ̂ + ρ0
∂v̂
∂r

+ v̂ ∂ρ0

∂r
+ v0

∂v̂
∂r

+ ρ̂∂v0

∂r
+ 1

r
(ρ0v̂ + v0ρ̂) + ρ0

∂û
∂x

+ û∂ρ0

∂x
+ u0

∂ρ̂
∂x

+ ρ̂∂u0

∂x
+ ρ0

im
r

ŵ = 0

iωû + u0
∂û
∂x

+ v0
∂û
∂r

+ û∂u0

∂x
+ v̂ ∂u0

∂r
+ 1

ρ0

∂p̂
∂x

= 0

iωv̂ + u0
∂v̂
∂x

+ v0
∂v̂
∂r

+ û∂v0

∂x
+ v̂ ∂v0

∂r
+ 1

ρ0

∂p̂
∂r

= 0

iωŵ + u0
∂ŵ
∂x

+ v0
∂ŵ
∂r

+ im
ρ0r

p̂ + v0ŵ
r

= 0

iωp̂ + u0
∂p̂
∂x

+ v0
∂p̂
∂r

+ û∂p0

∂x
+ v̂ ∂p0

∂r
+ γp0(

∂û
∂x

+ ∂v̂
∂r

+ v̂
r

+ im
r

ŵ) + γp̂(∂u0

∂x
+ ∂v0

∂r
+ v0

r
) = 0

(2.4)

where [ρ0, u0, v0, w0, p0]
T

represent the non-uniform, axisymmetric, mean flow variables. Look-

ing at equation 2.1 and equation 2.4, it can be seen that the latter one contains derivatives

only in (x,r). This difference results from azimuthal variations transformed to the terms multi-

plied by im. So frequency domain LEE has less gradient variables to compute, this reduces the

computational expense of full 3-D domain.

2.3 Boundary Conditions

In numerical simulations of problems, a set of equations is required to model boundary con-

ditions. These boundary conditions are applied all around the interior computational domain

where the flow equations are solved. While applying boundary conditions, the physics of a par-

ticular problem must be modelled correctly by required mathematical expressions. For some

particular problems, additional numerical boundary conditions may be required. The man-

ner in which boundary conditions are specified must be considered in the overall stability and

accuracy of numerical scheme used to solve the system. The boundary conditions can be ap-

plied explicitly or implicitly. They must allow the flow disturbances to leave the computational

domain without significant reflections. This is crucial in computational aeroacoustic (CAA),

since spurious acoustic waves generated by poor boundary condition application may mask the

physical sound field radiated. The applied boundary conditions are summarized below.

2.3.1 Acoustic source conditions

In order to excite the acoustic field, exact cylindrical duct eigensolutions are used at the fan face

which is assumed to be a deviation from the mean field. To obtain the following equation, wave
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equation is written in cylindrical coordinates and with help separation of variables technique

general solution in terms of Bessel equations is obtained. Acoustic pressure in hard-walled duct

at a constant x plane for a circular annular duct is given by,

p̂(r, θ) =
∑

m,µ

Am,µ[Jm(km,µr) + Qm,µYm(km,µr)]ei(mθ) (2.5)

where m and µ are the azimuthal and radial mode orders, respectively; Am,µ is the amplitude

of (m,µ) mode; Jm and Ym are the mth order Bessel functions of the first and second kinds,

respectively; km,µ are the eigenvalues that make the transcendental equation zero resulting from

the wall condition, ∂p
∂r

|wall = 0; Am,µ = −J ′

m,µ(σkm,µ)/Y ′

m,µ(σkm,µ) in which a prime indicates

a derivative with respect to r, and σ is the hub to tip ratio. When there is no center body

Qm,µ is zero. The azimuthal mode order m is found using the rotor stator interaction theory

of Taylor and Sofrin [8]. In this theory, the circumferential mode order m is obtained by,

m = nB + sV (2.6)

where B and V are the number of rotor blades and stator vanes, respectively, n is the time

harmonic index and s is any integer number. Once the number of rotor blades, the number

of exit guide vanes and the rotor speed are known, the modes that are cut on are determined

based on the local mean flow conditions at the source plane.

2.3.1.1 Characteristic-based inlet conditions

The non-reflecting boundary conditions of Giles [9] are adapted to the present work to introduce

the incident acoustic waves into the domain while letting outgoing ones leave it with minimal

reflection. The adopted conditions are given in the frequency domain by,

iωû + u0+c0

2ρ0c0

( ∂p̂
∂x

+ ρ0c0
∂û
∂x

) + (c0−u0)
4 (∂v̂

∂r
+ v̂

r
+ im

r
ŵ) = iω L1

ρ0c0

iωv̂ + u0
∂v̂
∂x

+ 1
ρ0

∂p̂
∂r

= 0

iωŵ + u0
∂ŵ
∂x

+ im
ρ0r

p̂ = 0

iωp̂ + u0+c0

2 ( ∂p̂
∂x

+ ρ0c0
∂û
∂x

) + 3c0+u0

4 (∂v̂
∂r

+ v̂
r

+ im
r

ŵ) = −iωL1

(2.7)
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(a) Circular Duct Mode pattern. (b) Annular Duct Mode pattern.

Figure 2.2: Circular and Annular Duct Mode pattern for m = 6.

Figure 2.3: Annular Duct Mode pattern for m = 13.

where L1 is set to the incident part of the acoustic pressure that is given by equation

2.5. Numerical experimentation has shown that these conditions do not completely eliminate

the outgoing waves [10]. The radial wave number is determined from turning points of the

Bessel function, and axial wave number and cut-off ratio are calculated from Equation 2.8 and

Equation 2.9 respectively.

ka = (k/β2)(−M2
∞

±
√

1 − ξ2) (2.8)

ξmn =
k

βka

, β =
√

1 − M2 (2.9)

As the cutoff ratio approaches 1 for the propagating mode, the propagation angle approaches

90o, and the mode decays. To propagate, a mode cutoff ratio must be greater than 1. Some

9



modal shapes are illustrated for annular and circular ducts, Figure 2.2 and Figure 2.3. The

mode characterize the pressure pattern propagating in the duct.

2.3.1.2 Perfectly Matching Layer Approach

Perfectly Matching Layer (PML) approach of Hu [11] is applied to the current problem as

described in [7], which requires an additional zone of mesh as in buffer zone approach shown in

fig. 2.4.

Figure 2.4: Buffer zone in circular duct.

Background flow is assumed uniform at the inlets of the ducts, as well as the far-field

boundaries, with a velocity of V = u0êx. The PML equations are written in a similar form to

the interior LEE if the equations are written in the form

[A]
∂q

∂x
+ [B]

∂q

∂r
+ [C]q = Rhs (2.10)

then the Jacobian matrices are given by

[A]pml =





u0(1 + σr

iω
) ρ0(1 + σr

iω
) 0 0 0

0 u0(1 + σr

iω
) 0 0

(1+ σr
iω

ρ0

0 0 u0(1 + σr

iω
) 0

(1+ σx
iω

ρ0

0 0 0 u0(1 + σr

iω
) 0

0 γp0(1 + σr

iω
) 0 0 u0(1 + σr

iω
)





,
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[B]pml =





0 0 ρ0(1 + σx

iω
) 0 0

0 0 0 0 0

0 0 0 0
(1+ σx

iω

ρ0

0 0 0 0 0

0 0 γp0(1 + σx

iω
) 0 0





,

[C]pml =





iω + σD σxρ0(1 + σr

iω
) ρ0

r
σx

iω
ρ0

iω
r

(1 +
σx,r

iω
) 0

0 iω + σD 0 0 σxρ0(1 + σr

iω
)

0 0 iω + σD 0 0

0 0 0 iω + σD
1
ρ0

im
r

(1 +
σx,r

iω
)

0 σxγp0(1 + σr

iω
) γp0

r
(1 + σx

iω
) γp0

iω
r

(1 +
σx,r

iω
) iω + σD





(2.11)

where σD = σx,r + σxu0(1 + σr

iω
); σx,r = σx + σr + σxσr

iω
; σx = σx

c0

M0

1−M2

0

; and M0 = u0/c0. The

damping constants σx and σr are of the same units as ω and are given by

σx = (1 − M2
0 )

c0

Lref

σx,max

∣∣∣∣
x − xi

Lx

∣∣∣∣
β

(2.12)

σr =
c0

Lref

σr,max

∣∣∣∣
r − ri

Lr

∣∣∣∣
β

(2.13)

where c0 is the speed of sound in the PML, Lref is a reference length, Lx and Lr are the

widths of the PML in the x and r-directions, respectively, and xi and ri are the locations of

the interfaces between the PML and Euler domains in the x and r directions, respectively. The

value of β is usually taken as 2, and σmax∆x/Lref is usually set to 2.

In order to excite the field with sources from the duct inlets, the PML equations are applied

to the reflected wave components. Assuming the total acoustic field is composed of an incident

field plus the reflected waves, q̂ = q̂in + q̂re,

[A]pml
∂{q̂}
∂x

+ [B]pml
∂{q̂}
∂r

+ [C]pml{q̂} = [A]pml
∂{q̂in}

∂x
+ [B]pml

∂{q̂in}
∂r

+ [C]pml{q̂in} (2.14)

where subscript ’in’ refers to the incident field. This field is constructed using cylindrical duct

eigensolutions obtained from the solution of convected wave equation for pressure perturbation.
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The velocity perturbations are obtained by substituting the pressure solution into the linearized

Euler equations. This procedure gives

p̂in =
∑

µ

A+
mµ

[
Jm(kmµr) + QmµYm(kmµr)

]
exp[i(−k+

x,mµx + mθ)]

ρ̂in = ρ̃ exp(−ikx,mµ) = p̂/c2
0

ûin = ũ exp(−ikx,mµ) =
k+

x,mµp̂

ρ0(ω − u0k
+
x,mµ)

v̂in = ṽ exp(−ikx,mµ) = − ∂p̂/∂r

iρ0(ω − u0k
+
x,mµ)

ŵin = w̃ exp(−ikx,mµ) = − ∂p̂/∂θ

iρ0r(ω − u0k
+
x,mµ)

(2.15)

where k+
x,mµ/k = [−M +

√
1 − (1 − M2)(kmµ/k)2]/(1 − M2) with k = ω/c0; Amµ is a con-

stant; Jm and Ym are the mth order Bessel functions of the first and second kind, respectively;

Qmµ = Y ′

m(σkmµrtip)/J ′

m(σkmµrtip), and σ = ri/ro (ratio of inner and outer radii), and µ is

the radial mode order.

2.3.2 Far-field Boundary Conditions

Two different far-field boundary conditions are used during this study. The Perfectly Matching

Layer approach developed by Hu is applied to the current problem as described above. As

another option Asymptotic Characteristic Based boundary condition by Tam and Webb are

also used [13].

2.3.2.1 Asymptotic Characteristic Based Boundary Condition

Due to the convergence problems occurred while using PML approach characteristic based

boundary condition applied by Ulusoy [6] is also used as the far-field boundary condition. Non-

reflecting boundary conditions are embedded on the outer far-field boundaries. The outgoing

waves are damped. The first order spherical damper condition of Bayliss and Turkel [12], the

radiation B1 operator, is used on the inflow parts of these boundaries. On the outflow parts,

the linearized momentum equations are solved for the velocity perturbations, but the radiation

operator is applied to the pressure perturbation as suggested by Tam and Webb [13]. All farfield
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boundary conditions are also transformed to the frequency domain in cylindrical coordinates.

The B1 operator is arranged as in Equation 2.16.

B1 =
1

c∞β
(1 − x

d

M∞

β
)

∂

∂t
+

x

t

∂

∂x
+

r

d

∂

∂r
+

1

d

β =
√

1 − M2

d =
√

(x2/β2) + r2

(2.16)

2.4 Background Flow Modelling

It is crucial to model the shear layer effect on the flow field since the diffraction and refrac-

tion behavior of the sound radiating throughout the exhaust nacelles is directly related to the

nonuniform velocity gradient in the mixing layer. The code developed within this study has 3

different methods to obtain the background flow field. These are:

• Importing CFD results obtained by commercial codes for more realistic solutions of com-

plex geometries like generic engine geometry.

• Computing background flow field using artificial shear layer model growing from the

trailing edge of exhaust nacelles.

• Modelling background flow field using infinitely thin shear layer approach.

2.4.1 Artificial Shear Layer Model

Artificial shear layer definition is based on an error function that transfers the flow quantities

from one side of the jet to the other. Analytical shear layer model for free jets is used since the

background flow is assumed to be uniform. The model is define by Schlichting [14] as;

u =
U1 + U2

2

[
1 +

U1 − U2

U1 + U2
erfζ

]
(2.17)

where, U1 and U2 define uniform flow velocities of the outer and inner jet streams and x, y

relatively distance from the trailing edge of duct wall in axial, radial directions. Additionally,
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(a) Infinitely Thin Shear Layer With Uniform Flow (b) Artificial Shear Layer

Figure 2.5: Shear Layer Velocity Profiles.

ζ = σ
y

x
(2.18)

as Schlichting states σ = 13.5 when the shear layer expansion cone angle θ as shown in fig. 2.6

is 7o.

Figure 2.6: Mixing Layer.

2.5 Far-field Predictions

A modified version of the Kirchhoff method is employed for far-field sound calculation. The

method, given by Farassat and Myers [15] has been transformed to frequency domain and used

by the present code. Kirchhoff method is applied for converged solutions by the construction of

a 3-D Kirchhoff surface. This surface is constructed by revolving a set of grid lines 360o around

the engine axis. Then the data on the Kirchhoff surface is integrated for specified far-field

observer locations. The frequency domain form of Kirchhoff formula used in the present code
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is given by,

4πp̂a(x,w) =

∫ ∫

S

[
E1

R(1 − MR)
+

p̂aE1

R2(1 − MR)

]
e−ikR dS (2.19)

where R = |−→R | is the distance between the Kirchhoff surface and observer, MR =
−→
M ·

−→
R
R

, and

E1 = −−→n · ▽ p̂a + (
−→
M ·−→n )(

−→
M · ▽ p̂a) +



 cos ϕ −−→
M ·−→n

c∞(1 − MR) −
−→
M ·

−→n
c∞



 iωp̂a

E2 =

(
1 − M

(1 − MR)2

)
(cos ϕ −−→

M ·−→n ) (2.20)

R =
− (x1 − y1) M∞ +

√
(x1 − y1)

2
+ β2 (x2 − y2)

2

β2
(2.21)

where, β2 = 1 − M2
∞

, (x1, x2) observer location relatively in axial and radial directions and

(y1, y2) surface location relatively in axial and radial directions.
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CHAPTER 3

NUMERICAL METHOD

3.1 Discretization

It is known that the dispersion characteristics of the discretization scheme is critical in CAA

applications. Therefor, high order algorithms are preferred. The 4th-order standard finite

difference scheme is used for the problems investigated in this thesis. In the interior of solution

domain centeral differencing is used, while near or at the boundaries biased differencing is

used. The stencil of the centeral scheme is shown in fig. 3.1. The stencils used near or at the

boundaries are shown in fig. 3.2

η

ξ

(i,j)(i-1,j)(i-2,j) (i+1,j) (i+2,j)

(i,j+1)

(i,j+2)

(i,j-1)

(i,j-2)

Figure 3.1: Fourth Order Finite Difference Stencil
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η

ξ

jlw-2

jlw-1

jlw-3

Lower side of wall

ghost point in wall
jlw

(a) Lower Edge of Hard Wall

η

ξ

juw+1

juw+2

juw

Upper side of wall

ghost point in wall

juw+3

(b) Upper Edge of Hard Wall

Figure 3.2: Third Order Finite Difference Stencil.

3.2 Pseudo-Time Derivative Approach

In order to solve the frequency domain equations iteratively, a pseudo time derivative is intro-

duced into the equations. Then, these equations can be solved using a standard time integration

technique. With steady boundary conditions the discretized form of these equations are marched

in time driving the pseudo time derivative to zero. Hence, a solution to the original equations

is obtained.

During this study two different time integration methods are used. First, an alternating

direction implicit (ADI) method is applied to solve the discretized equations that are given

by the FLESTURN code [9]. This code employs the PML boundary conditions. Second,

fully explicit 4-stage Runge-Kutta (RK-4) method is employed in a separate code which uses

asymptotic based characteristic boundary conditions. In this study it has been found that

the pseudo time integration techniques applied to the model using the PML conditions fail to

converge. Therefore, the results obtained using the RK-4 tehcnique will be presented.

3.2.1 ADI Time Integration Method

Alternating Direction Implicit method is applied to the system of equations defining the problem

as shown in eqn. 3.1. The aim of using ADI is to decrease band-width while still preserving

the implicit character of the equations in at least one of the coordinate directions. This may

help suppressing the convective instabilities that are supported by the LEE. When the pseudo
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time derivative is added, the equation system becomes,

∂q

∂τ
+ [A]

∂q

∂ξ
+ [B]

∂q

∂η
+ [C]q = Rhs (3.1)

where [A], [B], [C] represents Jacobian matrices of the governing equations and the farfield

boundary conditions in curvilinear co-ordinates, and ∂q/∂τ is the pseudo-time derivative. The

ADI method can be written as,

In η-direction :

∂qn+ 1

2

∂τ
+ [A]

∂qn

∂ξ
+ [B]

∂qn+ 1

2

∂η
+ [C]qn+ 1

2 = Rhs (3.2)

where,

∂qn+ 1

2

∂τ
=

qn+ 1

2 − qn

△τ/2
(3.3)

Substituting 3.3 into 3.2, and discretizing the spatial derivatives the resulting linear system

of the equations can be written.

(
1

△τ/2
[I] + [OpB] + [C]exp + [C]imp

)
qn+ 1

2 =

(
1

△τ/2
[I] − [OpA]exp − [OpA]imp

)
qn + Rhs

(3.4)

In ξ-direction :

∂qn+1

∂τ
+ [A]

∂qn+1

∂ξ
+ [B]

∂qn+ 1

2

∂η
+ [C]qn+1 = Rhs (3.5)

where,

∂qn+1

∂τ
=

qn+1 − qn+ 1

2

△τ/2
(3.6)

Substituting 3.6 into 3.5 and splitting the explicit and implicit parts of coefficient matrices

[A] and [C]. By splitting into explicit and implicit parts the band-width of the sparse matrices

[A] and [C] is decreased which improves the convergence speed and the memory requirement

for solution of the problem.
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(
1

△τ/2
[I] + [OpB] + [OpA]imp + [C]imp

)
qn+1 =

(
1

△τ/2
[I] − [OpA]exp − [C]exp

)
qn+ 1

2 +Rhs

(3.7)

where superscript n shows the iteration step, △τ is the pseudo-time step size from an iteration

step to next, [OpA] is discretized form of [A] ∂
∂ξ

and [OpB] is discretized form of [B] ∂
∂η

3.2.2 Fully Explicit Time Integration Method

Numerical experimentation has shown that the PML equations are unstable with ADI method.

Therefore, pseudo-time integration method is applied to the problem. Fully explicit, compact,

4-stage Runge-Kutta (RK-4) method is applied to the system of equations defining the problem

as shown in eqn. 3.1. Fully explicit method is applied as follows:

∂qn+1

∂τ
+ [A]

∂qn

∂ξ
+ [B]

∂qn

∂η
+ [C]qn = Rhs (3.8)

Discretizing the spatial derivatives this equation may be written

∂qn+1

∂τ
+ [A]globalq

n = Rhs (3.9)

where [A]global = [OpA] + [OpB] + [C] with [OpA] being the discretized form of [A] ∂
∂ξ

, and

[OpB] being the discretized form of [B] ∂
∂η

. RK-4 method is applied as follows:

k1 = Rhs − [A]globalq
n

qn+ 1

4 = qn +
1

4
△ τk1

k2 = Rhs − [A]globalq
n+ 1

4

qn+ 1

3 = qn +
1

3
△ τk2

k3 = Rhs − [A]globalq
n+ 1

3

qn+ 1

2 = qn +
1

2
△ τk3

k4 = Rhs − [A]globalq
n+ 1

2

qn+1 = qn + △τk4

(3.10)
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where superscript n shows the iteration step, △τ is the pseudo-time step size from an iteration

step to the next.

3.3 Parallel Processing Strategy

Solution domain is decomposed into subdomains for parallel processing. The MPI library is

used for communication among the subdomains. A code which automatically determines the

neighborhood, communication, and boundary condition information for each subdomain for

fully structured grids is developed to simplify the decomposition process. New communication

subroutines were written to enable arbitrary decomposition of the computational domain. An

example decomposition is shown in fig. 3.3.

ZONE 10

ZONE 9

ZONE 11

Multi Subdomain
Communication

Figure 3.3: Solution Domain of Generic Engine Geometry
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

For the simulations in this study, two simple duct geometries and a generic engine geometry

are considered. These geometries are a circular annular duct geometry, circular co-planar duct

geometry, and a generic engine geometry as depicted in fig. 4.1.
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(a) Circular Annular Duct Geometry
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(b) Circular Co-planar Duct Geometry

M f
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Symmetry Axis

(c) Generic Engine Geometry

Figure 4.1: Test Geometries
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In the circular annular duct case, the outer radius of the bypass duct is set to ro = 1.2 m,

while the inner radius (which is the radius of the centerbody) is set to ri = 0.8 m. The length

of by-pass duct wall L is set such that L/ro = 1.667, while its trailing edge is located at x = 0

m. The center body of the circular annular duct case is considered infinitely long.

The outer radius of the bypass duct of the circular co-planar geometry is taken as the outer

radius of the previous case. The hub radius of the bypass passage or the outer radius of the

inner duct is also the same as the radius of the centerbody of the previous case. However, the

duct ends are co-located in the axial direction at x = 0.

All the test cases are solved assuming an infinitely thin shear layer first, and then an artificial

shear layer that resembles the actual shear layer of the problem. Solutions are also obtained with

the artificial shear layer by forcing the mean flow gradients to zero. The mean flow conditions

used in these cases are shown in table 4.1, table 4.2 and table 4.3

Table 4.1: Annular Duct Test Cases

Flight Stream Bypass Stream
M∞ T∞(Ko) P∞(Pa) ρ∞(kg/m3) MB TB(Ko) PB(Pa) ρB(kg/m3)

Flight 0.27 288 101325 1.181 0.74 350 101325 0.944

Table 4.2: Co-planar Duct Test Cases

Flight Stream Bypass Stream
M∞ T∞(Ko) P∞(Pa) ρ∞(kg/m3) MB TB(Ko) PB(Pa) ρB(kg/m3)

Flight 0.27 288 101325 1.181 0.74 350 101325 0.944
Core Stream

MC TC(Ko) PC(Pa) ρC(kg/m3)
Flight 0.5 750 101325 1.084

Table 4.3: Generic Engine Test Case

Flight Stream Bypass Stream
M∞ T∞(Ko) P∞(Pa) ρ∞(kg/m3) MB TB(Ko) PB(Pa) ρB(kg/m3)

Static 0 288 101325 1.225 0 288 101325 1.225
Core Stream

MC TC(Ko) PC(Pa) ρC(kg/m3)
Static 0 288 101325 1.225

In CAA simulations, the mesh quality (mesh resolution, aspect ratio) greatly effects the

propagation characteristics such as wave speed and amplitude. Therefore, the mesh must be

designed carefully. For the simulations summarized in tables 4.1, 4.2, 4.3 a mesh resolution of
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approximately 19 cells per wave length out side the jet (4.2) is used.

Apprx. 19 cells per wavelenght

Figure 4.2: Grid Resolution of Co-planar Duct Geometry

Domain decomposition strategy of each test geometry is shown in the following fig. 4.3.
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(a) Annular Duct Geometry
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(b) Co-planar Duct Geometry
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Figure 4.3: Domain Decomposition of Test Cases

4.2 Annular Duct, Mode(0, 0), f = 1500Hz

The computational domain was decomposed into 20 subdomains for the simulation of this case

using the three background flow models mentioned in the previous section, The results were

obtained in 100000 iterations. The total amount of memory required to solve this problem
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turned out to be 20 ∗ 22 = 550 Mb, which is reasonably small compared to the amount of

memory required by the direct solver FLESTURN, which was 2533 ∗ 8 = 20264 Mb. A total of

9 hours was needed to complete the solution iteratively. This, however, is a much longer time

than the cpu time required by FLESTURN, which was 451 seconds.

4.2.1 Results with Infinitely Thin Shear Layer

Contour plots for the mean flow and acoustic fields for the infinitely thin shear layer case are

shown in fig. 4.4. It is clear that the jet flow and the exterior flow are uniform and separated

from each other with infinitely thin shear layers. The real part of pressure perturbation and

sound pressure level (SPL) contour plots shown in fig. 4.4 indicate that convective shear layer

instabilities do not appear. This is because the solution approach is based on a cell centered

finite difference method and the infinitely thin shear layer lies between two grid points. Hence,

all gradients of mean flow, which is uniform for this case, are zero.
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Figure 4.4: Variable contours of annular duct, Mode(0, 0),f = 1500Hz.

Comparison of the SPL distribution obtained by the direct solution approach using FLESTURN

and the present iterative method along r/ro = 1.25 constant line (Kirchhoff surface), and
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r/ro = 1+ and r/ro = 1− constant lines are shown in fig. 4.5. The latter two constant r lines

correspond to the outer and inner sides, respectively, of the by-pass duct and the shear layer

emanating from it.
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(c) Kirchhoff Surface

Figure 4.5: Sound pressure level of annular duct, Mode(0, 0),f = 1500Hz.

As shown in the comparison plots, direct solution and iterative solution methods are com-

patible with each other for a wide range of axial locations. There occurs a difference in SPL

at locations close to the acoustic inlet and far-field boundaries. This difference arises from the

fact that the direct solution code and the iterative solution code employ different inlet condi-

tions. The artificial diffusion applied in the iterative solution code is damping the numerical
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oscillations, while this is not the case since the direct method does not have artificial diffusion

(damping) employed.

4.2.2 Results with Artificial Shear Layer, Mean Flow Gradients Forced to Zero

Contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.6. As seen

from the mach contour plot in this figure the jet flow and the exterior flow are mixing into

each other generating a growing shear layer. In obtaining the results presented in this section,

the mean flow gradients were artificially forced to zero, and therefore, shear layer instabilities

were not expected. This is in fact the case, and the real part of pressure perturbation and SPL

contour plots indicate that convective shear layer instabilities do not appear.
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Figure 4.6: Variable contours of annular duct, Mode(0, 0),f = 1500Hz.
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Comparison of the SPL distribution obtained by the direct solution approach and the present

approach along the Kirchhoff surface, and along two lines corresponding to the by-pass duct

outer wall and by-pass duct inner wall locations are shown in fig. 4.7. The results plotted agree

with each other quite well except near the inlet and farfield boundaries. The reason for this is

as has been explained previously.
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Figure 4.7: Sound pressure level of annular duct, Mode(0, 0),f = 1500Hz.
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4.2.3 Results with Artificial Shear Layer, Mean Flow Gradients

Contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.8. Similar

to the previous case the shear layer grows in this case. However, the mean flow gradients are

retained in the computations. Hence, the convective instabilities may appear in this case. In

fact, in the pressure perturbation and SPL contour plots we observe these instabilities.
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Figure 4.8: Variable contours of annular Duct, Mode(0, 0),f = 1500Hz.

The present and FLESTURN solutions are compared along the same r =constant lines in

fig. 4.9. There is some disagreement between the two solutions. In addition to the difference

due to the artificial damping applied by the present iterative approach, the large SPL difference

occurring in the downstream of mixing layer arise due to the shear layer instabilities occur in

that region.
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Figure 4.9: Sound pressure level of annular duct, Mode(0, 0),f = 1500Hz.

4.2.4 Influence of Background Flow Fields

A comparison of the SPL distributions obtained using the three mean flow treatments (uniform

flow with infinitely thin shear layer, artificially grown shear layer with the gradient terms set to

zero, and the artificially grown shear layer with non-zero gradients) is also presented here in fig.

4.10. The distributions show some discrepancies along the walls and in the shear layer, while

away from them the agreement between all results is quite good. The reason for the difference

has been discussed in the previous individual subsections.
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Figure 4.10: Sound pressure level of annular duct, Mode(0, 0),f = 1500Hz.

4.3 Annular Duct, Mode(21, 0), f = 1500Hz

In this section results for the (21, 0) mode at the same frequency as the (0,0) mode are presented.

For this case the same computational domain as in the mode(0, 0) case is used. The results

were obtained in 100000 iterations. Hence, the memory requirement and solution time are also

the same as for the previous case discussed above.
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4.3.1 Results with Infinitely Thin Shear Layer

The contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.11. As

seen from the mach contour plot in this figure, the jet flow and the exterior flow are discon-

tinuous. The contour plots for the real part of pressure perturbation and SPL do not indicate

convective shear layer instabilities.
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Figure 4.11: Variable contours of annular duct, Mode(21, 0),f = 1500Hz.
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4.3.2 Results with Artificial Shear Layer, Mean Flow Gradients Forced to Zero

As opposed to the previous subsection, an artificial shear layer with zero mean gradients is used

here. The contour plots for the mean flow and the computed acoustic fields are shown in fig.

4.12. Since the mean flow gradients are artificially forced to zero, shear layer instabilities do

not appear in the acoustic pressure contours for the (21,0) mode either.
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Figure 4.12: Variable contours of annular duct, Mode(21, 0),f = 1500Hz.
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4.3.3 Results with Artificial Shear Layer, Mean Flow Gradients

Contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.13. As

seen in fig. 4.13 mach contour plot, the jet flow and the exterior flow are mixing into each

other continuously. For the computations, the mean flow gradients were kept in the equations.

As evident from the real part of pressure perturbation and SPL contour plots shear layer

instabilities occur here.
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Figure 4.13: Variable contours of annular Duct, Mode(21, 0),f = 1500Hz.
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4.3.4 Influence of Background Flow Fields

A comparison of the SPL distribution obtained along the same constant r lines as the previous

cases using the three background flow approach solution methods is made in fig. 4.14. Some

large differences are observed mainly due to the convective instabilities.
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Figure 4.14: Sound pressure level of annular duct, Mode(21, 0),f = 1500Hz.
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4.4 Co-planar Duct, Mode(0, 0), f = 1500Hz

The computational domain for this case was decomposed into 25 subdomains. The results

shown in this section were obtained in 100000 iterations. The total amount of memory required

to solve this problem was 25 ∗ 52 = 1300 Mb. A total of 14 hours was needed to complete

the solution iteratively. Acoustic waves were introduced to the solution domain through the

by-pass duct. The same modes and frequencies as the previos section were considered. The

results indicate similar trends also continue for the co-planar duct case to the annular duct

case. The results are given below for the three mean flow treatments.

4.4.1 Results with Infinitely Thin Shear Layer

The contour plots for the mean flow and acoustic fields in fig. 4.15 show that trends of corre-

sponding subsection of annular duct case is similar to this case.
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Figure 4.15: Variable contours of coplanar duct, Mode(0, 0),f = 1500Hz.
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4.4.2 Results with Artificial Shear Layer, Mean Flow Gradients Forced to Zero

Contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.16. It is

clear that, similar characteristics are observed in the results of the present case to those of the

previous case.
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Figure 4.16: Variable contours of coplanar duct, Mode(0, 0),f = 1500Hz.
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4.4.3 Results with Artificial Shear Layer, Mean Flow Gradients

The contour plots for the mean flow and acoustic fields for this case are shown in fig. 4.17. The

results shown follow the same trends as the results obtained for the annular duct case using the

artificial shear layer description with non-zero mean flow gradients.
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Figure 4.17: Variable contours of coplanar Duct, Mode(0, 0),f = 1500Hz.
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4.4.4 Influence of Background Flow Fields

The comparison of SPL distribution at three different r =constant lines, which are defined in

the beginning of this chapter using the three different background flow approaches employed

are shown in fig. 4.18. The results are similar to those obtained for the annular duct case.
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Figure 4.18: Sound pressure level of coplanar duct, Mode(0, 0),f = 1500Hz.
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4.5 Co-planar Duct, Mode(21, 0), f = 1500Hz

In this section results for the (21, 0) mode at the same frequency as the (0,0) mode are presented.

For this case the same computational domain as in the mode(0, 0) case is used. The results

were obtained in 100000 iterations. Hence, the memory requirement and solution time are also

the same as those for the previous case discussed above. The following results show similar

trends for the (21, 0) mode case to the (0, 0) mode case. The results are given below for the

three mean flow treatments.

Figures 4.19, 4.20 and 4.21 show the contour plots for the mean flow and acoustic fields

obtained using an infinitely thin shear layer, artificial shear layer with zero mean gradients, and

artificial shear layer with non-zero gradients, respectively.
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Figure 4.19: Variable contours of coplanar duct, Mode(21, 0),f = 1500Hz, Infinitely Thin Shear
Layer
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Figure 4.20: Variable contours of coplanar duct, Mode(21, 0),f = 1500Hz, Artificial Shear
Layer with Zero Mean Flow Gradients
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Figure 4.21: Variable contours of coplanar Duct, Mode(21, 0),f = 1500Hz, Artificial Shear
Layer with Mean Flow Gradients
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The comparison of the SPL distribution at three different r =constant lines, which are same

lines used in the previous section using the three different background flow approaches employed

are shown in fig. 4.22. The results also follow the same trends as the (0, 0) mode case.
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Figure 4.22: Sound pressure level of coplanar duct, Mode(21, 0),f = 1500Hz.
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4.6 Generic Engine, Mode(11, 0), f = 1500Hz, No Background Flow

In this section, results are obtained for a more realistic geometry for demonstrating the capa-

bility of the code to handle non-uniform grids. The computational domain shown in fig. 4.3

for this case was decomposed into 13 subdomains. The results shown below were obtained in

100000 iterations. The total amount of 13 ∗ 54 = 702 Mb memory, and a total of 28 hours

were need to solve this problem. Acoustic waves were introduced to the solution domain only

through the by-pass duct. The (11,0) mode is considered at f = 1500Hz without background

flow. The resulting acoustic pressure contours are shown in fig. 4.23.
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Figure 4.23: Variable contours of generic engine, Mode(11, 0),f = 1500Hz.
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CHAPTER 5

CONCLUSION

In this thesis, acoustic radiation and propagation problem through a bypass jet is numeri-

cally solved in frequency domain employing the linearized Euler Equations as the governing

equations. When solved directly the frequency domain formulation eliminates convective in-

stabilities that arise in jet mixing layers mainly due to the radial flow gradients. However,

direct solution methods are computationally expensive in terms of computer memory. As a

result, a pseudo time derivative term is added to the frequency domain equations so that a time

marching technique can be employed, and the solution can be drived to a steady form itera-

tively. Alternating direction implicit and fully explicit time integration methods are considered

as the time marching techniques. The farfield directivity pattern for the propagated sound is

calculated using a Kirchhoff formulation. Asymptotic characteristic based boundary conditions

and PML techniques are applied to the farfield and wave inlet boundaries. All computations

are performed in parallel using the MPI library routines.

Numerical results are obtained for three different geometries. These are an annular duct,

co-planar duct, and a generic engine geometry. The results for the annular duct geometry are

compared with those obtained using the direct solver FLESTURN.

In this study three different background flow models are investigated to see assess the

numerical behavior of the iterative approach, particularly in terms of the convective instabilities.

The mean flow models include an infinitely thin shear layer, an artificial shear layer with mean
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flow gradients forced to zero, and an artificial shear layer with mean flow gradients retained.

As suggested by Agarwal et al. [3] iterative solution to the LEE may also show the Kelvin-

Helmholtz type instabilities, and this has been shown in the present study.

It has been shown in this study that, when the mean flow gradients are neglected, the

employed iterative approach does not produce convective instabilities, as expected. As stated in

chapter 1 the aim of this study was to obtain a more efficient method in terms of computational

power to obtain the solution of acoustic propagation and radiation through out the exhaust

section without the Kelvin-Helmhotz instability waves. The investigated cases showed that the

computer memory requirement of iterative approach was much less then the direct method.

Therefore, by suppressing the mean flow gradients, the present iterative approach may be used

in parametric study of very high frequency problems, without much computer memory.
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