
REPRESENTATION OF COVARIANCE MATRICES IN TRACK FUSION
PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

REPRESENTATION OF COVARIANCE MATRICES IN TRACK FUSION

PROBLEMS

Günay, Melih

M. S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mübeccel Demirekler

November 2007, 61 pages

Covariance Matrix in target tracking algorithms has a critical role at multi-

sensor track fusion systems. This matrix reveals the uncertainty of state es-

timates that are obtained from different sensors. So, many subproblems of

track fusion usually utilize this matrix to get more accurate results. That is

why this matrix should be interchanged between the nodes of the multi-sensor

tracking system. This thesis mainly deals with analysis of approximations of

the covariance matrix that can best represent this matrix in order to effectively

transmit this matrix to the demanding site. Kullback-Leibler (KL) Distance

is exploited to derive some of the representations for Gaussian case. Also com-

parison of these representations is another objective of this work and this is

based on the fusion performance of the representations and the performance

is measured for a system of a 2-radar track fusion system.

Keywords: Covariance Matrix, Kullback-Leibler Distance, Track Fusion, K-

means Vector Quantization Method, Extended Kalman Filtering
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ÖZ

İZ BİRLEŞTİRME PROBLEMLERİNDE DEǦİŞİNTİ MATRİSİ

GÖSTERİMİ

Günay, Melih

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler

Kasım 2007, 61 sayfa

Hedef takip algoritmalarından elde edilen deǧişinti matrisi iz birleştirme sis-

temlerinde önemli bir yere sahiptir. Bu matris deǧişik radarlardan elde edilen

durum tahmin vektörlerindeki belirsizliǧi göstermektedir. Bu nedenle, iz birleştirme

sistemleri alt problemleri daha kesin sonuçlar elde etmek için genellikle bu

matrisi kullanırlar. Bundan dolayı deǧişinti matrisinin çoklu-sensör hedef

takip sistemlerinde sistem birimleri arasında deǧişilmesi gerekmektedir. Bu

tez deǧişinti matrisinin ihtiyaç duyulan tarafa gönderilebilmesi için yerini iyi

bir şekilde tutabilen çeşitli gösterim şekillerinin analizini kapsamaktadır. Bu

amaçla, Gaussian durum için, bazı gösterim şekillerinin elde edilebilmesi amacıyla

Kullback-Leibler uzaklıǧından faydanılmıştır. Bunların yanında bu gösterimlerin

karşılaştırılabilmesi bu tezin diǧer amaçlarından bir tanesidir. Karşılaştırma

gösterimlerin iz birleştirme başarımlarına bakılarak yapılmıştır. Başarımın

ölçülebilmesi için de 2 radarlı iz birleştirme simülasyon ortamı kullanılmıştır.

Anahtar Kelimeler: Değişinti Matrisi, Kullback-Leibler Uzaklığı, İz Birleştirme,

K-ortalı Vektör Nicemleme Metodu, Genişletilmiş Kalman Süzgeci
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PREFACE

This thesis is the result of the author’s 3-year M.S. study under the supervision

of Prof. Dr. Mübeccel Demirekler. This problem has arisen from the Sensor

Fusion project work that has been studied for 3 years. In the thesis, we have

tried to find a solution to the problem of representation of covariance matrix

for limited bandwidth case to increase the performance of the sensor fusion

system that we work on.
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CHAPTER 1

INTRODUCTION

Lemma 1.1 We have to learn to live with uncertainty.

Theorem 1.1 We can model uncertainty.

Corollary 1 We can make a living out of uncertainty.

written by Y. Bar-Shalom and X.R. Li in their well-known book on tracking

and fusion systems [1]. They pointed out the importance of the uncertainty

and knowledge of it by these statements. Because of this importance, several

algorithms exploiting the uncertainty have been developed to obtain more ac-

curate results.

The relation between the uncertainty and the estimation theory have been

realized by the mathematical variable ’covariance’ that is defined as the devi-

ation of the random vector around its mean. For instance, tracking systems

that are based on Kalman filtering generate a covariance matrix for each state

estimate. This matrix reveals the uncertainty in the estimation which gives an

idea about how well the corresponding estimate is. This measure is especially

functional for multisensor fusion systems who have several sensors employing

Kalman-based filter trackers. Measurement decorelation, data association and

track fusion are some of the subproblems of fusion systems and solution of

these problems utilizes the covariance information. Some more detailed infor-

mation will be discussed later within this chapter.

In view of these matters, since the knowledge of covariance information

at a fusion center is crucial for better performance, Bar-Shalom and Li’s idea
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above can be extended to the following corollary.

Corollary 2 Covariance (Uncertainty) should go with the corresponding esti-

mated state.

In other words, covariance matrix might be as important as an estimated state

and it should not be underestimated and should be shared in between the nodes

of the fusion system. So, the covariance matrix transfer problem between the

system nodes has become a basis for this thesis work.

In the literature, there are few studies on covariance matrix approximation

and quantization techniques which is a prerequisite for sharing the covariance.

[2] and [3] discussed a vector quantization scheme for the elements of the co-

variance matrix. They also deal with the quantization of the state estimate

together with the covariance. [4] proposed an algorithm not for the covariance

matrix itself but for the eigenvectors of it. In this study, codebooks for eigen-

vector matrices are generated and the best matrix is chosen within this book.

Although the method proposed in this study is not directly related with the

covariance matrix quantization, its eigenvector quantization method might be

exploited in covariance quantization.

Bandwidth limitation is the main constraint for covariance matrix repre-

sentation. In real life, bandwidth for covariance matrices is always much more

less than the bandwidth for some other information such as the state esti-

mate. That is why the quantization architecture for the covariance matrix

should be constructed in an intelligent manner. So, this work is an analysis

of efficient representation of the covariance matrices belonging to Gaussian

density functions. Our objective is finding out some useful representations of

the covariance matrix and to obtain explicitly the degradation corresponding

to it. Degradations are measured by using the Kullback-Leibler (KL) distance

or relative entropy. More clearly, this thesis basically deals with the analysis

and comparison of different representations for a given covariance matrix of a

Gaussian distributed random vector. The KL distance is used for getting the

distance measure of how far away the representation matrix is from the actual

covariance. So, optimal representation matrices can be found in terms of some
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parameters of the covariance. Another objective of this thesis is improving the

performance of the track fusion system by using good approximations of the

covariance matrix at various stages of the fusion systems.

In this thesis, an analysis on the approximations of the covariances matrices

of Gaussian density distributions has been made. To measure the performances

of these approximations, a track fusion system simulator has been generated.

We assumed a scenario that two radars are connected to a fusion center and

sending their own track information to the center. Track information is com-

posed of the estimated state and the approximation of the corresponding co-

variance matrix. Then, track fusion results of the actual and approximated

covariance matrices are compared. We have generated randomly 1000 track

samples with frame length of 50 for each radar and taken one sample covariance

matrix for each track. Using these matrices and the state estimates, average

errors of the fused tracks are calculated and compared for each approximation

method.

The outline of this thesis study is as follows: Chapter 1 will go on giving

some information about the properties of covariance matrices and roles of the

covariance matrix at fusion systems. Chapter 2 presents information about

the KL distance and reveals the equations deriving the KL distance between

two Gaussian densities. Chapter 3 offers some representation methods and

analyzes them according to the KL distance criteria. Simulation environment

and experiments with the results are given in Chapter 4. Finally, summary

and conclusion of this study and future work plan are told at Chapter 5.

To begin with, before attempting to represent a given covariance matrix,

it is better to summarize its basic properties since the equations will heavily

use these properties.

1.1 Covariance Matrix

This chapter discusses covariance matrix, its definition and properties. Impor-

tance of the covariance matrix for engineers is also emphasized by giving its

3



role at the sensor fusion systems.

Since covariance represents the variation of the random vector around the

mean, it is clear to see that it is a measure of how well the mean is obtained.

For instance, a considerable work on covariance matrices have been done for

multisensor-multitarget tracking and sensor fusion systems. These systems

require the covariance since the covariance represents the uncertainty in the

state estimation and this uncertainty is used in various algorithms [1], [5].

1.1.1 Properties of Covariance Matrix

As mentioned before, the covariance represents the variation of the random

vector around its mean. So, the mathematical definition of the covariance is

given by the equation (1.1).

P = E{(x− x̂)(x− x̂)T} (1.1)

where xk is the random vector and x̂k is its mean. Considering the mathemat-

ical definition, one can easily derive the following features of covariance:

1. symmetricity

2. positive semi-definiteness

3. all eigenvalues of a covariance matrix are real and non-negative

4. all eigenvectors are orthonormal to each other

5. a covariance matrix may be decomposed as P = V DV T where column

vectors of V are eigenvectors such that ei ⊥ ej for i 6= j and D is a

diagonal matrix containing eigenvalues of P as its diagonal elements.

In the introduction of this chapter, it is mentioned that some application areas

highly use the covariance information for increasing their system performance.

A bit more discussion on these applications is made in the following section:
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1.1.2 Role of Covariance Matrix in Track Fusion Sys-

tems

Since multisensor-multitarget Tracking systems or sensor fusion systems deeply

work on the knowledge of the covariance matrices, we will mention about the

usage of the covariance for these systems. There are three basic reasons to

know the covariance of an estimated state for effective target tracking and

decision making: measurement noise decorelation, data association and track

fusion.

Before passing to the next section, it is also important to note that that in

the sensor fusion systems, the covariance information is usually generated by

the filters that utilizes Kalman filtering.

1.1.2.1 Measurement Noise Decorrelation

Trackers using Kalman filters work on the idea of independent and Gaussian

measurement noise assumption, i.e., they assume that filter-input measure-

ment and process noise sequences are uncorrelated, [6]. On the other hand,

filter output data has no more independent noise but it has a dependent noise

sequence. This filter output data can not be used as input to a Kalman-

based fusion system because of the violation of the independence assumption.

This type of usage might result in unacceptable errors. To avoid this danger,

some methods are generated to convert the output state into a state that has

uncorrelated measurement noise sequence. In the literature, there are some

methods proposed to decorelate the noise in tracker output data such as ’in-

formation decorrelation method’ [7],[8] and ’equivalent measurement approach’

[5],[9],[10]. These methods rely on the covariance information or usage of

the covariance matrices to decorelate the noise inside the data. For in-

stance, at fusion systems, to compensate errors in the state estimations caused

by the time delays within the system, one of these methods should be exploited

to get the target position more accurately.
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1.1.2.2 Data Association

Data association or track association is one of the challenging problems at

multisensor-multitarget fusion systems. Since association algorithms of these

systems give the decision of whether information from different sensors be-

longs to the same target or not, one may guess the importance of inclusion of

the covariance in the association methods. For instance, one of the commonest

method for the distance calculation in the association algorithms is calculating

the statistical distance, i.e., Mahalonobis distance [11]. This distance equation

includes the state estimations with their corresponding covariances and

produces a distance measure between the estimates considering the uncertain-

ties.

1.1.2.3 Track Fusion

Similar to the data association mechanism, track fusion algorithms heavily

use the covariance matrix information to obtain better target positions. For

example, ’weighted covariance fusion (WCF)’ [1], [12],exploits the covariance

matrix and the state estimates to obtain the fused state of the target.
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CHAPTER 2

KULLBACK-LEIBLER DISTANCE

In this chapter, Kullback-Leibler (KL) measure - basic measure tool for com-

parison of two densities- will be defined. We will derive KL measure between

two gaussian densities for future purposes of our work.

2.1 Definition

In probability theory and information theory, the Kullback-Leibler distance is

defined as a distance measure for evaluating the distance between a proba-

bility distribution ’p’ and another probability distribution ’q’ [13]. While ’p’

represents data, observations, or a precise calculated probability distribution,

the distribution ’q’ typically represents a theory, a model, a description or an

approximation of ’p’. The KL measure or informally distance is used for vari-

ous applications at engineering and mathematics disciplines.

For probability distributions ’p’ and ’q’ of a discrete variable, the KL distance

between ’q’ and ’p’ is defined to be as in (2.1).

KL(p, q) =
∑

i

p(i) ln
p(i)

q(i)
(2.1)

For distributions p and q of a continuous random variable, the summations

turn out to be integrals, so that the distance becomes:

KL(p, q) =

∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx (2.2)

7



where p(x) and q(x) denote the densities. KL distance is not a formal distance

definition since it is not symmetric with respect to its argument, i.e.,KL(p, q) 6=
KL(q, p). However, it usually represents the difference between a pdf and its

approximation.

For more information on the Kullback Leibler measure, reader is referred

to [13] and [14], and for some applications, to [15], [16] and [17].

2.2 Kullback-Leibler Distance Between Two

Gaussian Distributions

In this section, we will calculate the Kullback Leibler distance (KLD) between

two Gaussian densities p(x) and q(x) . Therefore, we will assume that

p(x) = N(x; x̂p, P ) and q(x) = N(x; x̂q, Q) where N(x; a,A) denotes the

Gaussian density with mean a and covariance A. So that, probability density

functions of p and q can be written as:

p(x) =
1√

(2π)n|P | exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
(2.3)

q(xk) =
1√

(2π)n|Q| exp
(
− 1

2
(x− x̂q)T Q−1(x− x̂q)

)
(2.4)

where n is the dimension of the random vector x.

Computation of this KL distance is given below:

1. Write distance formula:

KL(p, q) =

∫
p(x) ln

p(x)

q(x)
dx (2.5)

2. Evaluate the ratio p(x)
q(x)

:

p

q
=

√
|Q|
|P | exp

(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
exp

( 1

2
(x− x̂q)T Q−1(x− x̂q)

)

(2.6)

8



3. Insert the ratio equation (2.6) into the KLD equation (2.5):

KL(p, q) =

∫
1√

(2π)n|P | exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
.

(
ln

√
|Q|
|P | −

1

2
(x− x̂p)T P−1(x− x̂p) +

1

2
(x− x̂q)T Q−1(x− x̂q)

)
dx (2.7)

Then, equation (2.7) takes the following form:

KL(p, q) = ln

√
|Q|
|P | −

1

2

∫
(x− x̂p)T P−1(x− x̂p)√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx +

1

2

∫
(x− x̂q)T Q−1(x− x̂q)√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.8)

4. Since trace of a scalar is equal to the scalar itself, equation (2.8) turns

out to be the equation (2.9):

KL(p, q) = ln

√
|Q|
|P | −

1

2

∫
tr{(x− x̂p)T P−1(x− x̂p)}√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx +

1

2

∫
tr{(x− x̂q)T Q−1(x− x̂q)}√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.9)

5. Because of the fact that tr(AB) = tr(BA), we find the distance as in

(2.10).

KL(p, q) = ln

√
|Q|
|P | −

1

2

∫
tr{P−1(x− x̂p)(x− x̂p)T}√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx +

1

2

∫
tr{Q−1(x− x̂q)(x− x̂q)T}√

(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.10)
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6. Trace is a linear function. So we can write:

KL(p, q) = ln

√
|Q|
|P | −

1

2
tr

{
P−1

∫
(x− x̂p)(x− x̂p)T

√
(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx

}
+

1

2
tr

{
Q−1

∫
(x− x̂q)(x− x̂q)T

√
(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx

}
(2.11)

7. We know that the covariance matrix of a random vector can be obtained

as in (2.12).

P =

∫
(x− x̂p)(x− x̂p)T

√
(2π)n|P | exp

(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.12)

This term is also seen in equation (2.11). As a result, (2.11) can be

written as:

KL(p, q) =
1

2
ln
|Q|
|P | −

1

2
tr

{
P−1P

}

︸ ︷︷ ︸
n

+

1

2
tr

{
Q−1

∫
(x− x̂q)(x− x̂q)T

√
(2π)n|P | .

exp
(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx

}
(2.13)

8. Focusing on the last element of the summation in (2.13),let

A =

∫
(x− x̂q)(x− x̂q)T

√
(2π)n|P | exp

(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.14)

Then, let us write A more explicitly:

A =

∫
(xxT − x(x̂q)T − x̂qxT + x̂q(x̂q)T ) .

1√
(2π)n|P | exp

(
− 1

2
(x− x̂p)T P−1(x− x̂p)

)
dx (2.15)
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A = P + x̂p(x̂p)T − x̂p(x̂q)T )− x̂q(x̂p)T + x̂q(x̂q)T ) (2.16)

Simplified A is found and given as in (2.17)

A = P + (x̂p − x̂q)(x̂p − x̂q)T (2.17)

9. Finally, inserting A given as in (2.17) to the equation (2.13), we find

simplified form of KL distance between the two normal densities

N(x; x̂p, P ) and N(x; x̂q, Q) as the following:

KL(p, q) =
1

2

(
ln
|Q|
|P | − n + tr

{
Q−1P

}
+

tr
{

Q−1(x̂p − x̂q)(x̂p − x̂q)T
})

(2.18)

It is clear to see that when p(x) = q(x) = N(x; x̂, R), KL(p, q) = 0

This distance equation will be useful in quantization of covariance matrix

since it is simple and gives an idea about ”how far away” a Gaussian density

is from the other one. Especially for equal-mean Gaussian distributions, we

have a very simple distance equation. The KL distance will be a basis for

generating new approximation methods in our study.
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CHAPTER 3

REPRESENTATIONS AND THEIR

ANALYSIS

As previously mentioned, there are few studies on covariance matrix approxi-

mation and quantization in the literature. [2] and [3] proposed a vector quanti-

zation scheme for the elements of the covariance matrix with the quantization

of the state estimate. [4] proposed an algorithm not for the covariance matrix

itself but for the eigenvector matrix of it. As far as we know there isn’t any

study on various representations -which are are introduced in this thesis- of

the covariance and their comparison. So, this thesis offers a new approach for

the representation of the covariance matrix as well as their comparison.

In this chapter, some representations for the covariance matrix are pro-

posed. While deriving them, we utilize the KL measure for method generation

and for distance calculation between the covariance matrices. We use the KL

distance as our cost function and try to find the most appropriate matrices

that minimize this cost and these matrices minimizing the distance will be

assumed to best represent the actual covariance matrix. We assume that we

have two pdf’s, one is the actual gaussian pdf, the other is the approximate

version of the actual. We work on Gaussian densities because our objective is

to represent the output of a Kalman tracker which is assumed to be a Gaussian

random vector whose mean is taken as the estimated state (Figure (3.1)).
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Figure 3.1: Kalman filter output vector

Since our aim is to analyze the effect of the approximations of the covariance

matrix on performance of a track fusion system, we assume that mean of two

densities are identical. Considering Kullback-Leibler distance, since x̂p = x̂q,

the distance equation given by (2.18) is reduced to the following form:

KL(p, q) =
1

2

(
ln
|Q|
|P | + tr

{
Q−1P

}
− n

)
(3.1)

As a result, we have the distance equation as a function of only P and Q, i.e.,

KL(p, q) = KL(P,Q).

Now, we will offer some representation matrices and we will make Kullback-

Leibler analysis for some of them.

3.1 Some Approximations of Covariance Ma-

trices Utilizing Kullback-Leibler Distance

In this part, representation approaches for a given nxn covariance matrix are

introduced and some derivations are made regarding the optimality of them

using the Kullback-Leibler distance. So, we first start with the simplest ap-

proximation and approximate a given covariance matrix by αI, called α rep-

resentation.
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3.1.1 Alpha Representation (AR)

Assume that α is a real positive number and Q = αI. Our aim is to minimize

the Kullback- Leibler distance in terms of α so that the best α for a given P

can be found. Considering the fact that determinant of a matrix equals to the

multiplication of eigenvalues, the objective function that must be minimized

can be written as:

KL(P, Q) =
1

2

(
ln

αn

∏n
k=1 λp

k

+ tr
{

Q−1P
}
− n

)
(3.2)

where λp
i is the ith eigenvalue of P. Then,

KL(P,Q) =
1

2

(
ln

αn

λp
1 . . . λp

n
+

1

α
tr{P} − n

)
(3.3)

The solution of this problem is given in the next lemma.

Lemma 3.1 The minimum value of the objective function given in (3.3) above

is KL∗(P, Q) = 1
2
ln

λp
avg

λp
1...λn

where α∗ = λp
avg = 1

n

∑n
k=1 λp

k

Proof To find the optimum solution, the derivative of KL(P,Q) with re-

spect to α is equated to zero. Rewriting KL distance by considering tr{P} =
∑n

k=1 λp
k:

KL(P, Q) =
1

2

(
n ln(α)− ln

( n∏

k=1

λp
k

)
+

1

α

n∑

k=1

λp
k

)
(3.4)

Then taking the derivative:

∂KL(P, Q)

∂α
=

1

2

(
n

α
− 1

α2

n∑

k=1

λp
k

)
(3.5)

∂KL(P, Q)

∂α
= 0 =⇒ α∗ =

1

n

n∑

k=1

λp
k (3.6)

Inserting α∗ into the distance equation (3.3),

KL(α∗) =
1

2
ln

λp
avg

λp
1 . . . λn

(3.7)

It is easy to show that this solution is the global minimum of the objective

function since the derivative of the function is negative for 0 < α < α∗ and

positive for α > α∗.
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This completes the proof. It is interesting to note that optimal α is the average

of eigenvalues of the covariance matrix P .

Another approach may be just representing the covariance with only a diagonal

matrix. Following section exploits this method:

3.1.2 Diagonal Matrix Representation (DMR)

At this section we assume that Q = diag(d1, ..., dn). For this approximation of

the Q matrix, we can write the objective function as:

KL(P,Q) =
1

2

(
ln

d1 . . . dn

λp
1 . . . λp

n
+ tr

{



1
d1

. . . 0
...

. . .
...

0 . . . 1
dn


 P

}
n

)
(3.8)

KL(P, Q) =
1

2

(
ln

d1 . . . dn

λp
1 . . . λp

n
+

n∑

k=1

pkk

dk

− n

)
(3.9)

⇒ KL(P, Q) =
1

2

n∑

k=1

(
ln

dk

λp
k

+
pkk

dk

− 1

)
(3.10)

where pkk is the (k, k)th element of P.

Note that the objective function can be written as the sum of n functions, each

is a function of one variable, i.e., dk. Define:

fk(dk) =
1

2

(
ln

dk

λp
k

+
pkk

dk

− 1

)
(3.11)

So,

KL(P, Q) =
n∑

k=1

fk(dk) (3.12)

Equating 3.11 has exactly the same structure as AR with α replaced by dk

and
∑n

k=1 λp
k by pkk. So that the optimal solution of 3.11 is dk = pkk and

optimal solution of DMR is {dk = pkk}n
k=1 by previous lemma. This result is

summarized below as lemma 3.2.

Lemma 3.2 The minimum value of the objective function given in (3.10)above

is KL∗(P, Q) = ln p11...pnn

λp
1...λp

n
and the optimum solution is d∗k = pkk where pkk is

the diagonal entry of the matrix P .
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Solutions of these two approaches give some information about the general

solution. From now on, we will consider that Q is an approximation of P that

may not be diagonal but Q belongs to a set probably containing finite number

of elements. Q can be decomposed as Q = V DV T where V is an orthonormal

matrix (eigenvector matrix) and D is the diagonal matrix that contains eigen-

values of Q. In other words now we assume that eigenvectors and eigenvalues

of P are represented as elements of a set that has finite elements. Under

these conditions, the aim is to select the best V and D that minimizes the

Kullback-Liebler distance among these probability densities. Such a selection

can be considered as decoding stage of a coding algortihm. Following section

will exploit this idea.

3.1.3 Eigenvalue - Eigenvector Representation (EER)

In this section, we assume that we apply eigenvalue decomposition for P and

quantize eigenvalues and eigenvectors of P to finite values and finite vectors.

So, we have P = TDpT
T and Q = V DqV

T where Dp = diag(λp
1, ..., λ

p
n) and

Dq = diag(λq
1, ..., λ

q
n). λp

i and λq
i are eigenvalues of P and Q, respectively. T =

[ep
1 . . . ep

n] where ep
i is the ith normalized eigenvector of P and ep

i is orthogonal to

ep
j if i 6= j. Similarly, V = [eq

1 . . . eq
n] where eq

i is the ith normalized eigenvector

of Q and eq
i is orthogonal to eq

j (i 6= j). Writing the KL distance (Eq. 3.1) in

terms of eigenvectors and eigenvalues and using the fact that T T = T−1 and

V T = V −1 and noting that the determinant of a matrix equals to multiplication

of eigenvalues:

KL(P, Q) =
1

2

( n∑
i=1

ln
λq

i

λp
i

+ tr
{

V D−1
q V −1TDpT

−1
}
− n

)
(3.13)

Since tr{AB} = tr{BA}, we can write (3.13) as:

KL(P, Q) =
1

2

( n∑
i=1

ln
λq

i

λp
i

+ tr
{

D−1
q V −1TDpT

−1V
}
− n

)
(3.14)
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Let K = T−1V = T T V , then,

KL(P,Q) =
1

2

( n∑
i=1

ln
λq

i

λp
i

+ tr
{

D−1
q K−1DpK

}
− n

)
(3.15)

Writing more explicitly, we obtain the distance equation in terms of eigenvalues

and eigenvectors as:

KL(P, Q) =
1

2

( n∑
i=1

ln
λq

i

λp
i

+
n∑

j=1

n∑
i=1

{λp
j

λq
i

k2
ij

}
− n

)
(3.16)

where kij represents (i, j)th element of the matrix K.

3.1.3.1 EER Analysis for nxn Matrices

In this section, general solution for EER will be given. By representing eigen-

values and eigenvalues of the actual covariance, we will obtain a representation

of the covariance matrix. Now, we will assume that eigenvalues of P are rep-

resented quite well, i.e., λp
i ∼ λq

i and investigate the eigenvector representation

of P . So, distance equation, which can also be taken as the cost function, turn

out to be the following one.

KL(P,Q) ∝ D(P,Q) =
n∑

j=1

n∑
i=1

{λp
i

λq
i

k2
ij

}
(3.17)

Since K = T T V , kij =< ep
i , e

q
j >. So, D(P, Q) is obtained as:

D(P, Q) =
n∑

j=1

n∑
i=1

{λp
j

λq
i

< ep
i , e

q
j >2

}
(3.18)

This formulation shows that even if λp
i = λq

i , they still have a role on the

selection of V matrix. Furthermore analysis and intuition shows that one must

pay more attention on the selection of {eq
i , e

q
j} pair if {λq

i , λ
q
j} are far from each

other.

In the following subsection, we will give an algorithm that selects the best

matrix among a set of matrices Ω that minimizes the D function. For this

purpose, assume that {λp
i }n

i=1 and {λq
i}n

i=1 are ordered sets that are decreasing.

Rewriting the minimization problem:

min
eq

D(P,Q) s.t. < eq
i , e

q
j >= δi,j (3.19)
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The above defined optimization is not easy to solve due to the complex inter-

action between the vectors that must be selected. We will give an algorithm

that creates a suboptimal solution. The algorithm is based on using multi-

ple code books, {Ωi}n−1
i=1 , each corresponding to a different ep

i vector. Define

cj,i =
λp

j

λq
i
. Note that since the sets {λp

i }n
i=1 and {λq

i}n
i=1 have decreasing ele-

ments, we can say that cj,i’s are decreasing with respect to the first argument,

i.e., cj,i ≥ cj+1,i for j = 1, . . . , n − 1 and i = 1, . . . , n. Similarly, cj,i’s are in-

creasing with respect to the second argument, i.e., cj,i ≥ cj,i−1 for j = 1, . . . , n

and i = 1, . . . , n − 1. We propose an algorithm based on these observations.

the algorithm first solves the following minimization problem by simply com-

puting the cost for all possible eq
1,t ∈ Ω1 and choosing the one that gives the

minimum cost. According to the definitions given, subcost function is defined

as:

Ct
1 =

n∑
i=1

λp
1

λq
i

< ep
i , e

q
1,t >2=

n∑
i=1

c1,i < ep
i , e

q
1,t >2 (3.20)

that fixes the value of eq
1,t as eq

1,∗.

In the second step, we first use an orthonormal transformation T ∗
1 that trans-

forms e1,∗ to e1 = [1 0 . . . 0]T , i.e., T ∗
1 eq

1,∗ = [1 0 . . . 0]T . The transfor-

mation matrix T ∗
1 can be obtained by applying Gramm-Schmiddt orthogonal-

ization to a properly selected matrix. It can obviously be done in an offline

fashion and can be stored as attached to each vector eq
1,t ∈ Ω1. The next

step of the algorithm transfers all ep
i vectors to an n− 1 dimensional space by

using T ∗
1 , and eliminating the first element. The first step is repeated for the

new problem in the reduced dimensional space. Once the optimal vector of

Step 2 is found it is augmented by adding a zero to the first component and

transformed back by using (T ∗
1 )−1 that gives eq

2,∗. Algorithm continues in this

way for n− 1 steps. The nth vector is the one that is orthogonal to all of the

previously computed vectors.

Lemma 3.3 < eq
1,∗, e

q
2,∗ >= 0

Proof < eq
1,∗, e

q
2,∗ >= (eq

1,∗)
T eq

2,∗ = (T ∗
1 eq

1,∗)
T T ∗

1 eq
2,∗ = eT

1 (T ∗
1 eq

2,∗) = 0 since the
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first component of (T ∗
1 eq

2,∗) is zero.

Corollary 3 < eq
i,∗, e

q
j,∗ >= 0 for i 6= j

Proof This is a simple generalization of the Lemma (3.3).

Note that the above algorithm can only generate a suboptimal solution

since each sub minimization problem uses the result of the previous mini-

mization problem that may produce a non-optimal solution for the complete

problem. It is possible to overcome this difficulty partially and obtain a better

solution to the expense of computation. This can be done by delaying the de-

cisions to a later step. Such a strategy obviously increases the computational

load exponentially. A procedure that has two steps will be given in the next

algorithm. The number of the steps of the algorithm is n − 1 and ’Step k’ is

defined as a selection procedure of eq
k from the corresponding codebook. The

states at each step are associated with the elements of the related codebook,

for example the number of the states of the first step is cardinality of the code-

book Ω1. Computational load comes mainly from the transformation matrices.

The algorithm is given below:

Algorithm 1 1. Find all partial costs of Step 1, i.e., compute the cost

Ct
1 =

∑n
i=1 c1,i < ep

i , e
q
1,t >2 for each eq

1,t ∈ Ω1.

2. Apply transformation matrices and find total costs corresponding to Step

1 and Step 2. For each state of Step 2, find the minimum total cost of

first two states and fix the value of eq
1,∗.

3. Repeat the above procedure for all steps.

3.1.3.2 EER Analysis for 2x2 Matrices

For two dimensional vectors, the distance is obtained as:

KL(P,Q) =
1

2

(
ln

λq
1

λp
1

+ ln
λq

2

λp
2

+
2∑

j=1

2∑
i=1

(λp
i

λq
i

k2
ij

))
− 1 (3.21)
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For 2x2 covariance matrices, form of eigenvector matrices may be taken as in

the following form.

M =


 cos(θ) − sin(θ)

sin(θ) cos(θ)


 (3.22)

where θ represents the angle between the first eigenvector and the vector

[1 0]′. Using this fact, and knowing K = T−1V , the matrix K can be written

as:

K =


 cos(θf ) − sin(θf )

sin(θf ) cos(θf )


 (3.23)

where θf = θq − θp, θq and θp are the angles between the first eigenvector of P

and Q, and the vector [1 0]′.

Angle concept can be clarified by considering the Figure (3.2).
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Figure 3.2: Schematic representation of the angle concept

Inserting K given in (3.23) into the equation 3.21 to obtain the distance in

terms of eigenvalues and θf :

KL(P, Q) =
1

2

(
ln

λq
1

λp
1

+ ln
λq

2

λp
2

+
(λp

1

λq
1

+
λp

2

λq
2

)
cos2 θf +

(λp
1

λq
2

+
λp

2

λq
1

)
sin2 θf

)
− 1

(3.24)

Now, assume that we define the errors between eigenvalues of P and Q as in

the equations (3.25):

λer1 = λp
1 − λq

1 =⇒ λq
1 = λp

1 − λer1 (3.25)

λer2 = λp
2 − λq

2 =⇒ λq
2 = λp

2 − λer2 (3.26)
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Inserting λq
1 and λq

2 into (3.24), we obtain:

KL(λer1, λer2, θf ) =
1

2

(
ln

λp
1 − λer1

λp
1

+ ln
λp

2 − λer2

λp
2

+

( λp
1

λp
1 − λer1

+
λp

2

λp
2 − λer2

)
cos2 θf +

( λp
1

λp
2 − λer2

+
λp

2

λp
1 − λer1

)
sin2 θf

)
− 1 (3.27)

Distance KL reaches its minimum value at [λer1 λer2 θf ]
T = ~0. Let us find

second order Taylor series expansion around [λer1 λer2 θf ]
T = ~0 and investigate

the behavior of the distance regarding the eigenvalues, the angle difference and

the eigenvalue errors.

KL(λer1, λer2, θf ) = KL(0, 0, 0)︸ ︷︷ ︸
0

+∇KL(λer1, λer2, θf )T

∣∣∣
~0︸ ︷︷ ︸

=0 since~0 is optimal point




λer1

λer1

θf


 +




λer1

λer1

θf




T

H(KL(λer1, λer2, θf ))
∣∣∣
~0




λer1

λer1

θf


 +

h.o.t. (3.28)

Ignoring h.o.t., approximate distance in terms of λer1, λer2, θf and eigenvalues

is:

KL(λer1, λer2, θf ) ∼=




λer1

λer1

θf




T 


1
(λp

1)2
0 0

0 1
(λp

1)2
0

0 0 2
(

λp
1

λp
2

+
λp
2

λp
1
− 2

)
θ2

f







λer1

λer1

θf




(3.29)

which can also be written as:

KL(λer1, λer2, θf ) ∼= 1

(λp
1)

2
λer1 +

1

(λp
2)

2
λer2 + 2

(λp
1

λp
2

+
λp

2

λp
1

− 2
)
θ2

f (3.30)

Now, we can derive some important conclusions by focusing on the equation

(3.29):
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1. For small eigenvalues, λer1 and λer2 has high weighting because they are

multiplied by the inverse of square of eigenvalues. So, small eigenvalues

should be quantized more precisely so that distance can be reduced.

2. In the equation, θf has a multiplication factor which is a function of

the ratio of eigenvalues and but not the individual eigenvalues. For this

reason, while quantizing the angle θp, eigenvalue ratio should have an

important role. For example, for
λp
1

λp
2
≈ 1, θf has not any effect on the

distance so it may have any value. However, when
λp
1

λp
2

takes high values,

we should be careful while quantizing θp so that we may reduce the θf

value as much as possible. Actually, this idea above sounds sensible,

because of the fact that when the ratio is around one, the cross-section

of pdf of the random vector takes the circle-like shape. So, whatever θp

is, the shape does not change and for this reason θp has no importance.

3.2 Other Approximations of Covariance Ma-

trices

Surely, we can offer some other representation matrices for the covariance

matrix where these representations may be in any structure. However the KL

analysis may not be easy for some of them.

Some of these representations may be given as below:

3.2.1 Whole Matrix Representation (WMR)

In this representation, covariance matrices are taken with no modification, i.e.,

Q is a 6x6 matrix which is a represented version of the actual covariance. By

inspection, optimal qij should be equal to pij, i.e., q∗ij = pij ∀i, j ∈ [1, N ].

Still we can use KL to analyze the quantized covariance matrix. However, it

is not easy to find an analytical procedure of computation of a good codebook

for it.
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3.2.2 Block Diagonal Matrix Representation (BDMR)

This representation is based on representing the covariance matrix by 2x2 block

diagonal matrices. Only 2x2 diagonal blocks of P are taken and quantization

is applied to them, i.e., modified covariance matrix to be represented is P̂ =

blkdiag(P1, ..., Pn) and the represented version of it is Q = diag(B1, ..., Bn)

where Pi’s and Bi’s are 2x2 matrices and Pi’s are diagonal blocks of the actual

covariance.

Representing P by means of its 2x2 diagonal blocks is proposed in this study

because of the simple relationship between the eigenvalues and the eigenvec-

tors of 2x2 symmetric matrix. This relationship is elaborated in the following

sections. Our study shows that selection of diagonal block is extremely impor-

tant since ”0” (zero) of the sub-blocks assumes uncorrelatedness between the

corresponding variables. Whenever this assumption is not satisfied by a given

problem, the quality of the representation (i.e., 2x2 diagonal blocks) degrades

dramatically.

Surely, for n=1, our BDMR matrix gets same with the DMR matrix and

with the WMR matrix for n=N.

Also note that we assume the dimension of the covariance N is an even

number.
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CHAPTER 4

EXPERIMENTS AND ANALYSIS

To analyze and compare the representation methods proposed in the previous

chapter, a simulation environment has been generated. This environment is

almost the same as the one given in [2] and [3]. Similar to these references,

we will use a track fusion system that fuses track information generated by

two radars. Covariance matrices generated by the filters at the radars are

quantized and sent to the fusion node. At the fusion node, these quantized

matrices are used for track fusion. Yet, quantization of state estimate is not the

main concern of this study. So, state estimate is assumed to be sent without

quantization.

The quantization of the covariance matrix is made for different representations

of it which are given in the previous chapter with those additionally proposed in

this chapter. For these representations, some performance criteria is generated

to compare different representations.

4.1 Simulation Model

As a model, we have chosen a fusion system that has two monopulse radars

sending track information to a center. State estimates and the correspond-

ing error covariance matrices are taken as the track information. We assume

that the state estimate of the target is sent without any quantization process.

However, the covariance matrix should be quantized since we have limited

bandwidth for sending the covariance. The experimental setup of the track
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fusion system should use the covariance matrices of the tracks found by the

radar filters to make a proper fusion at the fusion center. Furthermore, be-

cause of the nonlinear nature of the radar measurements, these covariances can

not converge to a fixed value. This system model is very appropriate for our

purpose of analyzing the effect of covariance approximation on track fusion sys-

tems since this system generates time-varying covariance matrix information

in the system that should be interchanged between the nodes of the system

for optimal sensor fusion. Configuration of the experimental setup is given in

Figure (4.1).

Figure 4.1: Simulation System Model

In the model, two monopulse radars detect targets, produce measurements

from them and generate tracks from these measurements. They generate the

state estimation and the corresponding filter output error covariance matrix

for the target and send this track information to the fusion center. We as-
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sume that only digital communication is possible between the radars and the

fusion center. We also assume bandwidth of the communication channel is

limited. So, the filter output covariance information is sent to the fusion cen-

ter after a quantization process. In order to investigate the effect of covariance

representation, we will assume that the quantization is only applied to the

generated covariance matrix, but not to the estimated state. We assume that

these radars work synchronously and data association at the fusion center is

made perfectly.

In the next section, more detailed information on this system will be given.

Target motion and measurement models, radar tracker filter, fusion scheme

and the criteria for performance comparison will be discussed as main topics.

4.1.1 Target Motion and Measurement Models

Target motion is modeled as a constant velocity motion in 3D space. Target

motion equations can be written as:

Xk+1 = AXk + vk (4.1)

Yk = h(Xk) + wk (4.2)

where Xk represents the true state of the target at time k and Yk represents

the corresponding sensor measurement. The matrix A and the function h(.)

are known, and assumed to represent an observable system. Both the process

noise vk and the measurement noise wk are assumed to be white, zero-mean

and Gaussian and they are assumed to be independent from each other. Their

covariances are taken as E{vkv
T
k } = Qk and E{wkw

T
k } = Rk.

Assume that the time interval is T and Xk = [xk vx,k yk vy,k zk vz,k]
′

where xk, yk, zk denote the position and vx,k, vy,k and vz,k denote the corre-

sponding velocities, respectively. Y i
k equals to [ri

k bi
k ei

k]
′ where r, b and e

represents range, bearing and elevation angles for the ith radar, respectively.
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The matrix A is taken as the following one:

A = blkdiag

( 
 1 T

0 1
,


 ,


 1 T

0 1
,


 ,


 1 T

0 1
,




)
(4.3)

and Qk = Q is taken as:

Q = blkdiag

( 


T 3

3
qx

T 2

2
qx

T 2

2
qx Tqx


 ,




T 3

3
qy

T 2

2
qy

T 2

2
qy Tqy


 ,




T 3

3
qz

T 2

2
qz

T 2

2
qz Tqz




)
(4.4)

where qx, qy, and qz represent process noise variances in x, y, and z axis,

respectively. Our measurement model is:

ri
k =

√
(xk − xi

r)
2 + (yk − yi

r)
2 + (zk − zi

r)
2 + wr(k) (4.5)

bi
k = tan−1

( yk − yi
r

xk − xi
r

)
+ wb(k) (4.6)

ei
k = tan−1

( zk − zi
r√

(xk − xi
r)

2 + (yk − yi
r)

2

)
+ we(k) (4.7)

where [xi
r yi

r zi
r]
′ denotes the position of the ith radar in cartesian coordi-

nates.

In a monopulse radar, calculation of the cross-covariance matrix of wb(k)

and we(k) is given in [18] and [19] as the following equation:

Cov
{ wb(k)

we(k)

∣∣∣<0

}
=

1

<0

( 
 1 0

0 1


 +

<
<+ 1


 ηb

ηe





 ηb

ηe



′ )

(4.8)

where < and <0 are expected and observed sum channel signal-to-noise ratios,

respectively. ηb and ηe are the electronic off-beam angles (normalized to beam-

width) in bearing and elevation.

According to the target motion model given at the equation (4.1), true

trajectory of the target is generated randomly. Using the true state, the mea-

surements of the radars for this target are obtained using the measurement

model given above. The algorithm for true target trajectory and correspond-

ing radar measurement generation is given below:

28



1. Firstly, choose an initial random state for the target in a 6 dimen-

sional cube. We assume that the initial state is uniformly distributed

within this cube for any target, so that initial state of the target X0 =

[x0 vx,0 y0 vy,0 z0 vz,0]
′ is chosen as: x0, y0 ∈ unif [−40000, 40000],

vx,0, vy,0 ∈ unif [−200, 200], z0 ∈ unif [0, 5000] and vz,0 ∈ unif [0, 5].

Then, start generating the true state by the equation (4.1) where vk is

taken by:

vk = sqrt(Q) ∗ tk (4.9)

where tk is 6x1 gaussian random vector with covariance I6. qx, qy and qz

are taken as 900, 900, 1 (m2), respectively. Note that these values are

selected in order to generate a simulator that is relatively realistic. T is

taken as 4 seconds.

2. After obtaining the true trajectory, range, bearing and elevation mea-

surements for both of the radars are calculated by the equations (4.5),(4.6)

and (4.7), respectively. Sensor locations are taken as [x1
r y1

r z1
r ]
′ =

[0 0 0]′ and [x2
r y2

r z2
r ]
′ = [40000 0 0]′. wr(k) is taken as Gaus-

sian with variance 100. Bearing and elevation noises have been found by

the following equation:


 wb(k)

we(k)


 = sqrt

(
Cov{wb(k), we(k)}

)
∗ tk (4.10)

where tk is a Gaussian random variable with variance 1 and Cov{wb(k), we(k)}
is calculated by the equation (4.8). <, <0, ηb and ηe have taken the values

34, 3000, 2 and 2, respectively.

At the end, we have the true state of the target and the corresponding radar

measurements.

4.1.2 Radar Tracker

Previously, we have obtained the true state of the target and the corresponding

radar measurements. At this point, we need local tracker to obtain the state
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of the target from the measurements. Since we have nonlinear radar mea-

surement equation in our model, we used Extended-Kalman Filtering (EKF)

algorithm for the state estimation. Flowchart of EKF algorithm is given in

Figure (4.2):

Figure 4.2: Flowchart of EKF Algorithm (One Cycle),[1]

Obviously, for our model, i.e., u(k) = 0 and the process is linear. We

have evaluated the Jocabian matrix for h(Xk) and used this Jacobian in our
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algorithm. All the parameters like the process noise covariance or the

time interval are chosen as strictly the same as with those of the

target trajectory and measurement generation process.

4.1.3 Track-to-Track Fusion

In the literature, there are several fusion methods used at multisensor target

tracking systems. Distributed and centralized fusion are some basic methods

that are preferred by common fusion systems. In this thesis, we prefer to use

centralized fusion architecture in which sensor track information is sent to a

center node where the information is fused. There are several methods to solve

track fusion problem such as weighted covariance fusion (WCF)[1], informa-

tion matrix fusion [20], best linear unbiased estimate fusion [21], and tracklet

fusion [22]. In our study, we prefer to use WCF method for the experiments

in a Sensor-to-Sensor fusion scheme [23]. Schematic representation of Sensor-

to-Sensor Track fusion structure is given in the Figure (4.3).

Figure 4.3: Sensor-to-Sensor track Fusion Scheme
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In fusion systems, the state estimates of different sensors have the com-

mon process noise which should be removed for optimal track fusion. WCF

method considers this dependency by the usage of the cross-covariance of the

corresponding estimation errors. So, the state fusion equation of WCF is given

as:

x̂f = x̂i + (P i − P ij)(P i + P j − P ij − P ji)−1(x̂i − x̂j) (4.11)

and the corresponding covariance is:

P f = P i − (P i − P ij)(P i + P j − P ij − P ji)−1(P i − P ji) (4.12)

where x̂i is the state estimate of sensor i and P i is the corresponding state

estimate error covariance. P ij is the cross-covariance between the errors of

sensors i and j. There are some techniques [1] to calculate the cross-covariances

in the literature. However, in our study, we will use none of them because we

ignore the effect of correlated process noise and take P ij = P ji = 0.

4.2 Performance Evaluation

After mentioning about fusion method, the performance criteria for comparing

proposed representations of the covariance matrices will be discussed in this

section. For a fused state of a target which has used true covariance matri-

ces - P 1 and P 2- , true average mean-square error (MSE) is calculated first.

This MSE is considered as ”true error” of the fusion process. Secondly, for

the fusion system output which uses the approximated version (Q) of the ac-

tual covariance (P), the average MSE is recalculated. This MSE is called as

”representation error”. Normalizing this error by the true error, we ob-

tain a ratio which gives an idea about the degradation of the usage of the

approximated covariance matrices.

True MSE calculation for a track with frame length N is performed only

for the last state estimate, i.e.,

MSEtrue = ‖x̂(true)f
N − xN‖ (4.13)
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where xN is the true state at time N and x̂(true)f
N is the fused state which

is calculated by the equation (4.11) assuming there is no effect of correlated

process noise.

x̂(true)f
k = x̂1

k + P 1
k (P 1

k + P 2
k )−1(x̂1

k − x̂2
k) (4.14)

In the equation above, x̂(true)f
k is the fused state, x̂1

k is the state estimate of

radar-1 and P 1
k is the corresponding true covariance matrix, x̂2

k is the state

estimate of radar-2 and P 2
k is the corresponding true covariance matrix and

k denotes time. MSE calculation for true covariance matrices is summarized

in the Figure (4.4). The reason for selecting only one element, i.e., the last

element of each track, is to eliminate the bias in the statistics. In the opposite

end, one can use only one track to get the desired statistics, but this may be

biased due to some special position of the track with respect to the radar.
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Figure 4.4: MSE calculation process for the true covariance matrices

Similarly, calculation of MSE which belongs to the represented covariance

matrices is given by the following equations:

MSErepr = ‖x̂(repr)f
N − xN‖ (4.15)

where xN is the true state at time N and x̂(repr)f
k is calculated by the equation

(4.11).

x̂(repr)f
k = x̂1

k + Q1
k(Q

1
k + Q2

k)
−1(x̂1

k − x̂2
k) (4.16)

In the equation (4.16), x̂(repr)f
k is the fused state, x̂1

k is the state estimate

of radar-1 and Q1
k is the representation of the corresponding true covariance
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matrix, x̂2
k is the state estimate of radar-2 and Q2

k is the representation of the

corresponding true covariance matrix. The Figure (4.5) presents the process

of the MSE calculation for the representation matrices.

Figure 4.5: MSE calculation process for the represented covariance matrices

It is important to note that the measurements and the generated tracks

are the same for both of the MSE calculation procedures. It is also important

to mention that we perform the MSE calculation of a track for only its last
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estimate because we assume the covariance information of frames do not change

rapidly, which may give biased MSE’s.

Finally, defining normalized MSE (MSEnorm), we reach a measure of per-

formance of the representation matrix for one track.

MSEnorm =
MSErepr

MSEtrue

(4.17)

We will obtain MSEnorm for the different representations of covariance matri-

ces so that we will be able to compare them from this point of view.

4.3 Representations of Covariances Specific to

Target Tracking and Their Quantization

In this section, we will first introduce two possible forms of block diagonal rep-

resentations of covariance matrices, then we will describe at least one method

to quantize all of the representations. All quantizations use Kullback-Leibler

as a distance measure between two covariance matrices. Quantization levels

are changed from 1 bit to 10 bits.

4.3.1 Representation Methods

Previously we have defined some approximation methods for a covariance ma-

trix in Chapter (3). In this chapter, we will again discuss about these approx-

imation methods as well as their possible quantizations. These quantization

processes are realized for both of the radars in the system.

4.3.1.1 Quantization Alfa Representation (AR)

Previously, we have defined AR in Chapter (3) and found that if we approx-

imate P as αI, optimal α is found as the average of the eigenvalues of the

covariance matrix P . So, the approximation is obtained by calculating aver-

age of the eigenvalues of the covariance matrix. Then, this average is quantized
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by uniform quantization method before sending to the fusion center. The pro-

cedure is briefly described in the Figure (4.6).

Figure 4.6: AR approximation process

To determine the distribution of the eigenvalue average, we obtained the

histogram of this variable using training data which we will discuss later. Fig-

ure (4.7) presents the corresponding histogram and quantization levels for 5

bits are shown by”x”’s on the same figure.
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Figure 4.7: Histogram of eigenvalue average and uniform quantization levels
for 5 bits.

As the histogram in Figure (4.7) shows, uniform quantization in the range

(5000-35000) is quite reasonable. Some more effort can be spend for a better

quantization outside this range. However, since the main subject of the thesis

is to compare representations rather than getting the optimal quantizer, a

simple uniform quantization is selected. Considering the histogram, we have

taken the quantization interval as [0, 50000] since the probability of λavg being

grater than 50000 is shown to be small.

4.3.1.2 Diagonal Matrix Representation (DMR) and Its Quantiza-

tion

Similarly, DMR method is also analyzed in Chapter (3). DMR is defined

as representing the covariance matrix P by a diagonal matrix Q such that
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Q = diag(d1, ..., dn). Optimal dk’s are found as the (k, k)th element of P which

is defined as pkk. So, the approximation process is performed on the diago-

nal entries of the covariance matrix, then K-means algorithm is used for the

quantization. KL K-means quantization method is performed to the vectors F

where F = [{pii}6
i=1].

Figure 4.8: DMR approximation process

4.3.1.3 Block Diagonal Matrix Representation (BDMR) and Its

Quantization

This representation is based on representing the covariance matrix by 2x2 block

diagonal matrices. The 2x2 blocks themselves are either represented by a 3 di-

mensional vector that contains the elements of the block matrix which is Whole

Matrix Representation (WMR) or by (λ1, λ2, θ) triple named as Eigenvalue-

Eigenvector Representation for 2x2 matrices (EER-2x2).

So, there are some representations that might be suitable for 2x2 matrix

approximations. The first one is Whole Matrix Representation (WMR), which

will also be discussed for 6x6 dimensional matrix case, and the other is Eigen-

vector Eigenvalue Representation for 2x2 matrices (EER-2x2).
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Note that our aim for this proposal is investigation of the performance of

BDMR and comparing this method with the others.

Figure 4.9: BDMR approximation process

1. BDMR-WMR method is the representation of all of the elements of block

diagonal matrices and constructing a vector containing these elements.

Define the vector F = [{pij}2
i,j=1 {pij}4

i,j=3 {pij}6
i,j=5] for i ≤ j

whose dimension is 1x9. Here, we take the advantage of the symmetry

property of the covariance matrix. Then apply vector quantization for

this vector to generate the matrix Q. Note that positive definiteness of

all the matrices in the codebook must be checked.

2. BDMR-EER-2x2 In Chapter (3), we have emphasized that a 2x2 ma-

trix can be represented by its eigenvalues and its eigenvector angle.

So define B1 = P (1 : 2, 1 : 2), B2 = P (3 : 4, 3 : 4) and B3 =

P (5 : 6, 5 : 6). Find eigenvector angles and eigenvalues of these ma-

trices and generate the vector to be quantized. Define this vector as
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F = [{λBi
1 }3

i=1 {λBi
2 }3

i=1 {θBi}3
i=1] where θBi denotes the eigen-

vector angle of the matrix Bi and λBi
1 and λBi

2 corresponds to the first

and second eigenvector of the matrix Bi, respectively. Then apply KL

K-means quantization method to find the codebook.

The state of the system can be described in various ways, i.e., the order of

the variables within the state can be changed. So that, we can have the differ-

ent covariances matrices containing the same elements in different locations.

We investigate this to discover importance of the the correlation information

between different vector variables. For BDMR, we define two types of the state

vector. The first one is the traditional one-Xk = [xk vx,k yk vy,k zk vz,k]
′

(type-I) and the second one is Xk = [xk yk vx,k vy,k zk vz,k]
′ (type-II).

Notice that, the covariance matrix for these different states contains the

same elements but in different locations, e.g., p3,3 in type-I is the same as the

element p2,2 in type-II or p2,1 in type-I is same as p3,1 etc.

4.3.1.4 Whole Matrix Representation (WMR)

In this representation, covariance matrices are taken with no modification and

quantized using K-means algorithm and KL as distance measure.

4.3.2 KL K-Means Clustering Algorithm

We use KL K-means clustering technique to generate a codebook of the covari-

ance matrices. As indicated in [3], K-means classification method is based on

partitioning the training data into K regions. The centroids of these clusters

are then selected as their representatives in the codebook. Then, coding of a

data is done by selecting the closest code vector to that data. This quantization

technique is composed of two steps: ”codebook generation” and ”quantization

process”.
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4.3.2.1 Codebook Generation

Codebook generation requires a large amount of ”typical” data. We have ob-

tained this data by making Monte-Carlo runs by using our models. So, random

track generation procedure is done for Radar-1 as given in ”Target and Mea-

surement Model” section (4.1.1). 32768 tracks have been generated and the

covariance of the 50th frame of these tracks is stored to avoid transient ef-

fects of Kalman filtering. These covariances is stored in the training set which

is required to generate the codebooks. In the Figure (4.10), some of the gen-

erated tracks and cross-sections of density functions at 50th frame is illustrated.
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Figure 4.10: Generated Tracks for Training and Cross-Sections of the Corre-
sponding Covariances
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In our work, we followed a basic K-means clustering method to generate

the codebooks for each representation methods except AR. Instead of usage of

traditional L2 norm distance, we preferred using KL distance measure while

codebook generation. Before explaining the codebook generation algorithm,

some explanations on notation should be made:

TDS : Training data set which includes all the covariance matrices generated.

N : number of covariance matrices in TDS.

CB : codebook set

n : number of elements in the codebook.

W : weighting vector which provides flexibility in selectivity of vector elements.

The algorithm for generating ”n clusters” is as follows:

1. Select n random initial vectors, Cn ∈ CB and put them into the code-

book. (Figure (4.11))

2. for all PN
i=1 ∈ TDS

(a) find the closest cluster in the codebook in KL sense,i.e., Find Cm,

m ∈ 1 : n which minimizes KL(Pi, Cm) where i = 1, ..., N .

(b) update Cm as: Cnew
m = Cm+W.∗(Pi−Cm) where W is the weighting

vector and KL represents the Kullback-Leibler distance between the

covariances.
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Figure 4.11: Cross-Sections of initial selected covariances for WMR method

After the selection of the initial covariances, 4-bit KL K-means quantizer

generates the covariances as given in Figure 4.12. Then, these covariances are

added to the corresponding codebook.
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Figure 4.12: Cross-Sections of final codebook covariances of WMR method for
4 bits.

This codebook generation algorithm is performed for each representation

method and for different number of bits.

4.3.2.2 Quantization

After giving the explanation about codebook generation process, quantization

of a given covariance matrix will be explained in this section. In this process,

after getting the covariance matrix required to be quantized, we need to decide

the best codebook element that can represent it. For this purpose, we again

benefit KL as a distance measure and produced the following algorithm:

1. take the output covariance (P ) of the radar tracker
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2. find the closest codebook element in KL sense.,i.e., find Cm, m ∈ 1 : n

which minimizes KL(P, Cm) and obtain the representation matrix.

At both of the radar sites, after generating the covariance matrix, the best

matrix within the codebook is chosen by the criteria of KL distance mini-

mization that gives out the matrix Q. So, we obtain an approximation to

our actual covariance matrix. After determining the approximations for both

of the radar, we calculate average MSEnorm at the fusion center where the

approximate matrices has been used.

4.3.3 Results

Before giving the MSEnorm for each representation methods for various num-

ber of bits, an important experimental result should be presented. This ex-

periment is based on using the approximate covariances without any quan-

tization. However, this experiment is only applicable for AR, DMR, BDMR1

and BDMR2 and it reveals the correlation between the fusion perfor-

mance and the KL distance. For 1000 tracks, MSEnorm and the average

KL distances between the actual covariances and the represented ones at both

radar sites are calculated.

Table 4.1: Performance of Representation Matrices without Quantization.

Average Average KL Average KL

Method MSEnorm at Radar-1 at Radar-2

AR 2.91 10.13 10.14
DMR 2.63 3.24 3.28

BDMR-I 2.63 2.46 2.49
BDMR-II 1.17 1.16 1.16

Table 4.1 shows us there exists a correlation between the fusion system

performance and Kullback Leibler criteria. This correlation gives the intuition

that one can get better performance if the representation matrices are close to

the actual covariances in the KL distance sense.

Finally, using the representation matrices after quantization, the

performance of each representation method has been obtained. The Figure
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(4.13) shows their performances for various number of bits.
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Figure 4.13: Performances of Representation Matrices

As can be seen in the Figure (4.13), DMR, BDMWMR1 and BDMEER1

has almost the same performances for each number of available bits and AR

has slightly higher MSEnorm values than these methods. In addition, all these

methods show almost constant performance for higher bit rates. The good

ones WMR, BDMWMR2 and BDMEER2 have decreasing MSEnorm charac-

teristics with increasing number of available bits. Also note that these three
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representations have almost the same fusion performances. This shows us the

importance of cross-correlation terms between X and Y components and proves

that the cross-correlation term should not be underestimated during quanti-

zation process.

For better understanding of performances of different representations, cross-

section of both actual and quantized covariances are demonstrated in the Fig-

ures (4.14)-(4.19).

All the Figures (4.14)-(4.19) have the following common proper-

ties:

1. Quantization level is 4-bits.

2. There are two plots belonging to two different targets and both targets

have two tracks that is generated by two radars.

3. All quantities related with radar-1 are in blue color while they are red

for radar-2.

4. Ellipses represent covariance matrices and dashed-line ellipses represent

their quantized versions.

5. ”X”’s represent the estimated states of the radars.

6. Green square with the letter ”P” shows the true fused state with true

covariance and cyan square with the letter ”Q” shows the fused state

with quantized covariance matrix.
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Figure 4.14: AR method examples

Figure (4.14) shows four snapshots of AR-uniform quantization result. In

all of them, the representation of the covariance matrix is a circle since it is a

diagonal matrix having the same value on its diagonals.
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Figure 4.15: DMR method examples

In the DMR model, covariance matrix is diagonal but with different di-

agonal elements. As a result, covariance matrices are represented by ellipses

instead of circles. However, since eigenvectors of these matrix are along x and

y axises, its representation is not oblique. This is obviously a better represen-

tation then AR but still not good enough as high MSEnorm shows.
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Figure 4.16: BDMWMR2 method examples

In this method, the 6x6 covariance matrix is approximated by 2x2 diag-

onal blocks. The first block corresponds to the position (x,y). The actual

covariance matrices show high correlation between x and y components and

the quantization scheme is well adopted to this scheme as Figure (4.16) shows.

The good performance of the method indicates that the correlation between

the blocks is small.

51



8400 8600 8800 9000 9200 9400 9600 9800 10000 10200
−3.13

−3.12

−3.11

−3.1

−3.09

−3.08

−3.07

x 10
4

  P

  Q

X(m)

Y
(m

)

2.6 2.65 2.7 2.75 2.8

x 10
4

2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

x 10
4

  P
  Q

X(m)

Y
(m

)

Figure 4.17: BDMWMR1 method examples

BDMWMR1 and BDMWMR2 are same in using quantization and repre-

sentation methods except that variables are interchanged and non-zero correla-

tions between (x,Vx) and/or (y,Vy) and/or (z,Vz) are allowed while forcing the

vectors to be uncorrelated by selecting the corresponding appropriate block di-

agonalization. Figure (4.17) indicates that this assumption is not satisfactory

due to the huge difference between the actual covariances and their repre-

sentations. Furthermore, it can be clearly seen from the MSEnorm results,

there is almost no correlation between the elements of these vectors, i.e., (x

and Vx) and (y and Vy). Briefly, comparison of performances of BDMWMR1

and BDMWMR2 clearly shows that there is a strong correlation between the

position elements (x and y) while there is nearly no correlation between the

positions and velocities (x and Vx) and (y and Vy).
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Figure 4.18: BDMEER1 method examples

This case shows very similar performance to BDMWMR1 case and the

conclusions are again the same on the correlation between the elements of the

state vector.
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Figure 4.19: BDMEER2 method examples

BDMEER2 method shows almost same performance with BDMWMR2

method and the conclusions on the correlation between the elements of the

state vector are again the same.
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Figure 4.20: WMR method examples

Finally, Figure (4.20) shows the result of quantizing the matrices with no

assumption on diagonality.

The overall conclusion that can be drawn from these observations are the

following:

1. Proper modeling of correlation is extremely important for good approx-

imation.

2. For very simple models like AR or DMR, it is unnecessary to use large

number of bits.

3. Performances of the most complete representations, i.e., WMR, does not

deviate much from simplified but appropriate models like BDMWMR2 or
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BDMEER2 even for large number of bits. This is due to the fact that the

assumptions made on zero blocks of covariance matrices actually holds.

These results reveal the performance of all the representation methods

proposed in this thesis. One can choose any of these methods according to

available bandwidth in the system. Also note that the quantization technique

exploited for these representation methods has significant effects on the sys-

tem performance and quantization should be made efficiently and intelligently.
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CHAPTER 5

SUMMARY, CONCLUSION AND FUTURE

WORK

This thesis is mainly concerned with sharing problem of covariance matrix be-

tween the nodes of a track fusion system. To begin with, in Chapter 1 some

introduction on covariance matrices is given such as the importance of it in

a track fusion system. In Chapter 2, we proposed a Gaussian model and de-

rived a reduced distance measure between the actual covariance matrix and

the representative one. This distance is generated using Kullback-Leibler mea-

sure which is a well-known statistical distance between two probability density

functions. In Chapter 3, utilizing this reduced distance we have found optimal

matrices that can best represent the covariance matrix under some structural

simplifications. These structures are called ”representation matrices” and are

named as AR, DMR etc. Moreover, we assumed that the covariance matrix

can be represented in terms of eigenvalues and eigenvectors and we derived

Kullback-Leibler distance between the actual covariance and the representa-

tive one for 2x2 matrix in terms of these parameters. Finally, in Chapter 4,

to compare the previously proposed representation matrices, we set up an ex-

perimental simulation environment which simulates a two-radar track fusion

system. In addition to the previously defined representations in Chapter 3,

block diagonal representation is proposed in two possible forms by selecting

different sub-blocks where the selection is system specific. And finally, covari-

ance matrix itself is taken as as whole.
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The fusion system is composed of two-radars using Extended Kalman Filter

(EKF) as the tracker and gives out the time-varying covariance information

which should be sent to the fusion center for optimal sensor fusion. Weighted

Covariance Fusion (WCF) method provided us a performance measure to com-

pare various representation methods. In the model, we also need to make quan-

tization of the covariance matrices. K-means clustering algorithm is exploited

to quantize the representations. In our study, K-means clustering algorithm

uses Kullback-Leibler distance measure instead using the traditional L2 norm

distance. The experiments were performed for bits from 1 to 10 to understand

the performances of each representation for different number of bits.

At the end of Chapter 4, we presented the results of the experiments and

gave some cross-section examples of the representation covariance matrices.

According to the results, we proved that for track fusion systems, the corre-

lation between target positions (i.e. x and y) is much more important than

that of the target position and velocity (i.e. (x,Vx) and (y,Vy)). We also see

that it is unnecessary to use high number of bits for AR, DMR, BDMWMR1

and BDMEER1 methods. Additionally, methods DMR, BDMWMR1 and BD-

MEER1, more or less, present the same performance for high bit rates. On the

other hand, the performances of WMR, BDMWMR2 and BDMEER2 meth-

ods increase with increasing number of bits and these methods show similar

performance characteristics for various number of bits.

Innovations of this thesis study:

1. A reduced Kullback-Leibler distance measure is obtained between two

Gaussian random variables. This form is only a function of the means

and the covariances of the densities which can be considered very useful.

2. Different matrix representation methods are proposed and compared. In

the literature there is no study that provides the opportunity to see such

a comparison.

3. This study has searched for whether it is possible to make the represen-
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tation by the eigenvectors and eigenvalues of the covariance matrix or

not.

4. K-means clustering algorithm uses Kullback-Leibler distance criteria.

This is a new approach for covariances belonging to Gaussian densities

since there is not much literature on covariance quantization and the

existing ones like [2] and [3] use K-means vector quantization technique

that is based on Euclidean distance.

In the thesis, we have also made some analysis on eigenvalue and eigen-

vector representation of nxn covariance matrices. This work aimed to ana-

lyze whether utilizing eigenvalues and eigenvectors provides advantage for the

representation or not. So, eigenvalue/eigenvector representation method is a

future work waiting to be handled.
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