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ABSTRACT 

 

 

 

THREE-DIMENSIONAL COMPRESSIBLE NAVIER STOKES EQUATIONS 

SOLVER FOR INTERNAL ROCKET FLOW APPLICATIONS 

 

 

 

COŞKUN, Korhan 

M. Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Haluk AKSEL 

Co-Supervisor: Dr. H. Tuğrul TINAZTEPE 

 

December 2007, 72 pages 

 

 

A three dimensional, Navier-Stokes finite volume flow solver which uses Roe’s 

upwind flux differencing scheme for spatial and Runge-Kutta explicit multi-stage 

time stepping scheme and implicit Lower-Upper Symmetric Gauss Seidel (LU-

SGS) iteration scheme for temporal discretization on unstructured and hybrid 

meshes is developed for steady rocket internal viscous flow applications. The 

spatial accuracy of the solver can be selected as first or second order. Second order 

accuracy is achieved by piecewise linear reconstruction. Gradients of flow 

variables required for piecewise linear reconstruction are calculated with both 

Green-Gauss and Least-Squares approaches. 
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The solver developed is first verified against the three-dimensional viscous laminar 

flow over flat plate. Then the implicit time stepping algorithms are compared 

against two rocket motor internal flow problems. Although the solver is intended 

for internal flows, a test case involving flow over an airfoil is also given. As the 

last test case, supersonic vortex flow between concentric circular arcs is selected. 

 

 

Key-words:  Navier-Stokes Equations, Implicit, Second Order Spatial Accuracy, 

Finite Volume Method, Lower-Upper Symmetric Gauss Seidel, Least Squares 

Method, Venkatakrishnan’s Limiter. 
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ÖZ 

 

 

 

ROKET ĐÇ AKIŞ UYGULAMALARI ĐÇĐN ÜÇ BOYUTLU SIKIŞTIRILABĐLĐR 

NAVIER-STOKES ÇÖZÜCÜSÜ 

 

 

 

COŞKUN, Korhan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Haluk AKSEL 

Ortak Tez Yöneticisi: Dr. H. Tuğrul TINAZTEPE 

 

Aralık 2007, 72 sayfa 

 

Roket motorları ağdalı iç akış uygulamalarının zamandan bağımsız, durağan 

çözümlerinin yapılabilmesi için, düzensiz ve hibrit çözüm ağını uzayda Roe’nun 

yön hassas (upwind) akı ayrımına dayalı yöntemini, zamanda ise Runge-Kutta çok 

kademeli ve implisit Alt-Üst Simetrik Gauss-Seidel Đterasyon yöntemini kullanarak 

ayrıştıran, üç boyutlu bir sonlu hacim Navier-Stokes denklemleri çözücüsü 

geliştirilmiştir. Çözücü uzayda hem birinci hem de ikinci dereceden doğrulukla 

çözüm yapabilmektedir. Đkinci dereceden doğruluk doğrusal yeniden yapılandırma 

yöntemiyle elde edilmiştir. Doğrusal yeniden yapılandırma için gerekli olan akış 

değişkenlerinin türevleri Green-Gauss ve en küçük kareler yöntemi kullanılarak 

bulunmuştur. 
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Öncelikle geliştirilen çözücünün üç boyutta ağdalı laminar akış çözümleme 

yeteneği üç boyutlu düz plaka problemi üzerinde gerçekleştirilmiştir. Implisit 

zamanda ilerleme algoritmasının doğruluğu iki roket motoru iç akış problemleri ile 

sınanmıştır. Her ne kadar çözücü, iç akışlar için hazırlanmış olsa da, kanat üzeri 

akış çözümü de yapılmıştır. Son olarak, eşeksenli silindirler arasındaki supersonic 

vorteks akış çözümleri verilmiştir. 

 

Anahtar Kelime: Navier-Stokes Denklemleri, Đmplisit, Uzayda Đkinci Derece 

Doğruluk, Sonlu Hacim Metodu. 
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CHAPTER 1 

 

1 INTRODUCTION 

INTRODUCTION 

 

1.1 PURPOSE OF THE STUDY 

 

The purpose of this study is to develop a three-dimensional flow solver, which can 

be used for solid propellant rocket motor internal flow applications in order to 

analyze its performance. 

 

Flow solver is capable of solving Navier-Stokes equations in three dimensions for 

steady state problems. It uses the finite volume method, with upwind flux 

calculation of Roe. Moreover, the solver can operate on structured and hybrid 

grids. For the integration of governing equations in time, solver can use both 

explicit and implicit methods. Accuracy of spatial discretization can be selected to 

be first and second order. 

 

The developed solver, which is described in this thesis, is validated with the results 

of previously validated performance prediction codes. One test is a flow over a flat 

plate, which is used to test the solvers capability to resolve laminar flow. Two 

rocket internal flow problems are employed to test the implicit time stepping 

algorithm of the solver. Fourth test case, flow over an airfoil, is investigated which 

involves shock flow field. Last test case is inviscid, supersonic vortex between two 

concentric circular arcs. 
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1.2 CONTENTS OF THE THESIS REPORT 

 

In Chapter 2, the methods and common practices used in simulation of fluid flow 

problems are introduced. Discretization techniques used in literature are briefly 

described. Spatial and temporal discretization methods together with different grid 

types such as structured, unstructured and hybrid grids, are presented in this 

chapter.  

 

Chapter 3 contains the governing flow equations with the spatial and temporal 

discretization methods used in this thesis. The details of spatial discretization is 

presented for convective and diffusive fluxes separately. Convective fluxes are 

calculated using the Riemann solver of Roe. Also, how second order of accuracy of 

convective flux calculation is achieved is given in Chapter 3. Both explicit and 

implicit time discretization methods are used, which are Multi-Stage Runge Kutta 

Method and Lower-Upper Symmetric Gauss Seidel Iteration, respectively. Chapter 

3 concludes with the description of boundary conditions used in the solver 

developed. 

 

Validation of the solver is presented in Chapter 4. First, solver’s capability of 

solving laminar flow is investigated with three dimensional flow over a flat plate. 

Both explicit and implicit solutions are performed to compare the performance of 

time discretization methods. Then, test cases involving rocket internal flow are 

used to further validate the solver. The last test case is the flow over an airfoil 

where there are shock waves. This test case’s aim is to investigate the capability of 

the solver to resolve the shock structures. Finally, supersonic vortex flow between 

concentric circular arcs is investigated to verify second order accuracy of the 

solver. 
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CHAPTER 2 

2 LITERATURE SURVEY 

 

LITERATURE SURVEY 

 

2.1 NUMERICAL DISCRETIZATION TECHNIQUES 

 

In Computational Fluid Dynamics (CFD) there have been mainly three 

discretization techniques for the solution of the governing equations of the fluid 

motion. These methods have advantages and disadvantages with respect to the area 

of application, and will be covered in the subsequent sections. 

 

2.1.1 Finite Difference Method 

 

Finite Difference Method (FDM) is the earliest discretization technique applied in 

CFD, and for this reason it has been the most commonly used technique until 

today. This method is simple to apply and uses Taylor Series expansion of 

derivatives of flow variables. However, this method requires highly regular 

structured grids to obtain accurate results. 

 

2.1.2 Finite Element Method 

 

Finite Element Method (FEM) is firstly developed for the analysis of structural 

elements and later adapted to the fluid flow problems. This method uses the weak 

variational form of the governing equations to convert high order derivatives to 

lower ones. Also, the variation of flow variables in a control volume is handled 

with use of polynomial shape functions which gives the flexibility in increasing the 

accuracy of the solution. 
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2.1.3 Finite Volume Method 

 

Finite Volume Method (FVM) is based on the physical concept of using 

macroscopic control volumes to numerically solve the conservation laws of fluid 

motion. In FVM, the integral form of the governing equations are used in the 

discretization. Since discretization of conservation laws is done in integral form, 

mass, momentum and energy is conserved at each control volume in the domain. 

 

In FVM method, the grid topology alternatives are countless. Almost any arbitrary 

grid structure can be used in the formulation of FVM [1]. The combination of the 

formulation of a flow problem on control volumes, which is the most physical way 

to obtain a discretization, with the flexibility in the geometric representation of the 

domain and the flexibility in defining the discrete flow variables, makes FVM 

extremely popular in engineering applications. 

 

A common feature of most upwind codes is their finite volume representation. In 

each cell, the flow variables are supposed to be distributed in a specified way; 

piecewise constant; piecewise linear; or some higher-order representation. 

 

Frink used finite volume formulation with upwind differencing for the solution of 

different aeerodynamic problems [2, 3]. Batina [4] also used FVM formulation for 

complex aircraft aerodynamic analysis introducing the dynamic mesh algorithms 

into it. 

 

Besides its advantages, FVM has a handicap in the definition of the derivatives, 

which are required for viscous flow simulations. Since the computational grid may 

not be orthogonal or equally spaced for unstructured grids, the definition of the 

derivatives of flow variables based on Taylor series expansion is impossible. Also, 

weak formulation in FEM used to convert high order derivatives to lower ones, can 

not be applied in FVM. For the definition of derivatives, methods such as Green-
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Gauss (GG) and Least-Squares (LSQ) are the most commonly methods used in 

FVM. 

 

There are mainly two approaches for the approximation of mass, momentum and 

energy fluxes over the surface of control volumes in computational domain: 

 

2.1.3.1 Cell Vertex Schemes 

 

In the cell vertex scheme, the flow properties are assigned at the vertices of the 

cells of the grid. Flow properties are directly calculated at the nodes which gives 

the advantage of not distributing the flow variables from cell center values to nodes 

after numerical calculations are ended. Cell-vertex discretization offer advantages 

in accuracy especially on non-regular grids. 

 

Since flow variables are assigned at the nodes of the grid, control volumes need to 

be defined around the nodes. The generation of these control volumes are requires 

algorithms. 

 

Cell vertex formulation has been applied by Barth [5], Venkatakrishnan [6] and 

Mavriplis [7] to several applications of steady and unsteady computations. 

 

2.1.3.2 Cell Centred Schemes 

 

In the cell centred formulation, the flow properties are directly calculated at the 

center of the computational cell which itself is the control volume for finite volume 

discretization. Therefore, there is no need to generate new control volumes. 

However, since the flow variables at cell centers need to be extrapolated to nodes 

in the domain, some numerical errors may be introduced during this extrapolation.  

 



 

6 

Frink [8,9] and Batina [4] applied cell center approach in their steady state 

aerodynamic simulation methods. 

 

2.2 NUMERICAL SCHEMES 

 

2.2.1 Spatial Discretization 

 

Most of the algorithms were based on either finite element or central differencing 

which need implementation of artificial dissipation for acceptable results. Central 

differencing schemes can not take into account the direction of the flow, because 

the physical propagation of flow information along the characteristics is not 

considered. For smooth flows, which have no big discontinuities, central schemes 

based on Taylor series expansion can be used. However, when discontinuities 

appear significantly, information of the flow direction is required to resolve the 

non-linear behaviour of the flow. 

 

To overcome this difficulty, upwind schemes are developed which take the 

direction of the flow in consideration. Nowadays, upwind schemes are the major 

spatial discretization technique of main research and commercial codes [3,10]. 

 

Upwind differencing uses the propagation of information with the theory of 

characteristics in constructing the information traveling in opposite directions in a 

separate and stable manner. 

 

Second order central schemes require scalar artificical dissipation to damp 

oscillations generated near the high gradient regions. Higher order upwind methods 

require limiter functions for second order accuracy in space.  

 

Characteristic theory is easy to understand in one-dimensional flows, but for 2-D 

and 3-D flow problems, the flow direction is not clearly identified. However, 

choosing the upwind direction being normal to the face of the computational cell 
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across which the fluxes are computed is a commonly used way for 2-D and 3-D 

flows. 

 

Upwind schemes may be divided into two categories as Flux Vector Splitting Type 

Schemes and Flux Difference Splitting (Godunov) Type Schemes. 

 

2.2.1.1 Flux Vector Splitting Schemes 

 

Upwind discretization is obtained by splitting the flux vector into two parts based 

on information coming from upwind and downwind of the cell face in flux vector 

splitting algorithms [11]. In other words, the flux terms are split according to the 

sign of associated with propagation speeds. 

 

The main drawback of flux vector splitting methods is evident in the vicinity of 

sonic conditions since the splitting of flux is done with respect to the sign of the 

Mach number or the velocity vector. 

 

2.2.1.2 Flux Difference Splitting (Godunov) Schemes 

 

In the flux difference splitting schemes, local Riemann problem is solved on each 

face of cells. The flow variables are taken as constant over the left and right states 

of the cell face. Using left and right states of the face, local Riemann problem is 

solved to achieve convective fluxes at the face. In the original Godunov scheme 

[12], the local Riemann problem is solved exactly. Since this approach is 

computationally expensive, some approximate Riemann solvers have been built by 

Roe [13], Osher and Solomon [14], Toro [15] and Harten [16]. 

 

 

 



 

8 

2.2.2 Temporal Discretization 

 

There are basically two types of time stepping methods used both for integrating 

governing equations in time to obtain solutions for steady and unsteady flows. 

There are Explicit Time Stepping Algorithms and Implicit Time Stepping 

Algorithms. 

 

Due to the simplicity both in physically sound procedure and numerical 

implementation, explicit time stepping methods are widely used for flow problem 

simulations [17,18]. These methods are simple and can be easily vectorized for 

parallel processing. 

  

The explicit time-stepping schemes may be efficient methods for coarse meshes  

and for the simulation of Euler equations. However, solution of Navier-Stokes 

equations requires fine meshes especially within the boundary layer. For fine 

meshes, explicit methods lose their attractivity in terms of rate of convergence. 

Batina [4] stated that for cases where fine meshes are used, an implicit time 

discretization which can advance the solution in large time steps is much more 

favorable to obtain steady state solutions in a computationally efficient way.  

 

In contrast of their high convergence rate, implicit methods require large amount of 

memory. Also, the application of some complicated implicit time stepping methods 

is quite complicated especially for viscous flows, since complicated viscous 

Jacobian matrices have to be derived and coded. 

 

Alternating Direction Implicit  (ADI) is one of the first iterative implicit schemes 

[19]. ADI method can only be used on structured grids. Lower-Upper Symmetric 

Gauss-Seidel (LU-SGS) scheme has  a low numerical complexity level and modest 

memory requirement. LU-SGS was first introduced by Jameson and Yoon [20]. 
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2.3 COMPUTATIONAL GRID 

 

2.3.1 Structured Grids 

 

In structured grids, neighboring grid points in the physical space are the same as 

the neighboring points in the computational space. In other words, structured grids 

have an implicit connectivity that allows specifying the grid locations by its 

computational coordinates. 

 

Structured grids have the advantage of simple coding when numerical algorithms 

are concerned but it is difficult and sometimes impossible to produce structured 

grids for complex domains. Multi-block grids are used in order to overcome this 

difficulty but still it takes too much time to generate a grid around a complex 

geometry. 

 

Also, the dense mesh which is required especially at wall boundaries for viscous 

calculations has to be carried all away into the far field for structured grids which 

obviously increases the memory requirements of the numerical code. 

 

2.3.2 Unstructured Grids 

 

Solution of flow fields around complex geometries directly brings the use of 

unstructured grids, since unstructured grids do not need any implicit connectivity 

like structured grids. Unstructured grids composed of triangular and tetrahedral 

elements in 2-D and 3-D, respectively, offer the designer the ability to model flows 

around complex bodies and to incorporate adaptive procedures to the solution. 

 

Unstructured meshes are also computationally feasible when the grid generation 

time is concerned. It can be said that the size of the mesh, which directly affects the 

memory requirements of the numerical algorithm, can only be minimized by using 

unstructured grids. 



 

10 

 

For applications having complex geometries, the unstructured formulation appears 

to be the method of choice. 

 

The most important drawback of unstructured meshes is low resolution of 

boundary layer and viscous wakes. The skewness of meshes near boundary creates 

high amount of numerical diffusion. 

 

 

2.3.3 Hybrid Grids 

 

The hybrid grid definitions combine the best practices of both structured and 

unstructured grids. 

 

 

Figure 2.1 Hybrid grid elemens 

 

Hybrid grids offer usage of structured high quality grids near the boundaries and 

usage of unstructured grids away from the boundaries. By this way, a mesh which 

is dense enough to observe the boundary layer and which is coarse enough far from 

the boundaries is obtained. 

 

Near boundaries, layers of hexahedral cells can be used, for other parts of the 

domain, the field is filled with tetrahedral cells and pyramid and wedge type of 

cells which are the bridge between tetrahedral and hexahedral elements.  
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CHAPTER 3 

3 NUMERICAL ALGORITHM 

NUMERICAL ALGORITHM 

 

 

In this chapter, the numerical algorithm developed for the solution of the Navier-

Stokes equations will be presented. First, governing equations will be described 

together with the nondimensionalization method used. Then, spatial and temporal 

discretization methods used in the solver will be presented. Spatial discretization is 

done according to the method called “Riemann solver of Roe”. Second order 

spatial discretization of governing equations are also given in this chapter. Time 

discretization is done both explicitly and implicitly. Explicit time integration of 

governing equations is done by Multi-Stage Runge Kutta Method, whereas the 

implicit method used is the Lower-Upper Symmetric Gauss-Seidel iteration. 

Finally, different types of boundary conditions used in this work will be presented. 

 

The solver developed in this study is based on a three-dimensional Euler solver 

which is explicit in nature and first order accurate in space, for hybrid grids. The 

solver was upgraded to a Navier-Stokes solver which is second order accurate in 

space, and has the capability of implicit time integration. 
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3.1 GOVERNING EQUATIONS 

 

Motion of the flow field in this study is modeled by the Navier-Stokes equations 

for a viscous, heat conducting, compressible gas without any external body force or 

heat generation with respect to a stationary reference frame. Equations are written 

in conservation law form in three-dimensions. The compressible gas is assumed to 

be a perfect gas. Governing equations will be presented in the following sections of 

this chapter in the detailed form as implemented in the numerical algorithm. 

 

3.1.1 Three Dimensional Navier-Stokes Equations 

 

The three-dimensional compressible Navier-Stokes equations in cartesian 

coordinates are given below in conservation form. 
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The shear stress components are expressed as; 
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xyyx ττ =   xzzx ττ =   zyyz ττ =    (3.9) 

 

Components of heat flux are given as below. 
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Finally, the eqation of state is written in terms of pressure as follows: 

 

( ) ( ) ( ) ( )( )




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++−−= 222

2

1
1 wvuep ρρρ

ρ
γ      (3.11) 

 

 

Enthalpy per unit mass is defined as, 

 

ρ
pe

H
+

=          (3.12) 

 

where ρ is the density, u, v and w are the velocity components in the x, y and z 

directions respectively, T is the temperature, e is the total internal energy per unit 

volume, µ is the viscosity coefficient, κ is the thermal conductivity and γ  is the 

ratio of specific heats. 

 

3.1.2 Non-Dimensionalization of Governing Equations 

 

A set of non-dimensional variables can be defined from the dimensional quantities 

by using the reference quantities defined above. In this context the 

nondimensionalized variables are denoted by using a subscript star(*). 
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refref
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2

*                    (3.16) 

 

where refρ is the reference density, refa  is the reference speed of sound, refl is the 

reference length and refµ is the reference viscosity coefficient. 

 

As a result of the above selection of non-dimensionalization, the following 

nondimensional parameters appear in the governing equations: 

 

ref
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µ

ρ
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κ

µ pC
=Pr      (3.17) 

 

where refRe is the reference Reynolds number and Pr is the Prandtl number. 

 

Also following relation are used in the above eqations: 

 

1−
=
γ
γR

C p    refref RTa γ=      (3.18) 

 

where pC  is specific heat under constant pressure and R is the gas constant. 

 

 

Resulting non-dimensional Navier-Stokes equations are given below: 

 

For convenience, the superscript (*) is dropped. 
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The shear stress components are expressed as; 
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xyyx ττ =   xzzx ττ =   zyyz ττ =    (3.27) 

 

Components of heat flux are given as below. 
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3.1.3 Integral Form of Navier-Stokes Equations 

 

The integral form of the Navier-Stokes equations, which is suitable for numerical 

calculations is given by; 
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     (3.29) 

 

where the column vector Q
r
 represents the conservative variables, column vector 

H
r
 represents the convective flux vector, and column vector vH

r
 represents the 

viscous diffusive flux vector. The definition of convective and viscous diffusive 

flux vectors are given in equations (3.30) and (3.31).  
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3.2 SPATIAL DISCRETIZATION 

 

A cell centred finite volume discretization is applied to equation (3.20), which is in 

integral form. Time rate of change of conservative variable vector Q
r
 within a 

computational domain Ω , is balanced by the net convective and diffusive fluxes 

across the boundary surface S. For this purpose the computational domain is 

divided into finite number of hybrid/unstructured elements. Each element serves as 

a computational cell for cell centred approach.  

 

In the finite volume formulation, for a constant control volume, equation (3.29) 

becomes: 
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==
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∂
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i SHSH
t

Q

1
,,,

1
,,i 0     (3.32) 

 

where nH  and nvH ,  are defined as  

 

nHH n

rr
⋅=   nHH vnv

rr
⋅=,       (3.33) 

 

3.2.1 Convective Fluxes 

 

Convective fluxes are computed using original Roe’s method by following Toro 

[15]. The left hand side of the cell face is denoted by the subscript “L” and the right 

hand of the cell face is denoted by the subscript “R”. The structure of the exact 

solution of the Riemann problem for the x-split three-dimensional Euler equations 

is given by Toro [15]. The vectors of conserved variables and fluxes are given as: 

 



 

19 























=

e

w

v

u

Q

ρ
ρ
ρ
ρ

 and 























+

=

uH

uw

uv

pu

u

H n

ρ
ρ
ρ

ρ
ρ
2

     (3.34) 

 

 

Figure 3.1 Structure of Riemann Problem for x-split Euler Equations 

 

The piece-wise initial data is given as : 
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According to the original Roe’s method, the inter-cell flux is given as: 
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The Roe averages of flow variables are given as 
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The eigenvalues of x-direction Jacobian matrix in terms of averaged values are 

 

     ,      ,      ,      ,   54321 cuuuucu +====−= λλλλλ    (3.42) 

 

The averaged eigenvectors are 
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[ ]TcuhwvcuK −−= 0
)1( 1       (3.43) 

[ ]TVwvuK 2
2
1)2( 1=        (3.44) 

[ ]TvK 0100)3( =        (3.45) 

[ ]TwK 1000)4( =        (3.46) 

[ ]TcuhwvcuK ++= 0
)5( 1       (3.47) 

 

The wave strengths are given as: 

 

133 uvu ∆−∆=α         (3.48) 

144 uwu ∆−∆=α         (3.49) 
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)( 2115 ααα +−∆= u         (3.52) 

 

where 

wuwuvuvuuu )()( 141355 ∆−∆−∆−∆−∆=∆     (3.53) 

 

A modification to the above solution technique is required at sonic flow regions 

which is called entropy fix technique. 
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3.2.1.1 Entropy Fix 

 

Linearized solutions to Riemann problem give results in discontinuous jumps 

which is preferable in shocks and contacts.  However for expansion waves, this 

procedure creates errors.  Roe’s solver can be modified in order to avoid solutions 

with entropy violation. The Harten-Hyman entropy fix [21] solution is described in 

this section. 

 

At each surface, the presence of a rarefaction wave is checked according to the 

relations given below. If a rarefaction wave is present, the entropy fix process is 

used instead of the original Roe’s method. 

 

The left speeds are calculated as 
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L
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R
cu **1 −=λ    (3.54) 

 

where 
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If  RL

11 0 λλ <<  then the left wave is a transonic or a rarefaction wave.  The 

following procedure is followed in such a case. 

 

)1(
11̂ KHH Ln αλ+=         (3.59) 

 

where 
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The right speeds are calculated as 

 

RR

L
cu **5 +=λ   and   RR

R
cu +=5λ     (3.61) 
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If RL

55 0 λλ <<   then the right wave is a transonic or a rarefaction wave. The 

following procedure is followed in such a case. 

 

)5(
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where 
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3.2.1.2 First Order Accuracy 

 

Accuracy of the convective fluxes are defined by the approximation used to find 

values of flow variables at the left and right of the cell face. For a first order 

approximation, the cell center values are assigned to the cell faces.  

 

3.2.1.3 Second Order Accuracy 

 

Higher order approximation is achieved by assuming that the flow variables change 

inside the control volume. If the variation of flow variables is linear then the 

accuracy becomes second order. The method used to achieve second order 

accuracy is “Piecewise Linear Reconstruction” developed by Barth and Jespersen 

[22]. In this method, it is assumed that the solution is piecewise linearly distributed 

over the control volume. The left and right state of the face for a cell centred 

scheme are found using the relations; 

 

( )LIIIL rQQQ
rr
.∇Ψ+=        (3.68) 
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( )RJJJR rQQQ
rr
.∇Ψ+=        (3.69) 

 

where LQ  and RQ  are the left and right states of the face, respectively, and IQ  and 

JQ  are the center values for two neighboring cells, respectively. Ψ denotes a 

limiter function. The vectors Lr
r
 and Rr

r
 point from the cell-centroid to the face mid-

point. 

 

This method requires the gradient of flow variables at the cell center. In this study, 

the gradients are calculated by two methods, Green-Gauss and Least-Squares 

Approach, which are given in detail in the subsequent sections. The computational 

burden of both approaches are almost the same. However, it was shown by Blazek 

and Haselbacher [23] that Green-Gauss approach fails on hybrid grids. The 

gradient can become highly inaccurate, particularly where different element types 

meet. On the other hand, least-squares approach is shown to be first order accurate 

on general grids [24].  

 

3.2.1.3.1 Green-Gauss Approach 

 

This method approximates the gradient of flow variables as the surface integral 

over the control volume. Flow variables at the face are computed by averaging of 

two neighboring cells who share the face in consideration. Gradient at the cell 

center is calculated as, 

 

( )∑
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j

jijiji SnQQQ
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,,2

1 rr
       (3.70) 

 

where Q is any flow variable, jin ,

r
 is the unit normal vector of cell face and jiS ,∆  is 

the face area. The integration is carried out by looping over all faces of the control 

volume. 
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3.2.1.3.2 Least-Squares Approach 

 

The evaluation of gradients by the least-squares approach was first introduced by 

Barth [25]. The least squares approach is based upon the use of a first-order Taylor 

series approximation for each cell center which is a neighbor of cell whose 

gradients are to be calculated. The change of the solution along the line connecting 

two cell centers can be computed from 

 

IJIJI QQrQ −=∇
rr
.         (3.71) 

 

where IJr
r
represents the vector from center of cell I to center of cell J. When the 

above relation is applied to all neighboring cells of cell I, the following over-

constrained system of linear equations is obtained. 

 























−

−

−

=























∂
∂
∂
∂
∂
∂























∆∆∆

∆∆∆

∆∆∆

IN

IJ

I

I
INININ

IJIJIJ

III

QQ

QQ

QQ

z

Q

y

Q
x

Q

zyx

zyx

zyx

AAAA

M

M

MMM

MMM

1111

    (3.72) 

 

with ( ) ( ) ( )IJIJ ooo −=∆ . Further AN  denotes the number of neighbor cells of the 

cell I. The above system can be written as, 

 

bxA
rr

=          (3.73) 

 

Solving equation (3.73) for the gradient vector x
r
 requires the inversion of the 

matrix A . To prevent problems with ill-conditioning, Anderson and Bonhaus 

suggested to decompose A  into the product of an orthogonal matrix Q and an 

upper triangular matrix R using the Gram-Schmidt process [26]. Hence, solution to 

equation (3.73) follows as 
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bQRx T
rr 1−=          (3.74) 

 

If equation (3.74) is written explicitly, the following equation is obtained for the 

gradient values. 
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with the vector of weights IJω
r

 defined as, 
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The terms in equation (3.76) are given by 
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Also, the below matrix entries are calculated and stored for each cell in the domain. 
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3.2.1.3.3 Limiter Function 

 

Second and higher order upwind spatial discretizations require the use of limiter 

functions in order to prevent the generation of oscillations and spurious solutions in 

regions of high gradients, such as shocks. By using limiter functions, the scheme 

becomes monotonicity preserving. In other words, maxima in the flow field must 

be non-increasing, minima non-decreasing, and no new local extrema should be 

created during the advancement of the solution in time. 

 

On unstructured and hybrid grids, the aim of a limiter is to reduce the gradient used 

to reconstruct the left and right state at the face of the control volume. The limiter 

function must be zero at strong discontinuities, in order to obtain a first order 

upwind scheme which guarantees monotonicity. Also, the original unlimited 

reconstruction has to be preserved in smooth flow regions to keep the amount of 

numerical dissipation as low as possible.  
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As the limiter function Venkatakrishnan’s [27,28] limiter is used, which is 

explained below in detail. The limiter reduces the reconstructed gradient IQ∇
r

 at 

the center of cell I by the factor 
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where  

 

IQQ −=∆ maxmax,1         (3.80) 

IQQ −=∆ minmin,1         (3.81) 

 

In the equations (3.80) and (3.81),  maxQ and minQ stand for the maximum / 

minimum values of all surrounding cells including the cell I. Definition of 2∆ is 

given in equation (3.82) as 

 

LrQ
rr
.2 ∇=∆          (3.82) 

 

where Lr
r
 is given as the vector from the cell centroid to the midpoint of the 

corresponding cell face. 

 

The parameter 2ε  is intended to control the amount of limiting. In practice, 2ε  is 

taken as proportional to a local length scale; 

 

( )32 h∆= κε          (3.83) 

where κ is a constant and h∆ is the cube-root of the volume of the cell. 



 

30 

 

3.2.2 Diffusive Fluxes 

 

To compute the diffusive fluxes, the gradient of the velocity vector is needed. 

Since, the gradients of flow variables are calculated in the Green-Gauss and Least-

Squares methods, to achieve second order accuracy in space, the velocity gradient 

is not calculated separately, instead, velocity gradient is calculated from gradients 

of flow variables using the chain rule. A sampe calculation procedure is given by 

equation (3.84). 

 

( )
x

u
x

u

x

u

∂
∂

+
∂
∂

=
∂
∂ ρ

ρ
ρ

        (3.84) 

 

Temperature gradient is also required for the calculation of diffusive fluxes 

Temperature gradient is handled by Green-Gauss and Least Squares methods. 

 

Calculated velocity and temperature gradients are calculated at the cell center, 

however, since gradients at the cell faces are needed, the gradients at the cell center 

are extrapolated to the cell faces. For all boundary conditions, except wall 

boundary condition, velocity and temperature gradients at the cell faces are taken 

as the same as the gradients at the cell center.  

 

For a no-slip wall boundary condition, gradients at the cell faces are taken as the 

same as the cell center values. However, the temperature gradient in the normal 

direction of the cell face is taken as zero, since adiabatic wall assumption is made. 
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3.3 TIME DISCRETIZATION 

 

Time discretization in the present solver is handled by two different approaches. 

The solver can integrate governing equations in time by either explicitly or 

implicitly. For the explicit time stepping, Runge-Kutta Multi-Stage scheme is used, 

whereas, for the implicit time stepping Lower-Upper Symmetric Gauss-Seidel 

approach is used. Implementation of both methods are given in oncoming sections 

in detail. 

 

3.3.1 Explicit Time Stepping 

 

If governing equations are discretized in time, equation (3.32) takes the following 

form, 

 

n

i

n

i

n
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where residual n

iR  is defined as, 
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After rearranging, equation (3.85) becomes, 
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The solution at time step n+1 can be evaluated starting from the initial data at time 

step n by using an explicit algorithm through Runge-Kutta (RK) Method [17]. The 

general RK scheme of order m is given by: 
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where the constants are given as  10 << kα  and 1=mα . 

 

In the present flow solver, fourth order scheme is used with the standard constants 

 

 1   ,   2/1   ,   3/1   ,   4/1 4321 ==== αααα     (3.89) 

 

where CFL is the Courant number coefficient and defined as follows 

 

max
nV

x

t
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∆
∆

=         (3.90) 

 

max
nV  is defined as the maximum wave speed throughout the domain at time level 

n for each cell. 

 

3.3.2 Implicit Time Stepping 

 

Implicit method used in this thesis is Lower-Upper Symmetric Gauss Seidel 

approximate factorization scheme, which is developed by Jameson and Yoon [20]. 

Later this method has been extended and used for hybrid and mixed grids[29-33]. 

Application of this method for unstructured grids is given in detail below. 

 

For convenience, the governing equations are repeated here, as 
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Applying backward Euler scheme for time integration, the following equation is 

obtained; 
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It should be noted that convective and diffusive fluxes are calculated at time level 

n+1. However, the face values required to calculate fluxes at time level n+1 are not 

known. For this reason, the flux values at time level n+1 are linearized about the 

time level n. 
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After the linearization of fluxes, equation (3.92) becomes, 
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where residual n

iR and n

iQ∆ are defined by equations (3.86) and (3.95), 

respectively. 
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i QQQ −=∆ +1         (3.95) 

 

In equation (3.94), n

ijF∆ and n

vijF ,∆  are differences in convective and diffusive 

fluxes between time level n+1 and n at each face. These flux differences can be 

approximated considering that these flux values depend both on cell i and j. 
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Linearizing the first and third terms on the right hand side of equation (3.96), it is 

possible to obtain 

 

( ) ( ) n

i

i

ijn

j

n

i

n

j

n

i Q
Q

F
QQFQQF ∆

∂

∂
=− +++ 111 ,,      (3.97) 

( ) ( ) n

i

i

ijvn

j

n

iv

n

j

n

iv Q
Q

F
QQFQQF ∆

∂

∂
=− +++ ,111 ,,      (3.98) 

 

Substituting equations (3.97) and (3.98) back into equation (3.94), one can get 
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where diagonal matrix D is given by equation (3.100) , and I is the identity matrix. 
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In equation (3.99), the residual, n

iR ,on the right hand side is calculated using Roe’s 

approximate Riemann solver. However, convective and diffusive fluxes on the left 

hand side are calculated by a first order approximation. 
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The first order numerical fluxes in the left hand side of equation (3.99) are chosen 

as, 
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1
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where ijλ  is the spectral radius of flux Jacobian matrix at the cell face and defined 

as, 
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In equation, ijn
v
 is the normal unit vector of the face, V

v
is the velocity vector, a is 

the speed of sound, µ  is the kinematic viscosity and jir
r
 is the vector pointing from 

cell center of i to the cell center of neighbor j. 

 

Because each control volume is closed, for cell i one can obtain, 
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Substituting equation (3.103) into equation (3.100) and using equations (3.101) and 

(3.102), diagonal matrix becomes an identity matrix with a scale factor, 
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When the approximation given in equation (3.101) for numerical fluxes are applied 

to equation (3.99), final form of the scheme is obtained as 
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Equation (3.105) is solved using one sweep of symmetric Gauss-Seidel iteration as 

follows. 

 

Forward Sweep 
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Backward Sweep 
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where ( )iL  and ( )iU  represent the lower and upper neighbor cells of cell i 

according to the cell ordering. 

 

 

3.4 BOUNDARY CONDITIONS 

 

3.4.1 Injection Boundary Condition  

 

At the injecting surface, pressure gradient is assumed to be zero.  The injected gas 

density is found through the solution of relations given below. 
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where To is the flame temperature and G is the injection mass flux given as input 

data.  Once the density is calculated, momentum flux terms can be calculated. The 

energy flux is calculated by using the flame temperature. 

 

3.4.2 Symmetry Boundary Condition 

 

The normal flux term passing through the surface is set to zero whereas the 

gradient of other flux terms are set to zero for the symmetry boundary condition.  

This is achieved through ghost cells on the symmetry boundary where flux terms 

tangent to the surface are kept as they are and the mirror image of the normal terms 

are taken. 

 

3.4.3 Wall Boundary Condition 

 

For an inviscid flow, all the flux terms passing through the surface are set to zero, 

whereas the tangential flux terms are kept as they are. For a viscous flow, all the 

flux terms passing through the surface are set to zero. 

 

3.4.4 Subsonic Outflow Boundary Condition 

 

Subsonic flow should reach the ambient pressure as the code converges.  Therefore 

pressure value at the boundary is enforced by the ambient pressure.  The velocity 

and temperature gradients are normal to the surface are kept zero.   
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The density value at the boundary should be computed at the ambient pressure and 

temperature.  

 

3.4.5 Supersonic Outflow Condition 

 

Supersonic flows do not interact with outflow conditions. Thus, all the exit flow 

parameters are extrapolated from interior points.  

 

3.4.6 Far-Field Boundary Condition 

 

For the ghost cells on the boundary, depending on the direction and speed of the 

flow, the ghost cell values are extrapolated from the interior and freestream 

conditions. If the flow is supersonic and entering the domain all ghost flow 

variables are taken as freestream conditions. If the flow is subsonic and entering 

into the domain, pressure is interpolated from the interior and all other variables are 

taken from freestream conditions. When flow is supersonic and leaving the domain 

all ghost cell variables are taken from the interior. If the flow is subsonic and 

leaving the domain, pressure is taken as the freestream pressure and all other 

variables are extrapolated from the interior. 
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CHAPTER 4 

4 VALIDATION 

 

VALIDATION 

 

In this section, results obtained for the validation of the numerical algorithm will be 

presented. The discretization accuracy of viscous flux vector is tested by laminar 

flow over a flat plate as the first test case.The numerical algorithm for the solution 

of full Navier-Stokes equations has no directional dependence therefore a purely 

two-dimensional problem for which the analytical Blasius solution can be used for 

comparison. 

 

To assess the accuracy improvement switching from the first order to second order 

spatial accuracy, a subsonic internal flow is selected which has an exact solution 

and results of a validated two-dimensional solver, IBS2D. This test case is also 

used for the comparison of gradient calculation methods, Green-Gauss and Least-

Sqaures methods for structured and unstructured grids. 

 

The third test case is used to show that the numerical algorithm is working properly 

for what it is aimed, which is an rocket internal flow. The improvement in accuracy 

and the sensitivity of the solution to different gradient calculation methods are also 

discussed. 

 

Although, the solver in intended to be used for internal flows, the last test case is 

chosen as an external flow over an airfoil. For this test case, the accuracy 

improvement is investigated together with the solution sensitivity to the limiter 

function parameters. 
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4.1 LAMINAR FLOW OVER A FLAT PLATE 

 

To verify the Navier-Stokes solver, primarily the two dimensional laminar flat 

plate problem is solved. The freestream Reynolds number of the flow is 35000 and 

the freestream Mach number is 0.3. For such flows, the external velocity is 

independent from the streamwise space variable and such flows are mentioned as 

constant pressure flows. A grid of 121x81x5 points (5 chords length, 3 chords 

height and half chord depth) is used. There are 58320 nodes and 47600 cells. The 

first y∆ is 0.0001 and exponentionally grows towards the top boundary. There are 

approximately 25-30 grid points in the boundary layer. At the leading edge cells 

are clustered algebraically with the first x∆ value being 0.0003. This clustering is 

necessary for resolving the streamwise pressure gradient that exists only at the 

leading edge. There are 55 points upstream of the leading edge, 52 points on the 

plate surface and 13 points in the wake region. 

 

Implicit time stepping with both first and second order solutions are performed. For 

the second order solution, the Green-Gauss method is used in the calculation of 

gradients flow variables. A CFL number of 610 is used for both solutions. Although 

the domain is three-dimensional, two-dimensional representation of the grid is 

given in Figure 4.1, since the grid does not show any variation in the third 

dimension.  
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Figure 4.1 Grid of Laminar Flat Plate Test Case 

 

Similarity parameter 
vx

U
y ∞=η  is used for comparison with the analytical 

solution of streamwise velocity. First and second order accurate laminar numerical 

solution at 5.0=
L

x
 compares well with self similar Blasius solution [34] results 

which are given in Figure 4.2. Moreover, the improvement in the comformance to 

the analytical solution, for the second order numerical solution is easily seen. A 

comparison of local skin friction fC with the finite length expression is given by 

[34]; 

 

875.05.0 Re334.1Re664.0 −− += xxfC       (4.1) 
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µ
ρ xU

x
∞=Re          (4.2) 

 

showed that the solver is successful in computing the analytical results as shown in 

Figure 4.3. In this figure, it can be seen that the second order solution gives more 

accurate results than first order solution at the trailing edge of the flat plate.  

 

 

 

Figure 4.2 Comparison of Axial Velocity Component Results with Blasius 

Solution. 
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Figure 4.3 Comparison of Skin Friction Coefficient Results with 

Analytical Solution. 

 

Agreement between Blasius solution and the velocity profile is at an acceptable 

level. Also, good conformance of local skin friction coefficient with the analytical 

solution is obtained. These results validate the developed Navier-Stokes solution 

method applied in the solver. 
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4.2 T-108 TEST CASE 1A 

 

T-108 project [35] is aimed to develop and validate two-dimensional Euler solvers. 

In this project, two-dimensional Euler solver (IBS2D) developed by Yumuşak [35] 

is validated. Test case 1A is a planar injection problem where the flow is fully 

subsonic. For this test case, an exact solution is available [36]. IBS2D is second 

order accurate in space. The results obtained will be compared to the exact solution 

and the results of IBS2D. 

 

First and second order accurate solutions with a structured grid were performed to 

see the effect of second order accurate method applied in the solver. For this test 

case, Green-Gauss method is used to calculate the gradients of flow variables.. 

Mach number distribution for first and  second order solutions and results of 

IBS2D are investigated. 

 

The geometry and the boundary conditions are given in Figure 4.4. The physical 

and geometrical parameters used for this test case are shown in Table 4.1. 

 

 

Figure 4.4 Geometry of Test Case 1 
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 2-D Planar 3-D Solver 

Geometric Parameters 

Length 581 mm 581 mm 

Height 20 mm 20 mm 

Width - 20 mm 

Grid Size 51 x 16 51 x 16 x 16 

Flow Parameters 

Mass flux 2.42 kg/m2/s 

Exit Pressure 150000 Pa 

Gamma 1.4 

Gas Constant 286.7 J/kgK 

Reference pressure 100000 Pa 

Flame Temperature 303 K 

 

Table 4.1 Geometric and Flow Parameters for Test Case 1 

 

The exact solution for this test case is given in Figure 4.5 and by equations (4.3) 

and (4.4). 

 

 

Figure 4.5 Definitions for the Exact Solution for Test Case 1 
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The grids used by IBS2D and the present solver are given in Figure 4.6 and Figure 

4.7. 

 

 

Figure 4.6 Two-Dimensional grid of Test Case 1 (IBS2D) 
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Figure 4.7 Three-Dimensional grid of Test Case 1 (Present Solver) 

 

When Figure 4.8 is investigated, the accuracy improvement in the second order 

solution is evident. Athough, first and second order solutions give the same results 

for very low Mach numbers, as the Mach number increases, the second order 

solution matches with the solutions of IBS2D which is a second order accurate 

solver.  
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Figure 4.8 Test Case 1 Mach Number Contours 

 

In Figure 4.9, static pressure at the symmetry axis is given for IBS2D and first and 

second order solutions for the present solver. The pressure prediction of second 

order solution, closely resembles the IBS2D solution. Although the difference in 

the pressure prediction between the first and second order solutions seems to be 

very small for this test case, the flow is fully subsonic and maximum Mach number 

is low. For a real rocket motor internal flow, the difference in pressure estimation 

may be more pronounced. 
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Figure 4.9 Static Pressure at the Symmetry Axis 

 

4.3 T-108 TEST CASE 2 

 

Test case 2 of T-108 project is an axisymmetric mini solid rocket motor problem 

where the flow is subsonic to supersonic, which is a characteristic of a rocket 

motor.  

 

For this test case, first of all, a comparison is made between the explicit and 

implicit time stepping methods used in the solver. To reveal the pure effect of the 

time stepping methods on the performance of the solver, a first order inviscid 

solution is performed with the explicit Runge-Kutta method and implicit Lower-

Upper Symmetric Gauss-Seidel method. Total iterations and time to reach 
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convergence are compared, to find the speed up of the solver when switching from 

explicit to implicit time stepping. This test case is selected because the solver is 

intended for rocket motor internal flows. The results will be compared to the 

IBS2D solution. 

 

Second order inviscid solutions are performed to distinguish the accuracy gain with 

two gradient calculation methods, GG and LSQ. The results are compared with the 

IBS2D solution. 

 

In order to compare results with axi-symmetric two-dimensional results of IBS2D, 

a three-dimensional grid with tetrahedron cells are generated. Three-dimensional 

results are given as a two-dimensional slice at the x-y plane so that a comparison 

can be made. The graphical representation of grids, which are used by IBS2D and 

the present solver, are given in Figure 4.10. The physical properties of the flow and 

grid parameters are given in Table 4.2.  

 

 

Figure 4.10 Grids used by IBS2D and Present Solver 
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 2-D Axi-symmetric 3-D Solver 

Geometric 

Length 270 mm 270 mm 

Radius 20 mm 20 mm 

Grid Size 99 x 16 7271 Nodes 

32332 Elements 

Flow 

Mass flux 11.39 kg/m2/s 

Exit Pressure 100000 Pa 

Gamma 1.14 

Gas Constant 299.5 J/(kg.K) 

Reference pressure 100000 Pa 

Flame Temperature 3387 K 

 

Table 4.2 Geometric and Flow Parameters for Test Case 2 

 

4.3.1 Time Stepping Method Comparison 

 

With the present solver, both implicit and explicit first order solutions are 

performed to see the impact of the time stepping method on the robustness of the 

solver. For these solutions, a computer with an Intel Xeon 3.4 GHz processor with 

2 GB of RAM. 

 

The CFL number for the explicit solution is 0.95, whereas a CFL number of 610 is 

used for the implicit method.  

 

The Mach number contours for both solutions are given in Figure 4.11. It is evident 

that both explicit and implicit methods produced the same results. That is, no extra 

numerical diffusion error is introduced with the implicit time stepping method 

applied in the solver. The residual and CPU time plots are given in Figure 4.12. 

The decrease in the total iteration number is 80%, whereas the CPU time decrease 
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is 90%. The reasons for such a drastic drop in CPU time and total iteration number 

are, (I), for each iteration only one flux evaluation is done for the implicit method, 

whereas four flux evaluations are performed in the explicit method, and (II), the 

speed up due to the CFL number. 

 

 

Figure 4.11 Mach Number Contours for Explicit and Implicit Solutions 

 

Figure 4.12 Residual and CPU Time History of Explicit and Implicit Solutions 
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4.3.2 Comparison of Gradient Calculation Methods 

 

Second order solutions are performed with both GG and LSQ gradient calculation 

methods. For both solutions, a CFL number of 610  is used. The results are 

compared with the results of IBS2D. 

 

Mach number contours are given in Figure 4.13 for first order solution with the 

IBS2D results. In this figure, it can be seen that the discrepancy between the first 

order solution and IBS2D solution increase as the flow speed increases in the 

diverging section of the nozzle, where the flow is supersonic. In  Figure 4.14, Mach 

number contours of second order solutions with GG and LSQ methods and IBS2D 

solution are shown. The accuracy recovery with the second order solutions are 

easily seen in the figure. However, if the supersonic region is closely examined, it 

can be observed that the LSQ method performs better than GG method. 

 

 

Figure 4.13 Mach Number Contours of 1st Order and IBS2D Solutions 
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Figure 4.14 Mach Number Contours of Second Order and IBS2D Solutions 
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4.4 FLOW OVER NACA0012 AIRFOIL 

 

This test case involves an airfoil, over which there are flow transitions from 

subsonic to supersonic. The freestream Mach number is 0.85 and the angle of 

attack is 1°. Outer radius of the solution domain is 15 chords. The reference 

solution for this test case is given in [37]. In this test case, the performance of the 

solver is investigated when the accuracy is switched to the second order. Besides, 

the assessment of the accuracy gain and the effect of the variation of the limiter 

function parameterκ , on the convergence and pressure coefficient are explored. 

 

An unstructured grid is used, where there are 320 and 80 cells on the airfoil and 

outer boundary, respectively. The grid is shown in Figure 4.15. The grid used for 

the reference solution is an O-type grid with 320x64 points. 

 

 

Figure 4.15 Grid of NACA0012 airfoil test case 
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Pressure coefficient results for the first order solution and the reference solution are 

given in Figure 4.16. In this figure, it is evident that the first order solution deviates 

from the reference solution for a considerably large amount. Eventhough, the 

pressure coefficient values do not comform with the reference solution, the shock 

locations are close for both solutions. In regions close to the head end of the airfoil, 

pressure coefficient values show oscillatory behavior. This shows that the grid 

refinement in these regions, is not good enough for the first order solution. The 

oscillations in near the head end of the airfoil can be seen in Figure 4.17. 

 

 

Figure 4.16 Pressure Coefficient Distribution on NACA0012 airfoil, of First Order 

and Reference Solutions 
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Figure 4.17 Mach Number Distribution around NACA0012 airfoil, First Order 

Solution 

 

Second order solutions are performed with the application of the limiter function 

and behavior of different limiter function parameters is analyzed. Three solutions 

with κ value of 0, 5 and 10 are obtained. If κ is close to the zero, full limiting is 

achieved. However, if κ  approaches large values, simply, there is no limiting at 

all. The residual history of all solutions is shown in Figure 4.18. All second order 

solutions are initiated using the results of first order solution. For a κ value of 0, no 

converged solution could be obtained. For κ being equal to 5 and 10, converged 

solutions are achieved. 
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Figure 4.18 Residual History of Second Order Solutions with Different κ values 

 

The pressure coefficient results for second order solutions are given in Figure 4.19. 

Although high values of κ  helped to achieve to gain convergence, overshoots 

occurred in the near regions of shocks on the upper and lower part of the airfoil. As 

κ  is increased from 5 to 10, the overshoots are more pronounced. The Mach 

contour distribution for the second order solution with κ being equal 5 is given in 

Figure 4.20. 
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Figure 4.19 Pressure Coefficient Distribution on NACA0012 airfoil, of Second 

Order and Reference Solutions 
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Figure 4.20 Mach Number Distribution around NACA0012 airfoil, Second Order 

Solution, κ equals 5 
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4.5 SUPERSONIC VORTEX FLOW 

 

The last test case is an inviscid, isentropic, supersonic flow between two concentric 

circular arcs as illustrated in Figure 4.21. The flow inlet is located at the right 

boundary and the flow exit is at the bottom boundary. The circular arcs are taken as 

solid walls. The inner radius has been taken as 1=innerr  and the outer radius as 

384.1=outerr . The flow is supersonic throughout the domain, with 25.2=innerM .  

 

The flow parameters vary only with radius r and are given by [38]; 
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Four different grids (Figure 4.22 to Figure 4.24) are used for this test case, to find 

how the error changes with varying grid size. First and second order solutions are 

performed on all grids and L2 norm error is calculated for discrete solution points 

using the results of the solver and the exact solution. L2 norm errors are given in  

Table 4.3 
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Figure 4.21 Description of Supersonic Vortex Flow 

 

 

Figure 4.22 Grid 1 and 2 of Supersonic Vortex Flow 
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Figure 4.23 Grid 3of Supersonic Vortex Flow 

 

 

Figure 4.24 Grid 4of Supersonic Vortex Flow 
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In  

Table 4.3, it can be seen that as the grid spacing is halved, L2 global norms of error 

in density decreases by approximately 50% and 75% for the first order solution and 

second order solutions respectively, for the first three grids. These results confirm 

that the solver is able to give second order accurate results. 

 

L2 Norm Error (%) 

GRID  

numbercell _
1  

First Order Second Order 

Grid 1 (15x3x3 cells) 0.195 64.31 14.60 

Grid 2 (30x5x5 cells) 0.110 28.44 2.85 

Grid 3 (60x10x10 cells) 0.055 4.25 0.63 

Grid 4 (120x20x20 cells) 0.028 2.63 0.24 

 

Table 4.3 L2 Global Norms of Error in Density 

 

The density contours of second order solutions for four grids are given in Figure 

4.25 to Figure 4.28. The improvement in the solution as the grid spacing decreases 

can be seen in these figures. 
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Figure 4.25 Second Order Solution for Grid 1 
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Figure 4.26 Second Order Solution for Grid 2 
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Figure 4.27 Second Order Solution for Grid 3 
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Figure 4.28 Second Order Solution for Grid 4 
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CHAPTER 5 

5 CONCLUSION AND DISCUSSION 

 

CONCLUSION AND DISCUSSION 

 

An implicit algorithm for computing the compressible Navier-Stokes equations on 

hybrid grids has been developed and presented. Lower-Upper Symmetric Gauss-

Seidel implicit method with a computationally efficient cell-centered algorithm are 

used in this study. The main features of the developed code are given below. 

 

Second order accuracy in space is achieved by piecewise linear reconstruction 

method. 

 

Two methods, Green-Gauss and Least-Squares, are used to compute the gradients 

of flow variables and it has been shown that both of these methods were found to 

be suitable for this purpose. Least-Squares method gives more accurate results for 

unstructured grids. Venkatakrishnan’s limiter is used for second order accurate 

solutions. Effect of the limiter parameters on the solution is investigated. Effect of 

the implicit method on the convergence speed is shown by comparing the results 

with explicit solution. 

 

For future developments, implementation of turbulence models may be a course of 

action. Also, the code can be upgraded so that it can run on parallel processors. 

Another improvement may be the use of multigrid methods to further speed up the 

convergence. Moreover, implementation of dual- time stepping may increase the 

capability of solver for unsteady flows. 
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