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ABSTRACT

CONTROL ALLOCATION AGAINST ACTUATOR FAILURES
IN OVERACTUATED SMALL SATELLITES

Kahraman, Ozgiir
M.S, Department of Aerospace Engineering

Supervisor: Prof. Dr. Ozan Tekinalp

November 2007, 91 pages

In this thesis, attitude control of small satellites with dissimilar actuator is
studied and the effects of control allocation methods on maneuvering are examined
in detail. Magnetorquers and reaction wheels are considered as the actuators of a
modeled remote sensing -nadir pointing- small saellite. Matlab® Simulink
simulation models are devel oped to model the satellite dynamics and the actuators on
the satellite. The simulations are based on conceptual RASAT satellite, and, for
verification, orbit data istaken from BILSAT satellite that is operated by TUBITAK
Space Research Ingtitute.

Basic satellite control modes are developed and tested to obtain nominal
control. Actuator failures are analyzed for different possible cases.

A control allocation method called Blended Inverse that was originally
proposed for steering CMGs is applied to select the actuators to avoid actuator
saturation and singularity transition. The performance of traditional pseudo inverse
method is compared with the blended inverse method and simulation results are
given and discussed. The superiority of blended inverse over pseudo inverse is

demonstrated.

Keywords: Satellite Attitude Control, Actuator Failure, Control Allocation Method
iv
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ARTIK EYLEYICILI KUGCUK UYDULARDA
EYLEYIiCi ARIZALARINA KARSI KONTROL DAGITIMI

Kahraman, Ozgur
Y Uksek Lisans, Havacilik ve Uzay Mihendisligi BolUimu
Tez Yoneticisi:  Prof. Dr. Ozan Tekinalp

Kasim 2007, 91 sayfa

Bu tezde benzesmeyen eyleyicilere sahip kiigiik uydularin yonelim kontroli
calisiimis ve kontrol dagitim yéntemlerinin manevra Uzerine etkileri ayrintili olarak
incelenmistir. Ayakucu dogrultulu, uzaktan algilamali bir kicuk uydu icin, eyleyici
olarak tork cubuklari ve tepki tekerleri gdz ©Oninde bulundurulmustur. Uydu
dinamigini ve eyleyicileri modellemek icin Matlab® Simulink benzetim modelleri
gelistirilmistir. Benzetimler, kavramsal RASAT uydusu baz alinarak yapilmis ve
dogrulama icin yoriinge bilgileri, TUBITAK Uzay Teknolojileri Enstitiisii tarafindan
isletilen BILSAT uydusundan alinmistir.

Nominal kontrol saglamak icin, temel uydu kontrol kipleri gelistirilip test
edilmistir. Eyleyici hatalari mimkin olan farkl durumlar i¢cin analiz edilmistir.

Bir kontrol dagitim yontemi olan, orjinal olarak CMG yoneltimi igin
onerilmis harmanlanmis ters alma yontemi, eyleyici saturasyonunu engellemek ve
tekilliklerden kacinmak amaclyla eyleyiciler arasinda kontrol dagitimi icgin
uygulanmistir. Geleneksel sanki ters ama yontemi ile harmanlanmis ters alma
yontemi kiyaslanarak benzetim sonuclari verilmis ve tartisiimistir. Harmanlanmis

ters alma yonteminin sanki ters alma yontemi tzerindeki Gstunligu gosterilmistir.

Anahtar Kelimeler: Uydu yonelim kontrol 0, eyleyici hatasi, kontrol dagitim yontemi
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CHAPTER 1

INTRODUCTION

Attitude Determination and Control Systems (ADCS) have critical role in
Low Earth Orbit (LEO) small satellite missions. The success of the mission depends
on the capability of these systems. The ADCS systems consist of two main parts:
ADCS hardware and ADCS software.

ADCS hardware is formed by sensors and actuators. The sensors obtain the
attitude measurements for the estimation of attitude knowledge such as satellite
Euler angles, quaternions and the angular rates. Most fundamental sensors that are
used in the satellites are the magnetometers for magnetic field measurements, Sun
sensors for Sun reference, star trackers for star catalog matching and the rate gyros
for the angular measurements. All these sensors provide an attitude reference for the
attitude estimation algorithms of the ADCS software. The main purpose of the
determination algorithms is to combine the attitude measurements and estimate the
attitude through estimation algorithms such as a Kalman filter. Estimated angles and
the rates are used as feedback signals for the control system.

The actuators form the other half of the ADCS hardware. The main goa is
achieving the control objectives during the operational life such as detumbling to
point the satellite to the nadir direction and the three axis control for al the nominal
operations such as maneuvering. The hardware is composed of reaction wheels that
are used as the main control hardware in nominal mode and the magnetorquers that
are the only actuators which have the control capability during detumbling mode.
Magnetorquers are also used for desaturation of reaction wheel s when the wheels are
about to exceed their torque and momentum limits. Although control moment gyros

are used for fast maneuvers, in many satellites, they are not considered in this thesis.



Actuator failures cause unexpected control problems during operational life
of the satellite. In this thesis, reaction wheels are considered as positioned in
tetrahedral configuration for the nominal three axis control mode and all the failure
modes are composed of reaction wheel fallures. The failure detection is not
evaluated in this work and it is assumed that the failures of such components can be
detected by checking the telemetry data to be sure of the physical failure. Thus the
controller configuration is assumed to be changed manualy when the new ADCS
software is being uploaded from the ground station.

The underactuated conditions are covered in the literature by investigating
both controllability and stability issues. However in this thesis, overactuated
conditions are examined for the control allocation problem such as the control mode
with one reaction wheel and three magnetorquers and the case with two reaction
wheels and three magnetorquers. The stability conditions are proven in the literature
for these scenarios thus the basic PD control scheme is applied to achieve the attitude
control of the satellite.

The main objective of this thesis is to examine the utilization of the steering
algorithms to overcome the control allocation problem in over actuated small
satellites. In this thesis, the steering law caled the Blended Inverse, which is
proposed by Tekinalp and Yavuzoglu [5] to avoid from singularities or quick
transition from the singularity zone, isimplemented. Basic pseudo inverse method is
compared to Blended inverse method for different scenarios through simulations.

The Matlab Simulink simulation is used as a simulation environment and the
S functions are used to implement the codes that are written in both C and Matlab
programming languages. All the satellite components and the environment are
modeled to simulate the maneuvers.

In the following chapters first the satellite ssimulation model is given,
followed by the basic attitude control modes and their implementation. Chapter 4 is
devoted to the steering of overactuated small satellites with magnetorquers and
reaction wheels. Simulation results are given and discussed. Final section contains

same concluding remarks and future work.



CHAPTER 2

BUILDING A SATELLITE SSMULATION MODEL

In this section, satellite ssmulation model is presented. The model includes
attitude and orbital motion models. Earth’s magnetic field, sensor and actuator

models are also given.

2.1. Coordinate Transfor mations

Coordinate transformations between the reference frames are frequently used
for the satellite simulations. In this work, Euler angles, direction cosine matrix and

guaternions representations are used basically.

21.1. Euler Sequenceto Direction Cosine Matrix

In this thesis, the user inputs to the model for attitude requirements are
expected as Euler rotation angles sequence. Although Euler angles are not employed
in dynamic equations due their singularities, the choice of representation by Euler
sequence stems from their relatively easy visualization. 2-1-3 Euler sequence is used
which represents first a rotation around pitch axis (0), a second rotation around roll
axis (¢) and a final rotation around yaw axis (y) respectively in classical sense.
Although 3-2-1 notation is used in the flight mechanics, especially for the
geosynchronous satellites, 2-1-3 notation is used in LEO satellites. The reason for
using 2-1-3 notation is that has a physical meaning for the satellite dynamics. Pitch
axis of the satellite is perpendicular to the orbital plane and the rotation around that
axis presents the azimuth changes and the rotation around the roll axis presents the
elevation changes which are used to define the swath width of the satellite.



Center of

Gravity Pitch

X
Velocity
direction ..

Roll

Z Nadir

/Earth%

Figure 2.1 Euler Angles

Conversion from this sequence to a single 3-by-3 rotation matrix or Direction Cosine
Matrix (DCM) isasfollows;
Rotation matrices for each rotation are,

1 0 0 cosb 0 -snd
R,=|0 cosp sing R=0 1 0
0 —-sing cosd sn6 0 cosb
cosy sny O
R,=|-siny cosy O (2.1)
0 0o 1

The corresponding DCM for Euler 2-1-3 sequence will be,
DCM 3 =R, - Ry - Ry (2.2)
Substituting respective rotation matrices, we get;
cosy sny O0f |1 0 0 cosO 0 -snod
DCM,,, =|—-siny cosy O[O0 cosp sny |-l O 1 0 (2.3)
0 0 1 —sing coso | [sn6 O coso

COSy COosSO +Siny sing SiN®  siny cosp - coSy SiNB + siny sing cos
DCM ,,; =| -siny cosb + cosy sing SiN@  cosy Cosp ~ Siny SN + cosy sing cosH
sind cosd -sing cosH cos

(2.4)



2.1.2. Relation between Euler Sequence and Rotation Quaternions

An alternative way to represent a rotation is using quaternions. A gquaternion
basically stands for a vector and an angle which together correspond to a rotation

about a unit vector [ux My uzj through an angle 6.

. Un
y Rotatio Vector

-

Figure 2.2 Euler Anglesto Quaternions

A unit quaternion has unit magnitude, and can be written in the following vector

format.

dy | [ cosle/2)
sin(0/2
q= G =" ( / )Mx (25)
q2 S n(e/z)uy
qS S n(e/z)”'z
An dternative representation of a quaternion is as a complex number,
qZQO+iq1+ jQ2+kq3 (2-6)
Again quaternions are commonly used to compensate the singularities introduced by
Euler angles. The corresponding quaternion for the Euler 2-1-3 sequence can be

calculated as[1];

0=0,0,q, =[cod0/2)- j sin/2)|®[codp/2)T sir(p/2)] @ |cody /2) - Ksirty/2)]
(2.7)
Where,

k=] (2.8)



The quaternion multiplication can be restated as:
i®i=]®j=k®k=-1 (2.9)

Finaly, the four elements of the quaternion are;
dy | [coslp/2)cosl®/2)cosly /2)+sin(p/2)sin(6/2)sinly /2)
q, | _| sin(¢/2)cos(p/2)costy /2)~coslp/2)sin(8/2)sinly /2)
q. | |coslp/2)sin(8/2)cosly /2)+sin(p/2)cosB/2)sinly /2)
ds | Lcoslp/2)coslb/2)sinly /2)-sin(p/2)sin(0/2)cosly /2)

(2.10)

2.1.3. Quaternion to Direction Cosine Matrix
Rotation of a vector using quaternion algebrais given by the following relationship:
X'=q®X®q° (2.11)

where,
q=0, +i 0 + ]d, +ka,

q° =0y~ - ja, — K
X =0+TX, + JX, +kX, (2.12)
Rearranging Equation (2.11); X' can be written as follows,
0 0
Xy || (@8 +02 - 02 = 2)X, + 2(cha, — Golls )X, + 2040 + GoCly )X
Xz Z(QOQS + Q1q2)X1 + 2(q§ - q12 + CI; - Q§ )Xz + 2(Q2Q3 - CIoCh)Xs
X

L 200 — dotp )X, + 2(0oh + 00 )X, + (02 — 07 — 62 + 2 )X,
(2.13)

Then the DCM to realize this rotation can be determined by observing Equation
(2.13):

X' =

’
! =
!

(@+a?-a2-a2)  2a0, -0 2(00l; + Ao, )
DCM =| 2qo0+0,) AR -+ -4Z) 200 —%) | (214)
2(0,0, — 90, 2000+ 9,%) (02 -a2 -2 +?)



2.2. General Equations of Motion of a Satellite

2.2.1. Dynamic Equations
The attitude dynamics of the satellite can be expressed as the following formula;
lodg =—0g X 10g +T eic + Tuned T Teisurbance (2.15)
where o, is spacecraft angular rates with respect to satellite body frame, | is the

inertia matrix that is taken from BILSAT satellite, T

magneic 1S the magnetic control
torques that are generated by Magnetorquers, T, is the reaction wheel torques and

the T qubanee 1S the disturbance torques.

According to Wertz [1], dynamic and kinematic equations must be solved

simultaneously that isin general, applied torques depends on the spacecraft attitude.

2.2.2. Kinematic Equations

By using quaternion representation we can obtain the attitude kinematic equations of
the satellite [4];

01
=590~ Aaog (2.16)
where;
0 Woz  —Wgy Oy
- 0
0= ©Opz Oox  Ogy 2.17)
Doy  —Wpx 0 DOz
0o 0oy —0g 0
and,
of =0 ®o o]  :Body angular rate referenced to orbital frame. Hence
A(q) becomes;
Q4 - q3 Q2
Q3 Q4 - q1
q)= (2.18)
A( ) - qz ql q4
ql - qz - Q3



For an Earth pointing (nadir pointing) satellite, the reference angular rate of the
satelliteis orbital rate vector,
w,=[0 ~0, Of (2.19)
Therefore body angular rate referenced to orbital frame, wg can be given by
the difference between body angular rates referenced to inertial frame and the orbital
rate in body frame;
0g =05 — A, (2.20)

The angular body rates in Equation (2.19) become,

O |

Oy Oy 0
Ooy | =0y | —A—0,(t)
Ooz |z Oz |5 0

Wy Ar A Ag 0 Wy ] = ALo,(t)
=loy | —|Ar Ay Ag|-ot) [=|oy | —|—Ayo,(t) (2.21)
0, 5 [An A Ag 0 Oz |z | Ay, (1)

Finally the kinematic equationsin terms of quaternions are;

th = 05(0, - Gy — @y + Gy +Ooy -0y

G = 0.5(- 05, - Oy + gy - Gy + gy -0,

G = 0.5(0gy - Gy — 0oy -Gy + 0, -0y

Qs = 0.5(— w0y - Gy — gy -0y + 0oy - Gs) (222

where, the angular rates in body frame are;
Wox =0y + Amy(t)
Oy =0y + Ay, (t)

Oo; =05 + Aoy (t) (2.23)

2.2.3. Quaternion Error
We have to define an attitude quaternion error that is used inside the control
algorithms. The quaternion error will be the quaternion difference between the

guaternion of the satellite at a particular time and the commanded quaternion. That is

[6];



Qe Use Qs O —Oc |G
Uze | Qac s Osc — Oy | G2
Oze Qe ~Che Qac —Osc | Us
Use Osc U Qs Use JLYa (2.24)

where;

O =[O O Gw Q.| : Attitude Quaternion Error

d. :[qlc Ooc Qs q4c]T : Quaternion Command

2.3. Orbit Models

The orbit models are required to simulate the satellite position and the
velocity during the orbital motion. The SGP4 model is used in this work to generate
position information for all sensor and actuator models. Thus the position of the Sun
for Sun sensor simulation, the magnetic field model location data for the
magnetometer model and the disturbance torques are estimated from that position
and velocity value of the SGP4 propagator.

2.3.1. Orbit Model: SGP4

Our simulation model requires orbital information as an input to sub-models
that deal with the Earth’s magnetic field and gravity gradient effects on the satellite
dynamics. Additionally satellite’s orbital angular velocity is necessary information to
keep track of the nadir direction for pointing requirements. In order to fulfill these
requirements an orbit propagator needs to be implemented in the model.

There are a great number of orbit propagator models developed with various
accuracy and complexity characteristics. However, most respected propagators are
the ones developed by North American Air Defense (NORAD). Derived from the
area of interest of NORAD, these propagator models are classified as near-Earth
(with periods less than 225 minutes) and deep-space models, and there are five
accepted mathematical modelsin record. [7]

The first of these models is the Simplified General Perturbations (SGP)
developed in 1966, which uses a quadratic variation of mean anomaly with time and
model s the eccentric drag effect with a constant perigee height.
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The next model SGP4, developed in 1970, which takes a more extensive
theory on the gravitational model and atmospheric model into account. These two
models were developed for near-Earth space. There is also SDP4 model for deep-
space applications, near-Earth space model SGP8 which uses a different technique
for differential equations and its counterpart SDP8 for deep-space applications. All
these five models are compatible with NORAD two line element set. [9]

In this study, SGP4 propagator model was implemented, giving credit to its
wide spread acceptance. Accordingly, the FORTRAN implementation of the model
presented by Kelso was trandated into C-code and embedded into an s-function
SIMULINK block (Appendix). The input of this model is the initiadl NORAD two
line element set which describes satellite position and velocity together with orbital

geometry and time information.

2.3.2. NORAD Two Line Element Set

NORAD two line element set data for a satellite consists of three lines in the
following format [9]:

Table 2.1 Two Line Element Set Format

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN
+NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN
NNN.NNNN NN.NNNNNNNNNNNNNN

Line O isatwenty-four character name, and Lines 1 and 2 are the standard Two-Line
Orbital Element Set Format used by NORAD and NASA. The format descriptioniis:
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Table 2.2 Two Line Element Set Format Descriptions

Linel

Column Description

01 Line Number of Element Data

03-07 Satellite Number

08 Classification (U=Unclassified)

10-11 International Designator (Last two digits of launch year)
12-14 International Designator (Launch number of the year)
15-17 International Designator (Piece of the launch)

19-20 Epoch Year (Last two digits of year)

21-32 Epoch (Day of the year and fractional portion of the day)
34-43 First Time Derivative of the Mean Motion

45-52 Second Time Derivative of Mean Motion (decimal point assumed)
54-61 BSTAR drag term (decimal point assumed)

63 Ephemeristype

65-68 Element number

69 Checksum (Modulo 10)

Line2

Column Description

01 Line Number of Element Data

03-07 Satellite Number

09-16 Inclination [Degrees|

18-25 Right Ascension of the Ascending Node [ Degrees]
27-33 Eccentricity (decimal point assumed)

35-42 Argument of Perigee [Degrees)

44-51 Mean Anomaly [Degrees)

53-63 Mean Motion [Revs per day]

64-68 Revolution number at epoch [Revs|

69 Checksum (Modulo 10)
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For the model BILSAT’s orbital parameters for a particular time were used as
the initial inputs to the SGP4 model. The two line element set for BILSAT on 23
May 2005, 06:30:55 isasfollows;

Table 2.3 BILSAT Satellite Example TLE Set

BILSAT 1
127943V 03042E 05143.27147421 .00000100 00000-0 28805-4 0 7980
2 27943 098.1351 034.3744 0012522 125.8067 234.4294 14.62716601 88299

In this respect, the SGP4 model inputs are listed below;
» BStarDragTerm=0.28805e-4 (Ballistic Coefficient)
= Inclination=098.1351
= RAAN=034.3744
= Eccentricity=0.0012522
»  ArgumentOfPerigee=125.8067
»  MeanAnomaly=234.4294
» RevolutionPerDay=14.62716601

2.3.3. Magnetic Field Model: IGRF

Earth’s magnetic field information is required to determine the magnetic
torques (disturbances) affecting the satellite and more importantly for the simulation
of the magnetorquers. As explained in the following parts, the order of the magnetic
disturbances on the satellite is negligible.

The magnetic field must be measured by sensors or estimated by employing a
field model in order to control the magnetorquers and model magnetorquer
dynamics. Magnetic field vector can be measured in real time by a magnetometer.
However, sensor requirements and dynamics are not considered for the control
modes.
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As a basic approximation, Earth’s magnetic field can be modeled with the
magnetic field of a sphere uniformly magnetized in the direction of a dipole axis. In
this smple model, the dipole axis goes through the center of the Earth, and is offset
from the rotational axis by 11.3°. This simple approximation can lead to errors as
great as 30% in some locations. On the other hand, the error can be reduced to 10%
by displacing the dipole axis about 400 km towards the western Pacific from the
center of the Earth [1]. For the dipole model, the geomagnetic induction vector is,

(2.25)

1: Dipole Axis

2 . Geomagnetic
Equator

3: Earth’s
Rotation

Figure 2.3 Earth’s Magnetic Field Dipole Model

On the other hand, the magnetic field shows a variance over the Earth surface
as depicted in Figure 2.4. At the sea level, the field is horizontal and the field
strength is about 30 uT at the equator, while it becomes vertical with field strength
of 60 uT around the poles. The magnetic field also varies over time in an

unpredictable manner due to inner dynamics of Earth’s core.
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Units: nTiyr Units (annual change): nT/yr
Contour Interval: 200 nT Contour Interval: 10nTiyr
Map Projection: Mollweide Map Projection. Mollweide

Figure 2.4 Magnitude of the Earth’s Magnetic Field

The International Geomagnetic Reference Field (IGRF) model is developed
by the International Association of Geomagnetism and Aeronomy (IAGA) [3]. The
IGRF model gives useful approximations on the Earth’s surface and up to a certain
altitude where the Earth’s magnetic field is still the dominant field. The IGRF is a
series of mathematical models of the Earth's main field and its annual rate of change.
At any one time, the IGRF specifies the numerical coefficients of a truncated
spherical harmonic series. At present the truncation is at n=13, so there are 195
coefficients. The IGRF model is specified every 5 years, for epochs 1900, 1905 etc.
The latest IGRF model specified is thus the IGRF 2005, which is implemented in
this study.

The magnetic field is the negative gradient of a scalar potential V which can
be represented by the truncated series expansion:

V(0.0 = RS (D3 (@) cosmi. + AT (0)snmi)PI©)  (2.26)
n=1 m=0

where r, 6, A are geocentric coordinates (r is the distance from the centre of
the Earth, 0 is the colatitude, i.e. 90° - latitude, and A is the longitude), R is a

reference radius (6371.2 km); g,'(t)and h.(t) are the coefficients at time t and
P’ () are the Schmidt semi-normalized associated Legendre functions of degree n

and order m. The main field coefficients are functions of time and for the |IGRF the
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change is assumed to be linear over five-year intervals. The Matlab code for the
model which provides the field direction and strength for a given time and location is

presented in Appendix.
2.3.4. Disturbances

2.34.1. Gravity Gradient Torque

Earth’s gravitational force over a satellite varies during the orbit and presents
disturbing moments on the satellite. If we consider the general situation, satellite can
be assumed as a nonsymmetrical object of finite dimensions. In redlity there is no
uniform gravitational field and the gravitational torque varies during the orbit.
However, for the sake of simplicity a spherical Earth is assumed. In addition, the
moment of inertia tensor is known for an arbitrary reference frame. For a unit mass

element of satellitedm , which is located in R distance from the geometric center,

the acting gravitational force dF, can be defined as; [1]

dF - ZHRIM. 2.27)
i RS

Where 11 = GM = 3.986005 x10% n%z .

The torque about the geometric center can also be defined at r; distance from the

geocenter as;
dN, =1, xdF, =(p +r1)xdF, (2.28)

p o Body Reference Frame
Center of Mass i .

»

RS

Ri

Figure 2.5 Torque about the Geometric Center

By integrating (2.28), the gravity gradient torque can be obtained as,
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Nos = [, xdF, = [(p +1) % _“F;L'sdm (2:29)

Therelation between R and R; is,

R=Rs+r=Rg+p+r1 (2.30)

For an artificial satelliteR = Rg + p +r1'>> p +1". Therefore;

R —(RR) = {RSZ[H 2R(p+1)) (p+ r;)T} * @23

R’ R’
By Using Binomial Expansion;
R~ Rs{l— w} (2.32)
R
If we define M as the total mass of the satellite the gravity gradient torque

can be rewritten as;
uM
RSZ

By the definition of the center of the massjri’dmi =0. Assuming the

NGG =

(R p)+% [ % Ro)( R )dm (2.39

geometric center and the center of mass are at the same point, p will be equal to zero,
p=0. By these assumptions the gravity gradient torque can finally be written with
respect to moment of inertia tensor as[1];

A 3u - A

o == [Rox(1.R)] (2.38

RTH

Iis vector is aways in nadir direction and instead of Iis we can use Z, nadir

unit vector in body coordinates,

I
2o:[Als Ay %S]T =11y v Iy
2
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34 A I Ty Ixe A&a_
= R 3 Ag x( 1w Tw vz [{AS)
EARTH Ag lx 1z Iz A33_

A 3 A IXXA13+IXYA23+IXZA33_
Ngs = R 3 Ap x| Ty A+ Ty A+ 1 Ag (2.35)
EARTH Ag I o Az + 1y A + 1 2 Ags |

For cross product we can use the Dyad notation;

0 -A; A,
Zo=[As As Al Z,=|-As 0 -—A, (2.36)
- Azs A13 0

Finally the gravity gradient torque acting on the satellite in matrix formiis;

0 _Ass Aza IxxA13+|><YA23+|sz33
NGG = 3 - A 0 A || T Az + Ty Ap + 1 A (2.37)
REARTH _A23 A13 0 IZXA13+IZYA23+IZZA33

2.3.4.2. Magnetic Torque
The magnetic torque acting on the satellite is ssmply the cross product of the

satellites magnetic field and the Earth’s magnetic field. The satellites magnetic field
is composed of the magnetic dipole vectors of the control magnetorquers and other
magnetic disturbances in the satellite. The magnetic disturbance torques is ignored,
as they are negligibly small with respect to the other major torques affecting the
satellite,

2.3.4.3. Other Disturbance Torques

There is also a number of other disturbance torques acting on the satellite.
Following are the relatively important disturbances; however they are negligible for
applications similar to the one considered here and they are all ignored in our model.

» Thetidal forces created by the earth-moon system creating gravity

torques,

= Torques due to solar wind and electromagnetic particles, thus solar

pressure,
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= Atmospheric drag for LEO satellites,
» Magnetic toques generated by the electric components on board the
satellite.

2.4. Sensor Modeling
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Figure 2.6 Sensor Models Simulink Diagram

The attitude information can be obtained from sensors such as
magnetometers, Sun sensors and star trackers. In this thesis, magnetometer model
which use the IGRF 2005 magnetic field model is modeled to acquire the attitude
rates of the satellite during the detumbling mode. Magnetometer measurements are
used for the rate filter block during the detumbling phase. Sun sensors are modeled
to obtain the azimuth and elevation angles and transformed into attitude angles.
However, the measurement data that is generated by the sensor models are not used
for the rate estimation during the control modes and the theoretical angular rate that

is produced from the satellite dynamics simulator block is used for the maneuvers.

24.1. Magnetometer Modeling

The IGRF model that is examined section 2.3.3 is used for generating the
magnetometer outputs. The approximate magnetic field model that is a smplified
dipole moddl of Earth Magnetic field is also usable to compare the results with the
IGRF model. The Figure 2.7 shows the results of dipole model that use just one
harmonic coefficient. As it seen from the Figure 2.8, IGRF model use Greenwich
Mean Sidereal Time value, the radius vector of the satellite and the IGRF model
epoch time. Normalized values of magnetic field are also used for the usage of

controllers as it seen from Figure 2.10. The noise is added to the magnetic field
18



vector that is estimated in ECI frame to simulate the real magnetometer data for the
convenience. The magnetic field components in ECI and ECEF frames can be seen

from the Figures 2.11t0 2.12. 3 uT noiseis considered for the magnetometers.
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Figure 2.7 Magnetometer Model Simulink Model
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Figure 2.11 Magnetic Field Vector wrt ECEF Frame
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Figure 2.12 Magnetic Field Vector wrt ECI Frame
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2.4.2. Sun Sensor Modeling

Figure 2.13 Satrec Initiative FSS_05 Analog Sun Sensor

In this thesis, Satrec Initiative Sun Sensor FSS-05 is based for modeling. The
main characteristics of these sensors are given in Table 2.4. Sun Sensors provide
more accurate attitude measurements than the magnetometers. The only period that it
can not be used is the eclipse phase. In most cases, the Star Trackers are not used
apart from the imaging periods and the Sun Sensors are the most accurate sensors for
approximately 1 hour of the 97 minutes Sun synchronous orbit. In this work, Sun
sensor simulation blocks generate azimuth and elevation signals of the Sun wrt their

own reference frame just like the real case. [10]

Table 2.4 Satrec Initiative FSS-05 Sun Sensor Specifications [10]

Sensor Type | 2 axis Analog Sun Sensor

Field of view | £60° (each axis)
Accuracy 0.5° (after calibration)
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2.4.2.1. Sun Position Vector Estimation

Sun position vector is estimated by using Julian Century input, wrt ECI
(Earth Centered Inertial Frame). For the simulation, “Simulation Manager” block
provides al the necessary data for all other blocks such as Julian Century. After the
beginning of simulation from a definite epoch time, the time is propagated and Julian
Century is estimated wrt this information. Vallado’s algorithm is used for estimation
of Sun position vector. [8]. The results that are obtained from that algorithm are
checked by the STK® software.

2.4.2.2. Transformation of Sun Position Vector to Satellite Body Frame
The position vector of the Sun is needed in satellite body frame for

convenience. After the estimation of the Sun vector wrt ECI (Earth Centered Inertial
Frame), this vector is transformed to the ECEF (Earth Centered Earth Fixed Frame).
The ECEF components are then transformed to Satellite Body frame. The final step
isto transform the position vector into sensor frames so that it is possible to simulate

each Sun sensor signal separately.

2.4.2.3. Eclipse Times Estimation

The eclipse times are estimated by using Satellite’s position vector and Sun
Position vector. Sun sensor measurements are simulated as “not available” during
eclipse period. Apart from the satellite eclipse, the regions where the Sun Vector is
not available for some sensors is simulated in Sun Sensor blocks. The eclipse flag
which defines the eclipse period is given in Figure 2.16.

24.2.4. Sun Sensor Simulators

Sun Sensor simulator blocks simply generate the azimuth and elevation
signals from the necessary inputs. They contain all the characteristics of the Sun
sensors such as the orientation information, physical structure, field of view limits
and noise levels.

2.4.25. Installation Matrix of the sensors

Installation matrix consist of the angles of direction cosine matrix which

defines a transformation between Satellite body frame and each sensor frames. There
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are two conditions for the installation matrix: the ideal case in which angles are
desired installation values and the real case which involves the integration errors.
The angels of the real case are determined by the sensitive measurement apparatus.
The coordinate system of each sensor is designated from this definition: The
axis which is perpendicular to the measurement plane is +X, the axis which lies from
azimuth slit’s long edge to the elevation slit is +Y and the axis which could aso be
found from the right hand rule and lies in azimuth dlit long edge to the down of the

sensor isdefined as +Z axis.

2.4.2.6. Sensor limitsand Field of Views

There exist four Sun sensor on the Satellite. Sun sensor limit parameter
defines the field of view of each sensor for the limit values. Unfortunately these
values are not accurate enough in near the boundary regions. Because of that
situation, the sensor limits are defined with field of view parameter. For instance the
limit values of Bilsat’s Sun sensor are given as 60 degrees but effectively these

sensors obtain 55 degrees field of view.

242.7. Sensor blocks

Every Sun sensor model is evaluated from the same algorithm. The only
difference between each sensor is their installation matrices. In Matlab ssimulation,
the agorithm that exists in S function form, transforms the Sun position vector
components into sensor frame components by using installation matrices with the
order of “3-2-1” sequence. By using the Sun vector components azimuth and

elevation values are estimated from the equation 2.38.

Azimuth = (180\11)-atan(R, \ R, )
Elevation = (180\IT)-atan(- R, \ Ry ) (2.38)

For the next step, the estimated values are checked whether they are inside
the sensor field of views or not. The reason for that is, even the satellite is not in
eclipse phase some sensors may not be inside the Sun’s field of view because of the

geometric constraints of the sensors.
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Inreal case, al the analog sensors on the satellite are connected to the ADCS
board. ADCS board communicates with the OBC (Onboard Computer). All Sun
sensors on Bilsat provide 4 measurement signals. Sensors are physically composed
of two diagonally symmetric triangle CCDs for each dlit. The 2 CCDs under the
azimuth slit generates the “Azimuth A” and “Azimuth B” channel signals. Likewise,
2 CCDs under the elevation slit generates “Elevation A” and “Elevation B” channel
signals. In simulation mode, azimuth and elevation signals are converted into
azimuth A&B and elevation A&B signals for creating a real case condition. Thus,
the signal that is obtained from the Sun sensors in real case and the simulation case

can be compared for the convenience.

2.4.2.8. Smulation Results

The Simulink block of the Sun sensor simulation is shown in Figure 2.14.
The signals obtained from the Sun sensor simulator blocks are compared with the
real sensor data and the simulation is verified. However, the sensor data does not
give a clear physical understanding for simulation purposes. Thus, the results of
Flight code simulator that are the elevation and azimuth angles are used. Flight code
simulator consists of a Sun sensor head selection algorithm so that azimuth and
elevation angle of the Sun is estimated from the appropriate Sun sensor by
considering the field of view of each sensor. The azimuth and the elevation angles
that is obtained from the beginning of the simulation epoch, is given in Figure 2.15.
Selected Sun sensor heads is shown in Figure 2.17.
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Figure 2.17 Selected Sun sensor heads for estimation
2.5. Actuator Modeling

25.1. Magnetorquer Modeling
In this thesis, SSTL magnetorquer MTR-10 is based for modeling. The main
characteristics of the magnetorquer are given in Table 2.5 [11]. Magnetorquer
consist of two coils per each which could be energized together or alone. The main

purposes of this are redundancy and extension of the generated torque level.
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Table2.5 MTR 10 Magnetometer Specifications [11]

Magnetic Moment + 6.24Am2 @ 100mA + 3¥2% ( 2 coilsactive)
Scale Factor 0.062.4 Am?/mA + 1%
Linearity +5% (Range: +130mA )
Residual Magnetic Moment | <+ 0.1Am?
10 An?? Drive Current 100mA £ 1.5% @ 5Anv
Temperature >500 @-30°C
<80Q @+25°C
Inductance <l6mH@25°C
|solation >10"Q @50 Volts
Weight 500 + 10 grams

In design process using magnetorquers, the current or generally speaking
power consumption is the key parameter from ADCS hardware point of view.
Related with the current, the resistances of the coils are chosen according to desired
torque. In dynamic perspective, magnetic moment parameter describes the torque
potential of the magnetorquer and it represents the control capacity. The magnetic
moment is calculated from the current and the scale factor parameters as in equation
2.39.

M=1,xS (2.39)
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Figure 2.18 MTR 10 Magnetorquer

As it seen from equation 2.39, the magnetic moment is proportiona to the
control torque of the magnetorquer. This linear relation is valid up to 6.2 Am?. The
torque that is obtained from the magnetorquer can be increased beyond this range but

anonlinear relation exists.

For a detailed model, temperature effect to the coil resistance and the drive
voltage may be taken into account when calculating the exact value of magnetic

moment. [11]

V x Sx1000

R+(T+2O)><A—R
AT

M =min| (I x S),( (2.40)

M magnetic moment (Amg2)

current (mA)

scale factor (Am?/ mA)
voltage (V)

resistance @ 20°C
temperature of the coil (°C)

- 0 < »;

ARIAT resistance change rate wrt temperature change
rate (Q/°C)
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The torque that is generated by the magnetorquer is dependant of Earth’s
Geomagnetic Field which changes over the orbit of the satellite. In this thesis, IGRF
model is used to simulate the magnetic field of the Earth during the orbit. From the
average values of the magnetic field vector the maximum expected magnetic field
value, in the Sun synchronous orbit of 686 km, is48 uT . The generated, | GRF based
magnetic field components for the nominal mode of the satellite is given in Figure
2.8. The maximum magnetic moment that can be generated by the magnetorquer is
limited to 5 Am?. The torque during the orbit is then calculated as in equation 2.41.

N, =mxB (2.41)

[Nm] = [A.m?].[Tesla]= [A.m?].[weber / m?] = [A].[V.5] = [Watt.s|=[N.m]

The maximum torque that can be obtained from the magnetorquer is 2.4* 10™* Nm

over the poles at a 98° inclined orbit.

In real case the magnetorquer is a magnetic moment generator. The generated
magnetic moment is proportional to the current. In pulse width modulation the driver
voltage and the applied current are constant. The only parameter that is changed by
the ADCS hardware is the time fraction. Magnetic moment is calculated by the
ADCS software and corresponding time fraction value is sent to the ADCS
hardware. The symmetric pulse width modulation is fulfilled by the software that is
embedded into ADCS module and the current direction is defined by that software.

In simulation mode, the magnetorquer is modeled as a magnetic moment
generator which forms first order delay by using an exponential function. The
magnetorquer controllers that are used in the simulation generate continuous
magnetic moment signals. In real case the delay of current is shown in Figure 2.20
and the delay function of the current is given in equation 2.42.
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Figure 2.19 Magnetorquer Simulink Model

Same approach can be used for the magnetic moment that is proportional
with the current and the magnetorquer forms an exponential delay in magnetic

moment. The delay function is given in equation 2.42.

(2.42)

r commanded

[tsim-Tsample]
MTYE = MTY, +MTEL s — MTA o ]{1—e T }

The time constant of the exponentia function is calculated from the physical
system properties that are defined as inductance over resistance of the coil. For the

simulation model inductance is used as 1.64mH and the resistance is 50.6 ohm [11].
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Magnetic Morment with Delay Effect (Am®)

Time [sec)

Figure 2.20 Magnetorquer Effect

= 0.32s (2.43)

The figure shows the time delay effect of commanded step signal so the
magnetic moment values are not the values used in real simulation. The figure only

represents the exponential delay to model the magnetorquer response.
2.5.2. Reaction Wheel Modeling

25.2.1. Reaction Wheel Configuration

In order to compose a simple control system, it is possible to use three
reaction wheels orthogonally located in the satellite where each rotation axis is
aligned with one of the satellite body axis. Although this simple scheme is good

enough to control the satellite, in a condition such as a single wheel malfunction, 3-
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axis control of the satellite will not be available. For this reason a fourth wheel is
usually added to the system in a tetrahedral configuration. Thus redundancy is
obtained by using the fourth wheel. [12]

Figure 2.21 Reaction Wheel Configuration

Another advantage of the tetrahedral configuration is the chance to produce
in a direction normal to any face of the tetrahedral, twice the amount of torque that
can be produced in orthogonal configuration. This is achieved by increasing the spin
rate of three of the wheels in the same direction while decelerating the fourth wheel
(or accelerating in the opposite direction and vice versa). From the geometry, the
torque generated by three wheels will be in the same direction with the fourth wheel

axis.

perspective view bottom view side view

Figure 2.22 Sideviews[2]
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TOP VIEW

Figure 2.23 Tetrahedral Geometry [2]

The angular momentum of the wheels and the torque generated must be
projected from the tetrahedral frame to the orthogonal frame of the satellite in order
to be included in the equations. As it is seen in Figure 2.22, from the different
perspectives of views there are two main characteristic angles that defines the
tetrahedron. Firstly, if we check the bottom view, the projection is equilateral

triangle and angle between any side and the direction that connects the center with a
corner of thissideis 30°. Angle between bottom plane and the center of tetrahedron
is ¢ =19.4712°. If we assume an orthogonal reference frame center of which

coincide with the tetrahedral reference frame, we can define a transformation matrix
between the tetrahedral axes and the orthogonal axes by using the angles between

them.

A

Axis—X

= OT, + OT, + 0.8165T, — 0.8165T,

A~

T ey =T, —0.3333T, — 0.3333T, — 0.3333T, (2.44)

A

T sz = OT, +0.9428T, — 0.4714T, — 0.4714T,

- T
s X 0 0 0.8165 -0.8165 Tl
. . |=/1 -03333 -0.3333 -0.3333] 2 (2.45)
AAXIS Y T
i 0 09428 -0.4714 -0.4714 T3

4
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Here, the transformation matrix between the tetrahedral frame and orthogonal

frame, A, , is not a square matrix and can not be inverted using classical methods.

Therefore, an optimization criterion must be assumed to construct the inverse matrix.

If we define the Hamiltonian H as the norm of the T vector according to Wertz [1];

Also;
Taiex =T —T,
Tiey =T,-T,
Triey =T +T,+T,+T,

defining g for simplification;
0, =T, — T —Tris x

9, =T, =T, = Taisy

A~

93 =T+T,+T3+T, —Tass »
so that the Lagrangian is;
L=H+A0, +2,0, +A;0,+A,0,
The conditions for minimizing the H are;
aa?L=2E+kl+k3 =0

1

i=2-|—2+7\,2+7u3=0
oT,
i:2T3—k1+k3=0
oty
i:zn—xﬁxs:o
oT,

By the derivation of the final situation:
AT=T,-T,+T,-T,

After the optimization the new transformation matrix is,
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(2.47)

(2.48

(2.49)

(2.50)

(2.51)



T, 0 0 0.8165 -0.8165|T,

Axis—X
Taioy || 1 —03333 -03333 -03333|T, (252)
ez 0 009428 -04714 -04714|T,
0 -1 1 1 1 T,
So the inverse matrix could be found easily as;
T, 0 1499 0 0499 T,
T,| 1 O 05 07071 05 | T,., (259
T,| 2| 06124 05 -0353 05 |T,., '
T, -06124 05 -03536 05 | 0

Pseudo Inverse may also be used to obtain the same result :

T, 0 0.75 0 .

T, 0 ~-025 0.7071 | %
T, 0.6124 -0.25 -0.3536 "
T,| |-06124 -025 -0.3536[ ~°7

>

>

25.2.2. Reaction Whedel Model

The angular momentum, h, and relevant torque, h, of a rigid body with an
inertia tensor of I, spinning at arate o , is given by;
h=lw h=1o (2.54)
A reaction wheel is basically arigid disc spun by an electric motor. Thus the
angular acceleration of a reaction wheel is proportional to the current, i, driving the
electric motor. Then the relevant torque of the reaction wheel can be determined as:
®oci Then,
hocl -i or hoc | -u(t) (2.55)
Where u(t) istheinput.
Integrating the relation in Equation (2.55) and taking Laplace transform, the
transfer function of areaction wheel will be in the form of,

TFey = L([ | «u(t)): Ig u(s) (2.56)

Furthermore, the response of the electric motor, R, (S), together with

internal friction torques must be taken into account:
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TFaw = Riotor (S)-(Ig U(S)j (2.57)

The response of the electric motor, R, (S), was obtained using the discrete
model the developed for the reaction wheels onboard BILSAT which gives the

torque generated, to a given angular momentum as input;

24z-21
=

Finally, taking angular momentum as input to Equation (2.57) and, including

TF (2.58)

Equation (2.58), the model for a single reaction wheel is given in Figure 2.24. The

reaction wheels are assumed to be controlled with angular momentum inputs.

Wheel Tarque
2 45403 1
D » w L
Href EaleylD heel Angular

Integrator

Transfer Fcn Mamentum

Figure 2.24 SIMULINK Reaction Wheel Model

Next step is to control the momentum and torque of the wheel so as to avoid
momentum and torque saturation to generate torque continuously. For this purpose,
two saturation blocks were added to the model. Additionally, the difference between
the torque required and the torque available to the wheel, and the difference between
the angular momentum required and the angular momentum available to the wheel

are fed back in a Proportional-Derivative (PD) control manner.
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Figure 2.25 Reaction Wheel Model with Saturation Control

Using the transformation matrices found in Equations 2.52 and 2.53, the
model for the reaction wheel configuration becomes;

Wheal Torque
Href J
| Angular Momentum
R bdadeld
Huhzel Huuheel
Href Inverse
Huheal Transform
Rl hdadelZ LEL (S
Transform Huhzel
ht atriz Href
MHuwheael —
Rl Madel3
HNiuheel
Huhzel Inwerse
Href Transform
Muwhieel bl atrize?
Rl hdadeld

Figure 2.26 Model For the Reaction Wheel Configuration
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CHAPTER 3

BASIC ATTITUDE CONTROL MODES

In this section two basic control modes are presented. The first one is the
detumbling control using magnetorquers. The other one is the nomina three-axis
control through reaction wheels. The desaturation of the reaction wheels is also

presented.

3.1. Detumbling Control Mode

After the satellite is separated from the launch capsule, the satellite is almost
always a tumbling object in its particular orbit. First, the flight computer boots up
and all the necessary functions such as ADCS task begins to work and satellite is
brought under control. The first control mode that is activated in the satellite is the
detumbling control mode that tries to stop the tumbling motion. In this mode only
the magnetometer measurements are used for the attitude rates and magnetorquers
are used as actuators. The main purpose is to put the satellite in locked rotation
around the Earth. The attitude estimation is not very accurate because of the
inaccuracy of the IGRF model and the magnetometer measurements.

Although the satellite has 3 magnetorquers, only Y axis magnetorquer is used
to damp the angular rate around X and Z axis. After the detumbling mode the

satellite Y axis spin rate is controlled for the nadir pointing attitude.

3.1.1. B-dot Control

B-dot controller is the most common control algorithms used to stabilize
spacecraft with magnetorquers [13]. The main goal is to activate a magnetorquer to
damp out the other orthogonal axes angular velocities (X and Z axes in this case).

The law can be described as:
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M, =-K,-B

(3.1
Where K, a positive controller gain is B is magnetic field i-component
vector in the body coordinate system of the satellite. According to Yoshi [13], BI

stands change rate of the i"™ component of magnetic field vector with the time and
with respect to body axis coordinate system.” The negative sign is to generate a

rotation in the opposite direction. In this thesis the same approximation is made for
the B asthe Yoshi [13] which definesthe B, as the difference between the magnetic

field vector component in firing magnetorquer axis over time interval:
Bi,k - Bi,k—l

B. =~
Lk At

(3.2)

Where Atis the sampling period. For more exact approximation following

smoothing may be applied[13].
§i,k =(1-9) Bi,k + S§i,k—l (3.3

Where B is smoothed measurement and sisin the range of 0<s<1.Inour
simulation s is taken as “0.9”.

Wisniewski et a [14], describe B-dot controller principle as
minimizing the derivative of the magnetic field vector measured by a magnetometer.
The controller generates a dipole moment that is perpendicular to the magnetic field.
Without using any cross product, B-dot controller tries to minimize changes in the
magnetic field that is caused by the spacecraft rotation and the reason is that the
derivative of the magnetic field is perpendicular to the field vector. [13]

3.1.2. Stability of the B-dot controller
Y oshi [13] proves the Lyapunov stability of the B-dot controller by assuming
the time derivative of magnetic field vector as a negligible quantity or satellite
tumbling rate is “larger than the rotation rate of the Earth magnetic field vector in

some inertial frame”. This assumption can be asserted as:

[@j =%—038| xB~—-@y xB (3.4
B
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The change in rotational kinetic energy derivative may be written as [13]
T =10y B (3.5)

By using cross product control law derivative of rotational kinetic energy can be
rephrased as;

If the control input is chosen as T, — M = —KB then the time derivative

control

of rotational kinetic energy isgiven as[13]:
t=—K[8 <0 (37

Since, the equation 3.7 is negative definite, Wisniewski et a [14], the energy
is dissipated from the system in detumbling mode. The rate of energy dissipation is
determined by the gain, K.

3.1.3. Simulation Model for B-dot Controller

@ = lhsgbs
B
i PeftuEgObs _prew Goto
) i B_dot w1
Unit Delay : 10s
1z Pe{rtag bz _prev_prev B_dot
Unit Delay? @ 10s i Bdotdot
(103 ol b_dat_filter
Gatod
Sample Time (=) : dt
[0.2] ' []
B_dotdot
Beta Angle . B_dotdot ———
Smoother Gain: & E—— L
—— M| B_detdet_in

[0 00 00] Embedded
MATLAB Function

¥

IC: B_dot

[00 00 00]

h

IC: B_dot2

Figure 3.1 B-dot Estimator Simulink Diagram



In Figure 3.1 it is seen that, the detumbling object is being controlled to
desired attitude after one day period. The time is constrained with the capacity of
magnetorquers and in this case BILSAT magnetorquer which has 6.2 Am? magnetic
moment capacity is used in the simulation. The magnetic moment that is commanded
by the controller for the magnetorquer model is shown in Figure 3.2. The Simulink
diagram of the B-dot controller is given in Figure 3.5.

The initial value of the satellite tumbling rate is 0.1 radian per second in each
axis. Theinitia attitude is taken as “0” degrees in each axis also. The Euler rates wrt
satellite body frame are less than 0.005 deg/sec. As it seen from the Figure 3.2, Y
magnetorquer is capable of controlling the satellite tumbling rates. Because of the
cross coupling elements of the inertia matrix, the body angular ratesin all three axes
are reduced. The Y magnetorquer can only damp out the X and Z axissoa'Y spin
controller is needed for the desired nadir point up (i.e. Locked Rotation).

The magnetic torque generated by the magnetorquers is obtained by the
interaction of magnetorquer dipole with the Earth’s magnetic field. By implementing
the basic cross product law the torque in satellite body coordinate frame can be seen
in Figure 3.3. K, Control gain istaken as 10.

The magnetic moments that are generated from magnetorquers and the

torques applied to the satellite are shown in Figure 3.3 and 3.4.
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Figure 3.2 Attitude rates of the satellite during detumbling mode
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Figure 3.4 Torques generated by magnetorquers
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3.2. Nominal Control Mode: 3 Axis Attitude Control

As illustrated in Figure 3.1, the attitude control problem requires the control
of the reaction wheels to steer the satellite to the desired attitude.

Given the fact that quaternions have no geometric singularity, the satellite
kinematics is commonly implemented in quaternions and also used in thisthesis. The
attitude error is defined as the difference between the desired attitude and the current
attitude, again with respect to orbital frame due to mission requirements.

Reference [15] suggests three quaternion feedback control laws, which are
proved in terms of closed loop stability for 3-axis control using the Lyapunov
stability theorem. These control laws are;

Orbit . Satellite
Propagator e " Attitude
Satellite
Environment Dynamics
Model (IGRF) e
A
Actuator Desired
(Reaction Wheels) | Controller ¢ Attitude

Figure 3.6 Attitude Control through Reaction Wheels

Tcontrol = _quvec_Kd(Berr

T qvec =

Tcontrol Z_Kp qj,e _Kdo‘)err

fcontrol = _S'gn(qu)quvec_Kd(Berr (38)

Where;

K,andK,: the appropriate gains of the control laws
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o4, . thedifference between commanded angular velocity and estimated angular

velocity wrt body fixed frame of the satellite.
And g, and q,are:

qerr :[qle q2e qSe q4e] (39)

qvec = [qle q2e q3e] (310)

In this model the control law given in Equation (3.8) is employed for its
simplicity, which is simply a proportional plus derivative (PD) control since gand
o are related. Angular momentum output of the controller is;

Tootrol = —KpOee — KOy (3.11)

The resulting SIMULINK Block for the reaction wheel controller is
presented in Figure 3.7.

: e Il e

Mzat Integrator

Figure 3.7 Reaction Wheel PD Controller

If we examine the two parts of a PD controller; a proportional controller
(Kp) has the effect of reducing the rise time and will reduce but never eliminate, the
steady-state error. A derivative control (K, ) has the effect of increasing the stability
of the system, reducing the overshoot, and improving the transient response. Effects
of each of controllersK,, and K, on a closed-loop system are summarized in Table

(3.1), however these coefficients are coupled in the controller and change in one
coefficient will also alter the other coefficients effects.
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Table 3.1 PD Control Strategy

System o _ _ Steady State
Rise Time Overshoot Settling Time

Response Error

Kp Decrease Increase Small Change | Decrease

Kd Small Change | Decrease Decrease Small Change

3.2.1. Desaturation of Reaction Wheels by M agnetorquers

Orbit ~ Satellite
Propagator Attitude
) Satellite Controller ¢ Attitude
Environment > Dynamics Hold
Model (IGRF)
_ Actuator
A Magnetorquer
Desaturation
(Reaction Wheels)

Figure 3.8 Magnetorquer Control for Reaction Wheel Desaturation

The desaturation of reaction wheels process means simply slowing down or
speeding up of the reaction wheels to their nominal rotational rates. However, these
speed changes will generate torques, affecting the satellites attitude. For this reason,
magnetorquers are used to hold the satellite in its current attitude while the wheels
speeds regulated. In the example below, the attitude is hold (zero Euler angles)

during the control scheme.

The torque generated by the magnetorquer coils are given by;
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Teonra = M suaite % Bean (3.12)
Where,

M=ni A (3.13)

P=li, i, i,] (3.14)

At first glance, it looks like the required control input direction, in terms of
the currents for each magnetorquer, can be determined from Equation (3.12).
However, cross product does not have an inverse operator, cross product of any
vector which lies in magnetorquer and magnetic field plane with the magnetic field
vector will be in the same direction with the required control input. In the case of
cross multiplication of A x B, there are many possible directions for vector B that
will give the same value for

A x B, in fact, any direction in the plane that is normal to A x B (except a

vector pointing in the same direction as A).

v ads vector o

vectoriA x B

Z a¥s

-

X axis

Figure 3.9 Control Current Direction Determination

From this, the cross product of the required current with the magnetic field
will lie in M .- B Plane and can be used for the current direction. The

required current direction can be determined as;

L Toontral X éEanh

__ " Contro

~ — —Comrd (3.15)
T [Be)
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Now, a controller must be designed to control the magnitude of the currents.
Similar PD control law used for RW control is also implemented for the
magnetorquer control. On the other hand, the simulation results are nearly the same
as the way it was expected. This is due to the fact that, current Earth’s magnetic field
direction determines the available torque direction, which is, of course, not alwaysin
the direction required in order to compensate the torques introduced by the reaction
wheels during desaturation. To test the success of this mode a simulation is carried

out. During simulation controller gains K, =-2 and K, =-0.3as shown in Figure

3.10 is used.

7
711
v

Qerr

Calumn

Figure 3.10 Magnetorquer PD Controller

Desaturation mode simulation results are given below from the Figure 3.11 to
Figure 3.14. In this simulation the roll attitude is commanded to 10° degrees while
yaw and pitch attitudes were kept at zero degrees. The resulting attitude during the
operation may be observed from the Figure 3.11

Figure 3.12 gives the reaction wheel torques. These are due to the torques
generated while bringing the wheel speeds to their nominal values. Figure 3.13 gives
the magnetic torques applied to the magnetorquers. Finaly Figure 3.14 shows the
reaction wheel speed. From thisfigure it may be observed that the wheel speeds have

reached their desired nominal velocities.
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CHAPTER 4

ACTUATOR FAILURE COMPENSATION THROUGH
CONTROL ALLOCATION METHODS

4.1. Literature Survey

Actuator failures in LEO satellites play an important role for the success of
the missions. In recent years, literature on the issues related to the actuator failures,
has increased. Although the controllability and stability issues for providing
sufficient control with one, two and three independent control torques are studied in
the literature, the actuator failure compensation through control allocation is not very
common.

Tsiotras and Doumtchenko [17] considered one actuator failure case to solve
the problem of detumbling with simultaneous attitude stabilization about the
unactuated axis and focused on the stabilization problems. Time-varying and time-
invariant feedback controllers are designed for the stabilization of rigid spacecrafts
during the actuator failures. Gas jet actuators are used for the stabilization of the
spacecraft. Feasible trgjectory generation is also covered for the attitude tracking
problems.

Li and Zhang [18] investigated the failure of one reaction wheel of total four
and proposed a new reconfiguration structure for the controller using a predictive
filter. In this thesis, it is assumed that the actuator failures are diagnosed by the
operators and the controllers are reconfigured according to this basic knowledge and
the flight code is uploaded from the groundstation. Li and Zhang suggested a fault
diagnosis condition to identify the actuator failuresin rea time and reconfigured the

controller.
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Roberts et al.[19] has shown that three axis control is achievable with two out
of four reaction wheels and three magnetic torque bars. A new orthogonal coordinate
system which decouples reaction wheel and magnetic control torques from each
other, was proposed. Control torques generated by the magnetorquers are
reconfigured by modifying the control algorithms for momentum unloading of the
reaction wheels and the control modes and also the PWM cycle is reduced to a 3
seconds time interval from 10 seconds range. Finally the predictive techniques are
applied for the cases that the available torque is not sufficient for the pointing
control.

In the recent work of Sakai et al [20], three magnetic torquers and one
momentum wheel are used as actuators for the three-axis attitude control. Magnetic
torquers are used to generate control torque in two axes and the control of the third
axis is assured with a momentum wheel. The singularity case is defined as the point
that one of the magnetic field components is zero during a period in satellite orbit.
Pseudo inverse and singularity robust inverse are used to solve the control allocation
problem and to apply the linear feedback controller. In addition, some anti-windup
methods are applied to cover the unstable behaviors and a new feedback controller is
designed.

Tekinalp and Yavuzoglu [5] have proposed a new inverse kinematics
algorithm called Blended inverse, which provides singularity avoidance and quick
transition through CMG clusters internal singularities during attitude maneuvers. The
maneuvers are either carried out by planning the gimbal trgjectoriesin advance or by
disturbing the gimbals at a singularity.

Ge et a. [21] presented a new approach by using genetic algorithm for the
optimal control of the nonlinear satellite systems using only two of the total three
reaction wheels after a reaction wheel failure. Ge applied the steering problem
solution to a drift free control system when the total angular momentum of the
system is zero. Steering of the spacecraft is obtained by genetic algorithm.

Boskovic et a [22], has shown the failure detection and identification and
adaptive reconfigurable control stability in the presence of actuator failures. The
spacecraft is modeled as a rigid body and six thrusters are assumed as the torque

sources in three axes. The failure modes are modeled to compensate for the effects of
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the failure of the each thruster. The types of the failures are described according to
some assumptions that control objectives are accomplished and the global stability of
the proposed techniques is proved.

Barnes et a [23], proposed attitude control system software which is
“integrated with a control mode manager that dictates which software components
are currently active. Control mode changes are performed by that mode manager
component or by a manual command. Actuator failure is checked with Failure
Detection and Handling algorithm that monitors the health of Y -axis reaction wheel.

Large angle maneuvers using two reaction wheels in case of Z-axis reaction
wheel failure is examined by Hodgart et a [24]. Nonlinear, time invariant, and
discontinuous control approach is proposed to accomplish the stability and slewing
in 3 axesis performed without transient oscillations.

Pseudo-Inverse method for the reconfigurable controller systems is
investigated by Gao et a [25]. By using Modified Pseudo-Inverse, “closed-loop
stability is maintained while recovering the performance as much as possible” and all

the stability conditions are analyzed.

Jayaram et al [26], presented a model based actuator fault detection. The
stability-based measure to diagnose an actuator failure is proposed by using
Lyapunov functions as a robust control method. In an actuator failure case, “Kalman

filter is used to compute the state matrix.”

Bogh et al [27], designed “Failure Mode and Effect Analysis” for all sensor
and actuator systems in the satellite. Potential faults of the magnetic coils are
examined and coil driver malfunction problem is considered for the simulation of
detumbling control of the satellite.

In this thesis pseudo inverse (Moore-Penrose generalized inverse) and
blended inverse agorithms are used and compared with each other as control
allocation methods.
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4.2. Control Allocation Methods

Inverse of arectangular control input matrix with Pseudo inverse can be defined

u pseudo =J ! [‘]‘] ' ]_le&sired (41)

Where T

control

=JU and J is the Jacobian matrix.

pseudo

This equation becomes singular when Jloses rank and the inverse does not exist.
The Jacobian matrix for three magnetorquers aligned in three axes of the satellite
body frame and four reaction wheels that are mounted in atetrahedral configuration

may be written as follows:

0 -B, -B, O 0 —-0.8165 0.8165
J=|-B, O B, 1 -0333 -0333 -0.333 (4.2)
B, -B, 0 0 09428 -04740 -0.4740

As it seen from the equation 4.2, J matrix has orbital location dependent terms,
that are magnetic field components. Every column in J matrix is associated by an
actuator. When one of the actuators fail or not, the new Jacobian matrix may be
found by removing the associated column. Some components of J matrix becomes
zero during the zero crossings of magnetic field components.

The pseudo inverse given in the above equation gives the minimum norm

solution of the U matrix. Since the components related to the magnetorquers

pseudo
and those related to the reaction wheels have different magnitudes, a scaling is
necessary.

A mathematical expression of singularity conditions is necessary. Tekinalp [5]
proposes a singularity measure which is given in equation 4.3.

m=det(Ja7) (4.3)

This measure is taken in the simulations given below to identify the
singularities.

Blended inverse technique is proposed by Yavuzoglu and Tekinalp [5] for CMG

control allocation problems. Although Tekinalp et al [5] proposed the algorithm for
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singularity avoidance and or transition for CMG steering, the algorithm may also be
used for weighting the desired actuators against the undesired ones during maneuver.
This additional flexibility is also used in this study. Note that no singularity is
encountered when both magnetorquers and reaction wheels are used. Saturation type
singularities occur when the reaction wheels reach their maximum torque and
angular momentum limits or when some magnetic field components become zero
around pole passages.
Blended inverse algorithm can be given as:

U ended = [l wn — B AJT(l wn T B ‘JJT)_lJ]X (U esirea + BJTTd&sired) (4.4)

Where U, 1S the control input matrix that is calculated by Blended inverse
algorithm, | is identity matrix, B is smoothing gain for blended inverse that is
chosen as 0.01, Jis Jacobian matrix, U ... 1S desired control inputs which allows
balancing between magnetorquers and reaction wheels. Moreover, it is possible to
decide which actuator will be used dominantly during the maneuver. In this thes's, it
is observed that the torque capacity of reaction wheels can not be used optimally
during the maneuvers and it causes unstable conditions around singularities. Thus the

magnetorquer gains in U ., Vector are chosen greater than the reaction wheel

components. The U ., Vector used for the simulations with one reaction wheel and

desir

three magnetorquersis given as an example in equation 4.5.

U =[31 3.1 3.1 0.005] (4.5)

As it seen from the equation 4.5, the desired magnetorquer values are chosen
3.1, as half of the maximum magnetic moment limit of the magnetorquers. However

the desired reaction wheel component is chosen relatively very small.
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4.3. Actuator Failure Cases

4.3.1. Attitude Control by 3 Reaction Wheels

Tetrahedral geometry has some benefits for reaction wheel control. Each
normal vector of a tetrahedron surface represents a torque direction of a reaction
wheel. In most cases all reaction wheels locate in the same surface over the satellite.
Every wheel has wedges to form tetrahedral geometry. There are two main reasons
to choose the tetrahedral geometry.

In tetrahedral configuration, maximum torque output can be increased to
twice the maximum torque limit of a reaction wheel. Geometric projection of a unit
torque in each of three axes contributes a unit torque to that axis. Thus, using that
geometric property of the cluster, it is possible to generate more torque on each axis
than possible by a simple reaction wheel.

Another important reason to use tetrahedral configuration is for redundancy.
Basicdly, three reaction wheels that are mounted orthogonally are enough to
generate torques in 3 axes. The fourth reaction gives an overactuated system. Thus,
one wheel fail attitude control is not so different from the nominal 4 wheel control
mode.

4.3.2. Slew Maneuver with 2 Magnetorquersand a'Y axis Reaction Wheel

In this mode 2 magnetorquers and a Y-axis reaction wheel are used as
actuators. Magnetorquers generate torques in two axes and Y wheel generates torque
in pitch axis only. First direct inversion is used to find the controls. The main
purpose of this simulation is to see the torque usage level of each actuator. The J
matrix for this mode can be given as:

0 0 -B,
J=|-B, 1 B, 4.7
B, 0 O
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Figure 4.1 Euler angles time histories after 20° commanded roll angle using blended

inverse in singular zone with two magnetorquers and a reaction wheel

The simulation results may be examined from Figure 4.1 to 4.4.
Mathematically there is no difficulty in taking the inverse of a square matrix. Again
the singularity is dependent on the magnetic field components. In this mode pitch

axis maneuver is achieved asit seen from the Figure 4.1.
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4.3.3. Slew Maneuver with 3 Magnetorquersand Y axis Reaction Wheel

In this mode, Y axis reaction wheel and 3 magnetorquers are used as
actuators. Y axis wheel can be considered as the most critical wheel for the
operational safety and control capabilities. The main reason is that the Y wheel
generates the pitch torque necessary for stereoscopic imagery maneuvers. Also the
pitch rate control that is necessary for nadir pointing is also assured by Y reaction
wheel.

Available torque capacity in Y axis is sufficient for a pitch maneuver.
However, necessary torque will be increased during aroll or yaw axis maneuver due
to gyroscopic moments. Because of the insufficient torque capacity in that axis, the
control torques generated by actuators will be compensated by the Magnetorquers.
Thus, the torques will be depended on varying magnetic field components. This

dependency may cause some singularities during the maneuvers.
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In this thesis the singularity term is used for some different meanings.
Mathematically it is the singularity of the Jacobian matrix. Saturation singularity
term is al'so used when the actuators reach their available torque limits. During the
maneuvers, the points where the Jacobian matrix is singular (i.e. loses rank) are
called singular zones. This is possible when Earth’s magnetic field direction changes
at the Polar Regions.

For example in Figure 2.9, magnetic field Y component is zero at certain
locations. If a maneuver is planned at those locations, Jacobian matrix will definitely
be singular. Through pseudo inverse it is not possible to transit these singular zones.
These arguments are demonstrated in the following smulation. A roll maneuver of
20° which is perpendicular to Y axis s carried out to compare the pseudo inverse and

blended inverse.
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Figure 4.5 A 20° roll maneuver with pseudo inverse at a singular zone
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Figure 4.6 Magnetic moments, Y axis reaction wheel torque and the singularity

measure during 20° roll maneuver using pseudo inverse algorithm in asingular zone

Three magnetorquers and Y -axis reaction wheel are used as actuators. In this

case the Jacobian becomes:

0O B, -B, O
J=|-B, 0 B, 1 (4.6)
B, -B, 0 0

First a 20° roll maneuver simulation is carried out using pseudo inverse. As

it observed from the Figure 4.5 pseudo inverse causes excessive rolls over 200

degrees. Moreover it is clear in Figure 4.6 that the Y reaction wheel reaches its

saturation limit for a while. The reason for this erratic behavior may easily be

deduced if the singularity measure given in Figure 4.6 is examined. At the beginning
of the maneuver the system is singular (i.e., m=0). In Figure 4.7 blended inverse

simulation results are given. It is clear from this ssmulation that the blended inverse

method provides a quick transition from the singularity zone despite the relatively
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high overshoot. For Figure 4.8 it may be observed that the singularity measure J * J’
is zero for 200 seconds but the blended inverse algorithm avoids the saturation of

reaction wheel (Figure 4.8). This smooth transition can be seen from Figure 4.7 and

Figure 4.8.
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Figure 4.7 Euler angles during 20° Roll maneuver with blended inverse algorithm in

asingular zone
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Figure 4.8 Magnetic moments, Y axis reaction wheel torgue and the singularity

measure during 20° roll maneuver using blended inverse algorithm in asingular zone

The above simulation is repeated this time commanding 20° degrees
maneuvers in all roll, pitch and yaw axis in the singularity zone as well. The pseudo

inverse algorithm results are presented in Figure 4.9 and 4.10. The erratic behavior

of the satelliteis clear in these figures.

The simulation results of the same maneuver using the blended inverse
algorithm are presented in Figure 4.11 and 4.12. It may be observed from these
figures that the blended inverse algorithm is very successful. The Euler angles reach

the commanded val ues quickly and the reaction wheel is not saturated.
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Figure 4.12 Magnetic moments, Y axis reaction wheel torque and the singularity
measure during 20° RPY maneuver using blended inverse algorithm in asingular

zone

4.34. 3 Magnetorquersand two Reaction Wheel Control Mode

Again, pseudo inverse and blended inverse methods are used for the
simulation. First, a 20° roll maneuver is carried out using pseudo inverse algorithm.
The results are given in Figure 4.13 to 4.16. Figure 4.13 gives the desired torques for
this maneuver. The resulting attitudes are given in Figure 4.14. It may be observed
that the roll attitude reaches 20° within 400 seconds. The satellite angular velocity,
magnetic moments, magnetic torques and reaction wheel torques are presented in the
remaining figures.
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Figure 4.15 Angular Velocity for 2 Reaction Wheels and 3 Magnetorquers Mode
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Figure 4.17 Magnetic Torques for 2 Reaction Wheels and 3 Magnetorquers Mode
From the pseudo inverse simulation results, it is seen that the reaction wheels

are not used effectively during the maneuver. For this reason blended inverse

algorithm isalso tested. Again the U ., Vector is chosen asfollows:

Ugrd =[31 31 3.1 0.005 0.005] (4.8)

In the simulation B =0.001is used. The value of B is tuned by simulation results

and the optimal value is chosen.
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The Jacobian matrix in this case may be given as:

0 B, -B, 08165 08165
B, -03333 -0.333 (4.9)

4 X

B, -B, 0 -04714 -04714

Asit seen from the equation, Jacobian matrix entries related to the magnetic

field changes throughout the orbit.
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Figure 4.19 Singularity Check for Blended Inverse

Figure 4.19 gives the singularity condition of blended inverse. As may be
observed from this figure, the satellite attitude is controlled quite effectively that no
singularity is occurred and the maneuver is completed in time. When reaction wheel
torque of Figure 4.18, and Figure 4.22 are compared, it may be observed that the
torques go to zero at the end of the maneuver, with blended inverse, while pseudo
inverse continues to generate torques after the completion of the maneuver. The
torques of each reaction wheel in their own frame is seen from Figure 4.23.

A close examination of the magnetorquer and reaction wheel torques (Figure
4.16 and 4.17) shows that the torques generated by the reaction wheels is balanced
by the magnetorquer torques. However, with blended inverse such a case is not
encountered. This case, among the others, shows the strength of blended inverse

control allocation approach over pseudo inverse.
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CHAPTERS

CONCLUSION

In thisthesis, control allocation methods to be used in the case of the actuator
failures for overactuated satellites are investigated and these methods are applied to
the small satellites with dissimilar actuators.

A simulation is developed to model all sensors and actuators such as
magnetometers, sun sensors, magnetorquers and reaction wheels by using Matlab®
Simulink environment. Moreover all satellite dynamics and controllers are also
simulated. The mathematical background to cover satellite simulation is given in
detail and the results are discussed.

The basic attitude control modes are examined and simulated. The
detumbling mode and three-axis nominal control modes are designed and
simulations are carried out by using magnetorquers and reaction wheels. Then the
actuator failures are investigated for different cases under some specia
circumstances such as singularities. The control allocation method called blended
inverse is applied to the satellite with dissimilar actuators.

Blended Inverse algorithm has demonstrated its ability to make a trade off
between magnetorquers and reaction wheels that the other control allocation methods
do not have. The simulations are made with both pseudo inverse and blended inverse
and the results are compared. The results have shown that pseudo inverse method
may generate unstable conditions during the singular cases of Jacobian matrix;
however Blended inverse method generates quick transition ability on those points of
the orbit. It is shown that this method can be used especialy in actuator failure
modes with overactuated satellites.
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In conclusion, Blended inverse algorithms may be improved to design new
configurable controllers to be used in small satellites even during the singularity

Z0ne passes.
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APPENDIX

SGP4 CODE

double SGP_XKE, n, SGP_TWOTHIRD, SGP_CK2,pi, SGP_PI, SGP_TWOR!,
SGP_PI02, SGP_X3PI02;

double
Inclination,Eccentricity,al,deltal,e2,theta theta?,a0,del ta0,n0dp,a0dp,SGP_XKMPE
R,perigee, SGP_AE,s4,SGP_S,00ms24,SGP_QOMST2T;

double
tsi,eta,BStarDragTerm,sini0,beta0,beta02,A 30,SGP_XJ3,ArgumentOf Perigee,C1,C2
,C3,C4,C5,D2,D3,D4;

double T1;

double
MDF,MeanAnomaly,tSince wDF,OmegaDF,RAAN,deltaw,deltaM ,M p,w,Omega,e,a
JIL,betaaxN,ayNL,ILL,ILT,ayN,SGP_CK4;

double U,y,z;

double Epw,deltaEpw;

double
ecosE,esinE,eL,pL,r,rdot,rfdot,cosu,s nu,u,deltar,del tau,deltaOmega,del tai ,del tardot,
deltarfdot,rk,uk,Omegak,ik,rdotk,rfdotk;

double sOmegak,cOmegak,sinuk,cosuk,SGP_XMNPDA;

double vMx,vMy,vMz,vNx,vNy,vNz,vUx,vUy,vUz VWX, Wy, VWV Z,

double tleN;

double wO,pi2,cmm,mmaO, Period,Revol utionPerDay;

int SGP4Initialized = 0;

int smpleFlag =0;
int i;
tSince=u0[0]/60.0;

i=1;

pi=4* atan(1);

SGP_TWOPI =2 * pi;
SGP_PIO2 =pi/20;
SGP_X3PIO2=3* pi / 2.0;
SGP_PI = pi;

/******************************************************/
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a0;

Inclination=98.1514* (pi/180);
Eccentricity=0.0011880;
BStarDragTerm=.23767e-4;
ArgumentOf Perigee=160.6162* (pi/180);
MeanAnomaly=199.5494* (pi/180);
RAAN=269.8731* (pi/180);
tleN=0.063820820213934;
/******************************************************/
SGP_XKE=0.74366916e-1;
SGP_TWOTHIRD=0.66666667;
SGP_CK2=5.413080e-4;
SGP_XKMPER=6378.135;
SGP_AE=1.0;

SGP_S=1.01222928;
SGP_QOMST2T=1.88027916e-9;
SGP_XJ3=-0.253881e-5;
SGP_CK4=0.62098875¢e-6;
SGP_XMNPDA=1440.0;

if (SGPA4Initialized == 0) {
SGP4Initialized=1;

theta = cos(Inclination);
theta2 = theta* theta;
sinio = sin(Inclination);
e2 = Eccentricity* Eccentricity;
beta02 =1-€2
beta0 = ggrt(betal2);
A30 =-SGP_XJ3*SGP_AE * SGP_AE * SGP_AE;
al = pow(SGP_XKE / tleN, SGP_TWOTHIRD);
deltal =15* SGP_CK2* (3*theta2 - 1) / pow(1 - €2, 1.5) / al/ al,
a0 =al* ((1- deltal/3.0 - deltal* deltal) -
(134.0* (deltal* deltal* deltal)/81.0));

deltad =(1.5* SGP_CK2* (3*theta2 - 1)) / pow(1 - €2,1.5)/ a0/
nOdp =tleN / (1 + delta0);
a0dp = a0/ (1-delta0);
perigee = (a0dp * (1-Eccentricity) - SGP_AE) * SGP_XKMPER;

}

if (perigee < 220.0)
simpleFlag = 1;

A =SGP_S,

gOms24 = SGP_QOMST2T;
if (perigee<156)
{
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if (perigee <=98.0)
4 =20.0;
else
4 = perigee - 78;

qOms24 = pow((120-s4) * SGP_AE / SGP_XKMPER, 4);
$4 = SH/SGP_XKMPER + SGP_AE;
}

ts = 1.0/ (a0dp - s4);
eta =a0dp * Eccentricity * tsi;
T1=q0ms24;
C2=q0ms24 * pow(ts, 4) * nOdp/pow((1-eta*eta), 3.5) *
(
a0dp* (1+1.5* eta* etat+4.0* Eccentricity* etat+Eccentricity* eta* eta* eta) +
1.5 SGP_CK2*tsi*(-0.5+1.5* theta2)* (8+24.0* eta* eta+3.0* pow(eta,4.0))/(1-
eta*eta)
);
Cl =BStarDragTerm * C2;
C3 =qg0ms24* pow(tsi,5.0)* A30* n0dp* SGP_AE*sini0/SGP_CK2/Eccentricity;
C4 = 2.0*n0dp* gOmMs24* pow(tsi,4.0)* a0dp* beta02/pow(1-eta* eta,3.5) *
(
(2.0*eta* (1+Eccentricity* eta)+.5* Eccentricity+.5* eta* eta* eta) -
2* SGP_CK2*tsi/a0dp/(1-eta* eta)*
(
3.0*(1-3.0* theta2)* (1+1.5* eta* eta-2.0* Eccentricity* eta-
.5* Eccentricity* eta* eta* eta)+
0.75* (1-theta2)* (2.0* eta* eta- Eccentricity* eta-
Eccentricity* eta* eta* eta)* cos(2.0* ArgumentOf Perigee)
)
);

C5 = 2.0*q0ms24* pow(tsi,4.0)* a0dp* beta02/pow(1-
eta*eta,3.5)* (1+2.75* eta* (etat+Eccentricity)+Eccentricity* eta* eta* eta);

D2 = 4.0 a0dp*tsi* C1* CL;
D3 = 4.0/3.0* a0dp* tsi* tsi* (17.0* a0dp+s4)* C1* C1*C1;
D4 = SGP_TWOTHIRD* a0dp*tsi*tsi*tsi* (221.0* a0dp+31.0* s4)* pow(C1,4.0);

MDF = MeanAnomaly +
(
1+
1.5*SGP_CK2* (-1+3* theta2)/(a0dp* a0dp* beta02* beta0)+
0.1875* SGP_CK2* SGP_CK2*(7-

78.0* theta2+137.0* theta2* theta2)/(pow(a0dp,4.0)* pow(beta0,7.0))
) * nOdp * tSince;

wDF = ArgumentOfPerigee+
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(
-1.5* SGP_CK 2*(1-5.0* theta2)/pow(aldp* beta02, 2.0)+
0.1875* SGP_CK2* SGP_CK2* (13-
114.0* theta2+395.0* theta2* theta2)/pow(a0dp* beta02, 4.0)+
1.25* SGP_CK4* (3-36.0* theta2+49.0* theta2* theta?)/pow(a0dp* beta02, 4.0)
)*n0dp*tSince;

OmegaDF = RAAN+

(

-3.0* SGP_CK 2* theta/pow(a0dp* beta02, 2.0)+

1.5*SGP_CK2* SGP_CK2* (4.0* theta-19.0* theta* theta2)/pow(a0dp* beta02,
4.0)+

2.5* SGP_CK4* theta* (3-7.0* theta2)/pow(a0dp* beta02, 4.0)

)*n0Odp*tSince;

deltaw = BStarDragTerm* C3* cos(ArgumentOf Perigee)*tSince;
deltaM  =-
SGP_TWOTHIRD* g0ms24* BStarDragTerm™* pow(tsi,4.0)* SGP_AE/(Eccentricity*e
ta)*
(
pow((1+eta* cos(MDF)),3.0)-
pow((1+eta* cos(MeanAnomaly)),3.0)

);
Mp = MDF + deltaw + deltaM;
w = wDF - deltaw - deltaM;

Omega = OmegaDF -
10.5*n0dp* SGP_CK 2* theta* C1* tSince* tSince/(a0dp* a0dp* beta02);
e = Eccentricity - BStarDragTerm* C4*tSince -
BStarDragTerm* C5* (sin(Mp)-sin(MeanAnomaly));
a = a0dp*
pow(
1-
C1*tSince-
D2*tSince*tSince-
D3*pow(tSince,3.0)-
D4* pow(tSince,4.0)
2.0);
IL = Mp+w+Omega+n0dp*
(
1.5*C1*tSince*tSince+
(D2+2* C1* C1)* pow(tSince,3.0)+
0.25*(3.0*D3+12.0*C1* D2+10.0* pow(C1,3.0))* pow(tSince,4.0)+

0.2*(3.0* D4+12.0* C1* D3+6.0* D2* D2+30.0* C1* C1* D2+15.0* pow(C1,4.0))* pow(
tSince,5.0)
);
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beta = sort(1-e*e);

n = SGP_XKE/ pow(a, 1.5);

axN = e*cos(w);

ayNL = A30*sin(Inclination)/(4.0* SGP_CK2* a* beta* beta);
ILL = ayNL/2.0* axN* (3+5.0* theta)/(1+theta);

ILT =IL +ILL;

ayN = e*gn(w)+ayNL;

U=(ILT - Omega);

while ((U<-SGP_TWORPI) || (U>SGP_TWORI)) {
if (U<-SGP_TWORP!)
U += 2*SGP_TWORPI;
elseif (U>SGP_TWORPI)
U -=2*SGP_TWOFI;

}
if (U<0)
U += SGP_TWOPI;
Epw =U;
deltaEpw = 1;
for (i =0; i < 10;i++)
{
deltaEpw = (U-ayN* cos(Epw)+axN* sin(Epw)-Epw)/(-ayN* sin(Epw)-
axN*cos(Epw)+1);
if (abs(deltaEpw) < 1e-6)
break;
Epw += deltaEpw;
}
ecoskE = axN*cos(Epw) + ayN*sin(Epw);
esnE = axN*sin(Epw) - ayN* cos(Epw);
eL = sgrt(axN* axN+ayN* ayN);
pL =a*(1l-eL*el);
r = a* (1-ecosE);
rdot = SGP_XKE*sgrt(a)*esinE/r;
rfdot = SGP_XKE*sgrt(pL)/r;
cosu = alr*(cos(Epw) - axN + ayN*esinE/(1+sgrt(1-eL*elL)));
sinu = alr*(sin(Epw) - ayN - axN*esinE/(1+sgrt(1-eL*el)));
/*******************************************************************
**/
/lu = atan(sinu/cosu);
{
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if(cosu==0) {

if(sinu > 0)
u=(SGP_PI02);
else
u=(SGP_X3PI02);
}
else
{
if(cosu > 0) {
if(sinu>0)
u = atan(sinu/cosu);
else
u=SGP_TWORPI + atan(sinu/cosu);
}
else
u = SGP_PI + atan(sinu/cosu);
}

} /*Function actan*/

/*******************************************************************

***/
deltar = SGP_CK2/(2.0* pL)* (1-theta2)* cos(2.0* u);
deltau =-SGP_CK2/(4.0* pL*pL)* (7.0* theta2-1)*sin(2.0* u);
deltaOmega = 1.5*SGP_CK2*theta* sin(2.0* u)/pL/pL;
deltai = 1.5* SGP_CK2*theta/pL/pL* sin(Inclination)* cos(2.0* u);

deltardot = -SGP_CK2*n/pL* (1-theta2)* sin(2.0* u);
deltarfdot = SGP_CK2*n/pL* ((1-theta2)* cos(2.0* u)-1.5* (1-3.0* theta2));

rk =r*(1-1.5* SGP_CK2*sgrt(1-eL*elL)* (3.0*theta2-1)/pL/pL) + deltar;
uk = u + deltau;

Omegak = Omega + deltaOmega;

ik = Inclination + deltai;

rdotk = rdot + deltardot;

rfdotk = rfdot + deltarfdot;

sOmegak = sin(Omegak);
cOmegak = cos(Omegak);

sinuk = sin(uk);

cosuk = cos(uk);

vMX = -sOmegak* cos(ik);
vMy = cOmegak* cos(ik);
vMz =gn(ik);

VNX = cOmegak;
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VNy = sOmegak;

VNz =0.0;

vUX = vMx*sinuk + vVNXx* cosuk;
vUy = vMy*sinuk + vVNy* cosuk;
vUz =vMz*sinuk + vNz* cosuk;
vV X = vMx*cosuk - vNx*sinuk;
wWy = vMy*cosuk - VNy*sinuk;
vz = vMZz*cosuk - VNz*sinuk;

/* CALCULATION OF WO */

Revol utionPerDay=14.62665459;
pi2=2.0*pi;

cmm=pi2/1440.0;
mmO=RevolutionPerDay* cmm;
Period=60.0* pi2;
wO=(pi2/Period);

yO[0]=rk * vUx * SGP_XKMPER * 1000.0;
y1[0]=rk * vUy * SGP_XKMPER * 1000.0;
y2[0]=rk * vUz * SGP_XKMPER * 1000.0;

y3[0]= (rdotk * vUx +

rfdotk* vWx)* SGP_XKMPER* SGP_XMNPDA/(86.4)/SGP_AE;
y4[0]= (rdotk * vUy +

rfdotk* vWy)* SGP_XKMPER* SGP_XMNPDA/(86.4)/SGP_AE;
y5[0]=(rdotk * vUz +

rfdotk* vV z)* SGP_XKMPER* SGP_XMNPDA/(86.4)/SGP_AE;

y6[0]=sart((yO[ O] * yO[ O] )+(y1[O]*y1[O])+(y2[ O] *y2[Q]));

y7[0]=w0;
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