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ABSTRACT 
 
 

ANALYSIS OF SLOT COUPLED MICROSTRIP PATCH ANTENNAS 
 
 
 

Ballıkaya, Elif 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Assoc.Prof.Dr. Özlem Aydın Çivi  

 

December 2007, 61 pages 

 

 

Method of Moments (MoM)/Green’s function formulation is developed for the 

analysis of electromagnetic radiation from planar rectangular microstrip antennas 

with different feeding techniques. Investigated structures are microstrip line fed 

patch antenna, proximity coupled patch antenna and slot coupled patch antenna. For 

all these structures equivalent problems are defined. Then, integral equations where 

currents are the unknowns are obtained from boundary conditions and by using 

spectral domain representation of Green’s functions. Finally, MoM is applied to 

convert these integral equations to a system of linear equations. Currents on the 

conducting surfaces as well as equivalent magnetic currents on the apertures are 

modeled as a sum of piecewise sinusoidal subdomain basis functions with unknown 

coefficients which are calculated by solving the system of linear equations. Based on 

the formulations provided in this study, a Fortran code is developed. Numerical 

results calculated by using the code are presented in the form of patch and line 

currents and input impedances. Presented results are in good agreement with the 

results given in the literature. 
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ÖZ 
 
 

AÇIKLIK KUPLAJLI MİKROŞERİT YAMA ANTEN ANALİZİ 
 
 
 

Ballıkaya, Elif 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Özlem Aydın Çivi 

 

Aralık 2007, 61 sayfa 

 

 

Bu tez çalışmasında farklı tekniklerle beslenen dikdörtgen mikroşerit yama 

antenlerin analizi için Moment Metodu/Green’s fonksiyonu formulasyonu 

geliştirilmiştir. İncelenen yapılar mikroşerit hat ile beslenen yama anten, yakınlık 

kuplajlı yama anten ve açıklık kuplajlı yama antendir. Bütün antenler için denk 

yapılar tanımlanmıştır. Sonrasında sınır koşulları ve spektral Green fonksiyonları 

kullanılarak, akımların bilinmeyen olarak tanımlandığı integral denklemler elde 

edilmiştir. Son olarak bu integral denklemlerin doğrusal denklem sistemine 

dönüştürülmesi için moment metodu kullanılmıştır. İletken yüzeyler üzerindeki 

elektrik akımlar ve açıklıklarda tanımlanan eşdeğer manyetik akımlar, parçalı sinüs 

temel fonksiyonları ve bilinmeyen katsayılar cinsinden yazılmıştır. Akımların temel 

fonksiyonlarla açılımdaki bu bilinmeyen katsayılar doğrusal denklem sisteminin 

çözümünden elde edilmiştir. Bu tezde sunulan formulasyonu uygulayan bir Fortran 

kodu geliştirilmiştir. Mikroşerit hat ve yama üzerindeki akım dağılımları ve antenin 

giriş empedansları bu kodun kullanımıyla elde edilen edilmiş ve sunulmuştur. Elde 

edilen sonuçların literatürdeki sonuçlarla uyumlu olduğu görülmüştür. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
In this thesis, planar rectangular microstrip patch antennas fed by different 

techniques are analyzed using Method of Moments/Spectral Domain Green’s 

function method. Specifically, formulations for the analysis of radiation from 

microstrip line fed, proximity coupled and slot coupled microstrip patch antennas are 

provided. Numerical results in the form of current distributions and input impedance 

are presented and compared with the results given in literature.  

 

A microstrip antenna idea was firstly introduced in 1950’s but it became popular and 

took place in various applications in 1970’s. Recently, microstrip antennas are 

widely used in several applications where low size, weight and cost, high 

performance and easily fabricated and installed antennas are required such as 

airborne, space borne commercial and military applications and mobile and wireless 

technologies. Some other advantages of microstrip antennas are that they are 

conformable to planar and non-planar surfaces, easily fabricated using printed circuit 

technology, and they are mechanically robust. Microstrip patches are resonant type 

antennas. Thus, impedance bandwidths are narrow. The other disadvantages of 

microstrip antennas are having low efficiency, low power handling, and spurious 

feed radiation.  

 

A microstrip patch antenna consists of a radiating conducting strip placed on a 

grounded dielectric layer. Design of the radiating patch (length, width, feed type etc.)  



 2 

and characteristic of the dielectric substrate (dielectric constant, height of the 

substrate etc.) determines the behavior of the antenna. Microstrip patch can be of 

different shapes such as rectangular, square or disk patches. They can provide linear, 

dual or circular polarization by appropriate feeding.  

 

Experimental studies on the design of microstrip antennas have shown that most 

effective parameter on the characteristic of a microstrip antenna is the dielectric 

constant of the substrate.  Relation between dielectric constant and the resonance 

frequency of a microstrip antenna can be written as 

 

r

r

rf

f

ε

δεδ

2

1
−=                     (1.1) 

 

rf  is the resonant frequency, fδ is the change in resonance frequency, rδε  is the 

change in dielectric constant and rε  is the dielectric constant of the substrate, [1]. 

Change in the size of the patch results in a change in the resonance frequency where  

 

W

W

f

f

r

δδ
−=                     (1.2) 

 

Wδ is the change in patch width, W is the patch width. W is usually chosen in the 

range λ0/3<W< λ0/2. Ratio of L/W>2 is not advised. L is the patch length, [1]. 

 

Thickness of the dielectric substrate is less effective on the resonance frequency 

compared to dielectric constant. 0.003λ0≤h≤0.1λ0 is generally used. Substrate 

material used in today’s technology has a dielectric constant that varies from 1.17 to 

25. Usually small dielectric constant materials are preferred since they supply better 

efficiency, larger bandwidth with thick substrates but large patches. 

 

Due to the change of dielectric constant, total resonance frequency change between   

-75
0
C and 100

0
C is generally about %0.03 which means it is nearly possible to 
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eliminate the effect of temperature on the resonance frequency of a microstrip 

antenna if a proper material is selected, [1]. 

 

Different feeding techniques of microstrip patch antennas are shown in Figure 1.1. 

Microstrip line and coaxial probe feed methods, shown in Figure 1.1.a and Figure 

1.1.b, are advantageous because of their simplicity to match and fabricate but they 

are both bandwidth limited when substrate thickness is increased. It is also difficult 

to model a probe fed microstrip antenna with a thick substrate. Also unwanted feed 

radiation in these feed types interferes with the radiation of the patch. 

 

To overcome the problems of microstrip line and coaxial probe feeds, noncontacting 

feed methods are developed. In proximity coupled microstrip antenna, shown in 

Figure 1.1.c, two dielectric layers are separated by a microstrip line. Radiating patch 

is located at the top of the upper dielectric layer while lower dielectric layer is 

bounded by a ground plane. Of the four feeds shown in Figure 1.1, proximity 

coupling is the method that provides the largest bandwidth. Spurious feed radiation is 

reduced by removing the direct contact between the feed and patch.  

 

Slot coupled microstrip patch antenna, shown in Figure 1.1.d is proposed by Pozar in 

1985, [2]. It is also a noncontacting feed method. The structure consists of two 

dielectric layers, which may have different thickness and dielectric constants. These 

two layers are separated by a ground plane with a slot, which provides coupling 

between the patch and the feed line. The upper dielectric layer is bounded from top 

by a radiating patch where the lower dielectric layer is bounded from bottom by the 

feed network. Feed network, shape of the patch and parameters of the dielectric 

substrates can be designed separately to obtain a desired performance from the 

antenna. One can choose thick dielectric with low dielectric constant for the patch to 

increase operation bandwidth and choose thin dielectric with high dielectric constant 

for the feed network. Since feed network part and radiating part are separated from 

each other, aperture coupled patch is very suitable for phased arrays [2], [3]. 
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After Pozar introduced this new and advantageous feed technique a number of 

studies have been carried out to analyze it. Pozar analyzed this structure using cavity 

model and also gave results obtained from the measurement of a prototype antenna. 

Modal expansion method is also applied to slot coupled microstrip antennas in [4]. 

Input impedance calculation of slot coupled microstrip antennas using transmission 

line modeling is presented in [5], [6]. They also show good agreement with the 

measured results. Thirdly, moment method analysis of this antenna is explained in 

detail in [7]. To improve the antenna performance by improving the coupling 

between the patch and feed line, different size and shapes of slots are experimented. 

H-shaped, bowtie, dog bone shaped slots had been studied [8], [9]. All these slot 

shapes provide better input impedance compared to a rectangular slot. They also 

have smaller dimensions compared to rectangular slot, which decreases the amount 

of back radiation through the aperture. Only disadvantage of these complicated slot 

geometries is that it is difficult to analyze these structures analytically or even 

numerically. Besides slot shape, patch and feed shapes are also varied to design a 

wideband microstrip antenna. Some different shapes of patch and feed, like T-shaped 

feed, are presented in [10].  Furthermore the effects of dielectric constants of the 

layers are investigated, [11], [3]. Studies have shown that it is advantageous to 

choose a high dielectric constant material for the lower substrate (for feed) and a 

thick and low dielectric constant material for the upper substrate (for patch). 

 

In the analysis of radiation/scattering from microstrip patch antennas, full-wave 

analysis method, Method of Moments (MoM) is widely used, [12]. In this thesis 

MoM/Green’s function technique in Spectral domain is used to investigate some 

microstrip patch antenna structures. In Chapter 2, some of the well-known methods 

used to analyze microstrip antennas are summarized. These are transmission line 

method, cavity method and full-wave numerical methods such as MoM.  

 

In Chapter 3, Green’s function representation in spectral domain is presented for 

electric and magnetic type sources located on grounded dielectric substrate.  
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Formulations for microstrip line, microstrip line fed patch, proximity coupled patch  

and slot coupled patch antennas are derived and given in Chapter 3.  For all these 

cases equivalent problems are defined and integral equations are obtained from 

boundary conditions. Then, MoM is applied to convert these integral equations to a 

system of linear equations. Currents on the conducting surfaces as well as equivalent 

magnetic currents on the apertures are modeled as a sum of piecewise sinusoidal sub 

domain basis functions with unknown coefficients which are calculated by solving 

the system linear equations.  Accurate and efficient evaluation of MoM matrix 

entities are discussed in Chapter 3.  Calculation of input impedance of a patch 

antenna is also explained.  

 

Numerical results in the form of line and patch currents and input impedance are 

obtained by using formulations derived in Chapter 3. These numerical results in 

comparison with the available data in the literature are presented and discussed in 

Chapter 4.  

 

Chapter 5 concludes this thesis and briefly discusses the work done in this thesis. An 

tj
e

ω
 time dependence is assumed and suppressed throughout this work. 
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Figure 1.1 – (a) Microstrip line fed (b) Coaxial probe fed (c) Slot coupled (d) 

Proximity coupled microstrip antenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patch 

Ground Plane 

Patch 

Ground Plane 

probe 

Patch 

Ground Plane 

Slot 

Microstrip 

line  

Patch 

Ground Plane 

Microstrip 

line  

(a) (b) 

(c) (d) 

dielectric 

(conductor) 

dielectric 

dielectric 

dielectric 

dielectric 

dielectric 



 7 

 

 

 

 

 

 

CHAPTER 2 

 

 

 METHODS OF ANALYSIS OF MICROSTRIP ANTENNAS 

 

 
 

Recently, microstrip antennas are preferred in many commercial and military 

applications, due to their several advantages, such as low profile, low cost, easy 

integration. Therefore, there is a significant effort on the development of efficient 

and accurate analysis tools for microstrip antennas. Microstrip antennas are generally 

analyzed by three different models. These are transmission line model, cavity model 

and full-wave numerical methods such as Method of Moments. In the transmission 

line method, microstrip antenna is represented by an equivalent circuit and 

characteristic impedance and propagation constant are expressed in closed form. 

Cavity model is a modal solution and it gives field distributions in the cavity between 

microstrip patch and the ground plane surrounded by magnetic walls. Application of 

these two methods is limited due to approximations made. To obtain more accurate 

results full-wave numerical methods, such as Method of Moments, Finite Element, 

Finite Difference Time Domain, are preferred. In this thesis, Method of Moments is 

chosen to investigate patch antennas, since it can be easily applied to planar antenna 

structures and solution time is relatively short compared to other mentioned 

numerical methods.   

 

2.1 Transmission Line Model 

 

The simplest and the least accurate method to analyze a rectangular microstrip patch 

is the transmission line method. It basically represents the antenna by two parallel  
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radiating slots separated by a transmission line of length L, which is equal to the 

length of the patch, and characteristic impedance Zc. Transmission line 

representation of a microstrip patch antenna is shown in Figure 2.1. The slot length is 

equal to the width of the patch and the slot width is equal to the thickness of the 

substrate. 

 

Fields at the edge of the patch, both for the length and the width, undergo fringing as 

a result of the finite dimension of the patch. Besides the dimensions, height and 

dielectric constant of the substrate also affect the amount of fringing. Because of 

fringing, patch looks wider then its physical dimensions. In order to take in to 

account this effect, an effective dielectric constant reffε  is calculated as [3]: 

 

21

101
2

1

2

1

1

−




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
+

−
+

+
=

>

W

h

hW

rr

reff

εε
ε

                                                                         (2.1) 

 

where W is the patch width (slot length), h is the height of substrate (slot width) and 

rε  is the dielectric constant of the substrate. Similarly effective patch length can be 

written in terms of effective dielectric constant as: 
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                                                                      (2.2) 

 

Without fringing resonant frequency of the antenna is formulated as 

 

rr

r
L

v

L
f

εεµε 22

1 0

00

==                                                                                 (2.3) 
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where 0v  is the speed of light in free space. In order to take into account fringing, 

effective patch length and effective dielectric constant are used to formulate resonant 

frequency. 

 

rr

reffreffeff

rc

L

v
q

L
q

LLL
f

εεµε

εµεεµε

22

1

)2(2

1

2

1

0

00

0000

==

∆+
==

                                              (2.4) 

 

q in (2.4) is called the fringing factor and assumed as constant for other parameters 

of antenna when dielectric constant of the substrate and the frequency are not 

changed. Accuracy of the resonant frequency is defined by fringing factor.  

 

As mentioned earlier, equivalent circuit of radiating slots used to represent microstrip 

patch consists of equivalent parallel admittance Y with conductance G and 

susceptance B. Related circuit and fringing is shown in Figure 2.1. Y can be written 

as [3] 
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                                                            (2.5) 

 

where 0λ  is free space wavelength and 
0

0
2

λ
π=k is the free space wave number. 

Since the slots are identical, (2.5) is valid for both of the slots.  

 

Ideally, λ/2 separation between slots provides 180
0 

phase difference, where λ is the 

wavelength in the substrate, but because of fringing, separation between the slots is 

slightly less then λ/2. So L is chosen properly in the range 0.48 λ<L<0.49 λ which 

results the admittance in slot 2 as 
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                                                                                        (2.6) 

 

Parallel admittances generates a pure real total resonant input admittance 
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(a) 

 

(b) 

 

Figure 2.1 – (a) Fringing effect (b) Transmission line model of rectangular 

microstrip antenna 

  

 

 

Although transmission line model provides less accuracy, calculation of resonant 

frequency and input admittance of a microstrip antenna is simple by this method. 
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The transmission line model is improved to calculate the input impedance of a slot 

coupled microstrip antenna. Equivalent transmission line model circuit of a slot 

coupled microstrip antenna is shown in Figure 2.2. First transformer stands for the 

coupling between the slot and patch while the second transformer is used to represent 

coupling between slot and microstrip line. Although derivation will not be 

formulated here, calculated input impedance is given in [5] as 

 

( )
)cot(

2

1

2

2
slc

appatch

in LkjZ
YYn

n
Z −

+
=                                                                       (2.8) 

 

where 

 

02

1

/

/

VVn

bLn a

∆=

=
                                                                                                             

kl : wave number of microstrip line of length Ls 

Zc : characteristic impedance of microstrip line of length Ls 

aL : slot length 

b: patch length 

V∆ : discontinuity in modal voltage of feeding microstrip line 

V0: slot voltage 

 

Detailed explanation about transmission line model of slot coupled microstrip 

antenna is provided in [5], [6]. 

 

2.2 Cavity Model 

 

Another method used to analyze microstrip antennas is cavity method. Cavity model 

treats the region between the patch and the ground plane as a cavity bounded by 

these conductors from the top and the bottom and by magnetic walls along the 

perimeter of the patch in order to simulate an open circuit. It assumes that fields in  
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the cavity do not exceed the boundaries of the cavity which means fringing is not  

taken into account in the cavity model [3]. 

 

 

 

 

 

Figure 2.2 – Transmission line model of slot coupled microstrip antenna 

 

 

 

 

 

Figure 2.3 - Rectangular patch geometry 
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Under this assumption, electric and magnetic fields inside the cavity must satisfy the 

boundary conditions in (2.9) for a geometry shown in Figure 2.3. 
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These fields can be written in terms of a vector potential A as 
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where A satisfies the homogeneous wave equation 

 

022 =+∇ xx AkA                   (2.11) 

 

Solution of A is 

 

( )( )( ))sin()cos()sin()cos()sin()cos( 332211 zkBzkAykBykAxkBxkAA zzyyxxx +++=        

                                                                                                                               (2.12) 

 

Inserting (2.12) into (2.10), one can show using the boundary condition for Ey that 

[3] 
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Similarly, for the boundary condition for Hy 
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p
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and for Hz 
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Resonant frequency of the cavity is 
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Dominant mode is the mode with the lowest order resonant frequency. For a 

microstrip antenna that satisfy L>W>h, TM010 is the dominant mode and resonant 

frequency is 

 

µεL
f r

2

1
010, =                 (2.17) 

 

If microstrip antenna satisfies L>W>L/2>h second order mode is TM001 and resonant 

frequency is 

 

µεW
f r

2

1
001, =                  (2.18) 

 

If L>L/2>W>h is valid, then the second order mode is TM020 and resonant frequency 

is 
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µεL
f r

1
020, =                  (2.19) 

 

Cavity model is also limited; it is not possible to analyze a circular patch by using 

transmission line model. Furthermore, it ignores field variations at the edges of the 

rectangular patch, which causes less accurate results.  

 

2.3 Method of Moments 

 

In the analysis of electromagnetic radiation/scattering from microstrip antennas, 

mostly full-wave numerical methods, such as Method of Moments, Finite Element, 

Finite Difference Time Domain, are preferred to obtain more accurate results. In this 

thesis, Method of Moments is chosen to investigate patch antennas, since it can be 

easily applied to planar antenna structures and solution time is relatively short 

compared to other mentioned numerical methods.   

 

Method of moments can be applied to solve integral equations of the form 

 

)()(),( xgdxfxxk ′=Ω′′∫
Ω

                (2.20) 

 

Ω  is a geometric domain that can be a curve, surface or volume and x Є d Ω . 

Equation (2.20) can be written in an operator form as  

 

L(f)=g                   (2.21) 

 

where g is a known source distribution, L is a linear operator operating on f  and f is 

the unknown function that will be solved.  

 

Firstly Ω  domain is divided into sub domains that satisfy U
N

j

j

1=

Ω=Ω or an entire 

domain solution can be applied that does not require division. Second step is to 
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choose a set of functions that will be used to approximate unknown function  f such 

that 

 

∑
=
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)(xf j
′ s are called basis function, jα s are unknown coefficients that will be solved. 

Substituting (2.22) into (2.21)  

 

L








′∑
=

N

j

jj xf
1

)(α =g                 (2.23) 

 

Using linearity (2.23) can be written as 

 

{ }∑
=

=′
N

j

jj gxfL
1

)(α                  (2.24) 

 

Next step is to choose a set of functions to obtain N equations with N unknowns. This 

function is called weighting function, iw , and by taking inner product, above equation 

becomes 

 

i

N

j

ijj wgwfL ,),(
1

=∑
=

α                                                                                     (2.25) 

 

This results in a matrix equation of the form Ax=b where  
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                                               (2.26)                                        

 

A matrix and b vector is known, unknown x vector can be calculated as 

 

x=A
-1

b                   (2.27) 

 

Inner product of two functions is calculated as 

 

∫
Ω

∗ Ω= dxfxfxfxf )()()(),( 2121                                                                            (2.28) 

 

)(2 xf ∗ : complex conjugate of )(2 xf  

 

Accuracy of the moment method solution depends on the choice of basis and 

weighting functions. Basis function should be such that equation (2.22) approximates 

f well. In the analysis of microstrip patch antennas, piecewise sinusoidal basis 

functions are used in this thesis.  
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An example of a weighting function is Dirac-Delta function. MoM formulation using 

Dirac Delta function as weighting is called point matching and can be written as 

 

)()( ii xxxw −′=′ δ                             (2.29) 

 

where x′ is the position vector, ix  is the position of impulse.  

 

In the MoM formulation given in this thesis, Galerkin type weighting functions are 

used. In this approach, weighting functions are chosen identical to basis functions 

which are piecewise sinusoidal [12]. 

 

Microstrip patch antennas with different feeds are analyzed in this thesis by using 

MoM. Integral equations that satisfy the boundary conditions of the related structure 

are obtained by using spectral domain Green’s function representations. Then MoM 

is used to convert these integral equations to a system of linear equations.  Matrix 

equations of the form VIZ =.  are solved for current coefficients in vector I. Detailed 

MoM/Green’s function formulation of each type of antenna is given in Chapter 3. 
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CHAPTER 3  

 

 

MOM FORMULATION OF MICROSTRIP PATCH ANTENNAS 

USING SPECTRAL DOMAIN GREEN’S FUNCTIONS 

 

 

 

MoM/Green’s function formulation of a microstrip line, microstrip line fed patch, 

proximity coupled microstrip patch antenna and slot coupled microstrip patch 

antenna are given in this chapter. Integral equations for unknown surface currents on 

line, patch and slots are obtained from boundary conditions of the equivalent 

problem of related structures using spectral domain representation of Green’s 

functions. Then, MoM is applied to convert integral equation to linear system of 

equations. Spectral domain Green’s function representations used in this thesis are 

presented for electric and magnetic type sources. It is assumed that dielectric slab 

and ground plane are infinite in x-y plane. For each microstrip antenna structure 

details of formulation are given. The evaluation of MoM impedance matrix and 

voltage vector elements is discussed. Calculation of the input impedance of a 

microstrip antenna is also presented. 

 

3.1   Spectral Domain Green’s Functions for Planar Grounded Dielectric Slabs 

 

In this thesis, MoM formulations for the analysis of microstrip antennas with 

different feed techniques are obtained.  For each structure, Green’s functions for the 

related case are required to evaluate electric and magnetic fields due to currents on 

line, patch and slot. Green’s functions used in the analysis carried out in this thesis 

are as follows: 
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yG a

EJyy : directed electric field at adyx ,,( ) due to a y directed infinitesimally small 

electric current density at  ),,( 00 adyx for the geometry shown in Figure 3.1 (a), [7]. 

yG a

EMyx : directed electric field at adyx ,,( ) due to a x directed infinitesimally small 

magnetic current density at )0,,( 00 yx for the geometry shown in Figure 3.1 (b), [7]. 

xG a

HJxy : directed magnetic field at )0,,( yx  due to a y directed infinitesimally small 

electric current density at  ),,( 00 adyx  for the geometry shown in Figure 3.1 (a), [7]. 

xG a

HMxx : directed magnetic field at 0,,( yx ) due to a x directed infinitesimally small 

magnetic current density at  )0,,( 00 yx  for the geometry shown in Figure 3.1  (b), 

[7]. 

yG a

EJyy :1 directed electric field at 2,,( adyx ) due to a y directed infinitesimally small 

electric current density at  ),,( 200 adyx  for the geometry shown in Figure 3.1  (c),  

[13]. 

yG a

EJyy :2 directed electric field at 1,,( adyx ) due to a y directed infinitesimally small 

electric current density at  ),,( 200 adyx  for the geometry shown in Figure 3.1  (c),  

[13]. 

yG a

EJyy :3 directed electric field at 2,,( adyx ) due to a y directed infinitesimally small 

electric current density at  ),,( 100 adyx  for the geometry shown in Figure 3.1  (d),  

[13]. 

 

Spectral domain representation of Greens function that represent y directed electric 

field at adyx ,,( ) due to a infinitesimally small y directed electric current element at  

),,( 00 adyx  the geometry shown in Figure 3.1 (a) is written as 

 

∫ ∫
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All other Greens’ functions can be written in the same form, and required kernel 

functions are: 
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Figure 3.1 - Geometries for spectral domain Green’s functions 

 

 

 

3.2   MoM Formulation of Microstrip Line 

 

In this part an open circuited microstrip line located on an infinitely large dielectric 

substrate and ground plane is analyzed, which is shown in Figure 3.2. Current 

flowing on the line is assumed y directed and expanded in terms of piecewise 

sinusoidal basis functions as 
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where In’s are unknown coefficients and basis functions are expressed as  
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where a
h  is the half width of the line basis function, aN  is the number of basis 

functions taken on the line. It is assumed that x variation of current is uniform. 

Propagation constant a

ek of dielectric region a is calculated as 
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Source current on the feed line is a unit magnitude half PWS basis function located at 

the beginning of the line. Its expression is given as 
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y=0 at the beginning of the line. 

 

 

 

 

 

Figure 3.2 – Microstrip line 

 

 

 
Representation of line and source basis function on the line is shown in Figure 3.3. 

 

 

 

 

 

Figure 3.3 – Source and microstrip line basis functions 

 

 

 

In order to find unknown current coefficients, an electric field integral equation is 

obtained from boundary condition stated as tangential component of total electric 

field should vanish on the line: 
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0)()( =+ fainca JEJE                            (3.14) 

 

When calculating electric fields, Green’s function given in (3.2) is used. Substituting 

(3.2) , (3.10) and (3.13) in (3.14), the following expression is obtained: 
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After Galerkin weighting is applied, following linear system of equations is obtained. 
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Equation (3.14) can be written in Matrix equation form as follows 

 

[ ] [ ][ ] 01 =+ aa IZV                             (3.17) 
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where 
a

incJ
~

, 
a

nJ
~

, 
*~ a

mJ are two dimensional Fourier transforms of  source and line basis 

functions and calculated as 
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Matrices in (3.17) have the following dimensions. 

 

1:1 ×aNV  known voltage vector 

aa

a NNZ ×:  impedance matrix 

1: ×a

a NI  unknown coefficient vector for line current. 

 

Matrix equation (3.17) is solved for aI , then line current fJ  is calculated using 

(3.10). 

 

Reflection coefficient for the microstrip line of two different width on different 

substrate thickness are calculated by using the above formulation and given in 

Chapter 4 in comparison with results available in the literature. 

 

3.3   MoM Formulation of Microstrip Line Fed Patch Antenna 

 

In this section, microstrip line fed patch antenna structure, which is shown in Figure 

3.4, is analyzed. It consists of a radiating patch that is fed by a microstrip line placed 

on a grounded dielectric layer. MoM formulation presented in this chapter is based 

on the formulation given in [13]. Patch and line currents are assumed y directed. 

Basis function on the line and excitation function is chosen similar to (3.11) and 

(3.13) respectively; propagation constant of the dielectric region is calculated as 

(3.12).  
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Patch current is expanded in terms of basis function where b

nI ’s are unknown 

coefficients 
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                    (3.21) 

 

b
h  is the half width of patch basis function, bN  is the number of basis functions 

taken on the patch. It is assumed that x variation of the patch current is uniform. 

 

To provide the continuity of the current flow from the feed line to the patch, basis 

functions of the line overlaps the patch surface for a distance S.  

To solve the patch and line currents, boundary condition (3.14) is modified to 

 

0)()()( =++ pafainca JEJEJE  on line and patch             (3.22) 

 

Matrix equation representation of this boundary condition is 
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Elements of matrix Z and vector V1 are defined in (3.19) and (3.18) respectively.  T 

and C are coupling matrices between line and patch basis functions. They are 

calculated as, 
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where 
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Matrix elements of T are easily calculated as 

a
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a

kn CT =   where k=l and m=n.                                                                            (3.26) 

 

Impedance matrix of the patch is 
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where 
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Lastly electric field on the patch generated by the source current is calculated as 
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Figure 3.4 – Microstrip line fed patch 

 

 

 

Dimensions of matrices and vectors are given as follows  

 

1:1 ×aNV  known voltage vector 

1:2 ×bNV  known voltage vector 

aa

a
NNZ ×:  impedance matrix 

1: ×a

a
NI  unknown coefficient vector for line 

bb

a
NNY ×:  impedance matrix 

1: ×b

b
NI  unknown coefficient vector for patch 

ba

a
NNC ×:  matrix 

ab

a
NNT ×:  matrix 

 

Matrix equation (3.23) is solved for 
b

I  and 
a

I , then patch and line currents are 

calculated using (3.21) and (3.10). 

 

Currents on the line and patch and input impedance of the antenna are calculated for 

different frequencies by using formulation given in this section and presented in 

Chapter 4. Furthermore effect of size of overlapping region, length S, is investigated.  
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3.4   MoM Formulation of Proximity Coupled Microstrip Patch Antenna 

 

A proximity coupled microstrip antenna consists of two dielectric layers separated by 

a microstrip line. Radiating patch is located at the top of the upper dielectric layer 

and ground plane is located at the bottom of lower dielectric layer. Figure 3.5 shows 

the related structure. When microstrip line is excited, fields are coupled to patch from 

the line. This structure is preferred because of its improved bandwidth. Currents 

flowing on the patch and line are assumed y directed and x variation is uniform. Line 

and source basis functions are given in (3.11), (3.13) respectively. Propagation 

constant of patch basis function is different from the one used in Section 3.3. Current 

density on patch is expanded as 

( )
( )

( ) ( )( )( )
)1(

1012121

22ˆ
sin

(sin1
),(

),(),(

21

1

0

00

1

+=

+−++=

=

+≤≤−

+≤≤−
−−

=

=

−

=

∑

bp

b

pa

a

r

a

r

b

re

b

re

b

e

b

n

b

n

pspsbb

e

n

bb

e

p

b

n

N

n

b

n

b

np

NLh

Wd

kk

hyyhy

WxxWxy
hk

yyhk

W
yxJ

yxJIyxJ
b

εεε

ε

       (3.30) 

 

In order to solve unknown line and patch current coefficients b
I  and a

I , two 

boundary conditions are written: 

1. 0tan =E  on the feedline 

2. 0tan =E  on the patch 
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Figure 3.5 – Proximity coupled microstrip antenna 

 

 

Electric fields can be written in terms of electric currents as: 

 

     1. 0)()()( =++ pafainca JEJEJE ,  on line 

     2.  0)()()( =++ pafainca JEJEJE ,  on patch                                                (3.31) 

 

Matrix equation generated for these boundary conditions is same as (3.23) where 
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Green’s function of y directed electric field at 2,,( adyx ) due to a y directed 

infinitesimally small electric current density at ),,( 200 adyx is used in the calculation 

of Z matrix and it is defined in (3.6), [13].  
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Elements of C matrix are calculated as 

 

∫ ∫
∞
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= yxyx

a

myx
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lyx
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EJyy
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ml dkdkkkJkkJkkQC ),(
~

),(
~

),( *

2             (3.33) 

 

a

EJyyQ 2 in this equation is given in (3.7) and it represents electric field at z=da1  due to 

infinitesimal y current at z=da2  while 
a

EJyyQ  used in represents electric field at z=da  

due to infinitesimal y current at z=da 

T matrix satisfies (3.26) and it is calculated using C matrix. 

Formulation of Y matrix is similar to (3.21), but basis function and propagation 

constant is changed to ones given in (3.30) 

Patch and line currents, and input impedance are calculated for different frequencies 

and compared with the results available in the literature and presented in Chapter 4.  

  

3.5   MoM Formulation of Slot Coupled Microstrip Antenna 

 

Figure 3.6 shows the slot coupled microstrip patch antenna structure. Formulation 

given here is based on the formulation presented in [7]. A slot coupled microstrip 

antenna is excited from the microstrip line located at the bottom of the structure. A 

narrow slot is located on the ground plane between the feed line and radiating patch 

substrates. Fields are coupled to the patch from the microstrip line through the slot on 

the ground plane.   

 

To analyze this structure, an equivalent problem is defined as shown in Figure 3.7. In 

the equivalent problem, slot on the ground plane is replaced with x directed magnetic 

currents on above and below the ground plane. In order to satisfy the boundary 

condition, zero tanE  on the ground plane, magnetic current above the ground plane is  

sM  while it is - sM  below the ground plane. incJ  is the only known source current, 

spf MJJ ,,  are the unknown currents that will be solved using MoM. 
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(a) 

 

(b) 

Figure 3.6 – Parameters of aperture coupled microstrip antenna  

(a) top view (b) side view 

 

 

 

In this structure, total electric and magnetic fields in region a (below the ground 

plane) and region b (above the ground plane) can be written in terms of related 

currents as: 
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Figure 3.7 – Slot coupled microstrip antenna with (a) surface electric currents 

(b) with surface electric and magnetic currents 

 

 

                                

(3.34) means that the total electric and magnetic fields in the region “a” are the sum 

of electric and magnetic fields generated by the source, line and slot currents. 

Similarly, total electric and magnetic fields in the region “b” are the sum of electric 

and magnetic fields generated by patch and slot currents. 
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Expressions in (3.35) are integral expressions of electric or magnetic fields generated 

by the patch, slot, incident and feed currents taking into account the dielectric layers 

and the ground plane:  
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                                      (3.35) 

Similar expressions are valid for region b only after replacing a

rε  to b

rε  and ad  to 

bd . Green’s functions are given in (3.2) to (3.7). 

In order to find the unknown currents, three integral equations are written using the 

boundary conditions. 

1. 0tan =E  on the patch 

As given in (3.34) the total electric field in the patch region is the sum of  electric 

field generated by electric patch current and electric field generated by magnetic slot 

current which can be written on the patch as: 

 

0)()( =+ sbpb MEJE                            (3.36) 
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2. 0tan =E  on the feedline 

Similarly, equation (3.37) satisfies the second boundary condition. 

 

0)()()( =−+ safainca MEJEJE                (3.37) 

 

3. tanH  is continuous through the aperture 

 

)()()()()( safaincasbpb MHJHJHMHJH −+=+             (3.38) 

 

As required in MoM formulations, unknown currents are expanded in terms of 

known basis functions and unknown coefficients. Basis functions used for the 

microstrip line and propagation constant of region a is given in (3.11) and (3.12). 

Patch basis function and propagation constant of region b is given in (3.30). 

 

Basis function chosen for the magnetic current that represents the aperture is  
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                  (3.39)                      

 

a

ek  is given in (3.12) and 
b

ek  is given in (3.30). Incident current on the feed line is a 

unit magnitude half PWS basis function and expressed as (3.13).  

 

Replacing the unknown currents with PWS basis functions and applying Galerkin 

type weighting MoM formulation to the integral equations given in (3.36) to (3.38) 

result in following expressions: 
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Boundary Condition 1 (3.36): 
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ap

sV  and b

nI  are coefficients so that they can be taken outside the integration, after 

weighting above equation is written as 
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This equation results in a matrix equation that can be written as 

 

[ ][ ] [ ][ ] 0=+ apbbb
VTIZ                  (3.42) 

 

where 
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 where 
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Dimensions of the matrices are as follows: 

bb

b
NNZ ×:  matrix 

sb

b
NNT ×:  matrix 

1: ×b

b
NI  unknown coefficient vector for patch 

1: ×b

ap
NV  unknown coefficient vector for slot 

 

Boundary Condition 2 (3.37): 
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After weighting is applied 
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Matrix equation representation is 

 

[ ] [ ][ ] [ ][ ] 01 =−+ apaaa VTIZV                 (3.47) 
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Dimensions of the matrices are as follows: 

11 ×→ aNV  known voltage vector 

aa

a NNZ ×→  matrix 

sa

a NNT ×→  matrix 

1×→ a

a NI  unknown coefficient vector for line 

1×→ a

ap
NV  unknown coefficient vector for slot 

 

Boundary Condition 3 (3.38): 

 

)()()()()( safaincasbpb MHJHJHMHJH −+=+   

 

Boundary condition in terms of basis functions is 
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After weighting, boundary condition becomes 
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Matrix equation for this boundary condition is 

 

[ ][ ] [ ][ ] [ ][ ] [ ] [ ][ ]apaaaapbbb VYVICVYIC −+=+ 2              (3.51) 
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where 
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where                                                                                  
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Dimensions of the matrices are as follows: 

 

12 ×→ sNV  known voltage vector 

as

a NNC ×→  matrix 

bs

b NNC ×→  matrix 

ss

a NNY ×→  matrix 

ss

b NNY ×→  matrix 

1×→ a

a NI  unknown coefficient vector for line 

1×→ b

b NI  unknown coefficient vector for patch 

1×→ a

ap NV  unknown coefficient vector for slot 
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Using (3.42), [ ]bI  is written in terms of [ ]apV  using the first boundary condition. 
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Similarly, it is written for a
I  from the second boundary condition as 
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Lastly, Vap  is found using the third boundary condition. 
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Once  [ ]ap
V  is found, coefficients for patch and slot, [ ]b

I  and [ ]a
I  respectively, can 

be found from equations (3.54) and (3.55).  

 

3.6 Evaluation of Integrals in MoM Matrix and Vector Entries 

 

Integrals in all matrix and vector entries given in Section 3.2 to 3.5 are in the form 

of: 
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To simplify this integration, following transformation is used. 
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Then, the integration in (3.57) becomes  
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Also when calculating b
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mn YYZ ,,  square matrices generated for all feeding 

methods, even odd properties of the integrands are used, so that boundaries of α  

integration is changed from 0: 2π to 0:  π /2, [14]. Then, integral equations can be 

written in the following expressions 
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               (3.60) 

 

In the numerical calculation, upper limit of β  integral is determined based on 

experience. For each matrix element generated during solution, convergence of terms 

is tested. Real part of these terms converges near k0 while the imaginary part needs a 

larger upper limit. Experiments on all the matrix elements have shown that 200k0 is 

sufficient for the upper limit. When the upper limit is changed to 400k0, no 

significant change is observed in the values of matrix elements. 
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Both α and β integrations are handled using Gaussian quadrature technique. α 

integration from 0 to π/2 in (3.60) is divided into 7 pieces and α integration from 0 to 

2π is divided into 31 pieces for the rest of the matrices which means α integration is 

handled in π/16 intervals. For each interval Gaussian quadrature of order 16 is used 

in both cases. β integration from 0 to 200k0 is handled in 200 pieces. Gaussian 

quadrature of order 16 is used for each piece. Different intervals and orders of 

Gaussian quadrature cases are tried during the study and parameters given above 

provided the most accurate results.  

                  

3.7 Singularity Treatment  

 

There is always at least one TM surface wave pole that needs a special treatment. 

This pole occurs at a real β value for a lossless medium and its location is in the 

range 00 kk rp εβ <≤ . To prevent a numerical difficulty when integrating for β= βp 

integrals are modified as 
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Res in (3.62) represents the residue of the integrand at the pole. 
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3.8 Calculation of Reflection Coefficient and Input Impedance 

 

To find the reflection coefficient for different cases formulated through section 3.2 to 

3.5, a method called Prony’s Exponential Fitting Method [15], is used. This method 

approximates the feed current as a summation of two waves one of which moves in 

+y direction while the other moves in –y direction. It is written according to the 

position on the line as 

 

yy
eCeCyI 21)(

γγ −−+ +=                 (3.63) 

 

where 1γ  and 2γ  are the wave numbers for the waves moving in +y and –y 

directions respectively. It is expected that 21 γγ = . Although in the numerical 

solution these numbers are not exactly identical to each other but for a good fitting 

they are close enough to each other. 1γ  and 2γ  are also close to the propagation 

constant a

ek  given in (3.12). +
C  and −

C  are the coefficients of the waves. Current 

reflection coefficient at the beginning of the microstrip line, after this exponential 

fitting is applied, is found as 

 

+

−

=Γ
C

C
                                                                                   (3.64) 

 

Phase reference of input impedance for microstrip line fed patch antenna is the 

radiating edge of the patch where line is connected; for the proximity coupled patch, 

input impedance is referenced at the open end of microstrip feed line. In the slot 

coupled microstrip antenna problem, input impedance is referenced to the center of 

the aperture. Input impedance is calculated for all cases as 

 

f
a
e

f
a
e

Lkj

Lkj

in

e

e
Z

2

2

1

1

Γ+

Γ−
=                  (3.65) 

where Lf  is the distance from the beginning of line to reference plane. 
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CHAPTER 4 

 

 

NUMERICAL RESULTS 

 

 

 
4.1   Introduction 

 

In this chapter numerical results obtained for microstrip patch antennas with different 

feeding techniques are given, compared with the results available in literature and 

discussed. Computer code based on Method of Moment formulation given in chapter 

3, has been developed and used to obtain numerical results. 

 

4.2   Evaluation of the Self Impedance and Mutual Impedance Between Two 

Current Elements  

 

As known from equation (3.42), b

klZ  represents the impedance matrix of a rectangular 

patch located on a grounded dielectric substrate. Firstly, results calculated for b

klZ  

matrix by the developed Fortran code are checked.  

 

To obtain b

klZ , a rectangular patch with width, W_patch, of 0.3λ, and length, 

L_patch, of 0.3 λ is chosen for the frequency 300MHz. Thickness of the dielectric is 

chosen as 0.04λ and the dielectric constant of the substrate is 2.55. Number of basis 

functions used for the patch is 3, so that 
b

klZ  is a 3x3 matrix. Table 4.1 shows the 

elements of 
b

klZ  matrix. 
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Table 4.1 – Elements of 3x3 b

klZ  matrix 

 
b

klZ  l=1 L=2 l=3 

k=1 -0.43675 + 27.66i -0.41976 - 18.524i -0.37119 - 5.5783i 

k=2 -0.41976 - 18.524i -0.43675 + 27.66i -0.41976 - 18.524i 

k=3 -0.37119 - 5.5783i -0.41976 - 18.524i -0.43675 + 27.66i 

 

 

 

As expected, b

klZ  is a Toeplitz matrix, so that it is sufficient to evaluate the first row 

of the impedance matrix.  

 

bb

bbbb

bbb

ZZ

ZZZZ

ZZZ

3113

32232112

332211

=

===

==

 

 

When calculating impedance matrix elements, infinite integration on β is taken in the 

range 0 to 200k0. To be sure that integrals of matrix elements are converged, the 

upper limit is changed to 400k0. When the integral limit is changed, real part of the 

matrix elements remained constant. Only a small difference occurred in the 

imaginary part. To save from computation time, it is decided to terminate the 

integration at  200k0. 

 

To check the convergence of integrals in 
b

klZ  matrix imaginary part of self 

impedance term is plotted in Figure 4.1., and Re( b
Z11 ) is constant at 0.43675. 

Similarly, convergence graph for mutual impedance is given in Figure 4.2., and 

Re( bZ12
) is constant at 0.41976. 

 

Next, basic rectangular patch structure is modified to 2 patches with 0.5λ separation. 

Each patch has W_patch and L_patch of 0.3λ. Dielectric constant and substrate 

thickness are not changed. When 3 basis functions are taken for each patch, total 
b

klZ  

matrix is 6x6. New elements of Z matrix are shown in Table 4.2 
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Table 4.2 – Elements of 6x6 Z Matrix 

 

 
 

 

 

This analysis is carried out to validate the accuracy of the results calculated for the 

patch region. When matrix elements are compared to the ones obtained for the same 

cases in [16], it is observed that they are in good agreement. 

 

 

 

 

. 

Figure 4.1 – Convergence of imaginary part of self impedance term 
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Figure 4.2 – Convergence of imaginary part of mutual impedance term 

 

 

 

4.3   Microstrip Feed Line 

 

Analysis of microstrip line, shown in Figure 3.2, is carried out according to the 

formulation given in section 3.2. Reflection coefficients of the line for different line 

widths and substrate thicknesses are calculated and presented. 

 

Figure 4.3 shows the variation of the magnitude of reflection coefficient of the line as 

a function the thickness of the substrate for rε  of 2.55. Reflection coefficient for a 

line of width fW of λ02.0  and fW  of λ1.0  are plotted. These results are compared 

with the results given in Pozar’s paper [17]. In [17], line is assumed to extended to 

infinity in one direction. Results obtained by the code developed in this thesis show 

good agreement with results given in [17].  
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As the thickness of the substrate increases, reflection coefficient of the line gets 

smaller. It is also seen from the Figure 4.3 that there is an inverse relationship 

between the width of the line and the value of reflection coefficient. 

 

 

 

 

Figure 4.3 – Reflection coefficient versus substrate thickness compared with 

reflection coefficient given in [17], solid line:[17], markers:calculated 

 

 

 

4.4   Microstrip Line Fed Patch 

 

Formulation given in section 3.3 is applied to solve the line and patch currents of a 

microstrip line fed patch. Furthermore, reflection coefficient and input impedance is 

calculated for different frequencies.  

 

The width and the length of the patch, Wp  and Lp respectively, are 4.02cm. S is 

chosen 0.45x Lp and 0.65xLp and results are obtained for both S values. Line width 

Wf  is 0.477cm. Dielectric constant of the substrate is 2.57 and thickness is 0.159cm.  
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Feed point is always centered at the edge of the patch. Line length is taken 0.15m+S 

in all cases. Number of basis functions taken on line is 25 while it is 5 for the patch.  

 

Figure 4.4 shows the line current at 2200MHz and 2300MHz. Figure 4.5 gives the 

patch currents at 2200MHz and 2300MHz. Both of the figures are obtained for the 

case S/Lp =0.65. 

Reflection coefficient and input impedance values at different frequencies are 

calculated and input impedance results are compared with the ones given in [13]. 

Smith chart plot of input impedance results obtained by the formulation given in this 

thesis, -denoted as “calculated” in the Figure 4.6, measured results taken from [13] 

and calculated by Pozar, [13] are given in Figure 4.6. Results show that impedance 

value is not extremely dependent on the value of S. Calculated results are in good 

agreement with measured data and the calculated results in [13]. Note that in [13], 

line is assumed to extended to infinity in one direction. 

 

4.5   Proximity Coupled Microstrip Antenna 

 

MoM formulation of the proximity coupled microstrip patch antenna is presented in 

Section 3.4. In this section, currents and input impedance obtained using related 

formulation are given and compared with the results given in [13]. 

 

Analyzed structure has a patch length Lp of 2.5cm. Patch width Wp is 4cm and S/Lp is 

0.52. Strip line width Wf  is chosen as 0.5cm and line length is 0.1m+S. Permittivity 

and thickness of both dielectric layers is 2.22 while thicknesses da1= 2da2 =0.318cm. 

25 basis functions are used on line and 5 basis functions are used on patch. 

Magnitudes of the line and the patch currents at two different frequencies are shown 

in Figure 4.7 and 4.8. Input impedance calculated by the developed code and Pozar 

[13] are plotted on a Smith chart and presented in Figure 4.9. The agreement between 

the results are acceptable.  
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(a) 

 

(b) 

 

Figure 4.4 – Magnitude of stripline current at (a) 2200MHz and (b)2300MHz 

for S/Lp =0.65 in both cases 
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(a) 

 

(b) 

 

Figure 4.5 – Magnitude of patch current at (a) 2200MHz and (b)2300MHz for 

S/Lp =0.65 in both cases 
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Figure 4.6 – Smith chart plot of input impedance compared with [13]  

▲:  measured, ■: calculated [13] (S/Lp =0.65), ●: calculated [13] (S/Lp =0.45), □: 

calculated (S/Lp =0.65), ○: calculated (S/Lp =0.45) 
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(a) 

 

(b) 

 

Figure 4.7 – Magnitude of line current at (a) 3400MHz and (b)3700MHz 
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(a) 

 

(b) 

 

Figure 4.8 – Magnitude of patch current at (a) 3400MHz and (b)3700MHz 
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Figure 4.9 – Input impedance of proximity coupled microstrip antenna 

compared with results given in [13], ●:[13], ○:calculated 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 
In this thesis, MoM/spectral domain Green’s function formulation is developed for 

the analysis of planar rectangular microstrip patch antennas with different feed 

techniques. Formulation for microstripline, microstrip line fed patch, proximity 

coupled patch and slot coupled patch are given. For all these cases equivalent 

problems are defined and integral equations are obtained from boundary conditions. 

Then, MoM is applied to convert these integral equations to a system of linear 

equations. Currents on the conducting surfaces as well as equivalent magnetic 

currents on the apertures are modeled as a sum of piecewise sinusoidal sub domain 

basis functions with unknown coefficients which are calculated by solving the 

system linear equations.  Convergence of numerical calculation of integrals of self 

and mutual impedance is studied carefully. Furthermore, pole singularity in these 

integrals is handled properly.  

 

Fortran code is generated to evaluate currents on the lines and patches and input 

impedance for these structures. Numerical results in the form of line and patch 

currents and input impedance are calculated by this code and compared with the 

results available in the literature. 

 

Reflection coefficient of a microstrip line with properties given in [17] is calculated 

and compared with the ones in [17]. Reflection coefficient values obtained for 

different width and substrate thickness show good agreement with that of Pozar’s 

paper [17].  
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Current distributions and the input impedance of microstrip line fed patch antenna 

structure are calculated by the developed code for different frequencies. Calculated 

values are compared with the results of [13]. It is observed that results are in good 

agreement with the ones in [13]. Treatment of feed line in this thesis is different than 

one in [13]. 

 

Proximity coupled microstrip antenna structure is also investigated. Input impedance 

values evaluated by the developed code are in good agreement with the values given 

in [13].  

 

Formulation and code modules can easily be extended to analyze different microstrip 

antenna structure such as stacked patches.  As a future work, the code will be 

modified to analyze arrays of slot coupled patch antennas. For large arrays, when the 

distance between two elements is larger than few wavelengths, convergence problem 

is observed for the evaluation of mutual impedance integrals. For such cases, 

asymptotic evaluation of integrals can be considered. 
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