

PERFORMANCE OF PSEUDO-RANDOM AND QUASI-CYCLIC LOW
DENSITY PARITY CHECK CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR HÜSNÜ KAZANCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

Approval of the thesis:

PERFORMANCE OF PSEUDO-RANDOM AND QUASI-CYCLIC LOW

DENSITY PARITY CHECK CODES

submitted by ONUR HÜSNÜ KAZANCI in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering Dept.

Assoc. Prof. Dr. Melek Diker Yücel

Supervisor, Electrical and Electronics Engineering Dept.

Examining Committee Members:

Prof. Dr. Yalçın Tanık
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Diker Yücel

Electrical and Electronics Engineering Dept., METU

Assis. Prof. Dr. Arzu Tuncay Koç

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Elif Uysal Bıyıkoğlu

Electrical and Electronics Engineering Dept., METU

Semih Can

MST-TMM, ASELSAN Inc.

 Date: December 7, 2007

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name and Surname : Onur Hüsnü KAZANCI

Signature :

 iv

ABSTRACT

PERFORMANCE OF PSEUDO-RANDOM AND QUASI-

CYCLIC LOW DENSITY PARITY CHECK CODES

Kazancı, Onur Hüsnü

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Diker Yücel, Melek

December 2007, 74 pages

Low Density Parity Check (LDPC) codes are the parity check codes of long block

length, whose parity check matrices have relatively few non-zero entries. To

improve the performance at relatively short block lengths, LDPC codes are

constructed by either pseudo-random or quasi-cyclic methods instead of random

construction methods. In this thesis, pseudo-random code construction methods,

the effects of closed loops and the graph connectivity on the performance of

pseudo-random LDPC codes are investigated. Moreover, quasi-cyclic LDPC codes,

which have encoding and storage advantages over pseudo-random LDPC codes,

their construction methods and performances are reviewed. Finally, performance

comparison between pseudo-random and quasi-cyclic LDPC codes is given for

both regular and irregular cases.

Keywords: Low Density Parity Check codes, LDPC, pseudo-random LDPC codes,

quasi-cyclic LDPC codes, Girth, EMD, ACE, Stopping Set.

 v

ÖZ

RASTGELEMSİ VE YARI-ÇEVRİMSEL DÜŞÜK

YOĞUNLUKLU EŞLİK SAĞLAMASI KODLARININ

BAŞARIMI

Onur Hüsnü Kazancı

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Melek Diker Yücel

Aralık 2007, 74 sayfa

Düşük Yoğunluklu Eşlik Sağlaması (DYES) kodları, uzun kod boylu ve eşlik

sağlaması matrisinde sıfır dışındaki sayıların, sıfırlara göre çok az olduğu eşlik

sağlaması kodlarıdır. Göreli olarak kısa kod uzunluklarında DYES kodlarının

başarımını artırmak için, rastgele oluşumlar yerine rastgelemsi veya yarı-çevrimsel

yöntemler kullanılmaktadır. Bu tezde, rastgelemsi DYES kodlarını oluşturma

yöntemleri, kapalı döngülerin ve grafik bağlanırlığın kod başarımına etkileri

incelenmiştir. Ayrıca, rastgelemsi kodlara göre kodlama ve bellek avantajları olan

yarı-çevrimsel DYES kodu oluşturma yöntemleri ve başarımları irdelenerek,

rastgelemsi DYES kodlarınınkiyle hem düzenli hem de düzensiz durumlar için

karşılaştırılmıştır.

Anahtar Sözcükler: Düşük Yoğunluklu Eşlik Sağlaması, DYES, rastgelemsi,

yarı-çevrimsel.

 vi

To My Family

 vii

ACKNOWLEDGEMENTS

I would like to thank all my teachers, especially Assoc. Prof. Dr. Melek D. Yücel

for her motivating ideas and valuable guidance.

I would also like to thank my parents for encouraging and supporting me during

this thesis work and my whole education.

Finally, I would like to thank my elder brother Oğuz for his support and guidance

during my life.

 viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ...v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS.. viii

LIST OF TABLES..x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS...xv

CHAPTERS

1. INTRODUCTION ..1

1.1 History ..3

1.2 Aim and Outline of the Thesis ..6

2. LOW DENSITY PARITY CHECK CODES ...8

2.1 LDPC Codes ...8

2.2 Graph Structure...10

2.3 Irregular LDPC Codes ..12

2.4 Decoding by Iterative Message Passing ...15

2.4.1 Bit Flipping Algorithm ..16

2.4.1 Belief Propagation Algorithm..18

3. PSEUDO-RANDOM LDPC CODES ..25

3.1 Performance Improving Criteria for Pseudo-Random LDPC Codes....26

3.1.1 Girth and Local Girth Distribution ..26

3.1.2 Extrinsic Message Degree (EMD) and Approximate Cycle

EMD (ACE)...28

 ix

3.1.3 Stopping Set ...29

3.2 Pseudo-Random LDPC Code Construction Algorithm30

3.3 Effect of Different Criteria on the Performance33

3.3.1 Effect of Local Girth Distribution on the Performance34

3.3.2 Effect of Approximate Cycle EMD and Stopping Sets40

3.4 Results...43

4. QUASI-CYCLIC LDPC CODES...46

4.1 Algebraically Structured Quasi-Cyclic LDPC Codes...........................47

4.1.1 Algebraically Structured Regular Quasi-Cyclic LDPC

Codes ...47

4.1.2 Algebraically Structured Irregular (“93”, 7) Quasi-Cyclic

LDPC Codes ..51

4.1.3 Performance Comparison of Regular and Irregular

Algebraically Structured Quasi-Cyclic LDPC Codes............54

4.2 Girth Controlled Quasi-Cyclic LDPC Codes..55

4.2.1 Construction of Girth Controlled QC-LDPC Codes..............57

4.2.2 Performance Comparison of Girth Conditioned Quasi

Cyclic LDPC Codes...59

4.3 Pseudo-Random versus Quasi-Cyclic LDPC Codes61

5. CONCLUSION...63

REFERENCES ...66

APPENDICES

A. REQUIRED NUMBER OF ITERATIONS FOR DECODING........................72

 x

LIST OF TABLES

Table 1.1 LDPC Code parameters for some Next Generation Standards 6

Table 3.1 Local girth distribution parameters of the generated codes 34

 xi

LIST OF FIGURES

Figure 1.1 Performance of the LDPC code used in DVB-S2 Standard5

Figure 2.1 Tanner graph representation of a 3x6 LDPC matrix..........................11

Figure 2.2 Representation of a cycle in matrix and graph representations11

Figure 2.3 Parity check matrix construction of a (“93a”, 7) irregular LDPC

code where integer values inside each circle give the column and

row weight of each sub-matrix and empty places are zero

matrices ..14

Figure 2.4 Example of a 288×576 parity check matrix for an irregular

(“93a”, 7) LDPC code..14

Figure 2.5 Parity check matrix construction of a (“93y”, 7) irregular LDPC

code where integer values inside each circle give the column and

row weight of each sub-matrix and empty places are zero

matrices ..15

Figure 2.6 Example of a 288×576 parity check matrix for an irregular

(“93y”, 7) LDPC code ...15

Figure 2.7 Message flow during the error correction of bit-flipping

algorithm..18

Figure 3.1 8-cycle with poor graph connectivity and 4-cycle with good

graph connectivity..28

Figure 3.2 Examples of variable node sets generating a stopping sets30

Figure 3.3 Flow graph of the code construction algorithm32

Figure 3.4 The parity check matrix of a (576, 288) regular (3, 6) LDPC code

with ..34

Figure 3.5 Local girth histogram of the parity check matrix of a (576, 288)

regular (3, 6) LDPC code, girth=4, mean=5.9635

Figure 3.6 Local girth histogram of the parity check matrix of a (576, 288)

regular (3, 6) LDPC code, girth=6, mean=635

 xii

Figure 3.7 Local girth histogram of the parity check matrix of a (576, 288)

regular (3, 6) LDPC code, girth=6, mean=7.8335

Figure 3.8 Performance of (576, 288) regular (3, 6) pseudo-random codes

generated by LGDC algorithm ..36

Figure 3.9 Local girth histogram of the parity check matrix of the (576, 288)

irregular (both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6,

mean=6...37

Figure 3.10 Local girth histogram of the parity check matrix of the (576, 288)

irregular (both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6,

mean=8...37

Figure 3.11 Performance of (576, 288) irregular (“93a”, 7) LDPC codes38

Figure 3.12 Performance of (576, 288) irregular (“93y”, 7) LDPC codes............39

Figure 3.13 Performance of regular and irregular LDPC codes40

Figure 3.14 Performance of (576, 288) pseudo random irregular (“93a”, 7)

codes with different ACE and girth values ..41

Figure 3.15 Performance of (576, 288) irregular (“93a”, 7) codes generated

by ACEC, LGDC and Joint Approach algorithms43

Figure 3.16 Performance of (576, 288) pseudo-random codes generated by

the ACEC, LGDC and Joint Approach algorithms............................44

Figure 3.17 Performances of (576, 288) codes generated by our LGDC,

ACEC and joint approach algorithms and similar codes

generated in [Ramamoorthy-2004]. ...45

Figure 4.1 Sub-matrices of size 4×4 used in quasi-cyclic parity check

matrices ..47

Figure 4.2 Structure of a regular quasi-cyclic parity check matrix of size

Swc×Swr proposed by Tanner in 2004..48

Figure 4.3 Structure of a regular quasi-cyclic parity check matrix of size

Swc×Swr proposed by Myung in 2005..48

Figure 4.4 Structure of a regular quasi-cyclic parity check matrix of size

Swc×Swr proposed by Honary in 2005 ...48

Figure 4.5 Parity check matrices which cause of cycles of length four49

 xiii

Figure 4.6 Parity check matrix of a regular quasi-cyclic LDPC code with the

structure given in Figure 4.2 and (wc, wr) = (3, 6)............................50

Figure 4.7 The 282×564 parity check matrix of a regular (3, 6) quasi-cyclic

LDPC code having the structure given in Figure 4.6.........................50

Figure 4.8 Local girth histogram of the parity check matrix of a (564, 282)

regular (3, 6) quasi-cyclic LDPC code, whose parity check

matrix is shown in Figure 4.7 ..50

Figure 4.9 A sub-matrix of H used for irregular quasi-cyclic LDPC code

construction..51

Figure 4.10 Structure of the parity check matrix for irregular (“93a”, 7)

quasi-cyclic LDPC code ..52

Figure 4.11 The 282×564 parity check matrix of an irregular (“93a”, 7)

quasi-cyclic LDPC code having the structure given in Figure

4.10 ..52

Figure 4.12 Local girth histogram of the parity check matrix of a (564, 282)

irregular (“93a”, 7) quasi-cyclic LDPC code, whose parity check

matrix is shown in Figure 4.11 ..52

Figure 4.13 Structure of the parity check matrix of (“93y”, 7) irregular quasi-

cyclic code ...53

Figure 4.14 The 282×564 parity check matrix for an irregular (“93y”, 7)

quasi-cyclic LDPC code having the structure given in Figure

4.13 ..53

Figure 4.15 Local girth histogram of the parity check matrix of a (564, 282)

irregular (“93y”, 7) quasi-cyclic LDPC code, whose parity check

matrix is shown in Figure 4.14 ..53

Figure 4.16 Performances of the (564, 282) regular (3, 6) and irregular quasi-

cyclic LDPC codes...54

Figure 4.17 Cycles of length four and six ...55

Figure 4.18 Parity check matrix of a regular quasi-cyclic LDPC code with the

structure given in Figure 4.2 and (wc, wr) = (3, 6)............................57

Figure 4.19 Cycles of length six and eight..56

 xiv

Figure 4.20 Girth controlled parity check matrices of size 450×900 for

regular (3, 6) quasi-cyclic LDPC codes...60

Figure 4.21 Performances of (900, 450) quasi-cyclic regular (3, 6) LDPC

codes ..60

Figure 4.22 Performances of regular and irregular (576,288) pseudo-random

and (564, 282) quasi-cyclic LDPC codes ..62

Figure A1 Iteration histogram for (576, 288) regular (3, 6) LDPC code with

girth 6 for 2 dB SNR..73

Figure A2 Iteration number convergence curve for 2 dB SNR...........................73

Figure A3 Iteration histograms for (576, 288) regular (3, 6) LDPC code

with girth=6..74

 xv

 LIST OF ABBREVIATIONS

ACE Approximate Cycle EMD

ACEC ACE Check

AWGN Additive White Gaussian Noise

BEC Binary Erasure Channel

BER Bit Error Ratio

BPSK Binary Phase-Shift Keying

BSC Binary Symmetric Channel

CCSDS Consultative Committee for Space Data Systems

DE Density Evolution

DVB-S2 Second Generation Satellite Digital Video Broadcasting

EMD Extrinsic Message Degree

FEC Forward Error Correcting

FER Frame Error Ratio

LGDC Local Girth Distribution Check

HDTV High-Definition TV

JA Joint Approach

LDPC Low Density Parity Check

LLR Log Likelihood Ratios

MFN Multi-Frequency Network

PDF Probability Distribution Functions

SDTV Standard-Definition Television

SFN Single-Frequency Network

SNR Signal to Noise Ration

SSC Stopping Set Check

VLSI Very Large Scale Integration

WiFi Wireless LAN

WiMax Worldwide Interoperability for Microwave Access

 1

CHAPTER 1

INTRODUCTION

As Shannon indicated in 1949 [Shannon-1949], the fundamental problem of

communication is to reproduce a message signal, that is generated at one point,

either exactly or approximately at another point. All communication channels are

noisy and noise is the main cause of errors during data transmission. An analog

telephone line, a radio communication link or a data recording disc drive are some

examples of noisy channels. In all these cases, if a data string is transmitted over a

channel, there is some probability that the received message will not be identical to

the transmitted message. It is preferred to have a communication channel for which

this probability of error is so close to zero that for practical purposes it is

indistinguishable from zero. The solution for this problem, other than the physical

solutions like increasing the reliability of the circuitry or increasing the

transmission power, is channel coding. Coding theory is concerned with the

creation of practical and successful encoding and decoding methods by adding an

encoder and a decoder before and after the channel.

The encoder designs suitable sets of distinct codewords, and the decoder devises

methods for extracting estimates of transmitted messages from the output of a

noise-contaminated channel, which is a process called error correction. Low

Density Parity Check (LDPC) codes discussed in this thesis are special examples

of error correcting codes which are a class of linear block codes. Linear block

codes map k-symbol messages to n-symbol codewords, all of which satisfy the

(n−k)×1 matrix equation HcT=0, where H is the (n−k)×n parity check matrix and c

 2

is the 1×n transmitted codeword. Binary LDPC codes are the codes specified by a

parity check matrix containing many zeros and very small number of ones, whose

positions are generally chosen at random. Binary LDPC codes can be divided into

two main groups as regular and irregular LDPC codes, where a regular (n, wc, wr)

LDPC matrix is an (n−k)×n parity check matrix having exactly wc ones in each

column (column weight) and exactly wr ones in each row (row weight), such that

wc<wr and both are very small compared to n. On the other hand, an irregular

LDPC matrix is still sparse, but not all rows and columns contain the same number

of ones; instead, they are defined by the weight density functions which give the

probabilities of the column and row weights.

Although LDPC codes perform very well for long block length such as 107, the

design of good codes with relatively shorter block lengths is also desired for many

practical applications. The construction becomes prominent for LDPC codes of

short to medium lengths because a short block length LDPC code with a randomly

generated parity check matrix may typically have a poor performance.

The Tanner graph of an LDPC code [Tanner-1981] is the visualization of its parity

check matrix, which defines the columns and rows as variable nodes and check

nodes and the non-zero entries as the edges that connect these nodes. The

performance of an LDPC code depends on both the structure of its Tanner Graph

(or graph only) and its minimum distance. In other words, an LDPC code with a

good minimum distance may not outperform another one with worse minimum

distance but better graph structure, because the commonly used iterative message-

passing decoding algorithms are suboptimum and graph dependent [Kschischang-

2001]. Therefore, most of the research on pseudo-random LDPC code design has

been concentrated on finding graphs suitable for iterative decoding by optimizing

the parameters such as the shortest closed path in the graph, namely the girth, and

local girth distribution that is the distribution of the shortest length closed path

generated by each column [Mao-2001], or other parameters dealing with the

connectivity in the graph such as the extrinsic message degree (EMD) [Tian-2003]

 3

and stopping set (SS) [Richardson-2002]. The name pseudo-random comes from

the control of these constraints during the random construction.

Most methods for designing LDPC codes are based on random construction

techniques and the lack of structure implied by this randomness presents serious

disadvantages in terms of storing and accessing a large parity check matrix,

encoding data, and analyzing code performance (e.g., determining the distance

properties). If the codes are designed with some algebraic structure, then some of

these problems can be overcome. In the recent literature, several algebraic methods

for constructing LDPC codes have appeared [Moura-2005], [Fossorier-2000a-

2001-2004], [Tanner 1999-2000-2004-2007], [Rosenthal-2000], [Honary-2005],

[Fan-2000]. Among these, the most relevant ones to our work are the quasi-cyclic

(QC) LDPC codes designed by Tanner in 2004 and design considerations

explained by Moura in 2005. The quasi-cyclic LDPC codes have sparse and

elegant graph representations that make them well suited to iterative message-

passing algorithms. The parity check matrix of a quasi-cyclic LDPC code is

composed of blocks of circulant matrices (zero matrices, identity matrices and

circularly shifted identity matrices), giving the code a quasi-cyclic property, which

can potentially facilitate efficient encoder implementation. Further, the algebraic

structure of the code allows an efficient VLSI implementation with simple shift

registers.

1.1 History

LDPC codes (also called Gallager codes) were first proposed in 1962 [Gallager-

1962] [Gallager-1963], along with an elegant iterative decoding scheme whose

complexity grows only linearly with the block length of the code. Despite their

advantages, LDPC codes were largely forgotten for several years primarily because

the computers at the time were not powerful enough to decode them. In 1995,

LDPC codes were rediscovered by MacKay and Neal [MacKay & Neal-1996],

who proved that in spite of their simple construction, these codes have very

 4

impressive performance; that is, when optimally decoded, some of them achieve

information rates very close to the Shannon limit [Shannon-1949].

Today the value of LDPC codes is widely recognized and their remarkable

performance ensures that they will not be forgotten again. In contrast to many

codes that were invented well after 1962, LDPC codes offer both better

performance and lower decoding complexity. In fact, it is an irregular LDPC code

(with block length 107) that currently holds the distinction of being the world’s best

code of rate 1⁄2, outperforming all other known codes, and falling only 0.0045 dB

short of the Shannon limit [Richardson-2001a].

Because of their success in approaching the channel capacity most closely, LDPC

codes will definitely become the choice for next-generation communications

standards. LDPC codes have already been included in the China National Standard

for Digital Terrestrial TV Broadcasting standard, the European standard for the

second generation of Satellite Digital Video Broadcasting (DVB-S2), satellite

broadcasted, high-definition TV (HDTV) in 2004. They are currently considered

for the revision of many recommendations issued by the Consultative Committee

for Space Data Systems (CCSDS), and they will most probably be included in the

channel coding section of many other widespread telecommunication applications,

like wired and wireless digital communication networks.

The China National Standard for Digital Terrestrial TV Broadcasting standard

[Zhang-2006] supports the baseband data payload from 4.813Mbit/s to

32.486Mbit/s, standard-definition television (SDTV) and high-definition television

(HDTV), fixed point and mobile reception, multi-frequency network (MFN) and

single-frequency network (SFN). In the system, the LDPC code is adopted as the

inner code and the BCH (762, 752) is the outer code. There are 3 LDPC code

modes and the numbers of information bits are 3048, 4572 and 6096, respectively.

The LDPC codeword length n is the same for 3 coding modes, which is 7488 bits.

There are 3 FEC coding rates, namely 0.4, 0.6, and 0.8, respectively.

 5

• Code rate k/n = 0.4, FEC (7488, 3008);

• Code rate k/n = 0.6, FEC (7488, 4512);

• Code rate k/n = 0.8, FEC (7488, 6016).

The HDTV satellite standard, known as the DVB-S2 digital video broadcasting

transmission system employs an LDPC coding technique as a channel coding

scheme. The DVB-S2 satellite video broadcasting standard was designed for an

exceptional error performance at very low SNR ranges (up to Frame Error Ratio

(FER)≤10-7 at -2.35 dB Es/N0). Thus the specified LDPC codes use a large block

length of 64800 bits with 11 different code rates ranging from 1/4 to 9/10. This

results in large storage requirements for up to 285000 messages and demands high

code rate flexibility at the same time to support all specified node degrees, as

shown in the first row of Table 1.1 [Brack-2007]. The performance of the LDPC

code with codeword length n=64800, and information word length k=32400=(n-k)

is given in Figure 1.1 [Choi-2005].

Figure 1.1 Performance of the LDPC code used in DVB-S2 Standard

 6

The current WiMax 802.16e standard features the LDPC codes as an optional

channel coding scheme. It consists of six different code classes with different row

weight and column weight distributions, spanning four different code rates from

1/2 to 5/6 (see the second row of Table 1.1). All six code classes have the same

general parity check matrix structure and support 19 codeword sizes, ranging from

n=576 to 2304 bits [Brack-2007].

The WiFi 802.11n standard also features the LDPC codes as an optional channel

coding scheme. It utilizes 12 different codes with four code rates from 1/2 to 5/6

for each of the three different codeword sizes of 648, 1248, and 1944 bits. The

most complicated issue with this code is the row weight and column weight

flexibility needed to fully support this standard (see the third row of Table 1.1)

[Brack-2007].

Table 1.1 LDPC Code parameters for some Next Generation Standards

 Codeword size, n Code Rate, k/n Row weight, wr Column weight, wc

 # min max # min max # min max # min max

Number
of ones
in H

DVB-S2 1 64800 64800 11 1/4 9/10 11 4 30 7 2 13 285120

WiMax 802.16e 19 576 2304 4 1/2 5/6 7 6 20 4 2 6 8448

WiFi 802.11n 3 648 1944 4 1/2 5/6 9 7 22 8 2 12 7128

 (# denotes the number of different n, k/n, wr or wc values in respective columns.)

1.2 Aim and Outline of the Thesis

The aim of this thesis is to explore pseudo-random and quasi-cyclic LDPC code

construction methods among the proposed generation schemes. The topologies in

the graph that affect the performance of pseudo-random LDPC codes at short block

lengths are explained in detail and the performance comparison of regular and

irregular pseudo-random LDPC codes is made. Besides, quasi-cyclic LDPC code

construction methods and their girth properties are investigated. Finally, the thesis

work is focused on the performance comparison of pseudo-random and quasi-

cyclic LDPC codes for the regular and irregular cases using the comparably sized

parity check matrices that we construct for that purpose.

 7

Chapter 2 presents a brief overview of the terminology and concepts used in this

thesis. The review of LDPC code properties, their graph representations, and two

main iterative decoding algorithms are also given in this chapter. Chapter 3

describes the pseudo-random LDPC codes, which are constructed specifically to

minimize the occurrence of topologies that cause problems during decoding. These

topologies lower the performance by generating closed loops in the graph, such as

short length cycles and an unfavorable local girth distribution. The effects of these

topologies on the performance of the pseudo-random codes are discussed at the end

of this chapter.

Besides all the advantages, pseudo-random LDPC codes have disadvantages like

the encoding complexity and the memory problem since a large amount of

information is required to locate the non-zero elements in huge parity check

matrices. On the other hand, quasi-cyclic LDPC codes reduce the encoding

complexity and memory problem since they have an algebraic construction method

which uses the circulant matrices. Quasi-cyclic LDPC codes, their construction

methods, cycle properties and performances of the regular and irregular LDPC

codes that we have generated in this thesis work are given in Chapter 4. The

conclusions in Chapter 5 include the performance comparison of all these codes

and discussion of related future work.

 8

CHAPTER 2

LOW DENSITY PARITY CHECK CODES

In this chapter, review of the concepts and terminology related to LDPC codes will

be given. After the description of LDPC codes and related parameters in Section

2.1, the Tanner graph and cycle properties of block codes are explained briefly in

Section 2.2. The concept of irregular codes and the irregular codes proposed by

MacKay are discussed in Section 2.3. Finally, Section 2.4 is a review of the

iterative message passing decoding for LDPC codes based on hard decision and

soft decision algorithms.

2.1 LDPC Codes

Low Density Parity Check (LDPC) codes discussed in this thesis are special

examples of parity check codes which are a class of linear error correcting block

codes. An (n, k) linear block code maps 2k messages to 2n codewords c, all of

which satisfy cHT=0, where H is the parity check matrix of size (n−k)×n. As the

name suggests, Low Density Parity Check codes are a sub-class of parity check

codes, whose parity check matrix has relatively few non-zero entries and the non-

zero entry positions are generally chosen at random. According to the column/row

weight distributions, LDPC codes can be divided into two main groups as regular

and irregular LDPC codes. A regular (n, wc, wr) LDPC matrix is an (n−k)×n binary

parity check matrix having exactly wc ones in each column and exactly wr ones in

each row, where wc<wr and both are very small compared to n.

 9

An irregular LDPC matrix is still sparse, but not all rows and columns contain the

same number of ones. In other words, irregular LDPC codes have parity check

matrices whose weight per column and/or row is not uniform, but instead governed

by an appropriately chosen distribution of weights. Irregular LDPC codes are

parameterized by column and row degree distribution polynomials λ(x) = ∑ λix
i−1

and ρ(x) = ∑ ρix
i−1, where the coefficients λi and ρi respectively specify the fraction

of edges of degree i (column or row weight i), such that ∑ λi = 1 and ∑ ρi = 1.

Richardson and Urbanke showed by carefully choosing the distributions that

performance improvement can be achieved over regular LDPC codes. They

presented irregular LDPC codes that perform extremely close (0.0045 dB) to the

best possible bound determined by the Shannon capacity formula [Richardson-

2001a], for instance their ½ rate code of length 107 approaches Shannon bound by

0.0045 dB.

In contrast to the irregular codes, every parity check equation of a regular LDPC

code involves exactly wr bits, and each of these bits is involved in exactly wc parity

check equations. The restriction wc<wr is needed to ensure that more than just the

all-zero codeword satisfies all of the constraints, or equivalently, to ensure a

nonzero code rate. Indeed, the total number of ones in the m×n parity check matrix

H is mwr = nwc, since there are m = (n−k) rows, each containing wr ones, and there

are n columns, each containing wc ones.

The code rate R of an (n, k) block code is R = k ⁄ n = 1−((n−k) / n), hence

R = 1 − (wc / wr). The parameters n, wc, and wr cannot be chosen independently, but

must be related for regular LDPC codes in such a way that n (wc ⁄ wr) is an integer.

For example, a (wc, wr) = (3, 4) LDPC matrix exists when n = 1000 and n = 1004,

but not when n = 1002. Observe that the fraction of ones in a regular (wc, wr)

LDPC matrix is wr ⁄n. The low density terminology derives from the fact that this

fraction approaches zero as n goes to infinity. In contrast, the average fraction of

ones in a purely random binary matrix, with independent components equally

likely to be zero or one, is 1 ⁄ 2.

 10

One measure of the ability of a code to detect errors is its minimum Hamming

distance. The minimum Hamming distance of a code may be viewed as a

convenient measure of how good it is, but in fact it is not possible to distinguish

between good and very good codes by their minimum distance, without reference

to their Tanner graph properties.

2.2 Graph Structure

Any parity check code (including an LDPC code) may be specified by a Tanner

graph [Tanner-1981], which is essentially a visual representation of the parity

check matrix H. An m×n parity check matrix H defines a code in which the n bits

of each codeword satisfy a set of m parity check constraints. The Tanner graph

contains n variable nodes (bit nodes), one for each codeword bit; and m check

nodes (constraint nodes), one for each of the parity checks. The variable nodes are

depicted using circles, while the check nodes are depicted using squares. The check

nodes are connected to the variable nodes they check. Specifically, a branch

connects the check node i to variable node j if and only if the ith parity check

involves the jth bit, or briefly, if and only if the (i, j)th element Hij of the parity

check matrix nonzero. The graph is said to be bipartite because there are two

distinct types of nodes, variable nodes and check nodes, and there can be no direct

connection between any two nodes of the same type.

Example 1

A 3×6 parity check matrix H and its associated Tanner graph with the 3×6 LDPC

matrix are shown in Figure 2.1. The variable nodes are represented by the n = 6

circles at the top, while the check nodes are represented by the m = 3 squares at the

bottom.

 11

444 3444 21
H

















100111

010110

001011

Figure 2.1 Tanner graph representation of a 3x6 LDPC matrix

Degree of a node is the number of branches connected to it. Degrees of 1st to 6th

variable nodes in Figure 2.1 respectively are 2, 3, 2, 1, 1 and 1, which are also the

respective column weights; and the degrees of 1st to 3rd check nodes or

corresponding row weights are 3, 3 and 4, respectively.

In Figure 2.1, degree distribution polynomial for the variable nodes is

λ(x) = 3/10 + (4/10)x + (3/10)x2 since 3 of the 10 edges have degree 1, 4 of the 10

edges have degree 2 and 3 of the 10 edges have degree 3. Degree distribution

polynomial for the check nodes is ρ(x) = (6/10)x2 + (4/10)x3 by similar reasoning.

A cycle is defined as the path through the graph that begins and ends at the same

variable node. The length of the cycle is the number of edges traversed. The

minimum length of a cycle is four in a bipartite graph. A 4-cycle can also be

described as more than one overlapping 1’s between two columns. An example for

a cycle of length four which can be observed both in matrix representation and

graph representation is given in Figure 2.2.

Figure 2.2 Representation of a cycle in matrix and graph representations

Variable nodes

Check Nodes

Check Nodes

Variable nodes

 12

Girth is the length of the shortest cycle in the parity check matrix. Similarly, local

girth of a variable node (column) can be defined as the length of the smallest cycle

that is generated by that variable node. Short length cycles degrade the

performance of the currently used iterative decoding algorithms, which converge to

maximum likelihood decoding only code girth gets large.

2.3 Irregular LDPC Codes

Irregular LDPC codes may have better performances than regular LDPC codes and

this can be explained by understanding the main idea behind irregular graphs. Let

us first consider a regular low density parity check matrix. From the point of view

of a variable node, it is the best to have high degree, since the more information it

gets from its check nodes the more accurately it can judge what its correct value

should be. In contrast, from the point of view of a check node, it is the best to have

low degree, since the lower the degree of a check node, more valuable the

information it can transmit back to its neighboring variable nodes. These two rival

requirements must be appropriately balanced. Previous work has shown for regular

graphs, that the low degree graphs yield the best performance [MacKay & Neal-

1996], [MacKay-1999]. On the other hand, irregular graphs have significantly

more flexibility in balancing these competing requirements. Message nodes (i.e.,

variable nodes) with high degree tend to correct their value quickly. These nodes

then provide good information to the check nodes, which subsequently provide

better information to lower degree message nodes. Irregular graph constructions

thus have the potential to lead to a wave effect, where high degree message nodes

tend to get corrected first, and then message nodes with slightly smaller degree,

and so on. For a Gaussian channel, Luby has shown that, the best performance is

achieved if the check node degree is constant (or all check nodes have degrees as

close to the same degree as possible) [Luby-2001].

Richardson and Urbanke [Richardson-2001b] and Luby [Luby-2001] defined

ensembles of irregular LDPC codes parameterized by the degree distribution

 13

polynomials λ(x) and ρ(x), and showed how to optimize these polynomials for a

variety of channels. Optimality is in the sense that, assuming message-passing

decoding, a typical code in the ensemble is capable of reliable communication in

worse channel conditions than the codes outside the ensemble. The worst-case

channel condition is called the decoding threshold and the optimization of λ(x) and

ρ(x) is found by a combination of a density evolution algorithm and an

optimization algorithm. Density evolution refers to the evolution of the probability

density functions of the various quantities passed around the Tanner graph of the

code. The decoding threshold for a given λ(x) - ρ(x) pair is determined by

evaluation of the probability distribution functions of computed log likelihood

ratios (LLR) of the code bits. The separate optimization algorithm optimizes over

the λ(x) - ρ(x) pairs.

The irregular codes used in this thesis are “93” irregular codes defined by MacKay

in [MacKay-1998], which have rows of uniform weight 7, i.e., ρ(x) = x6, and

column weight distribution λ(x)=(11/14)x2+(3/14)x8 (3/14 of the edges have

column weight 9 and 11/14 of the edges have column weight 3). The name “93”

comes from the column weights of 9 and 3; so we prefer to use the notation

(“93”, 7) for these codes which also shows the uniform row weight 7. The variable

nodes that have 9 connections to 9 check nodes are called elite variable nodes. In

this thesis, 2 different constructions “93a” and “93y” are used, which have the

same column/row weight distribution, but different elite variable node connections.

The details and structures are as follows:

• Irregular (“93a”, 7) LDPC Code:

This construction allocates exactly one or two elite variable nodes to each of the

check nodes. The structure of the parity check matrix of (“93a”, 7) irregular LDPC

code is given in Figure 2.3, where integer values inside each circle give the column

and row weight of each sub-matrix and empty places are zero matrices. Observing

the row weight distribution in the last columns, which correspond to the elite

 14

variable nodes, one can follow that half of the check nodes are connected to two

elite variable nodes and the remaining half are connected to a single elite variable

node. An example of a (“93a”, 7) irregular LDPC matrix generated by our Local

Girth Distribution Check algorithm is shown in Figure 2.4 by indicating nonzero

elements of the parity check matrix with dots.

Figure 2.3 Parity check matrix construction of a (“93a”, 7) irregular LDPC code where

integer values inside each circle give the column and row weight of each sub-matrix and

empty places are zero matrices

Figure 2.4 Example of a 288×576 parity check matrix for an irregular (“93a”, 7) LDPC

code

• Irregular (“93y”, 7) LDPC Code:

In this irregular construction, one third of the check nodes are connected to four

elite variable nodes, one third are connected to one and the remaining one third are

connected to none of the elite variable nodes. The structure of the (“93y”, 7)

 15

irregular LDPC code is given in Figure 2.5 using the same visual notation, where

integers in circles indicate the row and column weight of the corresponding sub-

matrix. An example of a (“93y”, 7) LDPC matrix is shown in Figure 2.6, in which

dots show the one’s of the parity check matrix.

.

Figure 2.5 Parity check matrix construction of a (“93y”, 7) irregular LDPC code where

integer values inside each circle give the column and row weight of each sub-matrix and

empty places are zero matrices

Figure 2.6 Example of a 288×576 parity check matrix for an irregular (“93y”, 7) LDPC

code

2.4 Decoding by Iterative Message Passing

One of the most attractive features of LDPC codes is that they allow for efficient

iterative decoding. There are several algorithms known for iterative decoding of

 16

LDPC codes; Gallager’s bit flipping algorithm, the belief propagation decoder, the

min-sum decoder etc. Most of these decoding techniques can be described as

message passing algorithms, because they operate by exchanging messages.

The decoding operation can be conveniently described on the Tanner graph of a

code. In a message passing algorithm, messages are exchanged between nodes

along the edges of the Tanner graph and nodes process the incoming messages

received via their adjacent edges to determine the outgoing messages. A message

along an edge represents the estimate of the bit represented by the variable node

associated with the edge. The message can be in the form of a hard decision, i.e., 0

or 1; or a probability vector [p0 p1], where pi is the probability of the bit taking the

value i, or in the form of a log likelihood ratio (LLR) log(p0/p1) etc. An iteration of

message passing consists of a cycle of information passing and processing. The

outgoing message from the node is calculated based on the incoming messages

along the other edges. The exact fashion in which the outgoing message is

calculated depends on the message passing algorithm being used.

The computations in a message passing decoder are localized. In other words,

computations at a check node are performed independent of the overall structure of

the code. This implies that highly parallel implementations of a message passing

decoder are feasible. Further, the computations are distributed, such that,

computations are performed by all nodes in the graph. The number of messages

exchanged in an iteration of message passing is dependent on the number of edges

in the Tanner graph; a sparser Tanner graph means less computations. Thus, it is

computationally feasible to use message passing algorithms for decoding long

block length LDPC codes.

2.4.1 Bit Flipping Algorithm

The bit flipping algorithm is based on hard decisions. A variable node sends a

message to each of the check nodes that it is connected, declaring if it is 1 or 0, and

 17

each check node sends a message to each of the variable nodes to which it is

connected, declaring whether the parity check is satisfied or not. The algorithm is

as follows [Gallager-1962]:

Step 1 - Initialization: The maximum number of iterations is set to Imax and the

iteration number is initiated as 1. Each variable node from the received word sends

messages to the related check nodes indicating its value.

Step 2 - Parity Update: Using the messages coming from variable nodes, check

nodes control if the parity check equations are satisfied or not. If all the equations

are satisfied then the algorithm terminates with success. Else, check nodes send

messages to variable nodes.

Step 3 - Variable Node Update: The iteration number is increased by one. If Imax

is reached, the algorithm terminates with failure. Otherwise, the variable nodes

which get the largest number of the messages from check nodes as “not satisfied”

flip their values. The remaining variable nodes keep their values. Each variable

node sends its value to the related check nodes and the algorithm turns back to Step

2.

Example 2: The decoding example of the bit-flip algorithm is described in Figure

2.7 where the parity check matrix, sent codeword and received word are given

below.

00100000:00000000:

10001110

01000111

00101011

00011101

vectorreceivedvectorsentH



















=

 18

Figure 2.7 Message flow during the error correction of bit-flipping algorithm

2.4.2 Belief Propagation Algorithm

The most widely used message passing algorithm is the belief propagation which is

also called the sum-product algorithm. BP decoding corresponds to the

probabilistic solution to iterative decoding based on “cycle free Tanner graph”

Initialization

1st Iteration Variable Node Update

2nd Iteration Parity Update

1st Iteration Parity Update

0 0 1 0 0 0

0 0

1 0 1

0 0 1 0 0 0

1

0 0

1 0 1

0 0 0 0 0 0

1

0 0

0 0 0

0 0 0 0 0 0

0

0 0

Variable nodes send messages
indicating their values to the check
nodes that have edge connections.

Check nodes update their value by
summing (modulo 2 summation) the
messages coming from the variable
nodes. Here first, third and the fourth
check nodes are not satisfied.

Check nodes send messages to the
variable nodes that are connected by
edges. Here, third variable node gets
three unsatisfied messages and flips
its value.

Variable nodes send it messages to
check nodes and all the check
equations are satisfied.

 19

assumption. Although the algorithm is not optimum due to the inevitable presence

of loops in the graphs of all practical parity check sets, BP provides efficient

decoding if these loops remain quite long. The processing at the variable and check

nodes for a BP algorithm with log likelihood ratios (LLRs) as messages is now

described. The main idea is the same with the bit-flip algorithm except the use of

probabilistic decision instead of hard decision.

The aim of the belief propagation algorithm is to compute a posteriori

probabilities (APPs) for each codeword bit, Pi(1)=P[ci=1|N] and Pi(0)=P[c=0|N]

which are the probabilities that the ith bit of the codeword c = [c1 c2…ci…cn] is a 1

or 0 conditional on the event N that all parity check constraints are satisfied. The

intrinsic or a priori probability, Pi
int, is the original likelihood ratio independent of

the knowledge of the code constraints and the extrinsic probability, Pi
ext represents

what has been learnt from each iteration. The extrinsic information obtained from

the check nodes in one iteration is used as the priori information for the consequent

iteration. The extrinsic bit information obtained from a parity check constraint

would be independent of the original a priori probability if there were no cycles.

BP algorithm iteratively computes an approximation of the APP values for each

code bit. To compute the extrinsic probability of the ith bit of the received word that

comes from the jth parity check equation, we use the following properties. If bit i is

assumed to be a 0, the jth parity check equation is satisfied only when an even

number of the other received word bits are 1.

Hence, the probability (Pi,j(0)) that the jth parity check equation is satisfied when

bit i equals to 0, is given by [Gallager-1963]

 ()∏
≠∈
−+=
iijBi

iji pP
','

', 21
2

1

2

1
)0(, (2.1)

 20

where Bj represents the set of column locations of the bits in the jth parity check

equation of the code and pi is the probability that the ith bit of the received word is

equal to 1. Similarly, if bit i is assumed to be a 1 then the jth parity check equation

is satisfied when an odd number of the other received word bits are 1. So, when bit

i equals to 1, the probability that the jth parity check equation is satisfied is

 ()∏
≠∈
−−=
iijBi

iji pP
','

', 21
2

1

2

1
)1(. (2.2)

Details of (2.1) and (2.2) can be found in the main references [Gallager-1963].

Then, the extrinsic likelihood ratio is found dividing (2.1) by (2.2)

()

()

()

()∏

∏

∏

∏

≠∈

≠∈

≠∈

≠∈

−−

−+

=
−−

−+

==

iijBi

iijBi

iijBi

iijBi

i

i

i

i

ji

jiext

ji
p

p

p

p

P

P
P

','

','

','

','

'

'

'

'

,

,

,
211

211

21
2

1

2

1

21
2

1

2

1

)1(

)0(
. (2.3)

One can then use the following identity (2.4) to calculate the extrinsic message

from check node j to variable node i.

p

p

p

p

p

p

p

p

p

ee

ee

p

p

ee

ee
a

p
p

p
p

p
p

p
p

aa

aa

21

1

1

1

1

1
ln

2

1
tanh

)tanh(

1ln
2
11ln

2
1

1
ln

2
11

ln
2
1

−=

−
+

−

−
−

−

=

+

−
=














 −

⇒
+

−
=

























































−

−

−−−

−−− (2.4)

Taking the natural logarithm of (2.3), substituting (2.4) for all probabilities (1-2pi)

and then using the definition of the log likelihood ratio,

 21

 { }
{ } 







 −
=







=

i

i

th

th

i
p

p

isbitiP

isbitiP
PLLR

1
ln

1

0
ln)(

int (2.5)

One obtains,

()

()


















−

+

=









=

∏

∏

≠∈

≠∈

iijBi

iijBi

i

i

ji

jiext

ji
PLLR

PLLR

P

P
PLLR

','

','

2/)(tanh1

2/)(tanh1

ln
)1(

)0(
ln)(

int

'

int
'

,

,

,
 (2.6)

The estimated LLR of the ith bit at each iteration is then found by combining all

information coming from the related check nodes,

 ∑
∈

+=
iAj

ext

jiii PLLRPLLRPLLR)()()(,

int
 (2.7)

where Ai is the set of row locations of the parity check equations which check on

the ith bit of the code.

Belief propagation algorithm [Fossorier-2000b] can be now summarized as

follows:

Step 1 - Initialization: The maximum number of iterations is set to Imax. The

iteration number is initiated as 1. The initial message Ri sent from variable node i

to the check node j is the log likelihood ratio defined by (2.5),

 






 −
==

i

i
ii

p

p
PLLRR

1
ln)(int

 (2.8)

where pi is the probability that the ith received bit is 1. In (2.10), Li,j denotes the

variable node message sent from variable node i to check node j, and Ri denotes the

 22

variable node message sent from variable node i to all check nodes that are

connected to the variable i. Calling the algorithmic message sent from variable

node i to check node j, Li,j, the initial value of Li,j is set to Ri=LLR(Pi
int).

Step 2 - Check-to-variable: The extrinsic message Ei,j from the check node j to

variable node i is the LLR computed in (2.6), by substituting Li’,j=LLR(Pi’
int) for all

i’∈ Bj, where Bj includes the indices of variable nodes connected to the check node

j. Hence,

















−

+
==

∏

∏

≠∈

≠∈

iijBi ji

iijBi ji

ji
L

L

PLLRE
ext

ji

',' ,'

',' ,'

,)2/tanh(1

)2/tanh(1

ln)(,
 (2.9)

Step 3 - Codeword Test: The combined log likelihood ratio Li for each variable

node i is the sum of the extrinsic messages Ei,j’s found by (2.9) and the initial

message Ri defined by (2.9),

 i

iAj
jii REL += ∑

∈
, (2.10)

where Ai denotes the set of all check nodes connected to the ith variable node. Then,

for each bit, a hard decision is made:





>

≤
=

0,0

0,1

i

i
i L

L
z (2.11)

If z = [z1, …, zn] is a valid codeword, i.e., if zHT
 = 0, the algorithm terminates with

success.

 23

Step 4 - Variable-to-check: The iteration number is increased by one. If Imax is

reached, the algorithm terminates with failure. Otherwise the variable nodes send

messages to the check nodes. The message Li’,j sent by each variable node i to the

check nodes j to which it is connected is similar to equation (2.10) in Step 3, except

that bit i sends to check node j an LLR calculated without using the information

from check node j:

 i
jjiAj

jiji REL += ∑
≠∈ ','

',, (2.12)

Then the algorithm returns to Step 2.

In the following, we describe the parameters to be used in the algorithm given

above, for BPSK modulation over an AWGN channel with noise variance σ2. The

i
th codeword bit is transmitted as ±1, so the channel input is xi±1. Corresponding

channel output is yi = xi + ni, where ni is the noise term. Assuming 1’s are

transmitted as -1 and 0’s are sent as 1 with equal probabilities, the probability pi in

equation (2.8) is calculated as

 }{
2

2

1

1
)|1(0

σ
iy

e

yxPpisbitiP iii

th

+

=−=== , (2.13)

and similarly,

 }{
2

2

1

1
)|1(11

σ
iy

e

yxPpisbitiP iii

th

−

+

===−= . (2.14)

Substituting (2.13) and (2.14) into (2.8), Ri is found as,

 24

 2

2

1

1
1

1

ln

2

2

2
2

σ

σ

σ
i

i

y

e

eR

iy

iy

=























+

+=

−

 (2.15)

Since the code length of the codes generated in this thesis work is kept almost

constant (usually 576, rarely 564 and 900), the maximum number of iterations of

the belief propagation decoder is set to 100 as explained in Appendix A.

 25

CHAPTER 3

PSEUDO-RANDOM LDPC CODES

In this chapter, the pseudo-random LDPC codes, which are constructed specifically

to minimize the occurrence of topologies that cause problems during decoding are

described. Such topologies lower the performance by generating closed loops in

the graph such as short length cycles and undesirable local girth distribution. In

Section 3.1, the definitions of girth, local girth distribution (LGD), extrinsic

message degree (EMD) and stopping set are given under the title of “Performance

Improving Criteria for Pseudo-Random LDPC Codes”. Details of the three LDPC

code construction algorithms implemented in this study, namely, Local Girth

Distribution Check (LGDC), ACE Check (ACEC) and Stopping Set Check (SSC)

Joint Approach (JA) algorithms are given in Section 3.2. All these algorithms

generate LDPC codes with desired nonuniform or uniform column weight

distributions but uniform row weight distribution.

In Section 3.3, we compare the performances of the pseudo-random LDPC codes

generated by our code construction algorithms, which use different criteria. Section

3.3.1 is devoted to the experimental investigation of the local girth distribution

(LGD) as a criterion in the code construction, whereas Section 3.3.2 deals with the

criteria of approximate cycle EMD (i.e., ACE) and stopping sets (SS). Hence

regular and irregular codes all having parity check matrices of size 288×576 are

 26

generated by LGDC algorithm in Section 3.3.1 and ACEC or joint ACEC/SSC

algorithms in Section 3.3.2 for performance comparison.

3.1 Performance Improving Criteria for Pseudo-Random LDPC

Codes

The random ensemble consists of codes that are defined only by the block length n.

With the requirement that the codes be sparse, a low density parity check matrix H

may be populated by arbitrarily low-weight column vectors. This means that one

should expect quite poor performance at short block lengths, since the Tanner

graph will most probably contain some undesired topologies. In this section,

definitions of the four criteria that affect the performance of the pseudo-random

LDPC codes are given; namely, Girth, Local Girth Distribution (LGD), Extrinsic

Message Degree (EMD) and Stopping Set (SS).

3.1.1 Girth and Local Girth Distribution

The Tanner graph of a short LDPC code most probably contains quite a few cycles

which are short with respect to the average number of iterations required for

decoding. As a result, it is observed that short LDPC codes significantly deviate

from the predicted performance. It is also known that for short LDPC codes, the

performance often varies significantly over the ensemble, especially at high signal-

to-noise ratios (SNR). An efficient method to search for good LDPC codes in a

given ensemble is to search for codes without short cycles, since message-passing

algorithms work well if the graph does not contain too many short cycles.

Motivated by this, Mao described [Mao-2001] the girth as the smallest cycle

generated by the parity check matrix of the code, and the local girth distribution as

the distribution of the length of cycles generated by each column of the parity

check matrix. In his work, he randomly generated many LDPC matrices and chose

the one that has the local girth distribution with the greatest mean.

 27

The local girth value of each column can be found by summing the parity check

matrix columns since cycles can be expressed using column sums. Two columns

can generate a 4-cycle if and only if their sum has two or more 2’s. In the example

given below for m=8, the parity check columns C1 and C2 generate a 4-cycle.

110010101 =
T

C

100100112 =
T

C

21011021)(21 =+ TCC

Similarly three columns can generate a cycle of minimum length six if the sum of

these columns has three 2’s. So, for the parity check columns C1 and C2 which do

not generate any 4-cycle, if a column C3 is added to the set, provided that C3 has no

4-cycles with C1 or C2, a cycle of length six is generated whenever there are three

2’s in the sum vector, as shown below.

110010101 =
T

C

001100112 =
T

C

100001013 =
T

C

21111122)(321 =++ TCCC

Using induction, generation of a cycle can be summarized as:

• A cycle of length 2t can be generated by at least t columns.

• If a column set (variable node set) consisting of t columns generate a cycle

of length 2t (and not less), the sum vector has t many 2’s. If the sum vector has

values greater than 2, then corresponding columns generate a smaller cycle. This

situation can be overcome by eliminating 4-cycles before 6-cycles, etc., i.e.,

initially discarding the smallest cycles.

 28

3.1.2 Extrinsic Message Degree (EMD) and Approximate Cycle EMD

(ACE)

For irregular LDPC codes, not only the length and the distribution of cycles but

also their connectivity play important roles in the code performance [Tian-2003].

The graph connectivity of a cycle is defined as the number of connections of the

cycle with the rest of the graph. Figure 3.1 shows examples of an 8-cycle with poor

graph connectivity and a 4-cycle with good graph connectivity. Short cycles with

good graph connectivity as shown in Figure 3.1 (b) are less harmful than long

cycles with poor graph connectivity. Poorly connected subgraphs are more

vulnerable to channel noise, since they do not have sufficient message flow from

the rest of the graph to correct the errors. A high degree variable node has high

probability to generate short cycles but it is not much harmful since it has many

connections to the rest of the graph.

Figure 3.1 8-cycle with poor graph connectivity and 4-cycle with good graph connectivity

Extrinsic information is defined as the information that is collected exclusively

from other parts of the system. The system is more capable of repairing errors by

v1
v2

v4

v3

v5

v1
v2

v9

v8
v7

v10

v3
v4

v5
v6

a)
b)

c1

c3

c2

c5

c4

c1

c2 c3

c4
c5 c6

c7 c8

c9

c10

Variable node

Check node

 29

attempting to keep all calculations through extrinsic information. This idea triggers

the definition of another performance criterion for irregular codes, namely the

extrinsic message degree (EMD), which was introduced by Tian [Tian-2003].

EMD of a variable node set that generates a cycle is the number of extrinsic check

nodes that are connected to this variable node set. The EMD of a cycle that does

not contain any sub-cycles can be defined as ∑ (di−2) where di is the degree of the

i
th variable node in the cycle, since a variable node has to be connected to two

check nodes in a cycle to construct that cycle. If there are sub-cycles, the EMD of

the cycle is reduced since one or more variable nodes will have more than two

connections to the check nodes of this cycle. The approximate cycle EMD (ACE)

of a variable node of degree d is defined as (d−2) and the ACE of a check node is

0. So, the ACE value of a cycle, whether the cycle includes sub-cycles or not, is

approximated as ∑ (di−2), where the summation is over all nodes of a cycle.

3.1.3 Stopping Set

Similarly to the EMD, the criterion of stopping set is more concerned about the

connectivity of the cycles than their length and distribution. Stopping set is defined

as the set of variable nodes that all the neighboring check nodes are connected to

the variable node set at least twice [Richardson-2002]. The number of variable

nodes in the stopping set is the size of the set. In a bipartite graph that is free of

degree-1 variables, every stopping set contains cycles, but not vice versa. The only

stopping set formed by a single cycle is the one that consists of all degree-2

variable nodes. An example of such a stopping set is described below, where Ci’s

indicate the columns of the parity check matrix; corresponding to the variable

nodes vi. The stopping set of this example is {v1, v2, v3} and its size is 3.

 30

100000101 =
T

C

000000112 =
T

C

100000013 =
T

C

20000022)(321 =++ TCCC

As for the examples given in Figure 3.2, part (a) demonstrates a stopping set

{v1, v2, v3} and part (b) shows another stopping set {v1, v2, v3, v4, v5, v6, v7, v8}. On

the other hand, the cycle shown in part (c) does not contain a stopping set, because

the check node c4 has only one connection to the variable node set {v1, v2, v3}.

Figure 3.2 Examples of variable node sets generating a stopping sets

3.2 Pseudo-Random LDPC Code Construction Algorithm

In the following, we describe the structure of the algorithms with which we

generate our parity check matrices according to the desired criteria. We name the

v1

v2

v3

c1

c3

c2

a)

v7
v8

c7

c8

v1
v2

c1

c2

v5
v6

c5

c6

v3
v4

c3

c4

b)

v1

v2

v3

c1

c3

c2

c)

c4 Variable node

Check node

 31

algorithm, whose flow graph is given in Figure 3.3, either as LGDC (local girth

distribution check) or ACEC (approximate cycle EMD (extrinsic message degree)

check) or SSC (stopping set check) depending on the criterion used in the second

check box. At the initialization step, in addition to the constraints related to the

used criterion, the column and row size (n, m) of the parity check matrix and the

column weight distribution λ(x) are specified. An m×1 vector which obeys the λ(x)

is chosen as the initial parity check matrix H0. The algorithm constructs the ith

parity check matrix of dimension m×(i+1), by adding a suitable column at each

step, and keeping the row weight wr almost constant.

The process is based on a heuristic approach, where random candidate columns are

generated and each candidate is subjected to the constraints of the ensemble, which

determine whether it can be permanently added to the previously found sub-matrix

Hi−1 of dimension m×i that satisfies the desired criteria. For each column to be

added, we randomly generate a column vector of length m with a column weight

adjusted according to desired λ(x). To give the decision of permanently adding this

column into the parity check matrix, two conditions have to be met: Firstly, the

row weights of each row are checked in order to have nearly uniform row weight

distribution; secondly, each variable node is checked with respect to either the local

girth, or ACE, or SS criterion. As the size of the parity check matrix grows, it

becomes increasingly difficult to find a valid column vector since the check time

grows exponentially with the number of iterations. The algorithm terminates when

the matrix is generated with all columns satisfying the desired criteria.

In our LGDC algorithm, desired local girth distribution array is specified at the

initialization step. For each column, after controlling the row weight constraint, the

length of the shortest length cycle generated by that column is evaluated. If it

passes the initially set LGD constraint, the column is accepted.

 32

Figure 3.3 Flow graph of the code construction algorithm

False

Initialization:
(n, m), λ(x), H0,

[LGD or ACE or SS]
i=0

Check for
uniform row
weight wr

Check for LGD,
ACE or SS

True

Generate the column hi
and form Hi = [Hi-1 hi]

True

False

i = n-1

H

False

Compute the fixed row
weight wr using λ(x), n and

m.

i=i+1

H=Hi

 33

The constraint of the ACEC algorithm is defined with two parameters (dACE, η),

such that each cycle either has a length greater than 2dACE or it has an ACE value

greater than η. To find the ACE values generated by the newly added column, the

algorithm evaluates the ACE values of all the cycles with length shorter than 2dACE.

If the algorithm finds a cycle with ACE value less than η, it discards the column

and tries another column for the vacant position. Otherwise it proceeds to the next

step.

Similarly, the SSC algorithm checks the stopping set size. If the size is less than the

stopping set limit, the algorithm discards the column and generates another column.

The criterion of SS is practically more meaningful at medium-to-high degree

variable nodes, since small size of stopping sets are more likely to occur at high

degree nodes [Ramamoorthy-2004]. On the other hand, the ACEC algorithm works

more efficiently with low degree variables. A joint approach where the ACEC

algorithm is used at low-degree nodes and SSC algorithm is used at medium-to-

high degree variable nodes is claimed [Ramamoorthy-2004] to provide better

performance results, which is also tested in our work.

3.3 Effect of Different Criteria on the Performance

In this section, we present our experimental results, which compare the “BER

versus SNR” performances of the (576, 288) codes that we construct using

different criteria. The first criterion is related to the local girth distribution whereas

the second criterion is concerned about the extrinsic message degree. Finally, the

third criterion is a combination of extrinsic message degrees and stopping set sizes

of the graph. Regular codes with (wc, wr) = (3, 6) and irregular codes with

structures (“93a”, 7) and (“93y”, 7) described in Section 2.3 are constructed.

 34

3.3.1 Effect of Local Girth Distribution on the Performance

In order to see the effect of cycles and local girth distribution, regular parity check

matrices of size 288×576 with (wc, wr) = (3, 6) are generated by our LGDC

algorithm. Besides regular matrices, irregular matrices with similar local girth

distributions are constructed for comparison purposes. LGD parameters of the

generated codes are summarized in Table 3.1.

Table 3.1 Local girth distribution parameters of the generated codes

Code Type Girth Mean

4 6

6 6 Regular

6 8

6 6 Irregular
“93a” and “93y” 6 8

• Regular LDPC Codes:

The 288×576 parity check matrix of a regular LDPC code with uniform column

weight 3 that is constructed by our LGDC algorithm is shown in Figure 3.4, where

dots indicate the non-zero locations of the matrix.

Figure 3.4 The parity check matrix of a (576, 288) regular (3, 6) LDPC code

 35

Figure 3.5, Figure 3.6 and Figure 3.7 show the local girth histograms of the regular

LDPC codes generated by our LGDC algorithm. Note that, these local girth

distributions are chosen only for illustrative purposes and LDPC codes with better

distributions can also be generated by the same algorithm, in longer time.

Figure 3.5 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6)

LDPC code, girth=4, mean=5.96

Figure 3.6 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6)
LDPC code, girth=6, mean=6

Figure 3.7 Local girth histogram of the parity check matrix of a (576, 288) regular (3, 6)

LDPC code, girth=6, mean=7.83

 36

We have measured the “BER versus SNR” performance of these three (576, 288)

regular codes using belief propagation decoding, where maximum number of

iterations is set to 100. Comparing the performance shown in Figure 3.8 one

observes that the code with girth=4 and mean=6 has the worst, and the code with

girth=6 and mean=8 has the best performance as expected. Since, the performance

increase obtained in the former case is much more than that in the latter, to avoid

cycles of length four seems to be the main concern about the generation of the

LDPC codes.

More specifically, at BER=10-3, increase of girth from 4 to 6 results in an SNR

gain of approximately 0.23 dB, whereas keeping the girth at 6, if the mean value of

the LGD is raised from 6 to 8, only an SNR gain of ~0.03 dB is obtained.

Figure 3.8 Performance of (576, 288) regular (3, 6) pseudo-random codes generated by

LGDC algorithm

 37

• Irregular LDPC Codes:

In order to generate the irregular LDPC codes, (“93a”, 7) and (“93y”, 7) structures

explained in Section 2.3, we can use an algorithm similar to the one described by

the flow graph shown in Figure 3.3, with some additional constraints on pseudo-

randomly generated columns. The local girth distributions which are close to those

of the regular codes mentioned above are chosen for fair comparison.

Figure 3.9 and Figure 3.10 show the local girth histograms of two examples of the

generated irregular LDPC matrices with LGD means of 6 and 8.

Figure 3.9 Local girth histogram of the parity check matrix of the (576, 288) irregular

(both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6, mean=6

Figure 3.10 Local girth histogram of the parity check matrix of the (576, 288) irregular

(both (“93a”, 7) and (“93y”, 7)) LDPC codes, girth=6, mean=8

 38

We have compared the “BER versus SNR” performances of the (“93a”, 7) and

(“93y”, 7) irregular codes, which have the local girth distributions mentioned

above. The decoding algorithm is the belief propagation algorithm with 100

iterations.

As observed in Figure 3.11 and Figure 3.12, the performances of these (576, 288)

codes get better with increasing LGD mean. For both (“93a”, 7) and (“93y”, 7)

codes, the SNR gain is approximately 0.1 dB at 10-4 BER for an increase from 6 to

8 in the LGD mean. So, simulations give an idea about why the local girth

distribution is an effective tool for designing short block length LDPC codes.

Figure 3.11 Performance of (576, 288) irregular (“93a”, 7) LDPC codes

 39

Figure 3.12 Performance of (576, 288) irregular (“93y”, 7) LDPC codes

As the last remark in this sub-section, we compare in Figure 3.13 (a) the

performances of the (576, 288) regular and irregular LDPC codes constructed by

the LGDC algorithm with the same local girth distributions. We observe that

regular LDPC codes perform 0.1-0.2 dB inferior to irregular LDPC codes. Also,

when we compare the irregular constructions, (“93y”, 7) irregular construction is

~0.1 dB superior to (“93a”, 7) irregular construction since it has a better elite

variable node connection structure as described in Section 2.3. The results are

similar to those obtained in [MacKay-1998]. However, MacKay generated regular

and irregular LDPC codes with n=9972 and k=m=4986 whose performances shown

in Figure 3.13 (b) are much better than our results, mainly because of the longer

code lengths.

 40

Figure 3.13 Performance of regular and irregular LDPC codes

 a) of size (576, 288) generated in this work, with girth=6, mean=6

b) of size (9972, 4986) generated in [MacKay-1998]

3.3.2 Effect of Approximate Cycle EMD and Stopping Sets

Irregular (“93a”, 7) LDPC codes of size (576, 288) are constructed by our ACEC

algorithm and iteratively decoded using the belief propagation decoder, described

in Section 2.4.2. In order to fairly compare the effect of optimizing the local girth

distribution to that of optimizing the ACE criterion; ACE values of the parity check

matrices are chosen as 3 and 4, since for the (wc, wr) = (3, 6) regular codes, ACE

values of 3 and 4 correspond to cycles of length 6 and 8. Hence, the performances

of the codes generated by the LGDC algorithm in Section 3.1.1, having girth

values of 6 and 8 are shown together with the performances of the codes designed

by the ACEC algorithm with ACE limits η = 3 and 4 in Figure 3.14.

(b) (a)

 41

Figure 3.14 Performance of (576, 288) pseudo random irregular (“93a”, 7) codes with

different ACE and girth values

It can be seen that similar irregular matrices constructed by the ACEC algorithm do

not provide any performance increase over those designed by the LGDC algorithm.

The reason can be described as follows:

The ACEC algorithm with parameters (dACE, η) generates graph cycles either

longer than 2dACE or having ACE values greater than η. ACE value of a variable

node with degree d is (d−2). When two variable nodes with degree higher than

(η/2+2) are generated, the algorithm accepts these nodes even if they are connected

to the same check nodes, since the ACE value generated by these variable nodes is

higher than 2(η/2 + 2 − 2)=η.

For the (“93a”, 7) codes, degree of a variable node is either 9 or 3. So, even when a

candidate variable node of degree 9 has exactly the same check node connections

with a previously accepted variable node of degree 9, the corresponding ACE value

 42

is 2×(9−2)=14. The ACEC algorithm with η=3 or 4 accepts the newly added high

degree variable node since 14>3 and 4, so it has little control on the high degree

variable node additions.

However, for the variable nodes with degree 3, the ACEC algorithm works well,

since two overlapping variable nodes ends up with the ACE value of 2×(3−2)=2

and the algorithm rejects the candidate column since 2<3 (2<4). So, the ACEC

algorithm works well for low degree variable nodes.

In the literature [Ramamoorthy-2004], a joint approach is proposed, which uses the

ACEC for low degree variable nodes and the stopping set check (SSC) for high

degree variable nodes. We also implement a joint algorithm (JA) to constant

(“93a”, 7) codes, where variable nodes of degree 3 are controlled by ACEC and

those of degree 9 are controlled by the stopping set check criterion. Irregular parity

check matrices of size 288×576 are constructed and iteratively decoded using the

belief propagation decoder, described in Section 2.4.2. Performances of the codes

produced by the local girth distribution and the ACE criteria are compared with

those generated by the joint approach algorithm. For the (576, 288) irregular codes

shown in Figure 3.15, the ACE limit is chosen as (dACE, η) = (7, 3) and stopping set

size limit is chosen as 30 (SS=30).

It is observed from Figure 3.15 that the code generated by the joint approach (JA)

algorithm is slightly better when it is compared with similar LDPC codes generated

by the ACEC or the LGDC algorithms. The improvement is small most probably

because of the small size of the parity check matrices.

 43

Figure 3.15 Performance of (576, 288) irregular (“93a”, 7) codes generated by ACEC,

LGDC and Joint Approach algorithms

3.4 Results

Finally, we combine the summarized performance curves of regular and irregular

codes designed with respect to different criteria.

As depicted in Figure 3.16, the joint approach algorithm which uses ACE and SS

criteria seems superior to both ACEC and the LGDC algorithms. This shows that

for short block length irregular LDPC codes, the graph connectivity of cycles is as

important as the length and distribution of cycles. On the other hand, the most

effective way of increasing performance is simply avoiding the cycles of length

four in the graph, before the application of any other sophisticated criterion.

 44

Figure 3.16 Performance of (576, 288) pseudo-random codes generated by the ACEC,

LGDC and Joint Approach algorithms

Figure 3.17 shows the performance comparison of the codes generated in this

thesis and similar codes generated in [Ramamoorthy-2004] of slightly higher

length. The codes generated by Ramamoorthy have the weight distributions

λ(x)=0.2186x+0.1470x2+0.1692x4+0.0136x5+0.0517x6+0.3999x16 and ρ(x)=x8,

where the irregular codes that we generate have weight distributions

λ(x)=11/14x2+3/14x8 and ρ(x)=x6. If the BER performances of rate 1/2 codes

generated by our LGDC, ACEC and joint approach algorithms are compared with

those of Ramamoorthy, although the performance order of ACEC, LGDC and joint

approach algorithms is similar, Ramamoorthy’s results are much better. The main

reason of this performance difference is the existence of highly elite variable nodes

of degree 17 (see the last term of λ(x)) in Ramamoorthy’s codes. Almost 40% of

the variable node edges belong to these elite variable nodes, which are checked by

17 different parity check equations. Hence the belief propagation algorithm can

 45

decide on the correct codeword more easily by using the reliable messages coming

from the elite variable nodes in order to correct the values of the small-degree

variable nodes.

Figure 3.17 Performances of (576, 288) codes generated by our LGDC, ACEC and joint

approach algorithms and similar codes generated in [Ramamoorthy-2004].

 46

CHAPTER 4

QUASI-CYCLIC LDPC CODES

Despite the excellent error-correcting properties of some known pseudo-random

LDPC codes, complexity resulting from storage issues tends to dominate the

system architecture and makes such codes hard to use in actual communication

scenarios. High complexity of pseudo-random LDPC codes is a direct consequence

of the fact that very large amount of information is necessary to specify positions

of the non-zero elements of the huge parity check matrices. Quasi-cyclic LDPC

codes are good candidates to solve the memory problem, since their parity check

matrices consist of circulant permutation matrices. They also have encoding

advantages over pseudo-random LDPC codes since they can be encoded using

simple shift-registers, with a complexity linearly proportional to the code length.

In this chapter, construction methods of quasi-cyclic regular and irregular LDPC

codes are explained and their performance is measured by simulations. Section 4.1

begins with the description of the construction method for the algebraically

structured quasi-cyclic LDPC codes. This is followed by the irregular structures of

type (“93”, 7) that we adapt from pseudo-random forms of MacKay to quasi-cyclic

form. Then, “BER versus SNR” performances of regular and irregular quasi-cyclic

codes are compared. Section 4.2 describes the relationship between the shift values

and the cycles in quasi-cyclic LDPC codes, followed by an algorithm to generate

girth controlled quasi-cyclic LDPC codes. Then, regular quasi-cyclic LDPC codes

are constructed with girth values 4, 6, 8 and 10 and their performances are

presented. In Section 4.3 we finally compare both regular and irregular

 47

algebraically constructed quasi-cyclic codes with the pseudo-random codes of the

previous chapter.

4.1 Algebraically Structured Quasi-Cyclic LDPC Codes

In this section, first, we will give the description of the algebraically structured

regular quasi-cyclic code construction and then we will describe our solution to the

construction of irregular algebraically structured quasi-cyclic codes. The parity

check matrix of a quasi-cyclic LDPC code consists of permutation matrices, which

are usually derived from identity matrices. In Figure 4.1, examples of such sub-

matrices are shown, where I

α denotes an identity matrix I, whose columns are (α-1)

times circularly shifted to the right (or rows are (α-1) times circularly shifted up).

Notice that if the size of the sub-matrix is S×S, then I S+1 = I. More generally,

)(mod Saa II = .



















==

1000

0100

0010

0001

5II



















=

0001

1000

0100

0010

2I



















=

0010

0001

1000

0100

3I



















=

0100

0010

0001

1000

4I

Figure 4.1 Sub-matrices of size 4×4 used in quasi-cyclic parity check matrices

4.1.1 Algebraically Structured Regular Quasi-Cyclic LDPC Codes

The parity check matrix of an algebraically structured regular quasi-cyclic LDPC

code with size Swc×Swr is shown in Figure 4.2, which is first proposed by Tanner

in 2004. There are lots of similar quasi-cyclic LDPC codes proposed in the

literature, as in Figure 4.3 [Myung-2005] or in Figure 4.4 [Honary-2005].

 48





















=

−−)1c()1r(1)-c(1)-c(

1)-r(

1)-r(

ωωωω

ω

ω

baabb

baabb

aa

III

III

III

H

L

MMMM

L

L

Figure 4.2 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr

proposed by Tanner in 2004























=

−−+−−)1c()1r(1)1c()1c(

32

1)-r(2

ωωωω

ω

aaaa

aa

baaa

IIII

I

III

IIII

IIIII

H

L

MMMM

ML

L

Figure 4.3 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr

proposed by Myung in 2005























=

−− 1)-(1)-()1(2)1(

1)-(242

1)-(2

crcc

r

r

ωωωω

ω

ω

IIII

I

IIII

IIII

IIIII

H

L

MMMM

L

L

Figure 4.4 Structure of a regular quasi-cyclic parity check matrix of size Swc×Swr

proposed by Honary in 2005

The Swc×Swr parity check matrix of a regular, quasi-cyclic, (n, wr, wc) LDPC code

is constructed from sub-matrices of size S×S, where S=n/wr. S must be greater than

the number of the sub-matrices (wrwc) in order not to have short cycles, since

repetition of sub-matrices within H is the main cause of 4-cycles. Figure 4.5 (a) is

 49

an example of such a case, where similar rows (or columns), i.e., the 1st and 5th, the

2nd and 6th, etc., all create 4-cycles. Another example can be given using the parity

check matrix shown in Figure 4.2, choosing a=b=2 and (wc, wr)=(3, 6) as in Figure

4.6. If the sub-matrix size S=48, since I

64=I

mod48(64)=I

16 and I

128=I

mod48(128)=I 32, the

resulting 144×288 parity check matrix will have repeated sub-matrices which

create 4-cycles. On the other hand, with S = 47, the resulting 141×282 parity check

matrix in Figure 4.6 will have no repetition of sub-matrices and consequently, no

cycles of length four.

Therefore, before determining the size of the parity check matrix, the number of

distinct sub-matrices that can be generated for the chosen a, b and S values should

be checked. For example, if one chooses S = 56 for the structure in Figure 4.6, only

6 distinct sub-matrices can be generated (i.e., I, I 2, I 4, I 8, I 16 and I 32) instead of 18

distinct sub-matrices.

One final remark is that, even if there are no repetitions of sub-matrices, there still

can be cycles of length four as a result of the constant shift differences between

consecutive sub-matrices. Example of such a case is given in Figure 4.5 (b), where

column pairs like 1-6, 3-8 and 4-5 create cycles of length four as a result of the

constant shift between I - I 2 and I 3 - I 4 sub-matrices.

Figure 4.5 Parity check matrices which cause of cycles of length four

 50

Taking all these considerations into account, a sub-matrix size of S = 94 with

(wc, wr) = (3, 6) generates a quasi-cyclic parity check matrix of size 282×564

shown in Figure 4.7, which has the structure shown in Figure 4.6. Using the girth

check part of the LGDC algorithm introduced in Section 3.2, we compute the local

girth distribution and sketch it in Figure 4.8.

















=
12864321684

643216842

3216842

IIIIII

IIIIII

IIIIII

H

Figure 4.6 Parity check matrix of a regular quasi-cyclic LDPC code with the structure

given in Figure 4.2 and (wc, wr) = (3, 6)

Figure 4.7 The 282×564 parity check matrix of a regular (3, 6) quasi-cyclic LDPC code

having the structure given in Figure 4.6

Figure 4.8 Local girth histogram of the parity check matrix of a (564, 282) regular (3, 6)

quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.7.

 51

4.1.2 Algebraically Structured Irregular ("93", 7) Quasi-Cyclic LDPC

Codes

In order to construct the algebraically structured irregular codes of this work, we

have applied the regular quasi-cyclic construction proposed by Tanner in 2004, to

the irregular codes of type “93” described in [MacKay-1998]. We have generated

irregular quasi-cyclic LDPC codes by inserting sum of permutation matrices into

the parity check matrix H instead of sub-matrices of weights greater than one

shown in Figure 2.3 and Figure 2.5. For instance, I 2 and I 4 shown in Figure 4.1 can

be used to generate a sub-matrix with column and row weight of 2 as in Figure 4.9.



















=+

0101

1010

0101

1010

42 II

Figure 4.9 A sub-matrix of H used for irregular quasi-cyclic LDPC code construction

The structure of an irregular (“93a”, 7) quasi-cyclic parity check matrix proposed

by MacKay in 1998 is as shown in Figure 2.3 and we propose the quasi-cyclic

structure shown in Figure 4.10. Notice that, although most of the sub-matrices of H

are of size S×S , sub-matrices shown in the last column are only half size, i.e., S/2

by S/2. Choosing S=94 , an irregular (“93a”, 7) quasi-cyclic parity check matrix of

size 282×564 is demonstrated in Figure 4.11 where dots indicate the nonzero

entries. The local girth histogram of the parity check matrix is computed by using

the girth check part of the LGDC algorithm described in Section 3.2 and sketched

in Figure 4.12.

 52

























+

+

+

=

40962048

2128

1024512

64

256128

6432

0

0

0

64321684

3216842

16842

II

II

II

II

II

II

H

IIIII

IIIII

IIIII

Figure 4.10 Structure of the parity check matrix for irregular (“93a”, 7) quasi-cyclic

LDPC code

Figure 4.11 The 282×564 parity check matrix of an irregular (“93a”, 7) quasi-cyclic

LDPC code having the structure given in Figure 4.10

Figure 4.12 Local girth histogram of the parity check matrix of a (564, 282) irregular

(“93a”, 7) quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.11

We similarly propose the irregular (“93y”, 7) quasi-cyclic parity check matrix

structure shown in Figure 4.13 for the MacKay’s irregular (“93y”, 7) quasi-cyclic

parity check matrix given in Figure 2.5. Now, H has sub-matrices with row and

column weights of 1, 2 and 4. Similar to the weight-2 sub-matrices, weight-4

matrices are generated by the sum of 4 permutation matrices, i.e., I 2 + I 4 + I 7 + I 17.

 53

In Figure 4.14, an irregular (“93y”, 7) quasi-cyclic parity check matrix of size

282×564 (for S=94) is given, where dots indicate the nonzero entries. We have

computed the local girth histogram of the parity check matrix by using the girth

check part of the LGDC algorithm described in Section 3.2 and sketched in Figure

4.15.

128426432168

12825632

256
12832

44

641684

16842

4

442

0
0

0
000

IIIIandIIIIwhere

I

I
H

iii

ii

i

IIIII

IIII

III

II

II

+++=+++=

























+

+=

Figure 4.13 Structure of the parity check matrix of (“93y”, 7) irregular quasi-cyclic code

Figure 4.14 The 282×564 parity check matrix for an irregular (“93y”, 7) quasi-cyclic

LDPC code having the structure given in Figure 4.13

Figure 4.15 Local girth histogram of the parity check matrix of a (564, 282) irregular

(“93y”, 7) quasi-cyclic LDPC code, whose parity check matrix is shown in Figure 4.14.

 54

4.1.3 Performance Comparison of Regular and Irregular Algebraically

Structured Quasi Cyclic LDPC Codes

In order to measure the performance of the irregular quasi-cyclic codes that we

have proposed, we construct (576, 288) regular and irregular quasi-cyclic LDPC

codes, which have the structures given in Figure 4.6 , Figure 4.10 and Figure 4.13

and girth values of 6. They are iteratively decoded using the belief propagation

decoder, settling the maximum number of iterations to 100. It can be seen from

Figure 4.16 that codes are ordered similarly to the codes shown in Figure 3.13. So,

either pseudo-random or quasi-cyclic, irregular (“93y”, 7) code has the best and the

regular (3, 6) code has the worst performance. Therefore, we can say that the

method that we propose for irregular quasi-cyclic LDPC code generation is

advantageous.

Figure 4.16 Performances of the (564, 282) regular (3, 6) and irregular quasi-cyclic LDPC

codes

 55

4.2 Girth Controlled Quasi-Cyclic LDPC Codes

In this section, we review the relations between cycles and shifts values of the sub-

matrices in quasi-cyclic LDPC codes as explained by Moura in 2005. We then

describe our girth controlled quasi-cyclic code generation algorithm in Section

4.2.1. Examples of regular quasi-cyclic parity check matrices that we construct

have size 450×900 and girth values of 4, 6, 8 and 10.

Moura explained that the Tanner Graph of a quasi-cyclic LDPC code contains at

least one cycle if and only if there exists a closed path of length 2t in the matrix

such that its vertices (ai-times-shifted sub-matrices) satisfy the shift condition

given in equation (4.1) where ⊕ is the modulo S summation [Moura-2005]. The

example cycles of length four and six are shown in Figure 4.17.

 0))1((2
1 =−⊕ =
= i

iti

i a (4.1)

)03019102320())1((;:6

)0192340())1((;:4

6
1

2031

1124

3

4
1

2420

5

=+−+−+−=−⊕























←−←

↓↑

→−

↓↑

−→

=

=+−+−=−⊕
















←

↓↑

→

=

=
=

=
=

i

ii

i

i

ii

i

a

II

II

II

LengthofCycle

a

II

II

LengthofCycle

Figure 4.17 Cycles of length four and six

 56

As the girth value increases, the number of possible ways to generate cycles

increases exponentially. The examples for cycle of length six and eight are given in

Figure 4.18.

)0)1()1()1()1()1()1()1()1())1((

:8

)0)1()1()1()1()1()1()1()1())1((

:8

)0)1()1()1()1()1()1()1()1())1((

:8

)0)1()1()1()1()1()1())1((

:6

87654321
8
1

3

87654321
8
1

87654321
8
1

654321
6
1

3

65

4

21

78

65

34

21

78

65

43

21

4

56

21

=−+−−−+−−−+−−−+−−=−⊕























→

↑↓

↔

↓↑

→

=

=−+−−−+−−−+−−−+−−=−⊕





























←

↓

→

↓

←

↓

→

↑

↑

↑

=

=−+−−−+−−−+−−−+−−=−⊕





























←−←−←

↓↑

→−−

↓↑

−→−

↓↑

−−→

=

=−+−−−+−−−+−−=−⊕























→−

↑↓

←−←

↓↑

−→

=

=
=

=
=

=
=

=
=

aaaaaaaaa

II

II

II

LengthofCycle

aaaaaaaaa

II

II

II

II

LengthofCycle

aaaaaaaaa

II

II

II

II

LengthofCycle

aaaaaaa

II

II

II

LengthofCycle

i

ii

i

aa

aa

aa

i

ii

i

aa

aa

aa

aa

i

ii

i

aa

aa

aa

aa

i

ii

i

aa

aa

aa

Figure 4.18 Cycles of length six and eight

 57

The quasi-cyclic LDPC codes of the form given in Figure 4.2 have girth value of 6

in general (for S equals to a prime number or some of the non-prime numbers); but

for some particular values of S, they can also have cycles of length four. For

example, if we take S=93 for a (wc, wr) = (3, 6) regular matrix given in Figure 4.6,

sub-matrices I, I32, I4, I128 generate cycles of length four since the shift condition is

satisfied as shown in Figure 4.19. As a consequence of the matrix size restrictions,

quasi-cyclic LDPC codes with larger girth values (i.e., 8, 10, and 12) can be

generated by controlling the shift values of the sub-matrices according to the

correspondence between cycles and shifts for the quasi-cyclic LDPC codes.

)0)93(mod933127310())1((4
1

1284

32

63

≡=+−+−=−⊕























←−←−←−←−←

↓↑

−−−−−−

↓↑

→−→−→−→−→

=

=
=

×

i

ii

i

SS

a

II

II

H

Figure 4.19 Parity check matrix of a regular quasi-cyclic LDPC code with the structure

given in Figure 4.2 and (wc, wr) = (3, 6)

4.2.1 Construction of Girth Controlled QC-LDPC Codes

The shift condition for the circulant matrices that generate cycles is given in

equation (4.1). Now, we describe our algorithm to construct a girth controlled

quasi-cyclic LDPC code by using (4.1). The construction is similar to the

structured quasi-cyclic LDPC codes except the places of circulant matrices. These

codes are not algebraically structured anymore, since the circulant matrices and

their locations are not constant for short block length LDPC codes.

The algorithm is as follows:

Step 1: The sub-matrix size S, column and row weights, wr and wc of the parity

check matrix and the desired girth value T are the initial parameters. The algorithm

generates an empty matrix Ht which has wr columns and wc rows. Each location in

 58

the matrix shows the shift value (a-1) of the circularly shifted identity sub-matrix Ia

at that location.

() () () ()
() () () () ()
() () () () ()

rc

rwrw

rwrw

rwrw

cr
rr

rr

rr

SwSw
SS

a

SSSSSSSS

a

SS

a

SSSSSSSS

a

SS

a

SS

a

SS

a

SS

a

ww
ww

ww

ww

t

II

II

IIII

H

aa

aa

aaaa

H

×
×××××

×××××

××××

×+

+

−

















=

















=

+

+

−

3

2

312

21

121

12

1

121

LLL

LLL

L

b

LLL

LLL

L

Step 2: First column and the first row are filled randomly with shift values ai, since

they can not generate cycles without a second column or row in Ht.























−−−−−

−−−−↔

↔

=

8

7

654321

?

a

a

aaaaaa

Ht

bb

Step 3: The rest of the matrix is filled by random values generated between 0 and

(S−1) for the vacant locations each time checking for the shift condition given in

equation (4.1) for all the integers t < T/2. If a random number at a new location

satisfies (4.1) with t < T/2, it is discarded and another number is generated. When

all vacant locations are filled, the algorithm terminates.

Example: Assume we try to construct a quasi-cyclic LDPC code with girth value

of T = 8 for S = 150, (wc, wr) = (3, 6).

 59

Step 1: An empty matrix generated is shown below.

















−−−−−−

−−−−−−

−−−−−−

=tH

Step 2: First column and the first row are randomly filled. (For illustrative

purposes, we use a specific sequence which clearly is not random.)























−−−−−

−−−−↔

↔

=

18

?7

654321

bb

tH

Step 3: For the shift value of the sub-matrix located at (2, 2), values between 0 and

149 except 8 are acceptable since it generates a 4-cycle where

=−⊕ == i

ii

i a)1(4
1 1−2+8−7=0 (mod 150) and the algorithm fills the rest of the vacant

positions by preventing the generation of 4-cycles and 6-cycles

















=

04236312518

1715131197

654321

8H

4.2.2 Performance Comparison of Girth Conditioned Quasi Cyclic

LDPC Codes

Three regular (3, 6) quasi-cyclic parity check matrices with S=150, and girth values

4, 6 and 8 are generated by the algorithm described in Section 4.2.1. The fourth

quasi-cyclic code with girth value 10 is taken from [Moura-2005]. Corresponding

parity check matrices are shown in Figure 4.20.

 60

















=
















=
















=
















=

135141119665546

480938185109

2514310410512580

04236312518

1715131197

654321

12763311573

633115731

31157310

501810621

633115731

31157310

108

64

HH

HH

Figure 4.20 Girth controlled parity check matrices of size 450×900 for regular (3, 6)

quasi-cyclic LDPC codes

These regular quasi-cyclic codes are iteratively decoded using the belief

propagation decoder, described in Section 2.4.2. The corresponding “BER versus

SNR” performances are given in Figure 4.21. One can observe that results are

similar to those given in Figure 3.8 for regular pseudo-random codes. The

performance of the regular quasi-cyclic LDPC codes also increases as the girth

value increases and the largest performance improvement is obtained when cycles

of length four are avoided.

Figure 4.21 Performances of (900, 450) quasi-cyclic regular (3, 6) LDPC codes

 61

4.3 Pseudo-Random versus Quasi-Cyclic LDPC Codes

We finally give a general comparison between quasi-cyclic and pseudo-random

LDPC codes with girth 6, for both regular (3, 6) and irregular (“93”, 7) cases in

Figure 4.22. It is observed that performance of quasi-cyclic codes is approximately

0.1 dB superior to those of pseudo-random codes. However, this performance

advantage over pseudo-random codes at short block lengths can not be expected to

continue when the block length gets longer. On the contrary, quasi-cyclic codes of

high block lengths are inferior [Tanner-2001], because, the main reason for the

successful performance of LDPC codes, i.e., the “randomness”, becomes more

prominent for pseudo-random codes.

 62

Figure 4.22 Performances of regular and irregular (576,288) pseudo-random and

(564, 282) quasi-cyclic LDPC codes

In summary, although the algebraically structured quasi-cyclic LDPC codes

considered in this chapter have low encoding complexity, when we sacrifice from

their algebraic structure to obtain high girths, they become closer to pseudo-

 63

random codes and a little gain in performance is obtained at the cost of increasing

encoding complexity. The algebraic structure and the performance increase

obtained by leaving this structure are the competing points about quasi-cyclic

codes and either one must be chosen considering the requirements of the

application.

 64

CHAPTER 5

CONCLUSION

Randomly constructed LDPC codes are known to perform very good at extremely

long block lengths. However, for many engineering applications, short block length

is a must to decrease the complexity. In this thesis, we construct short block length

pseudo-random and quasi-cyclic LDPC codes and discuss the construction criteria

that affect the performance of these codes.

For both of the pseudo-random and quasi-cyclic cases, regular as well as irregular

codes are generated and all the codes are decoded by the iterative belief

propagation algorithm. We observe that the errors made by the belief propagation

decoder are always the detected errors, which occur when the decoder reaches the

maximum number of iterations and reports the fact that “it is not possible to find a

valid codeword”. The maximum number of iterations of the belief propagation

decoder is set to 100 for all the codes used in this work, which have comparable

block lengths.

We have constructed (576, 288) regular and irregular pseudo-random codes with

girth values of 6 by our LGDC (Local Girth Distribution Check) algorithm. We

have observed that regular LDPC codes are 0.1-0.2 dB inferior to irregular LDPC

codes and construction is ~0.1 dB superior to (“93a”, 7) irregular construction.

Better performance of (“93y”, 7) irregular structure is a result of its better elite

variable node connections. Our results are similar to those obtained by MacKay,

who generated (9972, 4986) regular and irregular LDPC codes [MacKay-1998].

 65

We have also constructed (576, 288) irregular codes via our ACEC (Approximate

Cycle EMD Check) algorithm. The criteria of ACE and stopping sets are then used

together in the Joint Approach (JA) algorithm since the ACE alone may not be

meaningful for high degree variable nodes of irregular codes. The performance

increase obtained when the girth is changed from 4 to 6 is much more than that can

be obtained by any other construction criterion. Hence, to avoid cycles of length

four should be the main concern about the code generation algorithms.

As for the algebraically structured quasi-cyclic LDPC codes, we have proposed

some irregular structures combining MacKay’s pseudo-random irregular (“93”, 7)

forms with Tanner’s algebraically structured quasi-cyclic construction, which

avoid cycles of length four. The results are similar to those obtained for the

pseudo-random case, i.e., the regular quasi-cyclic code has the worst and the

irregular (“93y”, 7) quasi-cyclic code has the best performance. So, we can say that

the proposed method for quasi-cyclic irregular LDPC codes is advantageous at

short block lengths.

Using the relations between cycles and shift values of the sub-matrices

[Moura - 2005], (900, 450) regular (3, 6) quasi-cyclic codes with girth values of 4,

6, 8 and 10 are constructed. When we compare the generated codes, we can say

that results are very similar to those obtained for pseudo-random codes.

Although, all the codes generated in this thesis work have short block lengths (576

to 900), iterations of the belief propagation algorithm take more than 30 hours

while evaluating the BER performance of a single code, with MATLAB on 3 GHz

Intel Pentium IV processor. Since we could not increase the block length of the

codes for complexity reasons, all the improvements we obtain are small values like

0.1 or 0.2 dB. The optimization of the computer programs for generation and the

performance evaluation of longer code length pseudo-random and quasi-cyclic

codes can be a future work.

 66

REFERENCES

• [Brack-2007] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn,

N.E. L’Insalata, F. Rossi, M. Rovini, L. Fanucci, “Low Complexity LDPC

Code Decoders for Next Generation Standards” ,Design, Automation and

Test in Europe Conference and Exhibition, DATE ‘07.

• [Choi-2005] Eun-A Choi, Dae-Ik Chang, Deock-Gil Oh, Ji-Won Jung

“Low Computational Complexity Algorithms of LDPC Decoder for DVB-

S2 Systems” IEEE 2005.

• [Fan-2000] J. L. Fan, “Array codes as low density parity check codes,” in

Proc. 2nd Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept.

2000, pp. 543–546.

• [Fossosier-2000] R. Lucas, M. P. C. Fossorier, Yu Kou, Shu Lin “Iterative

Decoding of One-Step Majority Logic Decodable Codes Based on Belief

Propagation” IEEE Trans. Comm. Theory, 2000.

• [Fossosier-2004] M. P. C. Fossorier, “Quasi-cyclic low density parity

check codes from circulant permutation matrices,” IEEE Trans. Inform.

Theory, 2004.

• [Fossosier-2001] Y. Kou, S. Lin, and M. Fossorier, “Low density parity

check codes based on finite geometries: A rediscovery and new results,”

IEEE Trans. Inform. Theory, vol. 47, pp. 2711–2736, Nov. 2001.

 67

• [Fossosier-2004] M. P. C. Fossorier, “Quasi-cyclic low density parity

check codes from circulant permutation matrices,” IEEE Trans. Inform.

Theory, 2004.

• [Gallager-1962] R. G. Gallager, “Low density parity check codes,” IRE

Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

• [Gallager-1963] R. G. Gallager. Low density Parity check Codes.

Cambridge, MA: MIT Press, 1963.

• [Honary-2005] B. Honary, A. Moinian and B. Ammar, “Construction of

well structured quasi-cyclic low density parity check codes.” IEEE Proc.

Commun. 2005.

• [Kschischang-2001] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger,

“Factor graphs and the sum-product algorithm,” IEEE Trans. Info. Theory

47: 498–519, 2001.

• [Luby-2001] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.

Spielman. “Improved low density parity check codes using irregular

graphs.” IEEE Trans. Info. Theory 47: 585-598. 2001

• [MacKay-1998] D. J. C. MacKay, S.T. Wilson and M.C. Davey,

“Comparison of Constructions of Irregular Gallager Codes”, IEEE Trans.

on Comm., 1998.

• [MacKay-1999] D. J. C. MacKay, “Good error-correcting codes based on

very sparse matrices", IEEE Trans. on Info. Theory, 1999.

 68

• [MacKay-2003] D. J. C. MacKay “Information Theory, Inference, and

Learning Algorithms” Cambridge University Pres, 2003.

• [MacKay & Neal-1996] D. J. C. MacKay and R. M. Neal, “Near Shannon

limit performance of low density parity check codes”, Electronics Letters

1996.

• [Mao-2000] Y. Mao, A. Banihashemi, and M. Landolsi, “Comparison

between low density parity check codes and turbo product codes for delay

and complexity sensitive applications,” in Proc. 20th Biennial Symp.

Comm., Kingston, Ontario, 2000.

• [Mao-2001] Y. Mao and A. H. Banihashemi, “A heuristic search for good

low density parity check codes at short block lengths,” in Proc. IEEE Int.

Conf. Communications, vol. 1, Helsinki, Finland, June 2001, pp. 41–44.

• [Moura-2005] J. Lu, and J. M. F. Moura, “Partition-and-Shift LDPC

Codes.” IEEE Trans. on Magnetics, 2005.

• [Myung-2005] Seho Myung, Kyeongcheol Yang, and Jaeyoel Kim

“Quasi-Cyclic LDPC Codes for Fast Encoding”

• [Ramamoorthy-2004] A. Ramamoorthy and R. Wesel “Construction of

Short Block Length Irregular Low density Parity check Code” (IEEE

Comm. Conf. 2004)

• [Richardson-2001a] S. Chung, G. D. Forney, T. J. Richardson, and R.

Urbanke. “On the Design of Low Density Parity Check Codes within

0.0045 dB of the Shannon Limit.” IEEE Comm. Letters, 2:58-60, 2001.

 69

• [Richardson-2001b] T. Richardson, A. Shokrollahi, and R. Urbanke.

“Design of Capacity Approaching Irregular Low Density Parity Check

Codes” IEEE Trans. Info. Theory 47: 619-637. 2001

• [Richardson-2001c] T. J. Richardson and R. L. Urbanke, “The capacity of

low density parity check codes under message-passing decoding,” IEEE

Trans. On Info. Theory 47:599–618, 2001.

• [Richardson-2002] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and

R. L. Urbanke, “Finite-length analysis of low density parity check codes on

the binary erasure channel,” IEEE Trans. on Info. Theory 48: 1570–1579,

2002.

• [Richardson-2003] T. Richardson, “Error floors of LDPC codes,” in Proc.

41st Annu. Allerton Conf. Communication, Control, and Computing,

Monticello, IL, Sep. 2003, pp. 1426–1435.

• [Rosenthal-2000] J. Rosenthal and P. O. Vontobel, “Constructions of

LDPC codes using Ramanujam graphs and ideas from Margulis,” in Proc.

38th Allerton Conf. Communications, Control, and Computing,

Monticello, IL, Oct. 2000, pp. 248–257.

• [Shannon-1949] C. E. Shannon and W. Weaver, “The Mathematical

Theory of Communication” Univ. of Illinois Press. (1949)

• [Tanner-1981] B. M. Tanner, “A recursive approach to low complexity

codes,” IEEE Trans. Inform. Theory, 1981.

 70

• [Tanner-1999] R. M. Tanner, “On quasi-cyclic repeat accumulate codes”

in Proc. 37th Allerton Conf. Communication, Control and Computing,

Monticello, IL, Oct. 1999, pp. 249–259.

• [Tanner-2000] R. M. Tanner, “A [155; 64; 20] sparse graph (LDPC)

code,” presented at the Recent Results Session at IEEE International

Symposium on Information Theory, Sorrento, Italy, June 2000.

• [Tanner-2001] R. M. Tanner, A. Sridharan, and T. E. Fuja “A Class of

Group-Structured LDPC Codes” Proc. International Symposium on

Comm. Theory and Applications, Ambleside, U.K. 2001.

• [Tanner-2004] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and

D. J. Costello, “LDPC Block and Convolutional Codes Based on Circulant

Matrices” IEEE Trans. On Info. Theory, 2004.

• [Tanner-2007] J. Chen, R. M. Tanner, J. Zhang, M. P. C. Fossorier,

“Construction of Irregular LDPC Codes by Quasi-Cyclic Extension.” IEEE

Trans. On Info. Theory, April 2007.

• [Tian-2003] Tao Tian, Chris Jones, John D. Villasenor, Richard D. Wesel

“Construction of Irregular LDPC Codes with Low Error Floors” IEEE

2003.

• [Tian-2004] Tao Tian, Christopher R. Jones, John D. Villasenor, Richard

D. Wesel “Selective Avoidance of Cycles in Irregular LDPC Code

Construction.” IEEE 2004.

 71

• [Zhang-2006] Chao Zhang, Xiao-Lin Zhang, Cheng Lu, Zhan Zhang,

“The Technical analysis on the China National Standard for Digital

Terrestrial TV Broadcasting” 2006

 72

APPENDIX A

REQUIRED NUMBER OF ITERATIONS FOR

DECODING

The decoder halts whenever another codeword is found or when it reaches the

maximum number of iterations. In many cases 20 iterations suffice, but sometimes

even one hundred is not enough for the algorithm to converge to a codeword. Even

by setting the maximum number of iterations to 1000 some blocks that are declared

failures can be decoded by allowing more iterations. The number of successful

decodings missed by limiting the number of iterations is an important issue.

Decoding failures usually (nearly all in this thesis) occur because the decoding

algorithm converges to a stable configuration in which several checks are failed. In

such cases, extra iterations never lead to successful decoding. It is, however,

possible for the algorithm to fail to converge to a stable state.

Figure 6.1 shows the distribution of iterations for a regular (576, 288) (3, 6) regular

LDPC code with girth mean 6 at 2 dB SNR and Figure 6.2 shows the percentage of

the iterations. Out of 1000 blocks, 794 blocks are decoded within 100 iterations,

and there are 206 block decoding failures. 33 of the 206 decoding failures can be

successfully decoded by increasing the iteration number to 500. This situation is

nearly the same for the other codes in this thesis and 100 iterations is a good

choice. Figure 6.3 shows the distribution of number of iterations for 1 to 3 dB

SNR.

 73

Figure A1 Iteration histogram for (576, 288) (3, 6) regular LDPC code with girth 6 for

2 dB SNR

Figure A2 Iteration number convergence curve for 2 dB SNR

 74

Figure A3 Iteration histograms for (576, 288) (3, 6) regular LDPC code with girth=6

