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ABSTRACT 

A COMPARATIVE EVALUATION OF 

CONVENTIONAL AND PARTICLE FILTER BASED 

RADAR TARGET TRACKING 

 

Yıldırım, Berkin 

 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

November 2007, 153 pages 

 

In this thesis the radar target tracking problem in Bayesian estimation framework is 

studied. Traditionally, linear or linearized models, where the uncertainty in the 

system and measurement models is typically represented by Gaussian densities, are 

used in this area. Therefore, classical sub-optimal Bayesian methods based on 

linearized Kalman filters can be used. The sequential Monte Carlo methods, i.e. 

particle filters, make it possible to utilize the inherent non-linear state relations and 

non-Gaussian noise models. Given the sufficient computational power, the particle 

filter can provide better results than Kalman filter based methods in many cases. A 

survey over relevant radar tracking literature is presented including aspects as 

estimation and target modeling. In various target tracking related estimation 

applications, particle filtering algorithms are presented.  

 

Keywords: Particle Filter, sequential Monte Carlo methods, target tracking   
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ÖZ 

KLASĐK VE PARÇACIK SÜZGECĐ TABANLI RADAR 

HEDEF TAKĐBĐNĐN KARŞILAŞTIRMALI 

DEĞERLENDĐRMESĐ  

 

Yıldırım, Berkin 

 

Yüksek Lisans, Elektrik Elektronik Mühendisligi Bölümü 

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler 

 

Kasım 2007, 153 sayfa 

 

Bu tezde radar hedef takip problemi Bayesian tahmin yapısında çalışılmıştır. Bu 

alanda geleneksel olarak sistem ve ölçüm modellerindeki belirsizliğin Gaussian 

yoğunluklar ile temsil edildiği doğrusal veya doğrusal hale getirilmiş modeller 

kullanılmaktadır. Bundan dolayı, ileri Kalman süzgecine dayalı klasik yarı optimal 

Bayesian yöntemleri kullanılabilmektedir. Sıralı Monte Carlo yöntemleri, bir başka 

değişle parçacık süzgeçleri, problemin doğasında bulunan doğrusal olmayan sistem 

denklemlerini ve Gaussian olmayan gürültü modellerini kullanmayı olanaklı kılar. 

Parçacık süzgeci yeterli hesaplama gücü sağlandığında pek çok durumda Kalman 

süzgeci tabanlı yöntemlerden daha iyi sonuçlar verebilmektedir. Đlgili radar takip 

literatürü üzerinde bir araştırma tahmin ve hedef modellemesini de içerecek şekilde 

verilmiştir. Çeşitli hedef takip ve ilgili tahmin uygulamalarında parçacık süzgeci 

algoritmaları sunulmuştur.  

Anahtar Kelimeler: Parçacık süzgeci, sıralı Monte Carlo yöntemleri, hedef takibi
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

In the estimation theory the state space approach is widely used while working with 

dynamic systems. First, the system model is constructed such that the state includes 

all relevant information required to describe the real system. Then, the observations 

that are statistically related to the state are defined by the measurement model. After 

the real world problems are transferred into the theoretical domain by this 

modeling, either the state or the model parameters are tried to be estimated. While 

the system identification techniques focus on characterizing the unknown system 

[1], state estimation techniques try to gain information about the state.  

The estimation theory is used in a wide range of engineering applications. It is also 

an important topic in control theory and control systems engineering [2]. 

Followings are the examples of particular application areas [1]. 

• Tracking 

• Computer vision 

• Inertial guidance system  

• Satellite navigation systems 
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• Speech recognition  

• Economics, in particular macroeconomics, time series, and econometrics 

• Chaotic Signals  

• Weather Forecasting 

In stochastic filtering, the main purpose is to sequentially estimate the state by using 

the noisy or incomplete measurements. Throughout the years many scientists and 

engineers worked in this area. A brief history of stochastic filtering is given in 

Table 1-1 [3]. 

 

Table 1-1: A history of stochastic filtering theory [3]. 

Author(s) (year) Method Solution Comment 

Kolmogorov (1941) Innovations Exact Linear, stationary 

Wiener (1942) Spectral factorization Exact Linear, stationary, infinite memory 

Levinson (1947) Lattice filter  Approximate Linear, stationary, finite memory 

Bode & Shannon (1950) Innovations, whitening Exact Linear, stationary 

Zadeb & Ragazzini (1950) Innovations, whitening Exact Linear, non-stationary 

Kalman (1960) Orthogonal projection Exact LQR, non-stationary, discrete 

Kalman & Bucy (1961) 
Recursive Riccati 

equation 
Exact LQR, non-stationary, continuous 

Stratonovich (1960) 
Conditional Markov 

Process 
Exact Nonlinear, non-stationary 

Kushner (1967) PDE Exact Nonlinear, non-stationary 

Zakai (1969) PDE Exact Nonlinear, non-stationary 

Hadechin & Mayne (1969) Monte Carlo Approximate Nonlinear, non-Gaussian, non-stationary 

Bucy & Senne (1971) Point-mass, Bayes Approximate Nonlinear, non-Gaussian, non-stationary 

Kaliath (1971) Innovations Exact Linear, non-Gaussian, non-stationary 

Benes (1981) Benes 
Exact solution of 

Zakai eqn. 
Nonlinear, finite-dimensional 

Daum (1986) 
Daum, virtual 
measurement 

Exact solution of 
FPK eqn. 

Nonlinear, finite-dimensional 

Gordon, Salmond, & Smith 
(1993) 

Bootstrap, sequential 
Monte Carlo 

Approximate Nonlinear, non-Gaussian, non-stationary 

Julier & Uhimana (1997) 
Unscented 

transformation 
Approximate 

Nonlinear, (non)-Gaussian, derivative-
free 
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Kalman filtering is one of the milestones in stochastic filtering. It seems fair to say 

that Kalman filter have dominated the adaptive filter theory for decades [3]. In order 

to overcome its limitations, numerous filtering methods have been proposed and 

developed. Incorporating Monte Carlo methods is an example of such efforts. 

Monte Carlo is a sampling approach to handle complex systems that are analytically 

intractable [3]. Particularly, when the linearity and Gaussianity assumptions of the 

Kalman filtering do not hold, Monte Carlo methods become an alternative. 

Combining this technique with Bayesian inference, on-line estimation can also be 

done if the necessary computational power is available. These filtering methods are 

generally called sequential Monte Carlo methods, or particle filters.   

As stated previously, one important application area of estimation theory is tracking 

[4, 5, 6]. For the radar tracking problem, the aim is to track the targets location, 

speed, and acceleration by using the indirect, inaccurate and uncertain 

measurements. Note that, there are inherent nonlinearities in the system and 

measurement models, especially when the maneuvering targets are considered. 

Besides, noise terms are not always Gaussian due to the sensor systems. Therefore, 

particle filters seem to be a suitable option to improve the overall performance [4].  

1.2 Scope of Thesis 

In this study the discrete time formulation of the single target tracking problem is 

considered. Tracking via radar is investigated in order to compare the filtering 

methods and evaluate their performances. For such a tracking problem usually 

standard Kalman filter is not used without any modifications since, 

• Motion and/or measurement models are nonlinear, 

• There are different motion models for the same target (i.e. different modes), 

• Process and measurement noises are not always Gaussian. 
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In various target tracking related estimation applications, particle filtering 

algorithms are presented and compared with the classical Kalman filter based 

methods using different target trajectories. Effects of tracking models and their 

convenience to the algorithms are also investigated.   
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CHAPTER 2  

 

RECURSIVE BAYESIAN ESTIMATION 

2.1 General Information 

Most of the systems in the real world can be studied by using the state-space 

models. Within the model, the state’s evolution in time and statistically related 

measurements are defined through experience, testing and theoretical analysis. 

Depending on the problem one may need to estimate the state, the model, or both. 

In “Estimation” problem considered here, the aim is to obtain statistical distribution 

(usually it is expressed as an estimate and its uncertainty) for an unknown state 

using noisy measurements (Figure 2-1). During this process, the inevitable noise on 

the state itself and measurement is eliminated as much as possible, and the 

information hidden in the measurement is tried to be extracted. 
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Figure 2-1: General block diagram for estimation [7]. 

 

In discrete time, state and measurement sequences are expressed as in (2-1) & (2-2) 

for a sampling period T .  

 { } { } kkkTTT xxxxxxx :12121 ,...,,,...,,
∆

==  (2-1) 

 { } { } kkkTTT yyyyyyy :12121 ,...,,,...,,
∆

==  (2-2) 

Note that, due to the noise in the state evolution and measurement processes or 

uncertainty as to the exact nature of the process itself, kx  and ky  are generally 

regarded as random variables [5].  A general state-space model is  

 ( )kkkkk wuxfx ,,1 =+  (2-3) 

 ( )kkkk vxhy ,=  (2-4) 

where ku is the known input to the dynamic system, kw  and kv  are the process 

noise and measurement noise, respectively. On the other hand, since kx  and ky  are 

System Error 

Dynamic 

System 

Measurement 

System 

Measurement 

Error 

 

 

Estimator 

 

Prior 

Information 

Uncertainty 

Estimate 
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treated as random variables, it is also possible to represent the same system by the 

following conditional probability density functions. 

 ( ) ( )kkkkkkkkwuxx
wuxxpwuxxp

kkkk
,,,, 11,,1 +

∆

+ =
+

 (2-5) 

 ( ) ( )kkkkkkvxy
vxypvxyp

kkk
,,,

∆

=  (2-6) 

From that point on ku  in equation (2-5) is omitted during the derivations since it 

represents the known input.  

In estimation, the main purpose is to estimate the evolving state 1+kx  by using all 

the measurements collected up to step k ( 1:1 +ky ). Having an estimate is usually not 

enough since one should also need to know the quality of it (i.e. a measure of 

uncertainty). Hence, the posterior density ( )1:11 ++ kk yxp  is tried to be reached instead 

of point estimates. Bayesian filtering tries to obtain that posterior density as a 

function [5]. Note that, if the posterior probability density function (pdf) is 

available, a single representative (i.e. estimate), such as mean or median, can be 

obtained. On the contrary, there is no prior pdf associated with the state in non-

Bayesian approaches. Hence there is no posterior distribution either. In that case, 

the estimation is performed using the likelihood function ( )11:1 ++ kk xyp  which serves 

as a measure of evidence from data [1]. 

In Bayesian filtering, the posterior pdf can be constructed by the following two 

steps, namely prediction and update (Figure 2-2). “The time update projects the 

current state estimate ahead in time. The measurement update adjusts the projected 

estimate by an actual measurement at that time.” [8] 
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Figure 2-2: Recursive Bayesian filtering cycle.  

 

Prediction:  ( ) ( ) ( )∫ ++ = kkkkkkkk dxyxpyxxpyxp .., :1:11:11  (2-7)  

Update: ( ) ( ) ( )
( )kk

kkkkk

kk
yyp

yxpyxyp
yxp

:11

:11:111
1:11

.,

+

+++
++ =  (2-8) 

where the numerator in the update step (2-8) can be written as  

 ( ) ( ) ( )∫ +++++ = 1:11:111:11 .., kkkkkkkk dxyxpyxypyyp  (2-9) 

Throughout the prediction and update steps, the new estimate ( ( )1:11 ++ kk yxp ) is 

obtained by using the old one ( ( )kk yxp :1 ) and the last measurement ( 1+ky ). 

However, in order to perform the algorithm recursively, one must store and use all 

the previous measurements ( ky :1 ). After the following assumptions, the previous 

state estimate will contain all the information about the system up to that point, and 

therefore there will be no need to store previous measurements. 

Assumption 1: State evolution is a Markov Process.  

Update 

(Measurement Update) 

(Correction) 

 

Prediction 

(Time Update) 
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 ( ) ( )kkkk xxpxxp 1:01 ++ =  (2-10) 

In other words, the past state trajectory does not contain any valuable information as 

long as the present state is known.  

Assumption 2: “Measurements are taken from a channel without memory. 

Conditioned on kx , ky  is assumed to be independent of the rest of the state 

sequence and all other measurements.” [5] 

 ( ) ( )∏
=

=
k

i

iikk xypxyp
1

:1:1  (2-11) 

Considering the state-space models in equations (2-3) & (2-4) or (2-5) & (2-6), 

these assumptions can be restated in terms of the initial state and noise distributions 

[1, 5]. 

Assumption A: Process noise { }kw  is an independent sequence (i.e. white). 

Assumption B: Measurement noise { }kv  is an independent sequence (i.e. white). 

Assumption C: Process noise { }kw , measurement noise { }kv  and the initial state 0x   

are mutually independent. 

Consequently, the prediction and update steps are shown below for recursive 

Bayesian filtering, which is estimating the posterior density ( )11 ++ kk yxp  when the 

previous estimate ( )kk yxp  and the last measurement 1+ky  are given. Derivations of 

(2-12) and (2-13) can be found in [5] 

Prediction:  ( ) ( ) ( )∫ ++ = kkkkkkk dxyxpxxpyxp .. :11:11  (2-12)  

Update: ( ) ( ) ( )
( )kk

kkkk

kk
yyp

yxpxyp
yxp

:11

:1111
1:11

.

+

+++
++ =  (2-13) 
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In summary, “Recursive Bayesian estimation is a general probabilistic approach for 

estimating an unknown probability density function recursively over time using 

incoming measurements and a mathematical process and measurement model” [9]. 

The above derivations are done for filtering, which aims to estimate the current state 

given the measurement. If a state that at some time beyond the data interval is 

estimated, then it is called prediction.  Similarly, estimating a state at time k within 

the data interval is called smoothing.  

2.2 Optimal Algorithms 

Under some assumptions, optimal solutions for recursive Bayesian estimation can 

be obtained by finite-dimensional algorithms [4]. Namely, 

• Kalman Filter: For Linear-Gaussian systems 

• Grid Based Methods: For systems having discrete-valued and finite number 

of states 

• Benes and Daum Filters: For certain subclasses of nonlinear systems (not 

presented here, the detailed information is given in [10, 11, 4]) 

2.2.1 Grid Based Method 

For some particular applications like speech processing [12, 5], the state space is 

discrete and consists of a finite number of states. In that case, the a priori 

distribution can be expressed in terms of conditional probabilities (2-14). 

 ( ) { } ( ) ( )∑∑ −=−==
ss N

i

i

kk

i

kk

N

i

i

kkk

i

kkkk xxwxxyxxPyxp δδ ..:1:1  (2-14)  

Here sN  is the total number of possible states, i

kk
w  is the weight, and δ is the 

Dirac-delta function. Then the filtering equations (2-12) and (2-13) become [4, 13] 
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Prediction:  ( ) ( )∑
=

++++ −=
sN

i

i

kk

i

kkkk xxwyxp
1

111:11 .δ  (2-15)  

Update: ( ) ( )∑
=

++++++ −=
sN

i

i

kk

i

kkkk xxwyxp
1

11111:11 .δ  (2-16) 

where the weights are defined as 

 ( )∑
=

+

∆

+ =
sN

j

j

k

i

k

j

kk

i

kk
xxpww

1
11 .  (2-17) 

 
( )
( )∑

=
+++

+++∆

++ =
sN

j

j

kk

j

kk

i

kk

i

kki

kk

xypw

xypw
w

1
111

111

11

.

.
 (2-18) 

While the grid based method (i.e. the HMM filter) provide optimal solutions, 

usually it is not used in airborne target tracking since the assumptions does not hold 

[5].  

2.2.2 Kalman Filter 

In this study the discrete-time Kalman filter, where the measurements occur and the 

state is estimated at discrete points in time, is used. The well known Kalman filter 

(KF) is optimal (in the sense that it minimizes the estimated error covariance) if the 

assumptions below hold in addition to the ones given in Section 2.1 [14, 8, 2, 15, 4, 

16, 17]. 

• System (i.e. equations (2-3) & (2-4)) is linear. 

 kkkkkk wuGxFx ++=+ ..1  (2-19) 

 kkkk vxHy += .  (2-20) 
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• Process noise { }kw , measurement noise { }kv  and the initial state 0x   have 

Gaussian distributions ((2-21), (2-22) & (2-23)) [8, 1]. If the noise sequence 

has non-zero mean, its mean can be incorporated in the equation as a known 

constant term. 

 ( ) ( )kk QNwp ,0~  (2-21) 

 ( ) ( )kk RNvp ,0~  (2-22) 

 ( ) ( ) ( )00000 ,ˆ~ PxNxpxp
∆

=  (2-23) 

Model underlying the Kalman Filter is shown in Figure 2-3 where the circles are 

vectors, squares are matrices, and stars represent Gaussian noise with the associated 

covariance matrix at the lower right [2]. 

 

 

Figure 2-3: Model underlying the Kalman Filter [2]. 

 

The Bayesian filtering concepts described in section 2.1 forms the basis of the 

Kalman filter. Due to the assumptions above, prior and posterior state distributions 

are Gaussian. Therefore, in Kalman filter algorithm, the mean (i.e. the estimate) and 
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covariance (i.e. the error covariance) of the prior state distribution is processed 

rather than the whole pdf, in order to obtain the same parameters of the posterior 

distribution. In other words, the analytical solution of the Bayesian filtering 

problem is derived and from that point on algorithm runs recursively based on the 

defining parameters (mean and covariance) of the pdf’s.  

The prediction (i.e. time update) and update (i.e. measurement update) steps in 

Figure 2-2 and Equations (2-12) & (2-13) are the two main steps of Kalman filter 

too. “The time update equations are responsible for projecting forward (in time) the 

current state and error covariance estimates to obtain the a priori estimates for the 

next time step. “The measurement update equations are responsible for the 

feedback—i.e. for incorporating a new measurement into the a priori estimate to 

obtain an improved a posteriori estimate.” [8]. As the common notation: 

( ) ( )
kkkkkk PxNyxp ,ˆ~  and ( ) ( )

kkkkkk PxNyxp 111 ,ˆ~ +++ . 

Time Update Step: 

1. Project the state ahead 

 kkkkkkk
uBxFx .ˆ.ˆ

1 +=+  (2-24) 

2. Project the error covariance (i.e. state prediction covariance) ahead 

 k

T

kkkkkk
QFPFP +=+ ..1  (2-25) 

Measurement Update Step:  

1. Compute the innovation covariance 

 11111 .. +++++ += k

T

kkkkk RHPHS  (2-26) 

2. Compute the Kalman gain 
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 1

1111 . −
++++ = k

T

kkkk SHPK  (2-27) 

3. Update the state estimate with the last measurement ky  

 ( )
kkkkkkkkk

xHyKxx 1111111
ˆ..ˆˆ

+++++++ −+=  (2-28) 

4. Update the error covariance 

 ( )
kkkkkk

PHKIP 11111 .. +++++ −=  (2-29) 

 

 

Figure 2-4: One cycle in the KF [1]. Note that the equation for the updated state 
covariance is equivalent to Equation (2-29). 
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If the first two moments are available but the noises are not Gaussian, then the 

Kalman filter is the best linear minimum mean square error (MMSE) estimator [15, 

16, 17].  

In the steady state of the above time-varying KF, the Kalman gain (K ) and the 

covariance can be assumed to converge to some constant values. In tracking 

problem, result corresponds to the particular case called α-β filter for constant-

velocity model or α-β-γ filter for constant-acceleration model. The symbols α, β 

and γ refer to the gain coefficients of the position, velocity and acceleration 

components respectively. These gains in the measurement update step are constant 

but optimized according to a design. 

2.2.3 Information Filter 

Information filter (of inverse covariance filter) is a variant of Kalman filter where 

the inverses of the covariance matrices ( 1
1

−
+ kk

P , 1
11

−
++ kk

P ) are recursively calculated 

throughout the prediction and update [1]. For the same system model in Equations 

(2-3) & (2-4), following relations are used instead of corresponding equations in the 

Kalman Filter [1]: 

Noiseless state prediction information matrix: 

 ( ) 111 .. −−−= kkk

T

kk FPFA  (2-30) 

State prediction information matrix: 

 ( ) kkkkkkk
AQAAAP ..

111
1

−−−
+ +−=  (2-31) 

Kalman Gain: 

 ( ) 1
11

1

1
1
11

1
1

1
111 ...... −

++

−

+
−
++

−
+

−
+++ +== k

T

kkk

T

kkkk

T

kkkk RHHRHPRHPK  (2-32) 
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Updated state information matrix: 

 1
1
11

1
1

1
11 .. +

−
++

−
+

−
++ += kk

T

kkkkk
HRHPP  (2-33) 

The equations for state estimate x̂  can remain the same. However, as a different 

formulation the estimated state may be replaced by
kkkk

xP ˆ.1− . The new state, which is 

called the information filter state, and corresponding relations are as follows,  

  
kkkkkk

xPs ˆ.ˆ 1−=  (2-34) 

 
kkkkkk

xPs 1
1
11

ˆ.ˆ
+

−
++ =  (2-35) 

 kk

T

kkkkk
yRHss ..ˆˆ 1

11111
−
+++++ +=  (2-36) 

Therefore, if there is no initial estimate, the filter can be initialized with a zero 

information matrix ( 01
00 =−P ). In that case no initial estimate of the system state is 

needed [1]. Later on, the actual state estimate can be recovered by simply 

multiplying by (2-37). 

 111111
ˆ.ˆ

++++++ =
kkkkkk

sPx  (2-37) 

One other advantage of this variant of the Kalman filter is the ability to use multiple 

measurements at the same time step [2]. 

2.3 Sub-optimal Algorithms Based on Single Model  

2.3.1 Approximate Grid Based Methods 

Although the grid based methods (i.e. numerical methods) are not used in this study, 

they are presented here due to the similarity of ideas behind the particle filters and 

them. As stated in section 2.2.1 if the state-space is discrete and consists of a finite 
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number of states, optimum result is possible. However, same kind of approach can 

be used for non-linear and non-Gaussian cases in order to obtain approximate 

solutions. The idea behind is to divide the state-space into cells (Figure 2-5) and 

represent the prior and posterior pdf’s by impulses and their weights [4, 13, 18]. 

 

 

Figure 2-5: Representing the pdf with the points on the grid and weights 
considering a two-dimensional (x1 & x2) state-space. 

 

In fact, these methods are some numerical methods where the recursive Bayesian 

estimation’ i.e. Equations (2-12) and (2-13), are calculated by approximating the 

integrals in these formulas. They can be called direct numerical integration 

methods. Equations are the same as ones in Section 2.2.1 [13], but this time 

• i

kx ’s are the predetermined points on the uniform deterministic grid, 

• ( )jki

k xxp 1+  and ( )i

kk xyp 11 ++  are the evaluated (or approximated) values 

assuming that both distributions (i.e. process and measurement noise pdf’s) 

are known. There is no need for them to be Gaussian (Figure 2-5).  



18 

 

Obviously, the grid must be sufficiently dense and large to obtain a good 

estimate everywhere in the state-space. A dense and large grid for a high 

dimensional state-space would result in a serious computational cost. Although 

there are some applications in speech processing [4, 12], it is not practical for most 

real world applications like tracking [18]. 

2.3.2 Extended Kalman Filter 

Kalman filter is the optimal solution under the assumption that the underlying 

dynamics are linear. Unfortunately, the real life systems are usually, by nature, 

nonlinear. An idea is, first to approximate the system with a set of equations such 

that the assumptions hold, then run the standard KF algorithm, and it is called the 

Extended Kalman Filter (EKF). The key point here is that the approximation is done 

recursively based on the current state estimate. 

EKF has its own variants according to different approaches used while 

approximating the real system. Depending on the order of the Taylor series 

expansion, the filter is called either first-order or second-order EKF. The choice of 

the reference point at which the linearization is done also yields to different 

algorithms like iterated EKF [19, 1, 4].  

Derivation of the first-order EKF for the nonlinear system defined by (2-38) and (2-

39) is given below. Note that, for simplicity, the noises are assumed to be additive 

even if the system is nonlinear, and the known input is omitted. So system equations 

are as follows. 

 ( ) kkkk wxfx +=+1  (2-38) 

 ( ) kkkk vxhy +=  (2-39) 

The Taylor series expansion around the current estimate 
kk

x̂  is 
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( ) ( )
( )

kkkk

kkkkkkkkk

kkkkkkkkk

wuxF

wxFxfxF

wxxFxfx

++=

+−+=

+−+=+

.

ˆ.ˆ.

ˆ.ˆ1

 (2-40) 

where the known terms are denoted as ku since they are constant (Section 4.3.1 

[20]), and kF  is the Jacobian: 

 ( )( )
kkkk xx

T

k

T

kxk xfF ˆ=∇=  (2-41) 

Similarly, the measurement relation is linearized around the predicted state 
kk

x 1
ˆ

+ :  

 ( ) ( ) 1111111 ˆ.ˆ +++++++ +−+= kkkkkkkkk vxxHxhy  (2-42) 

 ( )( )
kkkk xx

T

k

T

kxk xhH
111 ˆ111 +++ =+++ ∇=  (2-43) 

Then, the filter equations are 

Time Update Step: 

 ( )
kkkkk

xfx ˆˆ
1 =+  (2-44) 

 k

T

kkkkkk
QFPFP +=+ ..1  (2-45) 

Measurement Update Step:  

 11111 .. +++++ += k

T

kkkkk RHPHS  (2-46) 

 1

1111 . −
++++ = k

T

kkkk SHPK  (2-47) 

 ( )( )
kkkkkkkkk

xhyKxx 1111111
ˆ.ˆˆ

+++++++ −+=  (2-48) 

 ( )
kkkkkk

PHKIP 11111 .. +++++ −=  (2-49) 
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Figure 2-6: One cycle of the EKF [1]. Note that the equation for the updated state 
covariance is equivalent to Equation (2-49). 

 Although the inherent approximations may lead to divergence of the filter; in 

practice, it performs well if the nonlinearities are mild, initial error and noises are 

not too large [1, 4]. 
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A filter is consistent provided that the estimation error has zero mean and its 

covariance matches with the filter calculated covariance. According to [Ref 9] for 

the bearings-only tracking application first-order and second-order EKF’s gives 

inconsistent results. The reason is claimed to be the linearization that does not work 

well with large measurement noise.   

2.3.3 Iterated Extended Kalman Filter  

The EKF’s performance is degraded by the linearization errors. Like the second-

order EKF, the iterated EKF (IEKF) is one of the methods proposed to reduce the 

effect of these errors. The key idea is linearizing the measurement model around the 

updated state 11
ˆ

++ kk
x  rather than the predicted state

kk
x̂  [1, 4, 21]. Hence the 

prediction step is the same as EKF. Filter equations are the followings: 

Relinearized measurement equation:  

 ( )( ) i
kkkk xx

T

k

T

kx

i

k xhH
1111 ˆ111
++++ =+++ ∇=  (2-50)  

Note that for the first iteration ( 0=i ) 

 0
1

0
11

ˆˆ
kkkk

xx +

∆

++ =  (2-51) 

State estimate and state covariance update equations: 

 
( ) ( )( )
( )

kk

i

kkkk

i

kk

i

kkkkk

Ti

k

i

kk

i

kk

i

kk

xxPP

xhyRHPxx

111
1
111

1111
1
111111

1
11

ˆˆ..

ˆ...ˆˆ

+++
−
+++

++++
−
++++++

+
++

−−

−+=
 (2-52) 

 ( ) ( )( )
kk

i

kk

Ti

kkk

i

k

Ti

kkkkk

i

kk
PHRHPHHPPP 11

1

1111111
1

11 ...... ++

−

+++++++
+

++ +−=  (2-53) 

According to [21, 4], the IEKF gives accurate results only when the measurement 

model fully observes the state. 
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2.3.4 Unscented Kalman Filter 

The unscented Kalman filter (UKF), also known as sigma point Kalman filter 

(SPKF), is another sub-optimal algorithm for nonlinear estimation [4, 2, 18, 21, 22, 

23]. In EKF the nonlinear functions are approximated (linearized) locally at each 

step. However, in UKF there is no such analytical approximation. Instead, the state 

distribution is assumed to be Gaussian and represented by a small set of support 

points known as sigma points (Figure 2-7) [22]. These deterministically chosen 

points are then propagated through the nonlinear state & measurement equations for 

filtering. This class of nonlinear filters is referred as linear regression Kalman filters 

(LRKF) in [21] since they are all based on statistical linearization rather that 

analytical linearization in the EKF.  

The sigma points are chosen in accordance with the unscented transform (UT), 

which is a method for calculating the statistics of a random variable that undergoes 

a nonlinear transform. These points completely capture the mean and covariance of 

a Gaussian random variable [4]. If they are propagated through a nonlinear system, 

then the resultant points capture first two moments of the posterior distribution 

accurately to the second-order (third-order if the input is Gaussian) Taylor series 

expansion [22, 23]. 
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Figure 2-7: A representative picture of the sigma points for a two-dimensional 

distribution [23]. 

 

In order to tune the UKF according to a particular nonlinear system, some scaling 

parameters are defined in the UT. These parameters control the spread and relative 

weighting of the sigma points. Resultant modified algorithm is called the scaled 

unscented transform [22]. Considering the general nonlinear system defined by 

Equations (2-3) & (2-4), derivation of the UKF using that scaled transform is shown 

below [24].  

1. Augmenting the previous estimate of the state with the process noise ( kw ) 

and measurement noise ( kv ): 

 [ ]TT

k

T

k

T

kk

a

kk
vwxx ˆˆ

∆

=  (2-54) 

 

















=
∆

k

k

kk

a

kk

R

Q

P

P

00

00

00

 (2-55) 

2. Let L  be the number of the augmented state a

kk
x̂ . Calculating the sigma 

points (columns of a

kk
X ): 
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( ) ( )[ ]

( ) ( ) ( )[ ]Tv

kk

Tw

kk

Tx

kk

a

kk

a

kk

a

kk

a

kk

a

kk

a

kk

XXX

PLOnesxPLOnesxxX

∆

∆

=

−+= ..ˆ..ˆˆ γγ
 (2-56) 

 such that ( )LOnes  is the L-dimensional row vector full of ones, and 

 λγ += L  (2-57) 

 ( ) LL −+= καλ .2  (2-58) 

3. Time Update 

a. Propagating the relevant sigma points through the state equation: 

 ( )w

kkk

x

kkk

x

kk
XuXfX ,,1 =+  (2-59) 

b. Obtaining the predicted state and its covariance: 

  ( )∑
=

++ =
L

i
i

x

kk

m

ikk
Xwx

2

0
11 .ˆ  (2-60) 

 ( )( ) ( )( )∑
=

+++++ −−=
L

i

T

kki

x

kkkki

x

kk

c

ikk
xXxXwP

2

0
11111

ˆ.ˆ.  (2-61) 

where ( )iK  represents the ith column of the matrix (i.e. the ith sigma 

point) and m

iw (mean), c

iw (covariance) are the scalar weights such 

that 

 
λ

λ
+

=
L

wm

0  (2-62) 

 ( )βα
λ

λ
+−+

+
= 2

0 1
L

wc  (2-63) 
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( )

Lifor
L

ww c

i

m

i 2,...,1
.2

1
=

+
==

λ
 (2-64) 

4. Measurement Update 

a. Propagating the relevant sigma points through the measurement 

equation: 

 ( )v

kk

x

kkkkk
XXhY 1111 , ++++ =  (2-65) 

b. Obtaining the predicted measurement, innovation covariance and 

cross covariance: 

  ( )∑
=

++ =
L

i
ikk

m

ikk
Ywy

2

0
11 .ˆ  (2-66) 

 ( )( ) ( )( )∑
=

++++ −−=
++

L

i

T

kkikkkkikk

c

iyy yYyYwP
kk

2

0
1111ˆˆ ˆ.ˆ.

11
 (2-67) 

 ( )( ) ( )( )∑
=

++++ −−=
++

L

i

T

kkikkkki

x

kk

c

iyx yYxXwP
kk

2

0
1111ˆˆ ˆ.ˆ.

11
 (2-68) 

c. Finding the Kalman gain, updated state estimate and covariance 

 1
ˆˆˆˆ1 1111

. −
+ ++++
=

kkkk yyyxk PPK  (2-69) 

 ( )
kkkkkkkk

yyKxx 111111
ˆ.ˆˆ

++++++ −+=  (2-70) 

 T

kyykkkkk
KPKPP

kk 1ˆˆ1111 ..
11 +++++ ++

−=  (2-71) 

Note that 12 +L  symmetric (with respect to the mean) sigma points are chosen as 

convention [22, 23, 24]. The scalar parameters α , β  and κ  are for adjusting the 

filter. α controls how much the sigma points spread around the mean, and typical 

range is 110 3 ≤<− α . β  adjusts the relative weighting of the zeroth sigma point 



26 

 

(the one that corresponds to the mean itself), and for Gaussian priors it is set equal 

to 2. Lastly, κ is usually chosen as 0 [22, 23, 24]. 

Similar to EKF, the predicted state and its covariance can be obtained separately 

from the final estimate. This provides the opportunity to use only the prediction or 

the update steps according to the considered nonlinear system. One such 

marginalization can be found in [22], in which usual KF steps are used for the time 

update because the state relation is linear in bearing only tracking. Further 

simplifications are possible if the noises are additive and Gaussian (like in (2-38) & 

(2-39)) [4]. In that case, there is no need for the augmentation. 

It is stated in [25] that “the UKF consistently outperforms the EKF in terms of 

prediction and estimation error, at an equal computational complexity for general 

state-space problems”. Besides, since no explicit calculation of the Jacobian’s is 

necessary, the discontinuity in nonlinear relations can also be tolerated [4]. 

Nevertheless as the posterior become non-Gaussian, performance of the UKF can 

degrade because the sigma points cannot fully characterize the posterior [4, 22]. The 

detailed information about the cousins of UKF can be found in [21].  

2.4 Suboptimal Algorithms Based on Multiple Models  

The above mentioned filtering techniques inherently assume that the state-space 

model is known for each time step. However it may not be always true in real 

world. The state and measurement relations can be time varying and partially 

unknown. This introduces an additional uncertainty to the problem other than the 

usual process and measurement noises [1]. Consequently, these issues have to be 

considered while constructing the estimator. A natural idea is to estimate the state 

by an adaptive algorithm that takes the model induced uncertainties into account.  

The variation of the model with time can be caused by the unknown inputs. In this 

approach, the input is usually viewed as a parameter to be estimated along with the 
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state. Either in the case of unknown input and system model, the interacting 

multiple model (IMM) filters are widely used [1, 26].  

The model can also change depending on parameters other than the input. One such 

case occurs when approximating a nonlinear model by a set of linear ones. This 

time, model changes with respect to the region where the linearization takes place 

[27].   

For the radar tracking problem, both approaches are used extensively throughout the 

years. That is because, the state relations are usually nonlinear, and the model 

changes due to the maneuvers of the target.  

2.4.1 Interacting Multiple Model Filter  

In the interacting multiple model (IMM) approach a finite number of model 

matched filters are used. At each step the previous estimates of the individual filters 

are combined according to the mixing probabilities [1, 15].  IMM is widely used in 

target tracking applications, since the target maneuverability changes the dynamic 

model dramatically. The usual way is to define different dynamic models for 

different maneuvers and run them in IMM framework.   

The mixing of the models is characterized by the Markov transition probabilities. 

These probability values are assigned according to the properties of the dynamic 

system (for instance the maneuverability of the target). The IMM filter can be 

expressed by the following four fundamental steps [15, 1] (Figure 2-8): 

• Interaction/Mixing: In order to initialize each filter, the mode-conditioned 

state estimates and covariance are combined by using the mixing 

probabilities. 

• Mode-matched filtering: The mode-conditioned state estimates and 

covariance are obtained by running the filter bank. Corresponding likelihood 

functions are also calculated for the next step. 
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• Mode probability update: Mixing and updated mode probabilities are 

calculated with respect to the likelihoods. 

• Overall state estimate and covariance: The mode-conditioned state 

estimates and covariance are combined to obtain a joint estimate and 

covariance for output.  

 

 

Figure 2-8: One cycle of the IMM Estimator [1]. 

 

From the tracking point of view, applications with the IMM filter are very common 

[1, 15, 5, 26, 28, 29, 30]. Note that IMM is a general filtering approach. Not only 

Kalman filter but other filtering techniques are also applicable to the framework. 

For instance, in [31] the UKF is utilized and in [32, 33, 34] the particle filters are 

used.   
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2.4.2 Range Parameterized Extended Kalman Filter 

The range parameterized extended Kalman filter (RPEKF) is an example of using 

multiple models to handle the nonlinearity. It is specific to the radar target tracking 

problem unlike the other general algorithms mentioned in CHAPTER 2. In RPEKF 

approach, there is a bank of independent EKFs, each tuned to a certain range [27, 

35, 36]. At each step filters are weighted for their consistency with the 

measurement. Consequently, after a number of steps some filters are removed due 

to their low likelihoods. Eventually the correct filter (i.e. the model) dominates and 

the overall performance is improved without much computational complexity. 

Implementation details of RPEKF for Cartesian and polar coordinates can be found 

in [27, 35, 36]. 
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CHAPTER 3  

 

SEQUENTIAL MONTE CARLO METHODS 

3.1 General Information 

Monte Carlo methods employ statistical sampling and estimation techniques to 

solve mathematical problems [3]. It is a powerful tool for handling numerical 

integration problems, one of which occurs during recursive Bayesian estimation 

(Equation (2-12) & (2-9)). Kalman filter based methods essentially solve these 

integrals analytically, and do the calculations only by using the defining parameters 

(mean & covariance) of the distributions. However the linearity and Gaussianity 

assumptions do not always hold, resulting in analytically intractable systems. As 

mentioned in Section 2.3, there are various alternatives to overcome this difficulty. 

If the problem includes severe nonlinearities or the noises are non-Gaussian, then 

the distributions cannot be expressed by their mean and covariance. In that case a 

straightforward idea is to use actual representative data points chosen from the 

state-space. In particular, the approximate gird based methods (Section 2.3.1) and 

the UKF (Section 2.3.4) rely on deterministic sampling of prior and posterior 

distributions.  A similar idea is to utilize statistical sampling techniques to represent 

these distributions.  It is achieved by combining the Monte Carlo sampling methods 

with Bayesian inference [3]. The resultant approach is called sequential Monte 

Carlo (SMC) method or particle filter (PF).  
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Throughout the development of the approach, particle filter has been called 

different names such as bootstrap filter, condensation algorithm, interacting particle 

approximation, Monte Carlo filter, sequential imputation, survival of the fittest, and 

likelihood weighting algorithm [4, 13, 3].  

The derivation of the particle filter is done in the following sections. First Monte 

Carlo sampling methods are described. Then the idea is applied to recursive 

Bayesian estimation to obtain the particle filter algorithm. Some different versions 

of the algorithm are presented after explaining some critical points. 

3.2 Monte Carlo Sampling 

The main purpose here is to approximate the expectation below 

 ( ){ } ( ) ( )∫= dxxpxfxfE p ..  (3-1) 

For most of the practical problems it may not be possible to find an analytical 

solution to this problem. A close value can be obtained by approximating the pdf 

( )xp  of the random variable x~  by its samples (i.e. particles) as given in Equation 

(3-2) 

 ( ) ( )∑
=

−≈
N

i

ii xxwxp
1

.δ  (3-2) 

In this formulation N  is the total number of particles, iw  is the weight of the ith 

particle, ix  is the location of the particle, and δ is the Dirac function. As a result, 

the approximate value of the integral becomes 

 ( )∑
=

=
N

i

ii xfwf
1

.ˆ  (3-3) 

So, there are two different issues in the computation of the required expected value. 

First one is to draw samples from a probability distribution ( )xp , and second one is 
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to approximate the integral [3]. First issue can be addressed by following 

techniques. 

3.2.1 Importance Sampling 

For some particular cases it is possible to take samples directly from the distribution 

in hand. Gaussian and uniform densities are examples of such distributions. 

Besides, the inversion sampling, if applicable, can also give the opportunity to 

create exact samples [50]. However, sampling directly from a known density may 

be difficult if it does not fit into standard forms. In handling such cases, importance 

sampling is a powerful tool where a secondary distribution called importance 

density or proposal distribution, denoted by ( )xq , is introduced. First samples are 

chosen from this secondary distribution, and then they are evaluated, i.e. weighted, 

according to the convenience to the true density.  

The expectation in Equation (3-1) can be rewritten as follows. 

 ( ){ } ( ) ( ) ( ) ( )
( )

( )∫∫ == dxxq
xq

xp
xfdxxpxfxfEp .....  (3-4) 

Then N  independent samples are taken from the importance density ( )xq , and it is 

approximated as 

 ( ) ( )∑
=

−≈
N

i

ixxxq
1

δ  (3-5) 

Then the integral can be approximated by 

 ( ) ( )∑
=

=
N

i

ii xfxwf
1

.~ˆ  (3-6) 

where iw  is the normalized version of iw~  defined below. 
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 ( ) ( )
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wxw ==

∆ ~~  (3-7) 

The iw~  is called the importance weight. Normalization is needed since the area 

below the pdf is 1.  
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ˆ  (3-8) 

The iw  is called the normalized importance weight. Note that if ( ) ( )ii xqxp < , then 

there are more samples than there should be with small weights. On the contrary if 

( ) ( )ii xqxp > , then there are fewer samples, and the corresponding weights increase 

to compensate that [50].   

Taking ( )xf  as unity gives the sampling just for ( )xp . Generally, for effective 

sampling the importance density should be as close as possible to the true one. The 

choice of ( ) ( ) ( )xpxfxq ≈  results in faster convergence than the ( ) ( )xpxq ≈ . As 

another example, consider the computation of some statistics of a rare event. To get 

the required statistics, approximating the true pdf, i. e. ( )xp , by its samples may not 

be possible since it would be almost impossible to draw samples that correspond to 

such a rare event. To avoid this, a different importance density should be chosen to 

cover that region. Detailed information can be found in [3, 49]. Choosing a suitable 

importance density significantly increase the estimation performance. It is further 

discussed in Section 3.3.5.   

In approximate grid based methods (Section 2.3.1) samples (grids) are distributed to 

the whole state-space. Therefore these methods are not computationally feasible 

especially for high dimensional state spaces, where the distribution to be estimated 

usually covers a relatively small area in the whole state space. Importance sampling 

can be viewed as changing the grid at each step adaptively. In other words, state-
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space is partitioned unevenly to give greater resolution in high probability density 

regions. During sampling, these regions have a higher level of importance. Thus 

more samples are drawn from that region, making it possible to represent the 

distribution with fewer samples (particles).  

An important property of importance sampling is that it is a fixed period algorithm 

where the quality of the approximation depends on the number of samples used and 

the chosen proposal density. Due to this reason it is widely used in particle filters. 

3.2.2 Rejection Sampling 

Rejection sampling, in other words accept-reject methods, generates an 

approximation of ( )xp  again by drawing samples from ( )xq . This method differs 

from the previous one that a sample may be rejected after its generation. Rejection 

sampling requires an upper bound for the true distribution. Assuming that there 

exists a finite constant C  such that 

 ( ) ( )xqCxp .<  for every x , (3-9) 

the procedure is the following [3]. Algorithm is shown graphically in Figure 3-1.  

 

 

Algorithm 1:  Rejection Sampling 

• FOR i=1:N 

o Draw a sample 
ix from ( )xq  

o Draw a sample u  from the uniform distribution [ ]1,0U  

o If 
( )
( )i
i

xqC

xp
u

.
≤  then accept the sample, otherwise go to 

the first step 

• END FOR 
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Figure 3-1: Rejection sampling. The upper bound is chosen as uniform distribution 
[5].  

 

The choice of the upper bound is substantial for the performance of the algorithm. 

The expected value of each sample’s acceptance probability in Algorithm 1 is 

inversely proportional to the C  as shown in Equation (3-10) [5].  

 
( )
( )

( ) ( )
C

dx
C

xp
dxxq

xqC

xp 1
..

.
== ∫∫  (3-10) 

If C  is too small then the samples are not reliable, if it is too large then the low 

acceptance rate makes the algorithm computationally inefficient [3]. The possible 

improvement in the sampling is illustrated in Figure 3-2 in the expense of 

computational power.  
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Figure 3-2: Importance sampling (left) and rejection sampling (right) [3]. 

The rejection sampling is not a fixed period algorithm. It provides an answer (not 

guaranteeing any convergence) at any time but the quality of the approximation also 

depends on the time spent. Due to this drawback, it is not widely used in particle 

filter approximations unless there are no real time fixed period constraints.  

3.3 Generic Particle Filter 

3.3.1 Sequential Importance Sampling (SIS) Algorithm 

As stated in the above sections, the fundamental idea of the particle filer is to use a 

number of independent random variables, i.e. samples or particles, to represent the 

posterior probability. The locations of the particles in the state-space, and their 

relative weights are updated recursively according to the Bayesian rule [13, 3]. The 

basic form of generic particle filter algorithm is called sequential importance 

sampling (SIS) [4, 13, 3, 6, 5].  

Using the importance sampling, the posterior distribution for the general case is 

represented by particles. At this stage, for the sake of generalization the posterior 

distribution includes the whole state history.  

 ( ) ( )∑
=

+++++ −≈
N

i

i

kk

i

kkk xxwyxp
1

1:11:111:11:1 .δ  (3-11) 
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where the normalized importance weights are 
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The sequential algorithm is constructed such that, at each iteration a particle set 

{ }N
i

i

k

i

k wx
1:1 , =  for ( )kk yxp :1:1  is assumed to be available, and a new set { }N

i

i

k

i

k wx
111:1 , =++  

for ( )1:11:1 ++ kk yxp  is obtained by using the latest observation 1+ky . As the basic idea 

of SIS, the importance density is formed sequentially. Therefore the chosen 

importance density should factorize like 

 ( ) ( ) ( )kkkkkkk yxqyxxqyxq :1:11:1:111:11:1 ., ++++ =  (3-13) 

Hence, the new sample set can be reached by augmenting the new state component 

( ( )1:1:11 ,~ ++ kkk

i

k yxxqx ) to the old sample set [13]. To find the weight update 

relation, ( )1:11:1 ++ kk yxp  is decomposed like, 
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 (3-14) 

The denominator can be viewed as a normalizing constant, and in the estimation 

literature it is referred as the evidence. So the posterior density to be approximated 

is proportional to the equation below. 

 ( ) ( ) ( ) ( )kkkkkkkk yxpxxpxypyxp :1:11111:11:1 .. +++++ ∝  (3-15) 

The importance weights in Equation (3-12) can be obtained by combining 

Equations (3-13) and (3-15). 
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Furthermore, the importance density is chosen such that it satisfies  

 ( ) ( )111:1:11 ,, ++++ = kkkkkk yxxqyxxq  (3-17) 

i.e. the Assumption 1 and Assumption 2 in Section 2.1 are valid for the importance 

density too. In that case, the weight update relation can be written as 
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Since only the filtered estimate is required at each step, the posterior density is 

 ( ) ( )∑
=

+++++ −≈
N

i

i

kk

i

kkk xxwyxp
1

11111 .δ  (3-19) 

The SIS particle filter algorithm is expressed below [13]. 
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Expressing the posterior by particles makes it possible to approximate the 

integrations in Bayesian filtering easily. This structure also brings two important 

advantages. First, any kind of probability distribution can be used since the 

distributions are represented by samples chosen from the state-space instead of 

some parameters like mean and covariance. Second, state and measurement 

equations can be non-linear since the particles are propagated by using the same 

equations instead of their approximated versions.    

3.3.2 Degeneracy Phenomenon 

The SIS algorithm updates the weights of the particles at each step according to the 

measurements taken. No matter how big number of particles is used, after some 

iteration eventually all but a few particles will have negligible weights. That is the 

variance of the weights always tends to increase with time [13]. While processing 

those small unimportant particles makes the algorithm ineffective, the overall 

Algorithm 2:  SIS Particle Filter 
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o Draw a sample 
i

kx 1+ from ( )11 , ++ k

i

k

i

k yxxq  
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• FOR i=1:N 
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• END FOR 
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ability to approximate the posterior is degraded due to the reduced number of 

effective particles. This problem is referred as the degeneracy phenomenon. 

Needless to say, if the posterior cannot be approximated well, then algorithm can 

easily diverge, i.e. weights of all particles become zero. 

In order to overcome the degeneracy problem a number of modifications should be 

done on the basic structure. First precaution is to eliminate the particles with smaller 

weights and focus on the regions where the particles with higher weights exist. The 

mentioned process is called as resampling, and further described in Section 3.3.3. A 

measure for degeneracy is the effective sample size effN  which is defined below [3, 

13]. 

 ( )ikeff
wVar

N
N

*1+
=  (3-20) 

Where i

kw
*  is referred to as the “true weight” [13]. 
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Since effN  cannot be computed exactly, an estimate of it is used. 

 

( )∑
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=
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i

i
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w
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1
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1ˆ  (3-22) 

The second precaution is, of course, choosing the importance (Section 3.3.5) 

density as close as possible to the posterior density. By this way, particles are tried 

to be kept in the important regions of the state-space, which reduces the possibility 

to encounter particles with negligible weights. 
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3.3.3 Resampling 

A resampling step is inserted into the particle filter algorithms in order to prevent 

degeneracy. As a result, some particles are deleted and some particles are duplicated 

according to their relative weights.  

Another point of view is that the new information came from the measurement is 

inserted into the weights of the particles. Since the particle filter tries to carry all the 

information with the positions of particles, this information should be transferred 

back somehow. Resampling step arranges the particles such that they all have same 

importance, and all contribute to the approximation by their individual position in 

the state-space. 

Although resampling helps to overcome the degeneracy phenomenon, it 

unfortunately introduces other problems. Resampling causes the samples that have 

high importance weights to be statistically selected many times, thus the algorithm 

suffers from the loss of diversity [3]. As the time passes particles tend to be piled up 

to some locations, which degrade the approximation quality of the whole particle 

cloud. This occurs especially in the case of small process noise since the particles at 

the same place cannot separate enough. It is also referred as sample 

impoverishment. It is also mentioned in [13] that using the particle filter is not 

appropriate when the process noise is zero. 

Besides particle filter already has a serious computational cost due to the number of 

particles, resampling makes it even harder by limiting the opportunity to parallelize. 

All particles should be combined during resampling.  

Note that, the posterior density is approximated by the particles, i.e. by a discrete 

valued distribution. Resampling step, in fact, generates a new set of particles from 

that approximate discrete representation of posterior density. In the following 

subsections some resampling algorithms are presented. 
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3.3.3.1 Systematic Resampling 

Systematic resampling (or minimum variance sampling) has the complexity ( )NO , 

and given below [13]. U  is the uniform distribution over the specified interval. The 

parent index of each particle is calculated for the auxiliary particle filter (APF) 

which is described in Section 3.4.1. 

 

 

 

Algorithm 3:  Systematic Resampling 
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Algorithm assumes that the weights are continuous random variables in the interval 

(0, 1) which are randomly ordered [3]. The grid points ( su j ' )  in the each interval 

[ )1, +ii cc  are counted, and particles corresponding to that interval are either 

duplicated by that amount or eliminated if there are no grid points.  

 

Figure 3-3: Illustration of the systematic resampling for 4 particles. All three 
particles are in the same place in the last graph. 
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Systematic resampling is easy to implement and it minimizes the Monte Carlo (MC) 

variation ( )ikwVar .  

3.3.3.2 Other Resampling Methods 

There are also many other resampling schemes trying to reduce the negative effects 

mentioned in Section 3.3.3. Some of them are briefly explained below. 

Multinomial Resampling [3]: Algorithm is similar to the systematic resampling: 

• Construct the CDF for the weights 

• For each particle 

o Draw a sample from the uniform distribution U (0, 1) 

o Find the ith particle such that ii cuc <≤−1  

o Duplicate 
i

kx  and assign its weight to 
1−N  

Residual Resampling [3]: It is a partially deterministic approach.  

• For each particle 

o Create  iki wNk .=  copies of 
i

kx  

• Create ∑
=

−=
N

i

ir kNN
1

 i.i.d draws from the particle set with 

probabilities proportional to i

i

k kwN −.  

• Assign all weights to 1−N  

There are also more sophisticated resampling methods like stratified resampling 

and Markov Chain Monte Carlo (MCMC) resampling (Metropolis-Hastings 

Algorithm, Gibbs Sampling). Detailed information can be found in [3, 49, 50]. 
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3.3.4 Sequential Importance Resampling (SIR) Algorithm 

For the reasons explained above, particle filter needs a modification called the 

resampling step. According to when and how does the resampling is done various 

particle filter algorithms are developed. The most common two algorithms are 

presented below.  

First approach is to apply resampling when there is a certain degree of degeneracy. 

The effective particle size in Section 3.3.2 can be used for that purpose.   

 

 

 

Algorithm 4:  SIS Particle Filter with Resampling 
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• END FOR 

• Calculate the effective sample size: 
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• IF Thresholdeff NN <ˆ  THEN resample using Algorithm 3 
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Second widely used method is to apply the resampling at each iteration of the filter. 

The particular filter is named after the sequence of its steps: Sampling Importance 

Resampling (SIR) Particle Filter. Its steps are illustrated in Algorithm 5. 

 

 

 

Algorithm 5:  SIR Particle Filter 
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• END FOR 

• Resample using Algorithm 3 
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Figure 3-4: Illustration of the SIR Particle Filter steps [23]. 

 

3.3.5 Choice of Importance Density 

As explained in Section 3.2.1 the choice of the importance density plays a crucial 

role in the filter performance. While the resampling tries to solve an existing 

degeneracy, the quality of the importance density affects the severity of degeneracy 

at the next iteration. With a good choice the particles usually stay in the high 

probability regions and as a consequence, degeneracy would be less severe after the 

weight update. 
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Posterior Distribution (Optimal Important Density): 

Naturally the optimal importance density is the posterior distribution itself [13]. 

Considering the Equation (3-13)I it can be expressed like below. 
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Inserting it into the weight update equation (Equation (3-18)) of the particle filter: 

 ( ) ( ) ( ) τττ dxpypwwxypw i

kk

i
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i
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i

kk

i

k .... 111 ∫ +++ =∝  (3-24) 

However there is some practical difficulties of using the optimal importance 

density. First drawing samples directly from the posterior may not be possible, 

second evaluating the integral in Equation (3-24) may not be easy.  

The above formulation can easily be used when the state is a member of a finite set. 

In that case it is possible to take samples from the posterior and the integral in the 

weight update equation turns into summation. Using the optimal importance density 

for the discrete modal states of a Jump-Markov system is an example [4]. 

The problems caused by the optimal importance density can be overcome for the 

special case where the posterior density is Gaussian. The system described by the 

Equations (3-25) and (3-26) is an example of this case. Detailed formulation can be 

found in [4]. 

 ( ) kkkkk wuxfx +=+ ,1  (3-25) 

 kkkk vxHy += .  (3-26) 

Prior Distribution: 

The prior distribution is probably the most common choice for the importance 

density due to its intuitiveness and simplicity. The resultant weight update equation 
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can be found by the same way. In this case, particles are propagated by using the 

state transition model (i.e. prior) and weighted by using the measurement model 

(i.e. likelihood).  

  ( ) ( )ikkk

i

kk xxpyxxq 111 , +

∆

++ =  (3-27) 

 ( ) i

k

i

kk

i

k wxypw .111 +++ ∝  (3-28) 

Obviously it is not always a very good approximation of the posterior since the 

current observation is neglected. 

Likelihood Distribution: 

As described in Equation (3-18) the posterior distribution contains the total 

information which is present in the prior and likelihood separately. Normal 

formulation of the particle filter is based on drawing particles according to the prior 

and weighting them according to their likelihood. However if the likelihood is 

tighter than the prior, i.e. closer in shape to the posterior, it may be better to change 

the order. Sampling from the tighter (dominant) distribution makes the particles to 

stay important regions of the state-space, and then the minor corrections due to the 

broader distribution can easily be done by updating the weights.  
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Figure 3-5: Illustration of the relative shape of prior and likelihood [3].  

 

First two graphs in Figure 3-5 illustrates the cases where using the prior as 

importance density is appropriate. But, as seen in the third graph if the prior is much 

broader, then the generated particles have difficulty to incorporate the new 

information supplied by the likelihood. 

The straightforward idea is to use the likelihood as the importance density and then 

assign the weights proportional to the state transition density (Equations (3-29) and 

(3-30)). The resultant algorithm is called the Likelihood Particle Filter [3]. Idea 

behind is similar to the Auxiliary Particle Filter (Section 3.4.1), since during the 

particle generation they both try to select the ones having high likelihoods.  

 ( ) ( )i

kkk

i

kk xypyxxq 1111 , ++

∆

++ =  (3-29) 

 ( ) i

k

i

k

i

k

i

k wxxpw .11 ++ ∝  (3-30) 

Unfortunately, using the likelihood is not so straightforward. Taking samples may 

not be possible since the mapping (Equation (2-4)) is usually not one-to-one. 
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Therefore for given measurement a unique (or a finite number of) state distribution 

( )11 ++ kk yxp  may not be found.  

Other Suboptimal Distributions: 

If the optimal importance density is not available, then its approximations may be 

used. These approximations are located between the prior and the posterior in terms 

of the information they contain. One way is to assume a Gaussian distribution for 

the posterior and obtain it by local linearization techniques. Utilization of the EKF 

is a frequently encountered example of that method. Estimation of the importance 

density by UKF (or SPKF) is also possible (UPF) [23, 24, 25].  

In some cases the peaked likelihood can be factorized into several broader 

distributions since each distribution is a function of a different part of the state. 

Hence samples can be generated from each importance density separately and 

combined later. The method is referred as partitioned sampling and useful 

especially when the measurement components are independent and have different 

individual likelihood models [3].  

3.4 Other Particle Filter Algorithms 

According to how the importance density is chosen and resampling is done different 

particle filters have been proposed. In Section 3.3.5 different forms of particle 

filters (ex: Likelihood PF, EKF-PF, UPF) are briefly mentioned. They are also 

referred as Local Linearization Particle Filters. Similarly applied resampling 

(Section 3.3.3) method also changes the whole algorithm (ex: MCMC-PF).  

Particle filters basic intension is to overcome the problems introduced by non-linear 

and non-Gaussian states. In many cases, not all the states are defined by non-linear 

relations or not all the noise components are non-Gaussian. Therefore a 

straightforward idea is to use particle filtering only for those state components, and 

the rest can be handled by optimal methods (i.e. Kalman filter). Resultant class of 
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algorithms is referred as Marginalized Particle Filter (MPF) or Rao-Blackwellized 

Particle Filter. 

Three important particle filter variants are described in the following subsections. 

3.4.1 Auxiliary Particle Filter (APF) 

In the APF (also called Auxiliary SIR Filter - ASIR) the usual order of SIS/SIR 

particle filter steps are modified to alleviate degeneracy problem.  The underlying 

idea is to select the particles that will be propagated in the subsequent updated 

estimate. A brief comparison of SIR-PF and APF in terms of algorithm steps is 

given in Table 3-1 

 

Table 3-1: Algorithm steps of APF compared to SIR PF. 

SIR PF Steps 

• Draw samples from the importance density (i.e. shift the particles) 

• Update the weights (i.e. evaluate the particles) 

• Resample 

APF Steps 

• Weight the particles based on some characterization of ( )ikk xxp 1+  (i.e. 

do a pre-evaluation based on the prior information). 

• Resample 

• Draw samples from the importance density (i.e. shift the particles) 

• Re-evaluate the particle weights in order to take the measurement 

into account 
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By applying resampling before, more promising particles are tried to be chosen for 

the shifting step. To decide which particle is more likely to survive at the end of the 

current cycle, an auxiliary state variable ji is introduced [4, 13, 45]. It denotes the 

index of the jth particle at time k. Then the derivation of the posterior density is 
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 (3-31) 

Note that if the predictive likelihood ( )ikk xyp 1+  (which will be large for the “good” 

particles) can be computed analytically, then the optimal importance density itself is 

used (Equation (3-23)). If not, then an approximation should be done [3]. 

Although an auxiliary variable is augmented to the state it is ignored during the 

generation of samples. That is to say, taking the sample from the joint importance 

density ( )1:11 , ++ k

j

k yixq , then omitting ji . The importance density is 

 ( ) ( ) ( ) i

k

i

kk

i

kkk

j

k wxxpypyixq .., 1111:11 +++++ ∝ µ  (3-32) 

where i

k 1+µ  is some characterization of 1+kx  when i

kx is given [13]. It can be the 

expected value or only a sample. 
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The importance density is also factorized like: 

 ( ) ( ) ( )1:111:11:11 ,., +++++ = k

j
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j

k

j

k yixqyiqyixq  (3-34) 
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Combining with the Equation (3-32): 

 ( ) ( )ikkk

j

k xxpyixq 11:11 , +

∆

++ =  (3-35) 

 ( ) ( ) i
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kkk

j wypyiq .111:1 +++ ∝ µ  (3-36) 

After the initial weight update according to the Equation (3-36) and resampling, the 

final weight correction is done by Equation (3-37) (incorporating the new 

information due to the measurement). The index of the new set of particles after 

resampling is denoted as j ({ }N
j

j

k

j

k wx
1

, = ) instead of i. Algorithm for APF is also 

given below [4].  
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The resampling step between two weight updates selects the good particles 

according to the quality of the pre-evaluation. In other words the performance of 

APF depends on how well i

k 1+µ  characterizes the ( )ikk xxp 1+ . However, if the 

process noise is large, then a point estimate does not give sufficient information 

about ( )ikk xxp 1+ . As a result APF may be worse than normal SIR-PF. 

Algorithm 6:  Auxiliary Particle Filter  

{ } { }( )11111 ,,, +==++ = k

N

i

i

k

i

k

N

j

j

k

j

k ywxAPFwx  

• FOR i=1:N 

o Calculate 
i

k 1+µ  

o Calculate ( ) ( ) i

k

i

kkk

ji

k wypyiqw .~
111:11 ++++ ∝= µ  

• END FOR  

• FOR i=1:N 

o Normalize the particle weights: 

∑
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+
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N
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w
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• END FOR 

• Resample using Algorithm 3 

• FOR j=1:N 

o Draw a sample 
j

kx 1+ from ( ) ( )jikkk

j

k xxpyixq 11:11 , +++ =  

o Update the particle weight: 
( )
( )ji

kk

j

kkj

k
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w
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+ =
µ

 

• END FOR  
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3.4.2 Regularized Particle Filter (RPF) 

During resampling a new set of particles are selected from the discrete 

approximation of posterior density instead of a continuous one. Hence after this step 

duplicated particles occupy the same place. If they cannot be spread out then all 

particles may collapse to the same point in the state-space, which is a severe case of 

sample impoverishment [4, 13]. Regularized Particle Filter (RPF) tries to overcome 

this problem by introducing a continuous approximation of the posterior. 

Instead of Equation (3-11), the below relation is used. 

 ( ) ( )∑
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+++++ −≈
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kkh
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kkk xxKwyxp
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1:11:111:11:1 .  (3-38) 
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where ( )xK  is the Kernel density, 0>h  is the Kernel bandwidth, xn  is the 

dimension of the state-space [4]. Kernel density function and its bandwidth 

determine the quality of the approximation in Equation (3-38). For particles having 

equal weights and Gaussian posterior density the optimal choices are the 

followings: 

Epanechnikov kernel: ( )
( )
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where 
xn

c is the volume of the unit hypersphere in xnR . 
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The usage of Kernel density is illustrated in Figure 3-6. Note that, the Gaussian 

distribution itself can also be used as a Kernel density. 

 

 

Figure 3-6: Kernel approximation.  
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Algorithm 7:  Regularized Particle Filter [4]  
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• END FOR  

• FOR i=1:N 

o Normalize the particle weights: 
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• END FOR 

• Calculate the effective sample size: 
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=

=
N

i

i

k
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w

N

1

2

1ˆ  

• IF Thresholdeff NN <ˆ   

o Calculate the empirical covariance matrix kS of 

{ }N
i

i

k

i

k wx
1

, =  

o Compute kD  such that k

T

kk SDD =  

o Resample using Algorithm 3 

o FOR i=1:N 

� Draw Ki ~ε  from the Epanechnikov Kernel 

� Jitter the resampled particles: 

i

kopt

i

k

i

k Dhxx ε+= ++ 11  

o END FOR  

• END IF 
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3.4.3 Multiple Model Particle Filter (MM-PF) 

Like in Kalman filter based methods, multiple state transition models can be 

utilized in particle filter algorithms to represent the dynamic system more precisely. 

PF can be used as a block in other frameworks like IMM [32, 51, 52, 53, 54]. For 

more sophisticated applications, the internal structure of PF is modified in order to 

exploit its characteristic properties.   

In [4] the MM-PF is constructed based on a regime conditioned SIS step. First the 

regime variable for each particle is drawn based on the transition probabilities. Then 

each particle is propagated through the importance density assigned to its regime.  

The MM-PF structure presented here is taken from [6, 45]. The difference from 

SIR-PF is that, at each step every particle is propagated through all system models. 

So the intermediate particle count is the particle count (N) times the number of 

models (M). The drawn particles are weighted according to the common 

measurement and the corresponding Markov transition probabilities. During 

resampling total number is reduced to “N” again. In Algorithm 8 ( )iki

k jT ωω =+1  

denotes the transition probability, i.e. probability of the system being in jth mode 

given that its previous mode was i

kω . 
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Algorithm 8:  MM-PF 
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• END FOR  

• FOR i=1:N 

o Normalize the particle weights: 
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• END FOR 

• Resample using a modified version of Algorithm 3 
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CHAPTER 4  

 

SINGLE TARGET TRACKING 

4.1 General Information 

The Radar (radio detection and ranging) is probably the mostly used sensor for 

airborne target tracking applications. Radar’s basic operating principle is to send a 

signal and detect the echo from the target. By analyzing the returned signal, a great 

deal of information about the target can be obtained. Extensive information on 

radars and radar signal processing can be found in [37, 38]. It can be used as an 

active or passive sensor. Active radar, which is the most widely used one, measures 

the relative angle (azimuth & elevation) and range. For Doppler-radars, range rate is 

also available as a measurement.  On the other hand, passive radar does not emit 

energy and can only measure the angle. These kinds of sensors are often referred to 

as RWR’s (Radar Warning Receiver) since they search for targets emitting radar 

signals. Systems can obtain different kinds of information about target by advanced 

signal processing methods. However, often parameters like SNR or received power 

is not used in tracking filters, since they are not always reliable. 

There can be various subsystems measuring the same parameter by using different 

methods, which will yield different properties like noise, availability, false alarm 

rate, etc. For example while passive direction finding (DF) methods based on 

amplitude comparison provide faster and relatively continuous measurements, 
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methods using phase comparison give more accurate measurements which are not 

available all the time [39]. 

The scenarios can be divided into three groups as shown in Table 4-1. Although the 

whole characteristics vary, basically, the aim is to track the motions of targets 

relative to the observer.    

 

Table 4-1: Tracking scenarios. 

Observer Target Example 

Stationary Moving Radar on ground tracking flying platforms, ground-

to-air engagements 

Moving Stationary RWR on an aircraft trying to locate a radar,  air-to-

ground engagements 

Moving Moving Radar on a ship tracking an aircraft, a torpedo 

tracking a ship, air-to-air, sea-to-air, sea-to-sea 

engagements 

 

 

The basic properties of interest are the target’s position and velocity. The set of 

equations defining the evolution of the motion of platform forms the state model in 

Equation (4-3). According to the scenarios given in Table 4-1, there can be 

situations that both observer and target are moving. In that case, first their motions 

are considered separately with respect to a fixed point in the earth frame.  

 ( ) k

tgtg

k

tgtg

k wGxfx .1 +=+  (4-1) 
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 ( ) k

oo

k

oo

k uGxfx .1 −=+  (4-2) 

The unknown target input signal (usually the target acceleration) is defined as 

process noise wk, and the known observer input signal (usually the observer 

acceleration) is denoted as ku− . Then the two equations are subtracted in order to 

obtain the relative motion of the target (Equations (4-3) and (4-4)). Here usual 

assumption is that the observer platform knows both its own states and the input 

affecting them. This assumption is logical due to the widespread usage of the on-

board inertial navigation systems (INS) aided by a global positioning system (GPS). 

 ( ) k

o

k

tg

kk

o

k

tg

kk uGwGxfxxx ..111 ++=−= +++  (4-3) 

 ( ) ( ) ( )okotg

k

tg

kk xfxfxf −=  (4-4) 

Therefore, if the tracking platform and the target are not described by the same 

dynamics or the dynamics is not linear, then the resultant state relation will be 

nonlinear. In that case, ( )kxf  is calculated under the assumption that o

kx  is known. 

Set of equations defining the sensor outputs in terms of target states forms the 

measurement relation (4-5). Generally, there are three parameters available; the 

azimuth angle, elevation angle, and the range. According to the system model 

different combinations are considered. For two dimensional system representation 

only azimuth and range are taken into account, since the height is ignored. For 

angle-only applications azimuth and elevation angles, for bearings-only applications 

only azimuth angle is used.  

 ( ) kkk vxhy +=  (4-5) 

Under the previous assumption that the observer position, velocity and heading are 

known, angles are measured on a fixed reference frame on earth. To be more 

specific, the azimuth angle is with respect to true north and elevation angle with 

respect to ground frame.  
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During this study both two (omitting the elevation angle) and three dimensional 

models are used. Tracking via radar, by nature, results in nonlinear state-space 

models. The below mentioned coordinate systems are used to investigate the effect 

of different ways of representing the nonlinearity in the equations.   

4.2 System Models in Cartesian Coordinate System 

Basic states of the target are its relative position and velocity which are both written 

in the Cartesian coordinates (Equations (4-6) and (4-7), Figure 4-1, Figure 4-2). 

Observer’s initial position is assumed to be the origin of the reference frame. “x-

axis” is assigned to the observer’s initial heading and x-y plane is horizontal. 

 For 2D system [ ]Tyxyx vvddx ,,,=  (4-6) 

 For 3D system [ ]Tzyxzyx vvvdddx ,,,,,=  (4-7)  

 

 

Figure 4-1: Two-dimensional representation in the Cartesian coordinate system. 
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Figure 4-2: Three -dimensional representation in the Cartesian coordinate system. 

 

4.2.1 Constant Velocity (CV) Model 

The constant velocity (CV) motion model intends to represent the dynamics of a 

non-maneuvering platform. The noise term, which is zero-mean white Gaussian, 

corresponds to the accelerations. The continuous time model for two-dimensional 

motion is shown in Equation (4-8), where ax and ay are the accelerations along x & 

y axes respectively. Similarly, xu  and yu  correspond to the unknown acceleration 

components along x & y axes. 
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The continuous time state equation (4-8) has the following solution. 
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where ( )tTtF CV ,+  is the state transition matrix. Assuming t=0, for a time-invariant 

system like this, one has 

 ( ) ( ) ATCVCV eTFTF == 0,  (4-10) 

Writing the exponential in terms of infinite series, one can get 
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Solution is simple since only the first two terms are nonzero. Similarly by 

evaluating the integral one can found the following discrete time counterpart. 
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From this point on equations are expressed in terms of steps (k) instead of time (t),. 

The constant time difference between the steps is denoted as “T”. For three-

dimensional motion the state equation is very similar. 
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If (4-12) or (4-13) is used as a motion model for observer, ku  represents the known 

acceleration input; if it is used for target, then ku  represents the unknown 

acceleration and called kw , process noise.  

Since the acceleration is assumed to be an independent (i.e. white noise) process, 

this relation is also called white-noise acceleration model. Note that, noise term 

used for the acceleration model has a much higher intensity than the noise in CV 

model in order to represent target maneuver. However, one should keep in mind 
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that a maneuver, in fact, aims accomplishing a certain task, and thus rarely is 

independent of time.  

4.2.2 Constant Acceleration (CA) Model 

In this model, the acceleration is assumed to be a process with independent 

increments. According to [5], CA model is intended to represent the substantial, but 

transient, accelerations that are present at the beginning and the end of the 

maneuvers (e.g. the transition from constant velocity flight to a coordinated turn). In 

this model, the accelerations along each axis also take place as state variables. New 

state vectors for 2D and 3D motions are given respectively, as follows: 

 [ ]Tyxyxyx aavvddx ,,,,,=  (4-14) 

 [ ]Tzyxzyxzyx aaavvvdddx ,,,,,,,,=  (4-15) 

The model has two main versions. Discrete time state equation for the Wiener-

sequence acceleration model, where the acceleration increment is assumed to be a 

white noise process, is shown below. Replacing 2I  in Equation (4-17) by 3I  one 

could get the 3D motion model. 

 k
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Note that the acceleration increment is the integral of the acceleration derivative in 

the interval between adjacent steps. In another version of the model, referred as 

white-noise jerk model, is that the acceleration derivative (i.e. jerk) is an 

independent process. It is more convenient to use a random jerk process to model 

the maneuvers of agile targets. 
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As in CV model, one should keep in mind that actual maneuvers rarely have 

constant accelerations that are uncoupled across coordinate directions [40]. 

4.2.3 Singer Acceleration Model 

The target maneuver, in this case the acceleration, can be assumed to be correlated 

in time. This is due to the assumption that if a target is accelerating at step k, it is 

more likely that it will continue accelerating at step k+1, where T is a small time 

increment between the steps [41, 6, 42]. Therefore, as in CA model the 

accelerations along each axis take place in the state ((4-14) & (4-15)). In the model 

target acceleration is a zero-mean stationary first-order Markov process with 

autocorrelation 

 ( ) ( ) ( ){ } τασττ −=+= etataERa
2.  (4-18) 

where ( )ta  represents the accelerations along each axis, 2σ  is the variance of the 

target acceleration and 
mτ

α 1=  is the reciprocal of the maneuver time constant 

mτ .    It can be expressed by the following linear time-invariant system: 

 ( ) ( ) ( )twtata +−= α&  (4-19) 

whose discrete-time equivalent is: 

 kkk waa +=+ .1 β  ,     Te αβ −=  (4-20) 

where kw  is a zero-mean white noise sequence with variance ( )22 1 βσ − . The 

continuous-time state equation for 2D is given in (4-21), where ( )tw  stands for the 

jerk: 
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Discretizing the system matrix yields, 
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Instead of jerk, acceleration increment can also be used as the process noise like in 

CA model which gives the following equation based on Equation (4-20). Replacing 

2I  by 3I  one could get the 3D motion model. 
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When maneuver time constant increases, Singer model reduces to the CA model. 

Note that as mτ  increases further (i.e. T.α  increases) 1→β , and the corresponding 

noise variance, ( )22 1 βσ − , gets smaller. On the other hand, as mτ  decreases (i.e. 

T.α  increases) 0→β , thus accelerations are only represented by the noise term. In 

that case, Singer acceleration model reduces to the CV model and the corresponding 

noise variance approaches to 2σ .  

In [41, 40, 42], for an aircraft it is mentioned that 60≈mτ s for a slow turn, and 10-

20s for an evasive maneuver. A distribution for 2σ , referred as ternary-uniform 

mixture, is also given in [41, 40, 42].  
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4.2.4 Coordinated Turn (CT) Model with Known Turn Rate 

The CV and CA models both assume that the motion along each coordinate is 

uncoupled from that of the other coordinates. This leads to block diagonal matrices 

in the state equation ( SACACV FFF ,,  become block diagonal if the order of states is 

changed). While this is a convenient assumption, actual target maneuvers produce 

motion that is highly correlated across the coordinate directions [5]. The most 

common model to represent this correlation is the coordinated turn (i.e. constant-

speed circular turn) model [43, 4, 44, 1]. In this model, target is assumed to move 

in a plane with constant speed (magnitude of the velocity vector) and turn with a 

constant angular velocity. While the maneuver does occur in a plane, it is not 

necessary for that plane to be horizontal (i.e., parallel to the x-y plane). Therefore, if 

the maneuver plane is vertical, the CT model can actually be used to represent 

climbs and descents as well [5]. Derivation of the CT equation in discrete-time is 

given below. Note that the position and velocity parameters are measured with 

respect to a fixed point, not with respect to observer. Therefore, the resultant 

relation should be used as either tgf  or of  in Equations (4-1) and (4-2). 

Let kv
r
 be the velocity of the platform at step k, and 1+kv

r
 the velocity at step k+1.  

Corresponding vector decompositions over x & y axes are shown in Figure 4-3. Ω 

represents the angular turning rate at step k and T is the time difference between the 

simulation steps. Ω > 0 for counter-clockwise turn.  
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Figure 4-3: Vector diagram for CT. 
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Similarly, for the y-axis component of 1+kv
r
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For position components of the state vector, let 
kx

d  be position of the target at step 

k, and 
1+kx

d  position at step k+1. The 
kx

d& (or 
kx

v
r

) is the known initial velocity. 
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Similarly, for the y-axis component of the position, 
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Converting the Equations (4-26), (4-27), (4-28) and (4-29) into matrix form, the 

coordinated turn transition matrix is 
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The state equation is given in (4-31), where the zero-mean (Gaussian) white noise 

kw  represents the tangential accelerations along x & y axes. 

 ( ) k
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k

CT

k wGxFx ..1 +Ω=+  (4-31) 

Turn rate is not shown in (4-30) for simplicity, but it can be obtained from the latest 

velocity estimate. Under the assumption that slower moving targets can perform 

sharper turns, turn rate (Ωk) can be written as a nonlinear function of speed [4, 44, 

1]. 
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In (4-32), ma±  is the typical maneuver acceleration of the particular platform 

(target or observer). Different nonlinear models can be constructed for different 

values of ma  [44, 45]. Therefore, simple and linear set of state equations can be 

obtained, which is very useful for multi-model trackers like IMM. 

4.2.5 CT model with Unknown Turn Rate  

In the model above, the turn rate at each step ( kΩ ) is either calculated by using the 

previous states or assumed constant from the beginning. However, it can be 

modeled as a Wiener process or first-order Markov process, and augmented in the 

state vector. The idea is to model the turn rate, and at each step use a suitable 

estimate to obtain an approximate linear model ( ( )ΩCTF ) for target states. As that 

estimate kΩ , 1+Ω k  or their average can be used [40]. Corresponding state relation, 

where turn rate is a Wiener process, is given below. 
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4.2.6  CT Model with Polar Velocity and Unknown Turn Rate 

Based on the idea of constant speed in the coordinated turn, velocity of the target 

can be expressed in polar coordinates. However, positions are still expressed in 

terms of Cartesian coordinates. New state vector in 2D is the following: 

 [ ]Tyx Vddx Ω= ,,,, φ  (4-34) 

The discretized system model is  
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where the corresponding process noise covariance is [40, 41] 
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4.2.7 Measurement Model 

A measurement model in Cartesian coordinates is used along with the process 

models above. It corresponds to the tracking in mixed coordinates approach in [46]. 
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The azimuth (i.e. bearing) angle (ϕ ), elevation angle (θ ), reciprocal of range (
r

1
) 

and reciprocal of range rate (
r

r&
) measurements are expressed in terms of state 

variables in Cartesian coordinates. Equations for 2D or equations with fewer 

components (like azimuth and elevation only) can be obtained by adapting (4-38).  
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Unlike the CV or CA models, measurements are not decoupled among each other. 

Moreover, the nonlinear relation is an unwanted situation considering the linear 

filter based tracking systems. Measurement noise is assumed to be uncorrelated, 

since each of them is taken by a separate system. 

4.3 System Model in Modified Spherical Coordinates (MSC) 

In the MSC, or modified polar coordinates, the relative position of the target is 

defined by using azimuth angle (ϕ), elevation angle (θ), and range (r) [6, 27]. 

Targets velocity is then expressed by the derivatives of them ((4-39), (4-40)). As 

general convention, (
r

1
) is used in the states instead of range itself.  
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Figure 4-4: Two-dimensional representation in the modified spherical coordinates. 

 

Figure 4-5: Three-dimensional representation in the modified spherical coordinates. 

4.3.1 CV Model in MSC 

One way to represent the state and measurement equations is to rewrite them in 
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high amount of nonlinearities to the state relation. However, in [47] it is claimed 

that the resultant performance would increase for particle filters. Relations between 

the state components expressed in MSC and Cartesian coordinate are given in Table 

4-2. 

 

Table 4-2: States in modified spherical coordinates. ( )CCxgx =  where CCx  is the 

state vector in Cartesian coordinates (Equations (4-6), (4-7)) [47]. 
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We should also express the previously used acceleration input and noise in MSC. 

Here a transformation matrix ( MSC

CCT ) is used by taking roll angle zero. Rows of 

MSCu  represents target accelerations along ϕ& , θ&  and 
r

r&
 respectively. For 2D 

modeling taking 0=θ , 0=θ&  and omitting the rows corresponding to them give:  

 uuTu MSC

CC

MSC .

sinsin.coscos.cos

cossin.coscos.sin

0cossin
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Corresponding nonlinear state relations for continuous time is given below. Details 

can be found in [48, 47].  
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Here MSCw  stands for the process noise in MSC, and assumed to be Gaussian. On 

the other hand, it can be incorporated in MSCf  if one can handle more nonlinearity. 

As in CV model, input in the state relation is replaced with noise (w) having a 

suitable covariance.  

From that point on, the linearized discretization (i.e. first linearizing then 

discretizing) method in [48] is applied. After linearizing around previous state 

variable and discretizing, the resultant state relation is:  
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 (4-43) 
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The initialization of covariance matrix is also discussed in [47]. First, the 

transformation in Table 4-2 ( ( )CCxg ) is approximated by first order Taylor 

expansion (4-44). Then the initial uncertainty of target states in MSC is expressed 

by (4-45). 0P  is the covariance matrix in Cartesian coordinates. 

 ( ) ( ) ( )( )CCCCCC

x

CCCC xxxgxgxgx CC ˆ.ˆˆ −∇+==  (4-44) 
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o xgPxgP CCCC ˆ..ˆ 0 ∇∇=  (4-45) 

4.3.2 Measurement Model 

The measurement model below is used along with the above process model in 

spherical (or polar) coordinates. It is much simpler than Equation (4-38), due to the 

coordinate system choice. Relations for 2D or with fewer components (like azimuth 

and elevation only) can be obtained by adapting (4-46). Measurement noise is 

assumed to be uncorrelated, since each of them is taken by a separate system: 

 kkk vxy +



















=+ .

100000

000100

000010

000001

1  (4-46) 



80 

 

CHAPTER 5  

 

SIMULATIONS AND DISCUSSION 

In this chapter some of the algorithms and system models outlined in the previous 

chapters are applied to representative target trajectories and results are discussed.   

5.1 Problem Formulation 

Simulations are constructed such that the maneuvering target platform is tracked by 

a fixed observer (radar) on the ground. Artificial noise is added on the 

measurements to imitate the real sensor output. Target states (position, velocity and 

acceleration) are tracked via noisy measurements. While the state transition model 

is nonlinear for CT models, the measurement model is always nonlinear because of 

the polar to Cartesian conversion. Overall system model obeys the Equations (4-3) 

and (4-5) where ku  is taken as zero since the observer is not moving.   

During the data generation process, target is assumed to move ideally with respect 

to the motion model. Measurements are the positions of the target in 3D (or 

sometimes 2D) polar coordinates, i.e. azimuth angle (in rad), elevation angle (in 

rad) and range (in meters). Noise on the range measurement is uniform unless it is 

stated otherwise.  A sample trajectory is shown in Figure 5-1 together with the 

noisy measurements. The trajectories that used in the simulations are given in 

Figure 5-2 and Figure 5-3. 
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Figure 5-1: A sample target trajectory in 2D. Black dots indicate the points that the 

maneuver changes. 

 

5.2 Implementation Details 

The following “tracking filter – system model” combinations are implemented 

throughout this study.  

• EKF with CV Model in 2D Cartesian coordinates 

• EKF with CV Model in 3D Cartesian coordinates 

• EKF with CA Model in 3D Cartesian coordinates 
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• IMM-EKF with 2 CV Models in 3D Cartesian coordinates 

• IMM-EKF with CV & CA Models in 3D Cartesian coordinates 

• IMM-EKF with CV, CA, CCW-CT (Counter-Clockwise Coordinated Turn) 

and CW-CT (Clockwise Coordinated Turn) Models in 3D Cartesian 

coordinates 

• SIR-PF with CV model in 2D Cartesian coordinates 

• SIR-PF with CV Model in 3D Cartesian coordinates 

• SIR-PF with CA Model in 3D Cartesian coordinates 

• MM-PF with CV, CA, CCW-CT and CW-CT Model in 3D Cartesian 

coordinates 

Traditionally the tracking filters are initialized from first few measurements. 

However in this study the mean value of the initial state is taken as the true value to 

investigate the estimation performance independent of the initial transition period.  

Each particle filter has two versions where the range noise is assumed to be 

Gaussian or uniform. For particle filter implementations prior distribution is taken 

as the importance density. 

Measurement model is common for every filter. The range itself instead of its 

reciprocal (Section 4.2.7) is used as the measurement component for simplicity. 

During EKF’s and IMM-EKF’s the measurement relation is linearized at each step. 

Moreover, CCW-CT and CW-CT models in the IMM-EKF are also linearized. The 

coefficients that determine the lateral acceleration components ( yx aa , ) are 

calculated while linearizing the CT models even if they do not affect the position or 

velocity.   
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Both in MM-PF and IMM-EKF with four models the state is augmented with the 

turn rate variable (10th component). There is minor difference about the meaning of 

turn rate in that two filter. In IMM-EKF the turn rate in the state denotes the 

maneuver that will be done in the following step. On the contrary, in MM-PF the 

turn rate state is only for information and shows maneuver of the previous step. The 

turn rate of the current time step is calculated explicitly according to Equation (4-

32). Typical maneuver acceleration ma  is taken as 1 unless it is specified. 

In the MM-PF there is a practical problem that cannot be solved by the regular 

systematic resampling (Algorithm 3) described in Section 3.3.3.1. In the resampling 

step of MM-PF the increased number of particles (particle count (N) times the 

number of models) are decreased back to “N”. The procedure is given in Algorithm 

9 where the new input parameter r ( 10 ≤< r ) determines the reduction in the 

particle count. 
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Algorithm 9:  Systematic Resampling for MM-PF 
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The two main trajectories used throughout the simulations are presented below. 

Artificial measurements are created from these trajectories by sampling according 

to the selected time step. Filters operate at the same time step. All turns are created 

by using the relations in Section 4.2.4. 

Trajectory 1: 
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Figure 5-2: Trajectory 1 in 3D. 

 

Table 5-1: Trajectory 1 maneuver details. 

Target initial state [5000 30000 -100 0]' 

Straight flight for 600s 

Coordinated Turn for 315s (~180°) Maneuvers 

Straight flight for 350s 
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Trajectory 2: 
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Figure 5-3: Trajectory 2 in 3D. 

Table 5-2: Trajectory 2 maneuver details. 

Target initial state [10000 15000 1500 -150 0 0 0 0 0]' 

Straight flight for 40s 

Slowing down with 2g for 40s  

Coordinated Turn for 110s (~90°) 

Straight flight for 10s 

Coordinated Turn for 110s (~90°) 

Straight flight for 30s 

Acceleration on z-axis with -2g for 5s 

Acceleration on z-axis with -g for 10s 

Acceleration on z-axis with +3g for 10s 

Coordinated Turn for 150s (~120°) 

Straight flight for 20s 

Coordinated Turn for 70s (~60°) 

Maneuvers 

Straight flight for 300s 
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Trajectory 3: 
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Figure 5-4: Trajectory 3 in 3D. 

 

Table 5-3: Trajectory 3 maneuver details. 

Target initial state [5100 30000 1500 -100 0 0 0 0 0]' 

Straight flight for 600s 

Coordinated Turn for 310s (~180°) 

Straight flight for 150s 

Coordinated Turn for 160s (~90°) 

Maneuvers 

Straight flight for 350s 
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5.3 Comparison Criteria 

The main parameter used for comparison in this study is the Root-Mean-Square-

Error (RMSE) of the position states. It can be in 2D (positions on the x & y axes) or 

in 3D. RMSE is calculated at each time step (Equation (5-1)) to be able to observe 

the maneuver dependent characteristics of the algorithms. If there are Monte Carlo 

runs ( mcN ) for a specific scenario RMSE is averaged. 
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As an additional parameter, the total RMSE is also calculated for each simulation. 

Here L is the number of time steps. 
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The time elapsed during each algorithm is also calculated. The execution priority of 

the simulation environment (MATLAB) is adjusted to “Realtime” to prevent other 

applications blocking the CPU. However the computation times can only be 

compared within a simulation since computers with different configurations are 

used. 

5.4 Results 

5.4.1 Simulation Set 1 

5.4.1.1 Part A 

EKF and SIR-PF are compared for the first scenario defined in 2D Cartesian 

coordinates. The range noise is assumed as Gaussian to eliminate its effect. The 
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filters have the same process and measurement noise models (covariances). 

Measurement noise model is also the same as the one used while creating the 

artificial measurement. Some important parameters are given in the following table. 

 

Table 5-4: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.00052 

 Range (m): Gaussian, σ2= 100 

Measurement noise model 
(covariance) in the filters 

For all filters same as the actual covariances 

Process noise model 
(covariance) in the filters 

[4 0 ; 0 4] 

Time Step (s) 5 

Particle Count for SIR-PF 10000 
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Figure 5-5: True target trajectory and the filter outputs for 10000 particles. 
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Figure 5-6: True target speeds and the filter outputs for 10000 particles. 
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Figure 5-7: RMSE of measurements, EKF and SIR-PF for 10000 particles. 

 

Table 5-5: Simulation result. 

 Measurement  EKF SIR-PF 

Total RMSE in Position 1.0756x103 442.9838 434.9442 

Computation Time (s) - 0.069 1137.131 

 

Remarks:  

• For this trajectory SIR-PF and EKF results almost same for 10000 particles.  

• Since both filters include CV models and same noise distributions are used, 

the only improvement that SIR-PF can introduce would be a correction for 
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the nonlinear measurement equation by presenting a better representation of 

likelihood distribution.  

• In this case this difference cannot be observed due to the low measurement 

noise covariances. The likelihood is peaked, so both filters more or less 

follow the measurement. Higher number of particles is needed to realize the 

improvement done SIR-PF by representing the shape of the likelihood. 

• Time spent for the SIR-PF is significantly higher. 

5.4.1.2 Part B 

Since the PF has no significant advantage over EKF in Part A, to observe the 

difference the covariance of measurement noise is increased.  

 

Table 5-6: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

 Range (m): Gaussian, σ2= 100 

Measurement noise model 
(covariance) in the filters 

For all filters same as the actual covariances 

Process noise model 
(covariance) in the filters 

[4 0 ; 0 4] 

Time Step (s) 5 

Particle Count for SIR-PF 5000 
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Figure 5-8: True target trajectory and the filter outputs for 5000 particles. 

 



95 

 

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000
RMSE in position

Step

R
M
S
E

 

 

Measurements

EKF

SIR-PF

 

Figure 5-9: RMSE of measurements, EKF and SIR-PF for 5000 particles. 

 

Table 5-7: Simulation result. 

 Measurement  EKF SIR-PF 

Total RMSE in Position 3.4396x103 1.4050x103 943.4269 

Computation Time (s) - 0.067 406.02 

 

Remarks:  

• Compared to Part A, the improvement can be observed even for a less 

number of particles (5000) when the measurements become more 

inaccurate.  The shape of the likelihood is now broader, so it is represented 

much better (compared to Part A) by SIR-PF, yielding a better performance. 
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5.4.1.3 Part C 

Target maneuvers are represented by the noise terms in CV model. In this part, 

process noise assumptions in the filters are reduced to simulate a worse case in 

terms of model mismatch. 

 

Table 5-8: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

 Range (m): Gaussian, σ2= 100 

Measurement noise model 
(covariance) in the filters 

For all filters same as the actual covariances 

Process noise model 
(covariance) in the filters 

[1 0 ; 0 1] 

Time Step (s) 5 

Particle Count for SIR-PF 5000 
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Figure 5-10: True target trajectory and the filter outputs for 5000 particles. 
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Figure 5-11: RMSE of measurements, EKF and SIR-PF for 5000 particles. 

 

Table 5-9: Simulation result. 

 Measurement  EKF SIR-PF 

Total RMSE in Position 3.2586x103 2.0196x103 1.4063x103 

Computation Time (s) - 0.067 403.42 

 

Remarks:  

• The overall RMSE for both filters is increased since the process noise model 

is much tighter than it should be to overcome the maneuver. Further 

reduction of the process noise may result in divergence. 

• SIR-PF provides approximately the same performance improvement. 
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5.4.1.4 Part D 

The whole scenario is divided into a less number of points, i.e. fewer measurements 

are taken. 

  

Table 5-10: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

 Range (m): Gaussian, σ2= 100 

Measurement noise model 
(covariance) in the filters 

For all filters same as the actual covariances 

Process noise model 
(covariance) in the filters 

[1 0 ; 0 1] 

Time Step (s) 10 

Particle Count for SIR-PF 5000 
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Figure 5-12: True target trajectory and the filter outputs for 5000 particles. 
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Figure 5-13: RMSE of measurements, EKF and SIR-PF for 5000 particles. 

 

Table 5-11: Simulation result. 

 Measurement  EKF SIR-PF 

Total RMSE in Position 3.5162x103 1.8641x103 1.2446x103 

Computation Time (s) - 0.041 203.44 

 

Remarks:  

• Particle filter again results in better performance.  
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5.4.1.5 Part E 

The noise distribution of the range measurement is taken as Gaussian in the above 

simulations. However due to the characteristic properties of radars it is uniform. So, 

a second SIR-PF for uniform range noise is implemented, and the artificial 

measurement data is generated. Note that, the exaggeration in the noise terms aims 

to show the performance difference. 

 

Table 5-12: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.000000052 

 Range (m): Uniform on [-10000, 10000]  

Measurement noise model 
(covariance) in the filters 

Azimuth: For all filters same as the actual 
covariance 

Range for EKF: Gaussian, σ2=25.106 

Range for 1st SIR-PF: Gaussian, σ2=25.106 

Range for 2nd SIR-PF: Uniform on [-10000, 
10000] 

Process noise model 
(covariance) in the filters 

[4 0 ; 0 4] 

Time Step (s) 5 

Particle Count for SIR-PF’s 2500 
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Figure 5-14: True target trajectory and the filter outputs for 2500 particles. 
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Figure 5-15: RMSE of measurements, EKF and SIR-PF’s for 2500 particles. 

 

Table 5-13: Simulation result. 

 Meas. EKF 
SIR-PF 

(Gaussian) 

SIR-PF 

(Uniform) 

Total RMSE in 
Position 

5.8183x103 1.7831x103 2.2478x103 1.0282x103 

Computation Time (s) - 0.068 162.985 147.003 

 

Remarks:  

• In theory the new particle filter should give better results since it suits the 

actual noise better. But there is no noticeable difference between two 

particle filters when the range noise comparable with the ones in Part A to 

Part D. Reason is that the range component being the finest measurement. 
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The marginal likelihood function is so peaked that modeling it as Gaussian 

or uniform does not matter.  

• In order to demonstrate the modeling properties of the particle filter 

parameters are changed unrealistically such that the range noise becomes 

dominant. Corresponding covariances in EKF & 1st SIR-PF are increased, 

too. 

• SIR-PF with uniform range noise model runs faster since the evaluation of 

the likelihood is much easier than the Gaussian case. 

 

5.4.2 Simulation Set 2 

The 3 dimensional versions of the tracking filters in Simulation Set 1 are 

implemented and the effects of using two CV models together in an IMM structure 

are investigated. 

5.4.2.1 Part A 

EKF, IMM and SIR-PF are compared for a scenario defined in 3D Cartesian 

coordinates. IMM consist of two CV models with different noise assumptions. 

Although there is no elevation change in the scenario, tracking is done based on 3D 

coordinates. Elevation noise is assumed to be much lower for not obtaining negative 

angles. RMSE is calculated based on the positions on x and y axes. 
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Table 5-14: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

Elevation (rad): Gaussian, σ2=0.00087 

 Range (m): Uniform on [-20, 20] 

Measurement noise model 
(covariance) in the filters 

Azimuth and Elevation: For all filters same as the 
actual covariance 

Range for EKF: Gaussian, σ2=400 

Range for 1st SIR-PF: Gaussian, σ2=400 

Range for 2nd SIR-PF: Uniform on [-20, 20] 

Process noise model 
(covariance) in the filters 

EKF: CV Model � [1 0 ; 0 1] 

IMM: CV Model 1 � [1 0 ; 0 1] 

          CV Model 2  � [4 0 ; 0 4] 

SIR-PF: [4 0 ; 0 4] 

IMM Transition Prob. [0.9    0.1;   0.1    0.9 ] 

Time Step (s) 5 

Particle Count for SIR-PF’s 10000 
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Figure 5-16: True target trajectory and the filter outputs for 10000 particles. 
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Figure 5-17: Mode probabilities of IMM-EKF. 

 

Figure 5-18: RMSE of measurements, EKF, IMM-EKF and SIR-PF for 10000 

particles. 
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Table 5-15: Simulation result. 

 Meas. EKF IMM-EKF 
SIR-PF 

(Uniform) 

Total RMSE in 
Position 

3.5564x103 1.8147x103 1.6779x103 1.5286x103 

Computation Time (s) - 0.069 0.236 1404.420 

 

Remarks:  

• Using the same CV model with two different process noise covariances in 

IMM may increase the performance compared to the EKF. Main idea is to 

adjust one model to straight flight (low process noise) and the other one to 

maneuvers (high process noise).  

• Designing two different filters and combining them under the IMM 

framework makes the whole algorithm capable to work under different 

conditions. However for a certain maneuver (for example straight flight), the 

adjusted EKF alone performs better than IMM even if the IMM includes that 

optimized filter.  Reason is that the other filters designed for different 

situations interfere and change the IMM output. In the simulation above 

EKF has an arbitrary process noise covariance ([1 0 ; 0 1]). On the other 

hand IMM includes that EKF and another EKF having a optimized process 

noise covariance ([4 0 ; 0 4]). 

• For increased number of particles, again SIR-PF works well. 

5.4.2.2 Part B 

The filters in Part A are applied to a different 3D scenario. Particle count is 5000 for 

these simulations. 



110 

 

 

-2 -1.5 -1 -0.5 0 0.5 1

x 10
4

-1

-0.5

0

0.5

1

1.5

2
x 10

4

 
True Target Trajectory and the Filter Outputs

x

 

y
True Target Trajectory

Measurements (not shown)

Way-points

IMM-EKF

EKF

SIR-PF

 

Figure 5-19: True target trajectory and the filter outputs for 5000 particles. 
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Figure 5-20: Mode probabilities of IMM-EKF. 
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Figure 5-21: RMSE of measurements, EKF, IMM-EKF and SIR-PF for 5000 

particles. 
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Table 5-16: Simulation result. 

 Meas. EKF IMM-EKF 
SIR-PF 

(Uniform) 

Total RMSE in 
Position 

1.0701x103 646.6873 590.9882 504.6776 

Computation Time (s) - 0.052 0.177 327.697 

 

5.4.3 Simulation Set 3 

5.4.3.1 Part A 

Using the 3D scenario in Simulation Set 1, EKF with CA model and IMM-EKF 

with CV and CA models are simulated. I3 is the three dimensional identity matrix. 

 

Table 5-17: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.00052 

Elevation (rad): Gaussian, σ2=0.00087 

 Range (m): Gaussian, σ2=400 

Measurement noise model 
(covariance) in the filters 

For all filters same as the actual covariance 

Process noise model 
(covariance) in the filters 

EKF: CA Model � 0.1 * I3 

IMM: CV Model � 0.01 * I3 

          CA Model �0.1 * I3 

SIR-PF: [4 0 ; 0 4] 

IMM Transition Prob. [0.9    0.1;   0.1    0.9 ] 

Time Step (s) 10 

Particle Count for SIR-PF 5000 
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Figure 5-22: True target trajectory and the filter outputs shown in 2D for 5000 

particles. 
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Figure 5-23: True target trajectory and the filter outputs shown in 3D for 5000 

particles. 
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Figure 5-24: Mode probabilities of IMM-EKF. 

 

Table 5-18: Simulation result. 

 Meas. EKF IMM-EKF SIR-PF 

Total RMSE in 
Position 

1.0922x103 714.0706 610.6748 691.8079 

Computation Time (s) - 0.040 0.136 288.619 

 

Remarks:  

• For different runs SIR-PF can perform worse than the EKF. But, IMM-EKF 

usually results in the lowest RMSE. 
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• CA model is more vulnerable to noise. During the maneuver it dominates 

the CV model as expected (Figure 5-24)  

5.4.3.2 Part B 

EKF with CV and IMM-EKF with four models (CV, CA, CCW-CT and CW-CT) 

are compared for 100 Monte Carlo Runs.  
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Figure 5-25: RMSE for the 3D scenario in 5.4.2.1 Part A. 

 

 



117 

 

Table 5-19: Simulation result. 

 Meas. EKF-CV IMM 

Total RMSE in Position   ~ 3.5285e+003 1.5090e+003 1.0410e+003 

Computation Time (s) - 0.078 0.570 

 

 

Similarly, EKF with CA and IMM-EKF with four models are compared for 100 

Monte Carlo Runs.  
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Figure 5-26: RMSE for the 3D scenario in 5.4.2.1 Part A. 
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Table 5-20: Simulation result. 

 Meas. EKF-CA IMM-EKF 

Total RMSE in Position   ~ 3.5954x103 2.5242x103 1.0117x103 

Computation Time (s) - 0.078 0.574 

 

Remarks:  

• EKF with CV model performs better than the EKF with CA model. 

Although it is expected that CA would provide improvement since it is a 

more sophisticated model, it may not be the case in practice. To be able to 

track targets having constant acceleration the acceleration increment should 

be relatively small. However acceleration can change rapidly at the 

beginning or at the end of the maneuver, causing problems for EKF with CA 

model. 

5.4.3.3 Part C 

The implemented IMM-EKF includes CV (Constant Velocity), CA (Constant 

Acceleration), CCW-CT (Counter-Clockwise Coordinated Turn) and CW-CT 

(Clockwise Coordinated Turn) models. The results of 5.4.3.2 Part B show that the 

EKF with CV model outperforms the EKF with CA model. Therefore, IMM-EKF is 

compared with EKF and SIR-PF that have CV models inside.  
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Table 5-21: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

Elevation (rad): Gaussian, σ2=0.00087 

 Range (m): Uniform on [-20, 20] 

Measurement noise model 
(covariance) in the filters 

Azimuth and Elevation: For all filters same as the 
actual covariance 

Range for EKF: Gaussian, σ2=400 

Range for IMM filters: Gaussian, σ2=400 

Range for SIR-PF: Uniform on [-20, 20] 

Process noise model 
(covariance) in the filters 

EKF: CV Model � 4 * I3 

IMM: CV Model � 0.1 * I3 

          CA Model �0.01 * I3 

          CCW-CT & CW-CT Models � 

             For acceleration components: 0.001 * I3  

             For turn rate (rad/s) component: 0.000025   

SIR-PF: 4 * I3 

IMM Transition Prob. [  0.85 0.05 0.05 0.05 ;  

   0.05 0.85 0.05 0.05 ;  

   0.05 0.05 0.85 0.05 ; 

   0.05 0.05 0.05 0.85 ]; 

Time Step (s) 5 

Particle Count for SIR-PF 5000 
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Figure 5-27: True target trajectory and the filter outputs for 5000 particles. 
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Figure 5-28: Mode probabilities of IMM-EKF. 

 

Table 5-22: Simulation result. 

 Meas. EKF IMM-EKF SIR-PF 

Total RMSE in 
Position 

3.5667x103 1.1677x103 815.8345 1.1533x103 

Computation Time (s) - 0.078 0.568 449.065 
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Remarks:  

• SIR –PF and the EKF’s performance is close in terms of RMSE. IMM-EKF 

has superiority over both of them since it also includes the coordinated turn 

(CT) models. As seen in Figure 5-28 filter can adopt itself to the mode 

changes of the target. 

• The turn rate of the true trajectory is determined according to the Equation 

(4-32). Since the linearized version of the same equation is also in the CT 

models, target state can accurately be estimated. The behavior of the IMM-

EKF under different turn rates should be investigated. In that case, 

performance improvement with respect to EKF and SIR-PF would not be 

that much. 

 

5.4.4 Simulation Set 4 

5.4.4.1 Part A 

The MM-PF described in Section 3.4.3 is compared with the EKF and IMM-EKF 

by using Trajectory 3. While EKF has the CV model, IMM-EKF and MM-PF 

include the same four state transition models: CV, CA CCW-CT and CW-CT.  
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Table 5-23: Simulation parameters. 

Noise in the measurements Azimuth (rad): Gaussian, σ2=0.0052 

Elevation (rad): Gaussian, σ2=0.000087 

 Range (m): Uniform on [-20, 20] 

Measurement noise model 
(covariance) in the filters 

Azimuth and Elevation: For all filters same as the 
actual covariance 

Range for EKF: Gaussian, σ2=400 

Range for IMM filters: Gaussian, σ2=400 

Range for MM-PF: Uniform on [-20, 20] 

Process noise model 
(covariance) in the filters 

EKF: CV Model � 4 * I3 

IMM: CV Model � 0.01 * I3 

          CA Model � 0.1 * I3 

          CCW-CT & CW-CT Models � 

             For acceleration components: 0.001 * I3  

             For turn rate (rad/s) component: 0.000025   

MM-PF: Same as IMM 

IMM & MM-PF Transition 
Probability Matrix 

[  0.85 0.05 0.05 0.05 ;  

   0.05 0.85 0.05 0.05 ;  

   0.05 0.05 0.85 0.05 ; 

   0.05 0.05 0.05 0.85 ]; 

Time Step (s) 5 

Particle Count for MM-PF 2000 
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Figure 5-29: True target trajectory and the filter outputs for 2000 particles. 
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Figure 5-30: True target velocities and the filter outputs for 2000 particles. 
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Figure 5-31: Turn rate estimate of IMM-EKF and MM-PF. 
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Figure 5-32: Mode probabilities of IMM-EKF. 
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Figure 5-33: Number of selected particles from each model of MM-PF. 
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Figure 5-34: RMSE of EKF, IMM-EKF and MM-PF’s for 2000 particles. 

 

Table 5-24: Simulation result. 

 Meas. EKF IMM-EKF MM-PF 

Total RMSE in 
Position 

3.3181x103 1.6907x103 1.1083x103 677.0086 

Computation Time (s) - 0.095 0.679 649.664 
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Remarks:  

• The adaptive structure of IMM can easily be observed from Figure 5-32. 

The mode related to the ongoing maneuver is automatically become 

dominant. Similarly MM-PF’s response can also be viewed in Figure 5-33. 

For each time step, the figure shows the ratio of the number of selected 

particles generated by each dedicated model over the total number of 

particles. Therefore, for example, during the left turn the particles drawn 

from the CCW-CT model are statistically selected more.  

• MM-PF’s performance is better than the IMM-EKF even for a lower particle 

size (2000) compared to previous simulation sets.  This improvement can 

also be observed from the mode probabilities. In MM-PF the mode 

probabilities of the true model are usually higher than the ones in IMM-

EKF. 

• The estimated turn rate in Figure 5-31 also shows that both filters recognize 

the maneuver.  

5.4.4.2 Part B 

The filters in Part A are applied to the same trajectory (Trajectory 3). In this case 

time step is 10s instead of 5s, and the RMSE results are averaged over 10 Monte 

Carlo runs. 
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Figure 5-35:  True target trajectory and the filter outputs for 2000 particles. Graph is 

for only one run in the MC simulation. 
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Figure 5-36: True target velocities and the filter outputs for 2000 particles. Graph is 

for only one run in the MC simulation. 
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Figure 5-37: Turn rate estimate of IMM-EKF and MM-PF. Graph is for only one 

run in the MC simulation. 
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Figure 5-38: Mode probabilities of IMM-EKF. 
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Figure 5-39: Number of selected particles from each model of MM-PF. 
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Figure 5-40: RMSE of EKF, IMM-EKF and MM-PF’s for 2000 particles and 10 

MC runs. 

 

Table 5-25: Simulation result. 

Avg. Values for 10 
MC runs 

Meas. EKF IMM-EKF MM-PF 

Total RMSE in 
Position 

3.8152e+003 1.8207e+003 1.1283e+003 753.0373 

Computation Time (s) - 0.048 0.359 347.888 

 

 



133 

 

Remarks:  

• Mode probabilities of the IMM-EKF (Figure 5-38) and MM-PF (Figure 

5-39) are consistent with scenario properties given in Table 5-3, indicating 

that they both work well. The marked sections in these graphs are faulty 

mode assumptions; however both filters correct themselves quickly. 

• After the Monte Carlo simulations MM-PF’s performance is better than the 

IMM-EKF at almost every step (Figure 5-40). Reasons are further discussed 

in Section 5.5.3. 

5.4.4.3 Part C 

The filters in Part A are applied to a modified version of Trajectory 1. The duration 

of the left turn is made ten times longer. Time step is again 10s. 
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Figure 5-41: Mode probabilities of IMM-EKF. 
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Figure 5-42: Number of selected particles from each model of MM-PF. 
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Figure 5-43: RMSE of EKF, IMM-EKF and MM-PF’s for 2000 particles and 10 

MC runs. 

 

Table 5-26: Simulation result. 

Avg. Values for 10 
MC runs 

Meas. EKF IMM-EKF MM-PF 

Total RMSE in 
Position 

4.2565x103 2.5899x103 1.1240x103 789.415 

Computation Time (s) - 0.115 0.851 830.343 
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Remarks:  

• MM-PF again provides an improvement in the performance. Reasons are 

further discussed in Section 5.5.3. 

5.5 Discussion 

5.5.1 Particle Distribution 

Particle filters main property is the ability to represent the distributions more 

accurately. Figure 5-44 illustrates a non-Gaussian density and its approximations in 

different filters. 

 

 

Figure 5-44: Particles representing the distribution [3]. Gaussian and non-Gaussian 

densities are shown respectively.  

 

The distribution may lose its Gaussianity after passing through a non-linearity, or its 

original distribution may be non-Gaussian. The following figures include samples 

of the posterior distributions in the simulations. In those graphs, five simulation 
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steps are shown but particle distributions are plotted for only two steps. Note that, 

the duplicated particles are not shown differently. 
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Figure 5-45: Particles from the simulation in 5.4.1.4 Part D (True Trajectory: black, 

Measurements: pink, EKF: blue, SIR-PF: red).  
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Figure 5-46: Particles from the simulation in 5.4.1.4 Part D. Gaussian range noise is 

exaggerated to show the distribution (σ2=10000) (True Trajectory: black, 

Measurements: pink, EKF: blue, SIR-PF: red). 
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Figure 5-47: Particles from the simulation in 5.4.1.4 Part D. Range noise is uniform 

and exaggerated to show the distribution ([-500, 500]) (True Trajectory: black, 

Measurements: pink, EKF: blue, SIR-PF: red). 

 

The degeneracy occurring due to model mismatch or consequent incorrect 

measurements may lead to divergence. Designer wants to use each sample in the 

approximation process for maximum computational efficiency. If a couple of 

particles start dominating the others, then the filter performance gets worse. 

Degeneracy phenomenon is shown in Figure 5-48 and Figure 5-49. The particle 

cloud in Figure 5-49 cannot properly do its function, since particles are piled into 

some regions. However the process noise may give a chance to recover. At each 

time step particles can spread out and form the desired distribution, unless more 

noisy measurements cause divergence. For the cases where the process noise is 
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small, the annealed prior distribution [3] approach may be used to broaden the 

prior. 

 

 

Figure 5-48: Particles weights with respect to time (step).  
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Figure 5-49: The degeneracy in the particles. Graph shows two consecutive steps of 

the scenario (target moves toward left). Note that, particles start to spread out due to 

the process noise. 

 

5.5.2 Number of Particles 

Particle count plays a very important role in the performance of particle filters. 

Although there is a lot of innovative way to enhance the algorithm, mostly the real 

improvement occurs with high number of particles. Therefore for many applications 

(especially real-time ones) the computational cost can make the particle filter 

infeasible.  The results of the simulation described in 5.4.1.2 Part B for different 

particle sizes are shown below (Table 5-27 and Table 5-28).  
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Table 5-27: Simulation results showing the effect of particle size. 

For 5000 particles Measurement  EKF SIR-PF 

Total RMSE in Position 3.4396x103 1.4050x103 943.4269 

Computation Time (s) - 0.067 406.02 

 

Table 5-28: Simulation results showing the effect of particle size. 

For 500 particles Measurement  EKF SIR-PF 

Total RMSE in Position 3.4724x103 1.4183x103 1.4773x103 

Computation Time (s) - 0.083 33.146 

 

5.5.3 Multiple Model Performance 

During the trials in Simulation Set 4, the mode probability graphs indicate that both 

IMM-EKF and MM-PF can detect the ongoing maneuver and switch to the proper 

model. Due to their adaptive structure the performance is usually better than a filter 

with a single model. For the nonlinear problem considered in this study, Monte 

Carlo runs clearly indicate that MM-PF give better estimation results than the IMM-

EKF. Also note that the required number of particles for a certain level of 

performance is decreased by using multiple model approach. 

In the MM-PF the particle cloud is desired to spread according to the different 

models used. An exaggerated case is shown in Figure 5-50. Although that gives the 

impression that the new state distribution has three peaks (non-Gaussian), it may 

not always be the case in the real world. Usually targets do not have discrete 

maneuver characteristics. Since they do not always turn with the same acceleration 

component ( ma± , the typical maneuver acceleration), the turn rates for the same 

speed may vary. Therefore the regions between the particle clouds (red, blue and 

green) should also include some particles. The interesting thing is that if the process 
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noise is large (particle cloud is wide) and turn rate is low, then particles generated 

by the CV, CA and CT models are mixed. For this case the overall performance 

would be close to using one particle filter. This effect can be observed from Figure 

5-39 and Figure 5-37 where the coordinated turn characteristic cannot be observed 

(CCW-CT does not dominate since the other models can also follow that 

trajectory).  
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Figure 5-50: An illustration of propagating the particles according to different state 

transition models. 

 

Particle filter can also be used as a block in the regular IMM framework. In that 

case it would be a replacement to KF or EKF, and only its output is combined with 

other filters. However MM-PF algorithm gives the opportunity to directly combine 
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the particles, which would yield more accurate results than combining only the 

estimates. 

5.5.4 Other Issues 

There are many other aspects of particle filtering that needs attention. For example 

the relative shapes of the prior and likelihood play an important role in particle filter 

design. One of them being much tighter then the other decreases the efficiency and 

filter performance. During the simulations there occurred some cases where the 

particle filter started to outperform other filters when the measurement noise 

covariance is increased. For low process noise the annealed prior distribution [3] 

approach for low measurement noise the likelihood particle filter (Section 3.3.5) 

may be preferred to make the prior and likelihood comparable. If their shapes are 

very different then the particle filter can diverge or work inefficiently. 

Although not used in this study, particle filters has a high capability of 

incorporating the system constraints. Mostly, evaluating the particle before 

resampling step is enough to satisfy the constraints. Similar things cannot be done 

that easily with Kalman filter based approaches. As an example, the elevation angle 

error covariance in this study is assumed to be very low (even lower than the 

azimuth angle error covariance) to prevent reading negative angles. However in 

particle filters unrealistic the samples can easily be rejected. This gives an 

advantage to the particle filter in terrain aided tracking applications. 

In Section 5.4.1.5 the SIR-PF with Gaussian noise assumption has higher RMSE 

values than the EKF. Considering that the noise characteristic is uniform, the 

behavior of particle filter under model mismatch needs to be examined further. 
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CHAPTER 6  

 

CONCLUSIONS 

In this thesis, the particle filters are examined using the problem of maneuvering 

target tracking via radar measurements. In order to gain insight particle filter 

algorithms are compared with classical Kalman filter based algorithms for different 

system models and scenarios. Main focus is on observing the performance 

improvement introduced by particle filtering in non-linear and non-Gaussian 

systems.  

Firstly, the basis for recursive Bayesian estimation is provided and related filtering 

techniques are presented. Throughout the years many techniques are developed to 

fight non-linear and non-Gaussian systems. EKF or IMM are examples of the most 

commonly used methods while dealing with that kind of systems. The designer 

should know each individual method’s advantages and disadvantages and select the 

proper one that suits the problem. 

After the conventional techniques, the sequential Monte Carlo methods, i.e. particle 

filters, and the theory behind are introduced. The most commonly used algorithms 

SIS-PF and SIR-PF are derived. Based on these two algorithms, the key points like 

the degeneracy phenomenon and the choice of importance density are underlined. 

Proper measures need to be taken in order to overcome the degeneracy problem and 

design a feasible and robust particle filter. Changing the structure of the particle 

filter can provide improvements, as well as the good choice of importance density 
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and resampling algorithm. Some of the important modified versions of the particle 

filter (APF, RPF, and MM-PF) are explained to provide examples.   

The most important contribution of this thesis is the application of particle filtering 

to tracking systems. To do that first the system models in target tracking are 

described. It is well known that the estimation filters’ performances depend on the 

characteristics of the model. Expressing the problem in a suitable way increases the 

resultant performance for any filtering method. In the tracking problem considered 

here different coordinate axes choices provide different advantages. Augmenting 

the state with additional parameters like accelerations or turn rate can also be useful. 

However, extra states do not guarantee better performance. As an example, the EKF 

with CA model are not as good as the EKF with CV model.   

Finally some of those algorithms and system models are realized to investigate the 

particle filters. The most important point is that particle filtering technique requires 

high processing power to achieve the promised improvement in the performance. 

But processing high number of particles does not solve all the problems.  

For the tracking problem in this study, the particle filters provide better 

performance than the Kalman filter based methods with similar modifications. The 

SIR-PF can outperform EKF but not IMM-EKF. But, when the SIR-PF is used with 

same multiple model approach, i.e. MM-PF, it can outperform IMM-EKF too. 

During the simulations, one noticeable result is that the performance improvement 

of particle filters increases with the amount of nonlinearity in the problem as 

expected. 

The degeneracy is an inevitable problem for particle filters. It not only degrades the 

performance, but also yields divergence. As explained above, increasing the number 

of particles is one way to eliminate its effects. However, properly choosing the 

importance density and modifying the algorithm according to the needs are more 

elegant and efficient precautions.  
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The prior distribution is used as the importance density for the sake of simplicity. 

Then, the resultant particles are weighted according to their likelihoods. In that case 

the relative shapes of the prior and likelihood distribution affect the performance of 

the particle filter directly. The particle filter performs well unless one of them is 

much tighter than the other.  

For sufficient number of particles, the particle filter can represent the actual non-

Gaussian posterior distribution better than the conventional Kalman filter based 

methods. However due to the degeneracy phenomenon the number of efficient 

particles tend to decrease. Resampling step is the basic way to fight with this 

problem, but the overall performance can also be improved by other methods. Using 

multiple models to express the system behavior is one of them. More realistic 

approximations of the posterior and less degeneracy can be achieved since the 

particles tend to go the more relevant areas of the state-space.  

During the implementation, the weaknesses of particle filters, like computational 

cost and degeneracy phenomenon, should be taken under control; otherwise the 

resultant performance may be worse. First the analysis of the system should be done 

and particle filters’ potential problems should be addressed. Then the proper 

modifications should be done on to the regular particle filter algorithm (SIS/SIR). 

These modifications are not only for assuring convergence but also for reducing the 

computational cost required for the same performance.  

As a future work, verifications should be done with real trajectory and measurement 

data. Different scenarios should be implemented to investigate the particle filters 

performance in model mismatched situations. According to the specific tracking 

problem here, further modifications can be done in particle filter algorithm. 

Marginalization, regularization and using other filters (EKF, UKF …) to obtain 

better importance densities are possible. 
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