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ABSTRACT 

 

DESIGN AND FPGA IMPLEMENTATION OF HASH 

PROCESSOR 

 

 

 

ŞİLTU, ÇELEBİ Tuğba 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Murat AŞKAR 

 

December 2007, 119 pages 

 

In this thesis, an FPGA based hash processor is designed and implemented using 

a hardware description language; VHDL. 

 

Hash functions are among the most important cryptographic primitives and used 

in the several fields of communication integrity and signature authentication. 

These functions are used to obtain a fixed-size fingerprint or hash value of an 

arbitrary long message.  
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The hash functions SHA-1 and SHA2-256 are examined in order to find 

the common instructions to implement them using same hardware blocks on the 

FPGA. As a result of this study, a hash processor supporting SHA-1 and SHA2-

256 hashing and having a standard UART serial interface is proposed. The 

proposed hash processor has 14 instructions. Among these instructions, 6 of them 

are special instructions developed for SHA-1 and SHA-256 hash functions. The 

address length of the instructions is six bits. The data length is 32 bits. The 

proposed instruction set can be extended for other hash algorithms and they can 

be implemented over the same architecture.  

 

 The hardware is described in VHDL and verified on Xilinx FPGAs. The 

advantages and open issues of implementing hash functions using a processor 

structure are also discussed. 

 

 

 

Keywords: processor, hash function, cryptography, VHDL  
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ÖZ 

 

GÜVENLİ ÖZETLEME ALGORİTMALARI 

İŞLEMCİSİ MODELLENMESİ VE FPGA ÜZERİNDE 

GERÇEKLEŞTİRİLMESİ  

 

 

 

ŞİLTU ÇELEBİ, Tuğba 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat AŞKAR 

 

Aralık 2007, 119 sayfa 

 

Bu tezde, VHDL donanım modelleme dili kullanılarak güvenli özetleme 

algoritmalarını gerçekleyen FPGA tabanlı bir işlemci tasarlanmış ve 

gerçekleştirilmiştir. 

 

Güvenli özetleme algoritmaları en temel kriptolojik algoritmalar arasındadır ve 

iletişim ve imza doğrulama işlemlerinin birçok aşamasında kullanılmaktadır. Bu 
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fonksiyonlar değişebilir uzunluktaki bir mesajın sabit uzunlukta özetini elde 

etmek için kullanılmaktadır.  

 

Güvenli özetleme algoritmalarından olan SHA1 ve SHA2–256, her iki 

algoritmayı da FPGA üzerinde ortak donanım blokları kullanarak gerçekleştirmek 

için komutlar bulmak amacıyla detaylı ve karşılaştırmalı olarak incelenmiştir. Bu 

incelemenin sonucunda SHA-1 ve SHA-256 güvenli özetleme algoritmalarını 

destekleyen ve standart UART iletişim ara yüzüne sahip bir güvenli özetleme 

algoritması işlemcisi tasarlanmıştır. Güvenli özetleme algoritması işlemcisinin 

komut seti 14 komuttan oluşmaktadır. Bu komutlardan 6 tanesi SHA-1 ve SHA-

256 güvenli özetleme algoritmaları için geliştirilmiş özel komutlardır. Komutların 

adres boyu 6 bit, veri uzunluğu ise 32 bittir. Tasarlanan komut seti diğer özetleme 

fonksiyonları için de genişletilebilir ve aynı mimari yapı kullanılarak 

gerçekleştirilebilir. 

 

Tasarım, VHDL dili kullanılarak modellenmiş ve Xilinx FPGA kullanılarak 

donanım ortamında doğrulanmıştır.  Güvenli özetleme algoritmalarının bir 

işlemci yapısında gerçekleştirilmesinin avantajları ve dezavantajları 

vurgulanmıştır.  

 

 

Anahtar Kelimeler: işlemci, güvenli özetleme algoritması, kriptoloji, VHDL 
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CHAPTER I 

INTRODUCTION 

In this thesis, hash functions SHA-1 and SHA-256 are implemented on 

FPGA in a processor structure. The design is described and captured using a 

hardware description language, namely VHDL.  

Due to the rapid developments in the wireless communications area and 

personal communications systems, providing information security has become a 

more and more important subject. This security concept becomes a more 

complicated subject when next-generation system requirements and real-time 

computation speed are considered. In order to solve these security problems, lots 

of research and development activities are carried out and cryptography has been a 

very important part of any communication system in the recent years. 

Cryptographic algorithms fulfill specific information security requirements such as 

data integrity, confidentiality and data origin authentication [1].  

Hash functions are among the most important cryptographic algorithms 

and used in the several fields of communication integrity and signature 

authentication. These functions are sort of operations that take an arbitrary length 

of input and produce a condensed representation of that input. This condensed 

representation of an arbitrary long input is usually referred as message digest or 

hash value. The size of the message digest is fixed depending on the particular 

hash function being used. The security of a hash function is directly related to this 

message digest length. Hash functions have some specific properties that make 
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them secure; these properties are pre-image resistance, second pre-image 

resistance and collision resistance as indicated in the documents of FIPS[1, 2, 3]. 

Pre-image resistance means that for all predefined hash values it is 

computationally very hard to find an input having that particular hash value. 

Second pre-image resistance means that given an input, it is computationally very 

hard to find another input such that both inputs have the same hash value. 

Collision resistance means that it is computationally very difficult to find two 

inputs having the same hash value. 

Hash functions are mostly used to provide password authentication in 

different applications, generating digital signature with DSA (Digital Signature 

Algorithm) and for verifying data integrity [1]. In order to protect passwords from 

attacks, hash values of the passwords are stored in the password database rather 

than clear text. When a user logs into the system, the hash of the password entered 

by the user is calculated and compared with the one stored in the database. If two 

hash values match, the user is authenticated; otherwise the user is not granted. In 

order to generate digital signatures and sign the document with that signature, the 

hash value of the document is calculated. Then, this calculated hash value is 

encrypted with a private key/public key using an encryption algorithm. This digital 

signature is appended to the document and the document is sent with that 

signature. At the receiving end only the user having the public key/private key 

related to the person sending the document can decrypt the digital signature and 

reach to the original hash value. The receiving person then calculates the hash 

value of the received document. If the two hashes match then both the origin of the 

document is authenticated and the content of the document is verified [4]. In order 

to verify data integrity, the hash values of the documents are calculated and kept in 

a location. Then at a later time, hash value of the document is recomputed. If the 

hash values do not match one conclude that the file is corrupted [5]. The same 

technique is used for timestamping the documents.  

There are lots of hash functions developed up to now and MD5 (128 bit), 

SHA-1, SHA-256, SHA-384 and SHA-512 are the most popular of them. The 
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oldest of these hash functions is the MD5 hash function. This function is 

developed in 1991 and has an output size of 128 bits [6]. Researches on 

developing more secure hash functions continued and in 1993 a more secure hash 

function SHA-1 which provides an output size of 160 bits is developed [2]. In 

2002, in order to catch security levels offered by other cryptographic algorithms, 

NIST developed the three new hash functions: SHA-256, SHA-384 and SHA-512. 

These hash functions are standardized with SHA-1 as SHS (Secure Hash 

Standard) [3]. A 224-bit hash function SHA-224, based on SHA-256, has been 

added to SHS in 2004 [3]. 

Hash calculations are mainly composed of three sections. In the first part 

the incoming message is padded and fixed sized message blocks are prepared 

according to the particular hash function being applied. After these padding 

operations, the message schedule is prepared. In this state, message block is 

further divided into sub blocks to be used in each round of the hash calculation 

process. In the hash calculation process message digest is computed after some 

specific number of iterations related to the algorithm by using [3]: 

(i) Algorithm specific constants 

(ii) Message words prepared by the message scheduler 

(iii) The chaining variables  

Hash functions can be implemented in hardware or software. However, as 

security and throughput requirements of the systems increase, it is found that 

software implementations can not provide desired security and throughput values. 

As a result, it is preferred to implement the hash functions in hardware. There are 

several hash function implementations in the literature and commercially available 

in the market. These implementations differ from each other according to the 

properties such as area, speed and throughput. Kyu et al. implemented SHA-1, 

HAS-160 and MD5 algorithms in a single chip and proposed two architectures one 

resource sharing and the second non-resource sharing [7]. McLoone et al. 

implemented SHA-512 and SHA-384 on a single chip [8]. The proposed design 

achieves a throughput of 479 Mbps using a shift register design approach in the 
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message scheduling part and look up tables for the constants required by the 

algorithms. Grembowski et al. implemented SHA-1 and SHA-512 hash functions 

separately and compared the implementation results [9]. Sklavos et al. 

implemented SHA-1 and RIPEMD-160 hash functions in the same hardware 

module [10]. The advantage of the proposed implementation is that it exhibits high 

throughput due to the pipeline technique used in the design. In an another study,  

Sklavos et al. determined a common architecture for SHA-256, SHA-384 and 

SHA-512 hash functions and implemented these functions separately [11]. The 

implementation results of the three functions are compared in the provided 

security level and in the performance by using hardware terms. Michail et al. 

implemented SHA-1 hash function is in such a way that the throughput of the 

design is increased by %53 and the power dissipation is kept low [12]. In a recent 

work on hash function implementations, T.S. Ganesh et al. unify the hash 

functions MD5, SHA-1 and RIPEMD160 [13]. The design is proposed to exhibit 

better throughput when compared to the existing hash function implementations.   

In this study, hash functions SHA-1 and SHA-256 are implemented in a 

processor structure. Hash functions SHA-1 and SHA-256 are chosen considering 

the architectural similarities such as, word size and block size and at the same time 

some computational differences that make the design not straightforward. 

Analyzing the hash functions an instruction set is developed. The instruction set 

consists of 14 instructions. Among these instructions six of them are special 

instructions developed for SHA-1 and SHA-256 hash functions. The other 

instructions are general purpose instructions. The address length of the instructions 

is six bits. The data length is 32 bits. The proposed instruction set can be extended 

for other hash algorithms and they can be implemented using the same 

architecture.  

The processor has the blocks of general purpose processor; additionally it 

has two more blocks for preparing message schedule and holding the constants 

required by the algorithm. The design has a UART module for communication 

with the external environment. This serial interface is used for filling the program 
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memory and receiving the incoming message blocks. The processor is fully 

designed and captured using the hardware description language VHDL. Design is 

implemented on Xilinx FPGA. For the verification of the design, the test vectors 

announced by NIST [2] are used. For random inputs, “Advanced Hash Calculator 

(AHC)” software is used [14] for verification. 

The organization of this thesis is as follows. In Chapter 2, background in 

formation on hash functions is given. Their properties are explained in detail. Hash 

functions developed up to now are listed and a brief description is given about 

their history. Types of attack to the hash functions are explained. The computation 

flow of the hash functions SHA-1 and SHA-256 are described in details. Finally 

different hash function implementations available in the market and existing in the 

literature are presented. 

Chapter 3 covers full design description of the hash function processor. 

The design specifications and hardware and software resources used are given. 

Blocks of the hash function processor are explained in detail. 

In Chapter 4, the designed hash function processor is verified on both 

software and hardware. Simulation results are given in this chapter. The synthesis 

of the VHDL descriptions of the hash processor, implementation into FPGA and 

hardware based tests are given at the end of this chapter.  

Results of the study are presented in Chapter 5. The followed design steps 

and methods are discussed and further suggestions are made for the future studies. 
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CHAPTER II 

HASH FUNCTIONS AND PROCESSORS 

2.1 HASH FUNCTIONS 

2.1.1 DEFINITION AND PROPERTIES OF HASH FUNCTION 

A hash function is a sort of operation that takes an input and produces a 

fixed-size string which is called the hash value. The input string can be of any 

length depending on the algorithm used. The produced output is a condensed 

representation of the input message or document and usually called as a message 

digest, a digital fingerprint or a checksum. The size of the message digest is fixed 

depending on the particular algorithm being used. This means that for a particular 

algorithm, all input streams yield an output of same length. Furthermore a very 

small change in the input results with a completely different hash value. This is 

known as the avalanche effect [1]. The hashing operation is illustrated below in 

Figure 2-1. 
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Figure 2-1 Hashing Operation 

The security of a hash function is directly related to the message digest 

length. Pre-image resistance, second pre-image resistance and collision resistance 

are very important characteristics of any hash function [1].  

 

1. Pre-image resistance (one-wayness): For all specified hash values 

it is computationally very hard to find an input message having 

that particular hash value. This property is illustrated in Figure 

2-2. 

 

Figure 2-2 Preimage Resistance 
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2. Second pre-image resistance: Given an input message m1, it is 

computationally very hard to find another input message m2 such 

that ( ) ( )21 mhashmhash = . This property is illustrated in Figure 

2-3. 

 

Figure 2-3 Second Preimage Resistance 

3. Collision resistance: It is computationally very hard to find any 

two different inputs that have the same hash value. This property 

is illustrated in Figure 2-4. 

 

Figure 2-4 Collision Resistance 
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Hash functions can be classified as keyed and unkeyed hash functions. 

The keyed hash functions take a secret key as an additional input parameter. In 

this case, the above defined characteristics of hash functions are satisfied for any 

value of the secret key. Keyed hash functions are also named as Message 

Authentication Codes or MACs[1]. In this study, we only deal with unkeyed hash 

functions.  

2.1.2 APPLICATIONS OF HASH FUNCTIONS 

The most common use fields of hash functions are verifying data 

integrity, providing password authentication and generating digital signatures with 

DSA in applications such as electronic mail, electronic funds transfer, software 

distribution and data storage which require data integrity assurance and data origin 

authentication.  

Data integrity is a very important part of a secure system. Any changes 

made to the files can be detected by generating the message digests of the files 

using a hash function. These digests are saved and in the future the digest is 

recomputed on the file, if the new digest is different from the original digest, this 

means that the original file is corrupted some way. This can be very important 

when protecting critical system binaries and sensitive databases [5]. As an addition 

during file transmission through the networks such as the internet, files can be 

corrupted. In order to verify that the received file is identical to the original file, 

the message digest of the received file is calculated. Then this calculated message 

digest is compared with the original one published by the WEB site or FTP site. 

Since it is computationally very hard to find two inputs that have the same hash 

value (collision resistance property of a hash function), if the calculated digest is 

different from the original, one can be sure that the received file differs from the 

transmitted file. Verifying data integrity by means of a hash function is illustrated 

below in Figure 2-5. 
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Figure 2-5 Verifying Data Integrity 

Password authentication is another field that hash functions are used. For 

computer systems, it is insecure to store passwords in clear-text. Someone may 

reach all of the passwords and entire user password database can be compromised. 

Because of these reasons, a more secure way is to store the hashes of the 
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passwords rather than clear text passwords. Storing the hashes of passwords is 

shown below in Figure 2-6. 

 

Figure 2-6 Storing the Hash of a Password 

When a user logs in, the hash value of the submitted password is calculated and 

compared with the one stored in the password database. If the calculated hash 
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value is identical to the one stored in the database, the user is authenticated, and 

otherwise the user is not granted. This scenario is illustrated below in Figure 2-7. 

 

Figure 2-7 Authenticating Users  

By this way, even if the password database is compromised, user privacy is still 

protected since it is computationally very difficult to obtain the original passwords 

from the hash values.  

One of the most popular applications of hash functions is digital 

signatures. A digital signature is a type of asymmetric cryptography used to 

simulate the security properties of a signature in digital, rather than in written form 
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Digital signatures are used to provide authentication of the associated input, 

usually called a message. Messages can be anything from electronic mail to 

someone or even a message sent in a more complicated cryptographic protocol. A 

digital signature scheme consists of three algorithms: 

 

� A key generation algorithm G that randomly produces a “key 

pair” (PK, SK) for the signer. PK is the verifying key which is to 

be public and SK is the signing key, to be kept private. 

� A signing algorithm S that, on input of a message m and a 

signing key SK, produces a signature. 

� A signature verifying algorithm V that on input a message m, a 

verifying key PK, and a signature, either accepts or rejects.  

 

Two main properties are required. First, signatures computed properly should 

always verify. That is, V should accept ( )),(,, SKmSPKm  where SK is the secret 

key related to PK, for any message m. Secondly, it should be hard for any 

adversary, knowing only PK, to create valid signatures [4]. 

In practice, computing the digital signature of a long message with public key 

algorithms is very inefficient. To save time, digital signature protocols are often 

implemented with one-way hash functions [1]. Instead of signing the whole 

document, hash of the document is signed. In this case, the scenario is as follows: 

 

� The hash value of the document is calculated. 

� The calculated hash value is encrypted with the private key, 

thereby the document is signed 

� The document and the signed hash value are send to the recipient 

� The recipient calculates the one way hash value of the document 

and decrypts the signed hash value by using the public key. If the 

signed hash value is the same with the calculated hash value, then 

the signature is valid.  
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The application and verification of a digital signature are illustrated below in 

Figure 2-8 and Figure 2-9 

 

Figure 2-8 Application of a Digital Signature 
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Figure 2-9 Verification of a Digital Signature 

If a hash function were not used, the recipient would not be sure that the data 

integrity is protected. Since hash functions are one way functions, any change in 

the document will change the signature and the signature would not be validated. 

As a result, when the signature is validated, the recipient makes sure that the 

document is not altered. Another benefit of digital signatures is the authentication 

of the source of the messages. Since private key used in the encryption process 

belongs to a specific user, a valid signature shows that the message is sent by that 

user. 

One of the earliest proposed applications of digital signatures was to 

facilitate the verification of nuclear test ban treaties. The United States and Soviet 

Union (do not exist anymore) permitted each other to put seismometers on the 

other’s soil to monitor nuclear tests. The problem was that each country needed to 

assure itself that the host nation was not tampering with the data from the 

monitoring nation’s seismometers. Simultaneously, the host nation needed to 

assure itself that the monitor was sending only the specific information needed for 

monitoring. Conventional authentication techniques can solve the first problem, 
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but only digital signatures can solve both problems. The host nation can read but 

not alter the data from seismometer and the monitoring nation knows that the data 

has not been tampered with [1]. 

2.1.3 ATTACKS TO THE HASH FUNCTIONS 

There are two brute-force attacks to a hash function [1]. In a brute force, 

random inputs are tried and the results of the computations are stored until a 

collision is found [5]. The first attack can be described as follows: Suppose that 

the hash of a specific message is given, an adversary can try to find another 

message which has the same hash value. On the other hand, the second attack can 

be explained as follows: suppose that an adversary tries to find to messages that 

have the same hash value. This attack is easier than the first one and known as 

birthday attack.  

Birthday attack gets its name from the birthday paradox, which is a 

known statistical problem. The answer to the question, how many people there 

must be in a room for at least one person sharing your birthday is 183, but 

surprisingly, the answer to the question how many people there must be in a room 

for at least two of them will share the same birthday is 23. This means that the 

probability of two or more people in a group of 23 having the same birthday is 

greater than ½. Thus, assume that there is a hash function with n-bit output. In 

order to find a message having a particular hash value, 2n hash calculations. On the 

other hand, finding two messages having the same hash value would only require 

2n/2 hash calculations. For instance, a machine which can compute the hash values 

of one million messages per second would take 600.000 years to find a second 

message that have a given 64-bit hash value where the same machine can find two 

messages having the same hash value in about an hour. This means that in order to 

avoid a birthday attack, someone should choose a hash value twice as long as the 

actual needed length [1].  
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2.1.4 KNOWN HASH FUNCTIONS  

There is several hash functions developed up to now and among these 

hash functions MD5, SHA-1, and SHA-256 are most popular. Summary of the 

standard hash functions is given below in Table 2-1. 

 

Table 2-1 Summary of Standard Hash Functions 

Algorithm Output size Block size 
Word 
size 

Rounds 
xSteps 

Year of the 
standard 

MD4 128 512 32 16x3 1990 

MD5 128 512 32 16x4 1991 

RIPEMD 128 512 32 
16x3 

(x2 parallel) 

1992 

RIPEMD-128 128 512 32 
16x4 

(x2 parallel) 

1996 

RIPEMD-160 160 512 32 
16x5 

(x2 parallel) 

1996 

SHA-0 160 512 32 80 1993 

SHA-1 160 512 32 80 1995 

SHA-256 256 512 32 64 2002 

SHA-224 224 512 32 64 2004 

SHA-384 384 1024 64 80 2002 

SHA-512 512 1024 64 80 2002 

 

MD4 proposed by Ron Rivest in 1990 was designed by using 32-bit 

operations for high speed software implementations on 32-bit processors [15]. MD 

stands for message digest and the numerals refer to the functions being the fourth 

design from the same hash function family. However, a collision problem was 

found and in 1991 MD4 was reformed to MD5 by adding countermeasures such as 
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increasing the number of compression rounds from three to four [6]. The 

compression function of MD5 operates on 512 bit blocks and this 512 bit block is 

further divided into 16 32-bit sub blocks. The word size is 32 bits. There are four 

32-bit chaining variables and the output size is 128 bits. One important parameter 

for compression functions is the number of rounds –the number of sequential 

updates of the chaining variables. The compression function of MD5 has 64 

rounds. MD5 is one of the most popular hash functions for many applications such 

as IPsec. However it was pointed out that, collisions can be generated using the 

compression function of MD5 and its 128-bit hash value is not long enough to 

stop birthday attacks. It was estimated that two messages that have the same hash 

value could be found within 24 days by developing a dedicated hardware with a 

cost of 10 million dollars. Considering the processing power of computers is 

improving 10-fold every 5 years, MD5 is no longer secure against the birthday 

attack, and it is not recommended for future use.  

RIPEMD is a 128 bit hash function developed by the RIPE (RACE 

Integrity Primitives Evaluation) project in 1992 to address the attack on MD4 [16]. 

However collisions for the first two and the last two out of three rounds were 

found. In addition,  a 128-bit hash value is no longer secure enough so as 

described above and thus RIPEMD was improved to the 160-bit hash function 

RIPEMD-160 in 1996 which has a five round compression function. At the same 

time, a 128-bit hash function RIPEMD-128 that has a four round compression 

function was proposed to replace RIPEMD. 

NIST (National Institute of Standards and Technology) standardized a 

160-bit hash function SHA (Secure Hash Algorithm ) for the use with a digital 

signature algorithm DSS (Digital Signature Standard) in 1993 [2]. Soon after that 

a way was found to cause collisions in the compression function by analyzing the 

message expansion function that consisted of only XOR (exclusive OR) 

operations. In order to modify this SHA was modified to SHA-1 by adding a one-

bit rotation to the message expansion function. A 160-bit hash function hash a 

security level on the order of 80 bits, so SHA-1 is designed to match the security 
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level of the block cipher Skipjack that uses 80-bit secret key [17]. SHA-1 is 

modeled taking some cues from MD5, it operates on 512 bit blocks and has five 

32 bit chaining variables. The output length is 160 bits. Although the round 

functions are less varied and simpler than those of MD5, SHA-1 has more rounds 

–80 instead of 64. SHA-1 uses a more complex procedure for deriving 32-bit sub 

blocks from the 512 bit message. If one bit of the message is flipped, more than 

half of the sub blocks get changed, where this number is just four for MD5. In 

2001 NIST standardized the new block chipper AES (Advanced Encryption 

Standard) to replace the DES (Data Encryption Standard) that had been used for 

more than 20 years [18]. AES supports three key lengths, 128, 192 and 256 bits, 

whose security levels are higher than SHA-1. In order to match these security 

levels, NIST developed three new hash functions SHA-256, -384, and -512 whose 

hash value sizes are 256, 384 and 512 bits, respectively [3]. SHA-256 and SHA-

512 have similar designs, with SHA-256 operating on 32-bit words and SHA-512 

operating on 64-bit words. Both designs bear strong resemblance to SHA-1 

although they are much closer to each other than to their common predecessor. 

SHA-384 is a trivial modification of SHA-512 which consists of trimming the 

output to 384-bits and changing the initial value of the chaining variable. These 

hash functions are standardized with SHA-1 as SHS (Secure Hash Standard) and a 

224-bit hash function , SHA-224, based on SHA-256, was added to SHS in 2004. 

SHA-224 is a truncated version of SHA-256 with a different initial value. The 

most important difference between the three new functions and SHA-1 is the 

procedure for deriving 32-bit sub blocks from one block of message. Recently 

collisions for MD4, MD5, RIPEMD and SHA have been reported and a possibility 

for breaking SHA-1 has been suggested. Therefore, the migration to more secure 

hash functions should be accelerated.  

In this study, SHA-1 and SHA-256 hash functions are chosen to be 

implemented as a starting point. The reason for such a selection is that SHA-1 is 

one of the most commonly used hash functions and SHA-256 is developed after 

SHA-1 and offers increased security levels. As described above, both of these 
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functions operate on 512-bit message blocks and word sizes are the same –32 bits. 

Although they are similar in general, number of chaining variables, the output 

size, generation of 32-bit sub blocks from 512-bit message blocks and number of 

rounds differ from each other.  

2.1.5 HASH COMPUTATION FLOW  

Every hash computation process consists of two stages [2, 3]. The first 

stage is the preprocessing stage. In this stage the message is padded, parsed into n 

blocks and the chaining variables are initialized. In the second stage, hash 

calculation is done. In the hash calculation stage, constants, functions and word 

operations specific to the hash function are used. Hash calculation generates a 

message schedule from the padded message and uses that schedule, along with 

functions, constants and word operations to iteratively generate a series of hash 

values. The final hash value generated by the hash computation is used to generate 

the message digest. This scenario is illustrated below in Figure 2-10.  

 

Figure 2-10 General Hash Computation Flow 
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2.1.5.1 SHA1  

SHA1 is one of the most popular hash functions. The message block size 

for SHA-1 is 512 bits and message digest size is 160 bits. Calculation of message 

digest for one block message is completed in 80 rounds. The general properties of 

SHA-1 are summarized in Table 2-2. 

 

Table 2-2 SHA-1 Summary 

SHA1 

Message Size <264  

Block Size 512 bits 

Word Size 32  bits  

Trans.Rounds 80       

Message. Digest 160 bits 

Security 80 bits 

# of chaining variables 5 

 

SHA-1 calculation is completed in 80 rounds and 5 hash variables each of 

32 bits are used. The word size of all the calculations is 32 bits. The padded 

message is processed by 512 bit blocks. This 512 bit block is composed of 16 

message words. These 16 message words are expanded by means of functions and 

in each of the total 80 rounds a new message word is used.  

2.1.5.1.1 SHA-1 FUNCTIONS 

SHA-1 uses three different logical functions. These functions operate on 

32 bit words and each has three parameters. These functions are: 

 

1) ( ) ( ) ( )zxyxzyxCh ∧¬⊕∧=,,   

This function is used in first 20 rounds of SHA-1 calculations. The 

architecture of this function is illustrated in Figure 2-11. 
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Figure 2-11 Ch Function Architecture 

2) zyxzyxParity ⊕⊕=),,(  

This function is used in second and last 20 rounds of SHA-1 

calculations. The architecture of this function is illustrated in Figure 

2-12. 

 

Figure 2-12 Parity Function Architecture 

3) ( ) ( ) ( )zyzxyxzyxMaj ∧⊕∧⊕∧=),,(  

This function is used in third 20 rounds of SHA-1 calculations. The 

architecture of this function is illustrated in Figure 2-13. 
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Figure 2-13 Maj Function Architecture 

These functions are listed below in Table 2-3 according to the SHA-1 

round number. 

Table 2-3 SHA-1 Functions 

SHA1 Functions Round number (t) 

ft(b, c, d) = Ch(b,c,d) 0 ≤ t ≤19 

ft(b, c, d) = Parity(b,c,d) 20 ≤ t ≤39 

ft(b, c, d) = Maj(b,c,d) 40 ≤ t ≤59 

ft(b, c, d) = Parity(b,c,d) 60 ≤ t ≤79 

2.1.5.1.2 SHA-1 CONSTANTS 

There are four constants which are used in SHA-1 computations. These 

are given in Table 2-4. 

Table 2-4 SHA-1 Constants 

SHA1 Constants Round number (t) 

5A827999 0 ≤ t ≤19 

6ED9EBA1 20 ≤ t ≤39 

8F1BBCDC 40 ≤ t ≤59 

CA62C1D6 60 ≤ t ≤79 
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2.1.5.1.3 SHA-1 COMPUTATION FLOW 

SHA-1 computation is composed of two stages, preprocessing stage and 

hash calculation stage. In the preprocessing stage, message is padded, divided into 

16 32-bit sub blocks and message schedule is prepared. 

� Message Padding: Suppose that the length of the message, M, is l bits. 

Append the bit “1” to the end of the message, followed by k zero bits, 

where k is the smallest, non-negative solution to the equation 

512mod4481 ≡++ kl . Then append the 64-bit block that is equal to the 

number l expressed using a binary representation. For example, the (8-bit 

ASCII) message “abc” has length 2438 =x , so the message is padded with 

a one bit, then ( ) 423125448 =+−  zero bits, and then the message length, 

to become the 512-bit padded message. This is illustrated below in Figure 

2-14.  

 

Figure 2-14 Message Padding 

� Setting the initial hash value: The 160-bit initial hash value H(0) is 

composed of five 32-bit words which are shown in Table 2-5. 

Table 2-5 Initial Hash Value for SHA-1 

H0(0) H1(0) H2(0 H3(0) H4(0) 

67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0 

 

� Hash Calculation: SHA-1 may be used to hash a message, M, having a 

length of l bits, where 6420 ≤≤ l . The algorithm uses: 
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1. A message schedule of 80x32-bit words. The words of the 

message schedule are labeled W0 , W1 , …………W80 . 

2. Five working variables of 32-bits each. The working variables are 

labeled as: A, B, C, D, E.  

3. A hash value of five 32-bit words. The words of the hash value 

are labeled as: H0
(i) , H1

(i) , H2
(i) , H3

(i), H4
(i) which will hold the 

initial hash value H(0),  replaced by each intermediate hash value 

(after each message block is processed) H(i) where i denotes the  

number of 512 bit block being processed in the message M, and 

ending with the final hash value, H(N) where N is the number of 

the last 512 bit block in the message M.  

4. A single temporary word, T. 

5. Previously defined constants which are labeled Kt where t is the 

round number. 

The calculation is carried out as follows: 

The message schedule is prepared, ie. the message word that is going to 

be used in that round is prepared. This computation is done as described 

in the following formula: 

( ) 7916
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161483
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In the above formula i

tM  denotes the tth 32-bit message word of the ith  

512-bit message block in the message M. The 5 working variables A, B, 

C, D and E that are going to be used in the computation are prepared as 

follows: 
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After these initializations, the final values of the working variables for 

that round are calculated as described below: 
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As the final step, intermediate hash values are calculated as described 

below: 
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After 80 rounds the hash value of the incoming 512 bit message block is 

obtained. Basic SHA-1 computation flow described above is shown 

below in Figure 2-15: 

 

Figure 2-15 SHA-1 Computation Flow 
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2.1.5.2 SHA-256 

SHA-256 is developed after SHA-1 in 2002 by NIST in order to match 

security levels offered by AES. The message block size for SHA-256 is 512 bits 

and message digest size is 256 bits. Calculation of message digest is completed in 

64 rounds. The general properties of SHA-256 are summarized in Table 2-6: 

 

Table 2-6 SHA-256 Summary 

SHA1 

Message Size <264  

Block Size 512 bits 

Word Size 32 bits  

Trans.Rounds 64       

Mes. Digest 256bits 

Security 128 bits 

# of chaining variables 8 

 

SHA-256 calculation is completed in 64 rounds and 8 hash variables each 

of 32 bits are used. The word size of all the calculations is 32 bits. The padded 

message is processed by 512 bit blocks. This 512 bit block is composed of 16 

message words. These 16 message words are expanded by means of functions and 

in each of the total 64 rounds a new message word is used.  

2.1.5.2.1 SHA-256 FUNCTIONS 

SHA-256 uses six different logical functions. These functions operate on 

32 bit words. These functions are: 

 

1) ( ) ( ) ( )zxyxzyxCh ∧¬⊕∧=,,  This function is same as the Ch 

function used in SHA-1.  

2) ( ) ( ) ( )zyzxyxzyxMaj ∧⊕∧⊕∧=),,(  This function is same as 

the Ch function used in SHA-1.  
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3) )(ROTR)(ROTR)(ROTR)( 2213256

0

2
XXXx ⊕⊕=∑  The 

architecture of this function is shown below in Figure 2-16: 

 

 

Figure 2-16 ∑
256

0
)(x
 Architecture 

4) )(ROTR)(ROTR)(ROTR)( 2511256

1

6
XXXx ⊕⊕=∑  The 

architecture of this function is shown below in Figure 2-17: 

 

Figure 2-17 ∑
256

1
)(x
 Architecture 
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5) )()(ROTR)(ROTR)( 3187256
0 XSHRXXX ⊕⊕=σ  The 

architecture of this function is shown below in Figure 2-18: 

 

Figure 2-18 )(256
0 Xσ  Architecture 

6) )()(ROTR)(ROTR)( 101917256
1 XSHRXXX ⊕⊕=σ  The 

architecture of this function is shown below in Figure 2-19: 

 

Figure 2-19 )(256
1 Xσ  Architecture 
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2.1.5.2.2 SHA-256 CONSTANTS 

There are 64 constants which are used in SHA-256 computations. These 

are given in Appendix A. 

2.1.5.2.3 SHA-256 COMPUTATION FLOW 

SHA-256 computation is composed of two stages, preprocessing stage 

and hash calculation stage. In the preprocessing stage, message is padded, divided 

into 16 32-bit sub blocks and message schedule is prepared. 

 

� Message Padding: Message padding operation is done in the same way as 

in SHA-1.  

� Setting the initial hash value: The 256-bit initial hash value H(0) is 

composed of eight 32-bit words which are shown in Table 2-7. 

 

Table 2-7 Initial Hash Value for SHA-1 

H0(0) H1(0) H2(0) H3(0) 

67452301 BB67AE85 3C6EF372 A54FF53A 

H4(0) H5(0) H6(0) H7(0) 

510E527F 9B05688C 1F83D9AB 5BE0CD19 

 

� Hash Calculation: SHA-256 may be used to hash a message, M, having a 

length of l bits, where 6420 ≤≤ l . The algorithm uses: 

 

1. A message schedule of 64x32-bit words. The words of the 

message schedule are labeled W0 , W1 , …………W64 . 

2. Eight working variables of 32-bits each. The working variables 

are labeled as: A, B, C, D, E, F, G, H.  

3. A hash value of eight 32-bit words. The words of the hash value 

are labeled as: H0
(i) , H1

(i) , H2
(i) , H3

(i), H4
(i), H5

(i), H6
(i), H7

(i) which 

will hold the initial hash value H(0), replaced by each intermediate 
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hash value (after each message block is processed) H(i) and ending 

with the final hash value, H(N) 

4. Two temporary words, T1 and T2. 

5. Previously defined constants which are labeled Kt, where t is the 

round number. 

 

The calculation is carried out as follows: 

The message schedule is prepared, ie. the message word that is going to 

be used in that round is prepared. This computation is done as described 

in the following formula: 
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The eight working variables A, B, C, D, E, F, G and H that are going to 

be used in the computation are prepared as follows: 
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After these initializations, the final values of the working variables for 

that round are calculated as described below: 



 

 
 

32 

( )

( )

21

1

256

02

256

11

,,

,,

TTA

AB

BC

CD

TDE

EF

FG

GH

CBAMajAT

WKGFEChEHT tt

+=

=

=

=

+=

=

=

=

+=

++++=

∑

∑

 

 

As the final step, intermediate hash values are calculated as described 

below. 
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After 64 rounds the hash value of the incoming 512 bit message block is 

obtained. Basic SHA-256 computation flow described above is shown 

below in Figure 2-20.  
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Figure 2-20 SHA-256 Computation Flow 

2.2 DIFFERENT HASH IMPLEMENTATIONS 

Hash functions can be implemented either in hardware or software. 

Implementing hash functions completely in software is easier than implementing 

them in hardware. However, since data rates increase and security protocols 

become more and more complex, software implementations of hash functions can 

not satisfy the speed requirements of applications such as embedded systems, 

network routers and online databases. Furthermore, providing security is another 

very important issue. System implementation itself should be very secure even if 

in case of an attack. Software implementations of hash functions can not provide 

that degree of security since access and modification are easier. When all these 

aspects are considered, it is seen that it is desirable to implement hash functions in 

hardware in order to satisfy the speed requirements of the systems and at the same 

time provide security. Hardware implementations of hash functions are more 
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secure, since access and modification are harder. Additionally, power consumption 

is lesser and throughput is higher. 

Hardware implementations of hash functions can be divided into two 

groups: classical implementations and reconfigurable (reprogrammable) 

implementations. Classical implementations are completely custom designs on 

Application Specific Integrated Circuits (ASICs) and reconfigurable 

implementations are on FPGAs. When compared in performance wise, it is found 

that ASICs exhibit the best performance, FPGAs are close to ASICs and software 

implementations are the worst of all. On the other hand, when development cost is 

considered, software development cost is the least, it is a bit higher for FPGAs and 

development of the ASICs is the most expensive. When considered in terms of 

flexibility, ASICs are the worst, software implementations are the most flexible 

ones and FPGAs are close to software implementations since they are 

reconfigurable structures. According to these judgments, it is obvious that FPGA 

implementations have the advantages of both hardware and software. 

Implementation of hash functions on reconfigurable platforms such as FPGAs 

brings some advantages. These advantages can be listed as follows: 

 

� Ease of algorithm modification: Any modifications can be made 

easily due to the reconfigurable nature of the FPGAs. 

� Architecture efficiency 

� Resource efficiency: FGPA implementation of hash functions 

require less resources in the development phase 

� Cost efficiency: FPGA implementations are cost effective since 

they have shorter design lead time 

� High throughput: FPGA implementations work at high speeds, so 

exhibit high throughput  

 

Hash function implementation on hardware is a very active research area 

and various implementations exist in the literature. These implementations differ 
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from each other according to the specifications such as area, speed, throughput, 

complexity of design and power consumption. Although there are some 

differences between the implementation of complex arithmetic and logic 

functions, main hardware blocks in each design are similar. The general block 

diagram of a hash function implementation is illustrated in Figure 2-21: 

 

Figure 2-21 General Block Diagram for a Hash Function Implementation 

In general the message is input to the hardware as 32-bit message words. 

The padding unit counts the incoming message words and makes necessary 

computations described in 2.1.5.1.3 to pad the message and prepare the message 

blocks. The prepared message block is usually stored in a RAM block. The size of 
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the RAM block is dependent on the algorithm implemented. The constants 

required by the algorithm are kept in an array and this array is usually 

implemented as a ROM: The complex arithmetic and logic computations required 

by the algorithm to prepare the message schedule and hash the incoming message 

are carried out in the hash calculation block. The control block provides necessary 

control signals for the padding unit, message ram, hash calculation block and 

constants array.  

In [7] Kyu et al. implemented SHA-1, HAS-160 and MD5 algorithms in a 

single chip. These hash functions are implemented in two ways, in the first case 

each algorithm is implemented separately with no resource sharing; this 

implementation is illustrated below in Figure 2-22. 

 

Figure 2-22 The Block Diagram of Non-Resource Sharing Design [7]  



 

 
 

37 

 In the second case, SHA-1 and HAS-160 architectures are combined; this 

implementation is shown below in Figure 2-23. The designs have been 

implemented using Altera'sEP20K1000EBC652-3 with PCI bus interface and seen 

that the required logic elements are reduced by %27. 

 

Figure 2-23 The Block Diagram of Resource Sharing Design [7]  
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In [8] McLoone et al. implemented SHA-512 and SHA-384 on a single 

chip. The proposed design achieves a throughput of 479 Mbps using a shift 

register design approach in the message scheduling part and look up tables for the 

constants required by the algorithms. Design is implemented on a Xilinx Virtex-E 

XCV600E-8 device. The design consumed 2914 CLB slices, 2 BRAMs and 141 

I0Bs. The speed of the operation clock is 38 MHz. It is emphasized that the shift 

register design approach and the use of LUTs (Look Up Table) to store the eighty 

constants result in a compact and fast implementation. The shift register design 

approach used is illustrated in Figure 2-24. 

 

Figure 2-24 Shift Register Design Approach [8] 

In [9] Grembowski et al. implemented SHA-1 and SHA-512 hash 

functions and compared the results. By using carry save adders in the hash 

calculation block and using the shift register approach mentioned in [17] delay and 

speed optimizations are done. Both algorithms are described in VHDL and 

implemented on Xilinx Virtex XCV-1000-6 FPGA. Throughput is found to be 670 

Mbps for SHA-512 implementation and 530 Mbps for SHA-1 algorithm. As a 

result it is concluded that the newer algorithm SHA-512 is not only more secure 

than SHA-1, but also faster.  

In [10], Sklavos et al. implemented SHA-1 and RIPEMD-160 hash 

functions in the same hardware module. The advantage of the proposed 

implementation is that it exhibits high throughput due to the pipeline technique 

used in the design. This pipeline technique is based on two parallel iteration loops, 
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left and right data paths. For SHA-1 hash calculation mode, only the left datapath 

is used, the right is kept idle. For the RIPEMD calculation both datapaths are used 

and this increases the speed of the system. The proposed left and right datapaths 

are illustrated below in Figure 2-25. The design is implemented on XILINX FPGA 

device (2VSOOfg456) and a throughput of 1339 Mbps for SHA-1 and a 

throughput of 1656 Mbps is observed. 

 

Figure 2-25 Left and Right Datapaths[10] 
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In [11] Sklavos et al. determined a common architecture for SHA-256, 

SHA-384 and SHA-512 hash functions and implemented these functions 

separately. The implementation results of the three functions are compared in the 

provided security level and in the performance by using hardware terms. The 

target device was XILINX FPGA Virtex Device (v200pq240). As a result, it is 

found that SHA-512 has the highest throughput; SHA-256 consumes the smallest 

area in the FPGA and has the best area delay product. The proposed design is 

illustrated below in Figure 2-26 

 

Figure 2-26 Common Architecture for SHA-256, SHA-384 and SHA-512 

In [12], Michail et al. implemented SHA-1 hash function is in such a way 

that the throughput of the design is increased by %53 and the power dissipation is 

kept low. The proposed technique makes use of the SHA-1 hash function nature. 
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The idea is that except of the chaining variable at-1, the rest of the chaining 

variables bt-1, ct-1, dt-1 and et-1 are derived directly from the variables at-2, bt-2, ct-2, 

and dt-2 respectively. This means consequently that also ct, dt and et can be derived 

directly from at-2, bt-2 and ct-2 respectively. Furthermore, due to the fact that at and 

bt calculations require the dt-2 and et-2 inputs respectively, which are stored in 

temporal registers, these calculations can be performed in parallel. Applying this 

method reduced the number of cycles to complete the hash calculation from 80 to 

40. The core was integrated and tested on a v150bg352 FPGA device 2.8Gbps 

throughput is achieved. 

A recent work on hash function implementations is done by Ganesh 

et.al.[13]. In this study a unified architecture for the hash functions MD5, SHA-1 

and RIPEMD160 is proposed and the design is named as “HashChip “. The 

general block diagram of the HashChip  is given below in Figure 2-27. 

 

Figure 2-27 HashChip Architecture [13] 
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As seen above in Figure 2-27 HashChip has six main components. The padder and 

memory block handles the system’ s interface to the external memory bank. It 

stores the message words and the various constants required during the iterations 

and also ensure that the algorithm starts processing as soon as the minimum 

requirements of 64 bytes are input. The chaining variable updation block updates 

the chaining variables at the end of the each iteration. The digest generation block 

ensures that the values of the chaining variables at the end of all the iterations are 

transferred in a proper format as the final digest value. The microcode control unit 

generates the necessary control signals for the datapath. The parallel and main 

compressor blocks implement the arithmetic and logic operations required by the 

algorithms. It is proposed that by removing the redundant RAM blocks the 

resource usage is optimized with negligible performance penalty. The critical 

paths are modified to accommodate lower cycle times and enable operation at 

higher frequencies.  

The blocks described above are described using Verilog HDL at the RTL 

level. HashChip is implemented as part of an embedded system using Virtex II Pro 

and it is associated on-die PowerPC Microcontroller. The throughput of the design 

is compared with the existing designs and it is found that the performance of the 

HashChip is better than the existing implementations.  

2.2.1 COMMERCIAL HASH FUNCTION IMPLEMENTATIONS 

There are various hash function implementations in the market. Differ 

from each other according to their capabilities. Some commercial hash function 

implementations are listed in Table 2-8.  

Cast Inc. has two hash function cores in the market, they are SHA-1 and 

SHA-256 hash function cores [19, 20]. Both of these cores calculates the digest of 

messages of any length smaller than 264- 1 bits and message lengths should be 

multiple of 8 bits. Bit padding operation is provided with both cores. SHA-1 

calculations is completed in 82 clock cycles and SHA-256 calculation is 
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completed in 66 clock cycles Both cores are implemented and tested on various 

FPGA families and results are provided in the product datasheets. The SHA-256 

and SHA-1 implementations are available as soft cores (synthesizable HDL) for 

ASIC technologies and as firm cores (netlist) for FPGA technologies, and include 

everything required for successful implementation. The functional description of 

the cores is as follows: 

Both cores accept input message as 32-bit words and when a block of 512 

bits is completed, input stream is paused and hash calculation is carried out. When 

processing of the 512 bit block is completed and core permits the input data to be 

fed again. On the final message block when the last 32-bit word is input, the core 

must be indicated that this is the last message word and the number of valid bytes 

in the last message word must be input so that padding unit knows how many 

bytes to pad. 

HDL design house has SHA-1 function core in the market [21]. This core 

can accept message up to 264 bits. Each 512 bit message block is processed in 80 

clock cycles. The core is available as completely synthesizable VHDL or Verilog 

code.  

Helion Technology Limited has two hash function cores in the market 

named as Helion Tiny Hashing core and Helion Fast Hashing core [22,23]. The 

first core supports SHA-1, SHA-224, SHA-256 and MD5 with or without HMAC 

hashing. The user can select one of these hash functions using the proper input on 

the core. The core is available with either 8, 16 or 32 bit data interfaces. Input 

message words are stored in a 512 bit block RAM in the core. After a 512 bit data 

block loaded, it is processed according to the algorithm selected by the micro-

coded controller. This controller executes a sequence of instructions which 

perform a series of computations on the data block using a specially designed 

Arithmetic Logic Unit (ALU). The core is implemented on various Xilinx family 

FPGA’s and the implementation results are provided in the product datasheet. The 

Helion Fast Hashing core has five modes of operation, these are: SHA-1 hashing, 

SHA-256 hashing, MD5 hashing, dual mode (SHA-1 and SHA-256) and dual 
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mode (SHA-1 and MD5). In all of these modes, the message is input to the core as 

32-bit words. Once a 512-bit message block has been loaded, hash calculation 

begins. In the hash calculation process a sequence of complex arithmetic and logic 

functions are applied to the message words over a number of iterations. In each 

iteration intermediate results of the chaining variables are stored and at the end of 

the each block processing these are used to compute the running digest. The core 

is implemented on various Xilinx family FPGA’s and the implementation results 

are provided in the product datasheet. 

Aldec Inc. has an SHA-1 IP core in the market [24]. The core supports 

only SHA-1 hashing. 512-bit message blocks are processed in 81 clock cycles. 

Data is input to the core as 32-bit message words. VHDL /Verilog source code, 

technology-dependent EDIF and VHDL/Verilog netlists and software emulator of 

SHA core are delivered to the user.  

Ocean Logic Pty. Ltd. has SHA-1 and SHA-256 hash function cores in 

the market [25, 26]. In both of the cores message is input to the core as 32-bit 

words. The SHA-1 calculation is completed in 81 clock cycles and SHA-256 

calculation is completed in 65 clock cycles. The core is implemented on various 

Xilinx FPGAs also implemented as ASIC. The results of these implementations 

are given below in Table 2-8.  

Sci-worx has a SHA-1 function core in the market [27]. The core 

supports only SHA-1 hashing. 512-bit message blocks are processed in 81 clock 

cycles. Data is input to the core as 32-bit message words. VHDL /Verilog source 

codes are delivered to the user.  
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Table 2-8 Commercial Hash Function Cores 

Vendor 
Supported Hash 

Function 
Supported 
Platforms 

Throughput Year 

CAST Inc. SHA-1 ASIC/FPGA 6.24 Mbps/MHz 
October 
2007 

CAST Inc. SHA-256 ASIC/FPGA 7.75 Mbps/MHz 
October 
2007 

HDL Design 
House 

SHA-1 ASIC/FPGA/SoC 6.4 Mbps/MHz 
December 
2002 

Helion 
Technology 
Limited 

SHA-1 only  

SHA-256 only  

MD5 only  

Dual-mode 
(selectable SHA-
1 and SHA-256)  

Dual-mode 
(selectable SHA-
1 and MD5)  

FPGA 

SHA-1: 6.24 Mbps/MHz 

SHA-256: 7.75 Mbps/MHz 

MD5: 7.75 Mbps/MHz 

July 2005 

Helion 
Technology 
Limited 

Supports  

MD5,  

SHA-1,  

SHA 224 and 
SHA-256  

hash algorithms 

FPGA 

SHA-1: 0.201 Mbps/MHz 

SHA-224: 0.16 Mbps/MHz 

SHA-256: 0.16 Mbps/MHz 

MD5: 0.31 Mbps/MHz 

July 2005 

Aldec, Inc. SHA-1 FPGA - 2006 

Ocean Logic 
Pty Ltd 

SHA-256 FPGA/ASIC 

6.325 Mbps/MHz for ASIC 
0.18 u process  

6.32 Mbps/MHz for Xilinx 
Virtex E-8 

6.96 Mbps/MHz for Xilinx 
Virtex II-5 

2005 

 

 

Ocean Logic 
Pty Ltd 

 

SHA-1 

 

FPGA/ASIC 

6.55 Mbps/MHz for ASIC 0.18 
u process  

5.5 Mbps/MHz for Xilinx 
Virtex E-8 

6.196 Mbit/s for Xilinx Virtex 
II-5 

 

 

2005 

Sci-worx SHA-1 FPGA 6.24 Mbps/MHz  
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CHAPTER III 

DESIGN OF HASH PROCESSOR 

3.1 DESIGN ON FPGA  

FPGAs are digital integrated circuits which contain configurable logic 

blocks and configurable interconnects between these logic blocks [28]. These 

devices can be programmed by design engineers to perform a vast variety of 

tasks. The “field programmable” portion of the FPGA’s name refers to the fact 

that its programming takes place in the field [29]. This means that FPGAs are 

programmed in the laboratory or the function of an FPGA device which is part of 

a higher system can be modified easily while it is resident in the system. The 

general architecture of an FPGA device is shown below in Figure 3-1: 

 

Figure 3-1 FPGA  Architecture [28] 
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When FPGAs are first seen in the market in the mid-1980s they were 

mostly used to implement medium complexity state machines and very limited 

data processing tasks. During the early 1990s FPGAs started to be used in the 

telecommunications and networking areas which involve processing large blocks 

of data due to the increased size and complexity. Towards the end of the 1990s 

consumer, industrial and automotive applications are added to the areas which 

FPGAs are used.  

FPGAs are often used to prototype ASIC designs or to provide a 

hardware platform on which to verify the physical implementation of new 

algorithms. However their low development cost and short time to market mean 

that they are increasingly finding their way into final products.  

3.1.1 CONFIGURING FPGAs 

FPGAs can be configured in two ways: in the first case case hardware 

description languages (HDL) are used to describe the behavior of the circuit and 

than this description are converted to the gate level netlist. FPGA is programmed 

with that netlist. This illustrated below in Figure 3-2. 

 

Figure 3-2 HDL Based FPGA Design Flow  
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In the second case the desired schematic is designed and then converted 

to gate level netlist and FPGA is programmed with that netlist. and FPGA is 

programmed with that netlist. This illustrated below in Figure 3-3. 

 

Figure 3-3 Schematic Based FPGA Design Flow 

As designs grew in size and complexity, schematic based design flows 

ran out of stream. Visualizing, capturing, debugging, understanding and 

maintaining a design at the gate level of abstraction became increasingly difficult 

inefficient and time consuming for large designs. Thus designers preferred 

following HDL based design flow.  
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Using HDLs the functionality of a digital circuit can be described at 

different levels of abstraction. This illustrated below in Figure 3-4: 

 

Figure 3-4 Different Levels of Abstraction 

As seen in Figure 3-4, the lowest level of abstraction, the gate level, refers to the 

ability to describe the circuit as a netlist of primitive logic gates and functions. 

The functional level of abstraction is the ability to describe a function using 

Boolean equations. For example; with signals F, A, B and SELECT, the function 

of a 2:1 multiplexer can be captured as follows:  

))(()( BANDSELECTNOTORAANDSELECTF =  

The functional level of abstraction also encompasses register transfer level (RTL) 

representations. RTL concept can be described as follows: consider a design 

formed from a collection of registers linked by combinational logic. These 

registers are often controlled by a common clock signal assuming that we have 

already declared two signals CLOCK and CONTROL and a set of registers 

REGA, REGB, REGC and REGD. Then an RTL type statement might look 

something like the following: 
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  when clock rises 

   if CONTROL == “1”  

    then REGA = REGB AND REGC 

    else REGA = REGB OR REGD 

   end if; 

  end when; 

The highest level of abstraction is known as behavioral which refers to the ability 

to describe the behavior of a circuit using abstract constructs like loops and 

processes. This also includes using algorithmic elements like adders and 

multipliers in equations.  

In this study, VHDL is used as a hardware description language to 

configure the FPGA. VHDL stands for VHSIC Hardware Description Language. 

VHSIC is itself an abbreviation for Very High Speed Integrated Circuits, an 

initiative funded by the United States Department of Defense in the 1980s that 

led to the creation of VHDL. A fundamental motivation to use VHDL is that 

VHDL is a standard, technology/vendor independent language, and is therefore 

portable and reusable. The summary of the VHDL design flow is illustrated 

below in Figure 3-5. 

 

Figure 3-5 VHDL Design Flow Summary [28] 
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The design is started by writing the VHDL code, which is saved in a file with the 

extension .vhd. Then the synthesis phase comes, the first step in the synthesis 

process is compilation. Compilation is the conversion of the high-level VHDL 

language, which describes the circuit at the RTL level, into a netlist at the gate 

level. The second step is optimization, which is performed on the gate-level 

netlist for speed or for area. At this stage, the design can be simulated. Finally, 

the physical layout of the FPGA chip is generated by means of a place and-route 

(fitter) software and then FPGA is configured by a programming hardware. 

3.2 HASH PROCESSOR IMPLEMENTATION 

In this study SHA-1 and SHA-256 hash functions are implemented in a 

general processor structure. The design is fully described and captured using a 

hardware description language named VHDL and implemented on Xilinx FPGA. 

The aim is to follow all the steps in a digital hardware design flow and implement 

the hash functions in a processor structure rather than in classical form. 

The first step in a digital hardware design process is to determine the 

design methodology that will be followed in order to satisfy the specifications 

determined. In this study, the aim is to implement the SHA-1 and SHA-256 hash 

functions in a processor structure. Thus as a first step, processor design on FPGA 

concept is examined and the design modules that are going to be implemented are 

determined. There are generally two types of processors: general purpose 

processors and dedicated processors [30]. General purpose processors such as 

Pentium CPU can perform different tasks under the control of software 

instructions. General purpose processors are used in all personal computers. 

Dedicated processors on the other hand are designed to perform one specific task. 

Dedicated processors are usually much smaller and not as complex as general 

purpose processors. However they are used in every smart electronic device such 

as TVs, cell phones, microwave ovens etc. The designed hash processor can be 

considered as a general purpose processor. The logic circuit of a processor can be 
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divided into two parts: the datapath and the control unit. The datapath is 

responsible for the actual execution of all data operations performed by the 

processor such as the addition of two numbers. Even though the datapath is 

capable of performing all the data operations of the processor, it can not however 

do it on its own. In order for the datapath to execute the operations automatically 

the control unit is required. The control unit is a finite state machine (FSM) 

because it is a machine that executes by going from one state to another that there 

are only a finite number of states for the machine to go. A simple block diagram 

of a processor is shown below in Figure 3-6. 

 

Figure 3-6 Block Diagram of a Processor 

The datapath usually contains an arithmetic logic unit (ALU) and registers for 

temporary storage of the data. Additionally, a program memory to hold the 

instructions that are going to be run is a very important part of a processor. As a 

consequence of these it is decided that the hash processor will contain a control 

unit, a program memory and a datapath. The internal structure of the datapath, 

control unit and program memory are determined according to the properties of 

hash functions SHA-1 and SHA-256 and the details of the design will be given in 

parts 3.2.2 and 3.2.3 

The design modules are designed and verified using Xilinx ISE and 

ModelSim. The hardware verification tests are applied on the ML402 
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development board [31] The implementation is done for Xilinx’s Virtex4 series 

XC4VSX35-FF668-10 FPGA [32] which the development board includes. 

3.2.1 RESOURCES USED IN THE DESIGN 

The software resources used in this study is listed below in Table 3-1. 

Table 3-1 Software Resources Used in the Design 

Tools / Package Usage 

Xilinx ISE 7.1 
Xilinx integrated synthesis 
and implementation tool 

ModelSim XE III 6.0a Simulation tool 

Microsoft Visual Studio .NET 2003 .NET platform 

 

VHDL description of the hash processor is written and synthesized using 

Xilinx ISE 7.1. This software is also used for implementation of the design and 

configuring the FPGA with the generated netlist. To verify the generated VHDL 

design description, and simulate the design, ModelSim XE III 6.0a is used.  

The graphical user interface is designed in Microsoft Visual Studio 

.NET 2003 platform. The input text and the program that is going to be run in 

hash processor are sent to the hardware test platform in RS232 format using the 

control software developed on this platform. 

The hash processor VHDL description is tested and verified on the 

hardware test platform. All of the hardware tools used to test the design through 

out this study is summarized in Table 3-2. 

 

Table 3-2 Used Hardware for Verification 

Hardware Usage 

ML402 Development kit  

Xilinx Platform Cable USB Programmer over JTAG port 

Test Computer User interface software runs on 
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ML402 Development Kit [31] constitutes the hash processor’ s hardware 

test platform. ML402 development kit includes Xilinx Virtex-4 series 

XC4VSX35-FF668-10 FPGA. The FPGA is configured using the Xilinx’s 

Platform Cable USB [33]. This programmer is high-speed download cable that 

configures or programs all Xilinx FPGA, CPLD, ISP PROM, and System ACE 

MPM devices. The test hardware specifications are given in Appendix C. 

Hardware test platform setup is presented in Chapter 4.  

3.2.2 HASH PROCESSOR ARCHITECTURE AND INSTRUCTION SET 

In this study, for the implementation of the hash functions SHA-1 and 

SHA-256, a processor structure is proposed. When determining the modules that 

will constitute the hash processor, properties of SHA-1 and SHA-256 hash 

functions are taken into account. 

Hash processor designed in this study is composed of the following 

modules listed: 

� Control Unit 

� Datapath 

o Message Expansion Block 

o Constants Rom 

o Register File 

o ALU 

� Program Memory 

� UART Interface 

Controller, datapath and program memory are the main blocks of a processor. 

The datapath generally contains a register file and an arithmetic logic unit in 

order to handle the arithmetic operations required. However, in the proposed 

architecture, datapath includes two more modules, a constants rom block and a 

message expansion block which are designed in order to satisfy some special 
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requirements of the hash functions SHA-1 and SHA-256. The general block 

diagram of the hash processor is shown below in Figure 3-7. 

 

Figure 3-7 Hash Processor General Block Diagram 

After determining the modules and interaction between these modules, 

the first thing that is going to be done is to examine the hash functions in detail to 

develop special instructions. These instructions are given in Table 3-3:  

 

Table 3-3 Hash Processor Instructions 

Instruction 
Mnemonic & 

Opcode 

 
Machine Code 

 
Brief Description 

LDA loc 0000 000000000000000000000000000xxxxx 
Load accumulator 

with the contents of 
the memory location 

AND loc 1001 000000000000000000000001001xxxxx 
AND accumulator 

with the contents of 
the memory location 

ADD loc 0010 000000000000000000000000010xxxxx ADD the contents of 
the memory location 
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Instruction 
Mnemonic & 

Opcode 

 
Machine Code 

 
Brief Description 

to accumulator 

SUB loc 0011 000000000000000000000000011xxxxx 
SUB the contents of 
the memory location 
from accumulator 

JMPP addr  0110 000000000000000000000000110xxxxx 
Jump to address if the 
content of the acc is 
positive 

STA loc 1000 000000000000000000000001000xxxxx 
Store accumulator to 
memory location 

JMPZ addr 1111 000000000000000000000001111xxxxx 
Jump to address if the 
content of the acc is 
zero 

SHA1 0001 000000000000000000000000001xxxxx 

generates the 
necessary control 
signals for the 
datapath to make one 
step SHA-1 
calculation 

SHA2 1010 000000000000000000000001010xxxxx 

generates the 
necessary control 
signals fort he 
datapath to make one 
step SHA-256 
calculation 

SRGF1 1011 000000000000000000000001011xxxxx 

stores the intermediate 
hash values of the 
SHA1 algorithm to the 
register file 

SRGF2 1101 000000000000000000000001101xxxxx 

stores the intermediate 
hash values of the 
SHA-256 

algorithm to the 
register file 

RRGF1 1100 000000000000000000000001100xxxxx 

reads the intermediate 
hash values of the 
SHA-1 algorithm from 
the register file 

RRGF2 1110 000000000000000000000001110xxxxx 
reads the intermediate 
hash values of the 
SHA-256 algorithm 
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Instruction 
Mnemonic & 

Opcode 

 
Machine Code 

 
Brief Description 

from the register file. 

HALT 0111 000000000000000000000000111xxxxx 
terminates the 
execution of the 
processor 

 

The instructions given in Table 3-3 are determined for SHA-1 and SHA-

256 hash functions as a starting point and can be extended for other hash 

functions easily. 

3.2.3 HASH PROCESSOR MODULES 

3.2.3.1 CONTROL UNIT 

Control unit is the main controller of the hash processor. It is mainly a 

finite state machine that generates the necessary control signals for the datapath. 

As an addition, the control unit has UART interface that enables communication 

with a PC’ s serial port. The input output signals of the control unit are shown 

below in Table 3-4: 

 

Table 3-4 Input Output Signals of the Control Unit 

Port  name Direction Description 

clock input 100 MHz clock signal 

reset input global reset signal 

input input 32-bit input to the controller 

round output 7-bit output for the datapath. Holds the hash 
operation round number 

RFWe output Single bit output for the datapath. Enables 
datapath to write to the registerfile 

Mwe output Single bit output for the datapath. Enables 
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Port  name Direction Description 

datapath to write to the message ram. 

ALUe output Single bit output for the datapath. Enables the 
ALU in the datapath 

RFr1e output Single bit output for the datapath. enables the 
first register in the register file to read its content 

RFr2e output Single bit output for the datapath. enables the 
second register in the register file to read its 
content 

RFr3e output Single bit output for the datapath. enables the 
third register in the register file to read its 
content 

RFr4e output Single bit output for the datapath. enables the 
fourth register in the register file to read its 
content 

RFr5e output Single bit output for the datapath. enables the 
fifth register in the register file to read its content 

RFr6e output Single bit output for the datapath. enables the 
sixth register in the register file to read its 
content 

RFr7e output Single bit output for the datapath. enables the 
seventh register in the register file to read its 
content 

RFr8e output Single bit output for the datapath. enables the 
eight‘th register in the register file to read its 
content 

RFr1wa output 4 bit output for the datapath. Holds the address 
of the register to write to the first input of the 
registerfile 

RFr2wa output 4 bit output for the datapath. Holds the address 
of the register to write to the second input of the 
registerfile 

RFr3wa output 4 bit output for the datapath. Holds the address 
of the register to write to the third input of the 
registerfile 

RFr4wa output 4 bit output for the datapath. Holds the address 
of the register to write to the fourth input of the 
registerfile 

RFr5wa output 4 bit output for the datapath. Holds the address 
of the register to write to the fifth input of the 
registerfile 
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Port  name Direction Description 

RFr6wa output 4 bit output for the datapath. Holds the address 
of the register to write to the sixth input of the 
registerfile 

RFr7wa output 4 bit output for the datapath. Holds the address 
of the register to write to the seventh input of the 
registerfile 

RFr8wa output 4 bit output for the datapath. Holds the address 
of the register to write to the eight’th input of the 
registerfile 

RFr1a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the first 
output of the registerfile  

RFr2a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the second 
output of the registerfile 

RFr3a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the third 
output of the registerfile 

RFr4a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the fourth 
output of the registerfile 

RFr5a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the fifth 
output of the registerfile 

RFr6a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the sixth 
output of the registerfile 

RFr7a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the seventh 
output of the registerfile 

RFr8a output 4 bit output for the datapath. Holds the address 
of the register to read the contents to the eight’th 
output of the registerfile 

ALUsel output 3 bit output for the datapath. Tells the ALU 
which arithmetic operation to carry out 

A output 32-bit output for the datapath and program 
memory. Holds the value of the accumulator. 

memory_data output 32-bit output for the datapath. Holds the content 
of the addressed location of the program 
memory. 
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Port  name Direction Description 

MemWr output Single bit output for the program memory. 
Enables the program memory for write operation 

Memory_address output 5-bit output for the program memory. Holds the 
address of the memory location to read from or 
to write to. 

 

Control unit includes two 32 bit registers, accumulator A and, program counter 

PC: The operation of the controller is best explained by describing the states of 

the controller in detail. The states of the controller are: 

� s_fill: This is the controller’s beginning state. This state waits for the 

serial buffer to be filled with data. When the serial buffer is filled with 

data, the program memory is filled with the data received. This operation 

is handled by the sub states in this state. The sub states are: 

o s_init: This is the initial state of the filling operation. If the serial 

buffer is filled, the serial data is copied to the buffer “data” and 

controller passes to the next state s_fill_1, otherwise it waits in this 

state. The value of the 5 bit variable instr_count is set to “00000”. 

o s_fill_1: In this state last 32 bits of the serially received data is 

copied to the accumulator. The address of the program memory is 

set to the value of the instr_count. Next state from this state is 

s_fill_2. 

o  s_fill_2: In this state, MemWr signal is set in order to store the 

value in the accumulator to the program memory. Next state is s-

fill_3.  

o s_fill_3: In this state, MemWr signal is deserted in order to avoid 

uncontrolled write operations to the memory. The variable 

instr_count is incremented. The contents of the buffer “data” is 

shifted to right by 32 bits. If the value of the variable instr_count 

reaches to “11111” next state is s_end, else next state is s_fill_1. 

o s_end: In this sate, only the next state is determined to be s_start. 
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� s_start: In this state controller begins its normal operation. The address of 

the program memory is set to the value of the program counter. Next state 

is the s_fetch state.  

� s_fetch: In this state the value of the instruction register is set to the value 

read from the program memory. The value of the program counter is 

incremented. Next state is the s_decode state.  

� s_decode: In this state, address of the program memory is set to the first 

five bits of the instruction register. Last four bits of the instruction register 

defines the next state to go. These last four bits are the opcodes and are 

shown below in Table 3-5. 

Table 3-5 Opcodes 

opcode state 

0000 load 

0001 s_sha1 

0010 s_add 

0011 s_sub 

0100 s_input 

0101 s_sha1_out 

0110 s_jpos 

0111 s_halt 

1000 s_store 

1001 s_and 

1010 s_sha2 

1011 s_store_regf_1 

1100 s_read_regf_1 

1101 s_store_regf_2 

1110 s_read_regf_2 

1111 s_jz 

 

� s_load: In this state accumulator is load with the value read from the 

program memory. Next state is the state s_start. 
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� s_add:In this state the value in the accumulator and the value read from 

program memory is added and the result is stored in the accumulator. 

Next state is the state s_start. 

� s_and: In this state the value in the accumulator is anded with the value 

read from the program memory and the result is stored back in the 

accumulator. Next state is the state s_start. 

� s_sub: In this state the value read from the program memory is subtracted 

from the value in the accumulator and the result is stored back in the 

accumulator. Next state is the state s_start. 

� s_input: In this state the value input to the controller is stored in the 

accumulator. Next state is the state s_start. 

� s_store: In this state the value in the accumulator is stored in the program 

memory. Next state is the state s_store2. 

� s_store2: In this state the value of the signal Memwr which is set to ‘1’ in 

the previous state is set to ‘0’ Next state is s_start. 

� s_jpos: In this state, if the value in the accumulator is positive, program 

counter is set to the first five bits of the instruction register, thus jumped 

to the memory location pointed by first five bits of the instruction register. 

Next state is the state s_start. 

� s_jz: In this state, if the value in the accumulator is zero, program counter 

is set to the first five bits of the instruction register, thus jumped to the 

memory location pointed by first five bits of the instruction register. Next 

state is the state s_start. 

� s_halt: In this state the execution of the controller is terminated.  

� s_sha1: In this state, the control signals necessary for the datapath to 

execute one round of SHA-1 operation are generated. Next state is the 

state s_start. 

� s_sha2: In this state, the control signals necessary for the datapath to 

execute one round of SHA-2 operation are generated. Next state is the 

state s_start. 
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� s_store_regf_1: In this state the chaining variables related to the SHA-1 

hash function are stored in the register file. Next state is the state s_start. 

� s_store_regf_2: In this state the chaining variables related to the SHA-256 

hash function are stored in the register file. Next state is the state s_start. 

� s_read_regf_1: In this state the values of the chaining variables related to 

the SHA-1 hash function are read from the register file. Next state is the 

state s_start. 

� s_read_regf_2: In this state the values of the chaining variables related to 

the SHA-256 hash function are read from the register file. Next state is the 

state s_start. 

After these explanations the state diagram of the controller is shown below in 

Figure 3-8. 
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Figure 3-8 Controller State Diagram 
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3.2.3.2 PROGRAM MEMORY 

Program memory is designed as a 32x32 RAM to hold the program 

instructions. The input output signals of the program memory are shown below in 

Table 3-6.  

Table 3-6 Input Output Signals of the Program Memory 

Port Name Direction Description 

clk input Clock input 

we input Single bit input used for enabling write 
operation 

a input 5-bit input used for addressing the RAM 

di input 32-bit RAM input 

do output 32-bit RAM output 

 

Program memory is synthesized as 32x32 BRAM. The write operation is 

synchronized to the rising edge of the clock input but read operations independent 

of the clock.  

3.2.3.3 DATAPATH 

The general block diagram of the datatapath is shown below in Figure 

3-9.  

 

Figure 3-9 Datapath Architecture 
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Datapath is composed of the modules message expansion block, 

constants ROM, register file and ALU. The connections between these modules 

are described in the following sections in details. The input output signals and the 

definitions of these signals are also given.  

3.2.3.3.1 MESSAGE EXPANSION BLOCK 

This block is responsible of storing the incoming 512-bit message block 

and preparing the message schedule. The input output signals of the message 

block are shown below in Table 3-7. 

 

Table 3-7 Input Output Signals of the Message Expansion Block 

Port Name Direction Description 

clock input Clock input 

reset input Single bit global reset input 

we input 5-bit input used for addressing the RAM 

round input 7-bit input that holds the hash round number 

SEL input 3-bit input holds the value that determines 
which functions to use in order to prepare the 
message schedule 

di input 32-bit RAM input 

do1 output 32 bit RAM output 

 

Message expansion block is composed of a 80x32 RAM to store the incoming 

512 bit message block and some processes to generate the message schedule. For 

the SHA-1 hash function, 80 message words are quired, for the SHA-256 hash 

function 64 message words are required, so the size of the RAM is determined to 

be 80x32. In the first process according to the SEL signal and the round number 

addresses of the message words that will be used to prepare the message schedule 

are generated. In the next two processes message schedule is prepared according 

to the selected hash function. Message expansion block is synthesized as 4 32x80 

BRAMs and some extra logic.  
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3.2.3.3.2 CONSTANTS ROM 

This module holds the constant values required by the hash function 

SHA-1 and SHA-256. There are 64 different constants used in the 64 rounds of 

the SHA-256 hash function where there are four constants used in the 4x20 

rounds of the SHA-1 hash function. Thus this rom block is 80x64 bits wide. Last 

32 bits of a ROM entry holds one SHA-256 constant and first 32 bits hold one 

SHA-1 constant. The input output signals of the ROM block are shown below in 

Table 3-8. 

Table 3-8 Input Output Signals of the ROM Block 

Port Name Direction Description 

clock input Clock input 

reset input Single bit global reset input 

SEL input 3-bit input that holds the value that determines 
which hash function’ s constants to read.  

address input 7 bit input that holds the rom address 

K output 32 bit rom output 

 

ROM block is synthesized as 80x32 ROM structure.  

3.2.3.3.3 REGISTER FILE 

Register file is the module that holds the chaining variables of the hash 

functions SHA-1 and SHA-256. There are five chaining variables for SHA-1 hash 

function and eight chaining variables for the SHA-256 hash function. There are 

total 16 registers in the register file. Three registers are intentionally left blank in 

order to be used for accumulator or memory data coming from the program 

memory when needed. The input and output signals of the register file are shown 

below in Table 3-9. 

 

Table 3-9 Input Output Signals of the Register File  

Port  name Direction Description 

clock input clock signal 
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Port  name Direction Description 

reset input global reset signal 

RFWe input Single bit input. Enables the register file for 
write operation 

RFr1e input Single bit input. Enables the read operation from 
the first output of the register file 

RFr2e input Single bit input. Enables the read operation from 
the second output of the register file 

RFr3e input Single bit input. Enables the read operation from 
the third output of the register file 

RFr4e input Single bit input. Enables the read operation from 
the fourth output of the register file 

RFr5e input Single bit input. Enables the read operation from 
the fifth output of the register file 

RFr6e input Single bit input. Enables the read operation from 
the sixth output of the register file 

RFr7e input Single bit input. Enables the read operation from 
the seventh output of the register file 

RFr8e input Single bit input. Enables the read operation from 
the eight’ th output of the register file 

RFr1wa input 4-bit input. Determines the address of the 
register to which the value in the first input will 
be written 

RFr2wa input 4-bit input. Determines the address of the 
register to which the value in the second input 
will be written 

RFr3wa input 4-bit input. Determines the address of the 
register to which the value in the third input will 
be written 

RFr4wa input 4-bit input. Determines the address of the 
register to which the value in the fourth input 
will be written 

RFr5wa input 4-bit input. Determines the address of the 
register to which the value in the fifth input will 
be written 

RFr6wa input 4-bit input. Determines the address of the 
register to which the value in the sixth input will 
be written 

RFr7wa input 4-bit input. Determines the address of the 
register to which the value in the seventh input 
will be written 
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Port  name Direction Description 

RFr8wa input 4-bit input. Determines the address of the 
register to which the value in the eight’ th input 
will be written 

RFr1a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
first output of the register file 

RFr2a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
second output of the register file 

RFr3a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
third output of the register file 

RFr4a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
fourth output of the register file 

RFr5a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
fifth output of the register file 

RFr6a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
sixth output of the register file 

RFr7a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
seventh output of the register file 

RFr8a input 4-bit input. Determines the address of the 
register from which the value will be read to the 
eight’ th output of the register file 

RFin1 input 32-bit input to the register file 

RFin2 input 32-bit input to the register file 

RFin3 input 32-bit input to the register file 

RFin4 input 32-bit input to the register file 

RFin5 input 32-bit input to the register file 

RFin6 input 32-bit input to the register file 
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Port  name Direction Description 

RFin7 input 32-bit input to the register file 

RFin8 input 32-bit input to the register file 

RFr1 output 32-bit output of the register file 

RFr2 output 32-bit output of the register file 

RFr3 output 32-bit output of the register file 

RFr4 output 32-bit output of the register file 

RFr5 output 32-bit output of the register file 

RFr6 output 32-bit output of the register file 

RFr7 output 32-bit output of the register file 

RFr8 output 32-bit output of the register file 

 

The register file works as follows, at the beginning of each hash round the value 

of the chaining variables are read from the register file, then at the end of the each 

hash round, the value of the chaining variables is written to the corresponding 

registers in the register file. This operation continues until hash computation 

ends. 

3.2.3.3.4 ALU 

Arithmetic logic unit is the module which handles all the arithmetic, 

logic calculations instructed by the controller. This part is the hearth of the hash 

calculation process. The logic functions which are specific to the hash functions 

SHA-1 and SHA-256 are all implemented in this module. The input output 

signals of this module are shown below in Table 3-10.  
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Table 3-10 Input Output Signals of the ALU 

Port Name Direction Description 

clock input Clock input 

reset input Single bit global reset input 

ALUe input Single bit input that enables the ALU 

round input 7 bit input that holds the number of the sha 
round 

SEL input 3-bit input that holds the value that determines 
which arithmetic logic computation to execute 

ACC_in input 32-bit input which holds the accumulator 
value. 

Mem_data input 32-bit input that holds the values read from the 
program memory 

A input First chaining variable for SHA-1 or SHA-256 
hash function 

B input Second chaining variable for SHA-1 or SHA-
256 hash function 

C input Third chaining variable for SHA-1 or SHA-
256 hash function 

D input Fourth chaining variable for SHA-1 or SHA-
256 hash function 

E input Fifth chaining variable for SHA-1 or SHA-256 
hash function 

F input Sixth chaining variable for SHA-256 hash 
function 

G input Seventh chaining variable for SHA-256 hash 
function 

H input Eight’ th chaining variable for SHA-256 hash 
function 

K input Constant value read from Constants ROM 

W input Message word coming from the message 
computation block 

ALU_sign output The sign of the result of the operation 
executed by ALU (if positive ‘1’, if zero ‘0’) 

ALU_out output The output of the operation executed by ALU 

A_out output First chaining variable after one round hash 
calculation 

B_out output Second chaining variable after one round hash 
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Port Name Direction Description 

calculation 

C_out output Third chaining variable after one round hash 
calculation 

D_out output Fourth chaining variable after one round hash 
calculation 

E_out output Fifth chaining variable after one round hash 
calculation 

F_out output Sixth chaining variable after one round hash 
calculation 

G_out output Seventh chaining variable after one round 
hash calculation 

H_out output Eight’ th chaining variable after one round 
hash calculation 

 

ALU selects which calculation to execute according to the instruction decoded by 

the control unit and input to the ALU as the SEL signal. The operation selection 

according to the input SEL is shown below in Table 3-11. 

 

Table 3-11 ALU Operation Selection 

SEL Operation 

000 One round SHA-1 operation 

001 One round SHA-256 operation 

010 Addition operation 

011 Subtraction operation 

100 And operation 

101 Or operation 

 

3.2.3.4 UART MODULE 

The UART module is composed of UART receiver, UART baud 

generator and UART transmitter sub modules. The UART module provides a 

serial interface between the control unit and the external environment via 
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sdata_in pin. Serial data sent in RS-232 format is received at each positive edge 

of the clock and received bytes are put into the receive shift register. 

The UART receive module is used to get the instructions to be executed 

by the controller and the 512 bit message blocks from the user.  

The UART baud generator module supports six different baud rates. 

They are shown below in Table 3-12. In this study 38400 Hz baud rate is selected 

for communication. 

 

Table 3-12 UART Baud Rate Selection Table  

Baud Rate Selection Register Generated Clock Frequency 

“0110” 38400 Hz 

“0101” 19200 Hz 

“0100” 9600 Hz 

“0011” 4800 Hz 

“0010” 2400 Hz 

“0001” 1200 Hz 
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CHAPTER IV 

HARDWARE REALIZATION OF HASH PROCESSOR 

5.1 HASH PROCESSOR OVER AN FPGA 

In this study the aim is to implement the designed hash function 

processor on FPGA. For this purpose Xilinx ML402 Evaluation Platform is used. 

This platform is a development kit that has several features and includes the 

following components (the numbers represented in parenthesis in the below list 

are the numbers which indicate the components on Figure 5-1 and Figure 5-2 

given below.): 

� Virtex-4 FPGA XC4VSX35-FF668-10 (1) 

� 64 MB DDR SDRAM, 32-bit interface running up to 266 MHz data rate 

(2) 

� One differential clock input pair and differential clock output pair with 

SMA connectors (3) 

� One 100 MHz clock oscillator (socketed) plus one extra open 3.3V clock 

oscillator socket (4) 

� General purpose DIP switches (ML401/ML402 platform), LEDs, and 

push buttons (6, 7, 8, 9) 

� Expansion header with 32 single-ended I/O, 16 LVDS capable differential 

pairs (10) 
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� 14 spare I/O’s shared with buttons and LEDs, power, JTAG chain 

expansion capability, and IIC bus expansion (10) 

� Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and 

microphone-in (mono) jacks (11) 

� RS-232 serial port (12) 

� 16-character x 2-line LCD display (13) 

� 4 Kb IIC EEPROM (14) 

� VGA output with 50 MHz / 24-bit video DAC (140 MHz on 

ML402/ML403) (15) 

� PS/2 mouse and keyboard connectors (16) 

� System ACE™ CompactFlash configuration controller with Type I/II 

CompactFlash connector (17) 

� ZBT synchronous SRAM (9 Mb) on 32-bit data bus with four parity bits) 

(18) 

� Intel StrataFlash (or compatible) linear flash chips (8 MB) (19) 

� 10/100/1000 tri-speed Ethernet PHY transceiver (21) 

� USB interface chip (Cypress CY7C67300) with host and peripheral ports 

(22) 

� Xilinx XC95144XL CPLD to allow linear flash chips to be used for 

FPGA configuration (20) 

� Xilinx XCF32P Platform Flash configuration storage device (23) 

� JTAG configuration port for use with Parallel Cable III or Parallel Cable 

IV cable (24) 

� Onboard power supplies for all necessary voltages (25) 

� 5V @ 3A AC adapter (26) 

� Power indicator LED (27) 
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The front side of the development kit is shown below in Figure 5-1. 

 

Figure 5-1 Xilinx ML402 Evaluation Platform Front Side 

The back side of the development kit is shown below in Figure 5-2. 

 

Figure 5-2 Xilinx ML402 Evaluation Platform Back Side 



 

 
 

77 

Xilinx ML402 contains Xilinx’s Virtex4 series XC4VSX35 FPGA [20]. 

Virtex-4 FPGAs deliver breakthrough performance at the lowest cost and offer a 

compelling alternative to ASICs. The development board also has RS-232 serial 

port which makes communication with peripherals possible.  

Hash processor is fully described using VHDL on Xilinx ISE software. 

Target FPGA also belongs to the same company. This is an advantage since 

Xilinx ISE software provides full support for all the code-to-FPGA processes for 

Xilinx FPGAs. The steps in the implementation process are described below: 

 

1. Synthesis: In the synthesis process the syntax of the design is 

checked and the written VHDL descriptions are converted to the 

common constructs on the FPGA such as multiplexers, flip flops, 

BRAMs etc.  

2. Implement design: Before implementation, the constraint file is 

written to define hardware I/O connections. The implementation 

constraints file includes timing constraints, package pin 

assignments and area constraints. Implementing the design 

means translating, mapping, placement and routing of the design 

into the targeted Xilinx device. In this process, logical design file 

generated in the synthesis process, is converted into a native 

circuit description (NCD file). This file contains hierarchical 

components used to develop the design and the Xilinx primitives.  

3. Generate programming file: In order to generate programming 

file, the design should have been implemented for the selected 

FPGA device. This process generates the “.bit” file required to 

program the FPGA.  

4. Configure the device: This process is the process where the 

FPGA is programmed. FPGA is programmed using Xilinx’s 

Platform Cable USB [21]. 

As described above hash processor descriptions are synthesized and implemented 

in the Xilinx ISE software platform. At the end of the synthesis process 
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behavioral simulations of the design is carried out.  After the implementation 

process timing simulations are done, programming file is generated and the 

device is configured using Xilinx’s Platform Cable USB. After the device is 

configured, it is ready to perform hardware tests of the design. The device 

utilization summary of the design after implementation is given below in Table 

5-1. 

 

Table 5-1 Device Utilization Summary for Hash Processor VHDL Code 

Logic Utilization Used Available Utilization 

Number of Slices  2494 15360 16% 

Number of Slices Flip Flops 2793 30720 9% 

Number of 4 input LUTs 3872 30720 12% 

Number of bonded IOBs: 350 450 77% 

Number of 
FIFO16/RAMB16s: 

4 192 2% 

5.2 TEST AND VERIFICATION METHODOLOGY 

The proposed hash function processor is tested and verified in two 

stages. First stage is the verification on the software platform. Second stage is the 

verification on the hardware platform. In both stages the test vectors which are 

published by NIST are used as input messages and the outputs are compared with 

the actual results. For the random inputs, the design is verified by using a 

software named “Advanced Hash Calculator” which is available on internet for 

free. The hash value of the random input is calculated by this software and by the 

proposed design then the results are compared. The snapshot of the “Advanced 

Hash Calculator Software” is shown below in Figure 5-3. 
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Figure 5-3 Advanced Hash Calculator 

To test the design in the software environment the UART module is 

discarded and the program and message block is directly inputted to the design. 

The test and verification of the design in the software platform is done by 

behavioral and timing simulations.  In order to perform behavioral and timing 

simulations, test bench is created for the top module. In the test bench necessary 

input signals for the design is provided and the outputs are compared with the 

expected results. ModelSim XE III 6.0a is used as a HDL based simulation and 

debug environment. ModelSim can be initialized from the Xilinx Project 

Navigator. When the designer launches ModelSim using Xilinx design 

environments, the wave window appears. It contains waveforms for all input and 

output signals of the top-level design module. The output waveforms are 

observed in this window and desired analyses can be carried out.  

The test and verification of the design on the hardware is done after the 

FPGA is configured. The input message and the program are entered to the 

design via UART interface from a PC by means of a simple user interface. The 
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message padding operation is done by this user interface software. The snapshot 

of the user interface is shown below in Figure 5-4.  

 

Figure 5-4 Hash Processor User Interface 

5.3 TEST AND SIMULATION RESULTS 

The designed hash processor is tested with different inputs. The program  

which is used for SHA-1 calculation is shown below in Table 5-2. 

 

Table 5-2 SHA-1 Calculation Program  

Instruction Description 

 

LDA 
1E:Loop 

Load accumulator A with the content of the memory location 1E 
(the content of the memory location is initially zero) 

RRGF1 
read the intermediate hash values of the SHA-256 algorithm from 
the register file. 

SHA1 generate the necessary control signals fort he datapath to make 
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Instruction Description 

one step SHA-256 calculation 

SRGF1 
store the intermediate hash values of the SHA-256 algorithm to 
the register file 

LDA 1E Load accumulator A with the content of the memory location 1E 

 

ADD 1D 

ADD the content of the memory location 1D to the value in  
accumulator A 

(the content of the memory location 1D is one) 

STA 1E Store the content of the accumulator A to the memory location 1E 

 

LDA 1F 

Load accumulator A with the content of the memory location 
1F(the content of the memory location 1F is 80) 

SUB 1E 
Subtract the content of the memory location 1E from the value in 
the accumulator A  

JMPZ 09 
Jump to Halt if the result of the previous subtraction is zero (ie 80 
round is completed) 

 

JMPP 00 

Jump to Loop is the result of the previous subtraction is positive 
(ie 80 round is not completed) 

HALT:Halt Terminate the execution 

  

The program which is used for SHA-256 calculation is shown below in Table 

5-3. 

 

Table 5-3 SHA-256 Calculation Program  

Instruction Description 

 

LDA 
1E:Loop 

Load accumulator A with the content of the memory location 1E 
(the content of the memory location is initially zero) 

RRGF2 
read the intermediate hash values of the SHA-256 algorithm from 
the register file. 

SHA2 
generate the necessary control signals fort he datapath to make 
one step SHA-256 calculation 

SRGF2 
store the intermediate hash values of the SHA-256 algorithm to 
the register file 

LDA 1E Load accumulator A with the content of the memory location 1E 

 

ADD 1D 

ADD the content of the memory location 1D to the value in  
accumulator A 

(the content of the memory location 1D is one) 
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Instruction Description 

STA 1E Store the content of the accumulator A to the memory location 1E 

 

LDA 1F 

Load accumulator A with the content of the memory location 
1F(the content of the memory location 1F is 64) 

SUB 1E 
Subtract the content of the memory location 1E from the value in 
the accumulator A  

JMPZ 09 
Jump to Halt if the result of the previous subtraction is zero (ie 64 
round is completed) 

 

JMPP 00 

Jump to Loop is the result of the previous subtraction is positive 
(ie 64 round is not completed) 

HALT:Halt Terminate the execution 

 

In the below Figure 5-5 timing simulation results of the SHA-256 calculation 

with the program in the Table 5-3 is shown. The input vector is the string 

“abc”.This test vector is determined by FIPS 180-2 [2], expected output for the 

first hash variable is: 506e3058. As seen in Figure 5-5 the design generates the 

correct value. The whole hash output is not given as output in timing simulations 

considering the IO restrictions of the selected device.  

 

Figure 5-5 SHA-256 Calculation for Input “abc” 
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In the below Figure 5-6 timing simulation results of the SHA-1 calculation for the 

program given in Table 5-2 is shown. The input vector is the string “abc”.This 

test vector is determined by FIPS 180-2 [2], expected output for the first hash 

variable is: 42541B35. 

 

Figure 5-6 SHA-1 Calculation for Input “abc” 

The hash processor is tested for random inputs too. In the below Figure 5-7, the 

result of the first chaining variable for input “tugba” for SHA-1 calculation is 

given. It is seen that the final value of the first chaining variable is “B3AF9A0B“. 

The first word of the final hash value is calculated as follows:  

 

67452301 + B3AF9A0B = 1AF4BD0C 

 

In order to verify the design the same string “tugba” is input to the AHC 

software. The software is configured for SHA-1 calculation and the output is 

observed. It is seen that both the AHC software and the proposed design produce 

the same outputs.  
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Figure 5-7 SHA-1 Calculation for Input “tugba” 

 

Figure 5-8 SHA-1 Output of AHC for Input “tugba” 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

In this thesis, a hash processor having the capability of performing SHA-

1 and SHA-256 calculations is specified, analyzed and implemented using the 

hardware description language VHDL. The design is also verified on hardware by 

implementing the suggested structure on an FPGA. 

Hash function implementations on hardware seem to be more popular as 

the developments in the communications area continue tremendously. 

Implementing hash functions on hardware is preferred since software 

implementations don’t satisfy the speed, throughput and security requirements of 

the complex communication systems in use today. Hash function 

implementations are used in several fields of information security such as 

providing password authentication, verifying data integrity and generating digital 

signatures for both data origin authentication and verifying the content of the 

document. The hash processor proposed in this study can be used in these 

applications easily. The usage of the processor is flexible, since it has a serial 

communication interface that makes the communication with the external world 

possible.  

The idea of implementing the hash functions SHA-1 and SHA-256 in a 

processor structure rose after a detailed research on present implementations of 

these hash functions in the market and in the literature. Moreover, the designed 

hash function processor has standard UART interface that makes communication 
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with the external units such as a personal computer possible. This provides a 

great flexibility since it enables remote control of the hash function processor. In 

the market and in the literature an implementation that enables serial 

communication with the device has not been found. This communication facility 

is proposed and added in this study. The proposed design is verified on software 

by timing simulations and on hardware by implementing the design on an FPGA. 

For the verification, test vectors announced by NIST are used and seen that the 

design generates the correct hash values. For random inputs which are not in the 

NIST publications “Advanced Hash Calculator (AHC)” software is used. When 

testing hash processor for random inputs, first, AHC software is verified by 

NIST’s test vectors. Then the proposed design is verified by comparing outputs 

generated by the AHC software and the designed processor.  

In order to define an architecture that implements hash functions, the 

computational properties of the hash functions are examined in details. The 

computational properties of the hash functions differ from each other by the 

parameters such as number of rounds, number of constants, message block sizes, 

word sizes and the complex logic and the arithmetic functions being used. In 

present implementations, hash functions are implemented as a combination of 

dedicated modules such as message padding unit, message scheduling unit, hash 

calculation unit and output generation unit. These implementations exhibit higher 

throughput.  

However in this study a different design approach is followed. The 

computational properties of the hash functions are examined in details in order to 

define instructions that are specific to the hash functions and enable performing 

hash operations. Thus a dedicated instruction set for the processor under 

construction has been developed. Hash processor is a 32-bit processor with 

simple instruction set. The instruction set is composed of 14 instructions. The 

instructions are 2 clock cycle instructions. SHA-1 and SHA-256 calculations can 

be completed with 10 instructions. All the instructions are 32-bit words and kept 

in the program memory. This memory is addressed with 5-bit addresses. As an 
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addition, the instruction set of the hash processor can be extended easily to 

include other hash functions which have the same word and block sizes.  

The proposed hash processor consists of the blocks control unit, program 

memory and the datapath which are the blocks that are present in all processors. 

The throughput of the proposed architecture is less than the present 

implementations however the proposed implementation has a serial 

communication interface which makes the design easy to use and consumes less 

area. Additionally, the architecture can be extended easily to include other hash 

functions since the general blocks will not be changed but some extra operations 

will be added to the ALU block for each hash function included.   

The hash function processor described using the hardware description 

language VHDL is implemented on to the Xilinx Virtex4 4vsx35ff668-12 FPGA. 

The design consumes 1247 Configurable Logic Blocks (CLBs) on FPGA. This 

corresponds to the %16 of the FPGA CLBs. The modules of the hash function 

processor are designed in a synthesizable form in order to use the resources of the 

FPGA efficiently. For instance, the program memory and the message RAM are 

designed in an efficient manner such that they are implemented as Block RAMs 

(BRAM) on FPGA instead of consuming flip flops. Simulation results show that 

the throughput of the proposed architecture is 1,37 Mbps with a clock speed of 

12.5 MHz. This is less than the designs present in the market however the 

proposed design provides standard UART communication interface can be 

controlled remotely and consumes less area on the FPGA.  

Existing designs have some advantages such as high speed and high 

throughput however they can not be modified easily to include other hash 

functions. On the other hand, the ALU block which performs the arithmetic and 

the logic calculations can be optimized to improve the speed and the throughput 

of the design. As a future work, with the addition of some new instructions, the 

instruction set of the hash processor can be extended to include other hash 

functions such as SHA-224 and MD5. 
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APPENDIX-A 

SHA-1 AND SHA-256 CONSTANTS 

The constants used by the SHA-1 and SHA-256 are given below in 

Table A-1 and Table A-2. The values in below tables are expressed in hex form. 

 

Table A-1 SHA-1Constants 

Constant SHA-1 round number ‘t’ 

5a827999 0 ≤ t ≤ 19 

6ed9eba1 20 ≤ t ≤ 39 

8f1bbcdc 40 ≤ t ≤ 59 

ca62c1d6 60 ≤ t ≤ 79 

  

Table A-2 SHA-256 Constants 

Constant SHA-256 round number ‘t’ 

428a2f98 0 

71374491  1 

b5c0fbcf 2 

e9b5dba5 3 

3956c25b 4 

59f111f1  5 

923f82a4  6 

ab1c5ed5 7 

d807aa98 8 

12835b01 9 

243185be  10 
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Constant SHA-256 round number ‘t’ 

550c7dc3  11 

72be5d74 12 

80deb1fe 13 

9bdc06a7 14 

c19bf174 15 

e49b69c1 16 

efbe4786 17 

0fc19dc6 18 

240ca1cc 19 

2de92c6f 20 

4a7484aa 21 

5cb0a9dc 22 

76f988da 23 

983e5152 24 

a831c66d 25 

b00327c8 26 

bf597fc7 27 

c6e00bf3 28 

d5a79147 29 

06ca6351 30 

14292967 31 

27b70a85 32 

2e1b2138 33 

4d2c6dfc 34 

53380d13 35 

650a7354 36 

766a0abb 37 

81c2c92e 38 

92722c85 39 
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Constant SHA-256 round number ‘t’ 

a2bfe8a1 40 

a81a664b 41 

c24b8b70 42 

c76c51a3 43 

d192e819 44 

d6990624 45 

f40e3585 46 

106aa070 47 

19a4c116 48 

1e376c08 49 

2748774c 50 

34b0bcb5 51 

391c0cb3 52 

4ed8aa4a 53 

5b9cca4f 54 

682e6ff3 55 

748f82ee 56 

78a5636f 57 

84c87814 58 

8cc70208 59 

90befffa 60 

a4506ceb 61 

bef9a3f7 62 

c67178f2 63 

 

 

 



 

 
 

95 

APPENDIX B 

COMMERCIAL HASH IMPLEMENTATIONS 

B.1 CAST SHA-1 SECURE HASH FUNCTION CORE 

CAST SHA-1 Secure Hash Function Core consists of two main blocks; the SHA1 

Engine Module and the Input Interface Module. The SHA1 Engine Module 

applies the SHA1 loops on a single 512-bit message block, while the Input 

Interface Module performs the message padding. The features of the core are as 

follows: 

� Bit padding is provided.  

� Supported Message lengths multiple of 8-bits.  

� 82 processing cycles per message block.  

� Fully stallable input and output interfaces, ideal for streaming 

applications.  

� Optimized design for ASIC or FPGA implementations.  

� Sophisticated self-checking Testbench (Verilog versions use Verilog 

2001).  

The functional block diagram of the core is given below in Figure B-1. 

 

 

Figure B-1  CAST SHA-1 Secure Hash Function Core Block Diagram 
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B.2 CAST SHA-256 SECURE HASH FUNCTION CORE 

CAST SHA-256 Secure Hash Function Core consists of two main blocks; the 

SHA256 Engine Module and the Input Interface Module. The SHA256 Engine 

Module applies the SHA256 loops on a single 512-bit message block, while the 

Input Interface Module performs the message padding. The features of the core 

are as follows: 

 

� Bit padding is provided.  

� Supported Message lengths multiple of 8-bits.  

� 66 processing cycles per message block.  

� Fully stallable input and output interfaces, ideal for streaming 

applications.  

� Optimized design for ASIC or FPGA implementations.  

� Sophisticated self-checking Testbench (Verilog versions use Verilog 

2001).  

 

The functional block diagram of the core is given below in Figure B-2. 

 

 

Figure B-2  CAST SHA-256 Secure Hash Function Core Block Diagram 
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B.3 HDL DESIGN HOUSE HCR_SHA1  

The HCR_SHA1 is a high performance crypto core family that implements the 

NIST SHA-1 message-digest algorithm. The features of the core are as follows: 

 

� The resolution of the input message is in bits 

� All padding variants are supported in hardware 

� Message block of 512 bits processed in 64 clock cycles 

� Software configurable IP core through ten registers. Fixed 32 bits size of 

all architecture registers 

� 640 Mb/s transfer rate for 100MHz OCP interface variant 

� Input synchronous FIFO with concurrent read/write for input data stream 

� Power down mode operation for low power applications 

� Available in both Verilog and VHDL 

� VITAL 2000 and SystemC behavioral models 

� DFT support implemented 

� SoC integration support 

 

The functional block diagram of the core is shown below in Figure B-3. 

 

Figure B-3  HDL Design House HCR_SHA1 Core Block Diagram 
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B.4 HELION TECHNOLOGY LIMITED SHA-1, SHA-256 AND MD5 

HASHING, FAST (HELION) 

Hellion Technology Limited fast hashing core is capable of performing SHA-1, 

SHA-256 and MD5 hashing. The features of the core are as follows: 

 

� Available in multiple versions  

o SHA-1 only  

o SHA-256 only  

o MD5 only  

o Dual-mode (selectable SHA-1 and SHA-256)  

o Dual-mode (selectable SHA-1 and MD5)  

� Designed specifically for high throughput applications  

� Performs automatic message length calculation and padding insertion  

� Message is input as 32-bit words 

 

Functional block diagram of the core is shown below in Figure B-4. 

 

 

Figure B-4  Hellion Fast Hashing Core Block Diagram 
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B.5 HELION TECHNOLOGY LIMITED SHA-1, SHA-224, SHA-256 

AND MD5 HASHING, TINY WITH HMAC 

Hellion Technology Limited tiny hashing core is capable of performing SHA-1, 

SHA-224, SHA-256 and MD5 hashing. The features of the core are as follows: 

 

� Supports MD5, SHA-1, SHA-224 and SHA-256 hash algorithms  

� Supports Internet Standard HMAC for all four hash algorithms  

� Supports state unload/reload to optimise handling of fragmented message 

streams  

� Choice of 8, 16 or 32-bit data interface widths  

� Highly flexible, low resource hashing solution for lower data rate 

applications  

� Highly optimized for use in Xilinx FPGA technologies  

 

Functional block diagram of the core is shown below in Figure B-5. 

 

 

Figure B-5  Hellion Tiny Hashing Core Block Diagram 

 



 

 
 

100 

B.6 ALDEC INC ALDEC SHA IP CORE 

ALDEC SHA IP CORE has the following features: 

� Byte oriented hash calculation 

� Hash value of 512-bit message is calculated in 81 clock cycles 

� No dead clock cycles 

� Simple interface and timing 

� Fully synchronous design 

Functional block diagram of the core is shown below in Figure B-6. 

 

 

 

Figure B-6  ALDEC SHA IP Core Block Diagram 

B.7 OCEAN LOGIC PTY. LTD OL_SHA256 SHA-256 PROCESSOR 

The features of the core are as follows: 

 

� FIPS 180-2 compliant. 

� Suitable for data authentication applications. 

� Fully synchronous design. 
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� Available as fully functional and synthesizable VHDL or Verilog soft-

core. 

� FPGA netlist available for various devices. 

 

Functional block diagram of the OL_SHA256 SHA-256 Processor is shown 

below in Figure B-7. 

 

 

 

Figure B-7  Ocean Logic Pty. Ltd SHA-256 Processor Block Diagram 

B.8 OCEAN LOGIC PTY. LTD OL_SHA SHA-1 PROCESSOR 

The features of the OL_SHA SHA-1 Processor are as follows: 

� Suitable for data authentication applications. 

� Fully synchronous design. 

� Available as fully functional and synthesizable VHDL or Verilog soft-

core. 

� Xilinx and Altera netlist available for various devices. 
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The functional block diagram of the core is shown below in Figure B-8. 

 

 

Figure B-8  OL_SHA SHA-1 Processor Core Block Diagram 

B.9 SCI-WORX HIGH SPEED SHA-1 HASH ENGINE 

The features of the Sci-worx High Speed SHA-1 HASH Engine are as follows: 

 

� FIPS-180-1 compliant 

� Fully synchronous single phase design 

� Up to 140 MHz system clock (0.18 TSMC) 

� Data rate 6.24 Mbit/s per MHz (830 Mbit/s@133 MHz) 

� Source code available in VHDL and Verilog 

 

Functional block diagram of the core is shown below in Figure B-9. 
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Figure B-9   Sci-worx High Speed SHA-1 HASH Engine Block Diagram 
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APPENDIX C 

STRUCTURE OF CD-ROM DIRECTORY 

 

The source codes and executable files of the simulations performed in this study 

are given in the CD attached at the back cover of this thesis. The contents of the 

CD are given below in Table C-1. 

 

Table C-1 Structure of CD-ROM Directory  

\SRC VHDL Source Files 

\TestBench VHDL Test Bench Files 

\SIM VHDL Simulation Results 

 

 

 


