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ABSTRACT 

PERFORMANCE OF PSEUDO-RANDOM AND QUASI-

CYCLIC LOW DENSITY PARITY CHECK CODES  

 

 

 

Kazancı, Onur Hüsnü 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Diker Yücel, Melek  

December 2007, 74 pages 

 

Low Density Parity Check (LDPC) codes are the parity check codes of long block 

length, whose parity check matrices have relatively few non-zero entries. To 

improve the performance at relatively short block lengths, LDPC codes are 

constructed by either pseudo-random or quasi-cyclic methods instead of random 

construction methods. In this thesis, pseudo-random code construction methods, 

the effects of closed loops and the graph connectivity on the performance of 

pseudo-random LDPC codes are investigated. Moreover, quasi-cyclic LDPC codes, 

which have encoding and storage advantages over pseudo-random LDPC codes, 

their construction methods and performances are reviewed. Finally, performance 

comparison between pseudo-random and quasi-cyclic LDPC codes is given for 

both regular and irregular cases.  

Keywords: Low Density Parity Check codes, LDPC, pseudo-random LDPC codes, 

quasi-cyclic LDPC codes, Girth, EMD, ACE, Stopping Set. 
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ÖZ 

RASTGELEMSİ VE YARI-ÇEVRİMSEL DÜŞÜK 

YOĞUNLUKLU EŞLİK SAĞLAMASI KODLARININ 

BAŞARIMI 

 

 

Onur Hüsnü Kazancı 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Melek Diker Yücel 

Aralık 2007, 74 sayfa 

 

Düşük Yoğunluklu Eşlik Sağlaması (DYES) kodları, uzun kod boylu ve eşlik 

sağlaması matrisinde sıfır dışındaki sayıların, sıfırlara göre çok az olduğu eşlik 

sağlaması kodlarıdır. Göreli olarak kısa kod uzunluklarında DYES kodlarının 

başarımını artırmak için, rastgele oluşumlar yerine rastgelemsi veya yarı-çevrimsel 

yöntemler kullanılmaktadır. Bu tezde, rastgelemsi DYES kodlarını oluşturma 

yöntemleri, kapalı döngülerin ve grafik bağlanırlığın kod başarımına etkileri 

incelenmiştir. Ayrıca, rastgelemsi kodlara göre kodlama ve bellek avantajları olan 

yarı-çevrimsel DYES kodu oluşturma yöntemleri ve başarımları irdelenerek, 

rastgelemsi DYES kodlarınınkiyle hem düzenli hem de düzensiz durumlar için 

karşılaştırılmıştır. 

Anahtar Sözcükler: Düşük Yoğunluklu Eşlik Sağlaması,  DYES, rastgelemsi, 

yarı-çevrimsel. 
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CHAPTER 1  

INTRODUCTION 

As Shannon indicated in 1949 [Shannon-1949], the fundamental problem of 

communication is to reproduce a message signal, that is generated at one point, 

either exactly or approximately at another point. All communication channels are 

noisy and noise is the main cause of errors during data transmission. An analog 

telephone line, a radio communication link or a data recording disc drive are some 

examples of noisy channels. In all these cases, if a data string is transmitted over a 

channel, there is some probability that the received message will not be identical to 

the transmitted message. It is preferred to have a communication channel for which 

this probability of error is so close to zero that for practical purposes it is 

indistinguishable from zero. The solution for this problem, other than the physical 

solutions like increasing the reliability of the circuitry or increasing the 

transmission power, is channel coding. Coding theory is concerned with the 

creation of practical and successful encoding and decoding methods by adding an 

encoder and a decoder before and after the channel. 

The encoder designs suitable sets of distinct codewords, and the decoder devises 

methods for extracting estimates of transmitted messages from the output of a 

noise-contaminated channel, which is a process called error correction. Low 

Density Parity Check (LDPC) codes discussed in this thesis are special examples 

of error correcting codes which are a class of linear block codes. Linear block 

codes map k-symbol messages to n-symbol codewords, all of which satisfy the    

(n−k)×1 matrix equation HcT=0, where H is the (n−k)×n parity check matrix and c 
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is the 1×n transmitted codeword. Binary LDPC codes are the codes specified by a 

parity check matrix containing many zeros and very small number of ones, whose 

positions are generally chosen at random. Binary LDPC codes can be divided into 

two main groups as regular and irregular LDPC codes, where a regular (n, wc, wr) 

LDPC matrix is an (n−k)×n parity check matrix having exactly wc ones in each 

column (column weight) and exactly wr ones in each row (row weight), such that 

wc<wr and both are very small compared to n. On the other hand, an irregular 

LDPC matrix is still sparse, but not all rows and columns contain the same number 

of ones; instead, they are defined by the weight density functions which give the 

probabilities of the column and row weights. 

Although LDPC codes perform very well for long block length such as 107, the 

design of good codes with relatively shorter block lengths is also desired for many 

practical applications. The construction becomes prominent for LDPC codes of 

short to medium lengths because a short block length LDPC code with a randomly 

generated parity check matrix may typically have a poor performance. 

The Tanner graph of an LDPC code [Tanner-1981] is the visualization of its parity 

check matrix, which defines the columns and rows as variable nodes and check 

nodes and the non-zero entries as the edges that connect these nodes. The 

performance of an LDPC code depends on both the structure of its Tanner Graph 

(or graph only) and its minimum distance. In other words, an LDPC code with a 

good minimum distance may not outperform another one with worse minimum 

distance but better graph structure, because the commonly used iterative message-

passing decoding algorithms are suboptimum and graph dependent [Kschischang-

2001]. Therefore, most of the research on pseudo-random LDPC code design has 

been concentrated on finding graphs suitable for iterative decoding by optimizing 

the parameters such as the shortest closed path in the graph, namely the girth, and 

local girth distribution that is the distribution of the shortest length closed path 

generated by each column [Mao-2001], or other parameters dealing with the 

connectivity in the graph such as the extrinsic message degree (EMD) [Tian-2003] 
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and stopping set (SS) [Richardson-2002]. The name pseudo-random comes from 

the control of these constraints during the random construction. 

Most methods for designing LDPC codes are based on random construction 

techniques and the lack of structure implied by this randomness presents serious 

disadvantages in terms of storing and accessing a large parity check matrix, 

encoding data, and analyzing code performance (e.g., determining the distance 

properties). If the codes are designed with some algebraic structure, then some of 

these problems can be overcome. In the recent literature, several algebraic methods 

for constructing LDPC codes have appeared [Moura-2005], [Fossorier-2000a-

2001-2004], [Tanner 1999-2000-2004-2007], [Rosenthal-2000], [Honary-2005], 

[Fan-2000]. Among these, the most relevant ones to our work are the quasi-cyclic 

(QC) LDPC codes designed by Tanner in 2004 and design considerations 

explained by Moura in 2005. The quasi-cyclic LDPC codes have sparse and 

elegant graph representations that make them well suited to iterative message-

passing algorithms. The parity check matrix of a quasi-cyclic LDPC code is 

composed of blocks of circulant matrices (zero matrices, identity matrices and 

circularly shifted identity matrices), giving the code a quasi-cyclic property, which 

can potentially facilitate efficient encoder implementation. Further, the algebraic 

structure of the code allows an efficient VLSI implementation with simple shift 

registers. 

1.1 History 

LDPC codes (also called Gallager codes) were first proposed in 1962 [Gallager-

1962] [Gallager-1963], along with an elegant iterative decoding scheme whose 

complexity grows only linearly with the block length of the code. Despite their 

advantages, LDPC codes were largely forgotten for several years primarily because 

the computers at the time were not powerful enough to decode them. In 1995, 

LDPC codes were rediscovered by MacKay and Neal [MacKay & Neal-1996], 

who proved that in spite of their simple construction, these codes have very 
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impressive performance; that is, when optimally decoded, some of them achieve 

information rates very close to the Shannon limit [Shannon-1949].  

Today the value of LDPC codes is widely recognized and their remarkable 

performance ensures that they will not be forgotten again. In contrast to many 

codes that were invented well after 1962, LDPC codes offer both better 

performance and lower decoding complexity. In fact, it is an irregular LDPC code 

(with block length 107) that currently holds the distinction of being the world’s best 

code of rate 1⁄2, outperforming all other known codes, and falling only 0.0045 dB 

short of the Shannon limit [Richardson-2001a].  

Because of their success in approaching the channel capacity most closely, LDPC 

codes will definitely become the choice for next-generation communications 

standards. LDPC codes have already been included in the China National Standard 

for Digital Terrestrial TV Broadcasting standard, the European standard for the 

second generation of Satellite Digital Video Broadcasting (DVB-S2), satellite 

broadcasted, high-definition TV (HDTV) in 2004. They are currently considered 

for the revision of many recommendations issued by the Consultative Committee 

for Space Data Systems (CCSDS), and they will most probably be included in the 

channel coding section of many other widespread telecommunication applications, 

like wired and wireless digital communication networks. 

The China National Standard for Digital Terrestrial TV Broadcasting standard 

[Zhang-2006] supports the baseband data payload from 4.813Mbit/s to 

32.486Mbit/s, standard-definition television (SDTV) and high-definition television 

(HDTV), fixed point and mobile reception, multi-frequency network (MFN) and 

single-frequency network (SFN). In the system, the LDPC code is adopted as the 

inner code and the BCH (762, 752) is the outer code. There are 3 LDPC code 

modes and the numbers of information bits are 3048, 4572 and 6096, respectively. 

The LDPC codeword length n is the same for 3 coding modes, which is 7488 bits. 

There are 3 FEC coding rates, namely 0.4, 0.6, and 0.8, respectively.  
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• Code rate k/n = 0.4, FEC (7488, 3008);  

• Code rate k/n = 0.6, FEC (7488, 4512); 

• Code rate k/n = 0.8, FEC (7488, 6016). 

The HDTV satellite standard, known as the DVB-S2 digital video broadcasting 

transmission system employs an LDPC coding technique as a channel coding 

scheme. The DVB-S2 satellite video broadcasting standard was designed for an 

exceptional error performance at very low SNR ranges (up to Frame Error Ratio 

(FER)≤10-7 at -2.35 dB Es/N0). Thus the specified LDPC codes use a large block 

length of 64800 bits with 11 different code rates ranging from 1/4 to 9/10. This 

results in large storage requirements for up to 285000 messages and demands high 

code rate flexibility at the same time to support all specified node degrees, as 

shown in the first row of Table 1.1 [Brack-2007]. The performance of the LDPC 

code with codeword length n=64800, and information word length k=32400=(n-k) 

is given in Figure 1.1 [Choi-2005]. 

 

Figure 1.1 Performance of the LDPC code used in DVB-S2 Standard 
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The current WiMax 802.16e standard features the LDPC codes as an optional 

channel coding scheme. It consists of six different code classes with different row 

weight and column weight distributions, spanning four different code rates from 

1/2 to 5/6 (see the second row of Table 1.1). All six code classes have the same 

general parity check matrix structure and support 19 codeword sizes, ranging from 

n=576 to 2304 bits [Brack-2007]. 

The WiFi 802.11n standard also features the LDPC codes as an optional channel 

coding scheme. It utilizes 12 different codes with four code rates from 1/2 to 5/6 

for each of the three different codeword sizes of 648, 1248, and 1944 bits. The 

most complicated issue with this code is the row weight and column weight 

flexibility needed to fully support this standard (see the third row of Table 1.1) 

[Brack-2007]. 

Table 1.1 LDPC Code parameters for some Next Generation Standards 
 

 Codeword size, n Code Rate, k/n Row weight, wr Column weight, wc 

 # min max # min max # min max # min max 

Number 
of ones 
in H 

DVB-S2 1 64800 64800 11 1/4 9/10 11 4 30 7 2 13 285120 

WiMax 802.16e 19 576 2304 4 1/2 5/6 7 6 20 4 2 6 8448 

WiFi 802.11n 3 648 1944 4 1/2 5/6 9 7 22 8 2 12 7128 

     (# denotes the number of different n, k/n, wr or wc values in respective columns.) 

1.2 Aim and Outline of the Thesis 

The aim of this thesis is to explore pseudo-random and quasi-cyclic LDPC code 

construction methods among the proposed generation schemes. The topologies in 

the graph that affect the performance of pseudo-random LDPC codes at short block 

lengths are explained in detail and the performance comparison of regular and 

irregular pseudo-random LDPC codes is made. Besides, quasi-cyclic LDPC code 

construction methods and their girth properties are investigated. Finally, the thesis 

work is focused on the performance comparison of pseudo-random and quasi-

cyclic LDPC codes for the regular and irregular cases using the comparably sized 

parity check matrices that we construct for that purpose.  
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Chapter 2 presents a brief overview of the terminology and concepts used in this 

thesis. The review of LDPC code properties, their graph representations, and two 

main iterative decoding algorithms are also given in this chapter. Chapter 3 

describes the pseudo-random LDPC codes, which are constructed specifically to 

minimize the occurrence of topologies that cause problems during decoding. These 

topologies lower the performance by generating closed loops in the graph, such as 

short length cycles and an unfavorable local girth distribution. The effects of these 

topologies on the performance of the pseudo-random codes are discussed at the end 

of this chapter.  

Besides all the advantages, pseudo-random LDPC codes have disadvantages like 

the encoding complexity and the memory problem since a large amount of 

information is required to locate the non-zero elements in huge parity check 

matrices. On the other hand, quasi-cyclic LDPC codes reduce the encoding 

complexity and memory problem since they have an algebraic construction method 

which uses the circulant matrices. Quasi-cyclic LDPC codes, their construction 

methods, cycle properties and performances of the regular and irregular LDPC 

codes that we have generated in this thesis work are given in Chapter 4. The 

conclusions in Chapter 5 include the performance comparison of all these codes 

and discussion of related future work. 



 8 

CHAPTER 2  

LOW DENSITY PARITY CHECK CODES 

In this chapter, review of the concepts and terminology related to LDPC codes will 

be given. After the description of LDPC codes and related parameters in Section 

2.1, the Tanner graph and cycle properties of block codes are explained briefly in 

Section 2.2. The concept of irregular codes and the irregular codes proposed by 

MacKay are discussed in Section 2.3. Finally, Section 2.4 is a review of the 

iterative message passing decoding for LDPC codes based on hard decision and 

soft decision algorithms. 

2.1 LDPC Codes 

Low Density Parity Check (LDPC) codes discussed in this thesis are special 

examples of parity check codes which are a class of linear error correcting block 

codes. An (n, k) linear block code maps 2k messages to 2n codewords c, all of 

which satisfy cHT=0, where H is the parity check matrix of size (n−k)×n. As the 

name suggests, Low Density Parity Check codes are a sub-class of parity check 

codes, whose parity check matrix has relatively few non-zero entries and the non-

zero entry positions are generally chosen at random. According to the column/row 

weight distributions, LDPC codes can be divided into two main groups as regular 

and irregular LDPC codes. A regular (n, wc, wr) LDPC matrix is an (n−k)×n binary 

parity check matrix having exactly wc ones in each column and exactly wr ones in 

each row, where wc<wr and both are very small compared to n. 
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An irregular LDPC matrix is still sparse, but not all rows and columns contain the 

same number of ones. In other words, irregular LDPC codes have parity check 

matrices whose weight per column and/or row is not uniform, but instead governed 

by an appropriately chosen distribution of weights. Irregular LDPC codes are 

parameterized by column and row degree distribution polynomials λ(x) = ∑ λix
i−1 

and ρ(x) = ∑ ρix
i−1, where the coefficients λi and ρi respectively specify the fraction 

of edges of degree i (column or row weight i), such that ∑ λi = 1 and ∑ ρi = 1. 

Richardson and Urbanke showed by carefully choosing the distributions that 

performance improvement can be achieved over regular LDPC codes. They 

presented irregular LDPC codes that perform extremely close (0.0045 dB) to the 

best possible bound determined by the Shannon capacity formula [Richardson-

2001a], for instance their ½ rate code of length 107 approaches Shannon bound by 

0.0045 dB. 

In contrast to the irregular codes, every parity check equation of a regular LDPC 

code involves exactly wr bits, and each of these bits is involved in exactly wc parity 

check equations. The restriction wc<wr is needed to ensure that more than just the 

all-zero codeword satisfies all of the constraints, or equivalently, to ensure a 

nonzero code rate. Indeed, the total number of ones in the m×n parity check matrix 

H is mwr = nwc, since there are m = (n−k) rows, each containing wr ones, and there 

are n columns, each containing wc ones.  

The code rate R of an (n, k) block code is R = k ⁄ n = 1−((n−k) / n), hence               

R = 1 − (wc / wr). The parameters n, wc, and wr cannot be chosen independently, but 

must be related for regular LDPC codes in such a way that n (wc  ⁄ wr) is an integer. 

For example, a (wc, wr) = (3, 4) LDPC matrix exists when n = 1000 and n = 1004, 

but not when n = 1002. Observe that the fraction of ones in a regular (wc, wr) 

LDPC matrix is wr ⁄n. The low density terminology derives from the fact that this 

fraction approaches zero as n goes to infinity. In contrast, the average fraction of 

ones in a purely random binary matrix, with independent components equally 

likely to be zero or one, is 1 ⁄ 2. 
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One measure of the ability of a code to detect errors is its minimum Hamming 

distance. The minimum Hamming distance of a code may be viewed as a 

convenient measure of how good it is, but in fact it is not possible to distinguish 

between good and very good codes by their minimum distance, without reference 

to their Tanner graph properties. 

2.2 Graph Structure 

Any parity check code (including an LDPC code) may be specified by a Tanner 

graph [Tanner-1981], which is essentially a visual representation of the parity 

check matrix H.   An m×n parity check matrix H defines a code in which the n bits 

of each codeword satisfy a set of m parity check constraints. The Tanner graph 

contains n variable nodes (bit nodes), one for each codeword bit; and m check 

nodes (constraint nodes), one for each of the parity checks. The variable nodes are 

depicted using circles, while the check nodes are depicted using squares. The check 

nodes are connected to the variable nodes they check. Specifically, a branch 

connects the check node i to variable node j if and only if the ith parity check 

involves the jth bit, or briefly, if and only if the (i, j)th  element Hij of the parity 

check matrix  nonzero. The graph is said to be bipartite because there are two 

distinct types of nodes, variable nodes and check nodes, and there can be no direct 

connection between any two nodes of the same type. 

Example 1 

A 3×6 parity check matrix H and its associated Tanner graph with the 3×6 LDPC 

matrix are shown in Figure 2.1. The variable nodes are represented by the n = 6 

circles at the top, while the check nodes are represented by the m = 3 squares at the 

bottom. 
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Figure 2.1 Tanner graph representation of a 3x6 LDPC matrix 

Degree of a node is the number of branches connected to it. Degrees of 1st to 6th 

variable nodes in Figure 2.1 respectively are 2, 3, 2, 1, 1 and 1, which are also the 

respective column weights; and the degrees of 1st to 3rd check nodes or 

corresponding row weights are 3, 3 and 4, respectively. 

In Figure 2.1, degree distribution polynomial for the variable nodes is                 

λ(x) = 3/10 + (4/10)x + (3/10)x2 since 3 of the 10 edges have degree 1, 4 of the 10 

edges have degree 2 and  3 of the 10 edges have degree 3. Degree distribution 

polynomial for the check nodes is ρ(x) = (6/10)x2 + (4/10)x3 by similar reasoning. 

A cycle is defined as the path through the graph that begins and ends at the same 

variable node. The length of the cycle is the number of edges traversed. The 

minimum length of a cycle is four in a bipartite graph. A 4-cycle can also be 

described as more than one overlapping 1’s between two columns. An example for 

a cycle of length four which can be observed both in matrix representation and 

graph representation is given in Figure 2.2. 

 

Figure 2.2 Representation of a cycle in matrix and graph representations 

Variable nodes 

Check Nodes 

Check Nodes 

Variable nodes 
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Girth is the length of the shortest cycle in the parity check matrix. Similarly, local 

girth of a variable node (column) can be defined as the length of the smallest cycle 

that is generated by that variable node. Short length cycles degrade the 

performance of the currently used iterative decoding algorithms, which converge to 

maximum likelihood decoding only code girth gets large.  

2.3 Irregular LDPC Codes 

Irregular LDPC codes may have better performances than regular LDPC codes and 

this can be explained by understanding the main idea behind irregular graphs. Let 

us first consider a regular low density parity check matrix. From the point of view 

of a variable node, it is the best to have high degree, since the more information it 

gets from its check nodes the more accurately it can judge what its correct value 

should be. In contrast, from the point of view of a check node, it is the best to have 

low degree, since the lower the degree of a check node, more valuable the 

information it can transmit back to its neighboring variable nodes. These two rival 

requirements must be appropriately balanced. Previous work has shown for regular 

graphs, that the low degree graphs yield the best performance [MacKay & Neal-

1996], [MacKay-1999]. On the other hand, irregular graphs have significantly 

more flexibility in balancing these competing requirements. Message nodes (i.e., 

variable nodes) with high degree tend to correct their value quickly. These nodes 

then provide good information to the check nodes, which subsequently provide 

better information to lower degree message nodes. Irregular graph constructions 

thus have the potential to lead to a wave effect, where high degree message nodes 

tend to get corrected first, and then message nodes with slightly smaller degree, 

and so on. For a Gaussian channel, Luby has shown that, the best performance is 

achieved if the check node degree is constant (or all check nodes have degrees as 

close to the same degree as possible) [Luby-2001].  

Richardson and Urbanke [Richardson-2001b] and Luby [Luby-2001] defined 

ensembles of irregular LDPC codes parameterized by the degree distribution 
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polynomials λ(x) and ρ(x), and showed how to optimize these polynomials for a 

variety of channels. Optimality is in the sense that, assuming message-passing 

decoding, a typical code in the ensemble is capable of reliable communication in 

worse channel conditions than the codes outside the ensemble. The worst-case 

channel condition is called the decoding threshold and the optimization of λ(x) and 

ρ(x) is found by a combination of a density evolution algorithm and an 

optimization algorithm. Density evolution refers to the evolution of the probability 

density functions of the various quantities passed around the Tanner graph of the 

code. The decoding threshold for a given λ(x) - ρ(x) pair is determined by 

evaluation of the probability distribution functions of computed log likelihood 

ratios (LLR) of the code bits. The separate optimization algorithm optimizes over 

the λ(x) - ρ(x) pairs.  

The irregular codes used in this thesis are “93” irregular codes defined by MacKay 

in [MacKay-1998], which have rows of uniform weight 7, i.e., ρ(x) = x6, and 

column weight distribution λ(x)=(11/14)x2+(3/14)x8 (3/14 of the edges have 

column weight 9 and 11/14 of the edges have column weight 3). The name “93” 

comes from the column weights of 9 and 3; so we prefer to use the notation    

(“93”, 7) for these codes which also shows the uniform row weight 7. The variable 

nodes that have 9 connections to 9 check nodes are called elite variable nodes. In 

this thesis, 2 different constructions “93a” and “93y” are used, which have the 

same column/row weight distribution, but different elite variable node connections. 

The details and structures are as follows:  

• Irregular (“93a”, 7) LDPC Code:  

This construction allocates exactly one or two elite variable nodes to each of the 

check nodes. The structure of the parity check matrix of (“93a”, 7) irregular LDPC 

code is given in Figure 2.3, where integer values inside each circle give the column 

and row weight of each sub-matrix and empty places are zero matrices. Observing 

the row weight distribution in the last columns, which correspond to the elite 
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variable nodes, one can follow that half of the check nodes are connected to two 

elite variable nodes and the remaining half are connected to a single elite variable 

node. An example of a (“93a”, 7) irregular LDPC matrix generated by our Local 

Girth Distribution Check algorithm is shown in Figure 2.4 by indicating nonzero 

elements of the parity check matrix with dots. 

 

Figure 2.3  Parity check matrix construction of a (“93a”, 7) irregular LDPC code where 

integer values inside each circle give the column and row weight of each sub-matrix and 

empty places are zero matrices 

 

Figure 2.4  Example of a 288×576 parity check matrix for an irregular (“93a”, 7) LDPC 

code 

• Irregular (“93y”, 7) LDPC Code:  

In this irregular construction, one third of the check nodes are connected to four 

elite variable nodes, one third are connected to one and the remaining one third are 

connected to none of the elite variable nodes. The structure of the (“93y”, 7) 
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irregular LDPC code is given in Figure 2.5 using the same visual notation, where 

integers in circles indicate the row and column weight of the corresponding sub-

matrix. An example of a (“93y”, 7) LDPC matrix is shown in Figure 2.6, in which 

dots show the one’s of the parity check matrix. 

.  

Figure 2.5 Parity check matrix construction of a (“93y”, 7) irregular LDPC code where 

integer values inside each circle give the column and row weight of each sub-matrix and 

empty places are zero matrices 

 

Figure 2.6 Example of a 288×576 parity check matrix for an irregular (“93y”, 7) LDPC 

code 

2.4 Decoding by Iterative Message Passing 

One of the most attractive features of LDPC codes is that they allow for efficient 

iterative decoding. There are several algorithms known for iterative decoding of 
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LDPC codes; Gallager’s bit flipping algorithm, the belief propagation decoder, the 

min-sum decoder etc. Most of these decoding techniques can be described as 

message passing algorithms, because they operate by exchanging messages. 

The decoding operation can be conveniently described on the Tanner graph of a 

code. In a message passing algorithm, messages are exchanged between nodes 

along the edges of the Tanner graph and nodes process the incoming messages 

received via their adjacent edges to determine the outgoing messages. A message 

along an edge represents the estimate of the bit represented by the variable node 

associated with the edge. The message can be in the form of a hard decision, i.e., 0 

or 1; or a probability vector [p0 p1], where pi is the probability of the bit taking the 

value i, or in the form of a log likelihood ratio (LLR) log(p0/p1) etc. An iteration of 

message passing consists of a cycle of information passing and processing. The 

outgoing message from the node is calculated based on the incoming messages 

along the other edges. The exact fashion in which the outgoing message is 

calculated depends on the message passing algorithm being used.  

The computations in a message passing decoder are localized. In other words, 

computations at a check node are performed independent of the overall structure of 

the code. This implies that highly parallel implementations of a message passing 

decoder are feasible. Further, the computations are distributed, such that, 

computations are performed by all nodes in the graph. The number of messages 

exchanged in an iteration of message passing is dependent on the number of edges 

in the Tanner graph; a sparser Tanner graph means less computations. Thus, it is 

computationally feasible to use message passing algorithms for decoding long 

block length LDPC codes. 

2.4.1 Bit Flipping Algorithm 

The bit flipping algorithm is based on hard decisions. A variable node sends a 

message to each of the check nodes that it is connected, declaring if it is 1 or 0, and 
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each check node sends a message to each of the variable nodes to which it is 

connected, declaring whether the parity check is satisfied or not. The algorithm is 

as follows [Gallager-1962]: 

Step 1 - Initialization: The maximum number of iterations is set to Imax and the 

iteration number is initiated as 1. Each variable node from the received word sends 

messages to the related check nodes indicating its value. 

Step 2 - Parity Update: Using the messages coming from variable nodes, check 

nodes control if the parity check equations are satisfied or not. If all the equations 

are satisfied then the algorithm terminates with success. Else, check nodes send 

messages to variable nodes. 

Step 3 - Variable Node Update: The iteration number is increased by one. If Imax 

is reached, the algorithm terminates with failure. Otherwise, the variable nodes 

which get the largest number of the messages from check nodes as “not satisfied” 

flip their values. The remaining variable nodes keep their values. Each variable 

node sends its value to the related check nodes and the algorithm turns back to Step 

2.  

Example 2:  The decoding example of the bit-flip algorithm is described in Figure 

2.7 where the parity check matrix, sent codeword and received word are given 

below. 

00100000:00000000:
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01000111
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00011101
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Figure 2.7 Message flow during the error correction of bit-flipping algorithm 

2.4.2 Belief Propagation Algorithm 

The most widely used message passing algorithm is the belief propagation which is 

also called the sum-product algorithm. BP decoding corresponds to the 

probabilistic solution to iterative decoding based on “cycle free Tanner graph” 

Initialization 

1st Iteration Variable Node Update 

2nd Iteration Parity Update 

1st Iteration Parity Update 
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Variable nodes send it messages to 
check nodes and all the check 
equations are satisfied. 
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assumption. Although the algorithm is not optimum due to the inevitable presence 

of loops in the graphs of all practical parity check sets, BP provides efficient 

decoding if these loops remain quite long. The processing at the variable and check 

nodes for a BP algorithm with log likelihood ratios (LLRs) as messages is now 

described. The main idea is the same with the bit-flip algorithm except the use of 

probabilistic decision instead of hard decision. 

The aim of the belief propagation algorithm is to compute a posteriori 

probabilities (APPs) for each codeword bit, Pi(1)=P[ci=1|N] and Pi(0)=P[c=0|N] 

which are the probabilities that the ith bit of the codeword c = [c1 c2…ci…cn] is a 1 

or 0 conditional on the event N that all parity check constraints are satisfied. The 

intrinsic or a priori probability, Pi
int, is the original likelihood ratio independent of 

the knowledge of the code constraints and the extrinsic probability, Pi
ext represents 

what has been learnt from each iteration. The extrinsic information obtained from 

the check nodes in one iteration is used as the priori information for the consequent 

iteration. The extrinsic bit information obtained from a parity check constraint 

would be independent of the original a priori probability if there were no cycles.  

BP algorithm iteratively computes an approximation of the APP values for each 

code bit. To compute the extrinsic probability of the ith bit of the received word that 

comes from the jth parity check equation, we use the following properties. If bit i is 

assumed to be a 0, the jth parity check equation is satisfied only when an even 

number of the other received word bits are 1. 

Hence, the probability (Pi,j(0)) that the jth parity check equation is satisfied when 

bit i equals to 0, is given by [Gallager-1963] 
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where Bj represents the set of column locations of the bits in the jth parity check 

equation of the code and pi is the probability that the ith bit of the received word is 

equal to 1. Similarly, if bit i is assumed to be a 1 then the jth parity check equation 

is satisfied when an odd number of the other received word bits are 1. So, when bit 

i equals to 1, the probability that the jth parity check equation is satisfied is 
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Details of (2.1) and (2.2) can be found in the main references [Gallager-1963]. 

Then, the extrinsic likelihood ratio is found dividing (2.1) by (2.2) 
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One can then use the following identity (2.4) to calculate the extrinsic message 

from check node j to variable node i. 
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Taking the natural logarithm of (2.3), substituting (2.4) for all probabilities (1-2pi) 

and then using the definition of the log likelihood ratio, 
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One obtains, 
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The estimated LLR of the ith bit at each iteration is then found by combining all 

information coming from the related check nodes, 
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where Ai is the set of row locations of the parity check equations which check on 

the ith bit of the code.  

Belief propagation algorithm [Fossorier-2000b] can be now summarized as 

follows: 

Step 1 - Initialization: The maximum number of iterations is set to Imax. The 

iteration number is initiated as 1. The initial message Ri sent from variable node i 

to the check node j is the log likelihood ratio defined by (2.5), 
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where pi is the probability that the ith received bit is 1. In (2.10), Li,j denotes the 

variable node message sent from variable node i to check node j, and Ri denotes the 
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variable node message sent from variable node i to all check nodes that are 

connected to the variable i. Calling the algorithmic message sent from variable 

node i to check node j, Li,j, the initial value of Li,j is set to Ri=LLR(Pi
int). 

Step 2 - Check-to-variable: The extrinsic message Ei,j from the check node j to 

variable node i is the LLR computed in (2.6), by substituting Li’,j=LLR(Pi’
int) for all 

i’∈  Bj, where Bj includes the indices of variable nodes connected to the check node 

j. Hence, 
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Step 3 - Codeword Test: The combined log likelihood ratio Li for each variable 

node i is the sum of the extrinsic messages Ei,j’s found by (2.9) and the initial 

message Ri defined by (2.9), 
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where Ai denotes the set of all check nodes connected to the ith variable node. Then, 

for each bit, a hard decision is made: 
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If z = [z1, …, zn] is a valid codeword, i.e., if zHT
 = 0, the algorithm terminates with 

success. 
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Step 4 - Variable-to-check: The iteration number is increased by one. If Imax is 

reached, the algorithm terminates with failure. Otherwise the variable nodes send 

messages to the check nodes. The message Li’,j sent by each variable node i to the 

check nodes j to which it is connected is similar to equation (2.10) in Step 3, except 

that bit i sends to check node j an LLR calculated without using the information 

from check node j: 

 i
jjiAj
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Then the algorithm returns to Step 2. 

In the following, we describe the parameters to be used in the algorithm given 

above, for BPSK modulation over an AWGN channel with noise variance σ2. The 

i
th codeword bit is transmitted as ±1, so the channel input is xi±1. Corresponding 

channel output is yi = xi + ni, where ni is the noise term. Assuming 1’s are 

transmitted as -1 and 0’s are sent as 1 with equal probabilities, the probability pi in 

equation (2.8) is calculated as 
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and similarly, 
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Substituting (2.13) and (2.14) into (2.8), Ri is found as,  
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Since the code length of the codes generated in this thesis work is kept almost 

constant (usually 576, rarely 564 and 900), the maximum number of iterations of 

the belief propagation decoder is set to 100 as explained in Appendix A. 
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CHAPTER 3  

PSEUDO-RANDOM LDPC CODES 

 

In this chapter, the pseudo-random LDPC codes, which are constructed specifically 

to minimize the occurrence of topologies that cause problems during decoding are 

described. Such topologies lower the performance by generating closed loops in 

the graph such as short length cycles and undesirable local girth distribution. In 

Section 3.1, the definitions of girth, local girth distribution (LGD), extrinsic 

message degree (EMD) and stopping set are given under the title of “Performance 

Improving Criteria for Pseudo-Random LDPC Codes”. Details of the three LDPC 

code construction algorithms implemented in this study, namely, Local Girth 

Distribution Check (LGDC), ACE Check (ACEC) and Stopping Set Check (SSC) 

Joint Approach (JA) algorithms are given in Section 3.2. All these algorithms 

generate LDPC codes with desired nonuniform or uniform column weight 

distributions but uniform row weight distribution. 

In Section 3.3, we compare the performances of the pseudo-random LDPC codes 

generated by our code construction algorithms, which use different criteria. Section 

3.3.1 is devoted to the experimental investigation of the local girth distribution 

(LGD) as a criterion in the code construction, whereas Section 3.3.2 deals with the 

criteria of approximate cycle EMD (i.e., ACE) and stopping sets (SS). Hence 

regular and irregular codes all having parity check matrices of size 288×576 are 
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generated by LGDC algorithm in Section 3.3.1 and ACEC or joint ACEC/SSC 

algorithms in Section 3.3.2 for performance comparison. 

3.1 Performance Improving Criteria for Pseudo-Random LDPC 

Codes 

The random ensemble consists of codes that are defined only by the block length n. 

With the requirement that the codes be sparse, a low density parity check matrix H 

may be populated by arbitrarily low-weight column vectors. This means that one 

should expect quite poor performance at short block lengths, since the Tanner 

graph will most probably contain some undesired topologies. In this section, 

definitions of the four criteria that affect the performance of the pseudo-random 

LDPC codes are given; namely, Girth, Local Girth Distribution (LGD), Extrinsic 

Message Degree (EMD) and Stopping Set (SS). 

3.1.1 Girth and Local Girth Distribution  

The Tanner graph of a short LDPC code most probably contains quite a few cycles 

which are short with respect to the average number of iterations required for 

decoding. As a result, it is observed that short LDPC codes significantly deviate 

from the predicted performance. It is also known that for short LDPC codes, the 

performance often varies significantly over the ensemble, especially at high signal-

to-noise ratios (SNR). An efficient method to search for good LDPC codes in a 

given ensemble is to search for codes without short cycles, since message-passing 

algorithms work well if the graph does not contain too many short cycles. 

Motivated by this, Mao described [Mao-2001] the girth as the smallest cycle 

generated by the parity check matrix of the code, and the local girth distribution as 

the distribution of the length of cycles generated by each column of the parity 

check matrix. In his work, he randomly generated many LDPC matrices and chose 

the one that has the local girth distribution with the greatest mean. 
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The local girth value of each column can be found by summing the parity check 

matrix columns since cycles can be expressed using column sums. Two columns 

can generate a 4-cycle if and only if their sum has two or more 2’s. In the example 

given below for m=8, the parity check columns C1 and C2 generate a 4-cycle. 

110010101 =
T

C  

100100112 =
T

C  

21011021)( 21 =+ TCC  

Similarly three columns can generate a cycle of minimum length six if the sum of 

these columns has three 2’s. So, for the parity check columns C1 and C2 which do 

not generate any 4-cycle, if a column C3 is added to the set, provided that C3 has no 

4-cycles with C1 or C2, a cycle of length six is generated whenever there are three 

2’s in the sum vector, as shown below. 

110010101 =
T

C  

001100112 =
T

C  

100001013 =
T

C  

21111122)( 321 =++ TCCC  

Using induction, generation of a cycle can be summarized as: 

• A cycle of length 2t can be generated by at least t columns. 

• If a column set (variable node set) consisting of t columns generate a cycle 

of length 2t (and not less), the sum vector has t many 2’s. If the sum vector has 

values greater than 2, then corresponding columns generate a smaller cycle. This 

situation can be overcome by eliminating 4-cycles before 6-cycles, etc., i.e., 

initially discarding the smallest cycles. 
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3.1.2 Extrinsic Message Degree (EMD) and Approximate Cycle EMD 

(ACE) 

For irregular LDPC codes, not only the length and the distribution of cycles but 

also their connectivity play important roles in the code performance [Tian-2003]. 

The graph connectivity of a cycle is defined as the number of connections of the 

cycle with the rest of the graph. Figure 3.1 shows examples of an 8-cycle with poor 

graph connectivity and a 4-cycle with good graph connectivity. Short cycles with 

good graph connectivity as shown in Figure 3.1 (b) are less harmful than long 

cycles with poor graph connectivity. Poorly connected subgraphs are more 

vulnerable to channel noise, since they do not have sufficient message flow from 

the rest of the graph to correct the errors. A high degree variable node has high 

probability to generate short cycles but it is not much harmful since it has many 

connections to the rest of the graph.  

 

Figure 3.1 8-cycle with poor graph connectivity and 4-cycle with good graph connectivity  

Extrinsic information is defined as the information that is collected exclusively 

from other parts of the system. The system is more capable of repairing errors by 
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attempting to keep all calculations through extrinsic information. This idea triggers 

the definition of another performance criterion for irregular codes, namely the 

extrinsic message degree (EMD), which was introduced by Tian [Tian-2003]. 

EMD of a variable node set that generates a cycle is the number of extrinsic check 

nodes that are connected to this variable node set. The EMD of a cycle that does 

not contain any sub-cycles can be defined as ∑ (di−2) where di is the degree of the 

i
th variable node in the cycle, since a variable node has to be connected to two 

check nodes in a cycle to construct that cycle. If there are sub-cycles, the EMD of 

the cycle is reduced since one or more variable nodes will have more than two 

connections to the check nodes of this cycle. The approximate cycle EMD (ACE) 

of a variable node of degree d is defined as (d−2) and the ACE of a check node is 

0. So, the ACE value of a cycle, whether the cycle includes sub-cycles or not, is 

approximated as ∑ (di−2), where the summation is over all nodes of a cycle. 

3.1.3 Stopping Set  

Similarly to the EMD, the criterion of stopping set is more concerned about the 

connectivity of the cycles than their length and distribution. Stopping set is defined 

as the set of variable nodes that all the neighboring check nodes are connected to 

the variable node set at least twice [Richardson-2002]. The number of variable 

nodes in the stopping set is the size of the set. In a bipartite graph that is free of 

degree-1 variables, every stopping set contains cycles, but not vice versa. The only 

stopping set formed by a single cycle is the one that consists of all degree-2 

variable nodes.  An example of such a stopping set is described below, where Ci’s 

indicate the columns of the parity check matrix; corresponding to the variable 

nodes vi. The stopping set of this example is {v1, v2, v3} and its size is 3.  
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100000101 =
T

C  

000000112 =
T

C  

100000013 =
T

C  

20000022)( 321 =++ TCCC  

As for the examples given in Figure 3.2, part (a) demonstrates a stopping set      

{v1, v2, v3} and part (b) shows another stopping set {v1, v2, v3, v4, v5, v6, v7, v8}. On 

the other hand, the cycle shown in part (c) does not contain a stopping set, because 

the check node c4 has only one connection to the variable node set {v1, v2, v3}. 

Figure 3.2 Examples of variable node sets generating a stopping sets  

3.2 Pseudo-Random LDPC Code Construction Algorithm 

In the following, we describe the structure of the algorithms with which we 

generate our parity check matrices according to the desired criteria. We name the 
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algorithm, whose flow graph is given in Figure 3.3, either as LGDC (local girth 

distribution check) or ACEC (approximate cycle EMD (extrinsic message degree) 

check) or SSC (stopping set check) depending on the criterion used in the second 

check box. At the initialization step, in addition to the constraints related to the 

used criterion, the column and row size   (n, m) of the parity check matrix and the 

column weight distribution λ(x) are specified. An m×1 vector which obeys the λ(x) 

is chosen as the initial parity check matrix H0. The algorithm constructs the ith 

parity check matrix of dimension m×(i+1), by adding a suitable column at each 

step, and keeping the row weight wr almost constant. 

The process is based on a heuristic approach, where random candidate columns are 

generated and each candidate is subjected to the constraints of the ensemble, which 

determine whether it can be permanently added to the previously found sub-matrix 

Hi−1 of dimension m×i that satisfies the desired criteria. For each column to be 

added, we randomly generate a column vector of length m with a column weight 

adjusted according to desired λ(x). To give the decision of permanently adding this 

column into the parity check matrix, two conditions have to be met: Firstly, the 

row weights of each row are checked in order to have nearly uniform row weight 

distribution; secondly, each variable node is checked with respect to either the local 

girth, or ACE, or SS criterion. As the size of the parity check matrix grows, it 

becomes increasingly difficult to find a valid column vector since the check time 

grows exponentially with the number of iterations. The algorithm terminates when 

the matrix is generated with all columns satisfying the desired criteria. 

In our LGDC algorithm, desired local girth distribution array is specified at the 

initialization step. For each column, after controlling the row weight constraint, the 

length of the shortest length cycle generated by that column is evaluated. If it 

passes the initially set LGD constraint, the column is accepted.  
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Figure 3.3 Flow graph of the code construction algorithm  
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The constraint of the ACEC algorithm is defined with two parameters (dACE, η), 

such that each cycle either has a length greater than 2dACE or it has an ACE value 

greater than η. To find the ACE values generated by the newly added column, the 

algorithm evaluates the ACE values of all the cycles with length shorter than 2dACE. 

If the algorithm finds a cycle with ACE value less than η, it discards the column 

and tries another column for the vacant position. Otherwise it proceeds to the next 

step. 

Similarly, the SSC algorithm checks the stopping set size. If the size is less than the 

stopping set limit, the algorithm discards the column and generates another column. 

The criterion of SS is practically more meaningful at medium-to-high degree 

variable nodes, since small size of stopping sets are more likely to occur at high 

degree nodes [Ramamoorthy-2004]. On the other hand, the ACEC algorithm works 

more efficiently with low degree variables. A joint approach where the ACEC 

algorithm is used at low-degree nodes and SSC algorithm is used at medium-to-

high degree variable nodes is claimed [Ramamoorthy-2004] to provide better 

performance results, which is also tested in our work.  

3.3 Effect of Different Criteria on the Performance 

In this section, we present our experimental results, which compare the “BER 

versus SNR” performances of the (576, 288) codes that we construct using 

different criteria. The first criterion is related to the local girth distribution whereas 

the second criterion is concerned about the extrinsic message degree. Finally, the 

third criterion is a combination of extrinsic message degrees and stopping set sizes 

of the graph. Regular codes with (wc, wr) = (3, 6) and irregular codes with 

structures (“93a”, 7) and (“93y”, 7) described in Section 2.3 are constructed. 
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3.3.1 Effect of Local Girth Distribution on the Performance 

In order to see the effect of cycles and local girth distribution, regular parity check 

matrices of size 288×576 with (wc, wr) = (3, 6) are generated by our LGDC 

algorithm. Besides regular matrices, irregular matrices with similar local girth 

distributions are constructed for comparison purposes. LGD parameters of the 

generated codes are summarized in Table 3.1. 

Table 3.1 Local girth distribution parameters of the generated codes  

Code Type Girth Mean 

4 6 

6 6 Regular 

6 8 

6 6 Irregular 
“93a” and “93y”  6 8 

• Regular LDPC Codes: 

The 288×576 parity check matrix of a regular LDPC code with uniform column 

weight 3 that is constructed by our LGDC algorithm is shown in Figure 3.4, where 

dots indicate the non-zero locations of the matrix. 

 

Figure 3.4 The parity check matrix of a (576, 288) regular (3, 6) LDPC code  
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Figure 3.5, Figure 3.6 and Figure 3.7 show the local girth histograms of the regular 

LDPC codes generated by our LGDC algorithm. Note that, these local girth 

distributions are chosen only for illustrative purposes and LDPC codes with better 

distributions can also be generated by the same algorithm, in longer time.  

 

 

 

 

Figure 3.5 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6) 

LDPC code, girth=4, mean=5.96  

 

 

 

 

Figure 3.6 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6) 
LDPC code, girth=6, mean=6 

 
 
 
 
 
 
 
 

 

 

Figure 3.7 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6) 

LDPC code, girth=6, mean=7.83 
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We have measured the “BER versus SNR” performance of these three (576, 288) 

regular codes using belief propagation decoding, where maximum number of 

iterations is set to 100. Comparing the performance shown in Figure 3.8 one 

observes that the code with girth=4 and mean=6 has the worst, and the code with 

girth=6 and mean=8 has the best performance as expected. Since, the performance 

increase obtained in the former case is much more than that in the latter, to avoid 

cycles of length four seems to be the main concern about the generation of the 

LDPC codes.  

More specifically, at BER=10-3, increase of girth from 4 to 6 results in an SNR 

gain of approximately 0.23 dB, whereas keeping the girth at 6, if the mean value of 

the LGD is raised from 6 to 8, only an SNR gain of ~0.03 dB is obtained. 

 

Figure 3.8 Performance of (576, 288) regular (3, 6) pseudo-random codes generated by 

LGDC algorithm 
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• Irregular LDPC Codes: 

In order to generate the irregular LDPC codes, (“93a”, 7) and (“93y”, 7) structures 

explained in Section 2.3, we can use an algorithm similar to the one described by 

the flow graph shown in Figure 3.3, with some additional constraints on pseudo-

randomly generated columns. The local girth distributions which are close to those 

of the regular codes mentioned above are chosen for fair comparison.  

Figure 3.9 and Figure 3.10 show the local girth histograms of two examples of the 

generated irregular LDPC matrices with LGD means of 6 and 8. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Local girth histogram of the parity check matrix of the (576, 288) irregular 

(both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6, mean=6 

 
 
 

 

 
 
 
 
 
 

Figure 3.10 Local girth histogram of the parity check matrix of the (576, 288) irregular 

(both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6, mean=8 
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We have compared the “BER versus SNR” performances of the (“93a”, 7) and 

(“93y”, 7) irregular codes, which have the local girth distributions mentioned 

above. The decoding algorithm is the belief propagation algorithm with 100 

iterations. 

As observed in Figure 3.11 and Figure 3.12, the performances of these (576, 288) 

codes get better with increasing LGD mean. For both (“93a”, 7) and (“93y”, 7) 

codes, the SNR gain is approximately 0.1 dB at 10-4 BER for an increase from 6 to 

8 in the LGD mean. So, simulations give an idea about why the local girth 

distribution is an effective tool for designing short block length LDPC codes.  

 

Figure 3.11 Performance of (576, 288) irregular (“93a”, 7) LDPC codes 
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Figure 3.12 Performance of (576, 288) irregular (“93y”, 7) LDPC codes 

As the last remark in this sub-section, we compare in Figure 3.13 (a) the 

performances of the (576, 288) regular and irregular LDPC codes constructed by 

the LGDC algorithm with the same local girth distributions. We observe that 

regular LDPC codes perform 0.1-0.2 dB inferior to irregular LDPC codes. Also, 

when we compare the irregular constructions, (“93y”, 7) irregular construction is 

~0.1 dB superior to (“93a”, 7) irregular construction since it has a better elite 

variable node connection structure as described in Section 2.3. The results are 

similar to those obtained in [MacKay-1998]. However, MacKay generated regular 

and irregular LDPC codes with n=9972 and k=m=4986 whose performances shown 

in Figure 3.13 (b) are much better than our results, mainly because of the longer 

code lengths. 
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Figure 3.13 Performance of regular and irregular LDPC codes 

 a) of size (576, 288) generated in this work, with girth=6, mean=6 

b) of size (9972, 4986) generated in [MacKay-1998] 

3.3.2 Effect of Approximate Cycle EMD and Stopping Sets 

Irregular (“93a”, 7) LDPC codes of size (576, 288) are constructed by our ACEC 

algorithm and iteratively decoded using the belief propagation decoder, described 

in Section 2.4.2. In order to fairly compare the effect of optimizing the local girth 

distribution to that of optimizing the ACE criterion; ACE values of the parity check 

matrices are chosen as 3 and 4, since for the (wc, wr) = (3, 6) regular codes, ACE 

values of 3 and 4 correspond to cycles of length 6 and 8. Hence, the performances 

of the codes generated by the LGDC algorithm in Section 3.1.1, having girth 

values of 6 and 8 are shown together with the performances of the codes designed 

by the ACEC algorithm with ACE limits η = 3 and 4 in Figure 3.14. 

(b) (a) 
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Figure 3.14 Performance of (576, 288) pseudo random irregular (“93a”, 7) codes with 

different ACE and girth values 

It can be seen that similar irregular matrices constructed by the ACEC algorithm do 

not provide any performance increase over those designed by the LGDC algorithm. 

The reason can be described as follows:  

The ACEC algorithm with parameters (dACE, η) generates graph cycles either 

longer than 2dACE or having ACE values greater than η. ACE value of a variable 

node with degree d is (d−2). When two variable nodes with degree higher than 

(η/2+2) are generated, the algorithm accepts these nodes even if they are connected 

to the same check nodes, since the ACE value generated by these variable nodes is 

higher than 2(η/2 + 2 − 2)=η.  

For the (“93a”, 7) codes, degree of a variable node is either 9 or 3. So, even when a 

candidate variable node of degree 9 has exactly the same check node connections 

with a previously accepted variable node of degree 9, the corresponding ACE value 



 42 

is 2×(9−2)=14. The ACEC algorithm with η=3 or 4 accepts the newly added high 

degree variable node since 14>3 and 4, so it has little control on the high degree 

variable node additions. 

However, for the variable nodes with degree 3, the ACEC algorithm works well, 

since two overlapping variable nodes ends up with the ACE value of 2×(3−2)=2 

and the algorithm rejects the candidate column since 2<3 (2<4). So, the ACEC 

algorithm works well for low degree variable nodes.  

In the literature [Ramamoorthy-2004], a joint approach is proposed, which uses the 

ACEC for low degree variable nodes and the stopping set check (SSC) for high 

degree variable nodes. We also implement a joint algorithm (JA) to constant 

(“93a”, 7) codes, where variable nodes of degree 3 are controlled by ACEC and 

those of degree 9 are controlled by the stopping set check criterion. Irregular parity 

check matrices of size 288×576 are constructed and iteratively decoded using the 

belief propagation decoder, described in Section 2.4.2. Performances of the codes 

produced by the local girth distribution and the ACE criteria are compared with 

those generated by the joint approach algorithm. For the (576, 288) irregular codes 

shown in Figure 3.15, the ACE limit is chosen as (dACE, η) = (7, 3) and stopping set 

size limit is chosen as 30 (SS=30).  

It is observed from Figure 3.15 that the code generated by the joint approach (JA) 

algorithm is slightly better when it is compared with similar LDPC codes generated 

by the ACEC or the LGDC algorithms. The improvement is small most probably 

because of the small size of the parity check matrices. 
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Figure 3.15 Performance of (576, 288) irregular (“93a”, 7) codes generated by ACEC, 

LGDC and Joint Approach algorithms 

3.4 Results 

Finally, we combine the summarized performance curves of regular and irregular 

codes designed with respect to different criteria.  

As depicted in Figure 3.16, the joint approach algorithm which uses ACE and SS 

criteria seems superior to both ACEC and the LGDC algorithms. This shows that 

for short block length irregular LDPC codes, the graph connectivity of cycles is as 

important as the length and distribution of cycles. On the other hand, the most 

effective way of increasing performance is simply avoiding the cycles of length 

four in the graph, before the application of any other sophisticated criterion. 
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Figure 3.16 Performance of (576, 288) pseudo-random codes generated by the ACEC, 

LGDC and Joint Approach algorithms 

Figure 3.17 shows the performance comparison of the codes generated in this 

thesis and similar codes generated in [Ramamoorthy-2004] of slightly higher 

length. The codes generated by Ramamoorthy have the weight distributions 

λ(x)=0.2186x+0.1470x2+0.1692x4+0.0136x5+0.0517x6+0.3999x16 and ρ(x)=x8, 

where the irregular codes that we generate have weight distributions 

λ(x)=11/14x2+3/14x8 and ρ(x)=x6. If the BER performances of rate 1/2 codes 

generated by our LGDC, ACEC and joint approach algorithms are compared with 

those of Ramamoorthy, although the performance order of ACEC, LGDC and joint 

approach algorithms is similar, Ramamoorthy’s results are much better. The main 

reason of this performance difference is the existence of highly elite variable nodes 

of degree 17 (see the last term of λ(x)) in Ramamoorthy’s codes. Almost 40% of 

the variable node edges belong to these elite variable nodes, which are checked by 

17 different parity check equations. Hence the belief propagation algorithm can 
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decide on the correct codeword more easily by using the reliable messages coming 

from the elite variable nodes in order to correct the values of the small-degree 

variable nodes. 

 

Figure 3.17 Performances of (576, 288) codes generated by our LGDC, ACEC and joint 

approach algorithms and similar codes generated in [Ramamoorthy-2004].  
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CHAPTER 4  

QUASI-CYCLIC LDPC CODES 

Despite the excellent error-correcting properties of some known pseudo-random 

LDPC codes, complexity resulting from storage issues tends to dominate the 

system architecture and makes such codes hard to use in actual communication 

scenarios. High complexity of pseudo-random LDPC codes is a direct consequence 

of the fact that very large amount of information is necessary to specify positions 

of the non-zero elements of the huge parity check matrices. Quasi-cyclic LDPC 

codes are good candidates to solve the memory problem, since their parity check 

matrices consist of circulant permutation matrices. They also have encoding 

advantages over pseudo-random LDPC codes since they can be encoded using 

simple shift-registers, with a complexity linearly proportional to the code length. 

In this chapter, construction methods of quasi-cyclic regular and irregular LDPC 

codes are explained and their performance is measured by simulations. Section 4.1 

begins with the description of the construction method for the algebraically 

structured quasi-cyclic LDPC codes. This is followed by the irregular structures of 

type (“93”, 7) that we adapt from pseudo-random forms of MacKay to quasi-cyclic 

form. Then, “BER versus SNR” performances of regular and irregular quasi-cyclic 

codes are compared. Section 4.2 describes the relationship between the shift values 

and the cycles in quasi-cyclic LDPC codes, followed by an algorithm to generate 

girth controlled quasi-cyclic LDPC codes. Then, regular quasi-cyclic LDPC codes 

are constructed with girth values 4, 6, 8 and 10 and their performances are 

presented. In Section 4.3 we finally compare both regular and irregular 
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algebraically constructed quasi-cyclic codes with the pseudo-random codes of the 

previous chapter. 

4.1 Algebraically Structured Quasi-Cyclic LDPC Codes 

In this section, first, we will give the description of the algebraically structured 

regular quasi-cyclic code construction and then we will describe our solution to the 

construction of irregular algebraically structured quasi-cyclic codes. The parity 

check matrix of a quasi-cyclic LDPC code consists of permutation matrices, which 

are usually derived from identity matrices. In Figure 4.1, examples of such sub-

matrices are shown, where I  

α denotes an identity matrix I, whose columns are (α-1) 

times circularly shifted to the right (or rows are (α-1) times circularly shifted up). 

Notice that if the size of the sub-matrix is S×S, then I S+1 = I. More generally, 
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Figure 4.1 Sub-matrices of size 4×4 used in quasi-cyclic parity check matrices 

4.1.1 Algebraically Structured Regular Quasi-Cyclic LDPC Codes 

The parity check matrix of an algebraically structured regular quasi-cyclic LDPC 

code with size Swc×Swr  is shown in Figure 4.2, which is first proposed by Tanner 

in 2004. There are lots of similar quasi-cyclic LDPC codes proposed in the 

literature, as in Figure 4.3 [Myung-2005] or in Figure 4.4 [Honary-2005]. 
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Figure 4.2 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr 

proposed by Tanner in 2004 
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Figure 4.3 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr 

proposed by Myung in 2005 
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Figure 4.4 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr 

proposed by Honary in 2005 

The Swc×Swr parity check matrix of a regular, quasi-cyclic, (n, wr, wc) LDPC code 

is constructed from sub-matrices of size S×S, where S=n/wr. S must be greater than 

the number of the sub-matrices (wrwc) in order not to have short cycles, since 

repetition of sub-matrices within H is the main cause of 4-cycles. Figure 4.5 (a) is 
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an example of such a case, where similar rows (or columns), i.e., the 1st and 5th, the 

2nd and 6th, etc., all create 4-cycles. Another example can be given using the parity 

check matrix shown in Figure 4.2, choosing a=b=2 and (wc, wr)=(3, 6) as in Figure 

4.6. If the sub-matrix size S=48, since I 

64=I 

mod48(64)=I 

16 and I 

128=I 

mod48(128)=I 32, the 

resulting 144×288 parity check matrix will have repeated sub-matrices which 

create 4-cycles. On the other hand, with S = 47, the resulting 141×282 parity check 

matrix in Figure 4.6 will have no repetition of sub-matrices and consequently, no 

cycles of length four.  

Therefore, before determining the size of the parity check matrix, the number of 

distinct sub-matrices that can be generated for the chosen a, b and S values should 

be checked. For example, if one chooses S = 56 for the structure in Figure 4.6, only 

6 distinct sub-matrices can be generated (i.e., I, I 2, I 4, I 8, I 16 and I 32) instead of 18 

distinct sub-matrices.  

One final remark is that, even if there are no repetitions of sub-matrices, there still 

can be cycles of length four as a result of the constant shift differences between 

consecutive sub-matrices. Example of such a case is given in Figure 4.5 (b), where 

column pairs like 1-6, 3-8 and 4-5 create cycles of length four as a result of the 

constant shift between I - I 2 and I 3 - I 4 sub-matrices. 

Figure 4.5 Parity check matrices which cause of cycles of length four 
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Taking all these considerations into account, a sub-matrix size of S = 94 with             

(wc, wr) = (3, 6) generates a quasi-cyclic parity check matrix of size 282×564 

shown in Figure 4.7, which has the structure shown in Figure 4.6. Using the girth 

check part of the LGDC algorithm introduced in Section 3.2, we compute the local 

girth distribution and sketch it in Figure 4.8. 
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Figure 4.6 Parity check matrix of a regular quasi-cyclic LDPC code with the structure 

given in Figure 4.2 and (wc, wr) = (3, 6) 

 

 

 

 

 

 

Figure 4.7 The 282×564 parity check matrix of a regular (3, 6) quasi-cyclic LDPC code 

having the structure given in Figure 4.6 

 
 
 
 
 
 
 
 

Figure 4.8 Local girth histogram of the parity check matrix of a (564, 282) regular (3, 6) 

quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.7. 
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4.1.2 Algebraically Structured Irregular ("93", 7) Quasi-Cyclic LDPC 

Codes 

In order to construct the algebraically structured irregular codes of this work, we 

have applied the regular quasi-cyclic construction proposed by Tanner in 2004, to 

the irregular codes of type “93” described in [MacKay-1998]. We have generated 

irregular quasi-cyclic LDPC codes by inserting sum of permutation matrices into 

the parity check matrix H instead of sub-matrices of weights greater than one 

shown in Figure 2.3 and Figure 2.5. For instance, I 2 and I 4 shown in Figure 4.1 can 

be used to generate a sub-matrix with column and row weight of 2 as in Figure 4.9. 



















=+

0101

1010

0101

1010

42 II  

Figure 4.9 A sub-matrix of H used for irregular quasi-cyclic LDPC code construction 

The structure of an irregular (“93a”, 7) quasi-cyclic parity check matrix proposed 

by MacKay in 1998 is as shown in Figure 2.3 and we propose the quasi-cyclic 

structure shown in Figure 4.10. Notice that, although most of the sub-matrices of H 

are of size S×S , sub-matrices shown in the last column are only half size, i.e., S/2 

by S/2. Choosing S=94 , an irregular (“93a”, 7) quasi-cyclic parity check matrix of 

size 282×564 is demonstrated in Figure 4.11 where dots indicate the nonzero 

entries. The local girth histogram of the parity check matrix is computed by using 

the girth check part of the LGDC algorithm described in Section 3.2 and sketched 

in Figure 4.12. 
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Figure 4.10 Structure of the parity check matrix for irregular (“93a”, 7) quasi-cyclic 

LDPC code  

 

 

 

 

Figure 4.11 The 282×564 parity check matrix of an irregular (“93a”, 7) quasi-cyclic 

LDPC code having the structure given in Figure 4.10 

 
 
 
 
 
 
 
 
 
 

Figure 4.12 Local girth histogram of the parity check matrix of a (564, 282) irregular 

(“93a”, 7) quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.11  

We similarly propose the irregular (“93y”, 7) quasi-cyclic parity check matrix 

structure shown in Figure 4.13 for the MacKay’s irregular (“93y”, 7) quasi-cyclic 

parity check matrix given in Figure 2.5. Now, H has sub-matrices with row and 

column weights of 1, 2 and 4. Similar to the weight-2 sub-matrices, weight-4 

matrices are generated by the sum of 4 permutation matrices, i.e., I 2 + I 4 + I 7 + I 17. 
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In Figure 4.14, an irregular (“93y”, 7) quasi-cyclic parity check matrix of size 

282×564 (for S=94) is given, where dots indicate the nonzero entries. We have 

computed the local girth histogram of the parity check matrix by using the girth 

check part of the LGDC algorithm described in Section 3.2  and sketched in Figure 

4.15. 
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Figure 4.13 Structure of the parity check matrix of (“93y”, 7) irregular quasi-cyclic code 

 

 

 

 

 

 

Figure 4.14 The 282×564 parity check matrix for an irregular (“93y”, 7) quasi-cyclic 

LDPC code having the structure given in Figure 4.13 

 

 
 
 
 
 
 
 
 

Figure 4.15 Local girth histogram of the parity check matrix of a (564, 282) irregular 

(“93y”, 7) quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.14. 
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4.1.3 Performance Comparison of Regular and Irregular Algebraically 

Structured Quasi Cyclic LDPC Codes 

In order to measure the performance of the irregular quasi-cyclic codes that we 

have proposed, we construct (576, 288) regular and irregular quasi-cyclic LDPC 

codes, which have the structures given in Figure 4.6 , Figure 4.10 and Figure 4.13 

and girth values of 6. They are iteratively decoded using the belief propagation 

decoder, settling the maximum number of iterations to 100. It can be seen from 

Figure 4.16 that codes are ordered similarly to the codes shown in Figure 3.13. So, 

either pseudo-random or quasi-cyclic, irregular (“93y”, 7) code has the best and the 

regular (3, 6) code has the worst performance. Therefore, we can say that the 

method that we propose for irregular quasi-cyclic LDPC code generation is 

advantageous. 

 

Figure 4.16 Performances of the (564, 282) regular (3, 6) and irregular quasi-cyclic LDPC 

codes 
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4.2 Girth Controlled Quasi-Cyclic LDPC Codes 

In this section, we review the relations between cycles and shifts values of the sub-

matrices in quasi-cyclic LDPC codes as explained by Moura in 2005. We then 

describe our girth controlled quasi-cyclic code generation algorithm in Section 

4.2.1. Examples of regular quasi-cyclic parity check matrices that we construct 

have size 450×900 and girth values of 4, 6, 8 and 10. 

Moura explained that the Tanner Graph of a quasi-cyclic LDPC code contains at 

least one cycle if and only if there exists a closed path of length 2t in the matrix 

such that its vertices (ai-times-shifted sub-matrices) satisfy the shift condition 

given in equation (4.1) where ⊕  is the modulo S summation [Moura-2005]. The 

example cycles of length four and six are shown in Figure 4.17.  
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Figure 4.17 Cycles of length four and six 
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As the girth value increases, the number of possible ways to generate cycles 

increases exponentially. The examples for cycle of length six and eight are given in 

Figure 4.18. 
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Figure 4.18 Cycles of length six and eight 
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The quasi-cyclic LDPC codes of the form given in Figure 4.2 have girth value of 6 

in general (for S equals to a prime number or some of the non-prime numbers); but 

for some particular values of S, they can also have cycles of length four. For 

example, if we take S=93 for a (wc, wr) = (3, 6) regular matrix given in Figure 4.6, 

sub-matrices I, I32, I4, I128 generate cycles of length four since the shift condition is 

satisfied as shown in Figure 4.19. As a consequence of the matrix size restrictions, 

quasi-cyclic LDPC codes with larger girth values (i.e., 8, 10, and 12) can be 

generated by controlling the shift values of the sub-matrices according to the 

correspondence between cycles and shifts for the quasi-cyclic LDPC codes.  
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Figure 4.19 Parity check matrix of a regular quasi-cyclic LDPC code with the structure 

given in Figure 4.2 and (wc, wr) = (3, 6) 

4.2.1 Construction of Girth Controlled QC-LDPC Codes 

The shift condition for the circulant matrices that generate cycles is given in 

equation (4.1). Now, we describe our algorithm to construct a girth controlled 

quasi-cyclic LDPC code by using (4.1). The construction is similar to the 

structured quasi-cyclic LDPC codes except the places of circulant matrices. These 

codes are not algebraically structured anymore, since the circulant matrices and 

their locations are not constant for short block length LDPC codes.  

The algorithm is as follows: 

Step 1: The sub-matrix size S, column and row weights, wr and wc of the parity 

check matrix and the desired girth value T are the initial parameters. The algorithm 

generates an empty matrix Ht which has wr columns and wc rows. Each location in 
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the matrix shows the shift value (a-1) of the circularly shifted identity sub-matrix Ia 

at that location.  
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Step 2: First column and the first row are filled randomly with shift values ai, since 

they can not generate cycles without a second column or row in Ht. 
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Step 3: The rest of the matrix is filled by random values generated between 0 and 

(S−1) for the vacant locations each time checking for the shift condition given in 

equation (4.1) for all the integers t < T/2. If a random number at a new location 

satisfies (4.1) with t < T/2, it is discarded and another number is generated. When 

all vacant locations are filled, the algorithm terminates. 

Example: Assume we try to construct a quasi-cyclic LDPC code with girth value 

of T = 8 for S = 150, (wc, wr) = (3, 6). 
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Step 1: An empty matrix generated is shown below. 
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Step 2: First column and the first row are randomly filled. (For illustrative 

purposes, we use a specific sequence which clearly is not random.) 
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Step 3: For the shift value of the sub-matrix located at (2, 2), values between 0 and 

149 except 8 are acceptable since it generates a 4-cycle where 

=−⊕ == i

ii

i a)1(4
1 1−2+8−7=0 (mod 150) and the algorithm fills the rest of the vacant 

positions by preventing the generation of 4-cycles and 6-cycles 
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4.2.2 Performance Comparison of Girth Conditioned Quasi Cyclic 

LDPC Codes 

Three regular (3, 6) quasi-cyclic parity check matrices with S=150, and girth values 

4, 6 and 8 are generated by the algorithm described in Section 4.2.1. The fourth 

quasi-cyclic code with girth value 10 is taken from [Moura-2005]. Corresponding 

parity check matrices are shown in Figure 4.20.  
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Figure 4.20 Girth controlled parity check matrices of size 450×900 for regular (3, 6) 

quasi-cyclic LDPC codes 

These regular quasi-cyclic codes are iteratively decoded using the belief 

propagation decoder, described in Section 2.4.2. The corresponding “BER versus 

SNR” performances are given in Figure 4.21.  One can observe that results are 

similar to those given in Figure 3.8 for regular pseudo-random codes. The 

performance of the regular quasi-cyclic LDPC codes also increases as the girth 

value increases and the largest performance improvement is obtained when cycles 

of length four are avoided. 

 

Figure 4.21 Performances of (900, 450) quasi-cyclic regular (3, 6) LDPC codes 
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4.3 Pseudo-Random versus Quasi-Cyclic LDPC Codes 

We finally give a general comparison between quasi-cyclic and pseudo-random 

LDPC codes with girth 6, for both regular (3, 6) and irregular (“93”, 7) cases in 

Figure 4.22. It is observed that performance of quasi-cyclic codes is approximately 

0.1 dB superior to those of pseudo-random codes. However, this performance 

advantage over pseudo-random codes at short block lengths can not be expected to 

continue when the block length gets longer. On the contrary, quasi-cyclic codes of 

high block lengths are inferior [Tanner-2001], because, the main reason for the 

successful performance of LDPC codes, i.e., the “randomness”, becomes more 

prominent for pseudo-random codes. 
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Figure 4.22 Performances of regular and irregular (576,288) pseudo-random and        

(564, 282) quasi-cyclic LDPC codes 

In summary, although the algebraically structured quasi-cyclic LDPC codes 

considered in this chapter have low encoding complexity, when we sacrifice from 

their algebraic structure to obtain high girths, they become closer to pseudo-
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random codes and a little gain in performance is obtained at the cost of increasing 

encoding complexity. The algebraic structure and the performance increase 

obtained by leaving this structure are the competing points about quasi-cyclic 

codes and either one must be chosen considering the requirements of the 

application.  
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CHAPTER 5  

CONCLUSION 

Randomly constructed LDPC codes are known to perform very good at extremely 

long block lengths. However, for many engineering applications, short block length 

is a must to decrease the complexity. In this thesis, we construct short block length 

pseudo-random and quasi-cyclic LDPC codes and discuss the construction criteria 

that affect the performance of these codes. 

For both of the pseudo-random and quasi-cyclic cases, regular as well as irregular 

codes are generated and all the codes are decoded by the iterative belief 

propagation algorithm. We observe that the errors made by the belief propagation 

decoder are always the detected errors, which occur when the decoder reaches the 

maximum number of iterations and reports the fact that “it is not possible to find a 

valid codeword”. The maximum number of iterations of the belief propagation 

decoder is set to 100 for all the codes used in this work, which have comparable 

block lengths. 

We have constructed (576, 288) regular and irregular pseudo-random codes with 

girth values of 6 by our LGDC (Local Girth Distribution Check) algorithm. We 

have observed that regular LDPC codes are 0.1-0.2 dB inferior to irregular LDPC 

codes and construction is ~0.1 dB superior to (“93a”, 7) irregular construction. 

Better performance of (“93y”, 7) irregular structure is a result of its better elite 

variable node connections. Our results are similar to those obtained by MacKay, 

who generated (9972, 4986) regular and irregular LDPC codes [MacKay-1998]. 
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We have also constructed (576, 288) irregular codes via our ACEC (Approximate 

Cycle EMD Check) algorithm. The criteria of ACE and stopping sets are then used 

together in the Joint Approach (JA) algorithm since the ACE alone may not be 

meaningful for high degree variable nodes of irregular codes. The performance 

increase obtained when the girth is changed from 4 to 6 is much more than that can 

be obtained by any other construction criterion. Hence, to avoid cycles of length 

four should be the main concern about the code generation algorithms.  

As for the algebraically structured quasi-cyclic LDPC codes, we have proposed 

some irregular structures combining MacKay’s pseudo-random irregular (“93”, 7) 

forms with Tanner’s algebraically structured quasi-cyclic construction, which 

avoid cycles of length four. The results are similar to those obtained for the 

pseudo-random case, i.e., the regular quasi-cyclic code has the worst and the 

irregular (“93y”, 7) quasi-cyclic code has the best performance. So, we can say that 

the proposed method for quasi-cyclic irregular LDPC codes is advantageous at 

short block lengths. 

Using the relations between cycles and shift values of the sub-matrices         

[Moura - 2005], (900, 450) regular (3, 6) quasi-cyclic codes with girth values of 4, 

6, 8 and 10 are constructed. When we compare the generated codes, we can say 

that results are very similar to those obtained for pseudo-random codes.  

Although, all the codes generated in this thesis work have short block lengths (576 

to 900), iterations of the belief propagation algorithm take more than 30 hours 

while evaluating the BER performance of a single code, with MATLAB on 3 GHz 

Intel Pentium IV processor. Since we could not increase the block length of the 

codes for complexity reasons, all the improvements we obtain are small values like 

0.1 or 0.2 dB. The optimization of the computer programs for generation and the 

performance evaluation of longer code length pseudo-random and quasi-cyclic 

codes can be a future work. 



 66 

 

REFERENCES 

• [Brack-2007] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, 

N.E. L’Insalata, F. Rossi, M. Rovini, L. Fanucci, “Low Complexity LDPC 

Code Decoders for Next Generation Standards” ,Design, Automation and 

Test in Europe Conference and Exhibition, DATE ‘07. 

• [Choi-2005] Eun-A Choi, Dae-Ik Chang, Deock-Gil Oh, Ji-Won Jung 

“Low Computational Complexity Algorithms of LDPC Decoder for DVB-

S2 Systems” IEEE 2005. 

• [Fan-2000] J. L. Fan, “Array codes as low density parity check codes,” in 

Proc. 2nd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 

2000, pp. 543–546. 

• [Fossosier-2000] R. Lucas, M. P. C. Fossorier, Yu Kou, Shu Lin “Iterative 

Decoding of One-Step Majority Logic Decodable Codes Based on Belief 

Propagation” IEEE Trans. Comm. Theory, 2000. 

•  [Fossosier-2004]  M. P. C. Fossorier, “Quasi-cyclic low density parity 

check codes from circulant permutation matrices,” IEEE Trans. Inform. 

Theory, 2004. 

•  [Fossosier-2001] Y. Kou, S. Lin, and M. Fossorier, “Low density parity 

check codes based on finite geometries: A rediscovery and new results,” 

IEEE Trans. Inform. Theory, vol. 47, pp. 2711–2736, Nov. 2001. 



 67 

• [Fossosier-2004] M. P. C. Fossorier, “Quasi-cyclic low density parity 

check codes from circulant permutation matrices,” IEEE Trans. Inform. 

Theory, 2004. 

• [Gallager-1962] R. G. Gallager, “Low density parity check codes,” IRE 

Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962. 

• [Gallager-1963] R. G. Gallager. Low density Parity check Codes. 

Cambridge, MA: MIT Press, 1963. 

•  [Honary-2005] B. Honary, A. Moinian and B. Ammar, “Construction of 

well structured quasi-cyclic low density parity check codes.” IEEE Proc. 

Commun. 2005. 

• [Kschischang-2001] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, 

“Factor graphs and the sum-product algorithm,” IEEE Trans. Info. Theory 

47: 498–519, 2001. 

• [Luby-2001] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. 

Spielman. “Improved low density parity check codes using irregular 

graphs.” IEEE Trans. Info. Theory 47: 585-598. 2001 

• [MacKay-1998] D. J. C. MacKay, S.T. Wilson and M.C. Davey, 

“Comparison of Constructions of Irregular Gallager Codes”, IEEE Trans. 

on Comm., 1998. 

•  [MacKay-1999] D. J. C. MacKay, “Good error-correcting codes based on 

very sparse matrices", IEEE Trans. on Info. Theory, 1999. 



 68 

• [MacKay-2003] D. J. C. MacKay “Information Theory, Inference, and 

Learning Algorithms” Cambridge University Pres, 2003. 

•  [MacKay & Neal-1996] D. J. C. MacKay and R. M. Neal, “Near Shannon 

limit performance of low density parity check codes”, Electronics Letters 

1996.  

• [Mao-2000] Y. Mao, A. Banihashemi, and M. Landolsi, “Comparison 

between low density parity check codes and turbo product codes for delay 

and complexity sensitive applications,” in Proc. 20th Biennial Symp. 

Comm., Kingston, Ontario, 2000.  

•  [Mao-2001] Y. Mao and A. H. Banihashemi, “A heuristic search for good 

low density parity check codes at short block lengths,” in Proc. IEEE Int. 

Conf. Communications, vol. 1, Helsinki, Finland, June 2001, pp. 41–44. 

•  [Moura-2005] J. Lu, and J. M. F. Moura, “Partition-and-Shift LDPC 

Codes.” IEEE Trans. on Magnetics, 2005. 

• [Myung-2005]  Seho Myung, Kyeongcheol Yang, and Jaeyoel Kim 

“Quasi-Cyclic LDPC Codes for Fast Encoding” 

• [Ramamoorthy-2004] A. Ramamoorthy and R. Wesel “Construction of 

Short Block Length Irregular Low density Parity check Code” (IEEE 

Comm. Conf. 2004) 

•  [Richardson-2001a] S. Chung, G. D. Forney, T. J. Richardson, and R. 

Urbanke. “On the Design of Low Density Parity Check Codes within 

0.0045 dB of the Shannon Limit.” IEEE Comm. Letters, 2:58-60, 2001. 



 69 

• [Richardson-2001b] T. Richardson, A. Shokrollahi, and R. Urbanke. 

“Design of Capacity Approaching Irregular Low Density Parity Check 

Codes” IEEE Trans. Info. Theory 47: 619-637. 2001 

• [Richardson-2001c] T. J. Richardson and R. L. Urbanke, “The capacity of 

low density parity check codes under message-passing decoding,” IEEE 

Trans. On Info. Theory 47:599–618, 2001. 

• [Richardson-2002] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and 

R. L. Urbanke, “Finite-length analysis of low density parity check codes on 

the binary erasure channel,” IEEE Trans. on Info. Theory 48: 1570–1579, 

2002. 

• [Richardson-2003] T. Richardson, “Error floors of LDPC codes,” in Proc. 

41st Annu. Allerton Conf. Communication, Control, and Computing, 

Monticello, IL, Sep. 2003, pp. 1426–1435. 

•  [Rosenthal-2000] J. Rosenthal and P. O. Vontobel, “Constructions of 

LDPC codes using Ramanujam graphs and ideas from Margulis,” in Proc. 

38th Allerton Conf. Communications, Control, and Computing, 

Monticello, IL, Oct. 2000, pp. 248–257. 

• [Shannon-1949] C. E. Shannon and W. Weaver, “The Mathematical 

Theory of Communication” Univ. of Illinois Press. (1949) 

• [Tanner-1981] B. M. Tanner, “A recursive approach to low complexity 

codes,” IEEE Trans. Inform. Theory, 1981. 



 70 

• [Tanner-1999] R. M. Tanner, “On quasi-cyclic repeat accumulate codes” 

in Proc. 37th Allerton Conf. Communication, Control and Computing, 

Monticello, IL, Oct. 1999, pp. 249–259. 

•  [Tanner-2000] R. M. Tanner, “A [155; 64; 20] sparse graph (LDPC) 

code,” presented at the Recent Results Session at IEEE International 

Symposium on Information Theory, Sorrento, Italy, June 2000. 

• [Tanner-2001] R. M. Tanner, A. Sridharan, and T. E. Fuja “A Class of 

Group-Structured LDPC Codes” Proc. International Symposium on 

Comm. Theory and Applications, Ambleside, U.K. 2001. 

•  [Tanner-2004] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and 

D. J. Costello, “LDPC Block and Convolutional Codes Based on Circulant 

Matrices” IEEE Trans. On Info. Theory, 2004. 

•  [Tanner-2007] J. Chen, R. M. Tanner, J. Zhang, M. P. C. Fossorier, 

“Construction of Irregular LDPC Codes by Quasi-Cyclic Extension.” IEEE 

Trans. On Info. Theory, April 2007. 

• [Tian-2003] Tao Tian, Chris Jones, John D. Villasenor, Richard D. Wesel 

“Construction of Irregular LDPC Codes with Low Error Floors” IEEE 

2003. 

• [Tian-2004] Tao Tian, Christopher R. Jones, John D. Villasenor, Richard 

D. Wesel “Selective Avoidance of Cycles in Irregular LDPC Code 

Construction.” IEEE 2004. 



 71 

• [Zhang-2006] Chao Zhang, Xiao-Lin Zhang, Cheng Lu, Zhan Zhang, 

“The Technical analysis on the China National Standard for Digital 

Terrestrial TV Broadcasting” 2006 

 

  



 72 

 

APPENDIX A  

REQUIRED NUMBER OF ITERATIONS FOR 

DECODING 

The decoder halts whenever another codeword is found or when it reaches the 

maximum number of iterations. In many cases 20 iterations suffice, but sometimes 

even one hundred is not enough for the algorithm to converge to a codeword. Even 

by setting the maximum number of iterations to 1000 some blocks that are declared 

failures can be decoded by allowing more iterations. The number of successful 

decodings missed by limiting the number of iterations is an important issue. 

Decoding failures usually (nearly all in this thesis) occur because the decoding 

algorithm converges to a stable configuration in which several checks are failed. In 

such cases, extra iterations never lead to successful decoding. It is, however, 

possible for the algorithm to fail to converge to a stable state. 

Figure 6.1 shows the distribution of iterations for a regular (576, 288) (3, 6) regular 

LDPC code with girth mean 6 at 2 dB SNR and Figure 6.2 shows the percentage of 

the iterations. Out of 1000 blocks, 794 blocks are decoded within 100 iterations, 

and there are 206 block decoding failures. 33 of the 206 decoding failures can be 

successfully decoded by increasing the iteration number to 500. This situation is 

nearly the same for the other codes in this thesis and 100 iterations is a good 

choice. Figure 6.3 shows the distribution of number of iterations for 1 to 3 dB 

SNR. 
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Figure A1 Iteration histogram for (576, 288) (3, 6) regular LDPC code with girth 6 for      

2 dB SNR 

 

Figure A2 Iteration number convergence curve for 2 dB SNR 
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Figure A3 Iteration histograms for (576, 288) (3, 6) regular LDPC code with girth=6 

 

 


