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ABSTRACT 

 

 

CONSTRUCTING PANORAMIC SCENES FROM AERIAL VIDEOS 

ERDEM, Elif 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Gözde Bozdağı Akar 

 

December 2007, (124) pages 

 

In this thesis, we address the problem of panoramic scene construction in which a 

single image covering the entire visible area of the scene is constructed from an 

aerial image video.  

 

In the literature, there are several algorithms developed for construction of 

panoramic scene of a video sequence. These algorithms can be categorized as 

feature based and featureless algorithms. In this thesis, we concentrate on the 

feature based algorithms and comparison of these algorithms is performed for 

aerial videos. The comparison is performed on video sequences captured by non-

stationary cameras, whose optical axis does not have to be the same. In addition, 

the matching and tracking performances of the algorithms are separately 
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analyzed, their advantages-disadvantages are presented and several modifications 

are proposed. 

 

 

Keywords: Image Mosaicing, Homography, Phase Correlation, RANSAC, Least 

Median of Squares (LMedS), Harris, Minimum Eigenvalue Method, SIFT. 
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ÖZ 

 

 

HAVADAN ÇEKĐLMĐŞ YER VĐDEOLARINDAN PANORAMĐK GÖRÜNTÜ 

OLUŞTURULMASI 

ERDEM, Elif 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Gözde Bozdağı Akar 

 

Aralık 2007, (124) sayfa 

 

Bu tez, havadan çekilmiş yeryüzü videolarından panoramik görüntü 

oluşturulması konusunu içeren bir çalışmadır.  

 

Literatürde panoramik görüntü oluşturulmasında kullanılan birçok algoritma 

bulunmaktadır. Bu algoritmalar özellik tabanlı ve benzerlik tabanlı olarak 

gruplandırılabilir. Bu çalışmada, özellik tabanlı algoritmaların karşılaştırılması 

üzerinde yoğunlaşılmış ve havadan çekilmiş yeryüzü videolar için karşılaştırma 

yapılmıştır. Karşılaştırma sırasında kullanılan videolar hareketli kameralardan 

elde edilmiş olup optik odağı sabit olmayan kameralar kullanılmıştır.  Bu 

çalışmada, özellik tabanlı algoritmaların eşleme ve takip performansları analiz 



vii 

edilmekte ve avantaj ve dezavantajları belirtilip, yapılan iyileştirme çalışmaları 

sunulmaktadır. 

 

 

Anahtar Kelimeler: Panoramik görüntü, homografi, faz ilişkilendirme, RANSAC, 

LMedS, Harris, Minimum Özdeğer Metodu, SIFT. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

When Mr. Martin Behrmanx produced probably the first panoramic scene in 

1843, possibly he could not imagine that this scene can be constructed in an 

automatic manner. To construct such a scene like the one in Figure 1, careful 

attention and manual processes were required. 

 

 

 

Figure 1: An 1851 panoramic showing San Francisco from Rincon Hill by 

photographer Martin Behrmanx. (www.wikipedia.com) 

 

In the age of information, today it is easier to generate a panoramic view of given 

still images when compared with 1850’s. Now, the digital cameras and computer 

programs can automatically generate panoramic view using only the translation 
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information between the frames. Naturally, these methods are all offline 

processes and perspective changes are not taken into account. On the other hand, 

it is much more difficult to obtain panoramic scenes of videos than still images. 

This is due to the fact that for video case, camera motion should be modeled and 

perspective changes in the video sequence should be evaluated correctly. 

 

Mosaic image of video sequences is useful in applications where the complete 

information in the video sequence is necessary. Besides, if there is lack of storage 

capacity or bandwidth constraint, mosaicing becomes a necessary procedure. For 

instance, in MPEG4 mosaic image of background is constructed for efficient 

compression. Additionally, in applications where stabilization of the image is 

required for stable background construction, mosaicing is widely used.  

 

In the literature, there are several approaches to handle the mosaicing problem. In 

mosaic image construction, the aim is to find the transformation between the 

image pair and warp one of the images with respect to the other one. Then these 

images are combined and the mosaic image is constructed. The block schema of 

mosaicing process is given in Figure 2. 
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Figure 2: Block Schema of mosaicing procedure 

 

 

The mosaicing approaches can be classified into two: featureless and feature-

based methods where a feature corresponds to the distinctive interest point in an 

image frame. In the literature, [1], [2], [12] and [13] utilize featureless methods 

whereas [11] and [15] exploit feature-based algorithms for mosaicing. System [1] 

uses a three step approach to measure image motion from low-quality images. 

Firstly, phase-correlation is used to recover inter-frame global motion for 

approximate aligning. Then, refinement of the inter-frame transformation is 

performed by estimating the optical flow between the compensated images and 

fitting a parametric motion model to this flow. Finally, the Sum of Squared 

Difference (SSD) between the images is minimized where the SSD function is 
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formed by careful selection of the image regions using the edge structure. This 

algorithm estimates the transformation parameters accurately, and produces 

accurate mosaics for different videos. This has advantages in applications where 

foreground and translational motions exist. For applications in which rotation 

dominates translation as Zeppelin application, model fitting increases the time 

complexity. 

 

In [2], unknown transformation parameters are directly recovered from 

measurable image quantities as intensity of each pixel in the image. In this 

method, a brightness constancy constraint is assumed for every pixel of the image 

and coarse-to-fine processing is utilized using iterative refinement within a multi-

resolution pyramid. All processing is performed in sub pixel accuracy. To find 

out the transformation matrix, the algorithm tries to fit a homography model. This 

approach has the disadvantage of high computational complexity. [2] also shows 

that direct methods are capable of recovering misalignments of up to 10-15 % of 

the image size whereas an initial estimate is required for larger misalignments.  

 

[13] is another intensity based algorithm where a Laplacian pyramid is 

constructed from both of the input images and a model is fitted in coarse-fine 

manner. The algorithm exploits quadratic image motion model where SSD is the 

match measure. This method deals with all pixel values so time complexity and 

noise sensitivity is large. 
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[15] uses a feature based algorithm where features are extracted before structure 

and motion recovery. Then, these features are used to compute image matching 

relations. The algorithm automatically estimates a homography between the 

features of two images using Random Sample Consensus (RANSAC) algorithm. 

Besides, it computes a maximum likelihood estimate of homographies and points 

over all frames. This application is very similar to one of the algorithms 

implemented in this study except for the maximum likelihood estimation. This 

method can be applied if there is foreground motion in the video. 

 

Another feature based algorithm is presented by [11] in which image alignment is 

performed by fitting a global parametric motion model to sparse optic flow. The 

Kanade-Lucas-Tomasi (KLT) feature tracker is used to match corner features 

between adjacent pairs of video frames to obtain a sparse estimate of the optic 

flow field. For each corner feature, the method solves for a sub pixel translational 

displacement vector that minimizes the sum of squared intensity differences 

between an image patch centered at the corner and a patch in the next frame 

centered at the estimated translated position. A six parameter affine motion model 

is fit to the observed displacement vectors between two frames to approximate 

the global flow field induced by camera motion and a rigid ground plane. 

RANSAC algorithm is used to robustly estimate the affine parameters from the 

observed displacement vectors. The benefit of using a robust procedure such as 

RANSAC is that the final least squares estimate is not contaminated by erroneous 

displacement vectors, such as points on moving vehicles in the scene, and scene 
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points with large parallax. This method can only produce good results when the 

displacement between frames can be modeled by affine motion 

 

[8] proposes a mixture of these algorithms where a feature-based method is used 

to initialize the registration, i.e., to compute camera motion and layer 

segmentation. Then registration fine tuning is performed via a featureless method. 

This method uses both feature-based and featureless methods which increase the 

complexity. However, in order to decrease the time complexity, it is efficient to 

use feature points/characteristics for fine tuning. 

 

Featureless methods have very large complexity since they deal with every pixel 

in the image. On the other hand, they solve two problems simultaneously: the 

motion of the camera and the correspondence of every pixel. However, they 

process less informative portion of the image and are affected from the image 

brightness constraint and noise more than feature based algorithms 

 

By contrast, feature based approaches involve a strategy of concentrating 

computation on areas of the image where it is possible to get good 

correspondence, so that an initial estimate of geometry is constructed. This 

geometry is then used to guide correspondence in regions of the image where 

there is less information. So the process is focused on more informative portion 

of the image and complexity of the algorithm decreases effectively. 
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1.1 Motivation and Objective 

 

In this study, the problem of mosaic image construction is addressed and different 

algorithms in the literature are implemented and compared. The comparison 

criteria of these algorithms are visual performance (SNR), computational load 

and time complexity. 

 

As explained above, automatic construction of mosaic from image sequences can 

be realized using different algorithms. The appropriate method should be chosen 

according to video sequences and requirements of the system. In this thesis, we 

focus on aerial videos taken from a high altitude camera so depth information is 

ignored in order to decrease time complexity. Additionally, refinement 

procedures for the algorithms are adjusted accordingly for aerial video types. 

 

In this study, both synthetic and real videos are utilized. For real videos, two 

videos with different characteristics are exploited. One of the videos is “zeppelin” 

video in which camera is connected loosely to the balloon with wires allowing 

camera’s optical (focal) axis to change. The situation is that the balloon is 

connected to the ground from three different contact points so it can move in the 

air and the camera moves with this balloon. The altitude of the camera is about 

60m. The video has a resolution of 288x384. The second video is “uav” video. 

This is the video utilized in [1]. The camera is tightly connected to an unmanned 

air vehicle (UAV). As the UAV moves, camera connected to it takes the video in 

which there is a moving object. The color video has a resolution of 230x310.  
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In addition to real videos, two synthetic videos are used in comparison of the 

algorithms. The first synthetic video is obtained by grabbing small portions of a 

high resolution Amasra image which is taken from a high altitude. The resolution 

is 640x480. Since the camera used to grab the frames has no manual focus 

adjustment, brightness differences present between the frames in the “amasra” 

video. The last video is synthetic “wall” video. This video is taken from a wall on 

which there are pictures and paintings. The reason for this is to make resemble 

the synthetic video to real aerial videos and to prevent depth information to 

present in the sequences (as in aerial sequences) which makes correct mosaic 

construction possible. In this work, the results of the algorithms for these four 

videos are presented and discussed. 

 

1.2 Organization 

 

In Chapter 2, Featureless mosaicing algorithms in the literature are reviewed and 

some implementation results are given. Third chapter describes theoretical 

background of feature-based techniques in construction of mosaic images. Fourth 

chapter depicts comparison of the algorithms for different situations and videos. 

The results of the implementations and comments about the implemented 

methods are presented in this chapter. In chapter 5, a brief summary of this study, 

conclusions about the results obtained and comparison of the methods and 

furthermore, recommendations for possible future works are given.  
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CHAPTER 2 

 

 

2 FEATURELESS MOSAICING ALGORITHMS 

 

 

 

In featureless mosaicing algorithms, the transformation between the frames is 

calculated using measurable image quantities of every pixel in the image. In this 

approach, all pixel information is utilized without extracting any informative 

region. These algorithms differ in the kind of information extracted from the 

image. In this study two algorithms are mentioned: 

 

1. Phase Correlation : Estimates global motion using frequency 

information 

2. Pixel Based Approach: Estimates transformation using intensity 

values of each pixel in the image 

 

 

 

 



10 

2.1 Phase Correlation 

 

Phase correlation is a method that use frequency domain map of the signal. This 

method provides a rough estimate for rigid translational motion between two 

images. 

 

In this application, FFT phase correlation is used to recover inter-frame 

translation, so before applying a detailed procedure, images are aimed to be 

aligned roughly. Phase correlation method gives spatial shift of the signal as the 

output. This method measures the translation directly from their phases. This 

algorithm is optimum in the complexity point of view. This is because it does not 

include any gradient based estimation of the parameters, so it gives information 

about planar translation in a fast manner. 

 

The phase correlation method is applied in order to find the intra frame planar 

translation. This means one of the frames has a displacement of (d1, d2) with 

respect to the second frame in x and y directions, respectively. 

 

( ) ),(, 2211211 dndnInnI kk ++=+                               (1) 

 
 The shift in the spatial domain corresponds to phase change in the spectrum 

domain. Taking the Fourier Transform of both sides of Equation (1) we have: 

 

( ) { })(2exp),(, 221121211 dfdfjffIffI kk +−=+ π           (2) 
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In phase correlation calculation, the first step is to find cross correlation between 

the kth and (k+1)th frames as:  

 

( ) ( ) ( )knnIknnInnc kk ,,**1,,, 2121211, −−+=+                  (3) 

 
where ** stands for 2D convolution. Then the Fourier Transform of Equation (3) 

is taken to obtain cross power spectrum:  

 

( ) ( ) ( )21

*

211211, ,,, ffIffIffC kkkk ++ =                          (4) 

 
where * stands for complex conjugate. In order to eliminate luminance variations, 

the cross power spectrum is normalized by its magnitude. The Fourier transform 

of the cross correlation matrix is: 

 

( ) ( )
( ) ( )21

*

211

21

*

211
1,

,,

,,~

ffIffI

ffIffI
C

kk

kk

kk

+

+
+ =                                     (5) 

 
If Equation (4) and Equation (5) are combined and inverse Fourier transform is 

taken: 

( ) ( ){ }2211211, 2exp,
~

dfdfjffC kk +−=+ π                        (6) 

( ) ( )2211211, ,,~ dndnnnc kk −−=+ δ                              (7) 

 
This delta function contains the translation information between the frames kth 

and (k+1)th. The planar translation is 2 dimensional so it has magnitude in x and y 

directions. The displacement between the frames is obtained by applying the 
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above formulas and the location of the pulse in Equation (7) gives the 

displacement in x and y directions which are d1 and d2, respectively. 

 

Actually this is the ideal case because in practice the motion between frames is 

not pure translational and focal axes of the cameras do not have to stay 

unchanged. As a result there also exists rotation. In non pure translational case, 

more than one pulse exists and the pulse that has the highest magnitude gives the 

translation information. The phase correlation method gives accurate results if the 

translational motion between the frames is dominant. If rotation dominates, even 

if there is translational motion, phase correlation operation gives 

insufficient/incorrect result.  

 

In order to see phase correlation performance, a size of 40x40 white square on 

black background is created at location (40,40) in Figure 3a. Then the white 

square is shifted to the location (70,80) in Figure 3b The shift between the frames 

is found by phase correlation method and the phase correlation algorithm outputs 

a peak at location (30,40). This output is shown as the white square in Figure 3c 

which indicates 30 pixels and 40 pixels shifts in x and y directions respectively. It 

is observed that phase correlation algorithm works perfectly in this situation. 
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(a)

X: 40 Y: 40

Index: 1

RGB: 1, 1, 1

X: 70 Y: 80

Index: 1

RGB: 1, 1, 1

(b)

 

Figure 3: Phase Correlation Result for white square on black background 

a) White square at (40,40)     b) Shifted white square at (70,80)  

             c) Phase correlation result: Displacement between (a) and (b)  
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(a) 

 

(b) 

 

Figure 4: Input frames from zeppelin video for Phase Correlation Algorithm 

(a) 15th frame (b) 200th frame (Example-1) 
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The first real frame example is from zeppelin video. There exists significant 

displacement between the frames in Figure 4. However, phase correlation 

algorithm gives zero displacement for these frames in Figure 4  

 

The second real example is again from zeppelin video and frames used in this 

example have less displacement respect to those of Figure 4, see Figure 5. The 

phase correlation algorithm gives 1 pixel displacement along x axis.  

 

In order to control the phase correlation result, 5 distinct points are taken on the 

first frame (15th frame), in Figure 5a. Then corresponding points in the second 

frame (32nd frame) is found using intensity information of the selected points in 

Figure 5b. Then, in order to make comparison with phase correlation result, shift 

for each point is calculated, given in Table 1. The points’ displacement results 

show that there exist rotation around left bottom corner of Figure 5b and there 

exist more than 10 pixels displacement between the frames 15 and 32. It is seen 

that the phase correlation method gives very rough result. 
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X: 347 Y: 29

RGB: 37, 64, 137

X: 50 Y: 235

RGB: 45, 61, 73

X: 371 Y: 192

RGB: 69, 117, 187

X: 215 Y: 111

RGB: 127, 145, 173

X: 41 Y: 90

RGB: 149, 216, 255

(a)

X: 332 Y: 37

RGB: 39, 70, 141

X: 30 Y: 235

RGB: 31, 49, 66

X: 351 Y: 199

RGB: 93, 130, 199

X: 24 Y: 89

RGB: 131, 211, 222
X: 199 Y: 115

RGB: 97, 122, 150

(b) 

Figure 5: Input frames from zeppelin video for Phase Correlation Algorithm 

(a) 15th frame (b) 32nd frame (Example-2)  
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Table 1: Displacement table for Example 2  

 

Point location Displacement along x: 

∆x 

Displacement along y: 

∆y 

Left bottom 20 0 

Right bottom 20 7 

Left top 17 1 

Right top 15 8 

Middle 16 4 

Phase Correlation result 1 0 

 

 

The third example is from “uav” video. Two frames of UAV video are taken and 

displacement between the frames is calculated by phase correlation algorithms. 

Then 3 distinct points are taken in the first frame (15th frame), see Figure 6a and 

corresponding points are found in the second frame (32nd frame), see Figure 6b.. 

The point displacements and phase correlation result is given in Table 2. There is 

rotation between the frames around right corner and phase correlation result is not 

applicable to all points in the frame. Note that, in this video, there are both global 

and local motions.  
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X: 178 Y: 38

RGB: 207, 216, 217

(a)

X: 62 Y: 7

RGB: 171, 180, 211

X: 238 Y: 141

RGB: 141, 141, 127

X: 173 Y: 36

RGB: 204, 212, 216

(b)

X: 50 Y: 28

RGB: 177, 186, 217

X: 264 Y: 132

RGB: 113, 113, 111

 

Figure 6: Input frames from UAV video for Phase Correlation Algorithm  

(a) 15th frame (b) 32nd frame (Example-3) 
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Table 2: Displacement table for Example 3 

 

Point location Displacement along x: 

∆x 

Displacement along y: 

∆y 

Right bottom -26 9 

Right top 5 2 

Left top 12 -21 

Phase Correlation result 9 -17 

 

 

Conclusion 

Phase correlation is the only featureless technique implemented in this thesis. In 

this study phase correlation was planned to be used in prior alignment, i.e. global 

motion compensation, of the video sequences. However the performance of the 

algorithm is not satisfactory for the videos which have significant rotation.  

 

Actually, phase correlation is a very fast algorithm, however in the aerial videos 

where considerable rotation exists, it may not give accurate results. As a result, 

we decided not to use phase correlation technique in our study. 
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2.2 Pixel Based Algorithms  

 

In pixel based algorithms, image mosaicing is performed using measurable image 

quantities of each pixel. The aim is to accurately find the parameters of the 

transformation matrix between two frames using the information of each pixel. 

The information extracted may differ according to the algorithm. Pixel intensity 

values or the optical flow vectors of each pixel can be taken as the measurable 

quantity. 

 

There are several advantages of utilizing all measurable information in an image. 

One of them is high precision leveled sub-pixel accuracy which can be exploited 

to obtain accurate results. Moreover, global motion can be estimated successfully 

even if outliers exist in the image. 

 

In recent years, instead of utilizing all information in a scene, more informative 

regions/pixels are exploited in image mosaicing algorithms which have lower 

computational load and more distinctive information. So, in this study, pixel 

based algorithms are not implemented instead algorithms which exploit interest 

points in an image are focused. 
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CHAPTER 3 

 

 

3  FEATURE BASED MOSAICING ALGORITHMS 

 

 

 

In feature based mosaicing algorithms more informative regions/pixels are 

exploited in an image instead of utilizing all information in a scene,. This method 

brings the advantages of lower computational load and using more distinctive 

information.  

 

These more informative regions are expressed as the features in an image. There 

are several criteria for a point to be a feature and in order to obtain an accurate 

mosaic image, good features should be identified and tracked from frame to 

frame. 

 

In feature based mosaicing algorithms, features in the reference frame are 

extracted. Then the correspondent features in the image pair is obtained by either 

tracking or matching operation. Using the features in the frames, the 

transformation between the frames is calculated. And the non-reference frame is 

warped using the transformation matrix and added to the mosaic. Flow chart of 
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this procedure including the implemented algorithms for each step is given in 

Figure 7. 

 

So performance of mosaicing system quite depends on selection of appropriate 

features. This is because tracking/matching performances of the algorithms are 

highly dependent to the feature properties. So, every feature can not work well in 

all tracking/matching algorithms. For example the features extracted in the 

reference frame are matched to the points in the next frame with a window search 

algorithm using some matching criteria. However if the search window is not 

attached to a fixed point in the physical world, this makes the feature useless or 

even harmful to most structure from motion algorithms. Since feature selection is 

very critical in the way of constructing a good mosaic, three different feature 

selection algorithms are attempted, see Figure 7.  
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Figure 7: Flow chart of a mosaicing algorithm 

Feature Extraction Methods 
 

1.Minimum eigenvalue 
2.Harris 
3.Difference of Gaussian(SIFT) 

Tracking/Matching Methods 
 

1. Pyramidal KLT 
2. SIFT matching 

Transformation Matrix calculation methods: 
 

1. Affine Transformation  
2. Perspective Transformation  

 

Warp the whole new image using 
transformation matrix. 

Add warped image to the mosaic 
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Finding the accurate correspondent points of the very first feature points in the 

new frame is the second step. In tracking/matching part, two algorithms are 

realized, see Figure 7. The first one is optical flow based KLT algorithm. In this 

method the correspondent feature points are found by searching the next frame 

within a window. The point giving the highest correlation is taken as the 

correspondent feature point. In order to obtain an accurate and robust result, KLT 

is implemented in pyramidal and iterative form. The second algorithm is SIFT 

(Scale Invariant Feature Transform) matching. In this method, the features in 

both of the images are extracted and the closest feature vector in the non 

reference image is taken as the matching point. Some constraints are used in 

order to obtain a good matching performance. 

 

After extracting the features in both of the frames, the transformation between the 

frames is calculated. Transformation is actually a coordinate conversion that 

maps the image coordinates x to the coordinates of reference frame x’. 

 

                                 x = [x,y]
 T
                             x’ = [x’,y’] T   

 

In this study, two kinds of transformation matrix are implemented, as shown in 

Figure 7. The first matrix utilized is 6 parameter affine transformations where 

only translation and rotation information is taken into account. The second matrix 

is the homography matrix in which perspective changes are taken into 

consideration. The transformation matrixes are calculated by least squares 

Transformation 

Matrix 
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method. Then the refinement procedure of the transformation matrix is 

performed. In order to calculate more accurate transformation matrix parameters 

RANSAC and LMedS algorithms are implemented. In addition to these, 

transformation matrix found by least square method is refined iteratively. 

 

After finding the transformation between the image pairs, the non-reference 

frame is warped using these matrix parameters to register the images.  

 

Up to this point transformation matrix which is obtained using only feature points 

is utilized to warp the whole image. The last step is to update the mosaic image 

by adding new warped image to the panoramic image. This update process can be 

performed by adding either the whole new frame or just the new points. 

 

In the next sections of this chapter, implemented mosaicing algorithm steps are 

explained in a detailed manner. 
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3.1 Feature Extraction 

3.1.1 Feature Extraction Algorithms 

 

In this study, three kinds of feature extraction methods are implemented. The 

algorithms are listed as follows: 

1. Minimum Eigenvalue Method 

2. Harris corner detector 

3. Difference of Gaussian (SIFT) 

 

3.1.1.1 Minimum Eigenvalue Method 

 

In Minimum Eigenvalue Method, features extraction is performed by the criteria 

of good traceability. This means that if a matched feature pair can be found 

reliably, the feature has a good quality.  

 

There exist some problems in feature extraction process. For example, in an 

image, not all parts of the image contain complete motion information which is 

known as aperture problem, i.e. motion can be detected only perpendicular to the 

orientation of the moving contour. Further processing is required to disambiguate 

true motion direction. To overcome this problem, generally either corners or 

regions have higher mixture of second order derivatives are selected. 

Nevertheless, this can not completely solve the problem, e.g. feature 
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determination window size is undetermined. In Minimum Eigenvalue Method a 

more principled definition of feature quality is proposed and a good feature is 

described as the one that can be tracked well, so that the selection criterion is 

adjusted optimally in construction process [3]. 

Feature extraction is realized utilizing every pixel in the image. Let I(x,y,k) and 

I(x,y,k+1) be two gray scaled images and I(x) = I(x,y) is grayscale values at 

location x = [x y]T, where x and y are pixel coordinates of a generic image point 

x.  

Consider image points x1 and x2 on the first and second images respectively: 

x1 = [x y]T ∈ I(x,y,k) 

x2 = x1 + d = [x+dx, y+dy]
T ∈ I(x,y,k+1)                      (8)  

where I(x1) and I(x2) are the image points and the vector d = [dx dy]
T is the image 

displacement at x. The goal of this algorithm is to find points in I(x,y,k) that can 

be tracked well in the second frame I(x,y,k+1). In order to track a point well, the 

matched point should be found precisely and residual function ε should be 

minimized. 

( ) ( ) ( ) ( )( )∑∑
+

−

+

−

+++−==
x

x

y

y

wx

wx

yx

wy

wy

yx kdydxIkyxIddd
2

1,,,,,εε (9) 

where wx and wy are two integers defining the window size. This size determines 

the area of search window. Because of the aperture problem, notation of 
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similarity should be defined in 2D neighborhood sense. In order to minimize the 

residual function ε, gradient of ε(d) is equated to zero vector.  
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where δI is image difference in the search window:  

)1,,(),,( +−= kyxIkyxIIδ                           (12) 

Expanding the derivative: 
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Using denotation in Equation (14) and (15), Equation (13) can be rewritten as: 
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                           (16) 

Then the optimum displacement vector is: 

                                           bGdopt
1−=                                               (17) 

For detailed analysis, refer to [10]. 

 In order to make Equation (16) valid, G should be invertible. From this, we can 

derive the first feature point criterion to satisfy: The point x in the first image 

should contain gradient information in both x and y directions i.e. none of the 

gradients is allowed to be zero because even if one of the gradients is 0, this 

makes the determinant of the matrix 0.  

Before giving the details, firstly analyze some critical properties of the gradient 

matrix, G. This matrix has the following properties: 

1. G is a symmetric 2x2 matrix. 

2. If eigenvalue decomposition is applied to the gradient G matrix, the 

eigenvalues (λ1, λ2) and eigenvectors  ( )21,ee
rr

 are obtained 
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respectively. The first eigenvector 1e
r

, a unit vector, has a direction 

normal to the gradient edge, while the second eigenvector 2e
r

is 

tangent to the gradient edge. The eigenvalues indicate the underlying 

certainty of the gradient structure along their associated eigenvector 

directions.  

These gradient features allow a more precise description of the local gradient 

characteristics. Based on the magnitudes of the eigenvalues, the following 

inferences can be made based on this argument: 

1. If 01 ≈λ and 02 ≈λ , there are no features of interest at the pixel (x,y).  

2. If 01 ≈λ and λ2 is some large positive values, then an edge is found. 

3. If λ1 and λ2 are both large, distinct positive values, then a corner is 

found.  

If Equation (17) gives good measurements and if it can be solved reliably the 

feature can be tracked from frame to frame. So, the G matrix must be both above 

the image noise level and well-conditioned. The noise requirement implies that 

both eigenvalues of the gradient matrix must be large, while the conditioning 

requirement means that they cannot differ by several orders of magnitude. The 

eigenvalue magnitudes give idea about the feature profile. Two small eigenvalues 

mean a roughly constant intensity and a large and a small eigenvalue correspond 

to a unidirectional texture pattern. On the other hand, two large eigenvalues can 

represent corners. 
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In practice, when the smaller eigenvalue is sufficiently large to meet the noise 

criterion, the G matrix is usually also well conditioned. The pixel is accepted if 

the two eigenvalues of G are λ1 and λ2, are above a threshold. 

( ) λλλ >21 ,min                                                     (18) 

where λ is a predefined threshold. In fact, the intensity variations in a window are 

bounded by the maximum allowable pixel value, so that the greater eigenvalue 

cannot be arbitrarily large. 

 

To determine lower bound of λ, firstly, the eigenvalues for images of a region of 

approximately uniform brightness is taken with the camera to be used during 

tracking. Then to obtain an upper bound for λ, a set of various types of features, 

such as corners and highly textured regions is selected. “In practice, it is found 

that the two bounds are comfortably separate, and the value of λ, chosen halfway 

in-between, is not critical [9]”. 

 

In feature extraction algorithm, in Figure 8, the gradient matrix is computed for 

every pixel in the image. Then the eigenvalues and the eigenvectors of the 

matrixes are calculated. The selection of the feature points is performed utilizing 

these values. The minimum values of the eigenvalues are stored and the 

maximum value of the eigenvalues, λmax, is selected for comparison. Then the 

points whose minimum eigenvalues are of %5 or %10 percentage of λmax are kept 

as candidate feature points. After that, local maximum pixel within a 
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neighborhood of nxn is retained among candidate feature points. Final rejection 

of feature points is performed with the criteria of minimum pixel distance. This 

prevents any two feature points to be too much closer to each other and points 

that are closer more than a threshold value, d, are removed. The selection is 

performed with respect to the maximum of minimum eigenvalue. Note that, d and 

n values are the parameters that have to be optimized in this algorithm. In feature 

extraction it is not necessary to take a very large integration window in 

computing the G matrix. In fact, a 3x3 (wx=wy=1) window is sufficient for 

selection, and should be used. Note that for tracking purposes, this window size 

(3x3) is typically too small. The image points that satisfy all the criteria are 

typically “good to track" and these pixels are the selected feature points that are 

fed to the tracker.   
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Figure 8: Minimum Eigenvalue Feature Selection Algorithm 

Compute G matrix for every pixel of the 
image 

Find the eigenvalues of the matrix G : λ 

Find the minimum eigenvalues of every G 
matrix: λm  

Find the maximum and minimum value of 
λm over the whole image: λmax and λmin 

Maintain the subset of those pixels so that 
the minimum distance between any pair of 

pixels is larger than a given threshold 

Keep the image pixels whose λm value is 
larger than a percentage of λmax.  

(This percentage can be 10% or 5%.) 

 

Retain the local maximum pixel from the 
points above. 

 if its λm value is larger than that of any other pixel in its 3x3 
neighborhood 
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3.1.1.2 Harris Corner Detector 

 

Harris Corner Detector [4] is another feature extraction algorithm that finds 

corner like features. To enable explicit tracking of image features, the image 

features must be discrete, and not form a continuum like texture, or edge pixels 

(edgels). For this reason the algorithm is concentrated on the extraction and 

tracking of feature-points or corners, since they are discrete, reliable and 

meaningful. However, the lack of connectivity of feature-points is a major 

limitation in the obtaining of higher level descriptions. So, richer information that 

is available from edges is needed. Harris corner detector performs this by taking 

account the differential of the corner score with respect to the direction directly. 

 

Actually, Harris corner detector is an improvement of Moravec’s corner 

detector[18]. It considers a local window in the image and finds the average 

changes of the image intensity by shifting the window by small amount in various 

directions. So the algorithm tests each pixel in the image to see if a corner 

presents. This is done by measuring the similarity of a patch centered on the pixel 

is to nearby, largely overlapping patches. In other words, Harris relies on the idea 

that a corner gradient is not well defined at the exact corner location whereas 

gradient is well defined in the region around the corner. The similarity 

measurement is the sum of square difference (SSD) between the patches. The 

lower the difference the higher is the similarity. The points can be grouped in 

three regarding SSD results: flat region, edge and corner regions. If the SSD 

gives a small change, the centered pixel is considered to be in uniform region. If 
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the nearby patches in the direction orthogonal to the patch is quite different and 

tangent to the patch is similar, then the point can be taken as edge. If the feature 

has patch variation in all the directions, and no patches are similar, this indicates 

the presence of a corner point. Note that the response is anisotropic because only 

a discrete set of shifts at every 45 degrees is considered. 

 

In order to improve the Moravec’s algorithm, Harris corner detector takes the 

gradient of the image into account. The gradient G matrix in Equation (14) is 

obtained in the same way mentioned in section  3.1.1.1. The point is selected as a 

feature using a response function R. Harris defines a corner/edge response 

function, R, to measure the quality of the corner. The response function is 

calculated using the eigenvalues of the gradient matrix: 

 

                       ( )2

2121 λλκλλ +−=R          (19) 

 

where the value of κ is the parameter which has to be determined empirically, and 

in the literature values in 0.04 - 0.15 range have been reported as feasible. 

 

In order to obtain a rotational invariant result, Equation (19) has to be a function 

of only eigenvalues, λ1 and λ2. It is computationally expensive to make the 

eigenvalue decomposition of the G matrix. For easier computation, trace, Tr(G), 

and determinant, Det(G), of the G matrix is utilized where: 

( ) 21 λλ +=GTr            
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     ( ) 21λλ=GDet  

( ) ( )GTrGDetR 2κ−=    (20) 

Using the information in R, both corner/edge classification and corner/edge 

quality determination can be performed. The point in the image is categorized 

according to the result of R function. If for a given point, R is positive, it is 

considered as the corner region, if negative as the edge regions, and if small as 

flat region, (Figure 9). In other words, for a feature to be in corner region, both 

eigenvalues should be large so is response function. On the other hand, if one of 

the eigenvalues is small (close to zero) being the other larger, the feature falls 

into the edge region. Finally, if both of the eigenvalues are small (close or equal 

to zero), the feature is considered in flat region. 

 

Figure 9 is the graph of the response function in eigenvalue space. Pixels belong 

to edge region have large λ1 small λ2 (or vice versa), ideally one of them being 

zero. But in reality one of the eigenvalues is merely small compared to other one 

due to noise, pixellation and intensity quantization. In the same way, a pixel is 

considered as edge if it has both negative response and local minima in either x or 

y directions (thin edge). A corner is the point where there is two large 

eigenvalues, i.e. a pixel is selected as corner if it has 8-way local maximum. 

Similarly, flat region pixels have small eigenvalues. However, what is the 

reference of being small and large eigenvalues?  
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The threshold determines whether the pixel belongs to flat or edge/corner regions 

is found experimentally. In determination of this threshold edge hysteresis is 

observed by applying low and high thresholds. This procedure is used for 

enhancement of the continuity of edges [4]. 

 

 

 

Figure 9: Amplitude of the Response Function, |R|. 

 

 

The block schema of the Harris corner detector is given in Figure 10. In 

summary, in Harris corner detector algorithm, G matrix is computed for every 

pixel in the image and utilizing the eigenvalues or determinant and trace of the 

matrix a response function is obtained. The corner decision is performed if the  

λ1 

λ2 

 

 

 

|R| 
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Figure 10: Harris Feature Detection Algorithm 

Compute G matrix for every pixel of the 
image with a Gaussian window 

Find the eigenvalues of the matrix G 

Find the response of the G matrix, R. 

( ) ( )GTrGDetR 2κ−=  

Classify the pixel according to response 
result: 

Maintain the pixel 

R>0 and large=> corner 

 

R? 

R<0 => edge 

 
R>0 and small => flat 

 

Discard the pixel 
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 response, R, has a positive and high value. Note that G matrix is obtained using a 

window and the size of the window is critical. If the window is small, variation is 

smaller and sensitive to noise, so less reliable. On the other hand, a large window 

can make it smooth. As in the minimum eigenvalue method 3x3 window is 

preferred in feature selection. 

 

3.1.1.3 SIFT Keypoint Extraction by Difference of Gaussian Method 

 

Keypoint Extraction by Difference of Gaussian in Scale Invariant Feature 

Transform (SIFT) is an algorithm for extraction of distinctive features in an 

image. The power of this algorithm is that the features obtained are fully/partially 

invariant to scale, rotation, viewpoint and illumination changes. The algorithm 

realizes this by transforming the image data into scale-invariant coordinates 

relative to local features. 

 

This algorithm utilizes the Difference of Gaussian kernel for scale invariant 

feature detection. Note, this kernel is invariant to scale and orientation. Then the 

algorithm finds the local maximum of difference of Gaussians in space and scale. 

In this way, the keypoint candidates are detected using a cascade filtering. In the 

first step, the original image is Gaussian blurred progressively with σ ranging 

from 1 to 2 in the way of identifying locations and scales that can be repeatably 

assigned under different views of the same object. The scale space of an image is 

defined as a function, L: 
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( ) ( ) ( )yxIyxGsyxL ,*,,,, σσ =                                    (21) 

where Gs is the Gaussian Function. Then the difference-of-Gaussian function, 

separated by a constant multiple of k, is convolved with the image: 

( ) ( ) ( )( ) ( )yxIyxGskyxGsyxD ,*,,,,,, σσσ −=                      (22) 

 

Then maxima and minima of the difference of Gaussian images are found by 

neighborhood comparison method. Given a pixel (x,y) in an image, D(x,y,σ) is 

compared with its 26 neighbors at the current and adjacent scales. 26 pixels 

correspond to 8 neighbors in the current scale and 9 neighbors each in the two 

adjacent scales obtained by multiplying by different σ values. The point is chosen 

if it is minimum or maximum of the neighbor pixels. 

 

After finding the keypoint candidates, the second step is to perform accurate 

keypoint location. In this step low contrast and poorly localized points are 

eliminated. This is realized by fitting a 3 dimensional quadratic function, Taylor 

expansion up to the quadratic terms of D(x,y,σ), to the local sample points. In this 

way, the interpolated location of the maximum is found in a stable way. The 

function value at the maximum, ( )xD ˆ , is utilized for rejecting unstable extremas 

with low contrast. 

( ) x
x

D
DxD

T

ˆ
2

1
ˆ

∂
∂

+=                                         (23) 

The rejection is performed for the points with a value of |D(x)| less than 0.03. 
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In addition to elimination of low contrast values, the points which are located 

poorly along an edge have to be rejected. This is performed by using of Hessian 

matrix (square matrix of second-order partial derivatives) of D. Utilizing the trace 

and determinant information of the Hessian the elimination is performed. 

 

Then as the third step, orientation assignment is performed for each keypoint. 

Histograms of gradient directions are computed in a 16x16 window using bilinear 

interpolation. In order to assign orientation in a scale invariant manner, the scale 

of the keypoint is used to select the Gaussian smoothed image, L. The gradient 

magnitude, m(x,y) and the orientation θ(x,y) are computed as: 

 

( ) ( ) ( )( ) ( ) ( )( )( )22 1,1,,1,1, −−++−−+= yxLyxLyxLyxLyxm     (24) 

                          ( ) ( ) ( )
( ) ( )
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1,1,
tan, 1θ                    (25) 

 

The orientation histogram is constructed using the gradient orientations of sample 

points within a region around the keypoint. It has 36 bins and covers the 360 

degree range of orientations. Each sample is weighted by its gradient magnitude 

and by a Gaussian-weighted circular window with an σ that is 1.5 times that of 

the scale of the keypoint and added to the histogram [6]. 

 

The forth step is computing local image descriptors which is a representation in-a 

128 dimensional vector. Firstly, the gradient magnitude and orientation at each 

image sample point in a region around the keypoint location is computed. Then a 
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Gaussian window is used to weight these values. These samples are then 

accumulated into orientation histograms summarizing the contents over 4x4 sub 

regions, with the length of each arrow corresponding to the sum of the gradient 

magnitudes near that direction within the region 4x4 descriptors computed from a 

16x16 sample array[6]. Utilizing all these orientation histogram values, descriptor 

is constructed, which is a 128 dimensional feature vector.  Finally, the 

illumination change effect on the descriptor vector is reduced. 

 

The power of the keypoints extracted by SIFT algorithm is that they enable the 

correct match from a large database of keypoints with its property of high 

dimensional vector representing the image gradients within a local region. 

Besides, the keypoints are invariant to rotation and scale and robust to 

illumination change, noise and affine distortion. The matching part of the SIFT 

algorithm is explained in feature matching section, 3.3.4. 
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3.2 Feature Tracking 

 

Feature tracking is one of the most fundamental operations in computer vision. 

Feature tracking methods can be categorized into two: 

 

1. Dense Techniques 

2. Sparse Techniques 

 

Dense techniques extract features from each frame and then attempt to establish 

correspondences between both set of features. This approach requires that the 

same feature is detected reliably and consistently between consecutive frames. 

The disadvantage of this algorithm is that correspondence errors tend to be very 

large. SIFT algorithm which uses DoG (Difference of Gaussians) is an 

application of dense based algorithms. 

 

On the other hand, sparse techniques extract features only from the reference 

frame. The location of the features in subsequent frames is found by performing a 

global search inside a suitable sized window. The point which correlates best 

with the texture around the feature in the reference frame is taken as the 

correspondent. The disadvantage of this technique is that features tend to drift. 

They also do not cope well when the texture in the subsequent frame has been 

rotated, zoomed or skewed with respect to the texture in the first frame. 

Pyramidal KLT algorithm is an application of sparse- algorithms. 
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3.2.1 Pyramidal Iterative Lucas and Kanade 

 

Pyramidal Lucas and Kanade is a motion estimation method in computer vision. 

It is used to find the correspondent feature points in the image pair. Pyramidal 

KLT is based on optical flow concept which assumes the constancy of 

intensity/color between two frames. Considering constant luminance assumption 

in 2D: 

( ) ( )dttdyydxxItyxI +++= ,,,,                                    (26) 

Assuming small δ values, apply Taylor series expansion: 
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Ignoring higher order terms (H.O.T.) and taking derivative with respect to t: 
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where Vx,y indicates the velocity along x,y directions, respectively. Equation (28) 

has two unknowns, and needs another constraint to be solved, known as aperture 

problem. In this point, Lucas and Kanade approach suggests a solution to the 

problem which assumes motion vectors remain unchanged over a particular block 

of pixels of size mxm. Using this information, an over determined system is 

obtained and solved. 
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In pyramidal iterative KLT, the solution is obtained iteratively. In order to find 

the correspondent point in the next window, it is aimed to minimize Equation 

(16) in a robust and accurate manner. For accurate result a pyramidal approach in 

which local sub-pixel accuracy can be attached to tracking and small integration 

window is preferred. This is performed not to smooth out the details. This 

approach becomes especially critical at occluding areas in the images where two 

patches potentially move with very different velocities. On the other hand, in 

order to obtain a robust solution, the result should not be sensitive to noise and 

should be independent of some effects such as light changes, scale of motion etc. 

In addition to these, the integration window size should be large enough for the 

algorithm to handle large motion.  So, in choosing the integration window, there 

is a tradeoff between local accuracy and robustness. Pyramidal KLT approach is 

a solution to this problem. Additionally, iterative implementation of the algorithm 

makes the local accuracy higher. 

The pyramidal representation of the image is: 
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  (29)  

where IL is the Lth level image. The original image I0 has a level of “zero” and a 

size of (nx x ny). The pyramid representation is constructed recursively. From the 
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last step, I0 is computed from I1, I1 from I2 … IL-1 from IL (Equation (29)) and so 

on. Similarly, nx
 and ny

L-1 are the width and height of the image, IL-1. 

 

In pyramidal KLT, the correspondence point of a given feature x1 in the reference 

image is found by finding the optimum displacement vector d in Equation (17). 

For typical image sizes, it makes no sense to go above a level 4. The central 

motivation behind pyramidal representation is to be able to handle large pixel 

motions. Therefore the pyramid height should also be picked appropriately 

according to the maximum expected optical flow in the image. The overall 

pyramidal tracking algorithm proceeds as follows: First, the optical flow is 

computed at the deepest pyramid level ILm. Then, the result of that computation is 

propagated to the upper level ILm-1 in a form of an initial guess for the pixel 

displacement (at level ILm-1). Given that initial guess, the refined optical flow is 

computed at level ILm-1, and the result is propagated to level ILm-2 and so on up to 

the level 0 (the original image). Observe that the window of integration is of 

constant size (2wx + 1) x (2wy + 1) for all level values [10]. 

The pseudo-code of the algorithm is given in the Figure 11.  

In this study, the matching points are found in sub pixel accuracy level. This is 

because both displacement vector and center points are not guaranteed to be 

integers. To calculate the sub pixel intensity values, bilinear interpolation is used. 
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The final part of tracking is the decision section. What is the criterion for 

elimination of a feature? It is obvious that if the feature is outside the boundary, it 

is eliminated.  However if the point is close to boundary so that a portion of the 

integration window falls outside the image, the feature is kept and procedure is 

performed with the window inside the image boundary.  

 

If the patch difference is too much, than the point is assumed not to be tracked 

well and then discarded. Note that, there has to be made a decision of which 

difference correspondence to a large value. This threshold value is very critical in 

especially long sequence of frames. 

For more detailed information of Figure 11 and whole equation, see [10]. 
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Goal: Let x1 be a point on image I(k). Find its corresponding location x2 on 

image I(k+1) 

Build pyramid representations of I(k) and I(k+1) : ( )
mLL

L
kI ,...0}{ = and 

( )
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L
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Initialization of pyramid guess: TT
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for L = Lm down to 0 with step of -1 

 

 Location of point x1 on image IL :  
LT

yx uppu L 2/][ ==

 Derivative of IL with respect to x :  
2

),1(),1(
),(

yxIyxI
yxI LL

x

−−+
=  

 Derivative of IL with respect to y :  
2

)1,()1,(
),(

−−+
=

yxIyxI
yxI LL

y  

Spatial gradient matrix:     

∑∑
+

−=

+

−= 










=

yy

yy

xx

xx

wp

wpy yyx

yxx
wp

wpx yxIyxIyxI

yxIyxIyxI
G

),(),(),(

),(),(),(
2

2

 

 

 Initialization of iterative L-K:  Tx ]00[0
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 for k=1 to K with step of 1 (or until <kη  accuracy threshold) 

 

Image difference: 
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  Optical flow (Lucas-Kanade): k

k bG 1−=η  

  Guess for next iteration: kkk vv η+= −1  

end of for-loop on k 

 

Final optical flow at level L:  
K

xd L 2=  

 Guess for next level L-1 :  )(2][
111

LLT

LyLxL dgggg +==
−−−  

 

end of for-loop on L 

Final optical flow vector:   00 dgd +=  

Location of point on I(k+1):   dxx += 12  

Solution: The corresponding point is at location x2 on image I(k+1) 

 

Figure 11: Pseudo-code of the Pyramidal KLT algorithm 
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3.2.2 SIFT Matching Algorithm 

 

Scale invariant feature matching algorithm [6], is a method for extracting 

distinctive invariant features from images which allows performing reliable 

matching between different views of an object or scene. In section 3.1.1.3, feature 

extraction part of the algorithm is mentioned. The SIFT features are highly 

distinctive that allows a single feature to be correctly match with high probability 

against a large database of features. In this part, this matching approach of the 

SIFT algorithm is exploited.  

 

In general, SIFT algorithm compares the feature with every feature in the new 

image and finds candidate matching features based on Euclidean distance of their 

feature vectors by nearest-neighbor algorithms. However finding the correct 

match with high probability is difficult especially in cluttered images. In order to 

recover the incorrect matches, the correct matches are filtered by identifying 

subsets of keypoints that agree on the object as well as its location, scale and 

orientation in the new image. So, the incorrect match probability is decreased 

since the probability that several features will agree on these parameters by 

chance is much lower than the probability that any individual feature match will 

be in error. The determination of these consistent clusters can be performed 

rapidly by using an efficient hash table implementation of the generalized Hough 

transform. After this filter, a new verification is performed for features that agree 

on an object and its pose. First, a least-squared estimate is made for an affine 

approximation to the object pose. Any other image features consistent with this 
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pose are identified, and outliers are discarded. Finally, a detailed computation is 

made of the probability that a particular set of features indicates the presence of 

an object, given the accuracy of fit and number of probable false matches. Object 

matches that pass all these tests can be identified as correct with high confidence. 

 

3.3 Transformation Matrix and Mosaic Image Construction 

 

Up to this part features in the reference image are extracted and matching points 

in the image pair are found. In this part, a model is fitted to these feature points 

by two different ways:  

 

 1. Affine Transformation 

 2. Homography Transformation 

 

The model selection is very critical since it is applied to the whole image and the 

non-reference image is warped using this transformation model. It is important to 

mention that as the parameter of the model increases the accuracy does not 

increase. This is due to the fact that, solving the equation becomes difficult and as 

the time complexity increase the overall mosaicing performance decreases. On 

the other hand, small number of parameters can not model the motion and 

changes. So, optimum parameter number has to be selected. 
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3.3.1 Transformation Matrix Model 

 

3.3.1.1 Six -6- Parameter Affine Transformation 

 

Affine transformation is a linear transformation. This model contains translation, 

rotation and scale. Physically, affine model preserves collinearity between points, 

i.e. three points which lie on a line continue to be collinear after the 

transformation.  

Affine Transformation:  x’ = Ax + b          (31) 

In the aerial videos, transformation matrix should handle camera pan and tilt. 

However affine transformation can not express this kind of changes. So the world 

cannot be modeled accurately. 

 

As mentioned before, transformation matrix is calculated from feature points in 

the very first and new frame. So, all these features’ movements are represented 

only by 6 parameters for affine transformation. Since the motion of the features in 

the frame is more complicated than linear transformation (rotation, scaling and 

shear) and translation, affine model is inadequate for aerial videos. 
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3.3.1.2 Eight -8- Parameter Homography Transformation 

 

Homography transformation is an 8 parameter matrix transformation. It performs 

transformation to from image coordinates x to reference image coordinates x’.. 

                   [ ] [ ]TT
yxHyx 11'' =                                    (32) 

In Equation (32), H is a 3x3 matrix. Let H matrix be: 
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The last parameter of the H matrix is equated to 1 in order to make the matrix 

normalized. Besides homography matrix accept planar surface assumption. 

Then image coordinates are calculated as:  
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As mentioned, the transformation matrix is calculated using all the feature points 

in both frames. So, the displacement of the whole image should be represented 

using number of transformation matrix parameters and 8-parameter projective 

model gives the enough accuracy to account for all the possible camera motions 

and perspective changes.  

 

So, for the aerial videos, 8-parameter homography matrix is adequate to 

compensate for the camera motions and mosaic image is obtained using 8-

parameter homography matrix. The parameters are calculated with minimizing 

SSD error. 

 

3.3.2 Transformation Matrix calculation Algorithms 

 

3.3.2.1 Least Squares 

 

Least squares algorithm calculates the transformation matrix by solving an over 

determined function using standard least squares method. In this method, the 

coordinates of the feature points in the  image pair is given, and an optimum 

transformation matrix between the coordinates of the features is calculated by 

standard least squares method. 
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3.3.2.2 RANSAC 

 

RANSAC is the algorithm to estimate the mathematical model of a set of 

observed data. Observed data contains both inliers and outliers, where inliers 

correspond to a set of data that can be described by some set of parameters 

whereas outliers can not be described by a model. So, for an accurate model 

fitting, these outliers have to be eliminated.  

 

In general, analysis of interest points have two problems: First problem is to find,  

the best match between the data and one of the available models (the 

classification problem); Second problem is to compute the best values for the free 

parameters of the selected model (the parameter estimation problem). In practice, 

these two problems are dependent and a solution to the parameter estimation 

problem is often required to solve the classification problem. 

 

In the way of fitting a model to a set of parameters, classical methods utilize all 

the parameters. However such methods have no internal mechanism to detect/ 

reject errors. To recover this, several heuristics have been proposed. However, it 

is seen that even a single gross error in the set of good data cause this technique 

to fail. On the other hand, RANSAC is capable of fitting inliers to a model even if 

the data set contains large set of gross errors. 
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The RANSAC paradigm is more formally stated as follows: 

Given a model that requires a minimum of n data points to instantiate its free 

parameters, and a set of data points P such that the number of points in P is 

greater than n. The model is instantiated by randomly selecting a subset SI of n 

data points from P. The instantiated model M1 is used to determine the subset SI* 

of points in P that are within some error tolerance of Ml. The set SI* is called the 

consensus set of S1. If g(SI*) is greater than some threshold t, which is a function 

of the estimate of the number of gross errors in P, use SI* to compute (possibly 

using least squares) a new model MI*. If g(SI*) is less than t, randomly select a 

new subset S2 and repeat the above process. After a predetermined number of 

trials, if no consensus set with t or more members has been found, either solve the 

model with the largest consensus set found, or terminate in failure. 

 

In the RANSAC algorithm, number of iteration, q, is a very critical parameter. 

Let z be the probability of any selected data which is in the error tolerance and 

b=zn. Then, E(q) can be written: 
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i       (35) 

 
. Using the geometric series properties: 
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In order to stay in the safe side, generally it is preferred to exceed E(k) trials by 

one or two standard deviations which is defined as: 
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( ) ( ) ( )[ ] ( )[ ] ( )nzzqEqEqSD n /1*1
2/12/122 −=−=                       (37) 

On the other hand, if a predetermined probability, c, is wanted to be ensured, k is 

chosen as: 

 
( )[ ] ( )[ ]bck −−= 1log/1log                                       (38) 

 
In RANSAC, the decision of terminating the program is given if number of 

inliers is above a predetermined threshold, t. This threshold must be chosen large 

enough to satisfy two purposes:  

1. The correct model has been found for the data set,  

2. Sufficient number of mutually consistent points has been found to satisfy 

the needs of the final smoothing procedure (which computes improved estimates 

for the model parameters) [7]. 

 

The flowchart of the implemented RANSAC algorithm is given  

Figure 25. 

 

3.3.2.3 LMedS 

 

Least Median of Squares Method [5] is another technique to estimate a model to a 

set of observed data. In general, data derived from images is non-homogenous, so 

can not be described by a unique parametric model. The observed data in an 

image usually contains small scale noise as well as occasional large-scale 

measurement errors. LMedS is an approach to estimate an accurate and robust 
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model which can handle up to 50% of outliers i.e. breakpoint of the algorithm is 

0.5. Actually, there are several measures of robustness. One of the most common 

one is the breakdown points which is described as the minimum fraction of 

outlying data that can cause an estimate to diverge arbitrarily far from the true 

estimate. 

 

The idea behind LMedS is that median of data is less sensitive to outliers 

compared to the algorithms which use mean-like values. LMedS method utilizes 

the median of the error function for calculations: 
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                               (39) 

 
where ê  is the error estimation of SSD function. 

 

In the algorithm, a model is obtained using minimum necessary number of data 

points. Then the model is applied to every pixel to estimate the parameter and an 

error function is obtained: 

 

                                     ( )2,
2 x̂xr ai −=                                              (40) 

 
In the implemented LMedS algorithm, the feature points are bucketized and a 

model is fitted to those randomly selected points. Then for every pixel, the SSD is 

calculated for every pixel in the image. The median of these values are taken and 

compared to a threshold found experimentally. After classifying the data, the 

model is tested according to the number of inliers and desired probability, Pg: 
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( )Sk

g pP −−= 11                                             (41) 

where S is the number of subsets which is critical and has to be large enough to 

have high probability of including at least one subset containing all “good” data 

points is the minimum fraction of good points, p is the minimum fraction of all 

good points, k is the minimum number of points required to fit the model.  

 

The iteration goes on until the desired probability and corresponding S value is 

obtained. 

.
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CHAPTER 4 

 

 

4 RESULTS AND COMPARISON OF MOSAICING 

ALGORITHMS 

 

 

 

In previous chapters, the steps of mosaic image construction algorithms are 

explained. In this chapter, the performance and comparison of the implemented 

algorithms are given.  

 

In this study, three different feature extractor methods are implemented and two 

of them are used in the implemented algorithms. The first feature extractor 

method is “Harris Corner Detector” and the second one is SIFT Keypoint 

Detector which uses Difference of Gaussian method. In this study, “Minimum 

Eigenvalue Method” is implemented as the third method. However since the 

performance of this method is lower than Harris Corner Detector, only Harris 

features are examined. Besides, affine transformation model is found insufficient 

for aerial videos in which perspective changes occur. So, in the resultant 
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algorithms only the homography model which handles perspective changes is 

used. 

 

In this study, 4 algorithms are implemented as given in Table 3 and each 

algorithm is tested for 4 different videos. The first two are real videos, zeppelin 

and uav, and mosaic results for these videos are presented. The other two videos 

are synthetically generated and more detailed performance analysis is done for 

these “wall” and “amasra” videos. The original full frame images are also given 

in Figure 12 for the synthetically generated videos which allow pixel wise 

differencing of real image and mosaic results. Besides SNR values for the last 

two videos are calculated which gives an idea about visual performance of the 

algorithms. Time complexity of each algorithm is also given. 

 

Table 3: Steps of Implemented Algorithms 

 

  Algorithms 

  MA1 MA2 MA3 MA4 

Feature Extraction Harris 
Corner 
Detector 

Harris 
Corner 
Detector 

Harris 
Corner 
Detector 

Difference of 
Gaussian(DoG) 

Feature 
Tracking/Matching 

Pyramidal 
KLT 
Tracker 

Pyramidal 
KLT 
Tracker 

Pyramidal 
KLT 
Tracker 

SIFT matching 

A
lg

or
it

hm
 S

te
ps

 

Homography 
Calculation 

Least 
Squares 

RANSAC LMedS Least Squares 
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Figure 12: Original full frame images of (a)”wall” (c) “amasra” videos. 

Transformed Original Images with respect to first frames of (b)”wall” 

(d)”amasra” videos. Pixel intensity differences are calculated from (b) and 

(d) images. 

 

 

   

(a) (b) 

 

   

  (c)      (d) 
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The tracking and homography matrix accuracies are measured by synthetically 

generated images. For this analysis, a frame of “zeppelin” video is captured in 

Figure 13 and it is warped according to a known homography matrix. Then the 

frame is warped with respect to the known homography matrix. Then features of 

the original frame are extracted and tracked. In order to obtained the tracking 

error, the feature points are transformed with the known homography matrix and 

difference between the tracking coordinates are calculated as error. The 

homography matrix accuracy performance is determined by calculating the 

homography between the tracked and original frames. The results of these 

procedures are given in related algorithm section below. 

 

In this study, there are 4 algorithms implemented and two performance criteria 

for the algorithms are used: 

1. SNR values 

2. Time complexity 

Additionally, the parameters which affect the performance of each algorithm are 

analyzed and algorithms are compared.  
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Figure 13: Original Image 

 

 

 

4.1 Mosaicing Algorithm 1 

 

Mosaicing algorithm 1 (MA1) includes the following step in mosaic construction: 

1. Feature extraction is performed using Minimum Harris 

2. Feature tracking is done with Pyramidal KLT Method 

3. Homography Transformation Matrix with LS is used 

The flowchart of MA1 algorithm is given in 

Figure 14. In the algorithm, the very first frame in the video is selected as the 

reference frame. Then feature properties and mosaic image is initialized in the 
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“Make initialization” part. The reference image is placed in the middle of the 

mosaic image which is 3 times larger than the reference frame for showing new 

frames symmetrically. Features are extracted utilizing “Harris Corner Detector 

Method”. In this study, features extracted with Minimum Eigenvalue Method are 

analyzed and the results of the Harris is found more stable and tests show that 

Harris features give more accurate tracking results. For this reason Harris 

Detector is selected as feature extractor. 

 

In Harris feature extraction process,  2x2 gradient covariance matrix G in 

Equation.(14), over 3×3 neighborhood is calculated for each pixel,. Then, as 

mentioned in 3.1.1.2, [det(G) - κ*trace(G)2] is calculated for each pixel. As a 

result of this operation, candidate corners in the image are selected from the 

points which have local maxima of these difference values. Here, κ is parameter 

which has a range of (0.04-0.15).  And the studies show that, lower the 

parameter, better the results. So, all the results utilizing Harris Corner Detector 

are obtained with the κ value of 0.04. 
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Figure 14: Flowchart of Mosaic Algorithm 1 
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The next step is rejecting the corners with respect to their properties. In feature 

elimination from candidate features process, there are two parameters which have 

to be optimized with respect to the video characteristics. These are: 

1. Multiplier factor of maximum eigenvalue: min-eig 

2. Maximum distance between two features: min-dist 

In rejection candidate features, the feature that has the max eigenvalue is 

determined and the points having the eigenvalues less than [min-eig 

•max(eig_image(x,y))] are eliminated.  The second criterion is the pixel wise 

distance between the features coordinates. The points are eliminated in such a 

way that the Euclidean distance between the features coordinates are larger than 

min-dist.. So, less strong features around the strongest features are removed. 

Figure 16 shows the extracted features in reference frames of all 4 videos utilized 

in this study. The parameters of this step are very critical in mosaicing 

performance. In order to obtain accurate mosaic image, the features extracted 

have to be robust and instable points have to be eliminated as much as possible. 

On the other hand, features have to be distributed uniformly in order to give the 

perspective to the mosaic correctly. The parameters used are given in Table4. 
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Table 4: Minimum distance and eigenvalue parameters for the videos 

 

  VIDEO 

  Zeppelin Uav Wall Amasra 

Min-dist 10 10 10 10 

P
ar

am
et

er
 

Min-eig 0.1 0.01 0.1 0.1 

 

Tests show that, if the corner-like features present in the frames of video, min-

dist :10 - min-eig: 0.1 gives enough number of features. On the other hand, if the 

corner-like features are not distributed uniformly in the image, these values have 

to be decreased in a suitable manner. As an example, in the uav video, the objects 

in the image are mostly located in the center portion of the frame. So, in order to 

get correct perspective, more points have to be selected which are uniformly 

distributed over the image. So the min-eig value is decreased to tenth of the 

selected number. Besides, the size of the image has to be considered in especially 

selection of the min-dist parameter. The number of features extracted in the 

reference frames of each video is given in Figure 16. 
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(a)  

 

(b) 

Figure 15: Features of Harris Method in real videos (a) zeppelin (b) uav 
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(
(a)

(b) 

Figure 16: Features of Harris Method in synthetic videos (a) wall (b) amasra 
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After features are extracted in the reference frame, the matching points of these 

features are found in the next frame by iterative version of Lucas-Kanade optical 

flow in pyramids. The coordinates of the feature points on the current video 

frame given their coordinates on the previous frame are calculated with sub-pixel 

accuracy. The parameters in the tracking algorithm are:  

1. The tracking window size: win-size 

2. Pyramid level  

3. Iteration Number and pixel difference Size of the search window of 

each pyramid level 

Win-size determines the size of the search window of each pyramidal level in the 

way of finding the corresponding point in the next image. So if the frame 

difference between the consecutive video frames is large, the size has been 

selected larger. For the pyramidal level 3 levels is enough for lower resolution 

video such as aerial videos, Third parameter determines the stopping criterion of 

the iteration. The KLT is stopped if (number of iterations) > 20 or (pixel 

difference) < 0.03. The tracking parameters used in the mosaic construction is 

given in Table 5. 
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Table 5: Parameters of KLT of the videos 

 

  VIDEO 

  Zeppelin Uav Wall Amasra 

Win-size 3 15 5 3 

Pyr-level 3 3 3 3 

P
ar

am
et

er
 

ItNum- dif 20 - 3 20 - 3 20 - 3 20 - 3 

 

The tracking window size of the videos is different. This is because, the videos 

have different characteristics. Zeppelin video has small displacement between the 

consecutive frames whereas uav has larger displacement. In order to find the 

corresponding feature in the following frame for video1, small window size has 

to be chosen. On the other hand, if video has larger displacement, a larger 

window size should be chosen in order to track features in the video sequence. 

The KLT tracker’s performance decreases significantly as the displacement 

increases between the image pairs. In order to measure the tracking performance 

of KLT, a synthetic image pair is generated as mentioned before. The first frame 

in Figure 13 is filtered with the given homography matrix and the second image 

in Figure 17 is generated. The features of the images are extracted with Harris 

Detector and difference between the feature coordinates is calculated. Figure 18 

shows the tracking error differences along-x and along-y directions. As seen from 

the Figure 18, tracking error is on the order of 0.5 pixels which is a well result. 
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Note that the tracking error is the same for first three algorithms since all utilize 

KLT tracker 

 

 

Figure 17: Cropped Image of Figure 13 
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Figure 18: Track error of KLT in x and y directions 
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After extracting the feature by Harris Corner Detector and finding the 

corresponding features in the next frame by KLT tracker, the transformation 

between the feature points of the reference frame and next frame are calculated. 

In this study, perspective distortion is assumed between frames so homography 

matrix calculation is performed by means of least squares method following an 

SSD minimization. 

 

As new frames come, the difference between the reference frame and the new 

captured frame increases which means overlapping area between the frames 

decreases. So, in tracking operation, number of matching features decreases due 

to the movement of the camera. On the other hand, in order to calculate the 

correct perspective between the frames, features have to be made distributed all 

over the image. So, in order to provide uniform distribution of the features, the 

reference frame is updated. The update process is performed if the number of  

features is below a threshold. This is a very critical parameter in the mosaic 

construction process. The threshold value (feature threshold) selected for each 

video is given in Table 6. As seen from Table 6, the threshold number is very 

close to the number of features in the reference frame as it should be in order to 

calculate the correct perspective.. This means that reference frame update is 

performed even small number of features are not tracked in the new frame. 

Frequent reference frame update process prevents to localization the features in 

an image.  
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Table 6: Number of features and thresholds 

 

  VIDEO 

  Zeppelin Uav Wall Amasra 

Feature Number 97 105 170 175 

Feature Threshold 93 95 160 170 

 

Reference frame is updated to previous frame and new features of it are extracted. 

In this point a second control mechanism works. If the number of extracted 

features in the new reference frame is below feature threshold, perspective can be 

lost in the next frames.  So, feature extraction process in the new reference frame 

is repeated until number of features reaches to an above level. The number of 

features is increased by decreasing min-eig and min-dist values, respectively. 

When the number of tracked points in the new frame is above threshold, the same 

procedure is applied and homograph matrix is calculated utilizing all these 

feature point pairs by least squares. There can be incorrect feature pairs in the 

images. However in this algorithm, this issue is not considered. The homography 

matrix accuracy of Least Squares Method is given in Figure 19. 
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Figure 19: Homography Parameter Error of Least Squares 

  

The error is obtained from synthetic image pairs. After calculating the features in 

the original and cropped images, the homography matrix parameters are 

calculated. Figure 19 shows the difference of each 9 parameters of homography 

matrix.  

After homography matrix is calculated between the reference and new frame, the 

last step is to transform the new coming image with respect to the reference frame 

and adding to the mosaic image. The mosaic results for real and synthetic videos 

are given in Figure 20 and Figure 21 respectively. 

The mosaic images in Figure 21 are constructed by just adding of only the new 

parts to the previous mosaic. This is for providing a better visualization and 

recognizing the performance of the mosaicing process easily.  
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The SNR performance of MA1 for the synthetically generated videos is given in 

Table 7. 

 

Table 7: SNR for the synthetic videos 

 

 Video 

 Amasra Wall 

SNR value 27.5606 41.42 

 

 

The SNR calculation is performed with respect to Equation (42). 

 

   
SSD

SNR
255

log20=                                              (42) 

 
The Sum of Squared Difference (SSD) value is calculated as Equation (43): 

 

( ) ( )( )2
,

,,∑
∀

−=
yx

mosaicref yxIyxISSD                                     (43) 

 
 



77 

 

(a) 

 

(b) 

Figure 20: Mosaic Results of Mosaicing Algorithm 1 for real videos             

(a) zeppelin (b) uav 
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(a) 

 

 

(b) 

Figure 21: Mosaic Results of Mosaicing Algorithm 1 for synthetic videos     

(a) wall (b) amasra 
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The pixel-wise difference of the mosaic images in Figure 21 and actual images in 

Figure 12 for the synthetically generated videos are given in Figure 22. In this 

figure, the intensity difference is calculated for every pixel in the image (if there 

is a correspondence in actual image) and the difference values are plotted for 

every pixel. Using the information of SNR and results in Figure 22, it is 

recognized that the wall mosaic has a worst result. This is because of the video 

characteristic. In “wall” video, the features are not distributed uniformly. Most of 

the features in the wall image are concentrated on the painting on the right and 

increasing the number of features does not handle the problem since it increases 

the number of features in this painting. Besides, there is much more motion 

difference in “wall” video than “amasra” video. This means that the difference 

between the consecutive frames is large which decreases the tracking 

performance and cause misalignments. In addition to these factors, empty areas in 

the wall image results to lose the perspective. 

 

Considering the SNR values, wall mosaic has higher value which generally 

results better visual performance. However, from pixel differences, it is seen that 

wall mosaic has worse results. This is because of the existence of the constant 

intensity wall background in the image. In this video, most of the errors 

mosaicing are not taken into account since wall has almost the same intensity 

which results a higher SNR rate. 
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(a) 

 

(b) 

Figure 22: Pixel difference of mosaic image and original image in (a)wall 

(b)amasra videos 
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4.2 Mosaicing Algorithm 2 

 

The Mosaicing Algorithm 2 (MA2) is composed of the following steps: 

 

1. Feature extraction via Harris Corner Detector 

2. Feature tracking with Pyramidal KLT Method 

3. Homography Transformation Matrix by RANSAC 

 

MA2 algorithm is very similar to MA1 except for the third step in which 

transformation matrix calculation is performed. The flowchart of MA2 is given in 

Figure 24. The feature extraction and feature tracking steps are carried out as the 

same as of MA1, so the extracted features points are the same as Figure 16. 

Besides, the parameters for the first two steps are the same for all 4 videos as 

MA1. The difference between the first two algorithms appears in the calculation 

of Homography transformation between the feature points of the images. In 

MA2, it is assumed that some of the feature pairs are incorrect, and these 

incorrect feature pairs are eliminated by Random Sample Consensus (RANSAC) 

algorithm. 

 

Implementation of RANSAC is given in  

Figure 25 . There are 5 parameters in RANSAC algorithm: 

 
1. Bucket size: n 

2. Euclidean difference(distance) threshold: euc-th 
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3. Inlier threshold 

4. Assurance 

5. Iteration Number 

 

RANSAC requires the same number of measurements as the number of unknown 

parameter of the equation. In this situation, there are 8 unknown parameters in 

homography matrix which means that 4 feature points are enough for RANSAC. 

The critical point here is the selection of these 4 feature pairs. These pairs have to 

be selected randomly and they have to be uniformly distributed. For this reason, 

the image is divided into nxn pairs. In this study, n is selected as 4 since 4 pairs 

are needed for RANSAC operation. Some tests are performed with more than 4x4 

buckets and no improvements are recorded.  

 

After dividing the image, 4 points are selected randomly from different buckets 

and homography matrix is calculated from these 4 feature-pairs.  Then, this 

homography matrix is applied to other feature points, and corresponding feature 

location is found in the next frame, Than the Euclidean difference between the 

actual tracked pair coordinate and homography result is calculated Using this 

difference, inlier/outlier determination is performed. If the Euclidean difference is 

below the Euclidean difference threshold, the point is taken as inlier, otherwise 

considered as outlier. The Euclidean difference threshold parameter is determined 

by examining the feature characteristics of the video . In determination of this 

threshold, the Euclidean differences between the feature points  are plotted and it 

is observed that the difference is about 0.7 and more differences might cause 
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incorrect result so it is selected as 0.7. Then the homography matrix obtained 

from the first 4 feature pairs is applied to all of the feature points. As a result all 

features are grouped either as inlier or outlier. Then, utilizing the number of 

inliers, inlier probability is calculated. This probability value has to be 

determined by considering the characteristics of the features. According to 

tracking performance of the points, a rough threshold is determined. The inlier 

probability of 0.8 is used for all the videos.. After determination of inlier 

probability, the Iteration Number update is performed utilizing this probability. In 

this point, the desired assurance of the result is taken into account. As the 

assurance increases, the iteration number increases which raise the time spent. 

The assurance is selected as 0.9 and maximum Iteration number is selected as 

10000. It is observed that, maximum iteration number increases the mosaic image 

quality. After updating the Iteration number, another random 4pairs are selected 

and iteration end until iteration number decreases to 1. After this point, resultant 

homography matrix is calculated from best feature pairs which give the 

maximum inlier probability. This method eliminates outliers and calculates 

homography matrix from the inlier points by least squares which gives a more 

accurate homography result. The error of homography matrix obtained from 

synthetically generated images is given in Figure 23. 

 

 



84 

Homography Error_Ransac

-0.15

-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10

Parameters

E
rr
o
r

Homography Error

 

Figure 23: Homography Error for RANSAC 

 

 

After finding the homography matrix parameters, new frame is warp with respect 

to this matrix and added to the mosaic image. The mosaic results of Mosaicing 

Algorithm 2 for real and synthetically generated videos are given in Figure 26 

and Figure 27., respectively. 
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Figure 24: Flowchart of Mosaic Algorithm 2 
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Figure 25: RANSAC Implementation 
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(a) 

 

(b) 

Figure 26: Mosaic Results of Mosaic Algorithm 2 for synthetic videos         

(a) zeppelin (b) uav 
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(a) 

 

(b) 

 

 Figure 27: Mosaic Results of Mosaic Algorithm 2 for synthetic videos        

(a) wall (b) amasra videos 
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The SNR results of MA2 for the synthetically generated videos are given in Table 

8. 

 

Table 8: SNR values for MA3 

 

 Video 

   Amasra Wall 

SNR value  29.52 41.69 

 

 

 

The pixel-wise intensity difference between the actual images in Figure 12 and 

mosaic images in Figure 27 is given in Figure 28.  



90 

  

(a) 

 

(b) 

Figure 28: Pixel-wise frame difference for (a) wall (b) amasra mosaic 
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4.3 Mosaicing Algorithm 3 

 

The Mosaicing Algorithm 3 (MA3) is composed of the following steps: 

1. Feature extraction Harris Corner Detector 

2. Feature tracking with Pyramidal KLT Method 

3. Homography Transformation Matrix with LMedS 

 

The flowchart of MA3 algorithm is given in Figure 30. In MA3, the features are 

extracted by Harris Corner Detector and the corresponding points in the new 

frame are found by tracking these features in the next frame by KLT tracker 

method. These steps are the same as MA1 and MA2 and the parameters used for 

these two steps are the same for MA3.  

After features are extracted for the image pairs, transformation matrix is 

calculated with Least Median of Squares Method (LMedS). The algorithm is very 

similar to RANSAC except for best feature pair decision process. Flowchart of 

the LMedS algorithm is given in Figure 31. There are two parameters of the 

LMedS algorithm: 

 
1. Bucket size: nxn 

2. Iteration Number 

 
 In LMedS method, image is divided into nxn regions. N is selected as 4 as in 

RANSAC. So the image is divided into 16 regions and all features belonging to 

these portions are assigned to each bucket. Then 4 feature pairs are randomly 

selected from different buckets and homography matrix is calculated from these 
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pairs. In order to determine the quality of the selected features, this matrix is 

applied to every feature in the image and Euclidean differences between the 

actual tracked points and homography result are stored. After this point, the 

median of the Euclidean differences is extracted and stored. This procedure is 

repeated for Iteration times and the feature pairs which gives the smallest median 

is taken as the reference feature points. Here the Iteration number is critical since 

it determines the quality of the mosaic result. The Iteration number is selected 

from the total number of feature point information. Actually iteration number 

determines the number of 4pairs selected process before decision of best pair. Of 

course, the best result is obtained if all 4 features pairs are tried. However this 

increases the time taken for each new frame and slows down the algorithms. Here 

Iteration number is selected as 2000 which is proper for the feature number if it is 

around 100. 

 

Then homography matrix is calculated from determined reference feature pairs. 

So, here the homography matrix is calculated from 4 feature pairs. The critical 

point of LMedS is, it can reject if number of outliers are less than 50% of the 

feature points. So examining of tracing performances of the features have to be 

observed first and this algorithm should be considered if more than 50% of the 

feature points stay stable. The accuracy of homography matrix obtained from 

synthetically generated images is given in Figure 29. 
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Figure 29: Homography Error for LMedS Algorithm 

 

The next step is image transformation. It is performed using the homography 

information and transformed image is added to the mosaic. The mosaic results for 

MA3 for real and synthetic videos are given in Figure 32 and Figure 33, 

respectively. 
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Figure 30: Flowchart of Mosaicing algorithm 3 
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Figure 31: LMedS Implementation 
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(a) 

(b) 

Figure 32: Mosaic Results of Mosaic Algorithm 3 for real videos (a) zeppelin 

(b) uav videos 
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(a) 

 

(b) 

Figure 33: Mosaic Results of Mosaic Algorithm 3 for synthetic videos         

(a) wall (b) amasra videos 
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The SNR results which are obtained by Equation (42) and Equation (43) of MA2 

for the synthetically generated videos are given in Table 9. 

 

Table 9: SNR values of synthetically generated videos for MA3  

 

 Video 

  Amasra Wall 

SNR value 29.0224 41.39 

 

 

The pixel-wise intensity difference between the actual images in Figure 12 and 

mosaic images in Figure 33 is given in Figure 34. 
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(a) 

 
(b) 

 
Figure 34: Pixel-wise frame difference of MA3 for (a) wall (b) amasra 

mosaics 
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4.4 Mosaicing Algorithm 4 

 

The Mosaicing Algorithm 4 (MA4) is composed of the following steps: 

1. Feature extraction via SIFT key point extractor 

2. Feature matching with SIFT matching 

3. Homography Transformation Matrix with Least Squares 

 

In the first three algorithms, corner like features are extracted via Harris Corner 

Detector and the corresponding features in the image pair are determined by KLT 

tracker. MA4 differs from the first three algorithms in this manner and the first 

two steps are implemented in a completely different way. The flowchart of the 

MA4 algorithm is given in Figure 35. In MA4 features are extracted by Scale 

Invariant Feature Transform (SIFT) algorithm. In SIFT algorithm, the points 

selected as keypoint have different characteristics than features of Harris Corner 

Detector. The feature points extracted from the reference frames of the videos are 

given in Figure 37.  There are 4 critical parameters in SIFT feature extraction 

process that effects the number of features.  

 

1. Number of sampled intervals per octave : SIFT_INTVLS 

2. Image size before pyramid construction: SIFT_IMG_DBL 

Increase number of stable points by a factor of 4  

3. Width of descriptor histogram array SIFT_DESCR_WIDTH 4 

4. Number of bins per histogram in descriptor array 

SIFT_DESCR_HIST_BINS 8 
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In [6], detail analysis of the parameters of SIFT algorithm is performed and the 

parameters are selected accordingly. In SIFT, the image, in which the keypoints 

are extracted, is Gaussian blurred with a variable variance between 0 and 1. 

Number of the blurred images is SIFT_INTVLS and it is selected as 3. In [6], 

some tests are performed and it is observed that increasing the number of 

intervals do not increase the repeatability of the keypoints. In this application, the 

keypoints are found for the same size of images. So, selecting this parameter 

smaller increases the repeatability of the keypoints. The second critical 

parameter, the image size before pyramid construction, makes the initial image 

size double and increases the number of stable keypoints by a factor of 4. 

However if the counter like parts in the image is widely spread over the image, 

this option might be eliminated in order to increase the repeatability factor. Other 

two parameters in descriptor vector construction are, the gradient histogram of 

the selected point which is calculated around a SIFT_DESCR_WIDTH pixel and 

gradient vectors that are stored SIFT_DESCR_HIST_BINS directions. Using 

these parameters 128 dimension descriptor vector is obtained as proposed in [6]. 

The parameters for different videos are given in Table 10: 
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Figure 35: Flowchart of Mosaicing Algorithm 4 
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Table 10: SIFT Keypoint Determination Parameters (by DoG) 

 

  VIDEO 

  Zeppelin Uav Wall Amasra 

SIFT_INTVLS 3 3 3 3 

SIFT_IMG_DBL 1 1 1 0 

DESCR_WIDTH 4 4 4 4 

PARAMETER 

SIFT_DESCR_HIST_BINS 8 8 8 8 
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(a) 

 

(b) 

Figure 36: Keypoints extracted by SIFT algorithm (DoG) for real videos     

(a) zeppelin (b) uav  
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(a) 

 

(b) 

Figure 37: Keypoints extracted by SIFT algorithm (DoG) for synthetic 

videos (a) wall (b) amasra 
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After the keypoints are selected according to criteria above and a descriptor 

vector is constructed for each keypoint for the given image pairs, the matching 

keypoints are found. Since the image pairs have some non-overlapped areas, 

different keypoints are extracted for each image and a matching operation is 

needed in order to find the correspondent keypoints. There are two critical 

parameters for matching operation: 

 
1. Division threshold 

2. Euclidean difference threshold 

 
The matching operation in SIFT is performed by means of the information in 

keypoint descriptor vectors. One keypoint is selected in the first image and vector 

differences between all the 128 dimensional keypoint descriptor in the next image 

are calculated. During this operation the minimum and the second minimum 

differences are stored. Then, the keypoint that gives the minimum vector 

difference is chosen as the candidate pair. Then another control is performed 

using the division threshold. The minimum and second minimum vector 

differences are divided into each other. The keypoint pair is accepted if the 

division result is below the division threshold. This factor guarantees to discard 

the keypoint which have closer characteristics. In determination of this threshold, 

the division result and the distance for the pair are plotted and the division 

threshold is chosen such that the pairs that have larger distance are rejected. 

Figure 38 shows the relation between this division and Euclidean difference.  The 

matching operation is very critical in SIFT application since incorrect matches 

are obtained from SIFT. Figure 38 shows the Euclidean difference between the 
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matching pairs for “zeppelin” video. This video has small displacement between 

the frames and there is no moving foreground in the video so, small distance is 

expected. However, Figure 38 shows that there are a lot of keypoints which have 

significant displacement between the frames. In order to reject these candidate 

keypoints, a line is fitted to the Euclidean difference and match points which have 

Euclidean difference above this line is ignored. This line differs according to the 

video characteristics. If the frame difference between the consecutive frames is 

large, this line should be shifted above which allows more displacement between 

the matching pairs. This elimination affected the visual performance very 

significantly. The parameter values used in implementations are given in Table 

11. Different thresholds are used for different videos. The reason of this 

difference is the displacement between the frames in the video. If the 

displacement is large, this factor has to be selected larger. In practice, the best 

way of selecting the threshold is to examine the characteristics as in Figure 38 

and Figure 39. 

Table 11: Parameters of SIFT matching 

 

  VIDEO 

  Zeppelin Uav Wall Amasra 

Division Threshold 0.3 0.3 0.3 0.3 

Euclidean Difference Threshold 4/3 5 2 4/3 

Parameter 

Keypoint Match Threshold 150 45 450 400 
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Figure 38: Distance between the matched points 
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Figure 39: Detailed first portion of Figure 38 

 

In SIFT algorithm matching operation is improved by Hough Transformation in 

which the keypoints are fitted to a suitable model. Then the keypoints which do 

not fit the model are rejected. In this study Hough Transform is not utilized since 

it takes very long time compared to SIFT feature Extractor and matching 

algorithms. 

 

After keypoints are extracted and the correspondences are found, another control 

is performed. If the number of matches found is below the Keypoint match 

threshold, then the reference frame is updated to previous frame. Then keypoints 

of the previous and current frames are extracted and matches are found. If the 
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reference frame is updated, number of matches is not controlled in the second 

time and the match keypoints are stored. 

 

After matching keypoints are determined, the homography matrix is calculated 

with these keypoint pairs. Then, the second image is warped according to the 

reference frame using the homography matrix information. When the warped 

image is obtained, mosaic image is updated by just adding the new pixels. The 

mosaic results of Mosaicing Algorithm 4 for the real and synthetically generated 

videos are given in Figure 40 and Figure 41, respectively. 

 

The SNR results of the SIFT algorithm for synthetically generated “wall” and 

“amasra” videos are given in Table 12: 

 

Table 12: SNR values for SIFT algorithm 

 

 Video 

 Amasra Wall 

SNR value 28.8987 40.73 

 

 

The pixel-wise differences between the actual “wall” and “amasra” frames in 

Figure 12 and the mosaic result of the SIFT algorithm in Figure 41 is given in 

Figure 42.  
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(a) 

 

(b) 

Figure 40: Mosaic Results of Mosaic Algorithm 4 for real videos (a) zeppelin 

(b) uav videos 
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  (a) 

 

(b) 

Figure 41: Mosaic Results of Mosaic Algorithm 4 for real videos      (a) 

zeppelin (b) uav videos 
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(a) 

 

 (b) 

Figure 42: Pixel-wise frame difference for (a) amasra (b) wall videos 
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The failure of the SIFT algorithm near Atatürk’s picture is because of the low 

matching performance of the implemented algorithm. Since the video is not 

captured from high altitude, small displacements of the camera results large 

perspective difference, the relation between the Euclidean Differences between 

the keypoints’ coordinates can not be fitted to a line. So rejection of the incorrect 

keypoints can not be performed efficiently. Besides, due to the fast perspective 

changes, update of the reference frame has to be performed frequently. Because 

of these reasons the perspective is distorted resulting bad visual performance 

especially for the new edge points. 

 

The reason of the low SNR value of the wall image is the existence of an empty 

wall in the background. Since the intensity of the wall is almost constant, SNR 

value is not affected from incorrect warping. If the edges of the pictures are paid 

attention, it can easily be recognized that SIFT gives worse results for “wall” 

video which are compatible with the above paragraph. 

 

4.5 Comparison of the Algorithms 

 

In this section, performances of the algorithms with respect to SNR and time 

complexity are compared. 

 

Considering the SNR values in Table 13 and pixel wise intensity differences of 

the “amasra” and “wall” mosaics, it is observed that MA2 gives the best result. 
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The visual performance of MA2 algorithm is better than other first two 

algorithms which differ only in Homography matrix calculation process. 

Compared to MA1 this result is expected since outlier elimination is performed in 

MA2 than Least Squares. Outlier rejection is performed in also MA3. The results 

reveal that outlier elimination for MA2 is better than MA3 method. Actually this 

result is expected since MA3 considers only median of the differences although 

MA2 deals with all feature coordinate differences. This result also derived from 

the homography parameter errors given in Figure 19 for Least Squares, Figure 23 

for MA2 and Figure 29 for MA3 methods. The SNR value of the MA4 method is 

about the same for the other three for “amasra” and it is lower for wall video. The 

reason of this low value is that the keypoints of the MA4 are located in the right 

painting which causes nonuniform distribution of the features. So perspective can 

not be obtained accurate enough resulting a lower SNR value and distortion in the 

image as seen in Atatürk’s painting. 

 

Table 13: SNR Values of the algorithms 

 

  Video 

  Amasra Wall 

MA1 27.5606 41.42 

MA2 29.52 41.69 

MA3 29.0224 41.39 S
N

R
 

MA4 28.8987 40.73 
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The time complexities and consumed times of the algorithms are given in Table 

14 and  

 

Table 15, respectively. The complexity calculation is performed for the major 

steps in the Table 14. In feature extraction step, MA4 is the most time consuming 

since it utilizes DoG Method in SIFT. On the other hand, MA3 has the highest 

complexity in homography matrix calculation. For these reasons, these 

algorithms are not suitable for real time applications. On the other hand, MA1 

and MA2 methods seem comparable when the spent times are taken into account. 

However it can easily be recognized from Table 14 that the time spent by MA2 

increases rapidly as the image size and feature number increase.  

 

In MA2, the iteration number in homography matrix calculation (RANSAC) step 

is updated in each step. The closeness of MA1 and MA2 values indicate that 

iteration number is updated very rapidly which only occur if the number of 

outliers is very limited. So for video in which the outliers are significant, MA2 

consumes much more time and is not again suitable for real time purposes.  
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Table 14: Time complexity of the algorithms  

 

  Algorithms 
  MA1 MA2 MA3 MA4 

Feature Extractor 
n 2 n 2 n 2 n 4 

Feature 
Tracking/Matching 

n  n  n  n 2 

Homography Matrix 
Calculation 

n  n 3 + log(n) 
(max) 

n 5 n  

C
om

pl
ex

it
y 

of
 A

lg
or

it
hm

 
S

te
ps

 

Warping n 2 n 2 n 2 n 2 

Complexity of the Algorithms 
O(n) 

n 2 n 3 n 5 n 4 

 

 

Table 15: Spent time for algorithms for two different frames 

 

  Algorithms 

  MA1 MA2 MA3 MA4 

Frame1 1.03 1.04 14.06 5.11 
Time 

Frame50 1.05 1.12 14.01 5.18 

 

 



118 

 

Table 16: Spent time for algorithms for two different frames_ Consecutive 

Homography 

 

  Algorithms 

  MA1 MA2 MA3 

Frame1 0.39 0.4 6.03 Time 

(sec) Frame50 0.4 0.41 6.21 

 

 

In the point of view of SNR value, MA2 gives the best result whereas the MA1 

algorithm is the best for time complexity. Besides, if accurate results are needed 

with no time restriction, full SIFT algorithm should be tried. 

In situations where both accurate and fast mosaic construction is required more 

information is needed which can be supplied either by some pre-processing or as 

input. This result can be achieved by implementing MA1 with providing extra 

information. 
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CHAPTER 5 

 

 

5  SUMMARY AND CONCLUSIONS 

 

 

 

In this study, the problem of mosaic image construction is addressed and different 

algorithms in the literature are implemented and compared. The comparison 

criteria of these algorithms are visual performance (SNR), computational load 

and time complexity. 

 

First detailed information about the sub-algorithms has been presented. The 

feature extraction algorithms serve to extract reliable and distinctive interest 

points which make the tracking/matching more stable. Features are extracted 

using Minimum Eigenvalue Method, Harris corner Detector and DoG (SIFT) 

feature extraction algorithms. Among these features, it is observed that Harris 

Corner Detector gives the most reliable points. These features are the inputs for 

tracking/matching module in which optical flow based pyramidal tracking or 

SIFT matching algorithms are exploited. The algorithms are optimized for the 

properties of the video inputs in which the features extracted serves the 
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requirements of tracking algorithms. The tracking algorithm utilizes the iterative 

pyramidal KLT, which is a well known tool in computer vision. Pyramid 

structure is preferred to obtain more consistent and reliable results.  

 

After feature extraction and tracking/matching operations, homography 

transformation is calculated in order to handle camera motions and adjust the 

perspective distortions. This homography transformation is utilized by three 

different algorithms. The first one is “Least Squares” method followed by an SSD 

minimization. In situations where more robust results are acquired, the other two 

methods, RANSAC and LMedS, which are computational expensive algorithms, 

are preferred. Among these three algorithms, it is observed that RANSAC gives 

the most accurate results from visual point of view. Then, the reliable and robust 

transformation parameters are utilized for warping process and final mosaic 

image is obtained after adding of the warped image. 

 

 In the final step, the performances of the given algorithms on the overall 

mosaicing system are presented in SNR and time complexity point of views. As 

shown in the results, MA2 gives the best SNR performance among the other 

algorithms. The reason is that MA2 eliminates the outlier features in a more 

intelligent manner when compared with MA1 and MA3. Besides, MA4, which 

uses different techniques for both feature extraction and matching algorithms, 

gives the worst results among all. Considering time complexity, MA1 has the best 

performance whereas MA3 has the worst. This statement reveals that 

homography calculation quite affects the time complexity of the overall 
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algorithm. Additionally, feature extraction step in MA4 is a time consumer step 

compared to Harris Corner Detector in MA1, MA2 and MA3.  

 

To conclude, the decision of the algorithm for aerial video mosaicing has to be 

given with respect to system requirements which determine the time and visual 

quality thresholds. The performance of MA1 algorithm is optimum for the 

systems which require real time and compatible visual performance and can be 

improved by adding small intelligence on the characteristics of the system. 

 

5.1 Future Work 

 

As a future work, we will perform some improvements to increase the 

performance of the mosaic systems. These improvements include brightness 

compensation, real time working and SNR value enhancements. Brightness 

compensation will be performed in order to improve visual performance and to 

increase the stability of tracking/matching performances.  

In order to decrease the time complexity some improvements including the 

information of the video and system characteristics will be added to make the 

algorithm work in real time. Also, the mosaic results will be improved using low 

resolution satellite images as mentioned in [17] which can make the system work 

faster. 
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In high resolution applications, the SNR values should be increased in order to 

increase the visual performance. The effect of robust feature selection will be 

examined with the new method in [16] published in 2007 which improves feature 

quality of Harris Corner Detector. Besides, the effect of increasing the matching 

performance to the SNR value for the SIFT matching will be done as proposed in 

[6].  
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