

DESIGN AND FPGA IMPLEMENTATION OF HASH PROCESSOR

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUĞBA ŞİLTU ÇELEBİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

DESIGN AND FPGA IMPLEMENTATION OF HASH

PROCESSOR

Submitted by TUĞBA ŞİLTU ÇELEBİ in partial fulfillment of the requirements

for the degree for the degree of Master of Science in Electrical and Electronics

Engineering, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering Dept.

Prof. Dr. Murat AŞKAR

Supervisor, Electrical and Electronics Engineering Dept.

Examining Committee Members:

Prof. Dr. Rüyal ERGÜL

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Murat AŞKAR

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Hasan GÜRAN

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr Melek YÜCEL

Electrical and Electronics Engineering Dept., METU

Dr. Murat Hamdi YILDIRIM

(BILKENT, CTIS)

Date

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name :Tuğba Şiltu Çelebi

 Signature :

iv

ABSTRACT

DESIGN AND FPGA IMPLEMENTATION OF HASH

PROCESSOR

ŞİLTU, ÇELEBİ Tuğba

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat AŞKAR

December 2007, 119 pages

In this thesis, an FPGA based hash processor is designed and implemented using

a hardware description language; VHDL.

Hash functions are among the most important cryptographic primitives and used

in the several fields of communication integrity and signature authentication.

These functions are used to obtain a fixed-size fingerprint or hash value of an

arbitrary long message.

v

The hash functions SHA-1 and SHA2-256 are examined in order to find

the common instructions to implement them using same hardware blocks on the

FPGA. As a result of this study, a hash processor supporting SHA-1 and SHA2-

256 hashing and having a standard UART serial interface is proposed. The

proposed hash processor has 14 instructions. Among these instructions, 6 of them

are special instructions developed for SHA-1 and SHA-256 hash functions. The

address length of the instructions is six bits. The data length is 32 bits. The

proposed instruction set can be extended for other hash algorithms and they can

be implemented over the same architecture.

 The hardware is described in VHDL and verified on Xilinx FPGAs. The

advantages and open issues of implementing hash functions using a processor

structure are also discussed.

Keywords: processor, hash function, cryptography, VHDL

vi

ÖZ

GÜVENLİ ÖZETLEME ALGORİTMALARI

İŞLEMCİSİ MODELLENMESİ VE FPGA ÜZERİNDE

GERÇEKLEŞTİRİLMESİ

ŞİLTU ÇELEBİ, Tuğba

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat AŞKAR

Aralık 2007, 119 sayfa

Bu tezde, VHDL donanım modelleme dili kullanılarak güvenli özetleme

algoritmalarını gerçekleyen FPGA tabanlı bir işlemci tasarlanmış ve

gerçekleştirilmiştir.

Güvenli özetleme algoritmaları en temel kriptolojik algoritmalar arasındadır ve

iletişim ve imza doğrulama işlemlerinin birçok aşamasında kullanılmaktadır. Bu

vii

fonksiyonlar değişebilir uzunluktaki bir mesajın sabit uzunlukta özetini elde

etmek için kullanılmaktadır.

Güvenli özetleme algoritmalarından olan SHA1 ve SHA2–256, her iki

algoritmayı da FPGA üzerinde ortak donanım blokları kullanarak gerçekleştirmek

için komutlar bulmak amacıyla detaylı ve karşılaştırmalı olarak incelenmiştir. Bu

incelemenin sonucunda SHA-1 ve SHA-256 güvenli özetleme algoritmalarını

destekleyen ve standart UART iletişim ara yüzüne sahip bir güvenli özetleme

algoritması işlemcisi tasarlanmıştır. Güvenli özetleme algoritması işlemcisinin

komut seti 14 komuttan oluşmaktadır. Bu komutlardan 6 tanesi SHA-1 ve SHA-

256 güvenli özetleme algoritmaları için geliştirilmiş özel komutlardır. Komutların

adres boyu 6 bit, veri uzunluğu ise 32 bittir. Tasarlanan komut seti diğer özetleme

fonksiyonları için de genişletilebilir ve aynı mimari yapı kullanılarak

gerçekleştirilebilir.

Tasarım, VHDL dili kullanılarak modellenmiş ve Xilinx FPGA kullanılarak

donanım ortamında doğrulanmıştır. Güvenli özetleme algoritmalarının bir

işlemci yapısında gerçekleştirilmesinin avantajları ve dezavantajları

vurgulanmıştır.

Anahtar Kelimeler: işlemci, güvenli özetleme algoritması, kriptoloji, VHDL

viii

To My Dear Family

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Prof. Dr. Murat

Aşkar for his guidance, valuable ideas and support during this study.

I would like to thank to my colleagues at ASELSAN Inc. for their support,

guidance and valuable contribution to this thesis work. I am grateful to

ASELSAN Inc. for providing tools and other facilities for the completion of this

thesis work.

Finally I want to express my deepest gratitude to my parents Zeynep and Vehbi

ŞİLTU, my dear sisters Hilal and Esra ŞİLTU for their priceless support,

encouragement and endless love they have given me not only through my thesis

work but also through all stages of my life.

Last but not least, I am grateful to my husband Özgür ÇELEBİ not only for his

love, great understanding, encouragement and personal sacrifice but also his

continuous technical support and guidance through my thesis work.

x

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xv

 CHAPTER I INTRODUCTION ... 1

 CHAPTER II HASH FUNCTIONS AND PROCESSORS 6

2.1 HASH FUNCTIONS .. 6

2.1.1 DEFINITION AND PROPERTIES OF HASH FUNCTION 6

2.1.2 APPLICATIONS OF HASH FUNCTIONS .. 9

2.1.3 ATTACKS TO THE HASH FUNCTIONS ... 16

2.1.4 KNOWN HASH FUNCTIONS ... 17

2.1.5 HASH COMPUTATION FLOW ... 20

2.2 DIFFERENT HASH IMPLEMENTATIONS .. 33

2.2.1 COMMERCIAL HASH FUNCTION IMPLEMENTATIONS 42

 CHAPTER III DESIGN OF HASH PROCESSOR ... 46

3.1 DESIGN ON FPGA ... 46

3.1.1 CONFIGURING FPGAS ... 47

3.2 HASH PROCESSOR IMPLEMENTATION ... 51

3.2.1 RESOURCES USED IN THE DESIGN .. 53

xi

3.2.2 HASH PROCESSOR ARCHITECTURE AND INSTRUCTION SET54

3.2.3 HASH PROCESSOR MODULES ... 57

 CHAPTER IV HARDWARE REALIZATION OF HASH PROCESSOR 74

5.1 HASH PROCESSOR OVER AN FPGA ... 74

5.2 TEST AND VERIFICATION METHODOLOGY 78

5.3 TEST AND SIMULATION RESULTS ... 80

 CHAPTER V DISCUSSION AND CONCLUSION .. 85

 REFERENCES .. 88

 APPENDICES ... 91

APPENDIX-A ... 92

SHA-1 AND SHA-256 CONSTANTS .. 92

APPENDIX B ... 95

COMMERCIAL HASH IMPLEMENTATIONS ... 95

B.1 CAST SHA-1 SECURE HASH FUNCTION CORE................................... 95

B.2 CAST SHA-256 SECURE HASH FUNCTION CORE 96

B.3 HDL DESIGN HOUSE HCR_SHA1 ... 97

B.4 HELION TECHNOLOGY LIMITED SHA-1, SHA-256 AND MD5

HASHING, FAST (HELION) ... 98

B.5 HELION TECHNOLOGY LIMITED SHA-1, SHA-224, SHA-256 AND MD5

HASHING, TINY WITH HMAC .. 99

B.6 ALDEC INC ALDEC SHA IP CORE ... 100

B.7 OCEAN LOGIC PTY. LTD OL_SHA256 SHA-256 PROCESSOR 100

B.8 OCEAN LOGIC PTY. LTD OL_SHA SHA-1 PROCESSOR 101

B.9 SCI-WORX HIGH SPEED SHA-1 HASH ENGINE 102

APPENDIX C ... 104

STRUCTURE OF CD-ROM DIRECTORY ... 104

xii

LIST OF TABLES

Table 2-1 Summary of Standard Hash Functions ... 17

Table 2-2 SHA-1 Summary .. 21

Table 2-3 SHA-1 Functions .. 23

Table 2-4 SHA-1 Constants .. 23

Table 2-5 Initial Hash Value for SHA-1 ... 24

Table 2-6 SHA-256 Summary .. 27

Table 2-7 Initial Hash Value for SHA-1 ... 30

Table 2-8 Commercial Hash Function Cores ... 45

Table 3-1 Software Resources Used in the Design .. 53

Table 3-2 Used Hardware for Verification ... 53

Table 3-3 Hash Processor Instructions ... 55

Table 3-4 Input Output Signals of the Control Unit ... 57

Table 3-5 Opcodes .. 61

Table 3-6 Input Output Signals of the Program Memory 65

Table 3-7 Input Output Signals of the Message Expansion Block 66

Table 3-8 Input Output Signals of the ROM Block .. 67

Table 3-9 Input Output Signals of the Register File ... 67

Table 3-10 Input Output Signals of the ALU ... 71

Table 3-11 ALU Operation Selection ... 72

Table 3-12 UART Baud Rate Selection Table ... 73

Table 5-1 Device Utilization Summary for Hash Processor VHDL Code 78

Table 5-2 SHA-1 Calculation Program .. 80

Table 5-3 SHA-256 Calculation Program .. 81

Table A-1 SHA-1Constants ... 92

Table A-2 SHA-256 Constants .. 92

xiii

LIST OF FIGURES

Figure 2-1 Hashing Operation .. 7

Figure 2-2 Preimage Resistance ... 7

Figure 2-3 Second Preimage Resistance .. 8

Figure 2-4 Collision Resistance ... 8

Figure 2-5 Verifying Data Integrity ... 10

Figure 2-6 Storing the Hash of a Password .. 11

Figure 2-7 Authenticating Users .. 12

Figure 2-8 Application of a Digital Signature ... 14

Figure 2-9 Verification of a Digital Signature ... 15

Figure 2-10 General Hash Computation Flow ... 20

Figure 2-11 Ch Function Architecture ... 22

Figure 2-12 Parity Function Architecture .. 22

Figure 2-13 Maj Function Architecture ... 23

Figure 2-14 Message Padding .. 24

Figure 2-15 SHA-1 Computation Flow ... 26

Figure 2-16 ∑
256

0
)(x
 Architecture .. 28

Figure 2-17 ∑
256

1
)(x
 Architecture ... 28

Figure 2-18)(256
0 Xσ Architecture ... 29

Figure 2-19)(256
1 Xσ Architecture ... 29

Figure 2-20 SHA-256 Computation Flow ... 33

Figure 2-21 General Block Diagram for a Hash Function Implementation 35

Figure 2-22 The Block Diagram of Non-Resource Sharing Design [7] 36

Figure 2-23 The Block Diagram of Resource Sharing Design [7] 37

Figure 2-24 Shift Register Design Approach [8] ... 38

xiv

Figure 2-25 Left and Right Datapaths[10] ... 39

Figure 2-26 Common Architecture for SHA-256, SHA-384 and SHA-512 40

Figure 2-27 HashChip Architecture [13] ... 41

Figure 3-1 FPGA Architecture [28] .. 46

Figure 3-2 HDL Based FPGA Design Flow .. 47

Figure 3-3 Schematic Based FPGA Design Flow .. 48

Figure 3-4 Different Levels of Abstraction .. 49

Figure 3-5 VHDL Design Flow Summary [28] ... 50

Figure 3-6 Block Diagram of a Processor .. 52

Figure 3-7 Hash Processor General Block Diagram 55

Figure 3-8 Controller State Diagram ... 64

Figure 3-9 Datapath Architecture .. 65

Figure 5-1 Xilinx ML402 Evaluation Platform Front Side............................ 76

Figure 5-2 Xilinx ML402 Evaluation Platform Back Side 76

Figure 5-3 Advanced Hash Calculator ... 79

Figure 5-4 Hash Processor User Interface ... 80

Figure 5-5 SHA-256 Calculation for Input “abc” .. 82

Figure 5-6 SHA-1 Calculation for Input “abc” .. 83

Figure 5-7 SHA-1 Calculation for Input “tugba” ... 84

Figure 5-8 SHA-1 Output of AHC for Input “tugba” 84

Figure B-1 CAST SHA-1 Secure Hash Function Core Block Diagram 95

Figure B-2 CAST SHA-256 Secure Hash Function Core Block Diagram 96

Figure B-3 HDL Design House HCR_SHA1 Core Block Diagram 97

Figure B-4 Hellion Fast Hashing Core Block Diagram 98

Figure B-5 Hellion Tiny Hashing Core Block Diagram 99

Figure B-6 ALDEC SHA IP Core Block Diagram 100

Figure B-7 Ocean Logic Pty. Ltd SHA-256 Processor Block Diagram 101

Figure B-8 OL_SHA SHA-1 Processor Core Block Diagram 102

Figure B-9 Sci-worx High Speed SHA-1 HASH Engine Block Diagram . 103

xv

LIST OF ABBREVIATIONS

FPGA Field Programmable Gate Array

HDL Hardware Description Language
IEEE Institute of Electrical and Electronics Engineers
UART Universal Asynchronous Receiver / Transmitter
VHDL VHSIC Hardware Description Language

SHA Secure Hash Algorithm
MD Message Digest
RIPEMD RACE Integrity Primitives Evaluation Message Digest
NIST National Institute of Standards and Technology

SHS Secure Hash Standard
FIPS Federal Information Processing Standards
ASIC Application Specific Integrated Circuit
DSA Digital Signature Algorithm

RTL Register Transfer Level
UART Universal Asynchronous Receiver / Transmitter
ROM Read Only Memory
RAM Random Access Memory

BRAM Block Random Access Memory
CLB Configurable Logic Block
LUT Look Up Table

1

CHAPTER I

INTRODUCTION

In this thesis, hash functions SHA-1 and SHA-256 are implemented on

FPGA in a processor structure. The design is described and captured using a

hardware description language, namely VHDL.

Due to the rapid developments in the wireless communications area and

personal communications systems, providing information security has become a

more and more important subject. This security concept becomes a more

complicated subject when next-generation system requirements and real-time

computation speed are considered. In order to solve these security problems, lots

of research and development activities are carried out and cryptography has been a

very important part of any communication system in the recent years.

Cryptographic algorithms fulfill specific information security requirements such as

data integrity, confidentiality and data origin authentication [1].

Hash functions are among the most important cryptographic algorithms

and used in the several fields of communication integrity and signature

authentication. These functions are sort of operations that take an arbitrary length

of input and produce a condensed representation of that input. This condensed

representation of an arbitrary long input is usually referred as message digest or

hash value. The size of the message digest is fixed depending on the particular

hash function being used. The security of a hash function is directly related to this

message digest length. Hash functions have some specific properties that make

2

them secure; these properties are pre-image resistance, second pre-image

resistance and collision resistance as indicated in the documents of FIPS[1, 2, 3].

Pre-image resistance means that for all predefined hash values it is

computationally very hard to find an input having that particular hash value.

Second pre-image resistance means that given an input, it is computationally very

hard to find another input such that both inputs have the same hash value.

Collision resistance means that it is computationally very difficult to find two

inputs having the same hash value.

Hash functions are mostly used to provide password authentication in

different applications, generating digital signature with DSA (Digital Signature

Algorithm) and for verifying data integrity [1]. In order to protect passwords from

attacks, hash values of the passwords are stored in the password database rather

than clear text. When a user logs into the system, the hash of the password entered

by the user is calculated and compared with the one stored in the database. If two

hash values match, the user is authenticated; otherwise the user is not granted. In

order to generate digital signatures and sign the document with that signature, the

hash value of the document is calculated. Then, this calculated hash value is

encrypted with a private key/public key using an encryption algorithm. This digital

signature is appended to the document and the document is sent with that

signature. At the receiving end only the user having the public key/private key

related to the person sending the document can decrypt the digital signature and

reach to the original hash value. The receiving person then calculates the hash

value of the received document. If the two hashes match then both the origin of the

document is authenticated and the content of the document is verified [4]. In order

to verify data integrity, the hash values of the documents are calculated and kept in

a location. Then at a later time, hash value of the document is recomputed. If the

hash values do not match one conclude that the file is corrupted [5]. The same

technique is used for timestamping the documents.

There are lots of hash functions developed up to now and MD5 (128 bit),

SHA-1, SHA-256, SHA-384 and SHA-512 are the most popular of them. The

3

oldest of these hash functions is the MD5 hash function. This function is

developed in 1991 and has an output size of 128 bits [6]. Researches on

developing more secure hash functions continued and in 1993 a more secure hash

function SHA-1 which provides an output size of 160 bits is developed [2]. In

2002, in order to catch security levels offered by other cryptographic algorithms,

NIST developed the three new hash functions: SHA-256, SHA-384 and SHA-512.

These hash functions are standardized with SHA-1 as SHS (Secure Hash

Standard) [3]. A 224-bit hash function SHA-224, based on SHA-256, has been

added to SHS in 2004 [3].

Hash calculations are mainly composed of three sections. In the first part

the incoming message is padded and fixed sized message blocks are prepared

according to the particular hash function being applied. After these padding

operations, the message schedule is prepared. In this state, message block is

further divided into sub blocks to be used in each round of the hash calculation

process. In the hash calculation process message digest is computed after some

specific number of iterations related to the algorithm by using [3]:

(i) Algorithm specific constants

(ii) Message words prepared by the message scheduler

(iii) The chaining variables

Hash functions can be implemented in hardware or software. However, as

security and throughput requirements of the systems increase, it is found that

software implementations can not provide desired security and throughput values.

As a result, it is preferred to implement the hash functions in hardware. There are

several hash function implementations in the literature and commercially available

in the market. These implementations differ from each other according to the

properties such as area, speed and throughput. Kyu et al. implemented SHA-1,

HAS-160 and MD5 algorithms in a single chip and proposed two architectures one

resource sharing and the second non-resource sharing [7]. McLoone et al.

implemented SHA-512 and SHA-384 on a single chip [8]. The proposed design

achieves a throughput of 479 Mbps using a shift register design approach in the

4

message scheduling part and look up tables for the constants required by the

algorithms. Grembowski et al. implemented SHA-1 and SHA-512 hash functions

separately and compared the implementation results [9]. Sklavos et al.

implemented SHA-1 and RIPEMD-160 hash functions in the same hardware

module [10]. The advantage of the proposed implementation is that it exhibits high

throughput due to the pipeline technique used in the design. In an another study,

Sklavos et al. determined a common architecture for SHA-256, SHA-384 and

SHA-512 hash functions and implemented these functions separately [11]. The

implementation results of the three functions are compared in the provided

security level and in the performance by using hardware terms. Michail et al.

implemented SHA-1 hash function is in such a way that the throughput of the

design is increased by %53 and the power dissipation is kept low [12]. In a recent

work on hash function implementations, T.S. Ganesh et al. unify the hash

functions MD5, SHA-1 and RIPEMD160 [13]. The design is proposed to exhibit

better throughput when compared to the existing hash function implementations.

In this study, hash functions SHA-1 and SHA-256 are implemented in a

processor structure. Hash functions SHA-1 and SHA-256 are chosen considering

the architectural similarities such as, word size and block size and at the same time

some computational differences that make the design not straightforward.

Analyzing the hash functions an instruction set is developed. The instruction set

consists of 14 instructions. Among these instructions six of them are special

instructions developed for SHA-1 and SHA-256 hash functions. The other

instructions are general purpose instructions. The address length of the instructions

is six bits. The data length is 32 bits. The proposed instruction set can be extended

for other hash algorithms and they can be implemented using the same

architecture.

The processor has the blocks of general purpose processor; additionally it

has two more blocks for preparing message schedule and holding the constants

required by the algorithm. The design has a UART module for communication

with the external environment. This serial interface is used for filling the program

5

memory and receiving the incoming message blocks. The processor is fully

designed and captured using the hardware description language VHDL. Design is

implemented on Xilinx FPGA. For the verification of the design, the test vectors

announced by NIST [2] are used. For random inputs, “Advanced Hash Calculator

(AHC)” software is used [14] for verification.

The organization of this thesis is as follows. In Chapter 2, background in

formation on hash functions is given. Their properties are explained in detail. Hash

functions developed up to now are listed and a brief description is given about

their history. Types of attack to the hash functions are explained. The computation

flow of the hash functions SHA-1 and SHA-256 are described in details. Finally

different hash function implementations available in the market and existing in the

literature are presented.

Chapter 3 covers full design description of the hash function processor.

The design specifications and hardware and software resources used are given.

Blocks of the hash function processor are explained in detail.

In Chapter 4, the designed hash function processor is verified on both

software and hardware. Simulation results are given in this chapter. The synthesis

of the VHDL descriptions of the hash processor, implementation into FPGA and

hardware based tests are given at the end of this chapter.

Results of the study are presented in Chapter 5. The followed design steps

and methods are discussed and further suggestions are made for the future studies.

6

CHAPTER II

HASH FUNCTIONS AND PROCESSORS

2.1 HASH FUNCTIONS

2.1.1 DEFINITION AND PROPERTIES OF HASH FUNCTION

A hash function is a sort of operation that takes an input and produces a

fixed-size string which is called the hash value. The input string can be of any

length depending on the algorithm used. The produced output is a condensed

representation of the input message or document and usually called as a message

digest, a digital fingerprint or a checksum. The size of the message digest is fixed

depending on the particular algorithm being used. This means that for a particular

algorithm, all input streams yield an output of same length. Furthermore a very

small change in the input results with a completely different hash value. This is

known as the avalanche effect [1]. The hashing operation is illustrated below in

Figure 2-1.

7

Figure 2-1 Hashing Operation

The security of a hash function is directly related to the message digest

length. Pre-image resistance, second pre-image resistance and collision resistance

are very important characteristics of any hash function [1].

1. Pre-image resistance (one-wayness): For all specified hash values

it is computationally very hard to find an input message having

that particular hash value. This property is illustrated in Figure

2-2.

Figure 2-2 Preimage Resistance

8

2. Second pre-image resistance: Given an input message m1, it is

computationally very hard to find another input message m2 such

that () ()21 mhashmhash = . This property is illustrated in Figure

2-3.

Figure 2-3 Second Preimage Resistance

3. Collision resistance: It is computationally very hard to find any

two different inputs that have the same hash value. This property

is illustrated in Figure 2-4.

Figure 2-4 Collision Resistance

9

Hash functions can be classified as keyed and unkeyed hash functions.

The keyed hash functions take a secret key as an additional input parameter. In

this case, the above defined characteristics of hash functions are satisfied for any

value of the secret key. Keyed hash functions are also named as Message

Authentication Codes or MACs[1]. In this study, we only deal with unkeyed hash

functions.

2.1.2 APPLICATIONS OF HASH FUNCTIONS

The most common use fields of hash functions are verifying data

integrity, providing password authentication and generating digital signatures with

DSA in applications such as electronic mail, electronic funds transfer, software

distribution and data storage which require data integrity assurance and data origin

authentication.

Data integrity is a very important part of a secure system. Any changes

made to the files can be detected by generating the message digests of the files

using a hash function. These digests are saved and in the future the digest is

recomputed on the file, if the new digest is different from the original digest, this

means that the original file is corrupted some way. This can be very important

when protecting critical system binaries and sensitive databases [5]. As an addition

during file transmission through the networks such as the internet, files can be

corrupted. In order to verify that the received file is identical to the original file,

the message digest of the received file is calculated. Then this calculated message

digest is compared with the original one published by the WEB site or FTP site.

Since it is computationally very hard to find two inputs that have the same hash

value (collision resistance property of a hash function), if the calculated digest is

different from the original, one can be sure that the received file differs from the

transmitted file. Verifying data integrity by means of a hash function is illustrated

below in Figure 2-5.

10

Figure 2-5 Verifying Data Integrity

Password authentication is another field that hash functions are used. For

computer systems, it is insecure to store passwords in clear-text. Someone may

reach all of the passwords and entire user password database can be compromised.

Because of these reasons, a more secure way is to store the hashes of the

11

passwords rather than clear text passwords. Storing the hashes of passwords is

shown below in Figure 2-6.

Figure 2-6 Storing the Hash of a Password

When a user logs in, the hash value of the submitted password is calculated and

compared with the one stored in the password database. If the calculated hash

12

value is identical to the one stored in the database, the user is authenticated, and

otherwise the user is not granted. This scenario is illustrated below in Figure 2-7.

Figure 2-7 Authenticating Users

By this way, even if the password database is compromised, user privacy is still

protected since it is computationally very difficult to obtain the original passwords

from the hash values.

One of the most popular applications of hash functions is digital

signatures. A digital signature is a type of asymmetric cryptography used to

simulate the security properties of a signature in digital, rather than in written form

13

Digital signatures are used to provide authentication of the associated input,

usually called a message. Messages can be anything from electronic mail to

someone or even a message sent in a more complicated cryptographic protocol. A

digital signature scheme consists of three algorithms:

� A key generation algorithm G that randomly produces a “key

pair” (PK, SK) for the signer. PK is the verifying key which is to

be public and SK is the signing key, to be kept private.

� A signing algorithm S that, on input of a message m and a

signing key SK, produces a signature.

� A signature verifying algorithm V that on input a message m, a

verifying key PK, and a signature, either accepts or rejects.

Two main properties are required. First, signatures computed properly should

always verify. That is, V should accept ()),(,, SKmSPKm where SK is the secret

key related to PK, for any message m. Secondly, it should be hard for any

adversary, knowing only PK, to create valid signatures [4].

In practice, computing the digital signature of a long message with public key

algorithms is very inefficient. To save time, digital signature protocols are often

implemented with one-way hash functions [1]. Instead of signing the whole

document, hash of the document is signed. In this case, the scenario is as follows:

� The hash value of the document is calculated.

� The calculated hash value is encrypted with the private key,

thereby the document is signed

� The document and the signed hash value are send to the recipient

� The recipient calculates the one way hash value of the document

and decrypts the signed hash value by using the public key. If the

signed hash value is the same with the calculated hash value, then

the signature is valid.

14

The application and verification of a digital signature are illustrated below in

Figure 2-8 and Figure 2-9

Figure 2-8 Application of a Digital Signature

15

Figure 2-9 Verification of a Digital Signature

If a hash function were not used, the recipient would not be sure that the data

integrity is protected. Since hash functions are one way functions, any change in

the document will change the signature and the signature would not be validated.

As a result, when the signature is validated, the recipient makes sure that the

document is not altered. Another benefit of digital signatures is the authentication

of the source of the messages. Since private key used in the encryption process

belongs to a specific user, a valid signature shows that the message is sent by that

user.

One of the earliest proposed applications of digital signatures was to

facilitate the verification of nuclear test ban treaties. The United States and Soviet

Union (do not exist anymore) permitted each other to put seismometers on the

other’s soil to monitor nuclear tests. The problem was that each country needed to

assure itself that the host nation was not tampering with the data from the

monitoring nation’s seismometers. Simultaneously, the host nation needed to

assure itself that the monitor was sending only the specific information needed for

monitoring. Conventional authentication techniques can solve the first problem,

16

but only digital signatures can solve both problems. The host nation can read but

not alter the data from seismometer and the monitoring nation knows that the data

has not been tampered with [1].

2.1.3 ATTACKS TO THE HASH FUNCTIONS

There are two brute-force attacks to a hash function [1]. In a brute force,

random inputs are tried and the results of the computations are stored until a

collision is found [5]. The first attack can be described as follows: Suppose that

the hash of a specific message is given, an adversary can try to find another

message which has the same hash value. On the other hand, the second attack can

be explained as follows: suppose that an adversary tries to find to messages that

have the same hash value. This attack is easier than the first one and known as

birthday attack.

Birthday attack gets its name from the birthday paradox, which is a

known statistical problem. The answer to the question, how many people there

must be in a room for at least one person sharing your birthday is 183, but

surprisingly, the answer to the question how many people there must be in a room

for at least two of them will share the same birthday is 23. This means that the

probability of two or more people in a group of 23 having the same birthday is

greater than ½. Thus, assume that there is a hash function with n-bit output. In

order to find a message having a particular hash value, 2n hash calculations. On the

other hand, finding two messages having the same hash value would only require

2n/2 hash calculations. For instance, a machine which can compute the hash values

of one million messages per second would take 600.000 years to find a second

message that have a given 64-bit hash value where the same machine can find two

messages having the same hash value in about an hour. This means that in order to

avoid a birthday attack, someone should choose a hash value twice as long as the

actual needed length [1].

17

2.1.4 KNOWN HASH FUNCTIONS

There is several hash functions developed up to now and among these

hash functions MD5, SHA-1, and SHA-256 are most popular. Summary of the

standard hash functions is given below in Table 2-1.

Table 2-1 Summary of Standard Hash Functions

Algorithm Output size Block size
Word
size

Rounds
xSteps

Year of the
standard

MD4 128 512 32 16x3 1990

MD5 128 512 32 16x4 1991

RIPEMD 128 512 32
16x3

(x2 parallel)

1992

RIPEMD-128 128 512 32
16x4

(x2 parallel)

1996

RIPEMD-160 160 512 32
16x5

(x2 parallel)

1996

SHA-0 160 512 32 80 1993

SHA-1 160 512 32 80 1995

SHA-256 256 512 32 64 2002

SHA-224 224 512 32 64 2004

SHA-384 384 1024 64 80 2002

SHA-512 512 1024 64 80 2002

MD4 proposed by Ron Rivest in 1990 was designed by using 32-bit

operations for high speed software implementations on 32-bit processors [15]. MD

stands for message digest and the numerals refer to the functions being the fourth

design from the same hash function family. However, a collision problem was

found and in 1991 MD4 was reformed to MD5 by adding countermeasures such as

18

increasing the number of compression rounds from three to four [6]. The

compression function of MD5 operates on 512 bit blocks and this 512 bit block is

further divided into 16 32-bit sub blocks. The word size is 32 bits. There are four

32-bit chaining variables and the output size is 128 bits. One important parameter

for compression functions is the number of rounds –the number of sequential

updates of the chaining variables. The compression function of MD5 has 64

rounds. MD5 is one of the most popular hash functions for many applications such

as IPsec. However it was pointed out that, collisions can be generated using the

compression function of MD5 and its 128-bit hash value is not long enough to

stop birthday attacks. It was estimated that two messages that have the same hash

value could be found within 24 days by developing a dedicated hardware with a

cost of 10 million dollars. Considering the processing power of computers is

improving 10-fold every 5 years, MD5 is no longer secure against the birthday

attack, and it is not recommended for future use.

RIPEMD is a 128 bit hash function developed by the RIPE (RACE

Integrity Primitives Evaluation) project in 1992 to address the attack on MD4 [16].

However collisions for the first two and the last two out of three rounds were

found. In addition, a 128-bit hash value is no longer secure enough so as

described above and thus RIPEMD was improved to the 160-bit hash function

RIPEMD-160 in 1996 which has a five round compression function. At the same

time, a 128-bit hash function RIPEMD-128 that has a four round compression

function was proposed to replace RIPEMD.

NIST (National Institute of Standards and Technology) standardized a

160-bit hash function SHA (Secure Hash Algorithm) for the use with a digital

signature algorithm DSS (Digital Signature Standard) in 1993 [2]. Soon after that

a way was found to cause collisions in the compression function by analyzing the

message expansion function that consisted of only XOR (exclusive OR)

operations. In order to modify this SHA was modified to SHA-1 by adding a one-

bit rotation to the message expansion function. A 160-bit hash function hash a

security level on the order of 80 bits, so SHA-1 is designed to match the security

19

level of the block cipher Skipjack that uses 80-bit secret key [17]. SHA-1 is

modeled taking some cues from MD5, it operates on 512 bit blocks and has five

32 bit chaining variables. The output length is 160 bits. Although the round

functions are less varied and simpler than those of MD5, SHA-1 has more rounds

–80 instead of 64. SHA-1 uses a more complex procedure for deriving 32-bit sub

blocks from the 512 bit message. If one bit of the message is flipped, more than

half of the sub blocks get changed, where this number is just four for MD5. In

2001 NIST standardized the new block chipper AES (Advanced Encryption

Standard) to replace the DES (Data Encryption Standard) that had been used for

more than 20 years [18]. AES supports three key lengths, 128, 192 and 256 bits,

whose security levels are higher than SHA-1. In order to match these security

levels, NIST developed three new hash functions SHA-256, -384, and -512 whose

hash value sizes are 256, 384 and 512 bits, respectively [3]. SHA-256 and SHA-

512 have similar designs, with SHA-256 operating on 32-bit words and SHA-512

operating on 64-bit words. Both designs bear strong resemblance to SHA-1

although they are much closer to each other than to their common predecessor.

SHA-384 is a trivial modification of SHA-512 which consists of trimming the

output to 384-bits and changing the initial value of the chaining variable. These

hash functions are standardized with SHA-1 as SHS (Secure Hash Standard) and a

224-bit hash function , SHA-224, based on SHA-256, was added to SHS in 2004.

SHA-224 is a truncated version of SHA-256 with a different initial value. The

most important difference between the three new functions and SHA-1 is the

procedure for deriving 32-bit sub blocks from one block of message. Recently

collisions for MD4, MD5, RIPEMD and SHA have been reported and a possibility

for breaking SHA-1 has been suggested. Therefore, the migration to more secure

hash functions should be accelerated.

In this study, SHA-1 and SHA-256 hash functions are chosen to be

implemented as a starting point. The reason for such a selection is that SHA-1 is

one of the most commonly used hash functions and SHA-256 is developed after

SHA-1 and offers increased security levels. As described above, both of these

20

functions operate on 512-bit message blocks and word sizes are the same –32 bits.

Although they are similar in general, number of chaining variables, the output

size, generation of 32-bit sub blocks from 512-bit message blocks and number of

rounds differ from each other.

2.1.5 HASH COMPUTATION FLOW

Every hash computation process consists of two stages [2, 3]. The first

stage is the preprocessing stage. In this stage the message is padded, parsed into n

blocks and the chaining variables are initialized. In the second stage, hash

calculation is done. In the hash calculation stage, constants, functions and word

operations specific to the hash function are used. Hash calculation generates a

message schedule from the padded message and uses that schedule, along with

functions, constants and word operations to iteratively generate a series of hash

values. The final hash value generated by the hash computation is used to generate

the message digest. This scenario is illustrated below in Figure 2-10.

Figure 2-10 General Hash Computation Flow

21

2.1.5.1 SHA1

SHA1 is one of the most popular hash functions. The message block size

for SHA-1 is 512 bits and message digest size is 160 bits. Calculation of message

digest for one block message is completed in 80 rounds. The general properties of

SHA-1 are summarized in Table 2-2.

Table 2-2 SHA-1 Summary

SHA1

Message Size <264

Block Size 512 bits

Word Size 32 bits

Trans.Rounds 80

Message. Digest 160 bits

Security 80 bits

of chaining variables 5

SHA-1 calculation is completed in 80 rounds and 5 hash variables each of

32 bits are used. The word size of all the calculations is 32 bits. The padded

message is processed by 512 bit blocks. This 512 bit block is composed of 16

message words. These 16 message words are expanded by means of functions and

in each of the total 80 rounds a new message word is used.

2.1.5.1.1 SHA-1 FUNCTIONS

SHA-1 uses three different logical functions. These functions operate on

32 bit words and each has three parameters. These functions are:

1) () () ()zxyxzyxCh ∧¬⊕∧=,,

This function is used in first 20 rounds of SHA-1 calculations. The

architecture of this function is illustrated in Figure 2-11.

22

Figure 2-11 Ch Function Architecture

2) zyxzyxParity ⊕⊕=),,(

This function is used in second and last 20 rounds of SHA-1

calculations. The architecture of this function is illustrated in Figure

2-12.

Figure 2-12 Parity Function Architecture

3) () () ()zyzxyxzyxMaj ∧⊕∧⊕∧=),,(

This function is used in third 20 rounds of SHA-1 calculations. The

architecture of this function is illustrated in Figure 2-13.

23

Figure 2-13 Maj Function Architecture

These functions are listed below in Table 2-3 according to the SHA-1

round number.

Table 2-3 SHA-1 Functions

SHA1 Functions Round number (t)

ft(b, c, d) = Ch(b,c,d) 0 ≤ t ≤19

ft(b, c, d) = Parity(b,c,d) 20 ≤ t ≤39

ft(b, c, d) = Maj(b,c,d) 40 ≤ t ≤59

ft(b, c, d) = Parity(b,c,d) 60 ≤ t ≤79

2.1.5.1.2 SHA-1 CONSTANTS

There are four constants which are used in SHA-1 computations. These

are given in Table 2-4.

Table 2-4 SHA-1 Constants

SHA1 Constants Round number (t)

5A827999 0 ≤ t ≤19

6ED9EBA1 20 ≤ t ≤39

8F1BBCDC 40 ≤ t ≤59

CA62C1D6 60 ≤ t ≤79

24

2.1.5.1.3 SHA-1 COMPUTATION FLOW

SHA-1 computation is composed of two stages, preprocessing stage and

hash calculation stage. In the preprocessing stage, message is padded, divided into

16 32-bit sub blocks and message schedule is prepared.

� Message Padding: Suppose that the length of the message, M, is l bits.

Append the bit “1” to the end of the message, followed by k zero bits,

where k is the smallest, non-negative solution to the equation

512mod4481 ≡++ kl . Then append the 64-bit block that is equal to the

number l expressed using a binary representation. For example, the (8-bit

ASCII) message “abc” has length 2438 =x , so the message is padded with

a one bit, then () 423125448 =+− zero bits, and then the message length,

to become the 512-bit padded message. This is illustrated below in Figure

2-14.

Figure 2-14 Message Padding

� Setting the initial hash value: The 160-bit initial hash value H(0) is

composed of five 32-bit words which are shown in Table 2-5.

Table 2-5 Initial Hash Value for SHA-1

H0(0) H1(0) H2(0 H3(0) H4(0)

67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0

� Hash Calculation: SHA-1 may be used to hash a message, M, having a

length of l bits, where 6420 ≤≤ l . The algorithm uses:

25

1. A message schedule of 80x32-bit words. The words of the

message schedule are labeled W0 , W1 , …………W80 .

2. Five working variables of 32-bits each. The working variables are

labeled as: A, B, C, D, E.

3. A hash value of five 32-bit words. The words of the hash value

are labeled as: H0
(i) , H1

(i) , H2
(i) , H3

(i), H4
(i) which will hold the

initial hash value H(0), replaced by each intermediate hash value

(after each message block is processed) H(i) where i denotes the

number of 512 bit block being processed in the message M, and

ending with the final hash value, H(N) where N is the number of

the last 512 bit block in the message M.

4. A single temporary word, T.

5. Previously defined constants which are labeled Kt where t is the

round number.

The calculation is carried out as follows:

The message schedule is prepared, ie. the message word that is going to

be used in that round is prepared. This computation is done as described

in the following formula:

() 7916

150

161483
1

≤≤⊕⊕⊕=

≤≤=

−−−−
tWWWWROTLW

tMW

ttttt

i

tt

In the above formula i

tM denotes the tth 32-bit message word of the ith

512-bit message block in the message M. The 5 working variables A, B,

C, D and E that are going to be used in the computation are prepared as

follows:

)1(
4

)1(
3

)1(
2

)1(
1

)1(
0

−

−

−

−

−

=

=

=

=

=

i

i

i

i

i

HE

HD

HC

HB

HA

26

After these initializations, the final values of the working variables for

that round are calculated as described below:

()

()

TA

AB

BSC

CD

DE

KWEDCBtfAST tt

=

=

=

=

=

++++=

∧

∧

30

),,;(5

As the final step, intermediate hash values are calculated as described

below:

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0

)(
0

−

−

−

−

−

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

HEH

HDH

HCH

HBH

HAH

After 80 rounds the hash value of the incoming 512 bit message block is

obtained. Basic SHA-1 computation flow described above is shown

below in Figure 2-15:

Figure 2-15 SHA-1 Computation Flow

27

2.1.5.2 SHA-256

SHA-256 is developed after SHA-1 in 2002 by NIST in order to match

security levels offered by AES. The message block size for SHA-256 is 512 bits

and message digest size is 256 bits. Calculation of message digest is completed in

64 rounds. The general properties of SHA-256 are summarized in Table 2-6:

Table 2-6 SHA-256 Summary

SHA1

Message Size <264

Block Size 512 bits

Word Size 32 bits

Trans.Rounds 64

Mes. Digest 256bits

Security 128 bits

of chaining variables 8

SHA-256 calculation is completed in 64 rounds and 8 hash variables each

of 32 bits are used. The word size of all the calculations is 32 bits. The padded

message is processed by 512 bit blocks. This 512 bit block is composed of 16

message words. These 16 message words are expanded by means of functions and

in each of the total 64 rounds a new message word is used.

2.1.5.2.1 SHA-256 FUNCTIONS

SHA-256 uses six different logical functions. These functions operate on

32 bit words. These functions are:

1) () () ()zxyxzyxCh ∧¬⊕∧=,, This function is same as the Ch

function used in SHA-1.

2) () () ()zyzxyxzyxMaj ∧⊕∧⊕∧=),,(This function is same as

the Ch function used in SHA-1.

28

3))(ROTR)(ROTR)(ROTR)(2213256

0

2
XXXx ⊕⊕=∑ The

architecture of this function is shown below in Figure 2-16:

Figure 2-16 ∑
256

0
)(x
 Architecture

4))(ROTR)(ROTR)(ROTR)(2511256

1

6
XXXx ⊕⊕=∑ The

architecture of this function is shown below in Figure 2-17:

Figure 2-17 ∑
256

1
)(x
 Architecture

29

5))()(ROTR)(ROTR)(3187256
0 XSHRXXX ⊕⊕=σ The

architecture of this function is shown below in Figure 2-18:

Figure 2-18)(256
0 Xσ Architecture

6))()(ROTR)(ROTR)(101917256
1 XSHRXXX ⊕⊕=σ The

architecture of this function is shown below in Figure 2-19:

Figure 2-19)(256
1 Xσ Architecture

30

2.1.5.2.2 SHA-256 CONSTANTS

There are 64 constants which are used in SHA-256 computations. These

are given in Appendix A.

2.1.5.2.3 SHA-256 COMPUTATION FLOW

SHA-256 computation is composed of two stages, preprocessing stage

and hash calculation stage. In the preprocessing stage, message is padded, divided

into 16 32-bit sub blocks and message schedule is prepared.

� Message Padding: Message padding operation is done in the same way as

in SHA-1.

� Setting the initial hash value: The 256-bit initial hash value H(0) is

composed of eight 32-bit words which are shown in Table 2-7.

Table 2-7 Initial Hash Value for SHA-1

H0(0) H1(0) H2(0) H3(0)

67452301 BB67AE85 3C6EF372 A54FF53A

H4(0) H5(0) H6(0) H7(0)

510E527F 9B05688C 1F83D9AB 5BE0CD19

� Hash Calculation: SHA-256 may be used to hash a message, M, having a

length of l bits, where 6420 ≤≤ l . The algorithm uses:

1. A message schedule of 64x32-bit words. The words of the

message schedule are labeled W0 , W1 , …………W64 .

2. Eight working variables of 32-bits each. The working variables

are labeled as: A, B, C, D, E, F, G, H.

3. A hash value of eight 32-bit words. The words of the hash value

are labeled as: H0
(i) , H1

(i) , H2
(i) , H3

(i), H4
(i), H5

(i), H6
(i), H7

(i) which

will hold the initial hash value H(0), replaced by each intermediate

31

hash value (after each message block is processed) H(i) and ending

with the final hash value, H(N)

4. Two temporary words, T1 and T2.

5. Previously defined constants which are labeled Kt, where t is the

round number.

The calculation is carried out as follows:

The message schedule is prepared, ie. the message word that is going to

be used in that round is prepared. This computation is done as described

in the following formula:

{
{ () () 6316

150

165
256
072

256
1 ≤≤+++=

≤≤=

−−−− tWWWWW

tMW

ttttt

i

tt

σσ

The eight working variables A, B, C, D, E, F, G and H that are going to

be used in the computation are prepared as follows:

)1(
7

)1(
6

)1(
5

)1(
4

)1(
3

)1(
2

)1(
1

)1(
0

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=

=

i

i

i

i

i

i

i

i

HH

HG

HF

HE

HD

HC

HB

HA

After these initializations, the final values of the working variables for

that round are calculated as described below:

32

()

()

21

1

256

02

256

11

,,

,,

TTA

AB

BC

CD

TDE

EF

FG

GH

CBAMajAT

WKGFEChEHT tt

+=

=

=

=

+=

=

=

=

+=

++++=

∑

∑

As the final step, intermediate hash values are calculated as described

below.

)1(
7

)(
7

)1(
6

)(
6

)1(
5

)(
5

)1(
4

)(
4

)1(
3

)(
3

)1(
2

)(
2

)1(
1

)(
1

)1(
0

)(
0

−

−

−

−

−

−

−

−

+=

+=

+=

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

ii

ii

ii

HHH

HGH

HFH

HEH

HDH

HCH

HBH

HAH

After 64 rounds the hash value of the incoming 512 bit message block is

obtained. Basic SHA-256 computation flow described above is shown

below in Figure 2-20.

33

Figure 2-20 SHA-256 Computation Flow

2.2 DIFFERENT HASH IMPLEMENTATIONS

Hash functions can be implemented either in hardware or software.

Implementing hash functions completely in software is easier than implementing

them in hardware. However, since data rates increase and security protocols

become more and more complex, software implementations of hash functions can

not satisfy the speed requirements of applications such as embedded systems,

network routers and online databases. Furthermore, providing security is another

very important issue. System implementation itself should be very secure even if

in case of an attack. Software implementations of hash functions can not provide

that degree of security since access and modification are easier. When all these

aspects are considered, it is seen that it is desirable to implement hash functions in

hardware in order to satisfy the speed requirements of the systems and at the same

time provide security. Hardware implementations of hash functions are more

34

secure, since access and modification are harder. Additionally, power consumption

is lesser and throughput is higher.

Hardware implementations of hash functions can be divided into two

groups: classical implementations and reconfigurable (reprogrammable)

implementations. Classical implementations are completely custom designs on

Application Specific Integrated Circuits (ASICs) and reconfigurable

implementations are on FPGAs. When compared in performance wise, it is found

that ASICs exhibit the best performance, FPGAs are close to ASICs and software

implementations are the worst of all. On the other hand, when development cost is

considered, software development cost is the least, it is a bit higher for FPGAs and

development of the ASICs is the most expensive. When considered in terms of

flexibility, ASICs are the worst, software implementations are the most flexible

ones and FPGAs are close to software implementations since they are

reconfigurable structures. According to these judgments, it is obvious that FPGA

implementations have the advantages of both hardware and software.

Implementation of hash functions on reconfigurable platforms such as FPGAs

brings some advantages. These advantages can be listed as follows:

� Ease of algorithm modification: Any modifications can be made

easily due to the reconfigurable nature of the FPGAs.

� Architecture efficiency

� Resource efficiency: FGPA implementation of hash functions

require less resources in the development phase

� Cost efficiency: FPGA implementations are cost effective since

they have shorter design lead time

� High throughput: FPGA implementations work at high speeds, so

exhibit high throughput

Hash function implementation on hardware is a very active research area

and various implementations exist in the literature. These implementations differ

35

from each other according to the specifications such as area, speed, throughput,

complexity of design and power consumption. Although there are some

differences between the implementation of complex arithmetic and logic

functions, main hardware blocks in each design are similar. The general block

diagram of a hash function implementation is illustrated in Figure 2-21:

Figure 2-21 General Block Diagram for a Hash Function Implementation

In general the message is input to the hardware as 32-bit message words.

The padding unit counts the incoming message words and makes necessary

computations described in 2.1.5.1.3 to pad the message and prepare the message

blocks. The prepared message block is usually stored in a RAM block. The size of

36

the RAM block is dependent on the algorithm implemented. The constants

required by the algorithm are kept in an array and this array is usually

implemented as a ROM: The complex arithmetic and logic computations required

by the algorithm to prepare the message schedule and hash the incoming message

are carried out in the hash calculation block. The control block provides necessary

control signals for the padding unit, message ram, hash calculation block and

constants array.

In [7] Kyu et al. implemented SHA-1, HAS-160 and MD5 algorithms in a

single chip. These hash functions are implemented in two ways, in the first case

each algorithm is implemented separately with no resource sharing; this

implementation is illustrated below in Figure 2-22.

Figure 2-22 The Block Diagram of Non-Resource Sharing Design [7]

37

 In the second case, SHA-1 and HAS-160 architectures are combined; this

implementation is shown below in Figure 2-23. The designs have been

implemented using Altera'sEP20K1000EBC652-3 with PCI bus interface and seen

that the required logic elements are reduced by %27.

Figure 2-23 The Block Diagram of Resource Sharing Design [7]

38

In [8] McLoone et al. implemented SHA-512 and SHA-384 on a single

chip. The proposed design achieves a throughput of 479 Mbps using a shift

register design approach in the message scheduling part and look up tables for the

constants required by the algorithms. Design is implemented on a Xilinx Virtex-E

XCV600E-8 device. The design consumed 2914 CLB slices, 2 BRAMs and 141

I0Bs. The speed of the operation clock is 38 MHz. It is emphasized that the shift

register design approach and the use of LUTs (Look Up Table) to store the eighty

constants result in a compact and fast implementation. The shift register design

approach used is illustrated in Figure 2-24.

Figure 2-24 Shift Register Design Approach [8]

In [9] Grembowski et al. implemented SHA-1 and SHA-512 hash

functions and compared the results. By using carry save adders in the hash

calculation block and using the shift register approach mentioned in [17] delay and

speed optimizations are done. Both algorithms are described in VHDL and

implemented on Xilinx Virtex XCV-1000-6 FPGA. Throughput is found to be 670

Mbps for SHA-512 implementation and 530 Mbps for SHA-1 algorithm. As a

result it is concluded that the newer algorithm SHA-512 is not only more secure

than SHA-1, but also faster.

In [10], Sklavos et al. implemented SHA-1 and RIPEMD-160 hash

functions in the same hardware module. The advantage of the proposed

implementation is that it exhibits high throughput due to the pipeline technique

used in the design. This pipeline technique is based on two parallel iteration loops,

39

left and right data paths. For SHA-1 hash calculation mode, only the left datapath

is used, the right is kept idle. For the RIPEMD calculation both datapaths are used

and this increases the speed of the system. The proposed left and right datapaths

are illustrated below in Figure 2-25. The design is implemented on XILINX FPGA

device (2VSOOfg456) and a throughput of 1339 Mbps for SHA-1 and a

throughput of 1656 Mbps is observed.

Figure 2-25 Left and Right Datapaths[10]

40

In [11] Sklavos et al. determined a common architecture for SHA-256,

SHA-384 and SHA-512 hash functions and implemented these functions

separately. The implementation results of the three functions are compared in the

provided security level and in the performance by using hardware terms. The

target device was XILINX FPGA Virtex Device (v200pq240). As a result, it is

found that SHA-512 has the highest throughput; SHA-256 consumes the smallest

area in the FPGA and has the best area delay product. The proposed design is

illustrated below in Figure 2-26

Figure 2-26 Common Architecture for SHA-256, SHA-384 and SHA-512

In [12], Michail et al. implemented SHA-1 hash function is in such a way

that the throughput of the design is increased by %53 and the power dissipation is

kept low. The proposed technique makes use of the SHA-1 hash function nature.

41

The idea is that except of the chaining variable at-1, the rest of the chaining

variables bt-1, ct-1, dt-1 and et-1 are derived directly from the variables at-2, bt-2, ct-2,

and dt-2 respectively. This means consequently that also ct, dt and et can be derived

directly from at-2, bt-2 and ct-2 respectively. Furthermore, due to the fact that at and

bt calculations require the dt-2 and et-2 inputs respectively, which are stored in

temporal registers, these calculations can be performed in parallel. Applying this

method reduced the number of cycles to complete the hash calculation from 80 to

40. The core was integrated and tested on a v150bg352 FPGA device 2.8Gbps

throughput is achieved.

A recent work on hash function implementations is done by Ganesh

et.al.[13]. In this study a unified architecture for the hash functions MD5, SHA-1

and RIPEMD160 is proposed and the design is named as “HashChip “. The

general block diagram of the HashChip is given below in Figure 2-27.

Figure 2-27 HashChip Architecture [13]

42

As seen above in Figure 2-27 HashChip has six main components. The padder and

memory block handles the system’ s interface to the external memory bank. It

stores the message words and the various constants required during the iterations

and also ensure that the algorithm starts processing as soon as the minimum

requirements of 64 bytes are input. The chaining variable updation block updates

the chaining variables at the end of the each iteration. The digest generation block

ensures that the values of the chaining variables at the end of all the iterations are

transferred in a proper format as the final digest value. The microcode control unit

generates the necessary control signals for the datapath. The parallel and main

compressor blocks implement the arithmetic and logic operations required by the

algorithms. It is proposed that by removing the redundant RAM blocks the

resource usage is optimized with negligible performance penalty. The critical

paths are modified to accommodate lower cycle times and enable operation at

higher frequencies.

The blocks described above are described using Verilog HDL at the RTL

level. HashChip is implemented as part of an embedded system using Virtex II Pro

and it is associated on-die PowerPC Microcontroller. The throughput of the design

is compared with the existing designs and it is found that the performance of the

HashChip is better than the existing implementations.

2.2.1 COMMERCIAL HASH FUNCTION IMPLEMENTATIONS

There are various hash function implementations in the market. Differ

from each other according to their capabilities. Some commercial hash function

implementations are listed in Table 2-8.

Cast Inc. has two hash function cores in the market, they are SHA-1 and

SHA-256 hash function cores [19, 20]. Both of these cores calculates the digest of

messages of any length smaller than 264- 1 bits and message lengths should be

multiple of 8 bits. Bit padding operation is provided with both cores. SHA-1

calculations is completed in 82 clock cycles and SHA-256 calculation is

43

completed in 66 clock cycles Both cores are implemented and tested on various

FPGA families and results are provided in the product datasheets. The SHA-256

and SHA-1 implementations are available as soft cores (synthesizable HDL) for

ASIC technologies and as firm cores (netlist) for FPGA technologies, and include

everything required for successful implementation. The functional description of

the cores is as follows:

Both cores accept input message as 32-bit words and when a block of 512

bits is completed, input stream is paused and hash calculation is carried out. When

processing of the 512 bit block is completed and core permits the input data to be

fed again. On the final message block when the last 32-bit word is input, the core

must be indicated that this is the last message word and the number of valid bytes

in the last message word must be input so that padding unit knows how many

bytes to pad.

HDL design house has SHA-1 function core in the market [21]. This core

can accept message up to 264 bits. Each 512 bit message block is processed in 80

clock cycles. The core is available as completely synthesizable VHDL or Verilog

code.

Helion Technology Limited has two hash function cores in the market

named as Helion Tiny Hashing core and Helion Fast Hashing core [22,23]. The

first core supports SHA-1, SHA-224, SHA-256 and MD5 with or without HMAC

hashing. The user can select one of these hash functions using the proper input on

the core. The core is available with either 8, 16 or 32 bit data interfaces. Input

message words are stored in a 512 bit block RAM in the core. After a 512 bit data

block loaded, it is processed according to the algorithm selected by the micro-

coded controller. This controller executes a sequence of instructions which

perform a series of computations on the data block using a specially designed

Arithmetic Logic Unit (ALU). The core is implemented on various Xilinx family

FPGA’s and the implementation results are provided in the product datasheet. The

Helion Fast Hashing core has five modes of operation, these are: SHA-1 hashing,

SHA-256 hashing, MD5 hashing, dual mode (SHA-1 and SHA-256) and dual

44

mode (SHA-1 and MD5). In all of these modes, the message is input to the core as

32-bit words. Once a 512-bit message block has been loaded, hash calculation

begins. In the hash calculation process a sequence of complex arithmetic and logic

functions are applied to the message words over a number of iterations. In each

iteration intermediate results of the chaining variables are stored and at the end of

the each block processing these are used to compute the running digest. The core

is implemented on various Xilinx family FPGA’s and the implementation results

are provided in the product datasheet.

Aldec Inc. has an SHA-1 IP core in the market [24]. The core supports

only SHA-1 hashing. 512-bit message blocks are processed in 81 clock cycles.

Data is input to the core as 32-bit message words. VHDL /Verilog source code,

technology-dependent EDIF and VHDL/Verilog netlists and software emulator of

SHA core are delivered to the user.

Ocean Logic Pty. Ltd. has SHA-1 and SHA-256 hash function cores in

the market [25, 26]. In both of the cores message is input to the core as 32-bit

words. The SHA-1 calculation is completed in 81 clock cycles and SHA-256

calculation is completed in 65 clock cycles. The core is implemented on various

Xilinx FPGAs also implemented as ASIC. The results of these implementations

are given below in Table 2-8.

Sci-worx has a SHA-1 function core in the market [27]. The core

supports only SHA-1 hashing. 512-bit message blocks are processed in 81 clock

cycles. Data is input to the core as 32-bit message words. VHDL /Verilog source

codes are delivered to the user.

45

Table 2-8 Commercial Hash Function Cores

Vendor
Supported Hash

Function
Supported
Platforms

Throughput Year

CAST Inc. SHA-1 ASIC/FPGA 6.24 Mbps/MHz
October
2007

CAST Inc. SHA-256 ASIC/FPGA 7.75 Mbps/MHz
October
2007

HDL Design
House

SHA-1 ASIC/FPGA/SoC 6.4 Mbps/MHz
December
2002

Helion
Technology
Limited

SHA-1 only

SHA-256 only

MD5 only

Dual-mode
(selectable SHA-
1 and SHA-256)

Dual-mode
(selectable SHA-
1 and MD5)

FPGA

SHA-1: 6.24 Mbps/MHz

SHA-256: 7.75 Mbps/MHz

MD5: 7.75 Mbps/MHz

July 2005

Helion
Technology
Limited

Supports

MD5,

SHA-1,

SHA 224 and
SHA-256

hash algorithms

FPGA

SHA-1: 0.201 Mbps/MHz

SHA-224: 0.16 Mbps/MHz

SHA-256: 0.16 Mbps/MHz

MD5: 0.31 Mbps/MHz

July 2005

Aldec, Inc. SHA-1 FPGA - 2006

Ocean Logic
Pty Ltd

SHA-256 FPGA/ASIC

6.325 Mbps/MHz for ASIC
0.18 u process

6.32 Mbps/MHz for Xilinx
Virtex E-8

6.96 Mbps/MHz for Xilinx
Virtex II-5

2005

Ocean Logic
Pty Ltd

SHA-1

FPGA/ASIC

6.55 Mbps/MHz for ASIC 0.18
u process

5.5 Mbps/MHz for Xilinx
Virtex E-8

6.196 Mbit/s for Xilinx Virtex
II-5

2005

Sci-worx SHA-1 FPGA 6.24 Mbps/MHz

46

CHAPTER III

DESIGN OF HASH PROCESSOR

3.1 DESIGN ON FPGA

FPGAs are digital integrated circuits which contain configurable logic

blocks and configurable interconnects between these logic blocks [28]. These

devices can be programmed by design engineers to perform a vast variety of

tasks. The “field programmable” portion of the FPGA’s name refers to the fact

that its programming takes place in the field [29]. This means that FPGAs are

programmed in the laboratory or the function of an FPGA device which is part of

a higher system can be modified easily while it is resident in the system. The

general architecture of an FPGA device is shown below in Figure 3-1:

Figure 3-1 FPGA Architecture [28]

47

When FPGAs are first seen in the market in the mid-1980s they were

mostly used to implement medium complexity state machines and very limited

data processing tasks. During the early 1990s FPGAs started to be used in the

telecommunications and networking areas which involve processing large blocks

of data due to the increased size and complexity. Towards the end of the 1990s

consumer, industrial and automotive applications are added to the areas which

FPGAs are used.

FPGAs are often used to prototype ASIC designs or to provide a

hardware platform on which to verify the physical implementation of new

algorithms. However their low development cost and short time to market mean

that they are increasingly finding their way into final products.

3.1.1 CONFIGURING FPGAs

FPGAs can be configured in two ways: in the first case case hardware

description languages (HDL) are used to describe the behavior of the circuit and

than this description are converted to the gate level netlist. FPGA is programmed

with that netlist. This illustrated below in Figure 3-2.

Figure 3-2 HDL Based FPGA Design Flow

48

In the second case the desired schematic is designed and then converted

to gate level netlist and FPGA is programmed with that netlist. and FPGA is

programmed with that netlist. This illustrated below in Figure 3-3.

Figure 3-3 Schematic Based FPGA Design Flow

As designs grew in size and complexity, schematic based design flows

ran out of stream. Visualizing, capturing, debugging, understanding and

maintaining a design at the gate level of abstraction became increasingly difficult

inefficient and time consuming for large designs. Thus designers preferred

following HDL based design flow.

49

Using HDLs the functionality of a digital circuit can be described at

different levels of abstraction. This illustrated below in Figure 3-4:

Figure 3-4 Different Levels of Abstraction

As seen in Figure 3-4, the lowest level of abstraction, the gate level, refers to the

ability to describe the circuit as a netlist of primitive logic gates and functions.

The functional level of abstraction is the ability to describe a function using

Boolean equations. For example; with signals F, A, B and SELECT, the function

of a 2:1 multiplexer can be captured as follows:

))(()(BANDSELECTNOTORAANDSELECTF =

The functional level of abstraction also encompasses register transfer level (RTL)

representations. RTL concept can be described as follows: consider a design

formed from a collection of registers linked by combinational logic. These

registers are often controlled by a common clock signal assuming that we have

already declared two signals CLOCK and CONTROL and a set of registers

REGA, REGB, REGC and REGD. Then an RTL type statement might look

something like the following:

50

 when clock rises

 if CONTROL == “1”

 then REGA = REGB AND REGC

 else REGA = REGB OR REGD

 end if;

 end when;

The highest level of abstraction is known as behavioral which refers to the ability

to describe the behavior of a circuit using abstract constructs like loops and

processes. This also includes using algorithmic elements like adders and

multipliers in equations.

In this study, VHDL is used as a hardware description language to

configure the FPGA. VHDL stands for VHSIC Hardware Description Language.

VHSIC is itself an abbreviation for Very High Speed Integrated Circuits, an

initiative funded by the United States Department of Defense in the 1980s that

led to the creation of VHDL. A fundamental motivation to use VHDL is that

VHDL is a standard, technology/vendor independent language, and is therefore

portable and reusable. The summary of the VHDL design flow is illustrated

below in Figure 3-5.

Figure 3-5 VHDL Design Flow Summary [28]

51

The design is started by writing the VHDL code, which is saved in a file with the

extension .vhd. Then the synthesis phase comes, the first step in the synthesis

process is compilation. Compilation is the conversion of the high-level VHDL

language, which describes the circuit at the RTL level, into a netlist at the gate

level. The second step is optimization, which is performed on the gate-level

netlist for speed or for area. At this stage, the design can be simulated. Finally,

the physical layout of the FPGA chip is generated by means of a place and-route

(fitter) software and then FPGA is configured by a programming hardware.

3.2 HASH PROCESSOR IMPLEMENTATION

In this study SHA-1 and SHA-256 hash functions are implemented in a

general processor structure. The design is fully described and captured using a

hardware description language named VHDL and implemented on Xilinx FPGA.

The aim is to follow all the steps in a digital hardware design flow and implement

the hash functions in a processor structure rather than in classical form.

The first step in a digital hardware design process is to determine the

design methodology that will be followed in order to satisfy the specifications

determined. In this study, the aim is to implement the SHA-1 and SHA-256 hash

functions in a processor structure. Thus as a first step, processor design on FPGA

concept is examined and the design modules that are going to be implemented are

determined. There are generally two types of processors: general purpose

processors and dedicated processors [30]. General purpose processors such as

Pentium CPU can perform different tasks under the control of software

instructions. General purpose processors are used in all personal computers.

Dedicated processors on the other hand are designed to perform one specific task.

Dedicated processors are usually much smaller and not as complex as general

purpose processors. However they are used in every smart electronic device such

as TVs, cell phones, microwave ovens etc. The designed hash processor can be

considered as a general purpose processor. The logic circuit of a processor can be

52

divided into two parts: the datapath and the control unit. The datapath is

responsible for the actual execution of all data operations performed by the

processor such as the addition of two numbers. Even though the datapath is

capable of performing all the data operations of the processor, it can not however

do it on its own. In order for the datapath to execute the operations automatically

the control unit is required. The control unit is a finite state machine (FSM)

because it is a machine that executes by going from one state to another that there

are only a finite number of states for the machine to go. A simple block diagram

of a processor is shown below in Figure 3-6.

Figure 3-6 Block Diagram of a Processor

The datapath usually contains an arithmetic logic unit (ALU) and registers for

temporary storage of the data. Additionally, a program memory to hold the

instructions that are going to be run is a very important part of a processor. As a

consequence of these it is decided that the hash processor will contain a control

unit, a program memory and a datapath. The internal structure of the datapath,

control unit and program memory are determined according to the properties of

hash functions SHA-1 and SHA-256 and the details of the design will be given in

parts 3.2.2 and 3.2.3

The design modules are designed and verified using Xilinx ISE and

ModelSim. The hardware verification tests are applied on the ML402

53

development board [31] The implementation is done for Xilinx’s Virtex4 series

XC4VSX35-FF668-10 FPGA [32] which the development board includes.

3.2.1 RESOURCES USED IN THE DESIGN

The software resources used in this study is listed below in Table 3-1.

Table 3-1 Software Resources Used in the Design

Tools / Package Usage

Xilinx ISE 7.1
Xilinx integrated synthesis
and implementation tool

ModelSim XE III 6.0a Simulation tool

Microsoft Visual Studio .NET 2003 .NET platform

VHDL description of the hash processor is written and synthesized using

Xilinx ISE 7.1. This software is also used for implementation of the design and

configuring the FPGA with the generated netlist. To verify the generated VHDL

design description, and simulate the design, ModelSim XE III 6.0a is used.

The graphical user interface is designed in Microsoft Visual Studio

.NET 2003 platform. The input text and the program that is going to be run in

hash processor are sent to the hardware test platform in RS232 format using the

control software developed on this platform.

The hash processor VHDL description is tested and verified on the

hardware test platform. All of the hardware tools used to test the design through

out this study is summarized in Table 3-2.

Table 3-2 Used Hardware for Verification

Hardware Usage

ML402 Development kit

Xilinx Platform Cable USB Programmer over JTAG port

Test Computer User interface software runs on

54

ML402 Development Kit [31] constitutes the hash processor’ s hardware

test platform. ML402 development kit includes Xilinx Virtex-4 series

XC4VSX35-FF668-10 FPGA. The FPGA is configured using the Xilinx’s

Platform Cable USB [33]. This programmer is high-speed download cable that

configures or programs all Xilinx FPGA, CPLD, ISP PROM, and System ACE

MPM devices. The test hardware specifications are given in Appendix C.

Hardware test platform setup is presented in Chapter 4.

3.2.2 HASH PROCESSOR ARCHITECTURE AND INSTRUCTION SET

In this study, for the implementation of the hash functions SHA-1 and

SHA-256, a processor structure is proposed. When determining the modules that

will constitute the hash processor, properties of SHA-1 and SHA-256 hash

functions are taken into account.

Hash processor designed in this study is composed of the following

modules listed:

� Control Unit

� Datapath

o Message Expansion Block

o Constants Rom

o Register File

o ALU

� Program Memory

� UART Interface

Controller, datapath and program memory are the main blocks of a processor.

The datapath generally contains a register file and an arithmetic logic unit in

order to handle the arithmetic operations required. However, in the proposed

architecture, datapath includes two more modules, a constants rom block and a

message expansion block which are designed in order to satisfy some special

55

requirements of the hash functions SHA-1 and SHA-256. The general block

diagram of the hash processor is shown below in Figure 3-7.

Figure 3-7 Hash Processor General Block Diagram

After determining the modules and interaction between these modules,

the first thing that is going to be done is to examine the hash functions in detail to

develop special instructions. These instructions are given in Table 3-3:

Table 3-3 Hash Processor Instructions

Instruction
Mnemonic &

Opcode

Machine Code

Brief Description

LDA loc 0000 000000000000000000000000000xxxxx
Load accumulator

with the contents of
the memory location

AND loc 1001 000000000000000000000001001xxxxx
AND accumulator

with the contents of
the memory location

ADD loc 0010 000000000000000000000000010xxxxx ADD the contents of
the memory location

56

Instruction
Mnemonic &

Opcode

Machine Code

Brief Description

to accumulator

SUB loc 0011 000000000000000000000000011xxxxx
SUB the contents of
the memory location
from accumulator

JMPP addr 0110 000000000000000000000000110xxxxx
Jump to address if the
content of the acc is
positive

STA loc 1000 000000000000000000000001000xxxxx
Store accumulator to
memory location

JMPZ addr 1111 000000000000000000000001111xxxxx
Jump to address if the
content of the acc is
zero

SHA1 0001 000000000000000000000000001xxxxx

generates the
necessary control
signals for the
datapath to make one
step SHA-1
calculation

SHA2 1010 000000000000000000000001010xxxxx

generates the
necessary control
signals fort he
datapath to make one
step SHA-256
calculation

SRGF1 1011 000000000000000000000001011xxxxx

stores the intermediate
hash values of the
SHA1 algorithm to the
register file

SRGF2 1101 000000000000000000000001101xxxxx

stores the intermediate
hash values of the
SHA-256

algorithm to the
register file

RRGF1 1100 000000000000000000000001100xxxxx

reads the intermediate
hash values of the
SHA-1 algorithm from
the register file

RRGF2 1110 000000000000000000000001110xxxxx
reads the intermediate
hash values of the
SHA-256 algorithm

57

Instruction
Mnemonic &

Opcode

Machine Code

Brief Description

from the register file.

HALT 0111 000000000000000000000000111xxxxx
terminates the
execution of the
processor

The instructions given in Table 3-3 are determined for SHA-1 and SHA-

256 hash functions as a starting point and can be extended for other hash

functions easily.

3.2.3 HASH PROCESSOR MODULES

3.2.3.1 CONTROL UNIT

Control unit is the main controller of the hash processor. It is mainly a

finite state machine that generates the necessary control signals for the datapath.

As an addition, the control unit has UART interface that enables communication

with a PC’ s serial port. The input output signals of the control unit are shown

below in Table 3-4:

Table 3-4 Input Output Signals of the Control Unit

Port name Direction Description

clock input 100 MHz clock signal

reset input global reset signal

input input 32-bit input to the controller

round output 7-bit output for the datapath. Holds the hash
operation round number

RFWe output Single bit output for the datapath. Enables
datapath to write to the registerfile

Mwe output Single bit output for the datapath. Enables

58

Port name Direction Description

datapath to write to the message ram.

ALUe output Single bit output for the datapath. Enables the
ALU in the datapath

RFr1e output Single bit output for the datapath. enables the
first register in the register file to read its content

RFr2e output Single bit output for the datapath. enables the
second register in the register file to read its
content

RFr3e output Single bit output for the datapath. enables the
third register in the register file to read its
content

RFr4e output Single bit output for the datapath. enables the
fourth register in the register file to read its
content

RFr5e output Single bit output for the datapath. enables the
fifth register in the register file to read its content

RFr6e output Single bit output for the datapath. enables the
sixth register in the register file to read its
content

RFr7e output Single bit output for the datapath. enables the
seventh register in the register file to read its
content

RFr8e output Single bit output for the datapath. enables the
eight‘th register in the register file to read its
content

RFr1wa output 4 bit output for the datapath. Holds the address
of the register to write to the first input of the
registerfile

RFr2wa output 4 bit output for the datapath. Holds the address
of the register to write to the second input of the
registerfile

RFr3wa output 4 bit output for the datapath. Holds the address
of the register to write to the third input of the
registerfile

RFr4wa output 4 bit output for the datapath. Holds the address
of the register to write to the fourth input of the
registerfile

RFr5wa output 4 bit output for the datapath. Holds the address
of the register to write to the fifth input of the
registerfile

59

Port name Direction Description

RFr6wa output 4 bit output for the datapath. Holds the address
of the register to write to the sixth input of the
registerfile

RFr7wa output 4 bit output for the datapath. Holds the address
of the register to write to the seventh input of the
registerfile

RFr8wa output 4 bit output for the datapath. Holds the address
of the register to write to the eight’th input of the
registerfile

RFr1a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the first
output of the registerfile

RFr2a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the second
output of the registerfile

RFr3a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the third
output of the registerfile

RFr4a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the fourth
output of the registerfile

RFr5a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the fifth
output of the registerfile

RFr6a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the sixth
output of the registerfile

RFr7a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the seventh
output of the registerfile

RFr8a output 4 bit output for the datapath. Holds the address
of the register to read the contents to the eight’th
output of the registerfile

ALUsel output 3 bit output for the datapath. Tells the ALU
which arithmetic operation to carry out

A output 32-bit output for the datapath and program
memory. Holds the value of the accumulator.

memory_data output 32-bit output for the datapath. Holds the content
of the addressed location of the program
memory.

60

Port name Direction Description

MemWr output Single bit output for the program memory.
Enables the program memory for write operation

Memory_address output 5-bit output for the program memory. Holds the
address of the memory location to read from or
to write to.

Control unit includes two 32 bit registers, accumulator A and, program counter

PC: The operation of the controller is best explained by describing the states of

the controller in detail. The states of the controller are:

� s_fill: This is the controller’s beginning state. This state waits for the

serial buffer to be filled with data. When the serial buffer is filled with

data, the program memory is filled with the data received. This operation

is handled by the sub states in this state. The sub states are:

o s_init: This is the initial state of the filling operation. If the serial

buffer is filled, the serial data is copied to the buffer “data” and

controller passes to the next state s_fill_1, otherwise it waits in this

state. The value of the 5 bit variable instr_count is set to “00000”.

o s_fill_1: In this state last 32 bits of the serially received data is

copied to the accumulator. The address of the program memory is

set to the value of the instr_count. Next state from this state is

s_fill_2.

o s_fill_2: In this state, MemWr signal is set in order to store the

value in the accumulator to the program memory. Next state is s-

fill_3.

o s_fill_3: In this state, MemWr signal is deserted in order to avoid

uncontrolled write operations to the memory. The variable

instr_count is incremented. The contents of the buffer “data” is

shifted to right by 32 bits. If the value of the variable instr_count

reaches to “11111” next state is s_end, else next state is s_fill_1.

o s_end: In this sate, only the next state is determined to be s_start.

61

� s_start: In this state controller begins its normal operation. The address of

the program memory is set to the value of the program counter. Next state

is the s_fetch state.

� s_fetch: In this state the value of the instruction register is set to the value

read from the program memory. The value of the program counter is

incremented. Next state is the s_decode state.

� s_decode: In this state, address of the program memory is set to the first

five bits of the instruction register. Last four bits of the instruction register

defines the next state to go. These last four bits are the opcodes and are

shown below in Table 3-5.

Table 3-5 Opcodes

opcode state

0000 load

0001 s_sha1

0010 s_add

0011 s_sub

0100 s_input

0101 s_sha1_out

0110 s_jpos

0111 s_halt

1000 s_store

1001 s_and

1010 s_sha2

1011 s_store_regf_1

1100 s_read_regf_1

1101 s_store_regf_2

1110 s_read_regf_2

1111 s_jz

� s_load: In this state accumulator is load with the value read from the

program memory. Next state is the state s_start.

62

� s_add:In this state the value in the accumulator and the value read from

program memory is added and the result is stored in the accumulator.

Next state is the state s_start.

� s_and: In this state the value in the accumulator is anded with the value

read from the program memory and the result is stored back in the

accumulator. Next state is the state s_start.

� s_sub: In this state the value read from the program memory is subtracted

from the value in the accumulator and the result is stored back in the

accumulator. Next state is the state s_start.

� s_input: In this state the value input to the controller is stored in the

accumulator. Next state is the state s_start.

� s_store: In this state the value in the accumulator is stored in the program

memory. Next state is the state s_store2.

� s_store2: In this state the value of the signal Memwr which is set to ‘1’ in

the previous state is set to ‘0’ Next state is s_start.

� s_jpos: In this state, if the value in the accumulator is positive, program

counter is set to the first five bits of the instruction register, thus jumped

to the memory location pointed by first five bits of the instruction register.

Next state is the state s_start.

� s_jz: In this state, if the value in the accumulator is zero, program counter

is set to the first five bits of the instruction register, thus jumped to the

memory location pointed by first five bits of the instruction register. Next

state is the state s_start.

� s_halt: In this state the execution of the controller is terminated.

� s_sha1: In this state, the control signals necessary for the datapath to

execute one round of SHA-1 operation are generated. Next state is the

state s_start.

� s_sha2: In this state, the control signals necessary for the datapath to

execute one round of SHA-2 operation are generated. Next state is the

state s_start.

63

� s_store_regf_1: In this state the chaining variables related to the SHA-1

hash function are stored in the register file. Next state is the state s_start.

� s_store_regf_2: In this state the chaining variables related to the SHA-256

hash function are stored in the register file. Next state is the state s_start.

� s_read_regf_1: In this state the values of the chaining variables related to

the SHA-1 hash function are read from the register file. Next state is the

state s_start.

� s_read_regf_2: In this state the values of the chaining variables related to

the SHA-256 hash function are read from the register file. Next state is the

state s_start.

After these explanations the state diagram of the controller is shown below in

Figure 3-8.

64

Figure 3-8 Controller State Diagram

65

3.2.3.2 PROGRAM MEMORY

Program memory is designed as a 32x32 RAM to hold the program

instructions. The input output signals of the program memory are shown below in

Table 3-6.

Table 3-6 Input Output Signals of the Program Memory

Port Name Direction Description

clk input Clock input

we input Single bit input used for enabling write
operation

a input 5-bit input used for addressing the RAM

di input 32-bit RAM input

do output 32-bit RAM output

Program memory is synthesized as 32x32 BRAM. The write operation is

synchronized to the rising edge of the clock input but read operations independent

of the clock.

3.2.3.3 DATAPATH

The general block diagram of the datatapath is shown below in Figure

3-9.

Figure 3-9 Datapath Architecture

66

Datapath is composed of the modules message expansion block,

constants ROM, register file and ALU. The connections between these modules

are described in the following sections in details. The input output signals and the

definitions of these signals are also given.

3.2.3.3.1 MESSAGE EXPANSION BLOCK

This block is responsible of storing the incoming 512-bit message block

and preparing the message schedule. The input output signals of the message

block are shown below in Table 3-7.

Table 3-7 Input Output Signals of the Message Expansion Block

Port Name Direction Description

clock input Clock input

reset input Single bit global reset input

we input 5-bit input used for addressing the RAM

round input 7-bit input that holds the hash round number

SEL input 3-bit input holds the value that determines
which functions to use in order to prepare the
message schedule

di input 32-bit RAM input

do1 output 32 bit RAM output

Message expansion block is composed of a 80x32 RAM to store the incoming

512 bit message block and some processes to generate the message schedule. For

the SHA-1 hash function, 80 message words are quired, for the SHA-256 hash

function 64 message words are required, so the size of the RAM is determined to

be 80x32. In the first process according to the SEL signal and the round number

addresses of the message words that will be used to prepare the message schedule

are generated. In the next two processes message schedule is prepared according

to the selected hash function. Message expansion block is synthesized as 4 32x80

BRAMs and some extra logic.

67

3.2.3.3.2 CONSTANTS ROM

This module holds the constant values required by the hash function

SHA-1 and SHA-256. There are 64 different constants used in the 64 rounds of

the SHA-256 hash function where there are four constants used in the 4x20

rounds of the SHA-1 hash function. Thus this rom block is 80x64 bits wide. Last

32 bits of a ROM entry holds one SHA-256 constant and first 32 bits hold one

SHA-1 constant. The input output signals of the ROM block are shown below in

Table 3-8.

Table 3-8 Input Output Signals of the ROM Block

Port Name Direction Description

clock input Clock input

reset input Single bit global reset input

SEL input 3-bit input that holds the value that determines
which hash function’ s constants to read.

address input 7 bit input that holds the rom address

K output 32 bit rom output

ROM block is synthesized as 80x32 ROM structure.

3.2.3.3.3 REGISTER FILE

Register file is the module that holds the chaining variables of the hash

functions SHA-1 and SHA-256. There are five chaining variables for SHA-1 hash

function and eight chaining variables for the SHA-256 hash function. There are

total 16 registers in the register file. Three registers are intentionally left blank in

order to be used for accumulator or memory data coming from the program

memory when needed. The input and output signals of the register file are shown

below in Table 3-9.

Table 3-9 Input Output Signals of the Register File

Port name Direction Description

clock input clock signal

68

Port name Direction Description

reset input global reset signal

RFWe input Single bit input. Enables the register file for
write operation

RFr1e input Single bit input. Enables the read operation from
the first output of the register file

RFr2e input Single bit input. Enables the read operation from
the second output of the register file

RFr3e input Single bit input. Enables the read operation from
the third output of the register file

RFr4e input Single bit input. Enables the read operation from
the fourth output of the register file

RFr5e input Single bit input. Enables the read operation from
the fifth output of the register file

RFr6e input Single bit input. Enables the read operation from
the sixth output of the register file

RFr7e input Single bit input. Enables the read operation from
the seventh output of the register file

RFr8e input Single bit input. Enables the read operation from
the eight’ th output of the register file

RFr1wa input 4-bit input. Determines the address of the
register to which the value in the first input will
be written

RFr2wa input 4-bit input. Determines the address of the
register to which the value in the second input
will be written

RFr3wa input 4-bit input. Determines the address of the
register to which the value in the third input will
be written

RFr4wa input 4-bit input. Determines the address of the
register to which the value in the fourth input
will be written

RFr5wa input 4-bit input. Determines the address of the
register to which the value in the fifth input will
be written

RFr6wa input 4-bit input. Determines the address of the
register to which the value in the sixth input will
be written

RFr7wa input 4-bit input. Determines the address of the
register to which the value in the seventh input
will be written

69

Port name Direction Description

RFr8wa input 4-bit input. Determines the address of the
register to which the value in the eight’ th input
will be written

RFr1a input 4-bit input. Determines the address of the
register from which the value will be read to the
first output of the register file

RFr2a input 4-bit input. Determines the address of the
register from which the value will be read to the
second output of the register file

RFr3a input 4-bit input. Determines the address of the
register from which the value will be read to the
third output of the register file

RFr4a input 4-bit input. Determines the address of the
register from which the value will be read to the
fourth output of the register file

RFr5a input 4-bit input. Determines the address of the
register from which the value will be read to the
fifth output of the register file

RFr6a input 4-bit input. Determines the address of the
register from which the value will be read to the
sixth output of the register file

RFr7a input 4-bit input. Determines the address of the
register from which the value will be read to the
seventh output of the register file

RFr8a input 4-bit input. Determines the address of the
register from which the value will be read to the
eight’ th output of the register file

RFin1 input 32-bit input to the register file

RFin2 input 32-bit input to the register file

RFin3 input 32-bit input to the register file

RFin4 input 32-bit input to the register file

RFin5 input 32-bit input to the register file

RFin6 input 32-bit input to the register file

70

Port name Direction Description

RFin7 input 32-bit input to the register file

RFin8 input 32-bit input to the register file

RFr1 output 32-bit output of the register file

RFr2 output 32-bit output of the register file

RFr3 output 32-bit output of the register file

RFr4 output 32-bit output of the register file

RFr5 output 32-bit output of the register file

RFr6 output 32-bit output of the register file

RFr7 output 32-bit output of the register file

RFr8 output 32-bit output of the register file

The register file works as follows, at the beginning of each hash round the value

of the chaining variables are read from the register file, then at the end of the each

hash round, the value of the chaining variables is written to the corresponding

registers in the register file. This operation continues until hash computation

ends.

3.2.3.3.4 ALU

Arithmetic logic unit is the module which handles all the arithmetic,

logic calculations instructed by the controller. This part is the hearth of the hash

calculation process. The logic functions which are specific to the hash functions

SHA-1 and SHA-256 are all implemented in this module. The input output

signals of this module are shown below in Table 3-10.

71

Table 3-10 Input Output Signals of the ALU

Port Name Direction Description

clock input Clock input

reset input Single bit global reset input

ALUe input Single bit input that enables the ALU

round input 7 bit input that holds the number of the sha
round

SEL input 3-bit input that holds the value that determines
which arithmetic logic computation to execute

ACC_in input 32-bit input which holds the accumulator
value.

Mem_data input 32-bit input that holds the values read from the
program memory

A input First chaining variable for SHA-1 or SHA-256
hash function

B input Second chaining variable for SHA-1 or SHA-
256 hash function

C input Third chaining variable for SHA-1 or SHA-
256 hash function

D input Fourth chaining variable for SHA-1 or SHA-
256 hash function

E input Fifth chaining variable for SHA-1 or SHA-256
hash function

F input Sixth chaining variable for SHA-256 hash
function

G input Seventh chaining variable for SHA-256 hash
function

H input Eight’ th chaining variable for SHA-256 hash
function

K input Constant value read from Constants ROM

W input Message word coming from the message
computation block

ALU_sign output The sign of the result of the operation
executed by ALU (if positive ‘1’, if zero ‘0’)

ALU_out output The output of the operation executed by ALU

A_out output First chaining variable after one round hash
calculation

B_out output Second chaining variable after one round hash

72

Port Name Direction Description

calculation

C_out output Third chaining variable after one round hash
calculation

D_out output Fourth chaining variable after one round hash
calculation

E_out output Fifth chaining variable after one round hash
calculation

F_out output Sixth chaining variable after one round hash
calculation

G_out output Seventh chaining variable after one round
hash calculation

H_out output Eight’ th chaining variable after one round
hash calculation

ALU selects which calculation to execute according to the instruction decoded by

the control unit and input to the ALU as the SEL signal. The operation selection

according to the input SEL is shown below in Table 3-11.

Table 3-11 ALU Operation Selection

SEL Operation

000 One round SHA-1 operation

001 One round SHA-256 operation

010 Addition operation

011 Subtraction operation

100 And operation

101 Or operation

3.2.3.4 UART MODULE

The UART module is composed of UART receiver, UART baud

generator and UART transmitter sub modules. The UART module provides a

serial interface between the control unit and the external environment via

73

sdata_in pin. Serial data sent in RS-232 format is received at each positive edge

of the clock and received bytes are put into the receive shift register.

The UART receive module is used to get the instructions to be executed

by the controller and the 512 bit message blocks from the user.

The UART baud generator module supports six different baud rates.

They are shown below in Table 3-12. In this study 38400 Hz baud rate is selected

for communication.

Table 3-12 UART Baud Rate Selection Table

Baud Rate Selection Register Generated Clock Frequency

“0110” 38400 Hz

“0101” 19200 Hz

“0100” 9600 Hz

“0011” 4800 Hz

“0010” 2400 Hz

“0001” 1200 Hz

74

CHAPTER IV

HARDWARE REALIZATION OF HASH PROCESSOR

5.1 HASH PROCESSOR OVER AN FPGA

In this study the aim is to implement the designed hash function

processor on FPGA. For this purpose Xilinx ML402 Evaluation Platform is used.

This platform is a development kit that has several features and includes the

following components (the numbers represented in parenthesis in the below list

are the numbers which indicate the components on Figure 5-1 and Figure 5-2

given below.):

� Virtex-4 FPGA XC4VSX35-FF668-10 (1)

� 64 MB DDR SDRAM, 32-bit interface running up to 266 MHz data rate

(2)

� One differential clock input pair and differential clock output pair with

SMA connectors (3)

� One 100 MHz clock oscillator (socketed) plus one extra open 3.3V clock

oscillator socket (4)

� General purpose DIP switches (ML401/ML402 platform), LEDs, and

push buttons (6, 7, 8, 9)

� Expansion header with 32 single-ended I/O, 16 LVDS capable differential

pairs (10)

75

� 14 spare I/O’s shared with buttons and LEDs, power, JTAG chain

expansion capability, and IIC bus expansion (10)

� Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and

microphone-in (mono) jacks (11)

� RS-232 serial port (12)

� 16-character x 2-line LCD display (13)

� 4 Kb IIC EEPROM (14)

� VGA output with 50 MHz / 24-bit video DAC (140 MHz on

ML402/ML403) (15)

� PS/2 mouse and keyboard connectors (16)

� System ACE™ CompactFlash configuration controller with Type I/II

CompactFlash connector (17)

� ZBT synchronous SRAM (9 Mb) on 32-bit data bus with four parity bits)

(18)

� Intel StrataFlash (or compatible) linear flash chips (8 MB) (19)

� 10/100/1000 tri-speed Ethernet PHY transceiver (21)

� USB interface chip (Cypress CY7C67300) with host and peripheral ports

(22)

� Xilinx XC95144XL CPLD to allow linear flash chips to be used for

FPGA configuration (20)

� Xilinx XCF32P Platform Flash configuration storage device (23)

� JTAG configuration port for use with Parallel Cable III or Parallel Cable

IV cable (24)

� Onboard power supplies for all necessary voltages (25)

� 5V @ 3A AC adapter (26)

� Power indicator LED (27)

76

The front side of the development kit is shown below in Figure 5-1.

Figure 5-1 Xilinx ML402 Evaluation Platform Front Side

The back side of the development kit is shown below in Figure 5-2.

Figure 5-2 Xilinx ML402 Evaluation Platform Back Side

77

Xilinx ML402 contains Xilinx’s Virtex4 series XC4VSX35 FPGA [20].

Virtex-4 FPGAs deliver breakthrough performance at the lowest cost and offer a

compelling alternative to ASICs. The development board also has RS-232 serial

port which makes communication with peripherals possible.

Hash processor is fully described using VHDL on Xilinx ISE software.

Target FPGA also belongs to the same company. This is an advantage since

Xilinx ISE software provides full support for all the code-to-FPGA processes for

Xilinx FPGAs. The steps in the implementation process are described below:

1. Synthesis: In the synthesis process the syntax of the design is

checked and the written VHDL descriptions are converted to the

common constructs on the FPGA such as multiplexers, flip flops,

BRAMs etc.

2. Implement design: Before implementation, the constraint file is

written to define hardware I/O connections. The implementation

constraints file includes timing constraints, package pin

assignments and area constraints. Implementing the design

means translating, mapping, placement and routing of the design

into the targeted Xilinx device. In this process, logical design file

generated in the synthesis process, is converted into a native

circuit description (NCD file). This file contains hierarchical

components used to develop the design and the Xilinx primitives.

3. Generate programming file: In order to generate programming

file, the design should have been implemented for the selected

FPGA device. This process generates the “.bit” file required to

program the FPGA.

4. Configure the device: This process is the process where the

FPGA is programmed. FPGA is programmed using Xilinx’s

Platform Cable USB [21].

As described above hash processor descriptions are synthesized and implemented

in the Xilinx ISE software platform. At the end of the synthesis process

78

behavioral simulations of the design is carried out. After the implementation

process timing simulations are done, programming file is generated and the

device is configured using Xilinx’s Platform Cable USB. After the device is

configured, it is ready to perform hardware tests of the design. The device

utilization summary of the design after implementation is given below in Table

5-1.

Table 5-1 Device Utilization Summary for Hash Processor VHDL Code

Logic Utilization Used Available Utilization

Number of Slices 2494 15360 16%

Number of Slices Flip Flops 2793 30720 9%

Number of 4 input LUTs 3872 30720 12%

Number of bonded IOBs: 350 450 77%

Number of
FIFO16/RAMB16s:

4 192 2%

5.2 TEST AND VERIFICATION METHODOLOGY

The proposed hash function processor is tested and verified in two

stages. First stage is the verification on the software platform. Second stage is the

verification on the hardware platform. In both stages the test vectors which are

published by NIST are used as input messages and the outputs are compared with

the actual results. For the random inputs, the design is verified by using a

software named “Advanced Hash Calculator” which is available on internet for

free. The hash value of the random input is calculated by this software and by the

proposed design then the results are compared. The snapshot of the “Advanced

Hash Calculator Software” is shown below in Figure 5-3.

79

Figure 5-3 Advanced Hash Calculator

To test the design in the software environment the UART module is

discarded and the program and message block is directly inputted to the design.

The test and verification of the design in the software platform is done by

behavioral and timing simulations. In order to perform behavioral and timing

simulations, test bench is created for the top module. In the test bench necessary

input signals for the design is provided and the outputs are compared with the

expected results. ModelSim XE III 6.0a is used as a HDL based simulation and

debug environment. ModelSim can be initialized from the Xilinx Project

Navigator. When the designer launches ModelSim using Xilinx design

environments, the wave window appears. It contains waveforms for all input and

output signals of the top-level design module. The output waveforms are

observed in this window and desired analyses can be carried out.

The test and verification of the design on the hardware is done after the

FPGA is configured. The input message and the program are entered to the

design via UART interface from a PC by means of a simple user interface. The

80

message padding operation is done by this user interface software. The snapshot

of the user interface is shown below in Figure 5-4.

Figure 5-4 Hash Processor User Interface

5.3 TEST AND SIMULATION RESULTS

The designed hash processor is tested with different inputs. The program

which is used for SHA-1 calculation is shown below in Table 5-2.

Table 5-2 SHA-1 Calculation Program

Instruction Description

LDA
1E:Loop

Load accumulator A with the content of the memory location 1E
(the content of the memory location is initially zero)

RRGF1
read the intermediate hash values of the SHA-256 algorithm from
the register file.

SHA1 generate the necessary control signals fort he datapath to make

81

Instruction Description

one step SHA-256 calculation

SRGF1
store the intermediate hash values of the SHA-256 algorithm to
the register file

LDA 1E Load accumulator A with the content of the memory location 1E

ADD 1D

ADD the content of the memory location 1D to the value in
accumulator A

(the content of the memory location 1D is one)

STA 1E Store the content of the accumulator A to the memory location 1E

LDA 1F

Load accumulator A with the content of the memory location
1F(the content of the memory location 1F is 80)

SUB 1E
Subtract the content of the memory location 1E from the value in
the accumulator A

JMPZ 09
Jump to Halt if the result of the previous subtraction is zero (ie 80
round is completed)

JMPP 00

Jump to Loop is the result of the previous subtraction is positive
(ie 80 round is not completed)

HALT:Halt Terminate the execution

The program which is used for SHA-256 calculation is shown below in Table

5-3.

Table 5-3 SHA-256 Calculation Program

Instruction Description

LDA
1E:Loop

Load accumulator A with the content of the memory location 1E
(the content of the memory location is initially zero)

RRGF2
read the intermediate hash values of the SHA-256 algorithm from
the register file.

SHA2
generate the necessary control signals fort he datapath to make
one step SHA-256 calculation

SRGF2
store the intermediate hash values of the SHA-256 algorithm to
the register file

LDA 1E Load accumulator A with the content of the memory location 1E

ADD 1D

ADD the content of the memory location 1D to the value in
accumulator A

(the content of the memory location 1D is one)

82

Instruction Description

STA 1E Store the content of the accumulator A to the memory location 1E

LDA 1F

Load accumulator A with the content of the memory location
1F(the content of the memory location 1F is 64)

SUB 1E
Subtract the content of the memory location 1E from the value in
the accumulator A

JMPZ 09
Jump to Halt if the result of the previous subtraction is zero (ie 64
round is completed)

JMPP 00

Jump to Loop is the result of the previous subtraction is positive
(ie 64 round is not completed)

HALT:Halt Terminate the execution

In the below Figure 5-5 timing simulation results of the SHA-256 calculation

with the program in the Table 5-3 is shown. The input vector is the string

“abc”.This test vector is determined by FIPS 180-2 [2], expected output for the

first hash variable is: 506e3058. As seen in Figure 5-5 the design generates the

correct value. The whole hash output is not given as output in timing simulations

considering the IO restrictions of the selected device.

Figure 5-5 SHA-256 Calculation for Input “abc”

83

In the below Figure 5-6 timing simulation results of the SHA-1 calculation for the

program given in Table 5-2 is shown. The input vector is the string “abc”.This

test vector is determined by FIPS 180-2 [2], expected output for the first hash

variable is: 42541B35.

Figure 5-6 SHA-1 Calculation for Input “abc”

The hash processor is tested for random inputs too. In the below Figure 5-7, the

result of the first chaining variable for input “tugba” for SHA-1 calculation is

given. It is seen that the final value of the first chaining variable is “B3AF9A0B“.

The first word of the final hash value is calculated as follows:

67452301 + B3AF9A0B = 1AF4BD0C

In order to verify the design the same string “tugba” is input to the AHC

software. The software is configured for SHA-1 calculation and the output is

observed. It is seen that both the AHC software and the proposed design produce

the same outputs.

84

Figure 5-7 SHA-1 Calculation for Input “tugba”

Figure 5-8 SHA-1 Output of AHC for Input “tugba”

85

CHAPTER V

DISCUSSION AND CONCLUSION

In this thesis, a hash processor having the capability of performing SHA-

1 and SHA-256 calculations is specified, analyzed and implemented using the

hardware description language VHDL. The design is also verified on hardware by

implementing the suggested structure on an FPGA.

Hash function implementations on hardware seem to be more popular as

the developments in the communications area continue tremendously.

Implementing hash functions on hardware is preferred since software

implementations don’t satisfy the speed, throughput and security requirements of

the complex communication systems in use today. Hash function

implementations are used in several fields of information security such as

providing password authentication, verifying data integrity and generating digital

signatures for both data origin authentication and verifying the content of the

document. The hash processor proposed in this study can be used in these

applications easily. The usage of the processor is flexible, since it has a serial

communication interface that makes the communication with the external world

possible.

The idea of implementing the hash functions SHA-1 and SHA-256 in a

processor structure rose after a detailed research on present implementations of

these hash functions in the market and in the literature. Moreover, the designed

hash function processor has standard UART interface that makes communication

86

with the external units such as a personal computer possible. This provides a

great flexibility since it enables remote control of the hash function processor. In

the market and in the literature an implementation that enables serial

communication with the device has not been found. This communication facility

is proposed and added in this study. The proposed design is verified on software

by timing simulations and on hardware by implementing the design on an FPGA.

For the verification, test vectors announced by NIST are used and seen that the

design generates the correct hash values. For random inputs which are not in the

NIST publications “Advanced Hash Calculator (AHC)” software is used. When

testing hash processor for random inputs, first, AHC software is verified by

NIST’s test vectors. Then the proposed design is verified by comparing outputs

generated by the AHC software and the designed processor.

In order to define an architecture that implements hash functions, the

computational properties of the hash functions are examined in details. The

computational properties of the hash functions differ from each other by the

parameters such as number of rounds, number of constants, message block sizes,

word sizes and the complex logic and the arithmetic functions being used. In

present implementations, hash functions are implemented as a combination of

dedicated modules such as message padding unit, message scheduling unit, hash

calculation unit and output generation unit. These implementations exhibit higher

throughput.

However in this study a different design approach is followed. The

computational properties of the hash functions are examined in details in order to

define instructions that are specific to the hash functions and enable performing

hash operations. Thus a dedicated instruction set for the processor under

construction has been developed. Hash processor is a 32-bit processor with

simple instruction set. The instruction set is composed of 14 instructions. The

instructions are 2 clock cycle instructions. SHA-1 and SHA-256 calculations can

be completed with 10 instructions. All the instructions are 32-bit words and kept

in the program memory. This memory is addressed with 5-bit addresses. As an

87

addition, the instruction set of the hash processor can be extended easily to

include other hash functions which have the same word and block sizes.

The proposed hash processor consists of the blocks control unit, program

memory and the datapath which are the blocks that are present in all processors.

The throughput of the proposed architecture is less than the present

implementations however the proposed implementation has a serial

communication interface which makes the design easy to use and consumes less

area. Additionally, the architecture can be extended easily to include other hash

functions since the general blocks will not be changed but some extra operations

will be added to the ALU block for each hash function included.

The hash function processor described using the hardware description

language VHDL is implemented on to the Xilinx Virtex4 4vsx35ff668-12 FPGA.

The design consumes 1247 Configurable Logic Blocks (CLBs) on FPGA. This

corresponds to the %16 of the FPGA CLBs. The modules of the hash function

processor are designed in a synthesizable form in order to use the resources of the

FPGA efficiently. For instance, the program memory and the message RAM are

designed in an efficient manner such that they are implemented as Block RAMs

(BRAM) on FPGA instead of consuming flip flops. Simulation results show that

the throughput of the proposed architecture is 1,37 Mbps with a clock speed of

12.5 MHz. This is less than the designs present in the market however the

proposed design provides standard UART communication interface can be

controlled remotely and consumes less area on the FPGA.

Existing designs have some advantages such as high speed and high

throughput however they can not be modified easily to include other hash

functions. On the other hand, the ALU block which performs the arithmetic and

the logic calculations can be optimized to improve the speed and the throughput

of the design. As a future work, with the addition of some new instructions, the

instruction set of the hash processor can be extended to include other hash

functions such as SHA-224 and MD5.

88

REFERENCES

[1] Bruce Schneier, “Applied Crptography”, John Wiley and Sons, Inc. Press,
1996.

[2] NIST, “Secure Hash Standard”, FIPS PUB 180-1, May 1993.

[3] NIST, “with change notice Secure Hash Standard”, FIPS PUB 180-2
August 2002.

[4] NIST, “Digital Signature Standard (DDS)”, FIBS PUB 186 May 1994.

[5] “An Overview of Cryptographic Hash Functions and Their Uses”, SANS
Institute, 2003

[6] R. Rivest, “MD5 Message-Digest Algorithm”, RFC 1321. MIT Laboratory
for Computer Science and RSA Data Security Inc, 1992.

[7] Yong Kyu Kang, Dae Won Kim, Taek Won Kwon, Jun Rim Choi, “An
Efficient Implementation of Hash Function Processor for IPSEC”, In
Proceedings of the IEEE Asia-Pacific Conference on ASIC, pp. 93-96,
August. 2002

[8] M. McLoone, J. V. McCanny, “Efficient Single-Chip Implementation of
SHA-384 & SHA-512”, Proceedings of the IEEE International Conference
on Field-Programmable Technology pp. 311-314, 2002.

[9] Tim Grembowski, Roar Lien, Kris Graj, Nghi Nguyen, Peter Bellows,
Jaroslav Flidr, Tom Lehman, Brian Schott, “Comparative Analyses of the
Hardware Implementations of Hash Functions SHA-1 and SHA-512”, In:
Proceedings. of the 5th International Information Security Conference, 2002

[10] N. Sklavos, G. Dimitroulakos, O. Koufopavlou, “An Ultra High Speed
Architecture for VLSI Implementation of Hash Functions”, Proceedings of
the 10th IEEE International Conference on Electronics, Circuits and
Systems (ICECS 2003) pp. 990-993 Vol.3, 2003.

89

[11] N. Sklavos and O. Koufopavlou, “On the Hardware Implementations of
SHA-2 (256, 384, 512) Hash Functions”, Proceedings of the 2003
International Symposium on Circuits and Systems (ISCAS’ 2003) pp. V-
153-V-156 Vol. 5, 2003

[12] Harris Michail, Athanasios P. Kakarountas, Odysseas Koufopavlou, Costas
E. Goutis, “A Low Power and High Throughput Implementation of the
SHA-1 Hash Function”, IEEE International Symposium on Circuits and
Systems (ISCAS 2005), pp. 4086-4089 Vol.4., 2005

[13] T.S. Ganesh, M.T. Frederick, T.S.B. Sudarshan, A.K. Somani,
“HashChip: A shared-resource multi-hash function processor architecture
on FPGA”, INTEGRATION theVLSI journal 40 pp. 11-19, (2007).

[14] “Advanced Hash Calculator”, www.filesland.com, Version 2.33 Released
November 21’st 2007.

[15] R. L. Rivest, “The MD4 Message Digest Algorithm,” RFC
1320, April 1992.

[16] J. Vandewalle, et al., “A European Call For Cryptographic Algorithms:
RIPE; Race Integrity Primitives Evaluation”, EUROCRYPT ’89, LNCS
434, pp. 267-271, 1990.

[17] NIST, “SKIPJACK and KEA Algorithms Specifications Version 2.0”, May
1998.

[18] NIST, “Advanced Encryption Standard (AES),” FIPS PUB197, Nov. 2001.

[19] CAST, “SHA-1 Secure Hash Function Core Datasheet”, October 2007

[20] CAST, “SHA-256 Secure Hash Function Core Datasheet”, October 2007

[21] HDL Design House, “HCR_SHA1 Datasheet”, version 1.0, December 2002

[22] Helion Technology Limited, “SHA-1, SHA-256 and MD5 Hashing, Fast
(Helion) Datasheet”, July 2005.

[23] Helion Technology Limited, “SHA-1, SHA-224, SHA-256 and MD5
Hashing, Tiny with HMAC (Helion) Datasheet”, July 2005.

[24] Aldec Inc, “ALDEC SHA IP Core Data Sheet”, version 1.0, April 2006.

[25] Ocean Logic Pty. Ltd, “OL_SHA256 SHA-256 Processor Datasheet”,
Rev 0.9

90

[26] Ocean Logic Pty. Ltd, “OL_SHA SHA-1 Processor Datasheet”, Rev 1.3

[27] Sci-worx, “High Speed SHA-1 HASH Engine Datasheet”, Rev. 01.00.06

[28] Volnei A. Pedroni, “Circuit Design with VHDL”, MIT Press Cambridge,
Massachusetts, 2004.

[29] Clive Maxfield, “The Design Warrior’s Guide to FPGAs”, Elsevier
Newnespress, 2004.

[30] Enoch O. Hwang, “Digital Logic and Microprocessor Design With

VHDL”, Team ELECTRONICS, 2004.

[31] Xilinx Inc., ML40x Evaluation Platform Users Guide, Feburary 2005.

[32] Xilinx Inc., Virtex-4 User Guide, October 2006.

[33] Xilinx Inc., Platform Cable USB Advance Product Specifications, June
2006.

91

APPENDICES

92

APPENDIX-A

SHA-1 AND SHA-256 CONSTANTS

The constants used by the SHA-1 and SHA-256 are given below in

Table A-1 and Table A-2. The values in below tables are expressed in hex form.

Table A-1 SHA-1Constants

Constant SHA-1 round number ‘t’

5a827999 0 ≤ t ≤ 19

6ed9eba1 20 ≤ t ≤ 39

8f1bbcdc 40 ≤ t ≤ 59

ca62c1d6 60 ≤ t ≤ 79

Table A-2 SHA-256 Constants

Constant SHA-256 round number ‘t’

428a2f98 0

71374491 1

b5c0fbcf 2

e9b5dba5 3

3956c25b 4

59f111f1 5

923f82a4 6

ab1c5ed5 7

d807aa98 8

12835b01 9

243185be 10

93

Constant SHA-256 round number ‘t’

550c7dc3 11

72be5d74 12

80deb1fe 13

9bdc06a7 14

c19bf174 15

e49b69c1 16

efbe4786 17

0fc19dc6 18

240ca1cc 19

2de92c6f 20

4a7484aa 21

5cb0a9dc 22

76f988da 23

983e5152 24

a831c66d 25

b00327c8 26

bf597fc7 27

c6e00bf3 28

d5a79147 29

06ca6351 30

14292967 31

27b70a85 32

2e1b2138 33

4d2c6dfc 34

53380d13 35

650a7354 36

766a0abb 37

81c2c92e 38

92722c85 39

94

Constant SHA-256 round number ‘t’

a2bfe8a1 40

a81a664b 41

c24b8b70 42

c76c51a3 43

d192e819 44

d6990624 45

f40e3585 46

106aa070 47

19a4c116 48

1e376c08 49

2748774c 50

34b0bcb5 51

391c0cb3 52

4ed8aa4a 53

5b9cca4f 54

682e6ff3 55

748f82ee 56

78a5636f 57

84c87814 58

8cc70208 59

90befffa 60

a4506ceb 61

bef9a3f7 62

c67178f2 63

95

APPENDIX B

COMMERCIAL HASH IMPLEMENTATIONS

B.1 CAST SHA-1 SECURE HASH FUNCTION CORE

CAST SHA-1 Secure Hash Function Core consists of two main blocks; the SHA1

Engine Module and the Input Interface Module. The SHA1 Engine Module

applies the SHA1 loops on a single 512-bit message block, while the Input

Interface Module performs the message padding. The features of the core are as

follows:

� Bit padding is provided.

� Supported Message lengths multiple of 8-bits.

� 82 processing cycles per message block.

� Fully stallable input and output interfaces, ideal for streaming

applications.

� Optimized design for ASIC or FPGA implementations.

� Sophisticated self-checking Testbench (Verilog versions use Verilog

2001).

The functional block diagram of the core is given below in Figure B-1.

Figure B-1 CAST SHA-1 Secure Hash Function Core Block Diagram

96

B.2 CAST SHA-256 SECURE HASH FUNCTION CORE

CAST SHA-256 Secure Hash Function Core consists of two main blocks; the

SHA256 Engine Module and the Input Interface Module. The SHA256 Engine

Module applies the SHA256 loops on a single 512-bit message block, while the

Input Interface Module performs the message padding. The features of the core

are as follows:

� Bit padding is provided.

� Supported Message lengths multiple of 8-bits.

� 66 processing cycles per message block.

� Fully stallable input and output interfaces, ideal for streaming

applications.

� Optimized design for ASIC or FPGA implementations.

� Sophisticated self-checking Testbench (Verilog versions use Verilog

2001).

The functional block diagram of the core is given below in Figure B-2.

Figure B-2 CAST SHA-256 Secure Hash Function Core Block Diagram

97

B.3 HDL DESIGN HOUSE HCR_SHA1

The HCR_SHA1 is a high performance crypto core family that implements the

NIST SHA-1 message-digest algorithm. The features of the core are as follows:

� The resolution of the input message is in bits

� All padding variants are supported in hardware

� Message block of 512 bits processed in 64 clock cycles

� Software configurable IP core through ten registers. Fixed 32 bits size of

all architecture registers

� 640 Mb/s transfer rate for 100MHz OCP interface variant

� Input synchronous FIFO with concurrent read/write for input data stream

� Power down mode operation for low power applications

� Available in both Verilog and VHDL

� VITAL 2000 and SystemC behavioral models

� DFT support implemented

� SoC integration support

The functional block diagram of the core is shown below in Figure B-3.

Figure B-3 HDL Design House HCR_SHA1 Core Block Diagram

98

B.4 HELION TECHNOLOGY LIMITED SHA-1, SHA-256 AND MD5

HASHING, FAST (HELION)

Hellion Technology Limited fast hashing core is capable of performing SHA-1,

SHA-256 and MD5 hashing. The features of the core are as follows:

� Available in multiple versions

o SHA-1 only

o SHA-256 only

o MD5 only

o Dual-mode (selectable SHA-1 and SHA-256)

o Dual-mode (selectable SHA-1 and MD5)

� Designed specifically for high throughput applications

� Performs automatic message length calculation and padding insertion

� Message is input as 32-bit words

Functional block diagram of the core is shown below in Figure B-4.

Figure B-4 Hellion Fast Hashing Core Block Diagram

99

B.5 HELION TECHNOLOGY LIMITED SHA-1, SHA-224, SHA-256

AND MD5 HASHING, TINY WITH HMAC

Hellion Technology Limited tiny hashing core is capable of performing SHA-1,

SHA-224, SHA-256 and MD5 hashing. The features of the core are as follows:

� Supports MD5, SHA-1, SHA-224 and SHA-256 hash algorithms

� Supports Internet Standard HMAC for all four hash algorithms

� Supports state unload/reload to optimise handling of fragmented message

streams

� Choice of 8, 16 or 32-bit data interface widths

� Highly flexible, low resource hashing solution for lower data rate

applications

� Highly optimized for use in Xilinx FPGA technologies

Functional block diagram of the core is shown below in Figure B-5.

Figure B-5 Hellion Tiny Hashing Core Block Diagram

100

B.6 ALDEC INC ALDEC SHA IP CORE

ALDEC SHA IP CORE has the following features:

� Byte oriented hash calculation

� Hash value of 512-bit message is calculated in 81 clock cycles

� No dead clock cycles

� Simple interface and timing

� Fully synchronous design

Functional block diagram of the core is shown below in Figure B-6.

Figure B-6 ALDEC SHA IP Core Block Diagram

B.7 OCEAN LOGIC PTY. LTD OL_SHA256 SHA-256 PROCESSOR

The features of the core are as follows:

� FIPS 180-2 compliant.

� Suitable for data authentication applications.

� Fully synchronous design.

101

� Available as fully functional and synthesizable VHDL or Verilog soft-

core.

� FPGA netlist available for various devices.

Functional block diagram of the OL_SHA256 SHA-256 Processor is shown

below in Figure B-7.

Figure B-7 Ocean Logic Pty. Ltd SHA-256 Processor Block Diagram

B.8 OCEAN LOGIC PTY. LTD OL_SHA SHA-1 PROCESSOR

The features of the OL_SHA SHA-1 Processor are as follows:

� Suitable for data authentication applications.

� Fully synchronous design.

� Available as fully functional and synthesizable VHDL or Verilog soft-

core.

� Xilinx and Altera netlist available for various devices.

102

The functional block diagram of the core is shown below in Figure B-8.

Figure B-8 OL_SHA SHA-1 Processor Core Block Diagram

B.9 SCI-WORX HIGH SPEED SHA-1 HASH ENGINE

The features of the Sci-worx High Speed SHA-1 HASH Engine are as follows:

� FIPS-180-1 compliant

� Fully synchronous single phase design

� Up to 140 MHz system clock (0.18 TSMC)

� Data rate 6.24 Mbit/s per MHz (830 Mbit/s@133 MHz)

� Source code available in VHDL and Verilog

Functional block diagram of the core is shown below in Figure B-9.

103

Figure B-9 Sci-worx High Speed SHA-1 HASH Engine Block Diagram

104

APPENDIX C

STRUCTURE OF CD-ROM DIRECTORY

The source codes and executable files of the simulations performed in this study

are given in the CD attached at the back cover of this thesis. The contents of the

CD are given below in Table C-1.

Table C-1 Structure of CD-ROM Directory

\SRC VHDL Source Files

\TestBench VHDL Test Bench Files

\SIM VHDL Simulation Results

