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ABSTRACT

ANALYSIS OF SLOT COUPLED MICROSTRIP PATCH ANTENNAS

Ballikaya, Elif
M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc.Prof.Dr. Ozlem Aydin Civi

December 2007, 61 pages

Method of Moments (MoM)/Green’s function formulation is developed for the
analysis of electromagnetic radiation from planar rectangular microstrip antennas
with different feeding techniques. Investigated structures are microstrip line fed
patch antenna, proximity coupled patch antenna and slot coupled patch antenna. For
all these structures equivalent problems are defined. Then, integral equations where
currents are the unknowns are obtained from boundary conditions and by using
spectral domain representation of Green’s functions. Finally, MoM is applied to
convert these integral equations to a system of linear equations. Currents on the
conducting surfaces as well as equivalent magnetic currents on the apertures are
modeled as a sum of piecewise sinusoidal subdomain basis functions with unknown
coefficients which are calculated by solving the system of linear equations. Based on
the formulations provided in this study, a Fortran code is developed. Numerical
results calculated by using the code are presented in the form of patch and line
currents and input impedances. Presented results are in good agreement with the

results given in the literature.
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(074

ACIKLIK KUPLAJLI MIKROSERIT YAMA ANTEN ANALIZI

Ballikaya, Elif
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Dog. Dr. Ozlem Aydin Civi

Aralik 2007, 61 sayfa

Bu tez caligmasinda farkli tekniklerle beslenen dikdortgen mikroserit yama
antenlerin analizi i¢cin Moment Metodu/Green’s fonksiyonu formulasyonu
gelistirilmistir. Incelenen yapilar mikroserit hat ile beslenen yama anten, yakinlik
kuplajli yama anten ve aciklik kuplajli yama antendir. Biitiin antenler i¢in denk
yapilar tanimlanmistir. Sonrasinda sinir kosullar1 ve spektral Green fonksiyonlari
kullanilarak, akimlarin bilinmeyen olarak tamimlandigi integral denklemler elde
edilmistir. Son olarak bu integral denklemlerin dogrusal denklem sistemine
doniistiiriilmesi i¢in moment metodu kullanilmustir. Iletken yiizeyler iizerindeki
elektrik akimlar ve acikliklarda tanimlanan esdeger manyetik akimlar, parcali siniis
temel fonksiyonlar1 ve bilinmeyen katsayilar cinsinden yazilmistir. Akimlarin temel
fonksiyonlarla a¢ilimdaki bu bilinmeyen katsayilar dogrusal denklem sisteminin
¢Oziimiinden elde edilmistir. Bu tezde sunulan formulasyonu uygulayan bir Fortran
kodu gelistirilmistir. Mikroserit hat ve yama iizerindeki akim dagilimlar1 ve antenin
giris empedanslari bu kodun kullanimiyla elde edilen edilmis ve sunulmustur. Elde

edilen sonuclarin literatiirdeki sonuglarla uyumlu oldugu gériilmiistiir.
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CHAPTER 1

INTRODUCTION

In this thesis, planar rectangular microstrip patch antennas fed by different
techniques are analyzed using Method of Moments/Spectral Domain Green’s
function method. Specifically, formulations for the analysis of radiation from
microstrip line fed, proximity coupled and slot coupled microstrip patch antennas are
provided. Numerical results in the form of current distributions and input impedance

are presented and compared with the results given in literature.

A microstrip antenna idea was firstly introduced in 1950’s but it became popular and
took place in various applications in 1970’s. Recently, microstrip antennas are
widely used in several applications where low size, weight and cost, high
performance and easily fabricated and installed antennas are required such as
airborne, space borne commercial and military applications and mobile and wireless
technologies. Some other advantages of microstrip antennas are that they are
conformable to planar and non-planar surfaces, easily fabricated using printed circuit
technology, and they are mechanically robust. Microstrip patches are resonant type
antennas. Thus, impedance bandwidths are narrow. The other disadvantages of
microstrip antennas are having low efficiency, low power handling, and spurious

feed radiation.

A microstrip patch antenna consists of a radiating conducting strip placed on a

grounded dielectric layer. Design of the radiating patch (length, width, feed type etc.)



and characteristic of the dielectric substrate (dielectric constant, height of the
substrate etc.) determines the behavior of the antenna. Microstrip patch can be of
different shapes such as rectangular, square or disk patches. They can provide linear,

dual or circular polarization by appropriate feeding.

Experimental studies on the design of microstrip antennas have shown that most
effective parameter on the characteristic of a microstrip antenna is the dielectric
constant of the substrate. Relation between dielectric constant and the resonance

frequency of a microstrip antenna can be written as

% 1 %, (1.1)

f, is the resonant frequency, & is the change in resonance frequency, Jg, is the
change in dielectric constant and &, is the dielectric constant of the substrate, [1].

Change in the size of the patch results in a change in the resonance frequency where

(1.2)

<

W
W

oW is the change in patch width, W is the patch width. W is usually chosen in the
range Ao/3<W< Ay/2. Ratio of L/W>2 is not advised. L is the patch length, [1].

Thickness of the dielectric substrate is less effective on the resonance frequency
compared to dielectric constant. 0.00320<h<0.1X, is generally used. Substrate
material used in today’s technology has a dielectric constant that varies from 1.17 to
25. Usually small dielectric constant materials are preferred since they supply better

efficiency, larger bandwidth with thick substrates but large patches.

Due to the change of dielectric constant, total resonance frequency change between

-75°C and 100°C is generally about %0.03 which means it is nearly possible to



eliminate the effect of temperature on the resonance frequency of a microstrip

antenna if a proper material is selected, [1].

Different feeding techniques of microstrip patch antennas are shown in Figure 1.1.
Microstrip line and coaxial probe feed methods, shown in Figure 1.1.a and Figure
1.1.b, are advantageous because of their simplicity to match and fabricate but they
are both bandwidth limited when substrate thickness is increased. It is also difficult
to model a probe fed microstrip antenna with a thick substrate. Also unwanted feed

radiation in these feed types interferes with the radiation of the patch.

To overcome the problems of microstrip line and coaxial probe feeds, noncontacting
feed methods are developed. In proximity coupled microstrip antenna, shown in
Figure 1.1.c, two dielectric layers are separated by a microstrip line. Radiating patch
is located at the top of the upper dielectric layer while lower dielectric layer is
bounded by a ground plane. Of the four feeds shown in Figure 1.1, proximity
coupling is the method that provides the largest bandwidth. Spurious feed radiation is

reduced by removing the direct contact between the feed and patch.

Slot coupled microstrip patch antenna, shown in Figure 1.1.d is proposed by Pozar in
1985, [2]. It is also a noncontacting feed method. The structure consists of two
dielectric layers, which may have different thickness and dielectric constants. These
two layers are separated by a ground plane with a slot, which provides coupling
between the patch and the feed line. The upper dielectric layer is bounded from top
by a radiating patch where the lower dielectric layer is bounded from bottom by the
feed network. Feed network, shape of the patch and parameters of the dielectric
substrates can be designed separately to obtain a desired performance from the
antenna. One can choose thick dielectric with low dielectric constant for the patch to
increase operation bandwidth and choose thin dielectric with high dielectric constant
for the feed network. Since feed network part and radiating part are separated from

each other, aperture coupled patch is very suitable for phased arrays [2], [3].



After Pozar introduced this new and advantageous feed technique a number of
studies have been carried out to analyze it. Pozar analyzed this structure using cavity
model and also gave results obtained from the measurement of a prototype antenna.
Modal expansion method is also applied to slot coupled microstrip antennas in [4].
Input impedance calculation of slot coupled microstrip antennas using transmission
line modeling is presented in [5], [6]. They also show good agreement with the
measured results. Thirdly, moment method analysis of this antenna is explained in
detail in [7]. To improve the antenna performance by improving the coupling
between the patch and feed line, different size and shapes of slots are experimented.
H-shaped, bowtie, dog bone shaped slots had been studied [8], [9]. All these slot
shapes provide better input impedance compared to a rectangular slot. They also
have smaller dimensions compared to rectangular slot, which decreases the amount
of back radiation through the aperture. Only disadvantage of these complicated slot
geometries is that it is difficult to analyze these structures analytically or even
numerically. Besides slot shape, patch and feed shapes are also varied to design a
wideband microstrip antenna. Some different shapes of patch and feed, like T-shaped
feed, are presented in [10]. Furthermore the effects of dielectric constants of the
layers are investigated, [11], [3]. Studies have shown that it is advantageous to
choose a high dielectric constant material for the lower substrate (for feed) and a

thick and low dielectric constant material for the upper substrate (for patch).

In the analysis of radiation/scattering from microstrip patch antennas, full-wave
analysis method, Method of Moments (MoM) is widely used, [12]. In this thesis
MoM/Green’s function technique in Spectral domain is used to investigate some
microstrip patch antenna structures. In Chapter 2, some of the well-known methods
used to analyze microstrip antennas are summarized. These are transmission line

method, cavity method and full-wave numerical methods such as MoM.

In Chapter 3, Green’s function representation in spectral domain is presented for

electric and magnetic type sources located on grounded dielectric substrate.



Formulations for microstrip line, microstrip line fed patch, proximity coupled patch

and slot coupled patch antennas are derived and given in Chapter 3. For all these
cases equivalent problems are defined and integral equations are obtained from
boundary conditions. Then, MoM is applied to convert these integral equations to a
system of linear equations. Currents on the conducting surfaces as well as equivalent
magnetic currents on the apertures are modeled as a sum of piecewise sinusoidal sub
domain basis functions with unknown coefficients which are calculated by solving
the system linear equations. Accurate and efficient evaluation of MoM matrix
entities are discussed in Chapter 3. Calculation of input impedance of a patch

antenna is also explained.

Numerical results in the form of line and patch currents and input impedance are
obtained by using formulations derived in Chapter 3. These numerical results in
comparison with the available data in the literature are presented and discussed in

Chapter 4.

Chapter 5 concludes this thesis and briefly discusses the work done in this thesis. An

eI time dependence is assumed and suppressed throughout this work.
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CHAPTER 2

METHODS OF ANALYSIS OF MICROSTRIP ANTENNAS

Recently, microstrip antennas are preferred in many commercial and military
applications, due to their several advantages, such as low profile, low cost, easy
integration. Therefore, there is a significant effort on the development of efficient
and accurate analysis tools for microstrip antennas. Microstrip antennas are generally
analyzed by three different models. These are transmission line model, cavity model
and full-wave numerical methods such as Method of Moments. In the transmission
line method, microstrip antenna is represented by an equivalent circuit and
characteristic impedance and propagation constant are expressed in closed form.
Cavity model is a modal solution and it gives field distributions in the cavity between
microstrip patch and the ground plane surrounded by magnetic walls. Application of
these two methods is limited due to approximations made. To obtain more accurate
results full-wave numerical methods, such as Method of Moments, Finite Element,
Finite Difference Time Domain, are preferred. In this thesis, Method of Moments is
chosen to investigate patch antennas, since it can be easily applied to planar antenna
structures and solution time is relatively short compared to other mentioned

numerical methods.

2.1 Transmission Line Model

The simplest and the least accurate method to analyze a rectangular microstrip patch

is the transmission line method. It basically represents the antenna by two parallel



radiating slots separated by a transmission line of length L, which is equal to the
length of the patch, and characteristic impedance Z.. Transmission line
representation of a microstrip patch antenna is shown in Figure 2.1. The slot length is
equal to the width of the patch and the slot width is equal to the thickness of the

substrate.

Fields at the edge of the patch, both for the length and the width, undergo fringing as
a result of the finite dimension of the patch. Besides the dimensions, height and
dielectric constant of the substrate also affect the amount of fringing. Because of
fringing, patch looks wider then its physical dimensions. In order to take in to

account this effect, an effective dielectric constant €, is calculated as [3]:

W/h>1

+1 e -1 2 2.1)
e, =2t e 0
2 2 W

where W is the patch width (slot length), % is the height of substrate (slot width) and
£, 1is the dielectric constant of the substrate. Similarly effective patch length can be

written in terms of effective dielectric constant as:

(€, + 0.3{2’ + 0.264)

% — 0412 =
(€. — 0.258{ + o.gj 2.2)
h
L, =L+2AL

Without fringing resonant frequency of the antenna is formulated as

2.3)

_ 1 __ %
/= 2L\e, Jue, 2L\e,



where v, is the speed of light in free space. In order to take into account fringing,

effective patch length and effective dielectric constant are used to formulate resonant

frequency.

1 1
er‘ = =
2L €,y A MoEy 2L +2AL)E, 0\ 1o
_ 1 _ Vo
oL NEINTS 1 2L.Je,

(2.4)

q in (2.4) is called the fringing factor and assumed as constant for other parameters
of antenna when dielectric constant of the substrate and the frequency are not

changed. Accuracy of the resonant frequency is defined by fringing factor.

As mentioned earlier, equivalent circuit of radiating slots used to represent microstrip
patch consists of equivalent parallel admittance Y with conductance G and
susceptance B. Related circuit and fringing is shown in Figure 2.1. Y can be written

as [3]

Y=G+jB
W 1, hol
- 1= — (koh SLp— 2.5
120/10{ 24( o) } A, 10 )
- " l-oe36mk,n?] <L
1204, A, 10

where 4, is free space wavelength and &, = 2% is the free space wave number.
0

Since the slots are identical, (2.5) is valid for both of the slots.

Ideally, A/2 separation between slots provides 180° phase difference, where A is the
wavelength in the substrate, but because of fringing, separation between the slots is
slightly less then A/2. So L is chosen properly in the range 0.48 A<L<0.49 A which

results the admittance in slot 2 as



1§

2

:G2+j§2:Gl_jBl
:G1

G, (2.6)
B, =-B,
Parallel admittances generates a pure real total resonant input admittance
Y, =G, +jB, +62 +j§2
(2.7)

=G, + jB, + G, — jB,
=2G,

. Patch .
/7 mSubstrate

|
Ground
plane

(a)

. L .
o
W :> Bi=QG; Bx= Go
Ye
(b)

Figure 2.1 — (a) Fringing effect (b) Transmission line model of rectangular

microstrip antenna

Although transmission line model provides less accuracy, calculation of resonant

frequency and input admittance of a microstrip antenna is simple by this method.

10



The transmission line model is improved to calculate the input impedance of a slot
coupled microstrip antenna. Equivalent transmission line model circuit of a slot
coupled microstrip antenna is shown in Figure 2.2. First transformer stands for the
coupling between the slot and patch while the second transformer is used to represent
coupling between slot and microstrip line. Although derivation will not be

formulated here, calculated input impedance is given in [5] as

2
n,

Z = (—)— iZ, cot(k,L, (2.8
n12YpaICh+Yap / l ) )

where
n,=L,1b
n, =AV/V,

k;: wave number of microstrip line of length L

Z.: characteristic impedance of microstrip line of length L
L, : slot length

b: patch length

AV : discontinuity in modal voltage of feeding microstrip line

Vo: slot voltage

Detailed explanation about transmission line model of slot coupled microstrip

antenna is provided in [5], [6].

2.2 Cavity Model

Another method used to analyze microstrip antennas is cavity method. Cavity model
treats the region between the patch and the ground plane as a cavity bounded by

these conductors from the top and the bottom and by magnetic walls along the

perimeter of the patch in order to simulate an open circuit. It assumes that fields in

11



the cavity do not exceed the boundaries of the cavity which means fringing is not

taken into account in the cavity model [3].

m=L1b

Slot :>

11
1 1 Microstrip

e n,=AV 1V,

" _ vV P R
Z_in > open
- stub
e} o—

Figure 2.2 — Transmission line model of slot coupled microstrip antenna

A
v

Figure 2.3 - Rectangular patch geometry
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Under this assumption, electric and magnetic fields inside the cavity must satisfy the

boundary conditions in (2.9) for a geometry shown in Figure 2.3.

Ey(x'z0,0Sy'SL,OSz'SW)zEy(x'zh,OSy'SL,OSz'SW)zO
H 0<x'<h0<y<Lz=0=H 0<x'<h0<y'<Lz=W)=0 (2.9)
H (0Sx'<hy=00<7"<W)=H (0Sx'<h,y=L0<7<W)=0

These fields can be written in terms of a vector potential A as

o1 (o
E =—j—|—5+k"|A, H, =0
aue \ ox
9°A 0A
Ey=—jL z H‘,=l = (2.10)
WUE dxdy Tou oz
d°A 0A
o L P4 oo LA
WUE 0x07 U Oy
where A satisfies the homogeneous wave equation
VA +k*A, =0 (2.11)

Solution of A is

A, = (A, cos(k,x)+ B, sin(k,x))(A, cos(k, y) + B, sin(k, y) (A, cos(k_z) + B, sin(k_z))

2.12)

Inserting (2.12) into (2.10), one can show using the boundary condition for E, that
(3]

B =0, k =—, m=0L12.. (2.13)

13



Similarly, for the boundary condition for H,

B,=0, k =P%  p=012. (2.14)
T w

and for H,

B, =0, ky:%, n=0,1.2... (2.15)

Resonant frequency of the cavity is

2 2 2
el T
" amJue \\ h L w

Dominant mode is the mode with the lowest order resonant frequency. For a

microstrip antenna that satisfy L>W>h, TMy¢ is the dominant mode and resonant

frequency is

1

Srow = m

2.17)

If microstrip antenna satisfies L>W>L/2>h second order mode is TM; and resonant

frequency is

1
oo = —— (2.18)
rcon 2W .\ ue

If L>L/2>W>h is valid, then the second order mode is TMy;( and resonant frequency

18
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1

Jron =—7—
,020 L\/%

(2.19)

Cavity model is also limited; it is not possible to analyze a circular patch by using
transmission line model. Furthermore, it ignores field variations at the edges of the

rectangular patch, which causes less accurate results.
2.3 Method of Moments

In the analysis of electromagnetic radiation/scattering from microstrip antennas,
mostly full-wave numerical methods, such as Method of Moments, Finite Element,
Finite Difference Time Domain, are preferred to obtain more accurate results. In this
thesis, Method of Moments is chosen to investigate patch antennas, since it can be
easily applied to planar antenna structures and solution time is relatively short

compared to other mentioned numerical methods.

Method of moments can be applied to solve integral equations of the form

[ k(e x) f(x)dQ = g(x') (2.20)

Q is a geometric domain that can be a curve, surface or volume and x € d Q.

Equation (2.20) can be written in an operator form as

L(f)=g (2.21)

where g is a known source distribution, L is a linear operator operating on f and f is

the unknown function that will be solved.

N
Firstly Q domain is divided into sub domains that satisfy Q = UQ ; or an entire
j=1

domain solution can be applied that does not require division. Second step is to

15



choose a set of functions that will be used to approximate unknown function f such

that
fO) =2, f,(x) (2.22)

f j(x') s are called basis function, &;s are unknown coefficients that will be solved.

Substituting (2.22) into (2.21)
4l ’

LY a,f,(x) =g (2.23)
j=1

Using linearity (2.23) can be written as

N

> a,L{f,)}=¢ (2.24)

j=1

Next step is to choose a set of functions to obtain N equations with N unknowns. This

function is called weighting function, w,, and by taking inner product, above equation

becomes
D, (L(f ) w)=(g.w,) (2.25)

This results in a matrix equation of the form Ax=b where

16



o
o,
X =
_aN_
ﬂll ﬂlZ ﬂlN
A=l ... @f{uﬂxw>
_:311\/ . s :BNN_
o) ]
<g’W21>
b:
(& wy) ] (2.26)

A matrix and b vector is known, unknown x vector can be calculated as
x=A"b (2.27)

Inner product of two functions is calculated as

(£, ,0) = [ (O f5 (0)dQ (2.28)

f, (x): complex conjugate of f, (x)

Accuracy of the moment method solution depends on the choice of basis and
weighting functions. Basis function should be such that equation (2.22) approximates
f well. In the analysis of microstrip patch antennas, piecewise sinusoidal basis

functions are used in this thesis.

17



An example of a weighting function is Dirac-Delta function. MoM formulation using

Dirac Delta function as weighting is called point matching and can be written as

w,(x)=0(x"-x,) (2.29)

where x”is the position vector, x, is the position of impulse.

In the MoM formulation given in this thesis, Galerkin type weighting functions are
used. In this approach, weighting functions are chosen identical to basis functions

which are piecewise sinusoidal [12].

Microstrip patch antennas with different feeds are analyzed in this thesis by using
MoM. Integral equations that satisfy the boundary conditions of the related structure
are obtained by using spectral domain Green’s function representations. Then MoM
is used to convert these integral equations to a system of linear equations. Matrix
equations of the form Z.I =V are solved for current coefficients in vector I. Detailed

MoM/Green’s function formulation of each type of antenna is given in Chapter 3.

18



CHAPTER 3

MOM FORMULATION OF MICROSTRIP PATCH ANTENNAS
USING SPECTRAL DOMAIN GREEN’S FUNCTIONS

MoM/Green’s function formulation of a microstrip line, microstrip line fed patch,
proximity coupled microstrip patch antenna and slot coupled microstrip patch
antenna are given in this chapter. Integral equations for unknown surface currents on
line, patch and slots are obtained from boundary conditions of the equivalent
problem of related structures using spectral domain representation of Green’s
functions. Then, MoM is applied to convert integral equation to linear system of
equations. Spectral domain Green’s function representations used in this thesis are
presented for electric and magnetic type sources. It is assumed that dielectric slab
and ground plane are infinite in x-y plane. For each microstrip antenna structure
details of formulation are given. The evaluation of MoM impedance matrix and
voltage vector elements is discussed. Calculation of the input impedance of a

microstrip antenna is also presented.

3.1 Spectral Domain Green’s Functions for Planar Grounded Dielectric Slabs

In this thesis, MoM formulations for the analysis of microstrip antennas with
different feed techniques are obtained. For each structure, Green’s functions for the
related case are required to evaluate electric and magnetic fields due to currents on
line, patch and slot. Green’s functions used in the analysis carried out in this thesis

are as follows:

19



G, * v directed electric field at (x, y,d,) due to a y directed infinitesimally small
electric current density at (x,,y,.d,) for the geometry shown in Figure 3.1 (a), [7].

Gy, » y directed electric field at (x,y,d,) due to a x directed infinitesimally small
magnetic current density at (x,,y,,0) for the geometry shown in Figure 3.1 (b), [7].

Gy ¢ X directed magnetic field at (x,y,0) due to a y directed infinitesimally small
electric current density at (x,,y,.d,) forthe geometry shown in Figure 3.1 (a), [7].
G - x directed magnetic field at (x,y,0) due to a x directed infinitesimally small

magnetic current density at (x,,y,,0) for the geometry shown in Figure 3.1 (b),

[7].

Gy, + y directed electric field at (x,y,d,,) due to a y directed infinitesimally small

electric current density at (x,,y,.d,,) for the geometry shown in Figure 3.1 (c),
[13].

Gy, + ¥ directed electric field at (x,y,d,,) due to a y directed infinitesimally small

electric current density at (x,,y,.d,,) for the geometry shown in Figure 3.1 (c),
[13].

Giy,ys + y directed electric field at (x, y,d,,) due to a y directed infinitesimally small

electric current density at (x,,y,.d,) for the geometry shown in Figure 3.1 (d),

[13].

Spectral domain representation of Greens function that represent y directed electric

field at (x,y,d,) due to a infinitesimally small y directed electric current element at

(xy,¥,.d,) the geometry shown in Figure 3.1 (a) is written as

Gy (6, 3,d, %0, 3,00 = [ [ Of, Gk, e 0™ O™ e dk 3.1)

—o0—00
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All other Greens’ functions can be written in the same form, and required kernel

functions are:

Z ,sin(k,, d,) (&'ky —k )k, cos(k,,d

la”a

Oy (ks k) =

)+ j(ky —k2)k,, sin(k,,d,)

Ar? k, T'T;

1 —€&'k,k,cos(k

Otk k) = — wd)+ j(k: (&) —1)—k,)sin(k,,d,)
' ‘ 4z

Te Tm

Oty (ks k) ==0ppp (ko k)

kR (e — 1)+ (£0k2 — k)]
ki, k(€' +1)

—J 1 *sin(k,,d )
4x’kyZ, kT TS | *cos(k,,d,)+ j
(&°k$ sin® (k,,d,)
— k[ cos*(k,d,))

QHM’C.’C (kx ’ k ) =

— iZ .
Qg/yyl (kx ’ky ) = #Sln kladaZ *
0
(gfk(? - k\2 )(klu Cos klu (dul - duz) + ]kZ Sin kla (dal - aZ) _
g:lTeakla
j(& =Dk k,, sink,,d,
eI,
. ayg, 2 2 a .
. —jZ, |(&ks =k, = jkk, (ef =Dsink,d, | .
QEJ z(kx7k ): SI'lklada2
yy y 47[2k0

a a
gr TL’ T'm

Oppyys(kys k) = 0pn (ko k)

where
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2 2
ky =w" €,

Z, = (/10/80 )1/2

k, =(ex2-p2)" Imk,)<0 Re(k,)>0 59)
k, =(k2-p*)" Im(k,)<0 Re(k,)>0
T =k, cos(k,d,)+ jk,sin(k,d,)
T! =¢'k,cos(k, d,)+ jk,, sin(k, d,)
z z
A 4
J & &
daI ] &l daI M o
> Yy * » X
Ground plane Ground plane
(a) (b)
z z
A A
& .7 R &
_____ 7 & ] &
dal > dal
da2I 6‘:’ dUZI gil
T >y o > Yy
Ground plane Ground plane
(c) (d)

Figure 3.1 - Geometries for spectral domain Green’s functions

3.2 MoM Formulation of Microstrip Line

In this part an open circuited microstrip line located on an infinitely large dielectric

substrate and ground plane is analyzed, which is shown in Figure 3.2. Current

flowing on the line is assumed y directed and expanded in terms of piecewise

sinusoidal basis functions as
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N, _
‘]f(x’y) :Zln‘]llzl(x’y)

N=1

(3.10)

where I,,’s are unknown coefficients and basis functions are expressed as

_ 1 sink:(h“—|y—yn

)

J(x,y)=
() W, sink/h*

h=L,/(N,+1)

Y

—Wf/ZSxSWf/Z

—h*<y<y +h (.11)

where h“ is the half width of the line basis function, N, is the number of basis

functions taken on the line. It is assumed that x variation of current is uniform.

Propagation constant k' of dielectric region a is calculated as

u=W,/d,

| 8“—1( 10)“*
gl =——+— 1+—
2 2 u

2
u4+(ltj
c=1+—In 52 +

49 | u*+0432 | 18.7

a 09 0.053
b:0564(€’ : J

£ +3
A, =4 1\€
K¢ =27/

In| 1+ M
18.1

)

(3.12)

Source current on the feed line is a unit magnitude half PWS basis function located at

the beginning of the line. Its expression is given as
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J (x,y)=——e ) —W, 2<x<W, /2
e (22 W, sink‘h o/ o! (3.13)

0<y<h®

y=0 at the beginning of the line.

JZI £

Figure 3.2 — Microstrip line

Representation of line and source basis function on the line is shown in Figure 3.3.

v «——

Source basis ha
function

Feed line

Figure 3.3 — Source and microstrip line basis functions

In order to find unknown current coefficients, an electric field integral equation is
obtained from boundary condition stated as tangential component of total electric

field should vanish on the line:

24



E,(J,)+E,(J;,)=0 (3.14)
When calculating electric fields, Green’s function given in (3.2) is used. Substituting

(3.2), (3.10) and (3.13) in (3.14), the following expression is obtained:

N, _
Ea (Jinc(xo’yo))-i_Ea(zI:‘]: (xo’yo)) = O

n=1

[[ 7 (xo,yo)]o [Ofy e e, e 07 4 (3.15)

feed

N, e )
[[20 0072 ey, [ [ Qi e, e ™7™ 07 ke ke dix, dy, = 0

feed n=1

After Galerkin weighting is applied, following linear system of equations is obtained.

1726 03 ) [0 G030 [ [ Qi e 326 ™ ke i iy sy +

feed feed

S0 [[026r oy ) [5G 3 ) [ Qi Gy D™ e e ik i, d, iy

N=l1 feed feed

=0

(3.16)
Equation (3.14) can be written in Matrix equation form as follows
wil+lzeJi]=0 (3.17)
Vi == [ [ @y sk )T ek )T o, G, e, e (3.18)
Za, = [ [ Qs ke )T (k)T (oK, Yk (3.19)

—o0—00
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where J¢ , J©

inc? n >’

J & are two dimensional Fourier transforms of source and line basis

functions and calculated as

ji:c (kx 4 ky ) = J. J. ‘];w (x() ’ y() )e_j(kxx()'*'ky.v())dx()dyo

Yo Xo

T k)= [ [ 7500w ™ dudy

Tite k)= [ [5Gy, yo)e " dx,dy, (3.20)

Matrices in (3.17) have the following dimensions.

V, : N, x1 known voltage vector
Z°:N,xN, impedance matrix

I : N, x1 unknown coefficient vector for line current.

Matrix equation (3.17) is solved for/“, then line current J f is calculated using

(3.10).

Reflection coefficient for the microstrip line of two different width on different
substrate thickness are calculated by using the above formulation and given in

Chapter 4 in comparison with results available in the literature.

3.3 MoM Formulation of Microstrip Line Fed Patch Antenna

In this section, microstrip line fed patch antenna structure, which is shown in Figure
3.4, is analyzed. It consists of a radiating patch that is fed by a microstrip line placed
on a grounded dielectric layer. MoM formulation presented in this chapter is based
on the formulation given in [13]. Patch and line currents are assumed y directed.
Basis function on the line and excitation function is chosen similar to (3.11) and
(3.13) respectively; propagation constant of the dielectric region is calculated as

(3.12).
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Patch current is expanded in terms of basis function where I”’s are unknown

coefficients
T, y)=D"1,77(x,y)
n=1

sinlk (h* =y - y,]) .
9

- 1
)= W, sin(k?h” )

W,/2<x<W, /2

y,—h"<y<y, +h" (3.21)
h" =L, /(N,+1)

K’ is the half width of patch basis function, N, is the number of basis functions

taken on the patch. It is assumed that x variation of the patch current is uniform.

To provide the continuity of the current flow from the feed line to the patch, basis
functions of the line overlaps the patch surface for a distance S.

To solve the patch and line currents, boundary condition (3.14) is modified to

mc

Ea J, )+Ea (Jf)+Ea (4,) =0 on line and patch (3.22)

Matrix equation representation of this boundary condition is

e o

Elements of matrix Z and vector V; are defined in (3.19) and (3.18) respectively. T
and C are coupling matrices between line and patch basis functions. They are

calculated as,

ce = I j Qs (ko k VT (ke k)T (K, k)dk dk, (3.24)

m

—oco—00
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where

flb (k.. k)= j j J! (x4, ¥, )e_j(k*x"+k"‘y°)dxody0

Yo Xo

Matrix elements of 7 are easily calculated as

a _ ,a
Tkn - le

where k=[/ and m=n.

Impedance matrix of the patch is

Y = [ [ Qg Ue ke )T) (ko ke )T ko, Vdk di

—oco—00

y

where

TV k) = [ [ 7Gx yg)e” ™ dxdy

(3.25)

(3.26)

(3.27)

(3.28)

Lastly electric field on the patch generated by the source current is calculated as

V2k = _J. .[leyy (kx’kv)jkh* (kx’ky)j'a (kx’ky )dkxdkv

mc

—oco—00
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a,} &

Figure 3.4 — Microstrip line fed patch

Dimensions of matrices and vectors are given as follows

V, : N, X1 known voltage vector

V, : N, X1 known voltage vector

Z°:N,xN, impedance matrix

I°: N, x1 unknown coefficient vector for line
Y*:N,xN, impedance matrix

1" : N, x1 unknown coefficient vector for patch
C?: N, XN, matrix

T“:N,xN, matrix

Matrix equation (3.23) is solved for I” and I“, then patch and line currents are

calculated using (3.21) and (3.10).
Currents on the line and patch and input impedance of the antenna are calculated for

different frequencies by using formulation given in this section and presented in

Chapter 4. Furthermore effect of size of overlapping region, length S, is investigated.
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3.4 MoM Formulation of Proximity Coupled Microstrip Patch Antenna

A proximity coupled microstrip antenna consists of two dielectric layers separated by
a microstrip line. Radiating patch is located at the top of the upper dielectric layer
and ground plane is located at the bottom of lower dielectric layer. Figure 3.5 shows
the related structure. When microstrip line is excited, fields are coupled to patch from
the line. This structure is preferred because of its improved bandwidth. Currents
flowing on the patch and line are assumed y directed and x variation is uniform. Line
and source basis functions are given in (3.11), (3.13) respectively. Propagation
constant of patch basis function is different from the one used in Section 3.3. Current
density on patch is expanded as

N, _
J, (63 =D 10 (x,y)

n=1

- 1 sinlk,(h" —[y—y.[)
J,[z(x7)’):W_ ( Sin(kb/’|lb) )y x()s_‘4/17/2S‘X:S'X()s-i_ulp/2

p

yn _hb < y < yn +hb (330)

k: = gfeko
&) = (er +1)/2+ (2 =1)2)a+ 104, /W, )
h"=L,/(N,+1)

In order to solve unknown line and patch current coefficients I” and ¢, two

boundary conditions are written:
1. E™ =0 on the feedline
2. E™ =0 on the patch
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dal
daZI
Figure 3.5 — Proximity coupled microstrip antenna

Electric fields can be written in terms of electric currents as:
(3.31)

)+E,(J,)+E,(J,)=0, online

1' Ea(‘]inc
)+E,(J,)+E,(J,)=0, on patch
(3.32)

2' E a (Jinv
Matrix equation generated for these boundary conditions is same as (3.23) where

[ [ Qi (kI )T (k)T (e K Valk

a f—
Zmn -
—co—c0

Green’s function of y directed electric field at (x,y,d, ) due to a y directed
infinitesimally small electric current density at (x,, y,,d,,) is used in the calculation

of Z matrix and it is defined in (3.6), [13].
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Elements of C matrix are calculated as

Coy = | [ Oty ek )T e k)T (K, el ik (3.33)

—oco—00

Oy, in this equation is given in (3.7) and it represents electric field at z=d,; due to
infinitesimal y current at z=d,; while ngyy used in represents electric field at z=d,

due to infinitesimal y current at z=d,,

T matrix satisfies (3.26) and it is calculated using C matrix.

Formulation of Y matrix is similar to (3.21), but basis function and propagation
constant is changed to ones given in (3.30)

Patch and line currents, and input impedance are calculated for different frequencies

and compared with the results available in the literature and presented in Chapter 4.
3.5 MoM Formulation of Slot Coupled Microstrip Antenna

Figure 3.6 shows the slot coupled microstrip patch antenna structure. Formulation
given here is based on the formulation presented in [7]. A slot coupled microstrip
antenna is excited from the microstrip line located at the bottom of the structure. A
narrow slot is located on the ground plane between the feed line and radiating patch
substrates. Fields are coupled to the patch from the microstrip line through the slot on

the ground plane.

To analyze this structure, an equivalent problem is defined as shown in Figure 3.7. In
the equivalent problem, slot on the ground plane is replaced with x directed magnetic

currents on above and below the ground plane. In order to satisfy the boundary

condition, zero E ™ on the ground plane, magnetic current above the ground plane is

M . while it is -M , below the ground plane. J,  is the only known source current,

mc

~

£ J » ,M , are the unknown currents that will be solved using MoM.
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Figure 3.6 — Parameters of aperture coupled microstrip antenna

(a) top view (b) side view

In this structure, total electric and magnetic fields in region a (below the ground

plane) and region b (above the ground plane) can be written in terms of related

currents as:

H"=H/\J, )+H,\J,)+H, (M

. _af mc)_ df a s) (334)
E/” =E,J,)-E,(M))

ﬁl;at:ﬁb(jp)_ﬁb(ﬂs)
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Figure 3.7 — Slot coupled microstrip antenna with (a) surface electric currents

(b) with surface electric and magnetic currents

(3.34) means that the total electric and magnetic fields in the region “a” are the sum
of electric and magnetic fields generated by the source, line and slot currents.
Similarly, total electric and magnetic fields in the region “b” are the sum of electric

and magnetic fields generated by patch and slot currents.
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Expressions in (3.35) are integral expressions of electric or magnetic fields generated
by the patch, slot, incident and feed currents taking into account the dielectric layers

and the ground plane:

Ea (jim-) = J.I yj}ngyy (-x, y, da x(), y()ada )'yjinc (x()a y() )dx()dy()

E,(J)=|[99G},, (x.y.d,

X5 Yo-d, )yjf (Xq, Yo )dxody,

E,(M,) = [[ 332G, (x,.d,|x0, ¥5,0) M, (x5 Yo by,

ﬁa (jinc) = J‘J‘)’éj\)GZL/Xy (.X', y’0|x0 ’ yO 4 da )‘5)‘71';10 (XO 4 yO )dXOdyO
feed

H,(J ) = [[35G, (5, 3.0y, 30 d,)-5T ; (xgs ¥y )dxydy,

ﬁa (Ms) = IJ“)?')%GZIMXX (X, y’0|x0 ’ yO ’O)QMs (xO ’ yO )dXOdyO

E,(1,) = [[39G1,, (x, y.d,[xe, yord,)-3T , (xo, vy )dlx,dy,

H,(7,) = [[39G}, (x,7.0

Xo> Yoo d, )j\)jp (X5 Yo)dx,dy,
E, (M) = [[ 353G, (x, ¥,y 0, 30,003, (x4, 3 dxydly, (3.35)

H,(M) = [ £8G.(x, 3,005, 70,0). M (x;, ¥, )b,

Similar expressions are valid for region b only after replacing £ to €’ and d, to
d, . Green’s functions are given in (3.2) to (3.7).

In order to find the unknown currents, three integral equations are written using the
boundary conditions.

1. E™ =0 on the patch
As given in (3.34) the total electric field in the patch region is the sum of electric
field generated by electric patch current and electric field generated by magnetic slot

current which can be written on the patch as:

E,(J,)+E,(M,)=0 (3.36)
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2. E"™ =0 on the feedline

Similarly, equation (3.37) satisfies the second boundary condition.
E,(J,)+E,(J,)-E,(M)=0 (3.37)
3. H'™ is continuous through the aperture

H,(J)+H,M)=H,J,)+H,(J,)-H,(M) (3.38)

mc

As required in MoM formulations, unknown currents are expanded in terms of
known basis functions and unknown coefficients. Basis functions used for the
microstrip line and propagation constant of region a is given in (3.11) and (3.12).

Patch basis function and propagation constant of region b is given in (3.30).

Basis function chosen for the magnetic current that represents the aperture is

Ny -
M (x,y)=YV,"M " (x,y)
N=1

)

1 sink,, (ha,, - |x -X,
w sink h

ap ap'“ap

Mﬂ“” (x,y)= -L, /2 <x<L, /2 (3.39)

-W,/2<y<W, /2
k, =k +k2)/2

k¢ is given in (3.12) and k’ is given in (3.30). Incident current on the feed line is a

unit magnitude half PWS basis function and expressed as (3.13).
Replacing the unknown currents with PWS basis functions and applying Galerkin

type weighting MoM formulation to the integral equations given in (3.36) to (3.38)

result in following expressions:
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Boundary Condition 1 (3.36):

E,(J,)+E,(M,))=0

N, _ _ N —
B, 10, (v, D= E, (V"M " (x,,y,) =0
=1

s=1
N, _ o ) . .
j j SIlx,.y,) j j 0l (k ok e e ® O gk di dx dy, ~ (3.40)
patch =1 —oco

J-Iivsapﬁsap (xa .y, ) TIQZM\7 (kx , ky )e Jjk, (x—x(,)e Jk, (.v—y,’)dkxdkydxadyo =0

slot $=1

V. and I’ are coefficients so that they can be taken outside the integration, after

R

weighting above equation is written as

N, .
Z Ilh J'J' J: (x, y)J'J' Jlb (xo .y, )J.J.szyy (kx , ky Ye jk;(x—x(,)e]k,v(.v—yn)dkxdkydxodyodxdy _
1

I= patch slot

iv;” j j J(x,y) j jM P(x,,,) j j Ol kK e dk dk dx,dy, dxdy

s=1 patch slot
=0
(3.41)
This equation results in a matrix equation that can be written as
Iz ]+t v =0 (3.42)
where
zZh = j j Q1 G k)T (ke k)T (kK )dk dk
Ty = [ [ Qb (ks k )T Gl )M (kYK d, (3.43)

—oo—00
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where

Mk k)= [ [ M Gy, yg)e” " dxdy, (3.44)

Yo %o

Dimensions of the matrices are as follows:

Z" : N, X N, matrix

T’ :N,x N, matrix

1" : N, x1 unknown coefficient vector for patch

V® : N, x1 unknown coefficient vector for slot

Boundary Condition 2 (3.37):

Nn _ P N»‘ JR—
Ea(‘]illc(xo’yo))+Ea(ZI:J:(xo’ya))_Ea(ZVn pMn p(xo’yo) :0

n=1 N=1

“‘JW (xo’yo)J‘jQE\lVV(kx’k )e]k (x— )c) ke, (y— \)+

feed

(307, j [0t (ky ke 00O gk dk i, dy, -

feed n=1

”ZV“”M ”p(xo,yo)”QEMyx(kx,k Yt U gk ik dx, dy, =0

slor =1

(3.45)

After weighting is applied

[[7a0e .y )HJm(xo,yo)”QE,” (k, ke MO g dke dx, dy, dxdy +

feed feed

Z[ [[7ace |7,y )”QE,”(kx,k Ye MO g ke dx, dy, dxdy —

N=l1 feed feed

ZV“” IEC Rl 2 p<xo,y0)HQEMyx(kx,k )e 0O gk dk dx, dy,

N=1 feed slot
dxdy =0
(3.46)
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Matrix equation representation is
Wil+lzeJe|=lreJv]=0 (3.47)

Vv, = j j Qs (ko ke VT (ko k)T 2 (k) )dk dk

inc

—o0—00

VAR j j Oy, (ke ke VT2 (ke k)T 2Kk )k dk (3.48)

—oo—00

T" = I J Qs ko K NT & (ke kM, (K, k) )k dk |

—o0—00

Dimensions of the matrices are as follows:

V, — N_x1 known voltage vector

Z° - N, XN, matrix

T° — N,xN_ matrix

I = N, x1 unknown coefficient vector for line

V% — N, x1 unknown coefficient vector for slot
Boundary Condition 3 (3.38):
H,(J)+H,M )=H,(J,)+H,(J,)-H, (M)

mc

Boundary condition in terms of basis functions is
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H (Z[ J(x,,y,)+H, (ZV“"M P(x,,y,)=

s=1

ﬁa(fmc(xo,yo))+ﬁa(zlﬁf(xo,yo))—ﬁa(szpMsap(xo,yo)
s=1

I} 21 TP(x,.v,) j [ Ol e e e 0O e dk dx,dy, +

patch 1=1

I} Zv TM, " (x, yo)_[ [ Ol kK)o ™ 00 dke ik dx, dy, =

slot =1

”Jm (x, yo)IIQH,xV(k k )efk (3, ey (730)

feed

HZI,,J,, (x,.5,) j [ Qi (ko Yo7 e ke dix, dy, ~

feedn=1

VM. k ke e gk dke dx,d
HZ (x, y)ijHM( e %, dy, (.49

After weighting, boundary condition becomes

ZI ”M Py ) [[ 7000 3 )[[ Qb ke )™ 0™ O dk ke dhx, dy, dxdy +

patch
Zv;"’ (8,7 ey ) [[M 7 Gy )| [ Qe (koK e 0706 07 dk ik dxdy, dxdy
s=1 slot slot

= H M, Gy [[ 0,05, TJQZM (k. k)e™ e dk dk dx,dy,dxdy +
feed —oo

N, ©
N6 j Py ) [0 3 ) [ [ Qe ke e dk ik dix, dy, dxdy -
feed —oo

N=1

S

=

Zv a j M, " (x .y )H M, "(x,,y,) TJQZM” (k,. ke’ e 07 dk dk dx,dy,
N=l1 slot —oo

= slot

dxdy= 0
(3.50)
Matrix equation for this boundary condition is
et b L+ lvt v =le b+ v )=l Jvr | (3.51)
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where

mc

V, = JIQZM (k,.k, )M:p (kx,ky)j-a (k,.k,)dk dk

C* = jJ.Qfmy(kx,ky)M:p(kx,ky)j;(kx,ky)dkxdky

—o0—00

Y = [ [ Qe U O o, (K k)M, (kK Nk (3.52)

—oo—00

" = [ [ Qb ke IV, (kK M, G, e, e dk

—o0—00

C" = [ [ Qo (ko k IV, Gk k)T (K, )k dk,

—oo—00

where

M, Gk ) = [ [M© 0y’ ™ dedy (3.53)
y X

Dimensions of the matrices are as follows:

V, — N, x1 known voltage vector

C‘ - N, XN, matrix

C’ — N, x N, matrix

Y* = N, XN, matrix

Y” — N, XN, matrix

I — N_,x1 unknown coefficient vector for line
1" — N, X1 unknown coefficient vector for patch

V% — N, x1 unknown coefficient vector for slot
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Using (3.42), l[ ”] is written in terms of [V”” ] using the first boundary condition.

[z ]t |+t =0 s
=[]z’ Tl vl |

Similarly, it is written for 7 from the second boundary condition as

lze b [-lre ver l=vi)
= [rel=lz ' W+l lv)

(3.55)

Lastly, Vyp is found using the third boundary condition.

CT bl b e e T b

vl eI e T
ek

ol v,]-lcJz'v)]

e T e TR e T

NEGE (3.56)

Once [V”” ] is found, coefficients for patch and slot, [I b ] and [I “] respectively, can

be found from equations (3.54) and (3.55).
3.6 Evaluation of Integrals in MoM Matrix and Vector Entries

Integrals in all matrix and vector entries given in Section 3.2 to 3.5 are in the form

of:

TT(.)dkxdky (3.57)

—o000
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To simplify this integration, following transformation is used.

kx = fBcosa

. (3.58)
ky = Bsinx
Then, the integration in (3.57) becomes
o 27
[ [©pdodp (3.59)
00

Also when calculating Z}, ,Z¢% Y, Y" square matrices generated for all feeding

methods, even odd properties of the integrands are used, so that boundaries of &
integration is changed from 0: 27 to 0: = /2, [14]. Then, integral equations can be

written in the following expressions

o /2
z} =4[ [0p,, (k kRl TV (k k)T (k, k) Yoder dpp
0 0
o /2 - -
Z;:ln = 4'[ '[leyy (kx’ky)Re{ Jr:*(kx’ky)‘]; (kx’ky) }ﬂda dﬂ
00 (3.60)

oo /2

YS =4[ [ Qe kRl M7 (K k )M P (K, k) Yoder dfs
0 0

o /2

Y) =4[ [ Qe k ) Rel M7 (K k)M P (K, k) Yoder d
0 0

In the numerical calculation, upper limit of £ integral is determined based on
experience. For each matrix element generated during solution, convergence of terms
is tested. Real part of these terms converges near ky while the imaginary part needs a
larger upper limit. Experiments on all the matrix elements have shown that 200k is
sufficient for the upper limit. When the upper limit is changed to 400k, no

significant change is observed in the values of matrix elements.
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Both o and [ integrations are handled using Gaussian quadrature technique. o
integration from O to /2 in (3.60) is divided into 7 pieces and o integration from 0 to
27 is divided into 31 pieces for the rest of the matrices which means a integration is
handled in 7/16 intervals. For each interval Gaussian quadrature of order 16 is used
in both cases. B integration from O to 200k, is handled in 200 pieces. Gaussian
quadrature of order 16 is used for each piece. Different intervals and orders of
Gaussian quadrature cases are tried during the study and parameters given above

provided the most accurate results.

3.7 Singularity Treatment

There is always at least one TM surface wave pole that needs a special treatment.

This pole occurs at a real § value for a lossless medium and its location is in the
range k, < 8, <,/€,k,. To prevent a numerical difficulty when integrating for = §,

integrals are modified as

j FBdp = (f(ﬂ)— i jdﬂ+T G (3.61)
where

T Res _'B"_s Res 7 Res Res

55 155 ) 55" P+ [ 5og!

400k, — B . (362
=—7Z7'Res+Res*ln(%j

p

Res in (3.62) represents the residue of the integrand at the pole.
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3.8 Calculation of Reflection Coefficient and Input Impedance

To find the reflection coefficient for different cases formulated through section 3.2 to
3.5, a method called Prony’s Exponential Fitting Method [15], is used. This method
approximates the feed current as a summation of two waves one of which moves in
+y direction while the other moves in —y direction. It is written according to the

position on the line as

I(y)=C e +C e™ (3.63)

where ¥, and p, are the wave numbers for the waves moving in +y and —y
directions respectively. It is expected that », =y,. Although in the numerical
solution these numbers are not exactly identical to each other but for a good fitting
they are close enough to each other. y, and y, are also close to the propagation
constant k; given in (3.12). C* and C~ are the coefficients of the waves. Current

reflection coefficient at the beginning of the microstrip line, after this exponential

fitting is applied, is found as

= (3.64)

Phase reference of input impedance for microstrip line fed patch antenna is the
radiating edge of the patch where line is connected; for the proximity coupled patch,
input impedance is referenced at the open end of microstrip feed line. In the slot
coupled microstrip antenna problem, input impedance is referenced to the center of

the aperture. Input impedance is calculated for all cases as

1-T e
=— (3.65)
1+T 50

in

where Ly is the distance from the beginning of line to reference plane.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Introduction

In this chapter numerical results obtained for microstrip patch antennas with different
feeding techniques are given, compared with the results available in literature and
discussed. Computer code based on Method of Moment formulation given in chapter

3, has been developed and used to obtain numerical results.

4.2 Evaluation of the Self Impedance and Mutual Impedance Between Two

Current Elements

As known from equation (3.42), Z}, represents the impedance matrix of a rectangular

patch located on a grounded dielectric substrate. Firstly, results calculated for Z;,

matrix by the developed Fortran code are checked.

To obtain Z,f,, a rectangular patch with width, W_patch, of 0.3A, and length,

L_patch, of 0.3 A is chosen for the frequency 300MHz. Thickness of the dielectric is

chosen as 0.04\ and the dielectric constant of the substrate is 2.55. Number of basis

functions used for the patch is 3, so that Z,f, 1s a 3x3 matrix. Table 4.1 shows the

elements of Z;, matrix.
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Table 4.1 — Elements of 3x3 Z, matrix

Z, I=1 L=2 =3

k=1 10.43675 + 27.66i 1041976 - 18.524i |-0.37119 - 5.5783

k=2 0.41976 - 18.524i | -0.43675 + 27.66i | -0.41976 - 18.524i
=3 0.37119-557831 | -0.41976 - 18.524i | -0.43675 + 27.66i

As expected, Z,f, is a Toeplitz matrix, so that it is sufficient to evaluate the first row

of the impedance matrix.

b _ b _ b
le _ZZZ _Z33
b _ b _ b _ b
ZlZ - ZZl - Z23 - Z32
b __ b
Z13 _Z31

When calculating impedance matrix elements, infinite integration on [ is taken in the
range 0 to 200ky. To be sure that integrals of matrix elements are converged, the
upper limit is changed to 400ky. When the integral limit is changed, real part of the
matrix elements remained constant. Only a small difference occurred in the
imaginary part. To save from computation time, it is decided to terminate the

integration at 200k,

To check the convergence of integrals in Z, matrix imaginary part of self

impedance term is plotted in Figure 4.1., and Re(Z/) is constant at 0.43675.
Similarly, convergence graph for mutual impedance is given in Figure 4.2., and

Re(Z/,) is constant at 0.41976.

Next, basic rectangular patch structure is modified to 2 patches with 0.5\ separation.

Each patch has W_patch and L_patch of 0.3\. Dielectric constant and substrate
thickness are not changed. When 3 basis functions are taken for each patch, total Z;,

matrix is 6x6. New elements of Z matrix are shown in Table 4.2
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Table 4.2 — Elements of 6x6 Z Matrix

I=1

I=2

=3

1=4

I=5

I=6

0.4367 - 27 66i

0.4198 + 18.524]

0.3712 + 5.5783i

-0.0076 - 0.0984i

-0.0563 - 0.0717i

-0.0798 - 0.0304i

04198 + 18.524i

04367 - 27.66i

04197 + 18.524i

00632 -00915i

-0.0077 - 0.0984i

-0.0563 - 0.0717i

0.3712 + 5.5783i

0.4197 + 18.524i

04367 - 27.66i

0.1483 - 0.0202i

0.0632 - 0.0918i

-0.0076 - 0.0984i

-0.0076 - 0.0984i

00632 -008918i

0.1493-0.0202i

04367 - 27 66i

0.4198 + 18 524i

0.3712 + 6 57831

-0.0563 - 0.0717i

-0.0077 - 0.0984i

0.0632 - 0.0919i

04198 + 18 .524i

04367 - 27 66i

04197 + 18 .524i

-0.0798 - 0.0304i

-0.0563 - 0.0717i

-0.0076-00984i

03712 + 6 5783i

0.4197 + 18 524i

04367 - 27 66i

This analysis is carried out to validate the accuracy of the results calculated for the

patch region. When matrix elements are compared to the ones obtained for the same

cases in [16], it is observed that they are in good agreement.

-10

m(Zxx)

I
i
—
[45]
T

)
=]
T

20

40

60 80

beta/(2*ko)

|
100

120

Figure 4.1 — Convergence of imaginary part of self impedance term
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Figure 4.2 — Convergence of imaginary part of mutual impedance term

4.3 Microstrip Feed Line

Analysis of microstrip line, shown in Figure 3.2, is carried out according to the
formulation given in section 3.2. Reflection coefficients of the line for different line

widths and substrate thicknesses are calculated and presented.

Figure 4.3 shows the variation of the magnitude of reflection coefficient of the line as

a function the thickness of the substrate for &€, of 2.55. Reflection coefficient for a
line of width W, of 0.024 and W, of 0.14 are plotted. These results are compared

with the results given in Pozar’s paper [17]. In [17], line is assumed to extended to
infinity in one direction. Results obtained by the code developed in this thesis show

good agreement with results given in [17].
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As the thickness of the substrate increases, reflection coefficient of the line gets
smaller. It is also seen from the Figure 4.3 that there is an inverse relationship

between the width of the line and the value of reflection coefficient.
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] . ¥ ; F
] 0.05 0.1 015 02 0.25
di4,

Figure 4.3 — Reflection coefficient versus substrate thickness compared with

reflection coefficient given in [17], solid line:[17], markers:calculated

4.4 Microstrip Line Fed Patch

Formulation given in section 3.3 is applied to solve the line and patch currents of a
microstrip line fed patch. Furthermore, reflection coefficient and input impedance is

calculated for different frequencies.
The width and the length of the patch, W, and L, respectively, are 4.02cm. S is

chosen 0.45x L, and 0.65xL, and results are obtained for both S values. Line width

Wy is 0.477cm. Dielectric constant of the substrate is 2.57 and thickness is 0.159cm.
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Feed point is always centered at the edge of the patch. Line length is taken 0.15m+S

in all cases. Number of basis functions taken on line is 25 while it is 5 for the patch.

Figure 4.4 shows the line current at 2200MHz and 2300MHz. Figure 4.5 gives the
patch currents at 2200MHz and 2300MHz. Both of the figures are obtained for the
case S/L,=0.65.

Reflection coefficient and input impedance values at different frequencies are
calculated and input impedance results are compared with the ones given in [13].
Smith chart plot of input impedance results obtained by the formulation given in this
thesis, -denoted as “calculated” in the Figure 4.6, measured results taken from [13]
and calculated by Pozar, [13] are given in Figure 4.6. Results show that impedance
value is not extremely dependent on the value of S. Calculated results are in good
agreement with measured data and the calculated results in [13]. Note that in [13],

line is assumed to extended to infinity in one direction.

4.5 Proximity Coupled Microstrip Antenna

MoM formulation of the proximity coupled microstrip patch antenna is presented in
Section 3.4. In this section, currents and input impedance obtained using related

formulation are given and compared with the results given in [13].

Analyzed structure has a patch length L, of 2.5cm. Patch width W, is 4cm and S/L,, is
0.52. Strip line width W, is chosen as 0.5cm and line length is 0.1m+S. Permittivity
and thickness of both dielectric layers is 2.22 while thicknesses d,;= 2d,;> =0.318cm.
25 basis functions are used on line and 5 basis functions are used on patch.
Magnitudes of the line and the patch currents at two different frequencies are shown
in Figure 4.7 and 4.8. Input impedance calculated by the developed code and Pozar
[13] are plotted on a Smith chart and presented in Figure 4.9. The agreement between

the results are acceptable.
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Figure 4.4 — Magnitude of stripline current at (a) 2200MHz and (b)2300MHz
for S/L, =0.65 in both cases
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Figure 4.5 — Magnitude of patch current at (a) 2200MHz and (b)2300MHz for
S/L, =0.65 in both cases
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Figure 4.6 — Smith chart plot of input impedance compared with [13]
A: measured, m: calculated [13] (S/L, =0.65), e: calculated [13] (S/L, =0.45), o:
calculated (S/L, =0.65), o: calculated (S/L, =0.45)
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Figure 4.7 — Magnitude of line current at (a) 3400MHz and (b)3700MHz
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Figure 4.8 — Magnitude of patch current at (a) 3400MHz and (b)3700MHz
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Figure 4.9 — Input impedance of proximity coupled microstrip antenna
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CHAPTER 5

CONCLUSION

In this thesis, MoM/spectral domain Green’s function formulation is developed for
the analysis of planar rectangular microstrip patch antennas with different feed
techniques. Formulation for microstripline, microstrip line fed patch, proximity
coupled patch and slot coupled patch are given. For all these cases equivalent
problems are defined and integral equations are obtained from boundary conditions.
Then, MoM is applied to convert these integral equations to a system of linear
equations. Currents on the conducting surfaces as well as equivalent magnetic
currents on the apertures are modeled as a sum of piecewise sinusoidal sub domain
basis functions with unknown coefficients which are calculated by solving the
system linear equations. Convergence of numerical calculation of integrals of self
and mutual impedance is studied carefully. Furthermore, pole singularity in these

integrals is handled properly.

Fortran code is generated to evaluate currents on the lines and patches and input
impedance for these structures. Numerical results in the form of line and patch
currents and input impedance are calculated by this code and compared with the

results available in the literature.

Reflection coefficient of a microstrip line with properties given in [17] is calculated
and compared with the ones in [17]. Reflection coefficient values obtained for
different width and substrate thickness show good agreement with that of Pozar’s

paper [17].
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Current distributions and the input impedance of microstrip line fed patch antenna
structure are calculated by the developed code for different frequencies. Calculated
values are compared with the results of [13]. It is observed that results are in good
agreement with the ones in [13]. Treatment of feed line in this thesis is different than

one in [13].

Proximity coupled microstrip antenna structure is also investigated. Input impedance
values evaluated by the developed code are in good agreement with the values given

in [13].

Formulation and code modules can easily be extended to analyze different microstrip
antenna structure such as stacked patches. As a future work, the code will be
modified to analyze arrays of slot coupled patch antennas. For large arrays, when the
distance between two elements is larger than few wavelengths, convergence problem
is observed for the evaluation of mutual impedance integrals. For such cases,

asymptotic evaluation of integrals can be considered.
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