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ABSTRACT

CONTROL ALLOCATION AGAINST ACTUATOR FAILURES

IN OVERACTUATED SMALL SATELLITES

Kahraman, Özgür

M.S, Department of Aerospace Engineering

Supervisor: Prof. Dr. Ozan Tekinalp

November 2007, 91 pages

In this thesis, attitude control of small satellites with dissimilar actuator is

studied and the effects of control allocation methods on maneuvering are examined

in detail. Magnetorquers and reaction wheels are considered as the actuators of a

modeled remote sensing -nadir pointing- small satellite. Matlab® Simulink

simulation models are developed to model the satellite dynamics and the actuators on

the satellite. The simulations are based on conceptual RASAT satellite, and, for

verification, orbit data is taken from BILSAT satellite that is operated by TUBITAK

Space Research Institute.

Basic satellite control modes are developed and tested to obtain nominal

control. Actuator failures are analyzed for different possible cases.

A control allocation method called Blended Inverse that was originally

proposed for steering CMGs is applied to select the actuators to avoid actuator

saturation and singularity transition. The performance of traditional pseudo inverse

method is compared with the blended inverse method and simulation results are

given and discussed. The superiority of blended inverse over pseudo inverse is

demonstrated.

Keywords: Satellite Attitude Control, Actuator Failure, Control Allocation Method
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ÖZ

ARTIK EYLEYİCİLİ KÜÇÜK UYDULARDA

EYLEYİCİ ARIZALARINA KARŞI KONTROL DAĞITIMI

Kahraman, Özgür

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ozan Tekinalp

Kasım 2007, 91 sayfa

Bu tezde benzeşmeyen eyleyicilere sahip küçük uyduların yönelim kontrolü

çalışılmış ve kontrol dağıtım yöntemlerinin manevra üzerine etkileri ayrıntılı olarak

incelenmiştir. Ayakucu doğrultulu, uzaktan algılamalı bir küçük uydu için,  eyleyici

olarak tork çubukları ve tepki tekerleri göz önünde bulundurulmuştur. Uydu

dinamiğini ve eyleyicileri modellemek icin Matlab® Simulink benzetim modelleri

geliştirilmiştir. Benzetimler, kavramsal RASAT uydusu baz alınarak yapılmış ve

doğrulama için yörünge bilgileri, TÜBİTAK Uzay Teknolojileri Enstitüsü tarafından

işletilen BİLSAT uydusundan alınmıştır.

Nominal kontrol sağlamak icin, temel uydu kontrol kipleri geliştirilip test

edilmiştir. Eyleyici hataları mümkün olan farklı durumlar için analiz edilmiştir.

Bir kontrol dağıtım yöntemi olan, orjinal olarak CMG yöneltimi için

önerilmiş harmanlanmış ters alma yöntemi, eyleyici saturasyonunu engellemek ve

tekilliklerden kaçınmak amacıyla eyleyiciler arasında kontrol dağıtımı için

uygulanmıştır. Geleneksel sanki ters alma yöntemi ile harmanlanmış ters alma

yöntemi kıyaslanarak benzetim sonuçları verilmiş ve tartışılmıştır. Harmanlanmış

ters alma yönteminin sanki ters alma yöntemi üzerindeki üstünlüğü gösterilmiştir.

Anahtar Kelimeler: Uydu yönelim kontrolü, eyleyici hatası, kontrol dağıtım yöntemi
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CHAPTER 1

1. INTRODUCTION

Attitude Determination and Control Systems (ADCS) have critical role in

Low Earth Orbit (LEO) small satellite missions. The success of the mission depends

on the capability of these systems. The ADCS systems consist of two main parts:

ADCS hardware and ADCS software.

ADCS hardware is formed by sensors and actuators. The sensors obtain the

attitude measurements for the estimation of attitude knowledge such as satellite

Euler angles, quaternions and the angular rates. Most fundamental sensors that are

used in the satellites are the magnetometers for magnetic field measurements, Sun

sensors for Sun reference, star trackers for star catalog matching and the rate gyros

for the angular measurements. All these sensors provide an attitude reference for the

attitude estimation algorithms of the ADCS software. The main purpose of the

determination algorithms is to combine the attitude measurements and estimate the

attitude through estimation algorithms such as a Kalman filter. Estimated angles and

the rates are used as feedback signals for the control system.

The actuators form the other half of the ADCS hardware. The main goal is

achieving the control objectives during the operational life such as detumbling to

point the satellite to the nadir direction and the three axis control for all the nominal

operations such as maneuvering. The hardware is composed of reaction wheels that

are used as the main control hardware in nominal mode and the magnetorquers that

are the only actuators which have the control capability during detumbling mode.

Magnetorquers are also used for desaturation of reaction wheels when the wheels are

about to exceed their torque and momentum limits. Although control moment gyros

are used for fast maneuvers, in many satellites, they are not considered in this thesis.
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Actuator failures cause unexpected control problems during operational life

of the satellite. In this thesis, reaction wheels are considered as positioned in

tetrahedral configuration for the nominal three axis control mode and all the failure

modes are composed of reaction wheel failures. The failure detection is not

evaluated in this work and it is assumed that the failures of such components can be

detected by checking the telemetry data to be sure of the physical failure. Thus the

controller configuration is assumed to be changed manually when the new ADCS

software is being uploaded from the ground station.

The underactuated conditions are covered in the literature by investigating

both controllability and stability issues. However in this thesis, overactuated

conditions are examined for the control allocation problem such as the control mode

with one reaction wheel and three magnetorquers and the case with two reaction

wheels and three magnetorquers. The stability conditions are proven in the literature

for these scenarios thus the basic PD control scheme is applied to achieve the attitude

control of the satellite.

The main objective of this thesis is to examine the utilization of the steering

algorithms to overcome the control allocation problem in over actuated small

satellites. In this thesis, the steering law called the Blended Inverse, which is

proposed by Tekinalp and Yavuzoglu [5] to avoid from singularities or quick

transition from the singularity zone, is implemented. Basic pseudo inverse method is

compared to Blended inverse method for different scenarios through simulations.

The Matlab Simulink simulation is used as a simulation environment and the

S functions are used to implement the codes that are written in both C and Matlab

programming languages. All the satellite components and the environment are

modeled to simulate the maneuvers.

In the following chapters first the satellite simulation model is given,

followed by the basic attitude control modes and their implementation. Chapter 4 is

devoted to the steering of overactuated small satellites with magnetorquers and

reaction wheels. Simulation results are given and discussed. Final section contains

same concluding remarks and future work.
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CHAPTER 2

2. BUILDING A SATELLITE SIMULATION MODEL

In this section, satellite simulation model is presented. The model includes

attitude and orbital motion models. Earth’s magnetic field, sensor and actuator

models are also given.

2.1. Coordinate Transformations

Coordinate transformations between the reference frames are frequently used

for the satellite simulations. In this work, Euler angles, direction cosine matrix and

quaternions representations are used basically.

2.1.1. Euler Sequence to Direction Cosine Matrix

In this thesis, the user inputs to the model for attitude requirements are

expected as Euler rotation angles sequence. Although Euler angles are not employed

in dynamic equations due their singularities, the choice of representation by Euler

sequence stems from their relatively easy visualization. 2-1-3 Euler sequence is used

which represents first a rotation around pitch axis (), a second rotation around roll

axis () and a final rotation around yaw axis () respectively in classical sense.

Although 3-2-1 notation is used in the flight mechanics, especially for the

geosynchronous satellites, 2-1-3 notation is used in LEO satellites. The reason for

using 2-1-3 notation is that has a physical meaning for the satellite dynamics. Pitch

axis of the satellite is perpendicular to the orbital plane and the rotation around that

axis presents the azimuth changes and the rotation around the roll axis presents the

elevation changes which are used to define the swath width of the satellite.
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Earth
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Gravity
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Figure 2.1  Euler Angles

Conversion from this sequence to a single 3-by-3 rotation matrix or Direction Cosine

Matrix (DCM) is as follows;

Rotation matrices for each rotation are,























cossin0

sincos0

001

xR















 






cos0sin

010

sin0cos

yR


















100

0cossin

0sincos




zR (2.1)

The corresponding DCM for Euler 2-1-3 sequence will be,

YXZ RRRDCM 213  (2.2)

Substituting respective rotation matrices, we get;















 













































cos0sin

010

sin0cos

cossin

sincos0

001

100

0cossin

0sincos

213DCM (2.3)

























coscossin-cossin

cossincossinsincoscossinsincoscossin-

cossinsinsincos-cossinsinsinsincoscos

213DCM (2.4)
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2.1.2. Relation between Euler Sequence and Rotation Quaternions

An alternative way to represent a rotation is using quaternions. A quaternion

basically stands for a vector and an angle which together correspond to a rotation

about a unit vector  zyx   through an angle .

Figure 2.2  Euler Angles to Quaternions

A unit quaternion has unit magnitude, and can be written in the following vector

format.

 
 
 
  








































z

y

x

q

q

q

q

q







2sin

2sin

2sin

2cos

3

2

1

0

(2.5)

An alternative representation of a quaternion is as a complex number,

3210 kqjqiqqq  (2.6)

Again quaternions are commonly used to compensate the singularities introduced by

Euler angles. The corresponding quaternion for the Euler 2-1-3 sequence can be

calculated as [1];

              2sin2cos2sin2cos2sin2cos  kijqqqq




(2.7)

Where,

kijji




ijkkj




jkiik


 (2.8)
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The quaternion multiplication can be restated as:

1 kkjjii


 (2.9)

Finally, the four elements of the quaternion are;

           
           
           
           











































2cos2sin2sin2sin2cos2cos

2sin2cos2sin2cos2sin2cos

2sin2sin2cos2cos2cos2sin

2sin2sin2sin2cos2cos2cos

3

2

1

0






q

q

q

q

(2.10)

2.1.3. Quaternion to Direction Cosine Matrix

Rotation of a vector using quaternion algebra is given by the following relationship:

cqXqX 


(2.11)

where,

3210 qkqjqiqq




3210 qkqjqiqq c




3210 XkXjXiX


 (2.12)

Rearranging Equation (2.11); X 


 can be written as follows,

     
     
      



















































3
2
3

2
2

2
1

2
02321012031

310322
2
3

2
2

2
1

2
012130

32031230211
2
3

2
2

2
1

2
0

3

2

1

22

222

22

00

XqqqqXqqqqXqqqq

XqqqqXqqqqXqqqq

XqqqqXqqqqXqqqq

X

X

X
X


(2.13)

Then the DCM to realize this rotation can be determined by observing Equation

(2.13):

     
     
     





















2
3

2
2

2
1

2
032102031

1032
2
3

2
2

2
1

2
02130

20313021
2
3

2
2

2
1

2
0

22

222

22

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

DCM (2.14)
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2.2. General Equations of Motion of a Satellite

2.2.1. Dynamic Equations

The attitude dynamics of the satellite can be expressed as the following formula;

edisturbancwheelmagneticBIBIBI TTTII   (2.15)

where BI  is spacecraft angular rates with respect to satellite body frame, I is the

inertia matrix that is taken from BILSAT satellite, magneticT is the magnetic control

torques that are generated by Magnetorquers, wheelT is the reaction wheel torques and

the edisturbancT is the disturbance torques.

According to Wertz [1], dynamic and kinematic equations must be solved

simultaneously that is in general, applied torques depends on the spacecraft attitude.

2.2.2. Kinematic Equations

By using quaternion representation we can obtain the attitude kinematic equations of

the satellite [4];

  O
BqAqq 

2

1
 (2.16)

where;



























0

0

0

0

OZOYOX

OZOXOY

OYOXOZ

OXOYOZ






(2.17)

and,

 TOZOYOX
O
B   : Body angular rate referenced to orbital frame. Hence

 qA  becomes;

 


























321

412

143

234

qqq

qqq

qqq

qqq

qA (2.18)
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For an Earth pointing (nadir pointing) satellite, the reference angular rate of the

satellite is orbital rate vector,

 TOO 00   (2.19)

Therefore body angular rate referenced to orbital frame, O
Bw can be given by

the difference between body angular rates referenced to inertial frame and the orbital

rate in body frame;

  O
I
B

O
B qA   (2.20)

The angular body rates in Equation (2.19) become,



















































0

)(

0
ˆ

0 tA

I

BZ

Y

X

O

BOZ

OY

OX



































































































)(

)(

)(

0

)(

0

032

022

012

0

333231

232221

131211

tA

tA

tA

t

AAA

AAA

AAA
I

BZ

Y

X

I

BZ

Y

X














(2.21)

Finally the kinematic equations in terms of quaternions are;

 4321 5.0 qqqq OXOYOZ  

 4312 5.0 qqqq OYOXOZ  

 4213 5.0 qqqq OZOXOY  

 3214 5.0 qqqq OZOYOX   (2.22)

where, the angular rates in body frame are;

)(012 tAXOX  

)(022 tAYOY  

)(032 tAZOZ   (2.23)

2.2.3. Quaternion Error

We have to define an attitude quaternion error that is used inside the control

algorithms. The quaternion error will be the quaternion difference between the

quaternion of the satellite at a particular time and the commanded quaternion. That is

[6];
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



























































4

3

2

1

4321

3412

2143

1234

4

3

2

1

q

q

q

q

qqqq

qqqq

qqqq

qqqq

q

q

q

q

cccc

cccc

cccc

cccc

e

e

e

e

(2.24)

where;

 Teeeee qqqqq 4321 : Attitude Quaternion Error

 Tccccc qqqqq 4321 : Quaternion Command

2.3. Orbit Models

The orbit models are required to simulate the satellite position and the

velocity during the orbital motion. The SGP4 model is used in this work to generate

position information for all sensor and actuator models. Thus the position of the Sun

for Sun sensor simulation, the magnetic field model location data for the

magnetometer model and the disturbance torques are estimated from that position

and velocity value of the SGP4 propagator.

2.3.1. Orbit Model: SGP4

Our simulation model requires orbital information as an input to sub-models

that deal with the Earth’s magnetic field and gravity gradient effects on the satellite

dynamics. Additionally satellite’s orbital angular velocity is necessary information to

keep track of the nadir direction for pointing requirements. In order to fulfill these

requirements an orbit propagator needs to be implemented in the model.

There are a great number of orbit propagator models developed with various

accuracy and complexity characteristics. However, most respected propagators are

the ones developed by North American Air Defense (NORAD). Derived from the

area of interest of NORAD, these propagator models are classified as near-Earth

(with periods less than 225 minutes) and deep-space models, and there are five

accepted mathematical models in record. [7]

The first of these models is the Simplified General Perturbations (SGP)

developed in 1966, which uses a quadratic variation of mean anomaly with time and

models the eccentric drag effect with a constant perigee height.
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The next model SGP4, developed in 1970, which takes a more extensive

theory on the gravitational model and atmospheric model into account. These two

models were developed for near-Earth space. There is also SDP4 model for deep-

space applications, near-Earth space model SGP8 which uses a different technique

for differential equations and its counterpart SDP8 for deep-space applications. All

these five models are compatible with NORAD two line element set. [9]

In this study, SGP4 propagator model was implemented, giving credit to its

wide spread acceptance. Accordingly, the FORTRAN implementation of the model

presented by Kelso was translated into C-code and embedded into an s-function

SIMULINK block (Appendix). The input of this model is the initial NORAD two

line element set which describes satellite position and velocity together with orbital

geometry and time information.

2.3.2. NORAD Two Line Element Set

NORAD two line element set data for a satellite consists of three lines in the

following format [9]:

Table 2.1  Two Line Element Set Format

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN

+NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN

NNN.NNNN NN.NNNNNNNNNNNNNN

Line 0 is a twenty-four character name, and Lines 1 and 2 are the standard Two-Line

Orbital Element Set Format used by NORAD and NASA. The format description is:
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Table 2.2  Two Line Element Set Format Descriptions

Line 1

Column Description

01 Line Number of Element Data

03-07 Satellite Number

08 Classification (U=Unclassified)

10-11 International Designator (Last two digits of launch year)

12-14 International Designator (Launch number of the year)

15-17 International Designator (Piece of the launch)

19-20 Epoch Year (Last two digits of year)

21-32 Epoch (Day of the year and fractional portion of the day)

34-43 First Time Derivative of the Mean Motion

45-52 Second Time Derivative of Mean Motion (decimal point assumed)

54-61 BSTAR drag term (decimal point assumed)

63 Ephemeris type

65-68 Element number

69 Checksum (Modulo 10)

Line 2

Column Description

01 Line Number of Element Data

03-07 Satellite Number

09-16 Inclination [Degrees]

18-25 Right Ascension of the Ascending Node [Degrees]

27-33 Eccentricity (decimal point assumed)

35-42 Argument of Perigee [Degrees]

44-51 Mean Anomaly [Degrees]

53-63 Mean Motion [Revs per day]

64-68 Revolution number at epoch [Revs]

69 Checksum (Modulo 10)
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For the model BILSAT’s orbital parameters for a particular time were used as

the initial inputs to the SGP4 model. The two line element set for BILSAT on 23

May 2005, 06:30:55 is as follows;

Table 2.3  BILSAT Satellite Example TLE Set

BILSAT 1

1 27943U 03042E 05143.27147421 .00000100 00000-0 28805-4 0 7980

2 27943 098.1351 034.3744 0012522 125.8067 234.4294 14.62716601 88299

In this respect, the SGP4 model inputs are listed below;

 BStarDragTerm=0.28805e-4 (Ballistic Coefficient)

 Inclination=098.1351

 RAAN=034.3744

 Eccentricity=0.0012522

 ArgumentOfPerigee=125.8067

 MeanAnomaly=234.4294

 RevolutionPerDay=14.62716601

2.3.3. Magnetic Field Model: IGRF

Earth’s magnetic field information is required to determine the magnetic

torques (disturbances) affecting the satellite and more importantly for the simulation

of the magnetorquers. As explained in the following parts, the order of the magnetic

disturbances on the satellite is negligible.

The magnetic field must be measured by sensors or estimated by employing a

field model in order to control the magnetorquers and model magnetorquer

dynamics. Magnetic field vector can be measured in real time by a magnetometer.

However, sensor requirements and dynamics are not considered for the control

modes.
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As a basic approximation, Earth’s magnetic field can be modeled with the

magnetic field of a sphere uniformly magnetized in the direction of a dipole axis. In

this simple model, the dipole axis goes through the center of the Earth, and is offset

from the rotational axis by 11.3º. This simple approximation can lead to errors as

great as 30% in some locations. On the other hand, the error can be reduced to 10%

by displacing the dipole axis about 400 km towards the western Pacific from the

center of the Earth [1]. For the dipole model, the geomagnetic induction vector is;

 RRMM
m eeee

r
B ˆˆ,ˆ3ˆ

3



(2.25)

Figure 2.3 Earth’s Magnetic Field Dipole Model

On the other hand, the magnetic field shows a variance over the Earth surface

as depicted in Figure 2.4. At the sea level, the field is horizontal and the field

strength is about 30 T at the equator, while it becomes vertical with field strength

of 60 T around the poles. The magnetic field also varies over time in an

unpredictable manner due to inner dynamics of Earth’s core.

S

1. N



13

4

2

B

1 : Dipole Axis

2 : Geomagnetic

     Equator

3 : Earth’s

Rotation

     Axis

4 : Equator

 : 11.3
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Figure 2.4 Magnitude of the Earth’s Magnetic Field

The International Geomagnetic Reference Field (IGRF) model is developed

by the International Association of Geomagnetism and Aeronomy (IAGA) [3]. The

IGRF model gives useful approximations on the Earth’s surface and up to a certain

altitude where the Earth’s magnetic field is still the dominant field. The IGRF is a

series of mathematical models of the Earth's main field and its annual rate of change.

At any one time, the IGRF specifies the numerical coefficients of a truncated

spherical harmonic series. At present the truncation is at n=13, so there are 195

coefficients. The IGRF model is specified every 5 years, for epochs 1900, 1905 etc.

The latest IGRF model specified is thus the IGRF 2005, which is implemented in

this study.

The magnetic field is the negative gradient of a scalar potential V which can

be represented by the truncated series expansion:

 
 


max

1 0

)()sin)(cos)(()(),,,(
n

n

m

m

n
m

m
n

m
n Pmthmtg

r

R
RtrV  (2.26)

where r, θ, λ are geocentric coordinates (r is the distance from the centre of

the Earth, θ is the colatitude, i.e. 90° - latitude, and λ is the longitude), R is a

reference radius (6371.2 km); )(tg m
n and )(thm

n are the coefficients at time t and

)(n
mP are the Schmidt semi-normalized associated Legendre functions of degree n

and order m. The main field coefficients are functions of time and for the IGRF the
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change is assumed to be linear over five-year intervals. The Matlab code for the

model which provides the field direction and strength for a given time and location is

presented in Appendix.

2.3.4. Disturbances

2.3.4.1. Gravity Gradient Torque

Earth’s gravitational force over a satellite varies during the orbit and presents

disturbing moments on the satellite. If we consider the general situation, satellite can

be assumed as a nonsymmetrical object of finite dimensions. In reality there is no

uniform gravitational field and the gravitational torque varies during the orbit.

However, for the sake of simplicity a spherical Earth is assumed. In addition, the

moment of inertia tensor is known for an arbitrary reference frame. For a unit mass

element of satellite idm , which is located in iR  distance from the geometric center,

the acting gravitational force idF can be defined as; [1]

`
3

i

ii
i

R

dmR
dF


 (2.27)

Where  = GM = 3.986005 2

31410
s

m  .

The torque about the geometric center can also be defined at ir  distance from the

geocenter as;

iiiii dFrdFrdN  )( (2.28)

Figure 2.5 Torque about the Geometric Center

By integrating (2.28), the gravity gradient torque can be obtained as;

Center of Mass
Body Reference Frame

Ri

RS

ir

ir
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3
)(ˆ

i

ii
iiiGG

R

dmR
rdFrN





  (2.29)

The relation between iR  and SR  is;

iSiSi rRrRR   (2.30)

For an artificial satellite iiSi rrRR   . Therefore;

2

3

2

2

2

22

3
3 )().(2

1).(


























 





s

i

s

iS
siii

R

r

R

rR
RRRR


(2.31)

By Using Binomial Expansion;











 
 

2

33 )(3
1

s

iS
Si

R

rR
RR


(2.32)

If we define M as the total mass of the satellite the gravity gradient torque

can be rewritten as;

iSiSi

S

S

S

GG dmRrRr
R

R
R

M
N   )ˆ.)(ˆ(

3
)ˆ(ˆ

32





(2.33)

By the definition of the center of the mass 0 ii dmr . Assuming the

geometric center and the center of mass are at the same point,  will be equal to zero,

=0. By these assumptions the gravity gradient torque can finally be written with

respect to moment of inertia tensor as [1];

 )ˆ.(ˆ3ˆ
3 ss

EARTH

GG RIR
R

N 


(2.34)

SR̂  vector is always in nadir direction and instead of SR̂  we can use 0ẑ  nadir

unit vector in body coordinates;

 TAAAz 3323130ˆ 

















ZZZYZX

YZYYYX

XZXYXX

III

III

III

I

 )ˆ.(ˆ3ˆ
003

zIz
R

N
EARTH

GG 

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






























































 ).(

3

33

23

13

33

23

13

3

A

A

A

III

III

III

A

A

A

R
ZZZYZX

YZYYYX

XZXYXX

EARTH

























































332313

332313

332313

33

23

13

3

3ˆ

AIAIAI

AIAIAI

AIAIAI

A

A

A

R
N

ZZZYZX

YZYYYX

XZXYXX

EARTH

GG


(2.35)

For cross product we can use the Dyad notation;

 TAAAz 3323130ˆ 






















0

0

0
~

1323

1333

2333

0

AA

AA

AA

z (2.36)

Finally the gravity gradient torque acting on the satellite in matrix form is;



























































332313

332313

332313

1323

1333

2333

3
.

0

0

0
3ˆ

AIAIAI

AIAIAI

AIAIAI

AA

AA

AA

R
N

ZZZYZX

YZYYYX

XZXYXX

EARTH

GG


(2.37)

2.3.4.2. Magnetic Torque

The magnetic torque acting on the satellite is simply the cross product of the

satellites magnetic field and the Earth’s magnetic field. The satellites magne tic field

is composed of the magnetic dipole vectors of the control magnetorquers and other

magnetic disturbances in the satellite. The magnetic disturbance torques is ignored,

as they are negligibly small with respect to the other major torques affecting the

satellite.

2.3.4.3. Other Disturbance Torques

There is also a number of other disturbance torques acting on the satellite.

Following are the relatively important disturbances; however they are negligible for

applications similar to the one considered here and they are all ignored in our model.

 The tidal forces created by the earth-moon system creating gravity

torques,

 Torques due to solar wind and electromagnetic particles, thus solar

pressure,
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 Atmospheric drag for LEO satellites,

 Magnetic toques generated by the electric components on board the

satellite.

2.4. Sensor Modeling

Figure 2.6  Sensor Models Simulink Diagram

The attitude information can be obtained from sensors such as

magnetometers, Sun sensors and star trackers. In this thesis, magnetometer model

which use the IGRF 2005 magnetic field model is modeled to acquire the attitude

rates of the satellite during the detumbling mode. Magnetometer measurements are

used for the rate filter block during the detumbling phase. Sun sensors are modeled

to obtain the azimuth and elevation angles and transformed into attitude angles.

However, the measurement data that is generated by the sensor models are not used

for the rate estimation during the control modes and the theoretical angular rate that

is produced from the satellite dynamics simulator block is used for the maneuvers.

2.4.1. Magnetometer Modeling

The IGRF model that is examined section 2.3.3 is used for generating the

magnetometer outputs. The approximate magnetic field model that is a simplified

dipole model of Earth Magnetic field is also usable to compare the results with the

IGRF model. The Figure 2.7 shows the results of dipole model that use just one

harmonic coefficient.  As it seen from the Figure 2.8, IGRF model use Greenwich

Mean Sidereal Time value, the radius vector of the satellite and the IGRF model

epoch time. Normalized values of magnetic field are also used for the usage of

controllers as it seen from Figure 2.10. The noise is added to the magnetic field
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vector that is estimated in ECI frame to simulate the real magnetometer data for the

convenience. The magnetic field components in ECI and ECEF frames can be seen

from the Figures 2.11 to 2.12. 3 T noise is considered for the magnetometers.

Figure 2.7  Magnetometer Model Simulink Model



20

Fi
gu

re
2.

8 
 M

ag
ne

tic
 F

ie
ld

 V
ec

to
r 

w
rt

 B
od

y 
Fi

xe
d 

Fr
am

e 
(I

G
R

F 
M

od
el

 w
ith

 n
oi

se
)



21

Figure 2.9  Magnetic Field Vector Estimated By Approximate Model wrt Body

Fixed Frame
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Figure 2.11  Magnetic Field Vector wrt ECEF Frame

Figure 2.12  Magnetic Field Vector wrt ECI Frame
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2.4.2. Sun Sensor Modeling

Figure 2.13 Satrec Initiative FSS_05 Analog Sun Sensor

In this thesis, Satrec Initiative Sun Sensor FSS-05 is based for modeling. The

main characteristics of these sensors are given in Table 2.4. Sun Sensors provide

more accurate attitude measurements than the magnetometers. The only period that it

can not be used is the eclipse phase. In most cases, the Star Trackers are not used

apart from the imaging periods and the Sun Sensors are the most accurate sensors for

approximately 1 hour of  the 97 minutes Sun synchronous orbit. In this work, Sun

sensor simulation blocks generate azimuth and elevation signals of the Sun wrt their

own reference frame just like the real case. [10]

Table 2.4 Satrec Initiative FSS-05 Sun Sensor Specifications [10]

Sensor Type 2 axis Analog Sun Sensor

Field of view ±60º (each axis)

Accuracy 0.5º (after calibration)
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2.4.2.1. Sun Position Vector Estimation

Sun position vector is estimated by using Julian Century input, wrt ECI

(Earth Centered Inertial Frame). For the simulation, “Simulation Manager” block

provides all the necessary data for all other blocks such as Julian Century. After the

beginning of simulation from a definite epoch time, the time is propagated and Julian

Century is estimated wrt this information. Vallado’s algorithm is used for estimation

of Sun position vector. [8]. The results that are obtained from that algorithm are

checked by the STK® software.

2.4.2.2. Transformation of Sun Position Vector to Satellite Body Frame

The position vector of the Sun is needed in satellite body frame for

convenience. After the estimation of the Sun vector wrt ECI (Earth Centered Inertial

Frame), this vector is transformed to the ECEF (Earth Centered Earth Fixed Frame).

The ECEF components are then transformed to Satellite Body frame. The final step

is to transform the position vector into sensor frames so that it is possible to simulate

each Sun sensor signal separately.

2.4.2.3. Eclipse Times Estimation

The eclipse times are estimated by using Satellite’s position vector and Sun

Position vector. Sun sensor measurements are simulated as “not available” during

eclipse period. Apart from the satellite eclipse, the regions where the Sun Vector is

not available for some sensors is simulated in Sun Sensor blocks. The eclipse flag

which defines the eclipse period is given in Figure 2.16.

2.4.2.4. Sun Sensor Simulators

 Sun Sensor simulator blocks simply generate the azimuth and elevation

signals from the necessary inputs. They contain all the characteristics of the Sun

sensors such as the orientation information, physical structure, field of view limits

and noise levels.

2.4.2.5. Installation Matrix of the sensors

Installation matrix consist of the angles of direction cosine matrix which

defines a transformation between Satellite body frame and each sensor frames. There
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are two conditions for the installation matrix: the ideal case in which angles are

desired installation values and the real case which involves the integration errors.

The angels of the real case are determined by the sensitive measurement apparatus.

The coordinate system of each sensor is designated from this definition: The

axis which is perpendicular to the measurement plane is +X, the axis which lies from

azimuth slit’s long edge to the elevation slit is +Y and the axis which could also be

found from the right hand rule and lies in azimuth slit long edge to the down of the

sensor is defined as +Z axis.

2.4.2.6. Sensor limits and Field of Views

There exist four Sun sensor on the Satellite. Sun sensor limit parameter

defines the field of view of each sensor for the limit values. Unfortunately these

values are not accurate enough in near the boundary regions. Because of that

situation, the sensor limits are defined with field of view parameter. For instance the

limit values of Bilsat’s Sun sensor are given as 60 degrees but effectively these

sensors obtain 55 degrees field of view.

2.4.2.7. Sensor blocks

Every Sun sensor model is evaluated from the same algorithm. The only

difference between each sensor is their installation matrices. In Matlab simulation,

the algorithm that exists in S function form, transforms the Sun position vector

components into sensor frame components by using installation matrices with the

order of “3-2-1” sequence. By using the Sun vector components azimuth and

elevation values are estimated from the equation 2.38.

   XY RRaAzimuth \tan\180 

   XZ RRaElevation \tan\180   (2.38)

For the next step, the estimated values are checked whether they are inside

the sensor field of views or not. The reason for that is, even the satellite is not in

eclipse phase some sensors may not be inside the Sun’s field of view because of the

geometric constraints of the sensors.
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In real case, all the analog sensors on the satellite are connected to the ADCS

board. ADCS board communicates with the OBC (Onboard Computer). All Sun

sensors on Bilsat provide 4 measurement signals. Sensors are physically composed

of two diagonally symmetric triangle CCDs for each slit. The 2 CCDs under the

azimuth slit generates the “Azimuth A” and “Azimuth B” channel signals. Likewise,

2 CCDs under the elevation slit generates “Elevation A” and “Elevation B” channel

signals. In simulation mode, azimuth and elevation signals are converted into

azimuth A&B and elevation A&B signals for creating a real case condition. Thus,

the signal that is obtained from the Sun sensors in real case and the simulation case

can be compared for the convenience.

2.4.2.8. Simulation Results

The Simulink block of the Sun sensor simulation is shown in Figure 2.14.

The signals obtained from the Sun sensor simulator blocks are compared with the

real sensor data and the simulation is verified. However, the sensor data does not

give a clear physical understanding for simulation purposes. Thus, the results of

Flight code simulator that are the elevation and azimuth angles are used. Flight code

simulator consists of a Sun sensor head selection algorithm so that azimuth and

elevation angle of the Sun is estimated from the appropriate Sun sensor by

considering the field of view of each sensor. The azimuth and the elevation angles

that is obtained from the beginning of the simulation epoch, is given in Figure 2.15.

Selected Sun sensor heads is shown in Figure 2.17.
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Figure 2.15 Simulation Results of Azimuth and Elevation Angles

Figure 2.16 Eclipse times during the simulation
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Figure 2.17 Selected Sun sensor heads for estimation

2.5. Actuator Modeling

2.5.1. Magnetorquer Modeling

In this thesis, SSTL magnetorquer MTR-10 is based for modeling. The main

characteristics of the magnetorquer are given in Table 2.5 [11]. Magnetorquer

consist of two coils per each which could be energized together or alone. The main

purposes of this are redundancy and extension of the generated torque level.
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Table 2.5 MTR 10 Magnetometer Specifications [11]

Magnetic Moment  6.24Am² @ 100mA  3½ %  ( 2 coils active )

Scale Factor 0.062.4 Am²/mA  1%

Linearity ±5%  ( Range :  130mA  )

Residual Magnetic Moment <  0.1Am²

10 Am² Drive Current 100mA  1.5% @ 5Am²

Temperature >50  @ -30º C

<80  @ +25º C

Inductance < 1.6 mH @ 25º C

Isolation > 107  @ 50 Volts

Weight 500  10 grams

In design process using magnetorquers, the current or generally speaking

power consumption is the key parameter from ADCS hardware point of view.

Related with the current, the resistances of the coils are chosen according to desired

torque. In dynamic perspective, magnetic moment parameter describes the torque

potential of the magnetorquer and it represents the control capacity. The magnetic

moment is calculated from the current and the scale factor parameters as in equation

2.39.

SIM D  (2.39)
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Figure 2.18 MTR 10 Magnetorquer

As it seen from equation 2.39, the magnetic moment is proportional to the

control torque of the magnetorquer. This linear relation is valid up to 6.2 Am2. The

torque that is obtained from the magnetorquer can be increased beyond this range but

a nonlinear relation exists.

For a detailed model, temperature effect to the coil resistance and the drive

voltage may be taken into account when calculating the exact value of magnetic

moment. [11]


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
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SIM (2.40)

M magnetic moment (Am²)

I current (mA)

S scale factor (Am² / mA)

V voltage (V)

R resistance @ 20°C

T temperature of the coil (°C)

R/T resistance change rate wrt temperature change

rate (/°C)
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The torque that is generated by the magnetorquer is dependant of Earth’s

Geomagnetic Field which changes over the orbit of the satellite. In this thesis, IGRF

model is used to simulate the magnetic field of the Earth during the orbit. From the

average values of the magnetic field vector the maximum expected magnetic field

value, in the Sun synchronous orbit of 686 km, is 48 T . The generated, IGRF based

magnetic field components for the nominal mode of the satellite is given in Figure

2.8. The maximum magnetic moment that can be generated by the magnetorquer is

limited to 5 Am2. The torque during the orbit is then calculated as in equation 2.41.

BmN M


 (2.41)

[Nm] = [A.m2].[Tesla]= [A.m2].[weber / m2] = [A].[V.s] = [Watt.s]=[N.m]

The maximum torque that can be obtained from the magnetorquer is 2.4* Nm410

over the poles at a 098 inclined orbit.

In real case the magnetorquer is a magnetic moment generator. The generated

magnetic moment is proportional to the current. In pulse width modulation the driver

voltage and the applied current are constant. The only parameter that is changed by

the ADCS hardware is the time fraction. Magnetic moment is calculated by the

ADCS software and corresponding time fraction value is sent to the ADCS

hardware. The symmetric pulse width modulation is fulfilled by the software that is

embedded into ADCS module and the current direction is defined by that software.

In simulation mode, the magnetorquer is modeled as a magnetic moment

generator which forms first order delay by using an exponential function. The

magnetorquer controllers that are used in the simulation generate continuous

magnetic moment signals. In real case the delay of current is shown in Figure 2.20

and the delay function of the current is given in equation 2.42.
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Figure 2.19  Magnetorquer Simulink Model

Same approach can be used for the magnetic moment that is proportional

with the current and the magnetorquer forms an exponential delay in magnetic

moment. The delay function is given in equation 2.42.

 
 









 




Tsampletsim
t

commanded
t

commanded
t

real
t

real eMTMTMTMT 1.11 (2.42)

The time constant of the exponential function is calculated from the physical

system properties that are defined as inductance over resistance of the coil. For the

simulation model inductance is used as 1.64mH and the resistance is 50.6 ohm [11].
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Figure 2.20 Magnetorquer Effect

s
mH

R

L
T 32.0

6.50

64.1



 (2.43)

The figure shows the time delay effect of commanded step signal so the

magnetic moment values are not the values used in real simulation. The figure only

represents the exponential delay to model the magnetorquer response.

2.5.2. Reaction Wheel Modeling

2.5.2.1. Reaction Wheel Configuration

In order to compose a simple control system, it is possible to use three

reaction wheels orthogonally located in the satellite where each rotation axis is

aligned with one of the satellite body axis. Although this simple scheme is good

enough to control the satellite, in a condition such as a single wheel malfunction, 3-
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axis control of the satellite will not be available. For this reason a fourth wheel is

usually added to the system in a tetrahedral configuration. Thus redundancy is

obtained by using the fourth wheel. [12]

Figure 2.21 Reaction Wheel Configuration

Another advantage of the tetrahedral configuration is the chance to produce

in a direction normal to any face of the tetrahedral, twice the amount of torque that

can be produced in orthogonal configuration. This is achieved by increasing the spin

rate of three of the wheels in the same direction while decelerating the fourth wheel

(or accelerating in the opposite direction and vice versa). From the geometry, the

torque generated by three wheels will be in the same direction with the fourth wheel

axis.

Figure 2.22  Side views [2]
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Figure 2.23 Tetrahedral Geometry [2]

The angular momentum of the wheels and the torque generated must be

projected from the tetrahedral frame to the orthogonal frame of the satellite in order

to be included in the equations. As it is seen in Figure 2.22, from the different

perspectives of views there are two main characteristic angles that defines the

tetrahedron. Firstly, if we check the bottom view, the projection is equilateral

triangle and angle between any side and the direction that connects the center with a

corner of this side is 030 . Angle between bottom plane and the center of tetrahedron

is 04712.19 . If we assume an orthogonal reference frame center of which

coincide with the tetrahedral reference frame, we can define a transformation matrix

between the tetrahedral axes and the orthogonal axes by using the angles between

them.

4321 8165.08165.000ˆ TTTTT XAxis 

4321 3333.03333.03333.0ˆ TTTTT YAxis  (2.44)

4321 4714.04714.09428.00ˆ TTTTT ZAxis 






























































4

3

2

1

4714.04714.09428.00

3333.03333.03333.01

8165.08165.000

ˆ
ˆ
ˆ

T

T

T

T

T

T

T

ZAxis

YAxis

XAxis

(2.45)



38

Here, the transformation matrix between the tetrahedral frame and orthogonal

frame, WA , is not a square matrix and can not be inverted using classical methods.

Therefore, an optimization criterion must be assumed to construct the inverse matrix.

If we define the Hamiltonian H as the norm of the T vector according to Wertz [1];





4

1

2

i
iTH (2.46)

Also ;

21
ˆ TTT XAxis 

42
ˆ TTT YAxis 

4321
ˆ TTTTT ZAxis  (2.47)

defining g for simplification;

XAxisTTTg  ˆ
311

YAxisTTTg  ˆ
422

ZAxisTTTTTg  ˆ
43213    (2.48

so that the Lagrangian is;

44332211 ggggHL   (2.49)

The conditions for minimizing the H are;

02 311
1





T
T

L

02 322
1





T
T

L

02 313
1





T
T

L

02 324
1





T
T

L
(2.50)

By the derivation of the final situation:

4321 TTTTT  (2.51)

After the optimization the new transformation matrix is;
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So the inverse matrix could be found easily as;
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Pseudo Inverse may also be used to obtain the same result :
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2.5.2.2. Reaction Wheel Model

The angular momentum, h, and relevant torque, h , of a rigid body with an

inertia tensor of I, spinning at a rate  , is given by;

Ih   Ih  (2.54)

A reaction wheel is basically a rigid disc spun by an electric motor. Thus the

angular acceleration of a reaction wheel is proportional to the current, i, driving the

electric motor. Then the relevant torque of the reaction wheel can be determined as:

i Then,

iIh  or )(tuIh  (2.55)

Where )(tu  is the input.

Integrating the relation in Equation (2.55) and taking Laplace transform, the

transfer function of a reaction wheel will be in the form of,

  )()( su
s

I
tuILTFRW   (2.56)

Furthermore, the response of the electric motor, )(sRmotor , together with

internal friction torques must be taken into account:
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





 )()( su

s

I
sRTF motorRW (2.57)

The response of the electric motor, )(sRmotor , was obtained using the discrete

model the developed for the reaction wheels onboard BILSAT which gives the

torque generated, to a given angular momentum as input;

1

1.24.2




 z

z
TF

hh  (2.58)

Finally, taking angular momentum as input to Equation (2.57) and, including

Equation (2.58), the model for a single reaction wheel is given in Figure 2.24. The

reaction wheels are assumed to be controlled with angular momentum inputs.

Figure 2.24 SIMULINK Reaction Wheel Model

Next step is to control the momentum and torque of the wheel so as to avoid

momentum and torque saturation to generate torque continuously. For this purpose,

two saturation blocks were added to the model. Additionally, the difference between

the torque required and the torque available to the wheel, and the difference between

the angular momentum required and the angular momentum available to the wheel

are fed back in a Proportional-Derivative (PD) control manner.
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Figure 2.25 Reaction Wheel Model with Saturation Control

Using the transformation matrices found in Equations 2.52 and 2.53, the

model for the reaction wheel configuration becomes;

Figure 2.26 Model For the Reaction Wheel Configuration
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CHAPTER 3

3. BASIC ATTITUDE CONTROL MODES

In this section two basic control modes are presented. The first one is the

detumbling control using magnetorquers. The other one is the nominal three-axis

control through reaction wheels. The desaturation of the reaction wheels is also

presented.

3.1. Detumbling Control Mode

After the satellite is separated from the launch capsule, the satellite is almost

always a tumbling object in its particular orbit. First, the flight computer boots up

and all the necessary functions such as ADCS task begins to work and satellite is

brought under control. The first control mode that is activated in the satellite is the

detumbling control mode that tries to stop the tumbling motion. In this mode only

the magnetometer measurements are used for the attitude rates and magnetorquers

are used as actuators. The main purpose is to put the satellite in locked rotation

around the Earth. The attitude estimation is not very accurate because of the

inaccuracy of the IGRF model and the magnetometer measurements.

Although the satellite has 3 magnetorquers, only Y axis magnetorquer is used

to damp the angular rate around X and Z axis. After the detumbling mode the

satellite Y axis spin rate is controlled for the nadir pointing attitude.

3.1.1. B-dot Control

B-dot controller is the most common control algorithms used to stabilize

spacecraft with magnetorquers [13]. The main goal is to activate a magnetorquer to

damp out the other orthogonal axes angular velocities (X and Z axes in this case).

The law can be described as:
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idi BKM  (3.1)

Where dK  a positive controller gain is iB  is magnetic field i-component

vector in the body coordinate system of the satellite. According to Yoshi [13], “ iB

stands change rate of the thi  component of magnetic field vector with the time and

with respect to body axis coordinate system.” The negative sign is to generate a

rotation in the opposite direction. In this thesis the same approximation is made for

the iB  as the Yoshi [13] which defines the iB  as the difference between the magnetic

field vector component in firing magnetorquer axis over time interval:

t

BB
B kiki

ki 


 1,,

,
 (3.2)

Where t is the sampling period. For more exact approximation following

smoothing may be applied[13].

1,,, )1(  kikiki BsBsB  (3.3)

Where B is smoothed measurement and s is in the range of 10  s . In our

simulation s is taken as “0.9”.

Wisniewski et al [14], describe B-dot controller principle as

minimizing the derivative of the magnetic field vector measured by a magnetometer.

The controller generates a dipole moment that is perpendicular to the magnetic field.

Without using any cross product, B-dot controller tries to minimize changes in the

magnetic field that is caused by the spacecraft rotation and the reason is that the

derivative of the magnetic field is perpendicular to the field vector. [13]

3.1.2. Stability of the B-dot controller

Yoshi [13] proves the Lyapunov stability of the B-dot controller by assuming

the time derivative of magnetic field vector as a negligible quantity or satellite

tumbling rate is “larger than the rotation rate of the Earth magnetic field vector in

some inertial frame”. This assumption can be asserted as:

BB
dt

Bd

dt

Bd
BIBI

B












 (3.4)
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The change in rotational kinetic energy derivative may be written as [13]

BIBII 
  (3.5)

By using cross product control law derivative of rotational kinetic energy can be

rephrased as;

  MBmBBMNINT BIBIBIBIBIBI


  )()(  (3.6)

If the control input is chosen as BKMTcontrol


  then the time derivative

of rotational kinetic energy is given as [13]:

0
2
 BK  (3.7)

Since, the equation 3.7 is negative definite, Wisniewski et al [14], the energy

is dissipated from the system in detumbling mode. The rate of energy dissipation is

determined by the gain, K.

3.1.3. Simulation Model for B-dot Controller

Figure 3.1  B-dot Estimator Simulink Diagram
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In Figure 3.1 it is seen that, the detumbling object is being controlled to

desired attitude after one day period. The time is constrained with the capacity of

magnetorquers and in this case BILSAT magnetorquer which has 6.2 Am2 magnetic

moment capacity is used in the simulation. The magnetic moment that is commanded

by the controller for the magnetorquer model is shown in Figure 3.2.  The Simulink

diagram of the B-dot controller is given in Figure 3.5.

The initial value of the satellite tumbling rate is 0.1 radian per second in each

axis. The initial attitude is taken as “0” degrees in each axis also. The Euler rates wrt

satellite body frame are less than 0.005 deg/sec. As it seen from the Figure 3.2, Y

magnetorquer is capable of controlling the satellite tumbling rates. Because of the

cross coupling elements of the inertia matrix, the body angular rates in all three axes

are reduced. The Y magnetorquer can only damp out the X and Z axis so a Y spin

controller is needed for the desired nadir point up (i.e. Locked Rotation).

The magnetic torque generated by the magnetorquers is obtained by the

interaction of magnetorquer dipole with the Earth’s magnetic field. By implementing

the basic cross product law the torque in satellite body coordinate frame can be seen

in Figure 3.3. DK Control gain is taken as 10.

The magnetic moments that are generated from magnetorquers and the

torques applied to the satellite are shown in Figure 3.3 and 3.4.
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Figure 3.2  Attitude rates of the satellite during detumbling mode

Figure 3.3 Magnetic moment that is commanded for the magnetorquers
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Figure 3.4 Torques generated by magnetorquers
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3.2. Nominal Control Mode: 3 Axis Attitude Control

As illustrated in Figure 3.1, the attitude control problem requires the control

of the reaction wheels to steer the satellite to the desired attitude.

Given the fact that quaternions have no geometric singularity, the satellite

kinematics is commonly implemented in quaternions and also used in this thesis. The

attitude error is defined as the difference between the desired attitude and the current

attitude, again with respect to orbital frame due to mission requirements.

Reference [15] suggests three quaternion feedback control laws, which are

proved in terms of closed loop stability for 3-axis control using the Lyapunov

stability theorem. These control laws are;

Orbit
Propagator

Environment
Model (IGRF)

Satellite
Dynamics

Satellite
Attitude

ControllerActuator
(Reaction Wheels)

Desired
Attitude

Orbit
Propagator

Environment
Model (IGRF)

Satellite
Dynamics

Satellite
Attitude

ControllerActuator
(Reaction Wheels)

Desired
Attitude

Figure 3.6 Attitude Control through Reaction Wheels

 errdvecpcontrol KqKT 




 errd
e

vec
pcontrol K

q

q
KT 





3
4

 errdvecpecontrol KqKqsignT 


 )( 4 (3.8)

Where:

pK and dK :  the appropriate gains of the control laws
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err :  the difference between commanded angular velocity and estimated angular

velocity wrt body fixed frame of the satellite.

And errq


 and vecq


are:

 eeeeerr qqqqq 4321
 (3.9)

 eeevec qqqq 321
 (3.10)

In this model the control law given in Equation (3.8) is employed for its

simplicity, which is simply a proportional plus derivative (PD) control since q and

 are related. Angular momentum output of the controller is;

errDvecPcontrol KqKT 


 (3.11)

The resulting SIMULINK Block for the reaction wheel controller is

presented in Figure 3.7.

Figure 3.7 Reaction Wheel PD Controller

If we examine the two parts of a PD controller; a proportional controller

( PK ) has the effect of reducing the rise time and will reduce but never eliminate, the

steady-state error. A derivative control ( DK ) has the effect of increasing the stability

of the system, reducing the overshoot, and improving the transient response. Effects

of each of controllers PK , and DK  on a closed-loop system are summarized in Table

(3.1), however these coefficients are coupled in the controller and change in one

coefficient will also alter the other coefficients effects.
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Table 3.1 PD Control Strategy

System

Response
Rise Time Overshoot Settling Time

Steady State

Error

Kp Decrease Increase Small Change Decrease

Kd Small Change Decrease Decrease Small Change

3.2.1. Desaturation of Reaction Wheels by Magnetorquers

Orbit
Propagator

Environment
Model (IGRF)

Satellite
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Satellite
Attitude

Controller
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(Reaction Wheels)
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Hold

Actuator
Magnetorquer

Orbit
Propagator

Environment
Model (IGRF)

Satellite
Dynamics

Satellite
Attitude

Controller

Desaturation
(Reaction Wheels)

Attitude
Hold

Actuator
Magnetorquer

Figure 3.8 Magnetorquer Control for Reaction Wheel Desaturation

The desaturation of reaction wheels process means simply slowing down or

speeding up of the reaction wheels to their nominal rotational rates. However, these

speed changes will generate torques, affecting the satellites attitude. For this reason,

magnetorquers are used to hold the satellite in its current attitude while the wheels

speeds regulated. In the example below, the attitude is hold (zero Euler angles)

during the control scheme.

The torque generated by the magnetorquer coils are given by;
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EarthSatelliteControl BMT


 (3.12)

Where,

AinM c 


(3.13)

 zyx iiii 


 (3.14)

At first glance, it looks like the required control input direction, in terms of

the currents for each magnetorquer, can be determined from Equation (3.12).

However, cross product does not have an inverse operator, cross product of any

vector which lies in magnetorquer and magnetic field plane with the magnetic field

vector will be in the same direction with the required control input. In the case of

cross multiplication of A x B, there are many possible directions for vector B that

will give the same value for

A x B, in fact, any direction in the plane that is normal to A x B (except a

vector pointing in the same direction as A).

Figure 3.9 Control Current Direction Determination

From this, the cross product of the required current with the magnetic field

will lie in SatelliteM


- EarthB


 plane and can be used for the current direction. The

required current direction can be determined as;

Earth

EarthControl

B

BT

I

I









 (3.15)
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Now, a controller must be designed to control the magnitude of the currents.

Similar PD control law used for RW control is also implemented for the

magnetorquer control. On the other hand, the simulation results are nearly the same

as the way it was expected. This is due to the fact that, current Earth’s magnetic field

direction determines the available torque direction, which is, of course, not always in

the direction required in order to compensate the torques introduced by the reaction

wheels during desaturation. To test the success of this mode a simulation is carried

out. During simulation controller gains 2DK  and 3.0PK as shown in Figure

3.10 is used.

Figure 3.10 Magnetorquer PD Controller

Desaturation mode simulation results are given below from the Figure 3.11 to

Figure 3.14. In this simulation the roll attitude is commanded to 100 degrees while

yaw and pitch attitudes were kept at zero degrees. The resulting attitude during the

operation may be observed from the Figure 3.11

Figure 3.12 gives the reaction wheel torques. These are due to the torques

generated while bringing the wheel speeds to their nominal values. Figure 3.13 gives

the magnetic torques applied to the magnetorquers. Finally Figure 3.14 shows the

reaction wheel speed. From this figure it may be observed that the wheel speeds have

reached their desired nominal velocities.
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Figure 3.11  Euler Angles during desaturation mode

Figure 3.12  Reaction Wheel Torques in Nominal Mode
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Figure 3.13  Magnetic Torques in Nominal Mode
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CHAPTER 4

4. ACTUATOR FAILURE COMPENSATION THROUGH

CONTROL ALLOCATION METHODS

4.1.  Literature Survey

Actuator failures in LEO satellites play an important role for the success of

the missions. In recent years, literature on the issues related to the actuator failures,

has increased. Although the controllability and stability issues for providing

sufficient control with one, two and three independent control torques are studied in

the literature, the actuator failure compensation through control allocation is not very

common.

Tsiotras and Doumtchenko [17] considered one actuator failure case to solve

the problem of detumbling with simultaneous attitude stabilization about the

unactuated axis and focused on the stabilization problems. Time-varying and time-

invariant feedback controllers are designed for the stabilization of rigid spacecrafts

during the actuator failures. Gas jet actuators are used for the stabilization of the

spacecraft. Feasible trajectory generation is also covered for the attitude tracking

problems.

Li and Zhang [18] investigated the failure of one reaction wheel of total four

and proposed a new reconfiguration structure for the controller using a predictive

filter. In this thesis, it is assumed that the actuator failures are diagnosed by the

operators and the controllers are reconfigured according to this basic knowledge and

the flight code is uploaded from the groundstation. Li and Zhang suggested a fault

diagnosis condition to identify the actuator failures in real time and reconfigured the

controller.
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Roberts et al.[19] has shown that three axis control is achievable with two out

of four reaction wheels and three magnetic torque bars. A new orthogonal coordinate

system which decouples reaction wheel and magnetic control torques from each

other, was proposed. Control torques generated by the magnetorquers are

reconfigured by modifying the control algorithms for momentum unloading of the

reaction wheels and the control modes and also the PWM cycle is reduced to a 3

seconds time interval from 10 seconds range. Finally the predictive techniques are

applied for the cases that the available torque is not sufficient for the pointing

control.

In the recent work of Sakai et al [20], three magnetic torquers and one

momentum wheel are used as actuators for the three-axis attitude control. Magnetic

torquers are used to generate control torque in two axes and the control of the third

axis is assured with a momentum wheel. The singularity case is defined as the point

that one of the magnetic field components is zero during a period in satellite orbit.

Pseudo inverse and singularity robust inverse are used to solve the control allocation

problem and to apply the linear feedback controller. In addition, some anti-windup

methods are applied to cover the unstable behaviors and a new feedback controller is

designed.

Tekinalp and Yavuzoglu [5] have proposed a new inverse kinematics

algorithm called Blended inverse, which provides singularity avoidance and quick

transition through CMG clusters internal singularities during attitude maneuvers. The

maneuvers are either carried out by planning the gimbal trajectories in advance or by

disturbing the gimbals at a singularity.

Ge et al. [21] presented a new approach by using genetic algorithm for the

optimal control of the nonlinear satellite systems using only two of the total three

reaction wheels after a reaction wheel failure. Ge applied the steering problem

solution to a drift free control system when the total angular momentum of the

system is zero. Steering of the spacecraft is obtained by genetic algorithm.

Boskovic et al [22], has shown the failure detection and identification and

adaptive reconfigurable control stability in the presence of actuator failures. The

spacecraft is modeled as a rigid body and six thrusters are assumed as the torque

sources in three axes. The failure modes are modeled to compensate for the effects of
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the failure of the each thruster. The types of the failures are described according to

some assumptions that control objectives are accomplished and the global stability of

the proposed techniques is proved.

Barnes et al [23], proposed attitude control system software which is

“integrated with a control mode manager that dictates which software components

are currently active. Control mode changes are performed by that mode manager

component or by a manual command. Actuator failure is checked with Failure

Detection and Handling algorithm that monitors the health of Y-axis reaction wheel.

Large angle maneuvers using two reaction wheels in case of Z-axis reaction

wheel failure is examined by Hodgart et al [24]. Nonlinear, time invariant, and

discontinuous control approach is proposed to accomplish the stability and slewing

in 3 axes is performed without transient oscillations.

Pseudo-Inverse method for the reconfigurable controller systems is

investigated by Gao et al [25]. By using Modified Pseudo-Inverse, “closed-loop

stability is maintained while recovering the performance as much as possible” and all

the stability conditions are analyzed.

Jayaram et al [26], presented a model based actuator fault detection. The

stability-based measure to diagnose an actuator failure is proposed by using

Lyapunov functions as a robust control method. In an actuator failure case, “Kalman

filter is used to compute the state matrix.”

Bogh et al [27], designed “Failure Mode and Effect Analysis” for all sensor

and actuator systems in the satellite. Potential faults of the magnetic coils are

examined and coil driver malfunction problem is considered for the simulation of

detumbling control of the satellite.

In this thesis pseudo inverse (Moore–Penrose generalized inverse) and

blended inverse algorithms are used and compared with each other as control

allocation methods.
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4.2. Control Allocation Methods

Inverse of a rectangular control input matrix with Pseudo inverse can be defined

as:

  desired
TT

pseudo TJJJU
1

  (4.1)

Where pseudocontrol UJT .  and J is the Jacobian matrix.

This equation becomes singular when J loses rank and the inverse does not exist.

The Jacobian matrix for three magnetorquers aligned in three axes of the satellite

body frame and four reaction wheels that are mounted in a tetrahedral configuration

may be written as follows:























4740.04740.09428.000

333.0333.0333.010

8165.08165.0000

xy

xz

yz

BB

BB

BB

J (4.2)

As it seen from the equation 4.2, J matrix has orbital location dependent terms,

that are magnetic field components. Every column in J matrix is associated by an

actuator. When one of the actuators fail or not, the new Jacobian matrix may be

found by removing the associated column. Some components of J  matrix becomes

zero during the zero crossings of magnetic field components.

The pseudo inverse given in the above equation gives the minimum norm

solution of the pseudoU  matrix. Since the components related to the magnetorquers

and those related to the reaction wheels have different magnitudes, a scaling is

necessary.

A mathematical expression of singularity conditions is necessary. Tekinalp [5]

proposes a singularity measure which is given in equation 4.3.

 TJJm det   (4.3)

This measure is taken in the simulations given below to identify the

singularities.

Blended inverse technique is proposed by Yavuzoglu and Tekinalp [5] for CMG

control allocation problems. Although Tekinalp et al [5] proposed the algorithm for
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singularity avoidance and or transition for CMG steering, the algorithm may also be

used for weighting the desired actuators against the undesired ones during maneuver.

This additional flexibility is also used in this study. Note that no singularity is

encountered when both magnetorquers and reaction wheels are used. Saturation type

singularities occur when the reaction wheels reach their maximum torque and

angular momentum limits or when some magnetic field components become zero

around pole passages.

Blended inverse algorithm can be given as:

  )()( 1
desired

T
desired

T
nn

T
nnblended TJUJJJIJIU   

 (4.4)

Where blendedU  is the control input matrix that is calculated by Blended inverse

algorithm, I  is identity matrix,  is smoothing gain for blended inverse that is

chosen as 0.01, J is Jacobian matrix, desiredU  is desired control inputs which allows

balancing between magnetorquers and reaction wheels. Moreover, it is possible to

decide which actuator will be used dominantly during the maneuver. In this thesis, it

is observed that the torque capacity of reaction wheels can not be used optimally

during the maneuvers and it causes unstable conditions around singularities. Thus the

magnetorquer gains in desiredU  vector are chosen greater than the reaction wheel

components. The desiredU  vector used for the simulations with one reaction wheel and

three magnetorquers is given as an example in equation 4.5.

 0.0053.13.13.1desiredU (4.5)

As it seen from the equation 4.5, the desired magnetorquer values are chosen

3.1, as half of the maximum magnetic moment limit of the magnetorquers. However

the desired reaction wheel component is chosen relatively very small.
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4.3. Actuator Failure Cases

4.3.1. Attitude Control by 3 Reaction Wheels

Tetrahedral geometry has some benefits for reaction wheel control. Each

normal vector of a tetrahedron surface represents a torque direction of a reaction

wheel. In most cases all reaction wheels locate in the same surface over the satellite.

Every wheel has wedges to form tetrahedral geometry. There are two main reasons

to choose the tetrahedral geometry.

In tetrahedral configuration, maximum torque output can be increased to

twice the maximum torque limit of a reaction wheel. Geometric projection of a unit

torque in each of three axes contributes a unit torque to that axis. Thus, using that

geometric property of the cluster, it is possible to generate more torque on each axis

than possible by a simple reaction wheel.

Another important reason to use tetrahedral configuration is for redundancy.

Basically, three reaction wheels that are mounted orthogonally are enough to

generate torques in 3 axes. The fourth reaction gives an overactuated system. Thus,

one wheel fail attitude control is not so different from the nominal 4 wheel control

mode.

4.3.2. Slew Maneuver with 2 Magnetorquers and a Y axis Reaction Wheel

In this mode 2 magnetorquers and a Y-axis reaction wheel are used as

actuators. Magnetorquers generate torques in two axes and Y wheel generates torque

in pitch axis only. First direct inversion is used to find the controls. The main

purpose of this simulation is to see the torque usage level of each actuator. The J

matrix for this mode can be given as:





















00

1

00

y

xz

y

B

BB

B

J  (4.7)
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Figure 4.1 Euler angles time histories after 200 commanded roll angle using blended

inverse in singular zone with two magnetorquers and a reaction wheel

The simulation results may be examined from Figure 4.1 to 4.4.

Mathematically there is no difficulty in taking the inverse of a square matrix. Again

the singularity is dependent on the magnetic field components. In this mode pitch

axis maneuver is achieved as it seen from the Figure 4.1.
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Figure 4.2  Magnetic Moments for 2 Magnetorquers and Y Wheel Mode

Figure 4.3  Magnetic Torques for 2 Magnetorquers and Y Wheel Mode
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Figure 4.4  Reaction Wheel Torques for 2 Magnetorquers and Y Wheel Mode

4.3.3. Slew Maneuver with 3 Magnetorquers and Y axis Reaction Wheel

In this mode, Y axis reaction wheel and 3 magnetorquers are used as

actuators. Y axis wheel can be considered as the most critical wheel for the

operational safety and control capabilities. The main reason is that the Y wheel

generates the pitch torque necessary for stereoscopic imagery maneuvers. Also the

pitch rate control that is necessary for nadir pointing is also assured by Y reaction

wheel.

Available torque capacity in Y axis is sufficient for a pitch maneuver.

However, necessary torque will be increased during a roll or yaw axis maneuver due

to gyroscopic moments. Because of the insufficient torque capacity in that axis, the

control torques generated by actuators will be compensated by the Magnetorquers.

Thus, the torques will be depended on varying magnetic field components. This

dependency may cause some singularities during the maneuvers.
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In this thesis the singularity term is used for some different meanings.

Mathematically it is the singularity of the Jacobian matrix.  Saturation singularity

term is also used when the actuators reach their available torque limits. During the

maneuvers, the points where the Jacobian matrix is singular (i.e. loses rank) are

called singular zones. This is possible when Earth’s magnetic field direction changes

at the Polar Regions.

For example in Figure 2.9, magnetic field Y component is zero at certain

locations. If a maneuver is planned at those locations, Jacobian matrix will definitely

be singular. Through pseudo inverse it is not possible to transit these singular zones.

These arguments are demonstrated in the following simulation. A roll maneuver of

200 which is perpendicular to Y axis is carried out to compare the pseudo inverse and

blended inverse.

Figure 4.5  A 200 roll maneuver with pseudo inverse at a singular zone
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Figure 4.6  Magnetic moments, Y axis reaction wheel torque and the singularity

measure during 200 roll maneuver using pseudo inverse algorithm in a singular zone

Three magnetorquers and Y-axis reaction wheel are used as actuators. In this

case the Jacobian becomes:











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
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xy

xz

yz

BB
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J (4.6)

First a 020  roll maneuver simulation is carried out using pseudo inverse. As

it observed from the Figure 4.5 pseudo inverse causes excessive rolls over 200

degrees. Moreover it is clear in Figure 4.6 that the Y reaction wheel reaches its

saturation limit for a while. The reason for this erratic behavior may easily be

deduced if the singularity measure given in Figure 4.6 is examined. At the beginning

of the maneuver the system is singular (i.e., m=0). In Figure 4.7 blended inverse

simulation results are given. It is clear from this simulation that the blended inverse

method provides a quick transition from the singularity zone despite the relatively
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high overshoot. For Figure 4.8 it may be observed that the singularity measure J * J’

is zero for 200 seconds but the blended inverse algorithm avoids the saturation of

reaction wheel (Figure 4.8). This smooth transition can be seen from Figure 4.7 and

Figure 4.8.

Figure 4.7  Euler angles during 200 Roll maneuver with blended inverse algorithm in

a singular zone
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Figure 4.8  Magnetic moments, Y axis reaction wheel torque and the singularity

measure during 200 roll maneuver using blended inverse algorithm in a singular zone

The above simulation is repeated this time commanding 200 degrees

maneuvers in all roll, pitch and yaw axis in the singularity zone as well. The pseudo

inverse algorithm results are presented in Figure 4.9 and 4.10. The erratic behavior

of the satellite is clear in these figures.

The simulation results of the same maneuver using the blended inverse

algorithm are presented in Figure 4.11 and 4.12. It may be observed from these

figures that the blended inverse algorithm is very successful. The Euler angles reach

the commanded values quickly and the reaction wheel is not saturated.

Ty z
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Figure 4.9  Euler angles time histories after 200 commanded roll, pitch and yaw

angles using pseudo inverse in a singular zone
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Figure 4.10  Magnetic moments, Y axis reaction wheel torque and the singularity

measure during 200 RPY maneuver using pseudo inverse algorithm in a singular

zone

Figure 4.11  Euler angles time histories after 200 commanded roll, pitch and yaw

angles using blended inverse in singular zone
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Figure 4.12  Magnetic moments, Y axis reaction wheel torque and the singularity

measure during 200 RPY maneuver using blended inverse algorithm in a singular

zone

4.3.4. 3 Magnetorquers and two Reaction Wheel Control Mode

Again, pseudo inverse and blended inverse methods are used for the

simulation. First, a 200 roll maneuver is carried out using pseudo inverse algorithm.

The results are given in Figure 4.13 to 4.16. Figure 4.13 gives the desired torques for

this maneuver. The resulting attitudes are given in Figure 4.14. It may be observed

that the roll attitude reaches 200 within 400 seconds. The satellite angular velocity,

magnetic moments, magnetic torques and reaction wheel torques are presented in the

remaining figures.
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Figure 4.13  Desired Torques for 2 Reaction Wheels and 3 Magnetorquers Mode

Figure 4.14  RPY for 2 Reaction Wheels and 3 Magnetorquers Mode
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Figure 4.15  Angular Velocity for 2 Reaction Wheels and 3 Magnetorquers Mode

Figure 4.16  Magnetic Moments for 2 Reaction Wheels and 3 Magnetorquers Mode
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Figure 4.17  Magnetic Torques for 2 Reaction Wheels and 3 Magnetorquers Mode

From the pseudo inverse simulation results, it is seen that the reaction wheels

are not used effectively during the maneuver. For this reason blended inverse

algorithm is also tested. Again the desiredU  vector is chosen as follows:

 005.0005.01.31.31.3desiredU (4.8)

In the simulation 001.0 is used. The value of   is tuned by simulation results

and the optimal value is chosen.



76

Figure 4.18  RW Torques for 2 Reaction Wheels and 3 Magnetorquers Mode

The Jacobian matrix in this case may be given as:




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
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




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
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4714.04714.00
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xy
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yz
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BB

BB

BB

J (4.9)

As it seen from the equation, Jacobian matrix entries related to the magnetic

field changes throughout the orbit.
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Figure 4.19  Singularity Check for Blended Inverse

Figure 4.19 gives the singularity condition of blended inverse. As may be

observed from this figure, the satellite attitude is controlled quite effectively that no

singularity is occurred and the maneuver is completed in time. When reaction wheel

torque of Figure 4.18, and Figure 4.22 are compared, it may be observed that the

torques go to zero at the end of the maneuver, with blended inverse, while pseudo

inverse continues to generate torques after the completion of the maneuver.  The

torques of each reaction wheel in their own frame is seen from Figure 4.23.

A close examination of the magnetorquer and reaction wheel torques (Figure

4.16 and 4.17) shows that the torques generated by the reaction wheels is balanced

by the magnetorquer torques. However, with blended inverse such a case is not

encountered. This case, among the others, shows the strength of blended inverse

control allocation approach over pseudo inverse.
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Figure 4.20  Magnetic Moments in Blended Inverse Mode

Figure 4.21  Magnetic Torques in Blended Inverse Mode
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Figure 4.22  Reaction Wheels Torques in Blended Inverse Mode

Figure 4.23  Reaction Wheel Torques in RW Frame
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 CHAPTER 5

5. CONCLUSION

In this thesis, control allocation methods to be used in the case of the actuator

failures for overactuated satellites are investigated and these methods are applied to

the small satellites with dissimilar actuators.

A simulation is developed to model all sensors and actuators such as

magnetometers, sun sensors, magnetorquers and reaction wheels by using Matlab®

Simulink environment. Moreover all satellite dynamics and controllers are also

simulated. The mathematical background to cover satellite simulation is given in

detail and the results are discussed.

The basic attitude control modes are examined and simulated. The

detumbling mode and three-axis nominal control modes are designed and

simulations are carried out by using magnetorquers and reaction wheels. Then the

actuator failures are investigated for different cases under some special

circumstances such as singularities. The control allocation method called blended

inverse is applied to the satellite with dissimilar actuators.

Blended Inverse algorithm has demonstrated its ability to make a trade off

between magnetorquers and reaction wheels that the other control allocation methods

do not have. The simulations are made with both pseudo inverse and blended inverse

and the results are compared. The results have shown that pseudo inverse method

may generate unstable conditions during the singular cases of Jacobian matrix;

however Blended inverse method generates quick transition ability on those points of

the orbit. It is shown that this method can be used especially in actuator failure

modes with overactuated satellites.
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In conclusion, Blended inverse algorithms may be improved to design new

configurable controllers to be used in small satellites even during the singularity

zone passes.



82

REFERENCES

[1] Wertz, J., R., “Spacecraft Attitude Determination and Control”, Kluwer

Academic Publishers, 1978.

[2] Kahraman, O., San, H., “Attitude Control of an Earth Pointing LEO Small

Satellite” Term Project, METU, 2005.

[3] The International Association of Geomagnetism and Aeronomy,

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html., Last accessed date

November 2007.

[4] Steyn, W.H “A multi-mode Attitude Determination and Control System for

Small Satellites” Doctorate Thesis,1995.

[5] Tekinalp, O., Altay, A., and E. Yavuzoglu, “Control Moment Gyros for

Energy Storage and Attitude Control in Small Satellite Missions”

Proceedings of the RTO Specialists' Meeting on Emerging and Future

Technologies for Space Based Operations Support to NATO Military

Operations, RTB-SPSM-001, pp 19(1-13), Bucharest, Romania, 6-7

September, 2006.

[6] Lappas, V.J. “A Control Moment Gyro Based Attitude Control System For

Agile Small Satellites” Doctorate Thesis, 2002.

[7] Hoots, F.R., Roechrich, R.L., “Spacetrack Report No:3” NORAD, 1988.

[8] Vallado D.A., “Fundamentals of Astrodynamics and Applications “Kluwer

Academic Publishers, 2001.

[9] T.S. Kelso www.celestrak.com., Last accessed date November 2007.

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html


83

[10] Satrec Initiative Sun Sensor ICD Documents, 2007.

[11] Satrec Initiative Magnetometer ICD Documents, 2007.

[12] Sidi, M.J., “Spacecraft Dynamics and Control” Cambridge University Press,

1997.

[14] Wisniewski, R., “Project : Attitude Control System for AAUSAT-II” Aalborg

University,  Institute of Electronic Systems, 2004.

[15] Wie, B., and Barba, P.M., “Quaternion Feedback for Spacecraft Large Angle

Maneuvers,” Journal of Guidance, Vol. 8, No. 3, May-June 1985.

[16] De Marchi, E., Rocco, L. D., Morea, G., & Lovera, M. (1999).  ”Optimal

magnetic momentum control for inertially pointing spacecraft.” In

Proceedings of the 4th ESA international conference on spacecraft guidance,

navigation and control systems, ESTEC, Noordwijk, The Netherlands.

[17] Tsiotras, P., Doumtchenko, V., “Control of Spacecraft Subject to Actuator

Failures: State-Of-Art and Open Problems” R. H. Battin Astrodynamics

Symposium , Texas A&M, College Station, TX, March 20-21, 2000. AAS

paper 00-264.

[18] Li, J., Zhang, H.Y., “Controller Reconfiguration against Reaction Wheel

Failure Based on Predictive Filters “1st International Symposium on Systems

and Control in Aerospace and Astronautics (ISSCAA), 2006.

[19] Roberts, B.A., Kruk, J.W., Ake, T.B., Englar., T.S., “Three-axis Attitude

Control with Two Reaction Wheels and Magnetic Torquer Bars” AIAA

Guidance, Navigation, and Control Conference and Exhibit, 16-19 August

2004, Providence, Rhode Island.

www.celestrak.com


84

[20] Sakai, S.I., Fukushima, Y., Saito, H., “Studies on Magnetic Attitude Control

System of the REMEI Microsatellite” AIAA Guidance, Navigation, and

Control Conference and Exhibit 21-24 August 2006, Keystone, Colorado.

[21] Ge, X.S., Chen, L.Q., “Attitude Control of a rigid spacecraft with two

momentum wheel actuators using genetic algorithm“ Acta Astronautica, 55

(1), p.3-8, Jul 2004.

[22] Boskovic, J.D., Li, S.M., Mehra, R.K., “Intelligent Control of Spacecraft in

the Presence of Actuator Failures” Proceedings of the 38th Conference on

Decision & Control Phonix, Arizona USA, December 1999.

[23] Barnes, K.C., Melhorn, C.M., Phillips, T., “The software Design for the

Wide-Field Infrared Explorer Attitude Control System” 12 th AIAA/USU

Conference on Small Satellites, Utah, 1998.

[24] Horri, N.M., Hodgart, S., “Large angle Manoeuvre of An Underactuated

Small Satellites Using Two Wheels” 4th IAA Symposium on Small satellites

for Earth Observation, April 7-11, 2003, Berlin, Germany.

[25] Gao, Z., Antsaklis, P.J., “On the Stability of Pseudo-Inverse Method for

Reconfigurable Control Systems” IEEE, 1989.

[26] Jayaram, S., Johnson, R.W., Prasad, G., “Near Real-Time Autonomous

Health Monitoring of Actuators: Fault Detection and Reconfiguration”

Florida Conference on the Recent Advances in Robotics, 2004.

[27] Bogh, S.A., Blanke, M. (1997) “Fault-tolerant control-a case study of the

Orsted satellite.” Fault Diagnosis in Process Systems (Digest No: 1997/174),

IEE Colloquium on 21 April 1997 Page(s):11/1 – 1113.



85

APPENDIX

SGP4 CODE

double SGP_XKE, n, SGP_TWOTHIRD, SGP_CK2,pi, SGP_PI, SGP_TWOPI,
SGP_PIO2, SGP_X3PIO2;
      double
Inclination,Eccentricity,a1,delta1,e2,theta,theta2,a0,delta0,n0dp,a0dp,SGP_XKMPE
R,perigee,SGP_AE,s4,SGP_S,q0ms24,SGP_QOMST2T;

double
tsi,eta,BStarDragTerm,sini0,beta0,beta02,A30,SGP_XJ3,ArgumentOfPerigee,C1,C2
,C3,C4,C5,D2,D3,D4;
      double T1;
      double
MDF,MeanAnomaly,tSince,wDF,OmegaDF,RAAN,deltaw,deltaM,Mp,w,Omega,e,a
,IL,beta,axN,ayNL,ILL,ILT,ayN,SGP_CK4;

double U,y,z;
      double Epw,deltaEpw;

double
ecosE,esinE,eL,pL,r,rdot,rfdot,cosu,sinu,u,deltar,deltau,deltaOmega,deltai,deltardot,
deltarfdot,rk,uk,Omegak,ik,rdotk,rfdotk;

double sOmegak,cOmegak,sinuk,cosuk,SGP_XMNPDA;
      double vMx,vMy,vMz,vNx,vNy,vNz,vUx,vUy,vUz,vVx,vVy,vVz;
      double tleN;

   double w0,pi2,cmm,mm0,Period,RevolutionPerDay;

      int SGP4Initialized = 0;
      int simpleFlag = 0;
      int i;
      tSince=u0[0]/60.0;
      i=1;
      pi=4*atan(1);
      SGP_TWOPI = 2 * pi;
      SGP_PIO2  = pi / 2.0;
      SGP_X3PIO2 = 3 * pi / 2.0;
      SGP_PI = pi;

      /******************************************************/
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      Inclination=98.1514*(pi/180);
      Eccentricity=0.0011880;
      BStarDragTerm=.23767e-4;
      ArgumentOfPerigee=160.6162*(pi/180);
      MeanAnomaly=199.5494*(pi/180);

RAAN=269.8731*(pi/180);
tleN=0.063820820213934;

      /******************************************************/
      SGP_XKE=0.74366916e-1;
      SGP_TWOTHIRD=0.66666667;
      SGP_CK2=5.413080e-4;
      SGP_XKMPER=6378.135;
      SGP_AE=1.0;
      SGP_S=1.01222928;
      SGP_QOMST2T=1.88027916e-9;
      SGP_XJ3=-0.253881e-5;
      SGP_CK4=0.62098875e-6;

SGP_XMNPDA=1440.0 ;

      if (SGP4Initialized == 0) {
SGP4Initialized = 1 ;

theta = cos(Inclination);
theta2 = theta * theta;
sini0 = sin(Inclination);
e2 = Eccentricity*Eccentricity;
beta02 = 1 - e2;
beta0 = sqrt(beta02);
A30 = -SGP_XJ3 *SGP_AE * SGP_AE * SGP_AE ;
a1 = pow(SGP_XKE / tleN, SGP_TWOTHIRD);
delta1 = 1.5 * SGP_CK2 * (3*theta2 - 1) / pow(1 - e2, 1.5) / a1 / a1;
a0 = a1 * ((1 - delta1/3.0 - delta1*delta1) -

(134.0*(delta1*delta1*delta1)/81.0));
delta0 = (1.5 * SGP_CK2 * (3*theta2 - 1)) / pow(1 - e2, 1.5) / a0 /

a0;
n0dp = tleN / (1 + delta0);
a0dp = a0 / (1-delta0);
perigee = (a0dp * (1-Eccentricity) - SGP_AE) * SGP_XKMPER;

      }

      if (perigee < 220.0)
simpleFlag = 1;

      s4 = SGP_S;
      q0ms24 = SGP_QOMST2T;

      if (perigee<156)
      {
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if (perigee <= 98.0)
s4 = 20.0;

else
s4 = perigee - 78;

q0ms24 = pow((120-s4) * SGP_AE / SGP_XKMPER, 4);
s4 = s4/SGP_XKMPER + SGP_AE;

      }

      tsi = 1.0 / (a0dp - s4);
      eta  = a0dp * Eccentricity * tsi;

T1=q0ms24;
      C2=q0ms24 * pow(tsi, 4) * n0dp/pow((1-eta*eta), 3.5) *
      (
       a0dp*(1+1.5*eta*eta+4.0*Eccentricity*eta+Eccentricity*eta*eta*eta) +

1.5*SGP_CK2*tsi*(-0.5+1.5*theta2)*(8+24.0*eta*eta+3.0*pow(eta,4.0))/(1-
eta*eta)

);
      C1 = BStarDragTerm * C2;
      C3  = q0ms24*pow(tsi,5.0)*A30*n0dp*SGP_AE*sini0/SGP_CK2/Eccentricity;
      C4 = 2.0*n0dp*q0ms24*pow(tsi,4.0)*a0dp*beta02/pow(1-eta*eta,3.5) *
      (

(2.0*eta*(1+Eccentricity*eta)+.5*Eccentricity+.5*eta*eta*eta) -
2*SGP_CK2*tsi/a0dp/(1-eta*eta)*

(
3.0*(1-3.0*theta2)*(1+1.5*eta*eta-2.0*Eccentricity*eta-

.5*Eccentricity*eta*eta*eta)+
       0.75*(1-theta2)*(2.0*eta*eta-Eccentricity*eta-
Eccentricity*eta*eta*eta)*cos(2.0*ArgumentOfPerigee)

)
       );

C5 = 2.0*q0ms24*pow(tsi,4.0)*a0dp*beta02/pow(1-
eta*eta,3.5)*(1+2.75*eta*(eta+Eccentricity)+Eccentricity*eta*eta*eta);

D2 = 4.0*a0dp*tsi*C1*C1;
      D3 = 4.0/3.0*a0dp*tsi*tsi*(17.0*a0dp+s4)*C1*C1*C1;
      D4 = SGP_TWOTHIRD*a0dp*tsi*tsi*tsi*(221.0*a0dp+31.0*s4)*pow(C1,4.0);

      MDF = MeanAnomaly +
      (
       1+
       1.5*SGP_CK2*(-1+3*theta2)/(a0dp*a0dp*beta02*beta0)+
       0.1875*SGP_CK2*SGP_CK2*(7-
78.0*theta2+137.0*theta2*theta2)/(pow(a0dp,4.0)*pow(beta0,7.0))
       ) * n0dp * tSince;

      wDF = ArgumentOfPerigee+
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      (
-1.5*SGP_CK2*(1-5.0*theta2)/pow(a0dp*beta02, 2.0)+

       0.1875*SGP_CK2*SGP_CK2*(13-
114.0*theta2+395.0*theta2*theta2)/pow(a0dp*beta02, 4.0)+
       1.25*SGP_CK4*(3-36.0*theta2+49.0*theta2*theta2)/pow(a0dp*beta02, 4.0)
       )*n0dp*tSince;

      OmegaDF = RAAN+
      (

-3.0*SGP_CK2*theta/pow(a0dp*beta02, 2.0)+
       1.5*SGP_CK2*SGP_CK2*(4.0*theta-19.0*theta*theta2)/pow(a0dp*beta02,
4.0)+
       2.5*SGP_CK4*theta*(3-7.0*theta2)/pow(a0dp*beta02, 4.0)
       )*n0dp*tSince;

      deltaw = BStarDragTerm*C3*cos(ArgumentOfPerigee)*tSince;
      deltaM = -
SGP_TWOTHIRD*q0ms24*BStarDragTerm*pow(tsi,4.0)*SGP_AE/(Eccentricity*e
ta)*
      (
       pow((1+eta*cos(MDF)),3.0)-
       pow((1+eta*cos(MeanAnomaly)),3.0)
       );

      Mp = MDF + deltaw + deltaM;
      w = wDF - deltaw - deltaM;
      Omega = OmegaDF -
10.5*n0dp*SGP_CK2*theta*C1*tSince*tSince/(a0dp*a0dp*beta02);
      e = Eccentricity - BStarDragTerm*C4*tSince -
BStarDragTerm*C5*(sin(Mp)-sin(MeanAnomaly));
      a = a0dp*
      pow(

1-
C1*tSince-
D2*tSince*tSince-
D3*pow(tSince,3.0)-
D4*pow(tSince,4.0)
,2.0);

      IL = Mp+w+Omega+n0dp*
(

       1.5*C1*tSince*tSince+
       (D2+2*C1*C1)*pow(tSince,3.0)+
       0.25*(3.0*D3+12.0*C1*D2+10.0*pow(C1,3.0))*pow(tSince,4.0)+

0.2*(3.0*D4+12.0*C1*D3+6.0*D2*D2+30.0*C1*C1*D2+15.0*pow(C1,4.0))*pow(
tSince,5.0)

);
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      beta = sqrt(1-e*e);
      n = SGP_XKE / pow(a, 1.5);

      axN = e*cos(w);
ayNL = A30*sin(Inclination)/(4.0*SGP_CK2*a*beta*beta);

      ILL = ayNL/2.0*axN*(3+5.0*theta)/(1+theta);
ILT = IL + ILL;

      ayN = e*sin(w)+ayNL;

      U=(ILT - Omega);
      while ((U<-SGP_TWOPI) || (U>SGP_TWOPI)) {

if (U<-SGP_TWOPI)
U += 2*SGP_TWOPI;

else if (U>SGP_TWOPI)
U -= 2*SGP_TWOPI;

      }
      if (U < 0)

U += SGP_TWOPI;

      Epw = U;
      deltaEpw = 1;
      for (i = 0; i < 10;i++)
      {

deltaEpw = (U-ayN*cos(Epw)+axN*sin(Epw)-Epw)/(-ayN*sin(Epw)-
axN*cos(Epw)+1);

if (abs(deltaEpw) < 1e-6)
break;

Epw += deltaEpw;
      }

      ecosE = axN*cos(Epw) + ayN*sin(Epw);
      esinE = axN*sin(Epw) - ayN*cos(Epw);

      eL = sqrt(axN*axN+ayN*ayN);
      pL = a*(1-eL*eL);
      r = a*(1-ecosE);
      rdot = SGP_XKE*sqrt(a)*esinE/r;
      rfdot = SGP_XKE*sqrt(pL)/r;
      cosu = a/r*(cos(Epw) - axN + ayN*esinE/(1+sqrt(1-eL*eL)));
      sinu = a/r*(sin(Epw) - ayN - axN*esinE/(1+sqrt(1-eL*eL)));

/*******************************************************************
**/
      //u = atan(sinu/cosu);
      {
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if(cosu == 0) {
if(sinu > 0)

u = (SGP_PIO2);
else

u = (SGP_X3PIO2);
}
else

          {
if(cosu > 0) {

if(sinu > 0)
u = atan(sinu/cosu);

else
u = SGP_TWOPI + atan(sinu/cosu);

}
else

u = SGP_PI + atan(sinu/cosu);
          }
      } /*Function actan*/

/*******************************************************************
***/

      deltar = SGP_CK2/(2.0*pL)*(1-theta2)*cos(2.0*u);
      deltau = -SGP_CK2/(4.0*pL*pL)*(7.0*theta2-1)*sin(2.0*u);
      deltaOmega = 1.5*SGP_CK2*theta*sin(2.0*u)/pL/pL;
      deltai = 1.5*SGP_CK2*theta/pL/pL*sin(Inclination)*cos(2.0*u);
      deltardot = -SGP_CK2*n/pL*(1-theta2)*sin(2.0*u);
      deltarfdot = SGP_CK2*n/pL*((1-theta2)*cos(2.0*u)-1.5*(1-3.0*theta2));

      rk = r*(1-1.5*SGP_CK2*sqrt(1-eL*eL)*(3.0*theta2-1)/pL/pL) + deltar;
      uk = u + deltau;
      Omegak = Omega + deltaOmega;
      ik = Inclination + deltai;
      rdotk = rdot + deltardot;
      rfdotk = rfdot + deltarfdot;

      sOmegak = sin(Omegak);
      cOmegak = cos(Omegak);
      sinuk = sin(uk);
      cosuk = cos(uk);

      vMx = -sOmegak*cos(ik);
      vMy = cOmegak*cos(ik);
      vMz = sin(ik);

      vNx = cOmegak;
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      vNy = sOmegak;
      vNz = 0.0;

      vUx = vMx*sinuk + vNx*cosuk;
      vUy = vMy*sinuk + vNy*cosuk;
      vUz = vMz*sinuk + vNz*cosuk;

      vVx = vMx*cosuk - vNx*sinuk;
      vVy = vMy*cosuk - vNy*sinuk;
      vVz = vMz*cosuk - vNz*sinuk;

 /* CALCULATION OF W0 */

   RevolutionPerDay=14.62665459;
   pi2=2.0*pi;
   cmm=pi2/1440.0;
   mm0=RevolutionPerDay*cmm;
   Period=60.0*pi2;
   w0=(pi2/Period);

y0[0]= rk * vUx * SGP_XKMPER * 1000.0;
y1[0]= rk * vUy * SGP_XKMPER * 1000.0;
y2[0]= rk * vUz * SGP_XKMPER * 1000.0;

      y3[0]= (rdotk * vUx +
rfdotk*vVx)*SGP_XKMPER*SGP_XMNPDA/(86.4)/SGP_AE;
      y4[0]= (rdotk * vUy +
rfdotk*vVy)*SGP_XKMPER*SGP_XMNPDA/(86.4)/SGP_AE;
      y5[0]=(rdotk * vUz +
rfdotk*vVz)*SGP_XKMPER*SGP_XMNPDA/(86.4)/SGP_AE;

y6[0]=sqrt((y0[0]*y0[0])+(y1[0]*y1[0])+(y2[0]*y2[0]));

y7[0]=w0;


