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ABSTRACT

NON-NORMAL BIVARIATE DISTRIBUTIONS:
ESTIMATION AND HYPOTHESIS TESTING

Qumsiyeh, Sahar
Ph. D., Department of Statistics
Supervisor : Prof. Dr. Moti Lal TIKU
Co-Supervisor: Assoc. Prof. Dr. Qamarul ISLAM

October 2007, 262 pages

When using data for estimating the parameters in a bivariate distribution, the
tradition is to assume that data comes from a bivariate normal distribution. If
the distribution is not bivariate normal, which often is the case, the maximum
likelihood (ML) estimators are intractable and the least square (LS) estimators
are inefficient. Here, we consider two independent sets of bivariate data
which come from non-normal populations. We consider two distinctive
distributions: the marginal and the conditional distributions are both
Generalized Logistic, and the marginal and conditional distributions both
belong to the Student’s t family. We use the method of modified maximum
likelihood (MML) to find estimators of various parameters in each
distribution. We perform a simulation study to show that our estimators are

more efficient and robust than the LS estimators even for small sample sizes.

v



We develop hypothesis testing procedures using the LS and the MML
estimators. We show that the latter are more powerful and robust. Moreover,
we give a comparison of our tests with another well known robust test due to
Tiku and Singh (1982) and show that our test is more powerful. The latter is
based on censored normal samples and is quite prominent (Lehmann, 1986).
We also use our MML estimators to find a more efficient estimator of

Mahalanobis distance. We give real life examples.

Key Words: Modified maximum likelihood (MML), Least squares (LS),

Bivariate data, Non-normal error distribution, Robustness.
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NORMAL OLMAYAN IKIDEGISKENLI DAGILIMLAR:
TAHMIN VE HIPOTEZ TESTI

Qumsiyeh, Sahar
Doktora, Istatistik Boliimii
Tez Yoneticisi : Prof. Dr. Moti Lal TIKU
Ortak Tez Yoneticisi: Yrd. Dog. Dr. Qamarul ISLAM

Ekim 2007, 262 sayfa

Ikidegiskenli bir dagilimin parametlerinin tahmini icin kullamlan geleneksel
yontem, dagilimin ikidegiskenli normal dagilimdan geldigi varsayimi altinda
bu tahminleri yapmaktir. Ancak, gercekte veriler iki degiskenli normal
dagilimdan gelmiyor ise, En Cok Olabilirlik tahmin edicilerinin elde edilmesi
zordur. Bu durumda bulunan En Kii¢iik Kareler hata tahmin edicileri ise etkin
tahmin ediciler degildirler. Biz, bu calismada normal kitleden gelmeyen
ikidegiskenli iki bagimsiz veri kiimesini ele alip, elimizde iki tane rasgele
vektor oldugunu varsayalim. Oncelikle, hem ilk vektor hem de ikinci vektor
icin marjinal olasilik yogunluk fonksiyonu ve kosullu olasilik yogunluk
fonksiyonlart olarak Genellestirilmis Lojistik dagilimini ele aldik. Daha sonra
ise, hem ilk vektor hem de ikinci vektor i¢in marjinal olasilik yogunluk
fonksiyonu ve kosullu olasilik yogunluk fonksiyonlar1 olarak Student t
dagilimimi ele aldik. Ele alacagimiz modellerdeki parametrelerin tahmin

edicilerini bulmak icin Uyarlanmis En Cok Olabilirlik tahmin ydntemini

Vi



kullandik. Elde ettigimiz tahmin edicilerin, 6rneklem biiyiikliigii kiiciik iken
bile En kiiciik kareler tahmin edicilerinden daha etkin ve giiclii olduklarini

gosterebilmek icin bir benzetim ¢aligsmasi yaptik.

En kiigiik kareler ve Uyarlanmis En Cok Olabilirlik tahmin edicileri i¢in
hipotez testleri gelistirip, Uyarlanmis En Cok Olabilirlik yontemiyle elde
edilen test istatistiklerinin daha gii¢lii ve saglam olduklarini gosterdik. Ayrica,
elde edecegimiz bu yeni testlerin, Tiku ve Singh tarafindan 1982 yilinda
onerilen ve giiclii oldugu bilinen test istatistigi ile karsilastirdik ve bu
calismada Onerdigimiz testlerin Tiku ve Singh’in testinden daha giicli
oldugunu gosterdik. Ayni zamanda, buldugumuz Uyarlanmis En Cok
Olabilirlik tahmin edicilerini, Mahalanobis uzakliginin daha etkin bir tahmin
edicisini bulmak icin de kullandik. Ayrica, gercek hayat verileri iizerinde

uygulama yaptik.

Anahtar Kelimeler: Uyarlanmis En Cok Olabilirlik (UECO), En kiiciik
kareler (EKK), H{idegiskenli veri, Normal olmayan
hata dagilimi, Saglamlik.
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CHAPTER 1

INTRODUCTION AND COMPARISON OF METHODS

Consider a location-scale family of distributions, 1 f (ﬂj, where ( is
o o

the location parameter and o is the scale parameter; # and o may or may

not be the mean and standard deviation of the population. Obtaining efficient,
unbiased and robust estimators of # and o is of paramount importance.
Many methods of estimation have been introduced in the literature. Three
prominent methods are: Maximum likelihood (ML), Modified Maximum
Likelihood (MML), and Least Squares (LS). In this chapter, we summarize
the above three methods and discuss the merits and demerits of each. We give
a brief explanation of how each method finds estimators of # and o . After
this general explanation of each method we consider, as examples, three
distributions and show how each method is used to find estimators of x# and
o . The families of distributions we consider are: Student’s t, Generalized
Logistic and Short Tail symmetric. The procedure developed for each of

these families can be extended to estimate a shape parameter also (Tiku and

Akkaya, 2004).
1.1 Maximum Likelihood (ML)

This has been the most widely used method of estimation. It is based on

finding estimators which maximize the likelihood function. It relies on the



fact that the full functional form of the distribution is known. It proceeds as
follows:
Suppose we have one of a two parameter family as the distribution of X. The

likelihood function is

Lzrlf(xnﬂ’d)-

Taking natural logarithm we get

InL = iln(f(xi,,u,O')).

Since InL has one-to-one correspondence with L, maximizing L is equivalent
to maximizing InL. To find the estimators f and 6 which maximize InL, we
differentiate InL with respect to # and o. We obtain the following equations

which are called the Maximum Likelihood equations:

oL _ ) and (1.1.1)
ou
oL _, (1.1.2)
00

The solutions of these equations are the maximum likelihood estimators
(MLE). If the equations do not have explicit solutions, we must solve them by

iteration to find the MLE of ¢ and o .
The MLE of 4 and o have many desirable properties. They are
consistent for # and o and BAN (best asymptotically normal) under some

very general regularity conditions. The MLE are functions of jointly

sufficient statistics for 4 and o if the latter exists. Under some regularity



conditions, the MLE achieve minimum variance (as given by the Cramer-Rao
lower bound) at any rate asymptotically. Another desirable property of the
MLE is the invariance property. This means, for example, if & is the MLE of

A then the MLE of a =h(u) is & = h(i), provided h(u) is a monotonic

function of u.

Because of the above properties, the maximum likelihood method has
been the most widely used method of estimation. However, this method has
drawbacks. The MLE can have substantial bias at any rate for small n
(sample size). Therefore, when using the ML method of estimation we must
make sure we correct for bias. In addition to that, often, the maximum
likelihood equations don’t have explicit solutions and we must use iterative
methods to solve them. Solving the equations by iteration is problematic
because iterations may not converge and, if they do, they may converge to
wrong values. The presence of outliers and inliers in the data can adversely
affect the convergence of these iterative solutions (Puthenpura & Sinha,
1986). Difficulties especially arise when we have many parameters which
means there are too many equations to iterate simultaneously. The iterative

solutions are often unreliable.

1.2 Modified Maximum Likelihood (MML)

The reason that the maximum likelihood equations cannot be solved in most
situations is the presence of non-linear functions which makes the equations
intractable. The Modified Maximum Likelihood method approximates these
functions by linear functions in such a way that the differences between the

two converge to zero as n tends to infinity. To find estimators of # and o,

the MML method proceeds as follows:



1. We order the x;’s in ascending order of magnitude so that

<x, <..<
Xy =X ==X

2. We express equations (1.1.1) and (1.1.2) in terms of the order statistics x;,
(I<i<n). This does not result in any change in the numerical values of the
equations since complete sums are invariant to ordering. We also express the

X,.. —
@ ,u. Note that

equations in terms of the standardized variates z; =

7, s have the same order as the x, ’s since 4 is a constant and O is

positive.

3. The nonlinear functions in the ML equations are approximated by using the

first two terms of their Taylor series expansion around tiy =E(z4), 1<i<n;
ti)’s can be found (approximated) from the following equation:
t(l)

_[f(z)dz _ ! - where f is the p.d.f. of Z.

n+

4. Replacing the nonlinear functions in equations (1.1.1) and (1.1.2) by linear

approximations, we get the following modified maximum likelihood

equations

oL _ 4 and (1.2.1)
ou

oL _ (1.2.2)
0o

which have an explicit solution. The solutions are called the modified

maximum likelihood estimators (MMLE) of x# and o .



Now, since under some very general regularity conditions

1 1 alnL*_alnL 0 and ; 1 alnL*_alnL
1m ou ou 1m oo lele

P/ P/

}: 0 (Tiku and

Akkaya, 2004), we see that the modified likelihood equations are
asymptotically equivalent to the corresponding maximum likelihood
equations; for a rigorous proof, see Vaughan and Tiku (2000). This means
that the MMLE have, asymptotically, the same desirable properties as the
MLE. Namely, under some very general regularity conditions they are
consistent, BAN, and efficient. Unlike equations (1.1.1) and (1.1.2), the
MML equations (1.2.1) and (1.2.2) always have an explicit solution and are,
therefore, computationally viable. In addition, the MMLE are self bias
correcting, whereas the MLE sometimes have substantial bias. Another
advantage of this method is that the MMLE are robust to the presence of

outliers in the data and other data anomalies.

The drawback of this method is that it cannot be applied to every
distribution, e.g. Tukey lambda-family (Akkaya and Tiku, 2005). However,

no scientific method is universally applicable.
1.3 Least Squares
The least squares technique is based on minimizing the error sum of squares.

If we write

xX;=MU+e, 1<i<n,



the least squares method finds the estimator of x# by minimizing the error

sum of squares Zeiz . The LS estimator of &, &7, is formulated to be
i=1

1 n
G = min{ ef} (Gauss norm).
(n—1) ,Z::‘

The advantage of this method is that we do not need to make any
assumption about the distribution in order to find the least square estimators
(LSE). If the errors are iid normal with mean zero and constant variance then
the LSE are the same as the MLE and are fully efficient. However, if the
distribution is not normal, the LSE loose efficiency. The least square
estimators also loose efficiency relative to MMLE as n increases. The LSE

need to be adjusted for bias if the errors have a non-zero mean, or the variance

is not o°. Another disadvantage of the LSE is that they are not at all robust

to the presence of data anomalies.
1.4 Examples
1.4.1 Generalized Logistic

Here, the p.d.f. has the form

exp(— x‘ﬂj
o (1.4.1)

oen{-2#)]

Suppose we have a random sample from the above distribution. We are

fo=2
o

interested in estimating # and o .



(1) Maximum Likelihood

We write the likelihood function

ol exp(—xi_ﬂj
L=II> o

Ll & o b+1
1 {1 + exp[— i H ﬂ
- G -

Letting z, = YN TH and taking the natural log of the likelihood function we
o

get

Lo -nlno—3z - b+ nfl+e™). (1.4.2)
i1

i=1
We now differentiate the above equation with respect to # and o and get the

following equations (called the maximum likelihood equations):

dInL _n (l’”)z ¢ _0 and (1.4.3)
ou o o ‘T (+e™)
dlnL n 1 b+ & ze ™
=4+ = ! =0. 1.4.4
oo c G;Zl c ;(He_z) ( :

Equations (1.4.3) and (1.4.4) don’t have explicit solutions. The equations

must be solved by iteration.

Example 1.4.1
We generated n = 100 random numbers from the distribution (1.4.1) assuming

b=1, #u=0and o = 1. We took equations (1.4.3) and (1.4.4) and solved

them by iterations. The method we used was the modified Powell hybrid



algorithm. This algorithm is a variation of Newton's method, which uses a
finite-difference approximation to the Jacobian and takes precautions to avoid
large step sizes or increasing residuals. For further description, see More et al.
(1980). The results of the iterations are given in Table 1.4.1. The first two
columns in the table represent the numerical value of equation (1.4.3) and
equation (1.4.4) at each iteration step. The last two columns represent the

current values of /I and 6 obtained with each iteration. The values -1 and 5

are the initial values to initiate the iterations.

Table 1.4.1 ML equations—iteration results.

A

Eq 1 Eq2 H 6
8.40 -92.25 -1.00 5.00
8.40 -92.26 -1.00 5.00
8.40 -92.26 -1.00 5.00
9.22 -98.15 6.07 -33.45
13.96 -95.78 -6.79 23.67
8.40 -92.26 -1.00 5.00
8.40 -92.26 -1.00 5.00
9.22 -98.15 6.07 -33.45
13.96 -95.78 -6.79 23.67
-5.49 -92.45 -0.67 -4.77
-28.30 -80.78 -4.63 -7.64
-99.99 | 1028.40 | -11.84 -1.04
-23.85 -76.12 -1.96 -3.54
-10.50 36.74 0.17 0.86
-33.08 -45.27 1.56 2.13
-8.53 2211.85 0.12 0.06
-10.50 36.74 0.17 0.86
-10.50 36.68 0.17 0.86

-0.56 7.54 -0.13 1.00
-0.12 2.08 -0.14 1.04
0.00 0.14 -0.14 1.05
0.00 0.01 -0.14 1.05
0.00 0.00 -0.14 1.05




The iterations converged giving the following solutions: = -0.145 and 6 =

1.05. This seems to be a good solution; it is close enough to the true values of

M1 and o. We now include outliers in the data, changing r of the x’s to be
outliers (r = [0.1n + 0.5]). Thus, n - r of the x’s come from the distribution
with p.d.f. given in equation (1.4.1) with mean 4 and variance o> and r of the

x’s (we don’t know which) come from the same distribution with mean x# and

variance (407)*. The results of the iterations are given in Table 1.4.2.

Table 1.4.2 ML equations—iteration results,

outlier model.

Eq 1 Eq2 A 6
9.63 -82.34 -1.00 5.00
9.63 -82.34 -1.00 5.00
9.63 -82.35 -1.00 5.00
11.06 -93.92 2.77 -11.81
20.87 -88.01 -5.26 12.49
9.63 -82.34 -1.00 5.00
9.63 -82.35 -1.00 5.00
11.06 -93.92 2.77 -11.81
20.87 -88.01 -5.26 12.49
59.10 191.03 -2.21 0.87
-3.82 -68.34 0.26 3.25
-14.06 38.82 0.39 1.17
3.20 -48.64 -0.24 2.32
3.56 -23.74 -0.25 1.76
1.65 -7.74 -0.17 1.58
-0.47 2.77 -0.09 1.42
-0.01 -0.20 -0.11 1.45
0.01 0.00 -0.11 1.45
0.00 0.00 -0.11 1.45

The iterations converge again giving the following solutions:

A=-0.106 and 6 = 1.445.




Note that the true value of o here is 1.58, which means both estimators have
a bias of about 0.1 even though the sample size is relatively large (n = 100).
Now we include stronger outliers in the data. Suppose n - r of the x’s come

from the distribution with p.d.f. given in equation (1.4.1) with mean & and
variance o> and r of the x’s (we don’t know which) come from the same
distribution with mean 4 and variance (120)*. In this case, the iterations

don’t converge at all. At the fourth iteration the calculated value of the ML

equations become infinity as shown in Table 1.4.3.

Table 1.4.3 ML equations—iteration results,

strong outliers.

A

Eq 1 Eq?2 H o6
10.16 -52.14 -1.00 5.00
10.16 -52.14 -1.00 5.00
10.16 -52.16 -1.00 5.00
-Infinity | Infinity 0.88 -0.08

(2) Modified Maximum Likelihood

The reason that equations (1.4.3) and (1.4.4) do not have explicit solutions is
the presence of the intractable function

-z

e
-z

g(z)=(lT

%
The modified maximum likelihood method proceeds as follows:

First we order the x;’s and express equations (1.4.3) and (1.4.4) in terms of

the order statistics as follows

10



olnL n (b+1)
=—- Z;) =0and 1.4.5
% o o 2.8(z0) (14.5)
dlnL no 13 b+1) ¢
=—+t+—>z. ——» z.9(z..) =0, 1.4.6
Jo o 0'; @ pu ; »8(Zw) ( )
X —
where z,, = w4 . Note that z;,’s have the same order as the x;,’s since

M is constant and o is positive.

0!
— by the first two terms of its

We approximate the function g(z,))=———
(I+e ™)

Taylor expansion around 7, = E(Z):

g(Z(i)) =y _ﬁiz(i)‘

To determine the values of alphas and betas we write:
8(z) = 8(t) + (24 —1,)8' (1) -

1 i)

8(zy) = — 4 (2 = t<i>){Lj .

(d+e') (+e)’

Thus,

e"m e"m

m and ai :m'F ﬁit(i) .

B =

Here 7, ’s are found from the following equation

i
n+l

Ly = _ln(q[_”h —1), where ¢, =

11



We replace the function g by its linear approximation and obtain the following

modified maximum likelihood equations:

olnL n (b+D

= _ E o —B.7.)=0and 1.4.7
ou o o i:l( l ,B,z(,)) ( :
olnL n 1 (b+1)
b0 o ok g L@ A =0 (1438)

Unlike equations (1.4.3) and (1.4.4), equations (1.4.7) and (1.4.8) have

explicit solutions which are the following MMLE:
fA=K—-DG6 where

k=13 fr, and D=L (@ -4 (m=35).

To get an estimator of o, we solve equation (1.4.8). Rearranging , equation

(1.4.8) can be written as
—no’ —o(b+ 1){2 (@, —(b+D))x,; — mD,u} +(b+ 1){2 Bxly —2mKu + mﬂz}
i=1 i=1

=0. (1.4.9)

Replacing ¢ by ft=K — D&, equation (1.4.9) reduces to

né> +60b+ 1)2 (@, —(b+1)")(x, —K)—(b+ 1)2 B.(x,, —K)*=0.

Solving the above quadratic equation we get
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—B+./B*+4nC

2n

where

6:
B=(b+ 1)i(04 —(b+1)7)(x; - K) and
C= (b+1)i@(x(i) -K)*.

Adjusting for the bias we get

—B+./B*+4nC

2\/n(n-1)

o=

(3) Least Squares

We minimize E = Z(xi —,a)2 .

i=1
Setting Z—E =0 we get

~

G=%.
The LS estimator of ¢ is

G’ = min{i (x, - ,u)z}/(n -1.

i=1

Thus, &> = Z(x[ —2)2/(;1—1) =s".
i=1

Note that both fi and & are biased. In order to adjust Z for the bias we use
the fact that for the generalized logistic distribution

Ex) =p+y®) -yD)o

13



and obtain the following unbiased (almost) estimator of

fg=x-(wb) -y1)5.

Now, & estimates the population variance which is o>/ (b) +¥’(1)).

Adjusting the above estimator for scale, we get

o= \/,S—z, .
O +y D)

Note: As we saw before, when using a sample of size 100 from the

distribution in equation (1.4.1) with b = 1, the MLE of # and o obtained

have a small bias. However, if the underlying distribution is skew, the

iterations converge to values that are far from the true values (# =0 and o =

1). This is shown in the following example.

Example 1.4.2
We generate 100 random numbers from the distribution given in equation

(1.4.1) assuming that b= 0.5, 4 =0 and o = 1. We calculate the ML, MML,
and LS estimates for # and o . The results are given in Table 1.4.4. Notice

that the iterations used to solve the ML equations converged to unrealistic

values in this case; MMLE are fin in all respects.

Table 1.4.4 Estimates (GL), n =100, b =0.5.

H o
MLE -2.891 -1.161
MMLE -0.086 1.074
LSE -0.200 0.995

14



1.4.2 Student’s t

Assume that we have a random sample with common p.d.f. given by

2 —(r+1)/2
fx)= ! (1+1(x_”j ] . (1.4.10)
or Bl/2, ri2) r\ o

Note that the standardized variable Z = X-H in this case has a Student’s t

(o}

distribution with r degrees of freedom.

(1) Maximum Likelihood

The likelihood function of x,,x,,...,x, is
| | 2\~ (r+D)/2
n x _ﬂ
Lo — 1+ = )
IEEEC

Taking the logarithm of the likelihood function we get

" 2
lnL«—nlnG—(r-zi_l)Zln(l+Z—ij, (1.4.11)
i=1 r

X, —
where z, =’—’u.
o

Differentiating equation (1.4.11) with respect to # and o we get the

following maximum likelihood equations

15



5 > ——<=0and (14.12)
o T :
H r 1(1+le
-
olnL n (r+D)& 2
oo c ro Z‘( ZZJ ( )
I+
r

The maximum likelihood method seeks a solution to equations (1.4.12) and
(1.4.13). However, again the equations don’t have an explicit solution since

they are expressions in terms of the intractable function

g(Z):;z.
[+
r

So, the equations must be solved by iteration.

Example 1.4.3
We generated 30 random numbers from the distribution given in equation

(1.4.10) assuming r=4, 4=0and o =1. The data is given below.

Data set 1:

0.615 0.856 0.211 1.232 0.543 0.572 1.208 0.098 1.639 -1.194
-1.123 0.516 0.092 0.573 -0.139 -3.213 -1.296 1.920 1.396 1.234
0.643 -0.109 -0.255 0.718 -0.952 -0.604 1.411 -5.561 -0.489 0.017

We took equations (1.4.12) and (1.4.13) and solved them by iterations. We

got the following solutions to the ML equations:

16



£=0.291 and 6 =0.918.

We now include outliers in the data, changing m of the x’s to be outliers (m =

[0.1n + 0.5]). We generate 30 random numbers again assuming thatr =4, u=

0 and o = 1. The data generated is as follows:

Data set 2:

2461 0.543 0.211 0.856 0.572 1.232 4.832 -1.123 1.639 0.098
0.516 -1.194 0370 -1.296 -0.139 0.573 1.920 -3.213 1.396 -0.255
0.643 1.234 0.718 -0.109 -0.952 -0.489 1.411 -0.604 0.017 -5.561

Solving equations (1.4.12) and (1.4.13), again the iterations converge giving
the following solutions:

f=0.331and 6 =1.101.

Note that the estimate of g is far from the true value of g4 which is 0 and &

= 1.101 is not a good estimate of the true value of o which is in this case
1.58. Thus, in the presence of outliers, iterations have converged to wrong

values.

(2) Modified Maximum Likelihood

We express the likelihood equations (1.4.12)-(1.4.13) in terms of the order

statistics as follows

dlnL (r+1)
= ) =0 and 1.4.14
» . ;:1 8(z) an ( )
olnL n (r+l) <
= E ) . :O, 1.4.15
led c ro 45 zmg(z(,)) ( :

17



Xiy —H

where z;, = . Now, we approximate the function

(i
8(z) = +
4

r

by using the first two terms of its Taylor expansion around ¢, = E(Z ;) as

follows:

g(Z(i)) =, + :Biz(i) .
To determine the values of alphas and betas we write:

g(Z(i)) = g(t(,‘) ) + (Z(i) - t(i) )g'(t(,‘)) , Or

Lay (1—(t(2,.) /r))
2

8(z;) = +(24) — 1) 7
1. tz
4@ 1410
r r

We get the following equations for alphas and betas,

263 Ir -2 /r
a=—""_ and b= (te /1)

1 2 2 9
') )
1+ 1+
r r

where 7,,’s can be obtained from the following equation:

1 I 2 —(r+1)/2
1+ dt=—'—, 1<i<n
JroB(t72, rr2)20 r (n+1)

18



Replacing the function g by its linear approximation in equations (1.4.14) and

(1.4.15), we get the following modified maximum likelihood equations:

dlnL _ (r+1)2(ag+ﬂiz(i)) -0 (1.4.16)
ou i=1
olnL n (r+l)g

=—_ (. z.) =0. 1.4.17
oy c7+ gy ;z,(aﬁﬁ,z(,)) ( )

Solving equation (1.4.16), we get the following MML estimator of y :
. 1 n n
H= ZZﬂi'x(i) (m= Z:Bz )-
i=1 i=1

Note that, for symmetric distributions, z o, =0.
i=1

To get the MML estimator of o, we solve equation (1.4.17). The equation

can be written as

{Gzn‘,%(x(i) -+ Zn:ﬁi (x;) —ﬂ)z} =0.

-no’ +

(r+1)
r

Replacing ¢ by £t and noting that Zai =0, we get
i=1

. r+1)6
—n0'2+( )

z X, + Z,Bi (X — [1)* =0, or equivalently
i=1 i=1

né6*-B6-C=0,

which is a quadratic equation with the following admissible solution

B+.,/B*+4nC

2n

6= where
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r+1) < r+1) N
B=! )Z%x(i) and C = ; )Z,Bi(x(i)—,u)z.
i=1 i=1

r

Adjusting for the bias, 6 becomes

B+./B*+4nC

2\n(n—1)

o=

Note that if S, < 0 for some i, then & ceases to be real and positive. In that
case we replace the values of alphas and betas above by

R s . 1
. :—() and ﬂi 2—2 .
2
1+t‘i’
,

1 2 2
1+ ‘o
r

Using the@; ’s and 3, ’s above does not alter the asymptotic properties of the

MML estimators (see Tiku et al., 2000). This can be seen by writing

g(Z(i)) =+ :Biz(i)

2 /r . (-2 1)

= 2 N2 2 Y2 )
(i) ()
1+ 1+
r r

2t(3i) /r _ (t(z[) /r) 1

2V 2V 2o T 2 24
(0 0 0

I+ I+— 1+
r r r

and since z;, converges to its expected value (7)) for large n, g(z;,) can be

written as
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However, £, is less than zero only if r is small (< 5) and n is large (> 50).

Therefore, B, and &, need not be used that often.

(3) Least Squares

Minimizing E as before we get

fi=x
and 6% =s7.
. . . ) X—
Note that in equation (1.4.1) if we make the transformation z =—— then Z

o
has a Student’s t distribution with r degrees of freedom. Which means that the
population variance is not equal to ¢~ .

r 2

Var(X,)=o0"Var(Z,) = (r—Z)G .

Thus, the sample mean is an unbiased estimator of , however, s%is not

unbiased for o*. It must be adjusted for the bias. So we let

&= /ﬂ
r
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We compare the estimates of fZ and & obtained from the above three
methods using data set 1 and data set 2. Table 1.4.5 gives the ML, MML and

LS estimates of /z and & that are obtained from data set 1.

Table 1.4.5 Estimates from data set 1.

H o
MLE 0.291 0.918
MMLE 0.222 1.114
LSE 0.019 1.501

Table 1.4.6 gives the ML, MML and LS estimates of Z and & that are

obtained from data set 2.

Table 1.4.6 Estimates from data set 2.

H o
MLE 0.331 1.101
MMLE 0.304 1.311
LSE 0.210 1.778

1.4.3 Short Tail Symmetric

Assume we have a random sample that comes from the following family of

distributions
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f(x)o{u%[x;ﬂj } éexplZ—%[x;’uj } (1.4.18)

The family includes unimodal (forA<1) and bimodal (for A > 1)

distributions.

(1) Maximum Likelihood

The log-likelihood function is

lnLu—nlnG——Zz +ern[l+2iz} (1.4.19)

ll i=1

Differentiating equation (1.4.19) with respect to # and o we get the

following maximum likelihood equations

alnL:—i Z( j =0 and (1.4.20)

dlnL _ n
Py —2 ——2( j 0. (1.4.21)
1+—z

Equations (1.4.20) and (1.4.21) are expressions in terms of the intractable

function
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So, once again they don’t have an explicit solution and must be solved by

iteration.

(2) Modified Maximum Likelihood

We express the likelihood equations in terms of order statistics. We then

approximate the function

(i

by the first two terms of its Taylor expansion around 7, = E(Z ;) as follows

gz, =a,+ Bz, .

We get the following values for alphas and betas:

For A1<1
A 1= (At /1 2r)
=——— and f=———,
[1+/1t2 j [l+/1t2 j
2r ¥ 2r @
and for 4 >1

" _ (A I+ (1-1/ Ay, and § = 1/ A)— (A, 12r)

i 2 2
(1+2/1tj.)j [l+2/1t<2“j
r r

where the 7, ’s can be obtained from the following equation

b
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) r .
\/;_I[l+2iz2j e_zzlzdz:( :_1), 1<i<n;
T r n

c:ll{ y (2J[ij (Zkk)!:l.
—\k\2r) 2°k!

Writing the equations (1.4.20) and (1.4.21) in terms of order statistics and then

replacing the function g by its linear approximation, we get the following

modified maximum likelihood equations:

dlnL 1 A
BI,IU :Ezzm _;z(a'i +f2;,) =0 and (1.4.22)
i=1 i=1
dlnL’ no1 A
oo :_;JFEZZZ') ‘gZZ<,~><04~ +Bizi) =0. (1.4.23)
i=1 i=1

The solutions of equations (1.4.22) and (1.4.23) are the following MML

estimators:
R 1 n n
ﬂ:; ﬁlix(i) (mIZZﬁli . B =1-48,) and
1 i=1 i=1
= AB+.J(AB)’ +4nC
o= , Where

2n
B = zaix(i) and C = Z,Bu(x(;) -
=1 =1

Adjusting for the bias we get

— AB+./(AB)* +4nC

2\/n(n—1)

o=
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(3) Least Squares

Minimizing E we get
fi=xand 6° =57,
M is unbiased for 4. However,

Var(X,)=oc"Var(Z,) = c’W , where
_ (Y AY @u+D)! (Y AY e
We Va,,(zi)_[;(jj(ZJ 2,.H(].+D,} / LZOU&J 2}.],!]

Therefore, we must adjust the estimator of ¢ accordingly. The adjusted LSE

of o is

- s?

Oo=.,—.
w

Remark: The modified maximum likelihood methodology readily extends to
censored samples and to other areas, e.g., experimental design, time series,
regression, etc. (see for example Akkaya and Tiku, 2005, Bhattacharyya,
1985, Islam and Tiku, 2004). We will utilize this method for estimating

parameters in bivariate distributions.
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CHAPTER 2

NON-NORMAL BIVARIATE DISTRIBUTIONS

Introduction

In Chapter 1 we considered a few univariate distributions and illustrated how
each method finds estimators of the population parameters. Here we will
consider bivariate distributions. Vaughan and Tiku (2000), Sazak et al.(2006)
and Tiku et al. (2007) considered the situation when the bivariate random
variable (X,Y) is such that Y depends on X (explicitly or implicitly) and not
so much the other way around. Specifically, E(Y/X = x) is a linear function of
x and the conditional variance of Y given X = x is constant or a constant
multiple of w(x) (a positive function of x). They used the modified maximum
likelihood method to find estimators of the population parameters under any
location-scale non-normal bivariate distribution. Here we consider the
situation when we have two independent sets of bivariate data. Thus, we

extend the work from single-sample to two-sample situations.

We consider two bivariate random vectors (X, Y) and (U, V) when E(Y/X
= x) is a linear function of x and E(V/U = u) is a linear function of u. As for
the conditional variances, we consider two situations, when Var(Y/X = x) is
constant, and when it is a constant multiple of a positive function of x
(similarly for Var(V/U = u)). Specifically, we consider two distinctive
distributions: the marginal distribution of X and U and the conditional

distribution of Y and V are both Generalized Logistic, and the marginal and
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conditional both belong to the Student’s t family. It may be noted that even
though we consider only the above bivariate distributions, this work can be
extended to any other bivariate distribution. We use the method of modified
maximum likelihood to find estimators of various parameters in each

distribution.
2.1 Models
Suppose we have two random vectors, (X, Y) and (U, V). Suppose that Y
depends on X, and not so much the other way around. Similarly, suppose that

V depends on U.

Therefore, assume we have the following models:

(O
Model 1: E(V/X =)= ft, + Py, (¥ —p) =), +6,,x. 2.1.1)
Model 2: E(V /U =u)=p1, +p,, 2> (u—p,)=p,, +6, u. 2.1.2)
(o}

u

o,
ﬂy/x = ﬂy - eyxll'lx’ ayx = onx —>
(o}

X

o,

ﬂvlu :Il'lv _avull'lu and evu = pvu ’
o

u

Y, X, V and U are all stochastic variables. We take a random sample of size
n, from model 1 and a sample of size n, from model 2. We are interested in

estimating all the above parameters.
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At first we will assume equal variances and covariances and also equal sample
sizes. Thus, we assume that:

pyx = pvu = p 4

c,=0,=0,,

o,=0,=0,,and

X u

n, = n,=n.

In this case, the above models reduce to:

Model 1: E(Y/X =x) =, +p22(x—i)=p,,, +6 x. 2.1.3)
. ‘

1

+0u. (2.1.4)

viu

Model 2: E(V /U =u) = p, + p2 (u—p,) =
o

1
2.2 Normal Marginal and Conditional

If the joint distribution of X and Y is bivariate normal, and the joint
distribution of U and V is also bivariate normal, then the least square
estimators obtained from the two random samples (x,,y,) and (u,,v,)
(1<i<n) are exactly the same as the maximum likelihood estimators. That is,
if X is distributed as normal N(x, ,07), U~N(u,,0;), ¢,~N(0,0,,) and
e,~N(0,0,,), where ¢, =Y -y, -6 x and e¢,=V —u, —6u, then the
LSE are the same as the MLE and are, therefore, fully efficient. However, if
one or more distributions are non-normal, the LS estimators loose their
efficiency and also develop bias. We can easily adjust the LSE for the bias,

however, they loose their efficiency particularly for large n and that is a very

undesirable property in an estimator. The LSE are also not robust to
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deviations from an assumed distribution and not robust to the presence of
outliers in the data and other anomalies. We use the method of modified
likelihood to find alternative estimators of the parameters that are efficient and

robust and have many other desirable properties (Vaughan, 2002).
2.3 Non-normal Marginal and Conditional

As we mentioned before, if the conditional and marginal distributions are not
normal, we often face situations where the maximum likelihood equations
have no explicit solutions. Also, the least square estimators loose their
efficiency under non-normality. Thus, in case of non-normality, we use the
modified maximum likelihood method. Here, we consider two situations:
When the marginal and conditional distributions are both Generalized logistic,
and when they belong to the Student’s t family. It may be noted, however,
that the modified maximum likelihood method can be extended to any

location-scale parameter family.
2.4 Generalized Logistic Distribution

At first, let us assume that the marginal and conditional distributions are both

generalized logistic. We assume the following:

(a) The marginal distribution of X is Generalized logistic with shape

parameter b _(>0), i.e.,

exp(— XAy j

b o,

f(x)=—= . 2.4.1)
o
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(b) The conditional distribution of the error e, (the distribution of Y given X

= x) is Generalized logistic with shape parameter b, (>0), i.e.,
exp| ———
b, o,,
o b+l °
- {1 + exp(— elﬂ
0-2.1

(c) The marginal distribution of U is Generalized logistic with shape

exp(— U= Ay ]
il . (24.3)

(2.4.2)

fl(el):

parameter b, (>0), i.e.,

£luy=2e
(o}

(d) The conditional distribution of the error e, (the distribution of V given U

= u) is Generalized logistic with shape parameter b, (>0), i.e.,

exp[— e j
b 0-2.1
frle,) =— 2.4.4)

o b,+1 °
! {1 + exp(— ezﬂ
62.1

2.4.1 Modified Maximum likelihood

Given two random samples:

(x;,y,),1<i<n, from the first model and (u,,v,),1 <i<n, from the second

model.
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The likelihood function is:

L=LL,LL, =LLLL,.

x =yl xTuv/lu

Thus we have,

- Gl 0-2.1
L o H ; bl o bl
i=1 1 X, — U, 2.1 ¥
{1 + exp(— H {1 + exp(— H
0, 0,
exp(— “i = j exp(— e”j
i 0, 1 05,1 (2.4.5)
b+l o | 4.
61 u. —lu 0-2.1 )
I+exp ————— 1+exp| ——2
0, 21
Let,
X — Y - 0 x U —
le ﬂx’Zzz el — :Uy/ ,le ltlu and
Gl 0-21 0-2.1 O-l
w, = YT H Ou

We can now express the log likelihood in terms of z,;, z,,,w,, w, as

follows:

InL o —2nln0'1 —2n1no‘2.1 —ZZ” — (bx +1)Zln(1+e—zu)
i=1 i=1

B Zn: 2 = (b, + DZH: In(l+e™) ~ Zn: wy; — (b, + DZ": In(1+e™)
= =l i=1 i1

- Z wy, — (b, + 1)2 In(1+e™"), (2.4.6)
i=1 i=1
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_'xl_/'lx _ ell yl_’u)’//‘ 6x _ut_ﬂu
2y » Lo = Wi ’
1 2.1 0-2.1 O-l
ez,’ vl luv/u 0 ul
and w,, =

We differentiate equation (2.4.6) to find the following likelihood equations

which can be used for estimating £, , 4, , 4, t,,> O\> Oy, 0:

dlnL _ n (bx+1)z": e n6’+(by+l)02": -

= —- — =0 (247
U, o, o ‘SG+e™) 0, 0, o+e™)

n —-wy; 1 n ~Wai
alani_(bu+1)z e L _n0+(bv+ )6’2 e " _0 248
o, 0, o, Td+e™) o0, 0, = (d+e ™)

b, +1)& i
dlnL _ n _ (b, )z e _0 (2.4.9)

a:uy/x 0, 0, T +e™)

8lnL: n (b +) e _’W _0 (2.4.10)
o, O, o, ‘ad+e™)

dlnL  2n 1 N\ (b, +1)Z ze Z
=-—_—+t— T Zyi
Jo, o, O (I+e™) 0'21 -
+(by+1)6’z 7€ b 1 W, - _ (b, +1)Z we "
Oy e (l+e7) O (I+e™)
6 N\ , (b,+18 we "

) w,+ —=0 (24.11)
05, O,y lemd (I+e ™)

i=1

dlnL  2n 1 Z (b, +1) Z 2y e
= + o1 T -
d0,, 0,1 Oy 0y &= (I+e ™)

i=1
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+_Z (b +1) sze WZi =O (2'412)
3 i (l+e™™)

dlnL o, Z”:Z _(by+1)alz": ze
0 0, ' 05,1 — (I+e™)

i=1
- b, +1)0, O w, e "
+i2wu—( »*+D ‘Z M€ T _ . (2.4.13)
0,1 0.4 p (I+e ™)

i=1

The above likelihood equations are expressions in terms of the intractable

functions:
i e_ZZi

Z,’ =T ., Zi =7 5
81(2) l+e 81(z2) l+e™

Wi —Wy;

e e
h(w;)=——— and h,(w,,) = ,
1( 11) 1+e—wl,- 2( 21) 1 e—wz,-

and have no explicit solutions. Solving them by iteration might be
problematic due to many reasons such as: multiple roots, convergence to
wrong values and nonconvergence, as illustrated in chapter 1.

We use the method of modified maximum likelihood estimation which
originated with Tiku (1967, 1989) and Tiku & Suresh (1992) as said earlier, to

find solutions of the above equations. First we order x,’s, e,;’s, u,’s and

e,;’s in ascending order of magnitude as follows:

<..<

Xay S Xy S S Xy

ey Sepy S Sey,,

Ugy SUy S..Su, and

<.

€y Sy S S €y,
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Xy —H,

Note that z,; has the same order as x since z,; = and (£ 1is a

1

constant and o, is positive. For similar reasons, z,,, has the same order as

€, s Wi, has the same order as u; , and w,,, has the same order as e, .

Now if e, = y; —H,,, —0 x; then we say (x;,,y;,) are the concomitants
of ey . Also, if e,, =v,—H,, —0u; then we say(u,,v;) are the

concomitants of e, .

We now express our likelihood in terms of the order statistics as follows:

InL «<—2nln o, —2nln 0, _Zzl(i) —(bx +1)Zln(l+e—zw))

i=1 i=1

- ZZM (b, + 1)2111(1 Fe 0y~ ZW“”
i=1 i=1

i=1

—(, 1)Zln(l +e )= Z Wiy — (b, + 1)Zln(l +e 7).
= i=1 i=1

(2.4.14)

Note that this does not result in any change in the numerical values of the

likelihood since the above are all complete sums.

The maximum likelihood equations become:

o, o O, =

dlnL b +1) g b, +)Hoy
=2 ©. )Zgl(zlm)_; . zgz(sz) =0 (2415
i=1

2.1 2.1

35



dinL _ n (b, +DY né (b +1)0 &
=— hy(wy)) — h,(w,,;,) =0 (2.4.16)
o, 0, 0, Z i 0, 0, z e
dlnL n b,+h
% o o Zg&mﬂ— (2.4.17)
ylx 2.1 2.1
dlnL n (b +1) &
= h e 2.4.18
a/le/u 0-2.1 2. Z ( 2()) ( )
amL__gL_ljiZ a;+D§:Z ()= EZZ
aGl o, o C 1) 11 81 %1 o, C 1()
(b, +1O 1 N b, +1) X
+y—Z Zl(i)gZ(ZZ(i))+_Zwl(i) _—Zwl(i)hl (Wl(i))
O i=1 % 45 % 45
6 N (b, +1)0
- zzmm+—;——§:mm@wm):o (2.4.19)
2.1 2.1 pur
oL _ 20 1 Z":Z _(by+1)z"lZ @ HLZn:W
do,, Oy 0y &= 0 Oy o 20828520 0, 2
(b, +1)
- p ZWZ(i)hZ(WZ([))=O (2.4.20)
L)
dlnL 0, \ (b, + Do,
e I e JLTEH L _Z%

i=1 i=1

(b, +1)0,
- Wi, (W) = 0. (2.4.21)
02 i=1

Now, we approximate the functions g, and g, by the first two terms of their

Taylor

series expansions around 1, =E(Z,,) and 1,; =E(Z,;)

respectively:

g (z,))=0; — :Byzw) )
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8,(2,5) =0y — IBZiZZ(;) .

To determine the values of alphas and betas we write:

81(z) = & (1)) + (21 — 1)) 81 (1))

e " —e
g1(11(i)) = m + (Zm) —Ly )(mj .
Thus,
e"lm ~hiy
B = m and @, = m + Bty -

We do the same for g,(z,;)):

8:2(2y0)) = 82 (tyi)) + (2o — 12382 (tay)
—Ii)

—Iiy
—e
gZ(ZZ(i)) = (1 + e—tz(f)) + (Z2(i) - t2(i))[ (1 + e—tz(i) )2 J .

We get

e_tw) )

e
=————— and = I ..
(Arermy MO =y Ao

ﬂ2i

Values of #,;)and 7,, for n < I5 are available in Balakrishnan and Leung

(1988). For n =10, however, we can use the following approximate values of

Liyand 2y :

b ~1/b,

oy =—In(g;"* =1, t,,, ==In(g,"" =1, q, =il(n+1).
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We also approximate the functions h,and h,by the first two terms of their
Taylor series expansions around 1, =EW,,) and i1, =EW,;)
respectively:

(W) = 0, — Wi,

h2(W2(i)) =0, — V2iWai) -

Using the same procedure as before we get:

e e .
Vi = m, o, = (i _,l*(l_)) + Nk
+e e
Pt
Vo = o o and 0, =—[2 + Yooy
(I+e *7) (1+e ")

where again we can use the following approximate values of ?,;, and 75 :

i = ~In(g; """ 1), t 2(1) —In(g;"" 1), g, =il(n+1).

Substituting the linear approximations of the functions g,,g, , hand A, in
the likelihood equations (2.4.15)-(2.4.21) we obtain the following modified

maximum likelihood equations:

1] (by+1)¢9 n
Z( i 181121(1)) . Z(a2i_ﬁ2izz(i))

ou, o o, 0, Oy =
=0 (2.4.22)

AL _n (b +1)Y
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dlnL n b, +D < (b +1)0 &
wu o o Z( i = VWi ) — o o ;( 2 = VaiWapy) =
(2.4.23)
olnL (b, +1) &
a: :(,n Z(% Brizan) = (2.4.24)
ylx 2.1 05,4
olnL’ b, +1
nL _n )2(52, YaiWa,) =0 (2.4.25)

o, Oy 05,1

olnL 2n 1 b, +Dy
= ——+—Z Ziiy _—Zzlm(ali =Bz - ZZI(”

90, % O 01 = 01 =l
(b +1)9 n (bu +1) n
ZZI(I)(aZI ﬁz:ZZ(,))+ Z 1(1-) - ZWl(,—) (5“ — 71’.W1(’.))
0,4 O, =l A
0 (b, +1)0 &
__zwl(i) +—2W1(i) (52g —72iWai )=0 (2.4.26)
Oa1 it Oy =
dlnL _ n (b, +1) &
3 ZZZ(I) 222(1)(a21 162122(1))"' szo)
05, 0-2.1 O, i 05, 05, =l
(b +1)
p ZWZ(I) 0y = Vai Woiy) = (2.4.27)
2.1
olnL o0, & (b, +1)o, &
= Zy(i < (44 Z +— w
00 o, ; 16) — o, z l(t)( 2i 1821 2(1)) o, ; 10)
(b +1)o
o : zwl(t)(52z 72:W2(,)) =0. (2.4.28)
2.1

Unlike the maximum likelihood equations, the above equations have explicit

solutions. The solutions are the following MML estimators:

1. fi, =K,,—D,,6,, where
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Z,anm 1 & C
=T Dy =— (e, ~ (b, 4 and my, =Y B,
i=1

my, my; =

2. 1, =K, - D, 6, where,

Z?’li”(f) 1 & N
==——, D, :_Z(5u — (b, +1)_1) and m,, = 27/” )

My, My =1 i=1

KZI

s s o B ++/B,> +8nC,

o, = , Where
4n

B, = (b, +1)Z [(an (b, + n™ Xx(i) -K, )]

+(b, + 1)2 [(511‘ -, + n Xu(i) -K, )]’

C, =(, +1)Zﬁ1; (X4 — K11)2 +(b, +1)z Vi, — K21)2 ;
i=1 i=1

— B, ++/B,> +8nC,
dfn(n-2)

adjusting for the bias we get: 6, =

A

4. @, =y, —6xu—6,,A /m,, where

A, = ZA“ c Ay =@y — (b, +D7T),
i=1
S = Y Buvi Ty = Y Bay =3
A 2iJ[i] » L1 = 2i7V[i] * 12 — 2i *
m, m, i1

5. lllv/u =vu— 0”[-] - GZ'IAZ /m22’ where
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A, =) Ay, A, =(6, _(bv"'l)_l)’

i=1

n n
1 _ 1 . y
Yu=—— VaiVig o Uy = —— Vaillyjy 5 Moy = 27/21‘ :
m22 pr m22 = i=1

6.0=K-D &,, , where

1 : _ . _
k= E{(by + DZ’BZ[ (X =X )Y + (O, + DZ Vai (U =ty )V, } ’
i=1 i=1

1 . - \ m
b ‘E[(b‘ FDD A G =T+ B, D) D Ay G >]’
pry i=1

S =(b, +1)Z,52i (X _)_C[.J)z +(, +1)Z 7 (g _ﬁl.l)z :
p i1

—B +.,/B*+8nC
= , where

1.0, = an

B = (by + I)ZAIi(y[iJ - y[.] - K(x[ij - )_Cl-l )
i=1
+(b, + 1)2 Ay (v =y — K(ug —u,)),
i=1
C=(0,+ DZﬁzi(Y[i] =¥ — K =%,
i=1

+(b, +1)Z Vai Wy =V — K (g —10))*
i=1

—B +,/B*+8nC

Adjusting for the bias we get: &,, =
SN o)
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To find the estimators of u ., u,, 0,, 4,, 4,, o, and p we replace o,, by

0,4/1-p* and @ by p% in the likelihood equation (2.4.14). Equation

1

(2.4.14) becomes:

InL e -2nlno, ~2nlng, —nlnl-p*) =Y 5, = (b, + DY Inl+¢ ™)
i=l i=1

=D 25— (b, +DD In(l+e )= > wy, = (b, +DD In(l+e ™)
= = i=l i=1

=Y Wy, — (b, + DD In(l+e ™). (2.4.29)
i=1 i=1

PO,
¢ Yip —Hy — pu (X = 4,)
1)
Here, z,,, = ’ == L - and
o,\1-p O,\1-p
po,
Vig — M, — () = 4t,)
_ %n o,
W2(i) ) - 2
O,\1-p o,\1-p

Differentiating equation (2.4.29) with respectto 4, , u,, 0\, 4,, 4,, o, and

p we get the following equations:

dlnL b, +1 (b +hp
. i ( ) Zgl(zl(,)) np Zgz(zw)) =0
0, i=1

ou, o1-p’
(2.4.30)
dlnL b, +1 (b, +Dp
n i ( )Zh( W)~ np + ,+Dp th(ww))zo
ou, 1- p 1-p?

42



(2.4.31)

olmL_ 2n 13 (b, +1) &

LGy ~ Z%gl(zm) \/— Zzlm
-p

00, o, 0,5 o,

(b, +Dp d (b, +1) &
+—ZZ1(,)g2(Z2(,))+ Z 1<i>——zww>h1(ww>)

o1-p° O, im O, =

b +1
G )p Z Wy On,)) =0 (24.32)

p n
ol 2
ol-p i=l

dlnL (b, +1) Zn:g (2 )=0 (2.433)
ou, 62\/—2 0'2\/7 - s
L _ (b, +D) N

hz (Wz(,‘)) =0 (2.4.34)
Op, 0'2\/ o’ 0'2«/1 o’ Z

alnL 2n ZZ Z”: (b, +1) &
do, 0-2 0, = o * \11 o’ o o,
(b, +Dp

O_zﬁzzmgz(zzm)"' o, ;Wzm szm

b, +1 b, +1
- )Z Waiy 1y Wy ) = 0.t ),0 Z Wiy (W) = 0 (2.4.35)

z 23 82(2a))

AL mp n b, +1) &
2 1np \/ﬁ > ﬁg =g G Jipr ZwE )

LB +Dpg
1-p°

b, +1) (b, +1)p
— Z Wl(i)hz (Wz(;) )+ W Z Wz(i)hz (W2(i) )=0 '(2'4.36)
i=1

\ll_p2 i=1

Zzzmgz(Zz(z))"' \/72 16y ~ ppz ;Wzm
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Replacing the functions g,, g, , h,and h, by their linear approximations and
replacing 4 , u,, o, by their estimators, we solve equations (2.4.30)-

(2.4.36) and get the following estimators of 4, 4,, 0o, and p:
8. ﬂy =i —é()_c[.] —f)=6,,A/m,,.

9. 4,=v,- é(b_‘[.] —[,)=6,,A, I m,,.

10. 6, =62, +0°6 .

. A0
11. p=6—1+.
0-2
Computation of the MMLE:

Note that in order to compute the MML estimates we define two new

variables p, =y, —6 x, and p,, =v, -6 u,. These two variables have the
same order (in terms of order statistics) as the errors since they only differ

from the errors by a constant (note that e,=y, -6 x, —u, 6 and

e, =v,—60u,—u, ) Wefind the MML estimates using two iterations. In

viu

the first iteration we order our new variables using the least square estimate

~

€ . Meaning we order p, =y, — 6 x;and p,, =v, — 6 u;, and use this order
to find the concomitants (x,,,y,;) and (u;,v,,). We use the concomitants
to compute the MML estimate of ¢,, and then of &. In our second iteration

we use the MML estimate @ which we obtained in the first iteration to order

the variables. Thus, we order p,. =y, .y x; and p, =v, .y u, ; the order

44



statistics will give us the new concomitants (x,,y;,) and (u,,v;,). We then
use these concomitants to find &,, and other MMLE. Thus, the MML

estimates are computed in two iterations. Not more than two iterations are

required for the estimates to stabilize sufficiently.
2.4.2 Properties of the MML Estimators

The MML estimators are asymptotically unbiased and efficient. They are also
robust to the presence of outliers and other data anomalies (mixtures,
contaminations, etc.) in the data and also to deviations from the assumed
distribution. We will see these results visually later in simulation studies.
The MML estimators have asymptotically the same properties as the ML

estimators (Vaughan and Tiku, 2000). Thus, the asymptotic covariance

matrix of the estimatorsZ ,4,,6,,4,,.,4,,,,6,, and 6 is given by the
inverse of the Fisher information matrix 1~ (g, ,u, Oy s 0y,50).

The elements of the Fisher information matrix (4, , 1, .0, 4., 1,05,

viu?

@) are as follows (see Appendix C for details):

n b
11, =—| —2—|,
e g {bx + 2}

n b, 3
I, —G—I{M(m@ +1) ;u(z))}

b

1 =1 =1 =1,,=0.

Holly — Y Hollysy Hetboru 1.0, n.0
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5.1

ﬂv/xo'ﬂ

ﬂyu‘g

,uv/uo-Zl

€

My jubyru

+
bM
= O1Hy, = 0103, = 0'1‘9:0.
n b
o2, (b, +2)
=0,
l’l
T b, +0-p@),
no
—tL b 1
ol b+ )(‘//( D—yd).
n b

v

o2 (b, +2)

n b,

T DWw +1) - p(2)),

_no, b,
o ﬁm b)-w(D).
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_n
-2
0.

6. 1

021024

2+, + 1)+ @)+ b, +D-w)f)
b+2" ’

bv ’ ’ _ 2
Py B D+ @+ e+ D -y ) )},

v

no, by _ _
Iw—?{b +2[(s/f<by+1> w2 b,) -y)

y

b
+— [(vr(bv+1>—w<2))(w<bu)—w<1>)]}.
b +2

v

b +

y

2 b )
7. 0y = ﬂ{ = @)+ v+ o) -yo)]

b, . , _wDP
+m[’ﬂ b))+’ O+ b,)-pO) ]}

v

Now, we define the Fisher information matrix I( ¢, &,, o, Uy H,s Oy, pP)
for estimatingu _, u,, o, U, U, 0,, p. The elements of this matrix are

(see Appendix C for details):

2 b
L1, :iz b + L 2 - ,
oo | b2 1-p7 (b, +2)
Ly, =0,
n| b p> b
l,, =—|— b +D)—-w(2)+ ) b)—w)l|,
MOy 0_12 {bxﬁ'z(l/l( X ) W( )) 1_p2 (by+2) (W( x) l//( ))

_ —np by
l,, = 5 )
o 00,(1-p7) (b, +2)
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I —np

b,
ne 0'10"2«/1 p (b, +2)

o) -y)-—£ 2(w<by+1>—z//<2>)].
-p

i, +0-y@)+—L£ 2(://(@)-1//(1))],
-p

I —np
< o,(1- p)(b 2)

n| b b
2.1,, =—|—*—+ v ,
oo | b, +2 l—pz(bv+2)}
nl b P> b
1 =— “ b +1)—-w(2))+ Y b))—wd))]|,
hor = 7 _bu+2(z//<u VN e z//<))}
I,Uuﬂ =
_np bv

I,, = :
ke g.o,(1= p*) (b, +2)

I —np

b,
e 0'102«/1 p? (b, +2)

P - 1 £ b, +1)—p(2)|.
e = o ) b+ )(m ) =y D)= s W, +D-y(2)

e, +0-p@)+ £ 2(w<bu)—w<1>)],
-p

b (, , R
4D+ @+ b )y )

X

3.1, :iz[z+
1¥1 61

2

Yo, b
s )(W(b)+w(1)+(w(b) y)))

P b D)+ o, + D -y )F)

u
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2

Yo, b,
st e o) -y,

—np b
l,, = “oo0-P G +2)(z//< )=y (1),

—-np b
1 = b, 1
= e o +2)( w(b,)-w (),

[, =—""° b, b) - )b, +1) -y (2
Ry R [T )[(w )~y )y, +D-p(2)

+ P (y/'(bx)+l//'(1)+(‘//(bx)—‘//(1))z)}

}

|
:‘

Y e [y ®)-vO)w®, +) -y (2)

v

+ Ly b))+ ) + (b, - )y
i ( )

—np b,
I b 1 b 1
= o p){( )[(y/( Y+’ W)+ (e -pO))
- 1” —(y(b,) -y D)y (b, +1) —z,u(z))]
-p
v ’ ’ _ 2
ey &)+ v+ o, —wa)?).

~E= e -yolve, +1)—w(2))]}-
-p

n b,

4. 1,, = ,
oy (1= p?) (b, +2)
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n b, Yo,
I, = 2 b.+1)—-w(2))+ b)—w)]|,
N (by+2){(w( L +D) -y (2) = (Wb, -y

2

- —n by P _ _ _
L = 5ot pz)(l,ﬁz)h_ p b, +)-p@)- o) w(l))}-

5.1 " b,

i G2 (1—p) b +2

n b P
1, , = . b,+D)—-w(2 b)-wD)|,
ey (bv+2){(vf<v+> v(2)+ s W) w())}

-n b { L (yib, +1)—-yp(2)-(wb,)-y®)

I,,= :
"oy (1=pN) (B, +D)| (1-p?

L PO W : _
- {2+b +2[(w<by+1>+w<2)+(w(by+1> y()f)

y

6. 1

0,0,

2p
I-p

2

0
1-p°

+

(W) -y )k, +)-p(2)

2

+

@)+ v+ o) -y )}

b bl > b/, +n+y' @+ o, +n-p))

v

2p
I-p

- (W @)-y )y, +D-p(2))

2

2

o)+ 0+ ) -y) )}} ,
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o2p

= _—n _ b}’ / ’ _ 5
1-2p°
+—J1*pz (w(b,) —y ), +D-y(2)
-p

ol b, + )+’ + o, + D -y @) )

% ol 6, + v+ (v, -p))

L ey N0, +) -y )
-p

+

7

—pl b, + )+ @)+ (v, + - @Y )| }

__n 2p° b, ’ 4 _ 2
7 1,,= (1_pz){1_pz 5 +2[w b))+ W)+ () —y)

2p

L () -y )k, +D-p2)
P

p—

2

+ 1f) P2 (v/(by D)+’ + o, + -y )f )}

b ’ ’ 2
L W R T0)
b +2

v

2
-7 L (yb,) -y )y, +D-y2)
-p

2

sl AU AC R O TRZe) )} -
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The asymptotic covariance matrix of the estimators f_, i, , 6,, ,[zy, a., é,,
p is given by the inverse of the above matrix, i.e. I'l( Uy U, OLU, I,

o,, P).
2.4.3 Least Square Estimators

The least square estimators are found by minimizing

n n n

(e, —E)), Y(ey —E(e,)), Y (x, - E(X))* and Zn:(ui—E(U))z.

i=1 i=1 i=1 i=1

We find the following LS estimators corrected for bias (see Appendix A for

details):

L, =x-b)-yD)G,.

2.4, =u—-(yb,)-y1)46,.
3. By = y=0x—Wwb,)-y()3,,.

4. [, =v—0u—wb,)-yl)s,,.
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l

6. i, =y—66,y(b,)-y1)-6,,(wb,)-yd).

7. i, =v-08,(yb,) -y1)-&,, (b, -wd).

2 2
s, TS,

8. 0, :\/ w
y'(b)+y'(b,)+2y' (D)

here

st = Z(xi —-%)*/(n—1) and
i=1

5. =Z(ui—ﬁ)2/(n—1).

{Z(yi ~5-80 -0 + D -7 -G —ﬁ))z}m—z)

i=1 i=1

y'(b,)+y'(b,)+2y' (1)
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The numerical values of the psi-function ¥ and its derivative y'are given in

Tiku et al. (1999). For a comprehensive study of psi-functions and their

properties, see Abramowitz and Stegun (1965).

2.4.4 Weighted Least Square Estimators

We give the weighted least square estimators for the Generalize Logistic

distribution below. They are obtained by minimizing

1 . 2 1 - )
Var(e,) Z(e” ~E(e))" and Var(e,) Z(ezg —E(e,)) .

i=1 =
Now, Var(e,) = 05,(y'(b,)+¥'(1)), and Var(e,) = o3, (W' (b,) +y'(1)).
In order to make our expressions shorter, let

¢, =y b))+ ),
¢, =y b)) +y' (D),
¢, =y'(b)+¥'(1) and
¢, =¥ (b)+Y' (D).

We see that the above weights do not affect the estimators of the means as

long as e, and e, have the same variances. So, the weighted least square

estimators of 4 , 4, [, U,, 1, U, , remain the same as the least square

estimators. However, the weighted least square estimators we obtain foro,,
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o,, 0,,, 8 and p are different. They are (see Appendix B for details): (here

w denotes a weighted least square estimator)
LA, =x=-W®,)-y1)s,,.

2. 4, =u-Wyb,)-ya)é,,.

3. By =¥ -6, -(Wb,) - y(1))G,,,.

4' ﬁvluw = ‘7 - gwl/_t - (W(bv) - W(l))&llw .

EY oy Y -y,
é‘ — c~" i=1 € i=1 .
;Z(xi —)_c)2 +;Z(ui —LT)2

6. i, =y-6,6,,Wb)-y1) -8, Wb,)-y).

7. f,, =v-0,6,,Wb,)-ywl) -5, Wwb,)-yd).
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s =Z(ui—ﬁ)2/(n—1).

1 _ o~ Y 1 - o~ R
{QZ(yi_y_e(xi_x)) +CZ(V,~—V—9(ui—u))]

Y=l Vo=l

2(n-2)

In Chapter 3 we perform a simulation study and show that the MML
estimators are more efficient than the least squares as well as the weighted
least square estimators, even for small sample sizes. This is apparently due to

non-normality of the underlying distributions.
2.4 Student’s t

We now consider the situation when the marginal and conditional
distributions both belong to the Student’s t family. We have the same

relations as before,

E(Y/X =x)=p, +p2(x—u)=p,, +8 x and
’ O

1

EVIU=w=p +pZwu—-u)=p, +0u.
O

1
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We will assume the following:

(a) The marginal p.d.f of X is as follows:

5 \—(r+)/2
1 1(x—u
() = 1+— : . 2.5.1)
g o\ r. Bll/2, rX/Z)( rx( o, j ]

(b) The p.d.f of e, (the p.d.f. of Y/ X =x) is as follows:

S\ (/2
1 1( e

file) = 1+—| — : (2.5.2)
S oy, B2 ) oy,

(c) The marginal p.d.f of U is as follows:

5\~ 41)/2
£, ()= ! 1+i(”_”"j . (2.5.3)
onfr, BU/2, r,i2) .l o

(d) The p.d.f of e, (the p.d.f. of V/ U = u) is as follows:

5\~ +D)/2
1 1( e

fa(e,) = 1+—| = : (2.5.4)
o, B2, ri2) o,

2.4.1 Modified Maximum likelihood

Given two random samples:

(x;,,¥,),1<i<n, from the first model and (u,,v,),1<i<n, from the second

model.

As before, the likelihood function is
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L=LL,LL, =LLLL,.

x =yl xTuv/lu

Thus we have,

S \—(r /2 S\~ (ry+1)/2
L H i Ny 1 1+i L
i=1 T, o, 0,1 Iy \ Oy
S\~ ()72 S \~(r )2
i{ui(—”f—”"j J ! {1+l(2] ] . (25.5)
0, i 0, 05, 1\ 03,

We can now express the log likelihood in terms of z,,, z,,,w,, w, as

follows:
+1
InL «—2nlng, —2ning,, - )Zl (1+Zhj
rX
+1) ¢
G )Zh{l zz,J , +1>Zl ( wl,]
2
i=1
+1
_ )Zl ( WZ'J (2.5.6)
where
Xi —H, € / Vi My~ 0 X U, —H,
= 5 ; = = C 'xi ,W[ = N
le Gl Z2 62.1 : ( ) 0-2.1 : Gl
Ou

e, Vi—H,, —OU;
Y i viu i
andw,, = ——=,/c,(u,) .

0-2.1 0-2.1

Here, ¢, and c, are first assumed to be equal to 1 for all values of x and u

respectively.
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Note that under the above assumed distributions, if we make the

transformations:
X _,[l e Y ﬂ [ x 0 x U _,Ll
Z = L Z,=—1=c,(x) 2 , W, = “  and
Gl 2.1 62.1 O-l
\% —Bu
W, = & =4/c,(u) adll then
0-21 02.1
X —
7, =2"H oy,
1
Z c,(x) Mlacir ~(r,)
2.1
U —
W, =" e 1) and
o

V—u,, —6u
W, :w/cz(u)gl—~ tr,).

2.1

Remark: In all the chapters when we refer to Student’s t distribution we will

be referring to the distributions given in equations (2.5.1)-(2.5.4).

In order to find estimators of the parameters 4, 4, , 0\, 1, &, O,,,and

viu?

6 we differentiate equation (2.5.6) with respect to 4, i, O\, ;.5 M, »

0,,, 6. The likelihood equations simplify and give the following equations:

dlnL (r +1) &

aﬂx x Ll(l-l-lej
rx

dlnL (r +1) &

aluu Fu i=t ( ngj
+ 1t
rM

(2.5.7)

(2.5.8)
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olnL

@+(rx+1) < 2y +(r +1) & wy;

= — u L - O
aGl O-l O-lrx i=1 (1+Z121j Glru i=1 (14_\4/121]
rx ru
alnL_(’”y"‘l)Z”: C; <y -0
aIl’ly/x GZ.lry i=1 ( Z;lj
1+
I"y
alHL_(Vv"‘l) S A C Wy -0
all'lv/u 0-2.1rv i=1 (1_'_‘4}221]
r,
oL __2n  (n H)i G, (AD wy

_ ' - ' -
d0,, 0,1 O, = 1+ 25 O, "= 1+ Wy,
r rv

y

dlnL (7, +1)Z":\/C—1i XiZo;i N (r, +1)i\/c—2i U;w,,

- 2
06 Gz.lry i=1 1+2722i 0,1, "= (1 + Wzij
r, r,

=0.

=0

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

The above likelihood equations are expressions in terms of the intractable

functions:

gl(Zli):—z’ gZ(ZZi):—Z’
<y 25
(1+J {1+2’j
rx ry

h(w,) =2 and h,(w,)=——2

and thus have no explicit solution. Again, using the method of modified

maximum likelihood estimation we first order the values x;’s, e;;’s, u,’s and
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e,; and express the log likelihood in terms of these order statistics. Here also
we let (x,,y,) be the concomitants of e, , and (u,,v,) be the

concomitants of e, . The log likelihood becomes:

i=1 T,

X

G +1)21( Zz(z)] , ”)Zl( MJ

¥ r,

- “)21 [ 2“)] (2.5.14)

v

n 2A
InL <-2nlno, —2nlno,, (”x;l) Zln[nﬁj

The likelihood equations become:

dlnL (r,+1

o ( > z & (2p) = (2.5.15)

olnL _(r,+Dy

. or 20w = (2.5.16)
u 1 u i=1

alnL (r +1) & +) &

L 2 Z Wiy (W) = 2.5.17
adl O-l O-lrx z l(l)gl( 1([)) Gl ] ; 1) ( 1([)) ( )
alnL (r, +1) &
ou p z Ciiin 82(25y) = (2.5.18)

yix 21ty =l
dlnL _(n+Dy
oL o Z\/CZ[z hy(Wy;)) = (2.5.19)
viu 21 i=1
T z Zoy) > Wy iy (W) =0 (2.5.20
d0,, 62.1 62.1 y 121: 2082 Z2) O-erv lZl: 20 Wy ) =0 ( )
alnL (ry+1) n (r +1) n
B Rt )+ gy (wy)=0. (2.5.21
00 o7, ; Ciriy X182 (2a) P ; Copiy Uiy (Wai)) ( )

Now, we approximate the functions
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o)

2y _
81(zy) :% and g,(2y)) = 2
) e

r, ry

by the first two terms of their Taylor expansions around L
tys = E(Z,,) respectively:

g8 (7)) =z, + ﬂlizl(i)

8,(2,) =0y + ﬂZiZQ(i) .

To determine the values of the alphas and betas we write:
8 (z) = gl(tl(z‘))+ (25 _tl(i))glv(tl(i)) .
We obtain the following values of alphas and betas:

2t .7 1=(t2,/r)
a. = 1(i) x ﬁli — 1(i) x

1i 2 2
tlz(i) tlz(i)
1+ 1+
rx rx

3 2
2t2(i) /ry 1- (t2(i) /ry)
2 N2’
t i
1+-20
T,

aZ' = and :525 =
where 7, ;, can be obtained from the following equation:

i .
1<5i<n

1 (i) o\~ +D)/2
14— di = , 1<i<n,
Jr. Bll2, rx/2)_'|;( +er T

=E(Z,;) and

and similarly #,, can be replaced by the ith quantile of the Student’s t

distribution with r, degrees of freedom.
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We do the same operation for

Wi Wai)

2 (o2
14 20 1+ el0)
rll rV

and approximate them by the first two terms of their Taylor series expansions

h(w,;) = and h,(w,;) =

around t,,, = EW, ;) and 1,, = EW,,), respectively:
hl(wl(i)) = 51,' + 7MW »

h, (WZ(i)) =0, + VoiWaiiy -

We get the following values of deltas and gammas:

#3 #)
5 = 24,1, _ - /r)
L = w2 \2° Vi = w0 \2
Ly h
I+ 1+
T, T,

1—(ty 17,
— _ (ORI

521'_ 0 \2 and Vai = w0 \2
1, 1
1+& 1+&
L L

where 7, can be obtained from the following equation:

1 i 2\~ tD/2 .
1+ dt=—"—, 1<i<n
Jr Blu2, rn2) L0 (n+1)

Similarly, t;i) can be replaced by the ith quantile of the Student’s t

distribution with r, degrees of freedom.
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Substituting the linear approximations of the functions g,,g, , A and A, in

the likelihood equations (2.5.15)-(2.5.21), we obtain the following modified

maximum likelihood equations:

olnL (r +1) &
o, or, ,Z:'(% +hitio) = 5
dlnL’ _n 4D

S + 2.5.23
all’lu O-l u ;( li 7/11W1(1)) ( )
dnL L+ URVAN
do, _;1 or, ZZ“”(% Azt 7, ;W1<,)(51, +7iWii)

~0 (2.5.24)

olnL (’” +1)

e (a.. + 2.5.25
aluy/x 0-2.1 y = 1 Cl[l ( 2i ﬁZIZZ(l)) ( )
olnL (7‘ +1)z ,c2[l (521 +}/21W2(z)) = (2.5.26)

aﬂvlu 621 v i=l

dlnL 2n (r +1) &

(r, +1)
=— Zzzo)(a'z, + Boizap) t———

Z WZ(!) (521 + 721W2(1) )

d0,, 621 0,7, "= 0,1 =
=0 (2.5.27)
olnL (V +1) & (r, +1)
96 Z\/ Cip X (& + ﬁZzZZ(t) )t——— Z\/CZ[t] ”[z]( T V2iWaiy)
Oyl y =l Oyl =l
=0. (2.5.28)

The above MML equations have explicit solutions. We assume that ¢, and
¢, are completely specified. In particular, we assume that ¢, (x) and c, (1) are

both equal to 1. Solving the MML equations, we get the following MML

estimators of the parameters:
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E ﬁll (z) n
=———— where m,, = E B -
my
=1

1. @1
n
E Vilkq) n
2. 4, =—=——— where m,, = E Vi -
M i=l

. B ++/B’+8nC
3.6 =— ! L where

b 4n
(r.+1) < (r, +1) &
B, = . Zah.x(,.) +—r Z(fuu(,.) and
Y i=1 u i=1
(r +1) & (r +1) & .
2151;( (z) x r Z li(u(i) _/uu)z .

u i=1

_ B, ++/B,” +8nC,

Adjusting for the bias we get: &, =
1 4/n(n-2)

X

4. @1, =y, —O0x,+(6,, /mn)z o, where

i=1

Z,B Yy » X1 =—2ﬁ1xm ,

my = mp, iz

n
= Zﬁz ) :Bi = Cl[i]ﬂZi and @, = Cii & -
=1

5. ﬂv/u =y —0up + (6-2.1 /mzz)z&i where

i=1
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V[] =—27V[,] ) M[] =—Z7’M[,] )

My iz My, =1

n
= Z%’ s Vi =Cy ¥ and 6, = \Jcy, 0y,
i1

Note: Under the assumption that ¢, (x) = ¢, (u) =1, 204. = Zé'l =0.
i=1

i=1

6.0=K+D &,, where

1, + D _ (r, +1) _

K :E{ - E_l B Oy = %) Vi "‘T E_l ac _”[-J)V[ﬂ]’
(r, +1) (r, +1)Z

D_S[ r, Z @ = X) Ot~ M[])]

i=1

(r, +1) _ (r, + 1)\ _
=— Z:Bz (X = X)" + Z AU
ry i=1 h i=1

B +.,/B*+8nC

7.6, = where
' 4n
(r +1)
Z“ iy = Yy = Ky = %))
r+1 _
( )25( Vi — Vi — K@y =)
Co (r, +1)

Z,Bi (y[i] - y[.] - K(x[i] - )_C[.] ))2
i=1

(r,+ 1) \ _ _
[ Z Vi Oy = ¥y = K (g = 18,))°
v i=1
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B +./B*+8nC
Adjusting for the bias we get: &, , = .

4 n(n—4)

To find the estimators of 4 , u,, o, and p we replace o,, by o, 1-p°

and 6 by ,0ﬁ in the likelihood equation. Equation (2.5.14) becomes:
1

n 2
InL «<-2nlno,-2nlno, —nln(l—pz)——(rxs_l) Z]n[1+ﬂ]

(7’ +1) Zz(z) (l" +1) 1(1)
Bl
G +1>Zl ( sz

(2.5.29)
el(z) Y —H, -0 (x[,] H.)
Here z,,, = \/_ and
o,\1-p° o,\1-p°
W = \/—Vm M, — 0 (uy — 4, )
2
o,\1-p° o,\1-p°
Differentiating equation (2.5.29) with respectto 4, 4, o\, 4., U,, and

p we get the following equations:

D +1
alnL:(rx+ )z () (r, +Dp

4 = 2.5.30
AL o i:lg Z \/72 Ciin82(254) = ( )

dlnL (r +1) &

(r,+1)
ou, or, Zh (w 1(1))_ \/%ZVCZ[: hy (W) = (2.5.31)
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alnL (r +1) & (r, +Dp

n
T szgl(zm) z Cuiy 282 (Zaiy)
20, 01 o,r / - p?

X

+1 +1
(r )Zwl(l)h (Wl(l)) (r )p Z c2[z wl(z)h (WZ(z)) =0 (2532)
orAl-p’

o\, ‘=
olnL _ _on (r, +1)

do, 0, WZ €t 82 () )Yy —4,)

n, +D Z\/cz By Wy )V = 1,) = 0 (2.5.33)

0'2’}\/1 o’

aal;f (r\/%zn: Cii 82(22)) = (2.5.34)

aallva Gzir\/% Zﬁh (W) =0 (2.5.35)

a;r;)L - (12—n£ 5 (:/%Zn“ Cipiy 211 82 (Za)) — r(yr(l;l;pz Zoiy 82 (Zoiy)
F%Zn: Copiy Wiy, (W) = %ZWZ(l)h (Wy;)) =

(2.5.36)

Replacing the functions g,, g, , #,and h, by their linear approximations, then
replacing 4., u,, o, by their estimators we can solve equations (2.5.30)-

(2.5.36) and get the following estimators of 4, i, 0, and p:

J
Gl

8. fr, =5y~ (¥, =4 =Y, _9(7_6[.] -hy=4,, +6 4.
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Remark I: If the ¢’s are not equal to 1, when calculating the MMLE of x4, ,
Uy Oypsand 6 (and u, 4, 0, and p), 4, and o, in ¢, (x,) are replaced
by their MMLE 4  and &,. In calculating the LSE, they are replaced by i
and &,. Similarly, when calculating the MMLE, x4, and o, in c,(u;)are

replaced by 4, and &, and, when calculating the LSE, they are replaced by

4, and &, (See Tiku, et al., 2007).

We use the same method as before to find the concomitants (x,,y;) and

(uy1,v;y) - We use two iterations using the LSE 6 initially.

Remark 2: Both B, and B, (1<i<n), and similarly y,, and y,,, increase

until the middle values and then decrease in a symmetric fashion. Therefore,

if B,, and f, (and similarly y,, and ¥,,) are positive, then the values of C
and C, are positive and the values of 6,, and &, are both real and positive.
If B, is negative, which may cause C, to be negative, we replace &, and S,

by the following values respectively:
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Similarly if 7,, is negative we replace o,,and ¥,, by the values:

*3
L I, 1

7 sand 7 =
)
T

*2
14710
T

Also if ,, (or ¥,,) is negative, which may cause C to be negative, we replace

€3
511':

a, and S, and J,,and ¥, by similar expressions:

3

, tnlr, , 1
* (@ " "y #
o, =——— =
2i tz 2 1821 tz 2
1+ 2(i) 1+ 2(i)
ry Ty
t;fi)/rv 1

52*1' = and 7;' =

2
*2
1+t2&
T,

These operations do not alter the asymptotic properties of the MML

estimators for reasons stated before.
2.5.2 Properties of the MML Estimators

The MML estimators we derive here have the same properties as those

mentioned in section 2.4.2. Thus, the asymptotic covariance matrix of the

A
A

estimators 2., 4,, 6y, i,,., f,,, 0,,,0 is given by the inverse of the
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Fisher information matrix I''(u,, i, , 0, Lyes Moy s0yy,6). The elements of
the Fisher information matrix I( &, , 1, .0, 4., 4,,,,0,,, €) are as follows

(see Appendix C for details):

Information Matrix for i, , i, O\, f,, s fy),» Cpy» O

n|r+1
1. I =—| = ,
Mol Gf{rx+3}

l,,=1,,=1I =1 =1 =1,,=0.

Moty 1Oy T T Uy Hellyra — 7 M0 YN

2% o r+3 r+3
O1lyx = Oihhy 1y = 010, = 0'19: 0.
n (r+1)
4. I/lv/xﬂv/x = 3 ’
Y 0,, (r, +3)
Hyylhyry =Iﬂy/x°’2.| =Y
o, (4D

Uy ® T 2 :
v o, (ry +3)

n (r,+1)

5.1 =— ,
Hyrulyru 622'1 (’,; +3)
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Hyju021

_ny, (r,+1)
“l oy +3)

b

_3 _
n [2—’_ ry + rV 3:| s 10'2.13 =O‘

6.1 =
0,102, 622'1 ry+3 n+3

5, o (e e v -2 o+ o7 )20
o5, | (r,+3) (r.—2) (r,+3) (r,—2)

Information Matrix foru , u,, Oy, 1y Oy P

2 1
g = ntly pz(ry+) ;
r.+3 (=p7)(r,+3)

Mot 2
Gl

_wp G4
Mty 0-10-2(1_p2) (ry +3) ’

2
sy _n|ntl, p (n+1)]

wi = G2 13 (1= pY) (14 3)

____—np  (nh+)
wt oo, (1= p*) (r, +3)

4 u =1 y =Iﬂu0'z =Iﬂu/7 =0.

— _ 2 1
30, =l i=3,n=3, o [ G*D n Dl
oo r+3 43 (A-p)H(n-2)(,+3) (1,-2)(r,+3)
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|

I"lﬂy = Ol = 0’
_ — n,o2 r. (ry +1) roo(r,+1)
77 0,0,(01=pH\ (., =2) (r, +3)  (1,—2) (1, +3)
_ —np . (ry +1) r, (l’v +1)
o (1-p) (=2 (r, +3) (,-2)(r,+3))

41
4. Iﬂ%ﬁ: 2 & 2 (’”} )’ i, —Luo, = ﬂ.p:O,
o= p7) (r, +3) T ‘
n (r,+1)
51,, = : . 1,,=1,,=0.
e (- p7) (r+3) 0 AP
-3 — 2 +1
= A I
o, n+3 43 A-p)(n=-2)(rn,+3) (,=2)(n+3)
— —l’lp 2+r)’_3+}q}_3_ rx (r)’+1) _ ru (rv+1)
= o (= p) r+3 43 (=2 (n+3) (-2 (n+3)|
; 0 I P B ) T G SR A ()
) IP/’:(I_ 2 A2 2+ + _ — '
P | 1=pH n+3 n+3) (=2 (r,+3) (r,-2)(+3)

2.5.3 Least Square Estimators

We minimize:

n n

2 2

1. E e,;; and E €5
i=1 i=1
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2 ) ) and ) (- a,)
i=1 i=1

€ :\/c—li(yi —Hy, -0 x),
ey =ACo (Vi =4ty =6 u;).

We find the following LSE corrected for bias (see Appendix A for details):
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n n
E Cu(x;_’?(.))yi"'g Co (U; =1t )V

5. 0 =—i=L i=1

n n °
— \2 — \2
E ¢ (X —X,)" + E o (U — 1)

i=1 i=1

~ _ o, _ ~ _ ~ ~ ~ ~_
6. H, =Y, _%(x(.) —f,)= Yo _6(x(_) -4,) =My, +6x.

Vo T g(ﬁ(.) —A)=H,,+ O .

~J
x
Il
=I
!
_
=
|
=
=
S
I

X

si = Z(xl. —x%)*/(n—=1), and
i=1

5. =Z(ui—ﬁ)2/(n—1).
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2.5.4 Weighted Least Square Estimators

We minimize:

e,,” and e, .
Var(e,,) - Var(e,,) -

We find the following weighted LSE corrected for bias (See Appendix B for

details):
1. ji =x.
2' ﬁuw :;

~ —

3' lzzylxw = y(.) - ewx(') .

4‘ lllv/uw =vo — ewu(') *
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Zch(x x())y, Zczl(u u())v
5. ©
Zch(x x()) +— Z:czl.(u,.—b_t(_))2

-6,(%,

-6 LU =

si = Z(x,. -%)*/(n—1) and

i=1

:Z(ui—ﬁ)z/(n—l).

ﬁuw) = IZZv/uw

_ﬁxw) :ﬁy/xw

~

+6,x

~

+0 u
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— gwo-lw
O-Zw

11. p,

We will see in Chapter 3 that the MML estimators in this case also are much

more efficient than the least squares and the weighted least square estimators.

Note: The estimators given in this chapter were derived assuming equal

sample sizes, i.e. n, = n,=n. The MML and LS estimators in the case when

n, # n, are given in Appendix H.
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CHAPTER 3

SIMULATION RESULTS

In a simulation study we show now that the MML estimators developed in
Chapter 2 are more efficient than the LS estimators and the weighted LS
estimators. We also show that the MML estimators are more robust to
deviations from the assumed distribution and also to the presence of outliers
and other anomalies in the data. We perform our study assuming the
Generalized Logistic distribution and the Student’s t-distribution. Similar
results for the efficiency and robustness of the MML estimators can be shown
to be true for other distributions as well. In our study, we consider various
values of the sample size n (20, 30, 50, and 100). The simulations we perform
are based on [100000/n] Monte Carlo runs. Without any loss of generality, we

carry out our study assuming that the actual values of the parameters are:

u.=0,4,=0, 4,=0, 4, =0,0,=1,and o,=1.

3.1 Generalized Logistic

Here we consider different values of bx,by ,b,, andb, and p=0.5, 0.2 and

p=10.9. The values for the negative values of p are exactly similar to the

positive values and are not, therefore, reported.
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3.1.1 Efficiency

Efficiency is a very important attribute of an estimator. We would like our
estimator to be fully efficient which means that its variance is, at any rate,
almost equal to the MVB. In the tables below we give values of the variances
of our MML estimators (multiplied by n) and also we give n times the
diagonal elements of the inverse of the Fisher information matrix. We show
that even for small n, the variances of our estimators are close to the
corresponding diagonal elements. This implies that the MMLE are highly

efficient.

Table 3.1.1 Simulated variances of the MMLE vs. the diagonal elements

of I (GL),b,=b, =b, = b, =1.

n=20 Mo | My |1y | K- | By | By | O | O, | Oy | P

n*Vv_MML | 3.06 | 3.05 | 3.09 | 3.09 | 2.36 | 2.34 | 0.41 | 0.38 | 0.34 | 0.32
n*Fisher | 3.00 | 3.00 | 3.00 | 3.00 | 2.25 | 2.25 | 0.35|0.30 | 0.26 | 0.29
n=30
n*v_MML | 3.06 | 3.10 | 3.08 | 2.92 | 2.34 | 2.20 | 0.40 | 0.35 | 0.30 | 0.32
n*Fisher | 3.00 | 3.00 | 3.00 | 3.00 | 2.25 | 2.25 | 0.35|0.30 | 0.26 | 0.29
n=50
n*v_MML | 3.27 | 3.04 | 2.90 | 3.08 | 2.16 | 2.39 | 0.36 | 0.33 | 0.31 | 0.30
n*Fisher | 3.00 | 3.00 | 3.00 | 3.00 | 2.25 | 2.25 | 0.35 | 0.30 | 0.26 | 0.29
n=100
n*v_MML | 3.04 | 2.87 | 3.26 | 2.96 | 2.28 | 2.23 | 0.36 | 0.32 | 0.28 | 0.32
n*Fisher | 3.00 | 3.00 | 3.00 | 3.00 | 2.25 | 2.25 | 0.35 | 0.30 | 0.26 | 0.29

The seemingly unexpected result that some simulated variances are a little

smaller than the corresponding diagonal elements can be due to simulation
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errors. Theoretically, however, this is possible in bivariate and multivariate

situations if the estimators are correlated.

Table 3.1.2 Simulated variances of the MMLE vs. the diagonal elements
of 1" (GL), b, = b,=b,=b,=05.

n=20 Mo | Hy 1 K- By | By | O | O, | Oy | P

n*v_MML | 5.16 | 5.88 | 5.32 | 5.87 | 4.70 | 4.61 | 0.44 | 0.39 | 0.36 | 0.30
n*Fisher | 5.07 | 5.72 | 5.07 | 5.72 | 4.08 | 4.08 | 0.38 | 0.31 | 0.28 | 0.28
n=30
n*V_MML | 5.21 | 5.93 | 5.16 | 5.41 | 463 | 4.24 | 0.43 | 0.36 | 0.33 | 0.29
n*Fisher | 5.07 | 5.72 | 5.07 | 5.72 | 4.08 | 4.08 | 0.38 | 0.31 | 0.28 | 0.28
n=50
n*V_MML | 5.45 | 5.66 | 4.80 | 5.66 | 4.27 | 4.58 | 0.40 | 0.34 | 0.33 | 0.27
n*Fisher | 5.07 | 5.72 | 5.07 | 5.72 | 4.08 | 4.08 | 0.38 | 0.31 | 0.28 | 0.28
n=100
n*v_MML | 5.10 | 5.13 | 549 | 5.47 | 417 | 4.21 | 0.39 | 0.33 | 0.30 | 0.30
n*Fisher | 5.07 | 5.72 | 5.07 | 5.72 | 4.08 | 4.08 | 0.38 | 0.31 | 0.28 | 0.28

An estimator must also be unbiased. Note that the MML estimators are
self-bias correcting, whereas the LS estimators will need bias correction if the

mean of the random error is not zero. If the variance of the error term is not

o, ,, its estimator &, needs scale adjustments, and the same applies to &,

and &,. We compare in the tables that follow the efficiencies of the MML,

the LS and the weighted least square estimators.

The simulated values are given in the tables below. The values of the

expected values and variances of the MML, LS and weighted least square
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(WLS) estimators are given. We also give the relative efficiencies of the LS,

namely, 100><Vdr(f), and also the relative efficiencies of the WLS
Var(7)

estimators as compared to the MML estimators.

Note that the Generalized Logistic distribution is negatively skewed if the
shape parameter b<1, symmetric if b = 1, and positively skewed if b>1. We

start by choosing the following values of b’s: b = O.S,by =0.5,b, = 0.5,

andb, = 0.5. Thus, in the first case we consider the situation where all the

distributions are negatively skewed. The results are given in the tables that

follow.

We will use the following abbreviations throughout this chapter:
E_MMLE : Expected values of the MMLE

E_LSE: Expected values of the LSE

E_WLSE: Expected values of the WLSE

V_MMLE: Variances of the MMLE

V_LSE: Variances of the LSE

V_WLSE: Variances of the WLSE

RE(MMLY/LS): Relative efficiency of LS to MML.
RE(MML/WLS): Relative efficiency of WLS to MML.
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Table 3.1.3 Simulation results (GL), b,= b, = b,= b,=0.5, p=0.5.

b,=0.5, b,=0.5, b,=0.5, b,=0.5, p=0.5.

n =20 M, My M, A, O, 0, Y
E_MML -0.005 |-0.008 |0.005 |0.001 (1.047 1.099 0.477
E_LS -0.019 |-0.017 |-0.011 |-0.016 [0.983 1.011 0.485
E_WLS -0.019 |-0.017 |-0.011 |-0.016 [0.983 1.011 0.485
V_MML 0.258 [0.294 |0.266 |0.293 |0.022 0.019 0.015
V_LS 0.304 [0.35 |0.31 0.347 |0.026 0.022 0.019
V_WLS 0.304 [0.35 |0.31 0.347 |0.026 0.022 0.019
RE (MMLLS) |85 |84 86 85 85 88 79
RE (MMLWLS) |85 |84 [86 [85  [85 88 79
n=30

E_MML -0.003 [0.004 |-0.003 |-0.01 (1.03 1.062 0.485
E_LS -0.008 {0.001 |-0.019 |-0.022 [0.989 1.007 0.491
E_WLS -0.008 {0.001 |-0.019 |-0.022 [0.989 1.007 0.491
V_MML 0.174 |0.198 (0.172 [0.181 |0.014 0.012 0.01
V_LS 0.205 [0.234 |0.203 |0.218 |0.018 0.015 0.013
V_WLS 0.205 |0.234 (0.203 [0.218 |0.018 0.015 0.013
RE (MML/LS) 85 85 84 83 79 80 77
RE (MMLWLS) |85 |85 |84 |83 |79 80 77
n=100

E_MML -0.004 {0.003 |-0.009 |-0.014 [1.006 1.016 0.494
E_LS -0.01 |-0.001 |-0.009 |-0.015 [0.995 1.001 0.495
E_WLS -0.01 |-0.001 |-0.009 |-0.015 [0.995 1.001 0.495
V_MML 0.051 [0.051 |0.055 |0.055 |0.004 0.003 0.003
V_LS 0.062 [0.061 |0.067 |0.069 |0.006 0.004 0.004
V_WLS 0.062 [0.061 |0.067 |0.069 |0.006 0.004 0.004
RE (MMLLS) |82 |84 82 (79 |71 74 77
RE (MMLWLS) |82 |84 (82 (79 |71 74 77
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Table 3.1.4 Simulation results (GL), b _=0.5, by =3, b,=0.5, b,=3, p=0.5.

b,=0.5, b,=3, b,=0.5, b,=3, p=0.5.

n=20 . My M, M, O, o, Y
E_MML -0.005 |-0.042 |0.005 |-0.038 [1.047 1.082 0.484
E_LS -0.019 |-0.017 |-0.011 |-0.013 [0.983 1.003 0.491
E_WLS -0.019 |-0.017 |-0.011 |-0.013 [0.983 1.003 0.491
V_MML 0.258 [0.153 |0.266 |0.154 |0.022 0.015 0.008
V_LS 0.304 [0.174 |0.31 0.173 |0.026 0.016 0.01
V_WLS 0.304 [0.174 |0.31 0.173 |0.026 0.016 0.01
RE (MMLLS) |85 |88 |86 |89 |85 92 82
RE (MMLMWLS) |85 |88 |86 |89 |85 92 82
n=30

E_MML -0.003 [-0.02 |[-0.003 {-0.029 |1.03 1.052 0.49
E_LS -0.008 [-0.002 [-0.019 |-0.017 |0.989 1.002 0.495
E_WLS -0.008 [-0.002 [-0.019 |-0.017 |0.989 1.002 0.495
V_MML 0.174 |01 0.172 [0.095 |0.014 0.009 0.005
V_LS 0.205 (0.116 |0.203 [0.111 |0.018 0.01 0.007
V_WLS 0.205 (0.116 |0.203 [0.111 |0.018 0.01 0.007
RE (MMLLS) |85 |86 |84 |86 |79 84 79
RE (MMLWLS) |85 |86 |84 |86 |79 84 79
n=100

E_MML -0.004 {-0.006 |-0.009 |-0.016 [1.006 1.014 0.496
E_LS -0.01 |-0.001 |-0.009 |-0.009 [0.995 0.999 0.498
E_WLS -0.01 |-0.001 |-0.009 |-0.009 [0.995 0.999 0.498
V_MML 0.051 [0.028 |0.055 |0.029 |0.004 0.002 0.002
V_LS 0.062 [0.033 |0.067 |0.035 |0.006 0.003 0.002
V_WLS 0.062 |0.033 [0.067 [0.035 |0.006 0.003 0.002
RE (MML/LS) 82 84 82 83 71 77 77
RE (MML/WLS) |82 84 82 83 71 77 77
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Table 3.1.5 Simulation results (GL), b =6, by =0.5, b,=6, b,=0.5, p=0.5.

b,=6, b, =0.5, b,=6, b,=0.5, p=0.5.

n=20 M, My M, M, 0, 0, Y
E_MML -0.002 {0.003 |0.001 |0.007 (1.031 1.108 0.447
E_LS 0.036 [0.01 0.041 |0.009 |0.984 1.031 0.461
E_WLS 0.036 [0.01 0.041 |0.009 |0.984 1.031 0.461
V_MML 0.108 [0.531 |0.102 |0.552 |0.018 0.028 0.04
V_LS 0.145 [0.639 |0.14 |0.659 |0.024 0.034 0.051
V_WLS 0.145 [0.639 |0.14 |0.659 |0.024 0.034 0.051
RE (MML/LS) 74 83 73 84 75 84 78
RE (MML/WLS) |74 83 73 84 75 84 78
n=30

E_MML 0.002 (0.017 |-0.002 [0.002 |1.02 1.066 0.463
E_LS 0.027 |0.014 |0.025 |-0.005 |0.988 1.019 0.473
E_WLS 0.027 |0.014 |0.025 |-0.005 |0.988 1.019 0.473
V_MML 0.068 [0.356 |0.071 |0.353 |0.012 0.018 0.027
V_LS 0.096 (0.435 [0.097 [0.441 |0.016 0.023 0.035
V_WLS 0.096 (0.435 [0.097 [0.441 |0.016 0.023 0.035
RE (MMLLS) |72 |82 |73 |80 |74 78 77
RE (MMLWLS) |72 |82 |73 |80 |74 78 77
n=100

E_MML 0.002 [0.019 |0.003 |0.005 (1.004 1.016 0.486
E_LS 0.011 |0.016 |0.01 0 0.994 1.004 0.489
E_WLS 0.011 |0.016 |0.01 0 0.994 1.004 0.489
V_MML 0.02 |0.105 |0.021 |0.104 |0.003 0.005 0.008
V_LS 0.03 [0.129 |0.029 |0.131 |0.005 0.007 0.01
V_WLS 0.03 |0.129 (0.029 [0.131 |0.005 0.007 0.01
RE (MML/LS) 67 81 72 79 68 76 79
RE (MML/WLS) |67 81 72 79 68 76 79
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Table 3.1.6 Simulation results (GL), b _=0.5, by =3, b,=6, b,=0.5, p=0.5.

b,=0.5, b =3, b,=6, b,=0.5, p=0.5.

n=20 . My M, M, O, o, Y
E_MML -0.008 |-0.042 |-0.011 |-0.003 [1.039 1.086 0.477
E_LS -0.025 |-0.025 |0.054 |0.018 |[0.979 1.01 0.485
E_WLS -0.032 |-0.025 |0.065 |0.021 |0.974 1.006 0.483
V_MML 0.258 [0.164 |0.107 |0.283 (0.02 0.016 0.011
V_LS 0.279 [0.219 |0.226 |0.352 |0.033 0.025 0.017
V_WLS 0.277 (0.182 |0.292 |0.366 |0.042 0.02 0.015
RE (MMLLS) |92 |75 |47 [80 |61 66 64
RE (MML/WLS) (93 90 37 77 48 84 73
n=30

E_MML -0.005 [-0.02 |[-0.01 |-0.01 |1.025 1.054 0.485
E_LS -0.016 [-0.009 [0.037 [0.005 |0.983 1.005 0.489
E_WLS -0.021 |-0.01 |0.045 [0.007 |0.98 1.004 0.488
V_MML 0.174 |0.106 (0.073 [0.182 |0.012 0.01 0.007
V_LS 0.188 |0.145 [0.159 [0.227 |0.022 0.017 0.011
V_WLS 0.188 (0.121 [0.204 [0.239 |0.029 0.013 0.01
RE (MML/LS) 93 73 46 80 55 60 61

RE (MML/WLS) |92 88 36 76 44 76 69
n=100

E_MML -0.005 |-0.006 |0.002 |-0.003 [1.004 1.015 0.494
E_LS -0.01 |-0.005 |0.007 |-0.002 [0.995 1.001 0.496
E_WLS -0.01 |-0.003 |0.008 |-0.004 [0.995 1.001 0.496
V_MML 0.051 [0.03 |0.021 |0.054 |0.004 0.003 0.002
V_LS 0.055 [0.042 |0.049 |0.068 |0.007 0.005 0.004
V_WLS 0.056 |0.035 [0.064 [0.072 |0.009 0.004 0.003
RE (MML/LS) 92 72 43 79 50 56 62
RE (MML/WLS) |91 85 33 75 38 72 65

86



Table 3.1.7 Simulation results (GL), b,= b = b,= b,=1, p=0.5.

b.=1, b =1, b,=1, b,=1, p=025.

n=20 . My M, M, O, o, Y
E_MML 0.002 |-0.007 |0.01 -0.003 |1.049 1.101 0.474
E_LS 0.002 |-0.007 |0.009 |-0.005 [0.986 1.011 0.485
E_WLS 0.002 |-0.007 |0.009 |-0.005 [0.986 1.011 0.485
V_MML 0.153 [0.152 |0.154 |0.155 |[0.021 0.019 0.016
V_LS 0.166 [0.164 |0.164 |0.166 [0.02 0.018 0.017
V_WLS 0.166 [0.164 |0.164 |0.166 |[0.02 0.018 0.017
RE (MML/LS) 92 93 94 93 102 108 91

RE (MML/WLS) (92 93 94 93 102 108 91
n=30

E_MML 0.002 (0.003 |0 -0.01 [1.082 1.063 0.483
E_LS 0.003 |0.004 |-0.003 [-0.012 {0.991 1.007 0.49
E_WLS 0.003 |0.004 |-0.003 [-0.012 {0.991 1.007 0.49
V_MML 0.102 (0.103 [0.103 [0.097 |0.013 0.012 0.011
V_LS 0.11 0.111 (0.111 [0.106 |0.013 0.012 0.011
V_WLS 0.11 0.111 (0.111 [0.106 |0.013 0.012 0.011
RE (MML/LS) 93 93 92 91 98 99 92
RE (MML/WLS) |93 93 92 91 98 99 92
n=100

E_MML -0.001 {0.004 |-0.003 |-0.008 [1.007 1.016 0.493
E_LS -0.003 {0.002 |-0.003 |-0.009 [0.995 1 0.495
E_WLS -0.003 {0.002 |-0.003 |-0.009 [0.995 1 0.495
V_MML 0.03 [0.029 |0.033 |0.03 |0.004 0.003 0.003
V_LS 0.033 [0.03 |0.035 |0.033 |0.004 0.003 0.004
V_WLS 0.033 (0.03 |[0.035 [0.033 |0.004 0.003 0.004
RE (MML/LS) 93 97 92 90 90 93 91

RE (MML/WLS) (93 97 92 90 90 93 91

87




Table 3.1.8 Simulation results (GL), b _=0.5, b‘y =1, b =1, b,=0.5, p=0.5.

b,=0.5, b =1, b,=1, b,=0.5, p=0.5.

n=20 . My M, M, O, o, Y
E_MML -0.005 |-0.01 |0.01 0.004 |1.048 1.098 0.477
E_LS -0.02 |-0.018 |0.009 |-0.005 [0.982 1.011 0.485
E_WLS -0.025 |-0.02 |0.009 |-0.006 [0.979 1.009 0.483
V_MML 0.258 [0.211 |0.154 |0.235 [0.021 0.018 0.014
V_LS 0.284 [0.232 |0.164 |0.258 |0.027 0.022 0.018
V_WLS 0.277 (0.226 |0.164 |0.271 |0.033 0.02 0.017
RE (MML/LLS) |91 91 94  |oi 79 83 78
RE (MMLWLS) |93 |93 |94 |87 |64 94 84
n=30

E_MML -0.002 (0.001 (O -0.007 {1.031 1.062 0.485
E_LS -0.012 |-0.003 [-0.003 |-0.014 |0.987 1.006 0.49
E_WLS -0.016 [-0.004 (-0.003 |{-0.014 |0.983 1.005 0.489
V_MML 0.174 |0.142 |0.103 [0.146 |0.014 0.011 0.009
V_LS 0.191 |0.155 |0.111 [0.164 |0.018 0.015 0.012
V_WLS 0.188 |0.152 (0.111 [0.172 |0.023 0.013 0.011
RE (MML/LS) 91 91 92 89 74 75 77
RE (MML/WLS) (93 93 92 85 60 86 81
n=100

E_MML -0.005 {0.001 |-0.003 |-0.008 [1.006 1.016 0.494
E_LS -0.009 |-0.003 |-0.003 |-0.011 [0.996 1.001 0.495
E_WLS -0.01 |-0.002 |-0.003 |-0.011 [0.995 1.001 0.496
V_MML 0.051 [{0.038 |0.033 |0.044 |0.004 0.003 0.003
V_LS 0.057 [0.041 |0.035 |0.051 |0.006 0.004 0.004
V_WLS 0.056 |0.041 |0.035 [0.053 |0.007 0.004 0.004
RE (MML/LS) 90 94 92 88 65 70 79
RE (MMLWLS) |91 |94 |92 (83 |51 81 79
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It can be seen from these tables that the MML estimators are enormously
more efficient than both the LS and the WLS estimators. A disconcerting
feature of the latter is that their efficiencies relative to the MML estimators

generally decrease as the sample size n increases. The cases where p = 0.2

and 0.9 are similar and are, therefore, not reported here.

3.1.2 Robustness

Another characteristic we would like our estimator to have is robustness. This
means that it maintains its good properties under deviations from the assumed
distribution and also under situations where outliers and other anomalies are
present in the data. In order to study robustness properties of our MML
estimators we propose some deviations from our assumed distribution and see
how the estimators behave in each case. We choose the distributions most
favorable to the least square method and that is the logistic distributions

(b.=1, by:l, b,=1, b,=1), and we consider three types of deviations from

the assumed distribution:

1. Outlier Model:

a. Outliers among the x,’s and u,’s: Here n-r of the x,’s (we don’t know
which) come from GL( 4, , o0,) and r come from GL(u_,40,) wherer=[0.5
+ 0.1 n]. Also, n-r of the u,’s come from GL(x,, 0,) and r come from
GL(uy,,40)).

b. Outliers in the errors: Here n-r of the e,,’s (we don’t know which) come
from GL(0, o,,) and r come from GL(0, 40,,) where r =[0.5 + 0.1 n]. The

same holds for the e,,’s.
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c. Outliers among the x,’s, u,’s and also in the errors: This is a combination

of cases (a) and (b) above.

2. Mixture Model:

a. A mixture in thex;’s and u,’s:
e 090 GL(u,, o) +0.10 GL(u,, 40,): 90% of the x, observations
come from GL(x_, o,) and 10% come from GL(u_,40,).
e 0.90 GL(u

o,) +0.10 GL(y,, 40,): 90% of the u,’s come from

u’ u’

GL(u,, 0,) and 10% come from GL( 4, , 40,).
b. A mixture among the errors: 0.90 GL(0, o,,) + 0.10 GL(0, 40,,). 90%
of the ¢,,’s come from GL(0, o,,) and 10% come from GL(0, 40,,). The
same holds for the e,,’s.
c¢. A mixture among the x,’s , u,’s and also in the errors: This is a

combination of cases (a) and (b) above.

3. Contamination Model:

a. Contamination in the x,’s and u,’s:

e 090 GL(u,, o,) + 0.10 U(a,,b;). 90% of the x,’s come from
GL(u,, o0,) and 10% come from a uniform distribution U(a,,b,)
where, a,= ¢ - o0,/2 and b= u+ o,/2. Here since we
assume /£ =0 and 0,=1, we have a,=-0.5 and b, =0.5.

e 090 GL(y,, o)) + 0.10 U(a,,b,). 90% of the u,’s come from
GL(u,, o0,) and 10% come from a uniform distribution U(a,,b,)
where, a,= u,- 0,/2 and b,= u, + o,/2. Since we assume g, = 0

ando, =1, we have a,=-0.5 and b,=0.5.
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b. Contamination in the errors: 0.90 GL(0, o,,) + 0.10 U(a, b). 90% of the
e,;;’s come from GL(0, o,,) and 10% come from U(a, b), where a = -0,,/2
and b = 0,,/2. The same holds for the e,,’s.

c. Contamination in thex,’s and u;’s and also in the errors: This is a

combination of cases (a) and (b) above.

We consider the above models with 3 different values of p (0.5, 0.2 and 0.9).
It may be noted that in the models above Var(X), Var(U) and the variances of
the errors change from the usual cases where no deviation from the model is
assumed. Thus, the true values ofo,, o,and pare shifted. In order to
compare the MML and the LS estimators below we can compare their
variances to see which has a lower variance. Thus, we will simply look at the
RE (relative efficiency) of the LSE to the MMLE. Since we consider only the
case whereb =1, by =1, b,=1, b, =1, the LSE and the weighted LSE are

exactly the same. Therefore, we only report the relative efficiency with
respect to the LS estimators. Although we have not reported the simulated
means, but the means of the LS and the MML estimators are essentially the
same. In fact, the bias in all the estimators is negligible. Notice from the
tables below how inefficient the LS estimators are relative to the MML
estimators, even for small n (n = 20). The LS estimators are highly affected if
there are outliers in the data. The MML estimators are calculated such that
small weights are assigned to extreme observations. Thus, they are less

affected when there are outliers in the data.
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1. Outlier Model

Table 3.1.9 Simulation results, outliers among the x,’s and u,’s (GL).

p =0.5, Outlier Model (a), b,=1, b =1, b,=1, b,=I.

n=20 i, B4, |8, |0 o, P
V_MML 0.228 [0.172 |0.229 |0.172 |0.094 0.027 0.014
RE (MML/LS) 57 78 56 77 58 72 83
n=30

V_MML 0.148 (0.117 |0.149 [0.108 |0.054 0.016 0.008
RE (MML/LS) 54 75 53 73 46 62 78
n=100

V_MML 0.042 [0.034 |0.04 |0.034 |0.012 0.004 0.002
RE (MML/LS) 51 76 54 76 30 49 68

Table 3.1.10 Simulation results, outliers among the errors (GL).

p =0.5, Outlier Model (b), b =1, b =1, b, =1, b =1.

n=20 deo Myl K/ |0 o, p
V_MML 0.153 |0.209 |0.153 |0.211 |0.02 0.072 0.017
RE (MML/LS) 92 62 93 62 104 60 71
n=30

V_MML 0.102 |0.139 |0.103 |0.128 |0.013 0.042 0.011
RE (MML/LS) 93 59 93 56 97 48 67
n=100

V_MML 0.03 |0.04 |[0.03 |[0.04 |0.004 0.009 0.003
RE (MMLLS) |93 |56 96 55 89 32 65
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Table 3.1.11 Simulation results, outliers among the errors, the x;’s

and the u,’s (GL).

p =0.5, Outlier Model (¢), b =1, b =1, b,=1, b,=1.

n=20 M, ,Lly H, H, 0, 0, Y
V_MML 0.228 [0.228 |0.229 |0.231 |0.094 0.09 0.037
RE (MML/LS) 57 58 56 58 58 60 66
n=30

V_MML 0.148 |0.152 |0.149 [0.14 |0.054 0.053 0.024
RE (MML/LS) 54 55 53 52 46 49 60
n=100

V_MML 0.042 [0.043 |0.04 |0.043 |0.012 0.011 0.007
RE (MML/LS) 51 51 54 51 30 34 53

2. Mixture Model

Table 3.1.12 Simulation results, mixture in the x,’s and u,’s (GL).

p =0.5, Mixture Model (a), b =1, b =1, b, =1, b,=1.

n=20 M, H, H, M, 0, 0, Y
V_MML 0.233 [0.175 |0.241 |0.171 |0.127 0.029 0.016
RE (MMLLS) |58 |79 58 77 64 74 84
n=30

V_MML 0.151 |0.114 |0.149 [0.113 |0.074 0.018 0.011
RE (MMLLS) |55 |76 54 75 53 64 80
n=100

V_MML 0.042 [0.033 |0.04 |0.03 |0.016 0.004 0.002
RE (MML/LS) 52 75 49 71 35 50 69
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Table 3.1.13 Simulation results, Mixture among the errors (GL).

p =0.5, Mixture Model (b), b, =1, b, =1, b,=1, b, =1.

n=20 Mo Myl K, o, o, P
V_MML 0.153 |0.21 0.155 (0.217 |0.02 0.096 0.018
RE (MML/LS) 93 63 93 61 102 67 73
n=30

V_MML 0.1 0.136 |0.099 |0.135 |0.013 0.053 0.012
RE (MML/LS) |92 59 91 60 97 53 70
n=100

V_MML 0.033 [0.04 |0.029 |0.036 |(0.003 0.013 0.004
RE (MML/LS) (91 56 94 55 87 36 64

Table 3.1.14 Simulation results, mixture among the errors, the x;’s

and the u,’s (GL).

p =0.5, Mixture Model (c), b =1, by =1, b, =1, b, =1.

n=20 Y A o, P
V_MML 0.227 10.243 |0.237 |0.244 |0.125 0.1 0.021
RE (MML/LS) 57 58 57 58 63 68 70
n=30

V_MML 0.145 |0.145 |0.146 |0.152 |0.073 0.054 0.014
RE (MML/LS) 54 56 53 55 52 53 63
n=100

V_MML 0.039 (0.043 [0.04 |[0.044 |0.018 0.011 0.004
RE (MML/LS) 48 52 50 50 37 36 51

94




3.Contamination Model:

Table 3.1.15 Simulation results, contamination in the x,’s and u,’s (GL).

p =0.5, Contamination Model (a), b, =1, b, =1, b,=1, b, =1.

n=20 M, H, H, H, 0, 0, Y
V_MML 0.127 [0.142 |0.127 |0.144 |0.02 0.019 0.016
RE (MML/LS) 87 92 86 91 100 108 91
n=30

V_MML 0.086 (0.1 0.083 |0.095 |0.013 0.012 0.011
RE (MML/LS) 85 90 86 91 96 99 90
n=100

V_MML 0.024 [0.028 |0.024 |0.028 |0.004 0.003 0.003
RE (MML/LS) |82 90 84 95 91 91 92

Table 3.1.16 Simulation results, contamination among the errors (GL).

p =0.5, Contamination Model (b), b =1, by =1, b, =1, b, =1.

n=20 M, M, H, H, O, 0, P
V_MML 0.153 |0.133 |0.146 [0.131 [0.021 0.019 0.014
RE (MML/LS) 93 89 93 89 103 105 88
n=30

V_MML 0.104 |0.089 |0.097 |0.089 |0.013 0.012 0.009
RE (MML/LS) 91 88 92 89 96 98 87
n=100

V_MML 0.031 |0.027 [0.03 [0.025 |0.004 0.003 0.003
RE (MML/LS) 91 85 93 86 92 92 86
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Table 3.1.17 Simulation results, contaminations among the errors,

the x;’s and the u,’s (GL).

p =0.5, Contamination Model (c), b =1, by=1, b, =1, b =1.

n=20 H, My M, M, O, 0, P
V_MML 0.126 |0.126 |0.133 |0.127 |0.02 0.018 0.016
RE (MML/LS) 86 88 87 88 103 105 89
n=30

V_MML 0.086 |0.087 |0.082 [0.083 |0.013 0.011 0.01
RE (MML/LS) |85 86 85 86 96 97 88
n=100

V_MML 0.024 |0.025 |0.025 |0.026 |0.004 0.003 0.003
RE (MML/LS) 84 86 83 82 91 90 85

The results for p = 0.2 and 0.9 are found in appendix D.

3.2 Student’s t distribution

Here, we also consider different values of the degrees of freedom for each t

distribution. We repeat the above simulation study for the t-distribution.

3.2.1 Efficiency
Here, we compare the variances of our MMLE to the corresponding diagonal

elements of the inverse of Fisher information matrix. We notice how close the

values are, even for small n. Note that we have multiplied both entries by n.
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Table 3.2.1 Simulated variances of the MMLE vs. the diagonal elements

of I"' (Student’st), r, = r, =71, =1, =4.

y u

n=20 M, Hy |l | K1y | By | By | O | O, | Oy | P

n*v_MMmL | 1.54 | 161|152 | 152|120 |1.18 | 1.02 | 0.94 | 0.90 | 0.34
n*Fisher | 1.40 | 1.40|1.40|1.40|1.05 |1.05 | 044 |0.34 | 0.33 | 0.27
n=30
n*V_.MML | 1.49 | 1.47 | 1.49 | 1.46 | 1.11 1.13 | 0.82 | 0.67 | 0.67 | 0.33
n*Fisher | 1.40 | 1.40|1.40|1.40|1.05 |1.05 | 044 |0.34 | 0.33 | 0.27
n=50
n*V_MML | 1.535 | 1.50 | 1.46 | 1.38 | 1.10 | 1.08 | 0.78 | 0.58 | 0.56 | 0.33
n*Fisher | 1.4 1.40 | 1.40 | 1.40 | 1.05 | 1.05 | 0.44 | 0.34 | 0.33 | 0.27
n=100
n*V._MML | 1.50 | 1583 | 1.33 134|111 |1.01 | 0.58 | 0.45 | 0.43 | 0.30
n*Fisher | 1.40 | 1.40|1.40|1.40|1.05 |1.05 | 0.44|0.34 | 0.33|0.27

Similar tables can be obtained for different degrees of freedom.

We now compare our MML estimators to the LS estimators and consider three

values of the degrees of freedom, as shown in the tables that follow.
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Table 3.2.2 Simulation results (Student’s t), r.= r, = r,= r,=4, p=0.5.

r.=4, r.=4, r,=4, r,=4, p=05.

n =20 M, Hy M, A, O, 0, Y
E_MML -0.004 |-0.002 |0.004 |0.001 (1.157 1.212 0.478
E_LS -0.003 |-0.003 |0.005 |0.001 |0.976 1 0.489
E_WLS -0.003 {-0.003 |0.005 |0.001 |[0.976 1 0.489
V_MML 0.077 [0.081 |0.076 |0.076 [0.051 0.047 0.017
V_LS 0.103 [0.105 |0.099 |0.1 0.054 0.047 0.022
V_WLS 0.103 [0.105 |0.099 |0.1 0.054 0.047 0.022
RE (MMLLS) |75 |76 |76 |76 |95 101 79
RE (MMLWLS) |75 |76 |76 |76 |95 101 79
n=230

E_MML 0.005 [0.01 0.003 |0 1.11 1.145 0.485
E_LS 0.009 [0.014 |0.007 |0.003 |[0.979 0.999 0.491
E_WLS 0.009 [0.014 |0.007 |0.003 |[0.979 0.999 0.491
V_MML 0.05 [0.049 |0.05 |0.049 |0.027 0.022 0.011
V_LS 0.067 [0.066 |0.066 |0.066 |0.036 0.028 0.015
V_WLS 0.067 [0.066 |0.066 |0.066 |0.036 0.028 0.015
RE (MML/LS) 74 75 75 74 75 79 74
RE (MML/WLS) |74 75 75 74 75 79 74
n=100

E_MML -0.003 {-0.004 |-0.001 |0 1.043 1.053 0.493
E_LS -0.003 |-0.004 |-0.001 |0.002 |0.987 0.992 0.494
E_WLS -0.003 |-0.004 |-0.001 |0.002 |0.987 0.992 0.494
V_MML 0.015 [0.015 |0.013 |0.013 |0.006 0.005 0.003
V_LS 0.02 (0.022 |0.019 |0.019 |(0.011 0.009 0.005
V_WLS 0.02 (0.022 |0.019 |0.019 (0.011 0.009 0.005
RE (MML/LS) 74 71 69 71 51 53 56
RE (MML/WLS) |74 71 69 71 51 53 56
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Table 3.2.3 Simulation results (Student’s t), r =4, r, =6, r,=4, r,=6, p=0.5.

r.=4, r,=6, r,=4, r,=6, p=0.5.

n=20 M, Hy M, A, O, 0, Y
E_MML 0.009 [0.004 |0.003 |0.007 (1.154 1.143 0.501
E_LS 0.01 |0.004 |0.001 |0.007 |0.972 1.005 0.48
E_WLS 0.01 |0.004 |0.001 |0.007 |0.972 1.005 0.48
V_MML 0.075 [0.068 |0.074 |0.068 [0.05 0.024 0.015
V_LS 0.101 [0.08 |0.097 |0.08 |0.053 0.023 0.018
V_WLS 0.101 [0.08 |0.097 |0.08 |0.053 0.023 0.018
RE (MMLLS) |75 |86 |76 |85 |95 101 88
RE (MMLWLS) |75 |86 |76 |85 |95 101 88
n=30

E_MML -0.006 {0.001 |0.006 |0 1.114 1.097 0.506
E_LS -0.003 {0.002 |0.007 |-0.002 [0.984 1.006 0.487
E_WLS -0.003 {0.002 |0.007 |-0.002 [0.984 1.006 0.487
V_MML 0.05 |[0.045 |0.05 |0.045 |0.046 0.017 0.01
V_LS 0.073 |0.056 |0.068 |0.053 |0.073 0.024 0.012
V_WLS 0.073 |0.056 |0.068 |0.053 |0.073 0.024 0.012
RE (MML/LS) 69 81 74 85 63 72 83
RE (MMLWLS) |69 |81 74 |85 |63 72 83
n=100

E_MML -0.005 {-0.003 |0.002 |-0.002 [1.048 1.043 0.5
E_LS -0.006 [{-0.004 |0.003 |0 0.99 1.001 0.491
E_WLS -0.006 [{-0.004 |0.003 |0 0.99 1.001 0.491
V_MML 0.014 [0.013 |0.015 |0.013 |0.006 0.004 0.003
V_LS 0.02 |0.015 |0.021 |0.016 |0.012 0.005 0.004
V_WLS 0.02 |0.015 |0.021 |0.016 |0.012 0.005 0.004
RE (MML/LS) 72 85 73 80 49 74 68
RE (MML/WLS) |72 85 73 80 49 74 68
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Table 3.2.4 Simulation results (Student’s t), r =6, r, =3, r,=3, r,=6, p=0.5.

r,=6, r,=3, r,=3, r,=6, p=0.5.

n=20 . My M, M, O, o, Y
E_MML -0.002 {-0.002 |0.000 |-0.001 [1.145 1.192 0.481
E_LS -0.003 |-0.002 |0.003 |0.000 [0.948 0.966 0.492
E_WLS -0.003 |-0.002 |0.003 |0.000 [0.934 0.973 0.477
V_MML 0.066 [0.08 |0.084 |0.070 |0.057 0.065 0.018
V_LS 0.076 [0.127 |0.147 |0.092 |0.086 0.077 0.025
V_WLS 0.076 [0.127 |0.147 |0.092 |0.109 0.063 0.024
RE (MML/LS) 87 63 57 76 67 84 72
RE (MML/WLS) |87 63 57 76 53 102 74
n=30

E_MML 0.000 [-0.001 [0.002 [0.004 |1.112 1.140 0.490
E_LS -0.002 (0.000 [0.003 [0.004 |0.963 0.977 0.497
E_WLS -0.002 {0.000 |0.003 |0.004 |0.952 0.983 0.485
V_MML 0.042 |0.051 |0.056 [0.047 [0.031 0.031 0.011
V_LS 0.049 |0.088 [0.102 [0.064 |0.063 0.071 0.018
V_WLS 0.049 |0.088 |0.102 [0.064 [0.081 0.056 0.018
RE (MMLLS) |86 |59 |54 |72 |50 43 64
RE (MML/WLS) |86 59 54 72 39 55 64
n=100

E_MML -0.001 {-0.006 |0.000 |0.005 |[1.048 1.051 0.500
E_LS 0.000 |-0.006 |0.002 |0.005 (0.976 0.975 0.504
E_WLS 0.000 [-0.006 |0.002 |0.005 |[0.969 0.981 0.495
V_MML 0.012 {0.015 |0.015 |0.013 |0.007 0.004 0.003
V_LS 0.014 [0.024 |0.029 |0.018 |0.059 0.023 0.007
V_WLS 0.014 |0.024 |0.029 [0.018 |0.074 0.021 0.007
RE (MMLLS) |85 |63 |53 |74 12 19 43

RE (MMLWLS) |85 |63 |53 |74 |10 21 44
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3.2.2 Robustness

We choose the case of equal degrees of freedom for each variable (r, =4, r,

=4, r, =4, r, =4), and we will assume the following deviations from the

assumed distribution:

Outlier Model:

a. Outliers among the x,’s and u,’s: Here n-r of the x,’s (we don’t know

which) come from the distribution with p.d.f. given in equation (2.5.1);

and r of the x;’s come from same distribution with ¢, multiplied by 4.
Also n-r of the u;’s (we don’t know which) come from the distribution
with p.d.f. given in equation (2.5.3); and r of the u,’s come from same
distribution with o, multiplied by 4, where r =[0.5 + 0.1 n].

b. Outliers in the errors: Here n-r of the ¢,,’s (we don’t know which)

come from a distribution with p.d.f. given in equation (2.5.2) and r

come from the same distribution with o,, multiplied by 4. n - r of the
e,;’s (we don’t know which) come from a distribution with p.d.f.
given in equation (2.5.4) and r come from the same distributiono,,

multiplied by 4, where r =[0.5 + 0.1 n].

c. Outliers among the x;’s , u,’s and also in the errors: This is a

combination of cases (a) and (b) above.
Note again that the true values of o,, 0, and p are shifted. In order to

compare the MML and the LS estimators below we simply compare their

variances to see which has a lower variance. Thus, we will simply look at the

101



RE (relative efficiency) of the LSE to the MMLE. Since we consider only the
case wherer, =4, r, = 4, r, =4, r, =4, the LSE and the weighted LSE are

exactly the same and thus we only compare the LS to the MML estimators.

Table 3.2.5 Simulation results, outliers among the x;’s and u,’s

(Student’s t).

Outlier Model (a), r, =4, r, =4, 1, =4, 1, =4

n=20 M, Hy M, M, O, 0, Y
E_MML 0.005 [0.005 |-0.003 |0.000 (1.639 1.351 0.601
E_LS 0.004 [0.005 |-0.001 |0.000 (1.485 1.156 0.631
V_MML 0.116 [0.086 |0.113 |0.087 |0.224 0.061 0.018
RE (MMLLS) |46 |63 |46 |62 |78 84 78
n=30

E_MML -0.004 {-0.003 |-0.006 |0.002 [1.551 1.27 0.605
E_LS -0.008 {-0.003 |0.001 |0.009 (1.511 1.161 0.641
V_MML 0.069 [0.054 |0.069 |0.054 |0.135 0.037 0.012
RE (MML/LS) 40 59 41 59 55 62 72
n=100

E_MML 0.003 [0.005 |-0.004 |0.002 (1.412 1.154 0.609
E_LS 0.003 [0.005 |-0.003 |0.000 (1.569 1.169 0.664
V_MML 0.02 |0.016 |0.019 |0.016 |0.054 0.012 0.003
RE (MML/LS) 34 56 38 55 17 17 53
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Table 3.2.6 Simulation results, outliers among the errors (Student’s t).

Outlier Model (b), r, =4, r, = 4, r, =4, 1, =4

n=20 M, My M, A, O, 0, Y
E_MML 0.007 (0.012 |-0.004 {-0.002 |1.156 1.62 0.368
E_LS 0.005 {0.009 |-0.007 |-0.005 [0.975 1.415 0.36
V_MML 0.076 [0.108 |0.073 |0.107 |0.049 0.188 0.02
RE (MML/LS) 74 51 76 50 96 87 72
n=30

E_MML -0.004 {-0.001 |0.001 |0.000 (1.109 1.502 0.378
E_LS 0.000 [-0.003 |0.001 |-0.001 [0.98 1.422 0.359
V_MML 0.048 [0.066 |0.051 |0.066 |(0.027 0.104 0.013
RE (MMLLS) |71 |44 |76 |46 |76 59 67
n=100

E_MML 0.000 [-0.004 |0.002 |0.001 ([1.049 1.336 0.397
E_LS -0.002 {-0.006 |0.001 |0.004 [0.995 1.437 0.357
V_MML 0.016 [0.018 |0.014 |0.020 |0.006 0.015 0.003
RE (MML/LS) 71 45 74 45 40 23 46
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Table 3.2.7 Simulation results, outliers among the errors, the x;’s

and u,’s (Student’s t).

p =0.5, Outlier Model (¢), r, =4, r, =4, 1, =4, 1, =4

n=20 M, H, H, M, 0, 0, Y
E_MML 0.003 [0.005 |-0.002 |0.002 [1.633 1.715 0.476
E_LS 0.001 {0.004 |-0.004 |-0.001 (1.478 1.517 0.484
V_MML 0.113 |0.114 |0.115 [0.115 |0.206 0.206 0.04
RE (MML/LS) 48 48 45 46 79 85 69
n=30

E_MML 0.004 [0.006 |0.002 |0.000 (1.544 1.604 0.478
E_LS 0.005 [0.007 |0.007 |0.001 ([1.502 1.539 0.484
V_MML 0.072 |0.072 |0.068 [0.071 |0.12 0.133 0.027
RE (MML/LS) |43 42 41 44 56 70 63
n=100

E_MML 0.004 {0.002 |0.000 |-0.007 [1.394 1.417 0.489
E_LS 0.006 [-0.001 |-0.007 |-0.015 [1.529 1.556 0.488
V_MML 0.019 [0.021 |0.019 |0.02 |0.022 0.016 0.006
RE (MML/LS) 40 39 39 38 23 25 38

Simulations were done with mixture and contamination models as well. The
MMLE were found to be more robust than the LSE having lower variance and
less bias in all the cases. We do not reproduce the results as they are similar
to those given in Tables 3.1.12-3.1.17.

Fortran programs used in the simulations are given in Appendix E.
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CHAPTER 4

HYPOTHESIS TESTING

We are often interested in testing the hypothesis that two population means

are the same. Thus we may be interested in testing a hypothesis such as:

ol

Note that since u,=pu,, +6 4y, and u =uy, +6 u,, testing the

hypothesis H, above is equivalent to testing:

- 0
H,: s ={ H } or equivalently, H : e i ={ }
ﬂy/x ﬂv/u ltly/x _ltlv/u 0

In order to test H,, we define a Hotelling type 7T’ statistic based on the

MMLE given in sections 2.4 and 2.5. We denote it by T%. We also give the
corresponding test based on the LSE, T>. We derive the noncentrality

parameters in the asymptotic distributions of 7% and T? and, thereby, show

that the former has higher power. For small to moderate sample sizes, we
simulate values of the power. We show that the T? test has higher power
than the T2 test. We compare 7> with the test statistic given by Tiku and

Singh (1982), Tg, which is based on censored samples. We show that, for
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testing H,, T? has overall higher power than the 7, test. It is interesting to

note how well Tg competes with the sophisticated test statistic, f’z, for

symmetric bivariate distributions. Finally, we show that using the MMLE
derived in sections 2.4 and 2.5, we can obtain an efficient estimator of
Mahalanobis distance. We show that, using the MMLE, our estimator of
Mahalanobis distance has less bias and smaller variance than if we were to use

the LSE.
4.1 Generalized Logistic Distribution
4.1.1 The test based on the MML estimators

Lemma 4.1.1

(a) The MMLE . (for a given o, )is the BAN (best asymptotically normal)

2
. . . N o
estimator of £ _and has asymptotic variance Var(2 )= ————.
(b, +Dm,,
(b) The MMLE /i, (for a given o, ) is the BAN estimator of g, and has

2

. ) N o,
asymptotic variance Var(i,) = W .
« T Dmy,
Proof:
We can write
dlnL n (b, +D)
=— 2 " N(a. - LB 7.
aﬂx O-l O-l ; ( 1i IBII 1(7) )
_ b+

{ " ((bx +1)™ _ali)+iiﬁli (x4 —4,)

o, i=1 O, =
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(b +1)
{ Z:Bu Xy — Dymy, — ,U_m

o, 0, = o,
M[Ku Dllo-l_ll'lx]'
01
Thus,
x 1 xd

w, o}

Since |im— {BBI;L a;ZL} 0,

the modified maximum likelihood equation = 0 is asymptotically

X

equivalent to the maximum likelihood equation = 0. From the above

X

olnL

form of
ou,

, the result follows.

The same is true for jI, since

dlnL _dlnL (b, +Dm, .
=— =g, 0)-u,].
o, ou, o,
Therefore, 41, (for a giveno, ) is the BAN estimator with asymptotic variance
2

o
Var(fl )= ———.
() (b, +Dm,,
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Lemma 4.1.2:

(a) The MMLE g, (for given € and 0,,) is the BAN estimator of x , and

2

has asymptotic variance Var(f,,,) = =

(b, +Dmy,
(b) The MMLE 4,,, (for given @ and o,,) is the BAN estimator of x,,, and
02
has asymptotic variance Var(4,, )= ———.
(b, +)m,,
Proof: dinL can be written as
aILly/)c

aln L* n (b‘ +1) n
- - a. — B,z
a;uy/x 0,, o,, ;( 2i ﬂZl 2(3i) )

(b, +1) 1 (& n n
=7 {_Al +_(Zﬁ2iy(i) _’uy/legzi _QZﬁZix(i)jj|
0,5, 0, \i=l i=1 i=1
b, +m,, | — -  AOC
- >—2”{yu _oxy _A_ﬂw}
0,5, m,

Thus, we have (for given 6 and o, )

dlnL - alnL* _(by +1)m12 L&
all'ly/x - alLly/)c 0-22.1

y/x _Il'ly/x °

Therefore, the conditional distribution of 4, (given € and o0,,) is

asymptotically normal with mean . and asymptotic variance
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2
N o . A e
Var(i,,,) = ——2L Since € converges to# as n tends to infinity, the
(b, +m,,

conditionality on @ can be removed.

Similarly, we can write

dInL _ dlnL (b, +Dm,, P

- 2 viu _ltlv/u]‘
all'lvlu aIl'lV/u 02.1

Therefore, f1,, (for given € and o,,) is BAN with asymptotic variance

viu

2
2.1

Var 1 ="
(ﬂv/u) (bv +1)m22

We have shown that g, and & , are asymptotically normal. Thus, the

ylx

distribution of the vector v/n (ftx AL ,x) is asymptotically bivariate normal with

mean vector v/n (/,tx, u, ,x) and estimated variance-covariance matrix

A 6, 0 . 6’ . né;
le{ o },where 6,=—"——and 6, =—=—.
0 6, m, (b, +1) myy (b, +1)

Also since 4, and f#,,, are asymptotically normal, the distribution of the

viu

vector vn (ﬁu, a, ,u) is asymptotically bivariate normal with mean vector

Jn (u,,4,,,) and estimated variance-covariance matrix
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A 6, 0 ) né? . né
Q, :{ 2 ] where 6,, =——— 6, =—— 21—
0 & m,, (b, +1)

It follows that the distribution of the vector/n (/ftx -, A, ,u) under

H, is asymptotically bivariate normal with zero mean vector and an estimated

variance-covariance matrix

1
and
{mn(b +1) mzl(bu+1)}

o 1 1
Gyv =no,, + .
my, (b, +1)  my, (b, +1)

Thus, to test H, we define the test statistic:

. ~ ~ ~ A~ A — I[Zx _lizu
Tz:nl;ux_luu luy/x_luv/u] Q 1|:Ia _Ia :|a (411)
y/x viu

which can also be written as

Since 6, converges to o, and &,, converges too,, as n goes to infinity, the

null distribution of 7%is asymptotically chi-square with 2 degrees of freedom.

110



Under H,, asymptotically, the distribution of T? is non-central chi-square

with 2 degrees of freedom and non-centrality parameter

7/_2 ﬂ ﬂu n(/u)/x - v/u) Where

o’ o’

xul

vl

) ) 1 1
o., =no, + and
m,, (b, +1) my (b, +1)

2 2 1 1
0, =no,, + .
my,(b, +1) my(b, +1)
4.1.2 The test based on the LS estimators

For given o, =x— wb)-y)o, and fi, = —u— w®,)-w)o,.

Therefore,

2

Var(fi,) = Var(x) = Z-(y/(b,) + /(1)) and
n

2

Var(R,) = Var@) == (y/(b,)+ /().

Now, note that

oy, (W' (b)) +¥' () =Var(e,;,) =Var(Y, -0 X,)

and, since e, ’s are iid, we have

> 02, W (b,) +y () = Y Var(v, -6 X,) = Var(n(y - 6 x)).

i=1 i=1

Which gives
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2

T b +y W) = Var(y-6 ). (4.1

Now, for given 0,, and 4,

f,,=y—60x—Wb)-y)o,,

and, therefore, by using equation (4.1.2)

Var(g, ) = Var(y - 6x)= 2L/ (0, +y/ ).

Similarly, for given o,, and @,

2

Var(i,,,) =Varly = 6u)= 2L/ (b,) + y/(1).
n
Thus, based on the LSE, we have the following test statistic for testing H ;:

~ ~ \2 ~ 5 2
T2 = ”(“x:”") + "(ﬂ”’;zﬂ ) , where (4.1.3)
GXL[ G

Gl =6 (W' ®b)+y'(b,)+2p(1) and

&, =6, ) +y () + 2/ ).
Asymptotically, the null distribution of 7 *is chi-square with 2 degrees of

freedom. Under H,, T? has a non-central chi-square distribution with 2

degrees of freedom and non-centrality parameter
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22 _ n(ﬂx _lllu )2 + n(llly/x _lllv/u )2
- o o’

xu?

, Where

w2
cl, =0 (W b,)+y'(b,)+2y'(1) and
o2, =02, W b)) +y'B,)+207M).

Since 72 > A%, the T test has higher power than the T test.

For large n, the chi-square distribution gives fairly accurate approximation to

the percentage points of 72 and T*. For small sample sizes, we use

simulations to find the percentage points.

4.1.3 Comparing 7 to T * (Generalized Logistic)

We have simulated the powers of the two tests, namely, the test based on the
MMLE, ik , and the test based on the LSE, T?. We carry out simulations for

different values of n and for b =0, =b, =D, =1 (the most favorable

situation for the T > test). Note that we have used the simulated percentage
points in each case making sure that the probability of type I error () is 0.05
for both tests. The graphs given below are those of the power for increasing

values of the noncentrality parameter, H, and H, being

— O —
H,: e i ={ } and H, : e A ={ﬂ]
l[ly/x _l[lvlu O ﬂy/x _l[lvlu lll

The dotted line represents the power values of the 72 test and the solid line

represents the power values of the T? test.
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n=20 n=100

0 L L L L L L L L 0 L L L L L L L L L
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 1.8 2

Figure 4.1.1 Power graphs of T? and T *(GL), no data anomalies.

We notice that the 7' test has slightly higher power than the T * test. There
i1s a small difference between them. This is because we have assumed that
b, = l,by =1,b, =1,b, =1 which gives an advantage to the LS method because
the GL distribution with b = 1 is very close to the normal distribution. When
the underlying distributions are skew the T test has much higher power than
the T2 test. Also, in the presence of outliers in the data or other data

anomalies, notice the big difference between the two tests with T? being

superior as shown in Figure 4.1.2.

114



n=20, outlier model

power

09 -

08

0.7

power

0.4
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0.1 1

n=100, outlier model

06

05

power

Figure 4.1.2 Power graphs of 72 and T 2 (GL), data anomalies.

We notice that, even for small n, using T? is advantageous.

4.2 Student’s t distributions

4.2.1 The test based on the MML estimators

Before we define the test statistic based on the MMLE we give two lemmas.
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Lemma 4.2.1:

(a) The MMLE /4 is the BAN estimator of x and has asymptotic variance

2
rx Gl

Var(i Y= —"x%1
ar(4,) (r_+)m,,

(b) The MMLE 4, is the BAN estimator of u, and has asymptotic variance

Var(f,) = ﬁ .

Proof:

Note that

aal,r;xL (rO';xl) Z(al’ +Bizi) e,

a;ZL (; l+x1) zl B~y = 1+X1) {Z - }
Now,

alnL:alnL (l’ +1)m11[,u ]
aﬂx - all'lx Gl X

The modified maximum likelihood equation is asymptotically equivalent to

the maximum likelihood equation and from the above form the result follows.

We can do a similar operation for 2, and write

dlnL _dlnL _ (ru+1)m21[/l_ 1.

aﬂ u aﬂ u O-l u
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which implies, for the same reasons as above, that £, is BAN and has

2
ru O-l

asymptotic variance of Var(i,) = ———.
(r, + Dm,,

Lemma 4.2.2:

(@) The MMLE 4, is the BAN estimator of 4 6 and has asymptotic

. A~ ryGZZ.l
variance Var(i,, )= —————.
(r, +Dmy,

(b) The MMLE j,, is the BAN estimator of x  and has asymptotic

viu

2
1,05,

variance Var(4,,, ) = ————.
(r, +Dm,,

Proof: Note that

dlnL (r,+D¢ /
— z Cl[i](azl""ﬁZiZZ(i))

all’ly/x 0-2.1ry i=1

Assuming c,;=1 we haveZai =0. Thus,

i=1

olnL’ (r,+D| & u
= 2 By . —m -0 [B.x,
o, Tilry {Z i Yy " MMy Z i (z)}

i=1 i=1
_ (r, +Dmy, [_ 9%

2
05,1

For given 6 we have:
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alnL~alnL* (fy+1)m12w
= = 2 ylx _Il'ly/x *
aﬂy/x altly/)c GZ.lry

Therefore, 4, is BAN and has  asymptotic  variance

2
1,05,

—2>"21__ Since converges to @ as n goes to infinity, the
(r, +Dmy,

Var(i,,,) =
conditionality on @ can be removed.

Similarly,

dInL _ dlnL _ (r, +Dmy, I
aﬂv/u aIl'lV/u 0-22.1rv

viu _Il'lv/u]

and we see that 4,6 is also BAN with asymptotic variance

2
1,05,

Var(fl, )= —v-2L
ar(f,) (r, +Dm,,

r r
Now, Var(fi. — i1 )= o’ x + u and
(A= H) l[(rx+1)mn (r, +1)m21}

Var(it,, - ft,,) = 62| ——2—+— "

arlfly;, —H,ju) =04, ' .

’ (r,+Dmy,  (r, +Dmy,

Also, the covariance between 4 and g, is zero since they are orthogonal
components. Similarly, the covariance between £, and /1, is zero. Thus,
asymptotically, the distribution of the vector /n (/ftx -0, A, ,u) under

H, is bivariate normal with zero mean vector and variance-covariance matrix
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N 52 0
Q= O ., |, where
0 oy,

~ ~ r, r,
62 =né; + and
(r.+Dm,, (r, +1)m,,

~ ~ r r,
G;, =né;, s : :
(ry +1)m, (r, +Dm,,

- 0
Now, to test the null hypothesis H, : e = ={ }, we define the test
/'ly/x _Il'lv/u 0
statistic:
o A A N A A — lizx _ﬂu
T2 :nle_ﬂu Itly/x_l[lv/u] Q 1|:" _ﬁ :| (421)
ylx viu

The above test reduces to

Since &, converges to o, and &,, converges too,, as n goes to infinity, the

null distribution of 72 is asymptotically chi-square with 2 degrees of freedom.
Under H,, asymptotically, the distribution of T? is non-central chi-square

with 2 degrees of freedom and non-centrality parameter

2 n(lux _luu )2 n(/uy/x _luv/u )2
- o2 + o>

xul

, where

T
vl
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r r
o, =no; + : and
(r.+Dm,, (r, +1)m,,

ol =no? Ty T,
wi =10, + .
(r, +Dmy,  (r, +Dmy,
4.2.2 The test based on the LS estimators

Note that

~ ~ - - — 012 rx ru
Var(fi, — fi,) =Var(x —u) =Var(x)+Var(u) = — +
n

r.—=2 r,—2

and

2
D% vy -6 x,)
r.v_z

2 n

or my—%=ZVar(n—9 X)).

r,—2 i=1

y

This implies that
L;IZVCIV(; -0 ;()))
n(r, —2) © o
Since 6 converges to € as n goes to infinity we have, asymptotically,

2
r,0,,

Var(,uy,x) :m.

2
1,05,

Also, Var(ii =—2r =
(ﬂv/u) n (rv _2)

And thus,
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021 Ty T,
Var(ﬂwx v/u)_ {(l" _2) (rv_z)jl'

Thus, for testing H|, the test based on the LSE is

A, -,

, where 4.2.2)
ﬂ\/x l[lvlu

T =nli, -, B, - m,]sz‘{

u6‘
{ r, —2) (r, —2)}

2 5_2 )’ + rv .
S A () BN ()|

Qz

The distribution of the test statisticT > is also asymptotically chi-square with 2

degrees of freedom. Note that 7 can be simplified to give

=) _ n(ﬁx -n, )2 n(ﬁy/x -A,, )2 .

xu W

Under H,, the distribution of T? is asymptotically noncentral chi-square with

noncentrality parameter

- n(/u)/x_ v/u)

0'2 o’

xu2

o2, =0 —x 4 Tu and
(r,=2) (r,=2)

, where

»="

w2
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2 2

I’V r
0,2 =0, —— +— .
’ c(r,=2) ¢,(r,—2)

Here also for large n, the chi-square distribution gives a fairly accurate
approximation to the percentage points of 7% and T?*. For small sample sizes
we use simulations to find the percentage points. Since 7> > A2, the T2 test

is asymptotically more powerful than the 72 test.

4.2.3 Comparing 72 to 7> (Student’s t)

We again perform simulations for different values of n. The graphs are given

for r.=r, =r, =r, =4. Similar graphs can be obtained for different degrees

of freedom. Here also we have used the simulated percentage points in each
case for the probability of type I error (&) to be 0.05 for both tests. The

graphs given below are those of the power for testing

- 0
b A :HVS
ﬂy/x_l[lv/u O

H,: =l | {'ul} = {ﬂ} (as a particular case).
ﬂy/x _Itlv/u Il'l

The dotted line represents the power values of the 72 test and the solid line

represents the power values of the T test. Note how the solid line stays above
the dotted line even for a sample size of 20 which means that the test based on

the MMLE is more powerful than the test based on the LSE.
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power
power

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 1.2 14 1.6 1.8 2 0 02 04 06 08 1 12 14 16 1.8 2

Figure 4.2.1 Power graphs of 72 and T (Student’s t), no data anomalies.

We have also compared the powers of the two test statistics under deviations
from the true model. This is shown in Figure 4.2.2. In this case, notice how
the power of the test statistic based on the MMLE is much higher than that of
the other test. Notice also the big difference between the solid line and the

dotted line.

123



n=30, outlier model n=100, outlier model

power
power

power

Figure 4.2.2 Power graphs of 72 and T (Student’s t), data anomalies.

Remark: Using the Hotelling type T>test based on the MMLE is clearly

advantageous.

4.3 Comparing 77 to T}

To test that two multivariate distributions are identical, Tiku and Singh (1982)
introduced the statistic 7, based on censored normal samples. T, can in
particular be used to test that the population mean vectors are the same. We

will use simulations to compare the power of the 7, test to the power of the
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T? test for testing the equality of the mean vectors of two bivariate

populations.

To test the hypothesis

H,: {ﬂn} = {ﬂu} or equivalently H, : {ﬂx} = {u"} ;
Hiy Hay “y H,
Tiku and Singh (1982) proposed the statistic

-1 -1
1 1 67 0 yii
T2 =|—+—| &, & ! Y, 43.1
p (m mj [, ul]{wi} LJ (4.3.1)

where for the case of symmetric censoring m, =m, =n—2r+2rff=m,
r=[0.1n+0.5], S = ﬁ(t— f®/q),
q

t=F'(1- q), F is the standard normal CDF, q = r/n,

My =My — s By =y — oy,

-

n—r Bl
Z Xy + By + Xoepy)

1
M i=r+1

n—r
My =— 2”(;) + rﬂ(u(r-H) U,y

Li=r+l

-

B n—r
a, = — Zem) +rp(e ) + e )}; e, =y, —0 x,, 6 is the LS estimator

Li=r+1

of 4,

. 1 n—r -
My = ; Zez(;) + rﬂ(ez(m) +ez(n—r)) ; ey =V, —0u,,

i=r+l
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612 — 6121 +6_221 , OA.ZZ — 6-122 +6_222
2 2

. B_+.Bl+4AC,

6, = cA=n-2r,
2.JA(A-1)

b

Q)
B, =ro(x, ) = X)) &= - pr,
q
N L2 2 2 2
C, = zx(i) + rIB(x(r+1) + x(n—r))_m:un
i=r+l
. B, ++B}+4AC,
0y = ;

2 JAA-1)

n—r
2 2 2 a2
Z”(z’) + ”IB(”(M) tug, ., ) —mily,,

i=r+l

Bu = ra(u(n—r) - u(r+1)) > Cu

. B +4B’+4AC,
6, = ;

P 2 JA(A-)

n—r
- _ 2 2 2 2
B, =rale,, , ), € = zel(i) + €1y F €1ur) — M5 -

i=r+l
. B, +\B; +4AC,

G_
2 2.JAA-1)

n—r
_ _ 2 2 2 "2
B, =ra(ey, ) ~ey,)» C; = zezm + 1€y + €mry) — My, -

i=r+l

The rationale Tiku and Singh (1982) used is that “non-normality essentially
comes from the tails and, once, extreme observations representing the tails are

censored, there is no difference between normal and non-normal samples”.
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4.3.1 Generalized Logistic

Here we compare the powers of T2 (found in equation (4.1.1)) versus T, for

the Generalized Logistic distribution. Using the simulated percentage points

in each case, type I error (& ) is 0.05 for both tests. The graphs of the power
curves for 72 and T, are given below. The dotted line represents the power
values of the T, test and the solid line represents the power values of the T?
test. First we consider the case where b, =b, =b, =b, =1, which gives an

advantage to T, since the distributions are symmetric and close to normal

distributions.

n=20 n=100

Figure 4.3.1 Power graphs of 7° and 7, (GL), b, =b, =b, =b, =1.

We notice in Figure 4.3.1 that the power curves are close to each other with

T? having slightly higher power than T,;. However, if we change some of
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the underlying distributions to be skew, we notice the big difference between

the power curves even for small sample sizes. This is shown in Figure 4.3.2.

n=20 n=50

power

Figure 4.3.2 Power graphs of 77 and T2 (GL), b, =0.5,b, = L,b, =0.5,b, =1.

n=20, outlier model n=100, outlier model

Figure 4.3.3 Power graphs of 7” and T} (GL), b, =b, =b, =b, =1,

outlier model.
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Figure 4.3.3 above shows the power graphs of 72 and T2 when outliers are
present in the data. The outlier model used here is the one mentioned in

section 3.1.2 (part c). Notice that T? still has superiority. With the presence

of some strong outliers in the data, if b, =b, =b, =b, =1 and n is small, the

power of T2 slightly exceeds that of 7. This can be seen in Figure 4.3.4.

n=20, strong outliers in the data n=100, Strong outliers in the data

0.9 > 4 09
-

power

Figure 4.3.4 Power graphs of 7° and 7, (GL), b, =b, =b, =b, =1,

with strong outliers in the data.

In the presence of strong outliers, 7, has slightly higher power for the

case when b =b,=b =b, =1, however, if we choose some of the

underlying generalized logistic distributions to be skew, then 72 has much
higher power than T, , even in the presence of strong outliers. This is shown
in Figure 4.3.5. The outlier model used here is the same as the outlier model

mentioned in section 3.1.2 (part c) except that here r of the x,’s come from

GL(0, 12 0,) instead of GL(0, 40,), r of the ¢,’s come from GL(0, 120, ,)
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instead of GL(0, 40,,). Similarly for the u,’s and the e,,’s. Notice the big
difference in the power curves in Figure 4.3.5. This clearly shows that using

T’ is very advantageous.

Figure 4.3.5 Power graphs of 72 and T2 (GL), b, =0.5,b, = 1,b, =05,b, =1,

with presence of strong outliers.

4.3.2 Student’s t

We will assume the same distribution as in section 4.2. Using the simulated

percentage points in each case, type I error (&) is 0.05 for both tests. The
graphs of the power curves for T° (given in equation (4.2.1)) and 7, are
given below. The dotted line represents the power values of the T, test and

the solid line represents the power values of the T? test. First we assume the

degrees of freedom are all equal, i.e. r, =r =r, =71, =4.
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n=20 n=100
1 1
0.9 g 0.9 g
0.8 — 0.8 4
0.7 0.7
0.6 - _ 0.6 -
o o
go.s §o.5
0.4 0.4
0.3 — 0.3 4
0.2 — 0.2 —
0.1 B 0.1 B
0 L 0 L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Notice that the power curves are almost identical, with the solid line staying

above the dotted line slightly. This shows that T? has slightly higher power

2
than 7, .
n=20, outlier model n=100, outlier model
1 T T T 1 =
09 - 0.9 4
0.8 - 0.8
0.7 0.7
0.6 0.6
%; 05 %0.5
04 - 04
03 0.3
02 0.2
0.1 0.1
O0 0.2 0.4 0.6 0.8 1 1.‘2 1.4 1.6 1.8 2 O0 0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4.3.7 Power graphs of 77 and T2 (Student’s t), r, = r,=r,=r,=4,

outlier model.
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Figure 4.3.7 shows the power graphs after introducing some outliers in the

data. Here we use the outlier model (¢) we mentioned in section 3.2.2. We
see that the curve corresponding to7? is still slightly above the one that

corresponds to T}, .

Figure 4.3.8 shows the power graphs after introducing stronger outliers in the
data. The outlier model we used is the same as the outlier model mentioned in

section 3.2.2 (part c) except that here r of the x;’s come from the distribution
given in equation (2.5.1) with o, multiplied by 12 (instead of 4) and r of the
e,;’s come from the distribution in equation (2.5.2) with o¢,, multiplied by

12. Similarly for the u,’s and the e,,’s.

n=20, outlier model n=100, outlier model

power

Figure 4.3.8 Power graphs of 77 and T (Student’s t),r, =r, =1, =1, =4,

with the presence of strong outliers.
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n=100

power
o
&

Figure 4.3.9 Power graphs of 72 and 7?2 (Student’s t),

r.=4,r,=4,r,=6,r,=6.

n=20, strong outliers n=100, strong outliers

power

L L L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2 0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Figure 4.3.10 r_ =4,r =4,r, =6,r, = 6, strong outliers in the data.

y u v

Figures 4.3.9 and 4.3.10 show the power graphs for different degrees of
freedom. We see that, in presence of strong outliers in the data, 7; has
slightly larger power than T? for small values of n. This is because in the
calculation of 72, outliers are given small weights whereas in the calculation

of Tg, outliers are given zero weights (censored). However, for large n, T?%is
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always superior over T, even with the presence of strong outliers. The only

time T, tends to have more power than T? is when the sample size is small,
the distribution is symmetric and at the same time there are strong outliers in
the data. Even if all three conditions are satisfied, however, the difference
between the powers is very small. We have seen that for the generalized
logistic, in which case the underlying distributions are skew, T? is much
more powerful than 7,;. Another thing to note is that while 7; may provide a
somewhat good way to test hypotheses, the estimators used in the calculation

of T (based on censored samples) are not as good as the MML estimators we

developed in Chapter 2 since the former may have substantial bias. Using T?
to test the hypothesis of equal means is, therefore, advantageous in case of

symmetric or skew distributions and in presence of outliers as well.
4.4 Mahalanobis Distance

Suppose we have two bivariate populations such that the mean vector for

,ux} and the mean vector for population 2 is {'u“ } If both

y

population 1 is [

v

populations have a common variance-covariance matrix €, the Mahalanobis

distance between the two populations is defined as

ll'lx _Il'lu

D’ = [ﬂx -4, M, —ﬂv] Q‘ILU } where

y 4

Q:{ o' poo,

) is the common variance-covariance matrix of the two
po,c, O,

populations.
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Thus, D? can be written as

ol poo, | [ —H
D*=\u —u, u, —pu, ! 2 o, (4.4.1)
[ ’ ] po,0, o, Hy—H,
Now,
_ . ) _
ol(1-p*) o0,0,0-p%)
Q' =
_p 1
_0-102(1_/)2) 612(1_,02) N
Therefore, D? can be written as
 (-w 2o~ N, ) ey -, )
D= N 5 +— - 4.4.2)
o, (1-p7) 0,0,(1-p7) o,(1-p7)
Consider
. o2 01 u-n
D2= /’lx_ﬂu ﬂyx_ﬂvu : ’ ’ °
[ v : ] O 622.1 ltly/x_l[lv/u
We will show that D™ is equal to D>.
D™ can be written as
2 _ 2
D*z — (ﬂx_/'lu) +(/l’ly/x /’lv/u) ) (443)

2 2
01 0-2.1

Substituting 4, =4, -6y, and u,, =4, -6 4, equation (44.3)

becomes
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(u, —n, (/1 — i, 6, —u,)f

D" =
61 0-21
— (ﬂx _,llu)z +,02(,UX _ﬂu)z + (/ly _Il'lv)2 _ zp(ﬂx _lllu)(/uy _lllv)
0-12 612(1_:02) 0-221 6162(1_:02)
) 20 ey ) - )
o’ (1-p%) c,0,0-p%) 02(1 o)
= D’.
Let

T-1r A A~

m Ao
6, 0 Ho—H,
AD A~ A~
L 0 0-2_1_ _ll'ly/x _Il'lv/u_

A A

D= [Ax -4, My _/uv/u] and

b olp-n a, g ][F O] AR
= —H My —Hy ~2 ~ ~ ;
x u y/x viu i O 0-2.1_ _Il'[y/x_ll'lv/u_

D?and D? are two estimators of D>. The first one is obtained by replacing

all the parameters in D’ by their MMLE, found in sections 2.4.1 (GL) or 2.5.1
(Student’s t). The second one is obtained by replacing all the parameters by

their LSE, found in sections 2.4.3 (GL) or 2.5.3 (Student’s t). Both D?and

D? converge to D as n tends to infinity.

We will show that D? is more effective in estimating a given distance. To do
this we simulate the means and variances of D> and D>. Without loss of

generality, as we compare D? to D*, we will assume that the difference
between the two population mean vectors is the unit vector. Thus, for all the
tables given below we assume that the true values of the parameters are as

follows:
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0,=10,0,=10, £,=2.0, 4, =20, #,=1.0and g, =1.0.

In the tables below we give the results of the simulated means and variances
of D? and D? for three representative values of p, namely, p =0, 0.5, and

0.9. Note that given the above assumed values of the parameters, we can

write &, ., 4, and o, as functions of p:

o

=, -y =2-2p=201-p),
61

lle/u :Il'lv _'0;2 lLlu :1_p’ and

1

05, 262\/1—,02 :\/1_,02 .

Using the above assumed values, we can write the true value of Mahalanobis

distance as a function of p as follows:

2 (ﬂx—ﬂu)z (/'ly/x_,uv/u)z

D? = +
2 2
Gl 62.1

_@-1) @a-p-d-p) _ 2

12 (1-p%) Cl+p

Remark: In the tables below, D? = aD* —b and, similarly, D ;

_(2n-5)

a= and b=n/4.
2(n—1)

Note: In Tables 4.4.1-4.4.3 we assume b, = b, =D, = b, = 1.

v
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Table 4.4.1 Simulated means and variance of D? and D;

(GL); p =0. True value of D*=2.

n=20 | Mean | Variance | MSE
D} 2022|2434 2.434
D} 2456 | 3.586 3.794
n=50

D} 2.034 | 1.109 1.110
D} 2.190 | 1.365 1.402
n =100

D} 2.061 | 0.554 0.558
D} 2.132 | 0.636 0.654

Table 4.4.2 (GL) p =0.5. True value of D*=1.33.

n=20 | Mean Variance | MSE
D} 1.485 | 1.784 1.808
D} 1.805 | 2.568 2.794
n=50

D} 1.419 | 0.755 0.762
D} 1.527 0922 0.961
n =100

D} 1.408 | 0.373 0.379
D} 1.455 | 0.429 0.444
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Table 4.4.3 (GL) p =0.9. True value of D*=1.02.

n=20 | Mean Variance | MSE
D} 1258 | 1.535 1.592
D} 1.530 | 2.180 2.440
n=50

D} 1.160 | 0.607 0.627
D} 1.249 | 0.737 0.789
n =100

D} 1.127 | 0.299 0.310
D} 1.164 | 0.343 0.364

Note: In Tables 4.4.4-4.4.7 we assume that r, =r, =r, =71, =4.

Table 4.4.4 Simulated means and variance of D? and D

(Student’s t); p = 0. True value of D*>=2.

n=20 | Mean | Variance | MSE
D} 1.495 | 0.988 1.244
D} 2.409 | 2.681 2.848
n=50

D} 1.735 | 0.473 0.543
D} 2215 | 0.976 1.022
n =100

D} 1.816 | 0.236 0.269
D} 2.111 | 0.419 0.431
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Table 4.4.5 (Student’s t) p = 0.5. True value of D*=1.33.

n=20 | Mean Variance | MSE
D} 1.019 | 0.668 0.765
D} 1.683 | 1.788 1913
n=50

D} 1.160 | 0.281 0.310
D} 1.483 ] 0.590 0.613
n =100

D} 1.234 | 0.165 0.174
D} 1.432 | 0.304 0.314

Table 4.4.6 (Student’s t) p =0.9. True value of D*=1.02.

n=20 | Mean | Variance | MSE
D} 0.823 | 0.512 0.551
D} 1375 | 1.331 1.457
n=50

D} 0.927 |0.220 0.229
D} 1.197 | 0.457 0.488
n = 100

D} 0.985 | 0.129 0.130
D} 1.135 | 0.229 0.242

Remark: The values given in Tables 4.2.1-4.4.6 are corrected for the fact that
under bivariate normality, aD? is distributed as noncentral F with degrees of

freedom (2, 2n-3) and noncentrality parameter D* given in equation (4.4.2).

Notice that in all the above tables, D? has smaller bias and smaller variance

than D?even for small n. Thus, D? is more precise than D’ in estimating
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Mabhalanobis distance D*. For bivariate normal populations, D? reduces to

D*.
4.5 Testing the Correlation Coefficient

It is of great interest to test the null hypothesis p = 0. Since the MMLE are
asymptotically equivalent to the MLE, in order to test the hypothesis H,: p =

O versus H,: p # 0, we define the test statistic
t2 :IbZ/V , (45.1)

where V is the variance of p under H, and is the last element in the matrix

I R ( Uy W,y OLl,, M1, Oy p) being the Fisher information matrix
obtained in section 2.4.2 (for the GL distribution) and in section 2.5.2 (for the
Student’s t distribution). / is obtained by replacing o,,0, andp in [ by
6,,6, and 0 respectively. The asymptotic null distribution of ¢> is chi-square

with 1 degree of freedom. For small n, the null distribution of t* is referred to

chi-square with 1 degree of freedom.
Based on the LS estimators we define the following test statistic to test H
tt=p"1V,. (4.5.2)

Since it is difficult to find the variance of g, we take V, to be the simulated

variance of p for p = 0. Again, we refer the null distribution of # to chi-

square distribution with 1 degree of freedom.
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Remark 1: In order to test the one sided alternative H,: p >0or p <0, we use

the statistics 7=p/V and 1,=p/ \/71 based on the MML and the LS

estimators, respectively. The null distribution of both test statistics is

approximately standard normal.

We compare the powers of the above tests, based on ¢ and ¢7. We consider

Generalized Logistic and Student’s t distributions. We graph the power curves

for each test. Before we give the power graphs, we list in the table below the
simulated 95% points of ¢* and ¢ for different values of n. It is interesting to
see that they are close to the asymptotic value which is the upper 5% point of

the chi-square distribution with one degree of freedom, namely y_ (1) = 3.841.

Table 4.5.1 Simulated 95% points of ¢* and ¢, .

Distribution n =60 n =100 n =200

t* 14.00 3.31 4.08
Generalized Logistic

t; 14.05 3.20 3.65

t* 13.90 3.88 3.89
Student’s t

1t 13.92 3.76 3.77
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4.5.1 Generalized Logistic

The graphs of the power curves of t* and ¢/ tests are given below. The dotted
line represents the power values of the ¢ test and the solid line represents the
power values of the > test. We carry out simulations for different values of n
assuming that b, =b, =b =b, =1, which gives an advantage to t} since the

distributions are symmetric. Note that by using the simulated percentage points

in each case, we made sure that type I error (& ) is 0.05 for both tests.

The graphs given below represent the power for testing

H,: p=0vs. H:p #0.
Each graph shows a plot of the power against different values of p. Note how
the solid line stays above the dotted line even for the sample size n = 20 which

implies that the test based on the MMLE is more powerful than that based on
the LSE.

n=20 n=100

L L L
0.4 05 06 0.7

Figure 4.5.1 Power graphs of +* and #; (GL), b, =b, =b, =b, =1.
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In the figures below we show the power graphs of ¢* and ¢ test for some

deviations from the assumed model. The outlier and contamination models
used here are given in section 3.1.2 (part ¢c). We show a few representative

graphs. The graphs we show are for b, =b, =b =b, =1. Similar graphs can
be obtained for different values of n and for different values of b _,b, ,by and b, .

Notice that the solid line is much higher than the dotted line when there are
deviations from the assumed distribution especially in case of the outlier model
as can be seen in Figure 4.5.2. This illustrates the robustness feature of the ¢’

test as compared to the # test.

n=20, outlier model n=100, outlier model

L L L L
06 07 08 09 1

Figure 4.5.2 Power graphs of ¢* and ¢ (GL), outlier model.
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n=20, contamination model n=100, contamination model

power
power

Figure 4.5.3 Power graphs of ¢* and #/ (GL), contamination model.

n=20, mixture model n=100, mixture model

Figure 4.5.4 Power graphs of #* and ¢, (GL), mixture model.

4.5.2 Student’s t

We simulate the power values of the ¢* and ¢ tests for r,=r, =r, =r, =4.

x u y v
The dotted line represents the power of the #; test and the solid line represents

the power of the ¢* test. We carry out simulations for different values of n; the
probability of type I error (&) is 0.05 for both tests. Similar graphs can be

obtained for different degrees of freedom.

145



As we notice in Figure 4.5.5, the dotted line is slightly above the solid line only

for small sample sizes. For large sample sizes, the power corresponding to the

t* test is always substantially higher.

n=20 n=30

09

08

0.7

06

power

05

04

03

02

01

Figure 4.5.5 Power graphs of #* and 1] (Student’s t).

In the case of deviations from the assumed distribution, or in the presence of

outliers in the data, the ¢* test has much higher power as shown in Figure 4.5.6.
The outlier, contamination, and mixture models here are the same as in section

3.2.2 (part ¢).
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n=20, outlier model

1 T T T T

n=100, outlier model

09 - 0.9
08 L B 0.8
07 L B 0.7
06 0.6
p [
9 3
2 05| 4 S 05
8_ Q
04 | 4 0.4
03 | - 0.3
02 B 0.2
01 L B 0.1
0 . . . . . . . . 0 .
0 0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9 1 0.9
n=20, contamination model
1 - - T 1
0.9 09
0.8 - - 08
0.7
0.7
06 B
. 5 06
I3 [
g 05 4 g
a 2 05
04 4
0.4
03 -
02 b B 03
0.1 0.2
0 . . . . . . 04 .
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9
1 1
09 B 0.9
0.8 B 0.8
0.7 B 0.7
L 08 B 06
[ o
H H
8_ 0.5 8. 0.5
0.4 B 0.4
0.3 0.3
02 B 0.2
01 F B 0.1
0 . . . . . . . . 0 . . . . . . . .
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

Figure 4.5.6 Power graphs of ¢* and ¢ (Student’s t), data anomalies.
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4.6 Testing the Equality of Two Correlation Coefficients

Suppose that the covariance matrices of the two populations are not the same.

The models in this case are given in equations (2.1.1) and (2.1.2), namely,

VX

()
Model 1: EY /X =x)=pu, +p, —(x—u )=, +6, x.
(o}

Model 2: EVIU =u)=p, +p, o u—p) =, +6.u.
o

u

We would like to test the hypothesis that the correlation coefficients in the two

populations are the same, that is, we want to test

HO: pyx = pvu'

Before we define a test statistic to test H,, we give the estimators of the

parameters since they are different than those given in Chapter 2.
4.6.1 Generalized Logistic

In this case the MML and LS estimators of the parameters are as follows (See

also Sazak et al. (2006)):

Population 1:

(A) The Modified Maximum Likelihood Estimators:

1. fi,. =K,,—D,,6, where
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Ky :M’ D,, :LZ(CZU _(bx +1)_1)’ and m, :zﬁli'

my, my,

=B, + \ B +4nC,, where

2.6, =
2. /n(n—1)

B, = b, +13 [l -, + D x,, - K, )], and

C, =, +1)Z:B1i(x(i) _Kn)z .

3.4, = ;[_] — éyx;[.] —-6,,, A, /m,, where
A= ZAU Ay =(ay, _(b‘y"'l)_l) ;
— 1 - 1 _
Y :_Zﬁzz‘y[i] ,and xi :_Zﬁz,x[i] ;my, = Zﬁzi .
my, m,
4. 63” =K,,—D,,6,, where

ZﬂZi (xm _;[-])y(;) ZAU(XU] _)_Cl-l)
K, = ———and D,, = —.
ZﬂZi (x[ij —X(1) ZﬂZi (xm —X1)

s = —B,, +4 B}, +4nC,, where
2.11 > ’—n(n—2)

B, = (by +1)ZA1,~()’[,~] _;[_J -K,, (x[i] _;l-l )

Clz = (by +1)Zﬁ1i(y[i] _;[_J _Klz (x[i] _;[-J ))2 .

6. lay =Yu— éyx ()_C[-] —f)=6,,A /my,.
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(B) The Least Squares Estimators:

LI, =x—W(b,)-y1)3,.

- K
2.0 = 2 where

L) +y' ()

s2=3(x, =) l(n-1).

3. B, = y=6,x—Wb,)-p)E,,,.

A _ 2 -0y, x)y,
O > (x—x)

5 & \/FIZ(yi_;_gyx(xi_;))z]/(n_z) .

-0, =
' y'(®,)+y' (1)
6. fi, =y—0,6,yb,)-v1)-6,,Wb,)-pb).

7.6, =46,,+6>6

¥ 7 x
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~ _ TwTx
8' onx_ ~
o

Population 2:

(A) The Modified Maximum Likelihood Estimators

A

1. 4, =K, —D,,6, where

iU 1 -
K, :m’ D, :_Z(5li (b, +1) 1); my, :z%i :

my, my;

) 5 _—321+1/B§l+4nC21

& = where
2.n(n—1)

b, + l)z [(511‘ -, + n™ )(“(i) -K, )]’

C, = (b, +1)z Vilug, —K,)%

BZl

3.4, =va—6 ,uy—0,,,A,/m, where

A, = ZAZi . Ay = (0, _(bv"‘l)_l)’

- 1 - 1
Vi = zyziv[i] > ULl = 2721‘”[1‘] 5 My = 2721‘ .
My, My,

4.6 =K, —D,6,,, where

_ Z Vi gy _L_‘[-])Vm
z Vai (u[i] —Up )2

_ ZAZi (um —;[.])

K ,and D, = — .
22 22 272;(”[”_”l-1)2
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—B,, +4/B3, +4nC,,
2./n(n—-2)

Bzz = (bv +1)ZA2,' (V[gJ _;[-] - Kzz (um _;[-] )) s

5.6,,,= where

sz = (bv +1)Z 511. (V[i] —\_/[.] — K22 (u[,.] —;[.J ))2 .

6. i1, = ;[-] - évu (;[-1 —i,)—6,,A,/m,,.

7.6,=165,+66;
. A O,
8' pvu = vu A
G

(B) The Least Squares Estimators
L {1, =u—(b,)-y1)s,.

- K
2.0 = u where

NUACHERACY;

s2= (u,—u)’ l(n-1).

3' ﬁv/u = ‘_} - é’vu; - (l//(bv) - l//(l))&ZIZ ‘

vu Z(ul _;)2 :
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5.6, —\/[Z(Vf —v=0,, —5))2]/(11—2) .

y'(b,)+y' (1)

6. fi, =v—-6,,6,(b,) -y 1)~ &,, Wb, -yD).

~ _ [~2 N2 ~=2
7 Gv - 0-2.12+0m u
. 6.6
8' pvu = V‘Li s
O

Note: all the above summations are from 1 to n.
4.6.2 Student’s t

Here, the estimators of the parameters are as follows (see also Tiku et al.

(2007)):

Population 1:

(A) The Modified Maximum Likelihood Estimators:

L4, :¥; my, :Z:Bu'

11

. B, ++B, +4nC,,
2.6 =
} 2n(n—1)

where
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(r.+1) < (r.+1) <

Za'“x(,.) and C|, =

T, i=1

X

B, =

Zﬁl, (X —

X

3. f,,, =y, —0,x1—-6,,, Zafz /m,, where

i=1

- 1 - 1
Y :_Zﬂ%y[i] and xi :_Zﬁmxm > My, = Zﬂz; .
m, m,

4. ﬁyx =K, +D,6,, where

(X — XL .
_ 2162,( [il [J)y(,) an

o, (x. — X
K, = = d D, = z 2 . ) .
Zﬁzi (X7 — X11)

- Zﬁz,’ (X[i] - )_C[-] )2

s 5 - B, ++/B}, +4nC,,
2.11 > ’—n(n—2)

(r +1)

)

+1
C,= (r )Zﬂzl(ym y[] K(x[,] X[]))

)

where

6' ﬂy :Il'/zy/x +6Ayxll'/2x‘

2 2 a2

7. 6 02_11+6’yxax
N A O
8. P,=0, —
Gy
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(B) The Least Squares Estimators:

2.6, = [+ s, where s> =Y (x,—x)’ /(n—1).

5. &2.11 _\/(r‘ — F|Z(yi _;_é‘yX(Xi _;))z]
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Population 2:

(A) The Modified Maximum Likelihood Estimators

1 g, = 2711'”(1')

my,

where m,, = 2711'

- :BZI+1/B§1+4nC21

, where
2./n(n—-1)

(r, +D

r

u

B, =

n
z O,u;, and
i=1

(r, +1) N
C21 = 27/1,' (u(g) _,uu)z .

u i=1

— P n
3. M, =V — 0vu up + (02'12 /m22 )z 521’ where

i=1
_ 1 n _ 1 n n
v Z—Z YViVi > UL Z—Z Vil 5 My = 27’; .
My, =i My, =i i=1
4.6,=K,, +D,,6,,, where
K. = 2 Vit —ui)vy,
n = = 5
2721' (g —ur)
D - ZOZZi(u[[]—u[.])
n = = 5
Z?’z,‘ (u[,'] —M[_])
B,, ++/B% +4nC
5.06,,= = 2 2 where
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(r,+1) - _
By = r 2521' Vi = v = Ky —un)),

_ (r,+1D

rV

C22 272i (V[,‘J _;[-] - K(”[,’J _l/_t[-] ))2 .

7 Gv = 6-22.12 +0vzua
. s 6,
8' pvu :avu A
(o}

2 —
2.6, = | s, where 5. => (u;, —u)* (n—1).

3. fi,, =v-0u.

4, -2 o
z (l/ti - l/t)

_\/(rv ~2) [Z(vi V-8, —;))2] |
rV

5. &2.12 - (I’l—2)
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=2 N2 ~=2
7 Gv 0-2.12+0m u
. 6,6
8' pvu = V‘Li -
o

Note: all the above summations are from 1 to n.

Remark 1I: In calculating the above MML estimators for both the Generalized

logistic and the Student’s t, thea’s, f’s,0’s and J’s are the same as those

given in Chapter 2.

Remark 2: The Fisher information matrices when the var-cov matrices of the

two populations are not the same are given in Appendix F.

4.6.3 Test Statistics

We will now use the estimators given above to test the hypothesis

HO: pyx:pvu VS. Hl:pyx # pvu'

In order to test H,, we note that the MML estimators are asymptotically
equivalent to the ML estimators and thus the null distribution of p is

asymptotically normal. The same holds for p

vu *

Let,
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1+ 0, 1+
Z, = 0.511{ p ”"} and Z, = 0.511{#}

l_pyx 1_pm

The null distribution of Z, —Z, is asymptotically normal with zero mean and

. Thus, we define the statistic:

variance which is a constant multiple of
n [—

For large n the asymptotic null distribution of W? is chi-square with 1 degree of

freedom.

Based on the LS estimators we have the statistic

The null distribution of W,” is also a constant multiple of chi-square with one

degree of freedom.

Remark: For testing a one sided alternative H,: p, > p, or p, < p, , we

use the test statistics
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W, =

%n—3)

The asymptotic null distributions of both W and W, are constant multiples of a

standard normal.

Before we compare the powers of the two tests, we give in the table below the

1+ p )
{0.511{ Py } - 0.51n[1+€v"}}
1 - pyx 1 - pvu

simulated 95% points of W*and W,” for different values of n.

Table 4.6.1 Simulated 95% points of W*and W,*.

Distribution n =60 n =100 n =200
W? 13.90 4.10 4.10
Generalized Logistic
le 4.40 4.40 4.90
W?  14.40 4.00 3.80
Student’s t
le 6.20 6.60 6.70

For W?, the percentage points are interestingly close to the upper 5% point of
chi-square distribution with one degree of freedom, namely, s (1) = 3.841. It
implies that the null distribution of W?* is closely approximated by chi-square

with 1 degree of freedom, but not the distribution of W,*>. The latter needs

adjusting for the variance which is theoretically difficult (Gayen, 1951).
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4.6.4 Power Simulations

We now compare the power of the two tests, namely, W >and W,*.

We simulate the power of W?and W,” for the following hypothesis:

HO: onx_pw,t:() VS. HI: onx_lovu#: 0

We graph the power curves of W?and W,” for different values of p.

Generalized Logistic

The graphs of the power of W?and W,” tests are given below. The dotted line
represents the power of W,” and the solid line represents the power of W*. We
did simulations for different values of n assuming that b, =b, =b =b, =1.

Note that in the cases where the probability of type I error (& ) was not 0.05, we
used the simulated percentage points making sure that & is 0.05 for both tests.
Deviations from the hypothetical critical value occur mostly in the outlier

model.
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n=20

0.9

0.8

0.7+

0.6

power

0.5

0.4

0.3

0.2

0.1

Figure 4.6.1 Power graphs of W?>and W,;> (GL).

In the above graphs we notice that the power of the W’test is slightly higher

than the power of the W, test. We also simulated the powers of both tests

under deviations from our assumed model. Notice the big difference between
the power curves when outliers are present in the data, as shown in Figure 4.6.2.

The solid line is much higher than the dotted line. This shows that the test

based on W*is more robust and powerful as compared to W,>. Here the outlier,

mixture and contamination models are the same as the ones used in section 3.1.2

(part c).
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n=20, outlier model n=100, outlier model
09 1
08 09
07 08 |
0.7
0.6
. &06
Qos | g
3 o5
[} Qo.!
04 |
0.4
03
03 |
02 | 02 |
01 | 0.1 |
0 L L L L L L L 0
0 0.1 02 03 0.4 05 06 0.7 08 0.9 0
n=20, contamination model
1 1
0.9 0.9
08 | _,-’ B 08 |
%
07 | 4 E 07 |
/
06 2 4 06
1] 4 5
2 os 4 2 05
g 4 g
/.
04 | [ 4 04 |
%
/
03 | — 03 |
02 | — 02 |
0.1 0.1
0 0.1 02 03 0.4 05 06 0.7 08 0.9 [ 0.1 0.2 0.3 0.4 05 06 0.7 0.8
n=20, mixture model n=100, mixture model
1 . . . . . . 1 . - - —=
0.9
08
0.7
. 06
[
3
g os
0.4
03
0.2
0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 4.6.2 Power graphs of W*and W,> (GL), data anomalies.
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Student’s t

We give the power curves of the W>and W,” tests when r, =r, = r,=r,=4,
type I error being 0.05.
n=20

0.9

0.8

0.7

0.6

power

05

0.4

03

0.2

0.1

Figure 4.6.3 Power graphs of W*and W,> (Student’s t).

n=20, outlier model

n=100, outlier mode

Figure 4.6.4 Power graphs of W>and W,> (Student’s t), outlier model.
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n=20, contamination model n=100, contamination model

0.9

08

0.7

06 -

05 -

power

04

03

power

Figure 4.6.5 Power graphs of W*and W,> (Student’s t),

contamination and mixture models.

Again, the W? test is more robust and powerful than the W, test. It seems the

time has come to shift to the new methodology of modified maximum
likelihood from the traditional methodology which exclusively engages

sample means and variances.
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CHAPTER 5

ILLUSTRATIVE EXAMPLES

In this chapter we provide a few real life and computer generated data sets and
analyze them using the methods developed in previous chapters. We test the
hypothesis that the population means are equal using the statistics defined in
Chapter 4. We also perform hypothesis tests involving the correlation
coefficient. The advantage of computer generated data is that the true values
of the population parameters are known. One can, therefore, evaluate the

accuracy of the estimates obtained by using different methods.

5.1 Examples using simulated data

At first we give two examples using simulated data.

Example 5.1.1

We simulate data in the situation where the marginal and conditional
distributions (distributions of X and Y/X, and similarly of U and V/U) are

both generalized logistic.

We assume that b= 0.5, b‘y =1.0, b, =1.0and b, =0.5. Also, we assume

that the true value of the parameters are:

u,=0,u,=0, u=0, 4, =0,0,=1,0,=1and p =0.5.
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Table 5.1.1 Simulated data (GL) for n = 20.

Xi Vi Xi Vi u; V; u; Vi
2.642  3.186 -1.195 0.822 0.807 -3.007 -2.445  -0.766
0.159 -1.412 -1.049 -0.046 1.268 1.577 -0.324 -1.111
0.214  2.395 -3.578 -1.403 0.382 0.641 3.383 1.101
0.16 -1.254 -6.962  -2.995 -3.234  -2.234 -2.525 2192
0.038 1.462 6.476 3.297 2.478 2.829 -0.666 0.975
-3.534  0.591 -5.097  -2.549 -0.894 0.847 1.472 -1.759
0.568 -0.284 -1.629  -2.468 -1.381 -2.465 -3.46 -1.242
1.294  -0.269 -1.878 -2.485 1.094 -1.813 -0.569 -7.238
-3.406 -2.169 0.663 0.465 1.845 -0.84 -0.129  -2.642
-0.355 -2.264 1.181 -0.879 -0.86 -1.178 1.718 -3.956

Table 5.1.2 The MML and LS estimates for the simulated data in Table 5.1.1.

n=20 Il'lx ’Lly Il'lu Il'lv O-l 02 p

MML ]0.694 | 0.185 | -0.07 | 0.074 | 1.203 1.067 0.505
LS 0.771 | 0.234 |-0.102|-0.059 | 1.107 0.961 0.486

It is interesting to see how close the MML and the LS estimates are to one

another.
Using the above simulated data, we test the hypothesis:
X - u O
H,: Al {u”} or equivalently H, : sy :{ }
ﬂy ﬂv ltly/x_l[lv/u O

To test H, we calculate 7

77 = nl;izx -4, :[ly/x _:[lv/u] fz_l[ﬂfjﬁ :zw }
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11.05 0 1T 0.764
20[0.764 —0.231]
0 6.48| |-0.231

2 2
_ 20(0.764) +20(—0.231) 1.
11.05 6.48

Under H, T? is distributed (approximately) as chi-square with 2 degrees of
freedom. Here, we simulate the p-value of the above test. The simulated p-
value is 0.535. The p-value we obtain from chi-square distribution with 2
degrees of freedom is 0.543, which is very close to the simulated value. This

p-value is greater than 0.05. Therefore, we do not reject H .

Now, using the LSE we calculate 72 :

7o 20(0.873)° . 20(-0.075)°
12.1 6.97

=1.28.

Under H, , T? is distributed (approximately) as chi-square with 2 degrees of

freedom. The simulated p-value in this case is 0.523. The p-value found by

using the chi-square distribution is 0.529; H, is not rejected. The two tests

are in agreement.

Notice that even for a sample size as small as n = 20, the null distributions of

T?and T? are very close to the asymptotic distribution (chi-square with 2

degrees of freedom).
Table 5.1.3 shows the results for a data of size 100 simulated from the

generalized logistic distributions with the same parameters as above. We also

give the simulated variances. Notice that the variances of the MML
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estimators are smaller than the corresponding LS estimators. That illustrates

the overall superiority of the MML estimators.

Table 5.1.3 The MML and LS estimators for simulated data (GL), assuming
u,=0,u,=0, 4 =0, 4, =0,0,=1,0,=1and p =05.

n =100 lllx ﬂ}’ Il'lu Il'lv O-l 0-2 p
MML
LS

0.186 | -0.147]-0.201 | -0.037 | 1.087 1.029 | 0.511

0.234 |-0.152| -0.19 |-0.083| 1.168 1.022 0.529
Simulated Variance:

MML 0.051 | 0.034 | 0.028 | 0.041 | 0.005 | 0.003 | 0.003
LS 0.056 | 0.041 | 0.028 | 0.054 | 0.018 | 0.008 | 0.006

Example 5.1.2

Here, we simulate data in the situation where the marginal and conditional
distributions (distributions of X and Y/X, and similarly of U and V/U) are
both from the Student’s t family.

We assume that r, =4, r, = 4, r, =6 and r, = 6. Also, we assume that the

true value of the parameters are:

u,=0,u,=0, u,=0, 4 =00 =1, 0,=1and p =0.2.
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Table 5.1.4 Simulated data (Student’s t) for n = 20.

Xi Vi Xi Vi u; V; u; V;
0.46 2.682 -0.273 -1.259 1.062 0.733 0.523 0.404
1.54 1.204 0.217 0.067 0.144 -1.105 0.925 0.773
1.509 -2.136 1.004 0.52 1.126 0.566 0.174 2.339

0.438 -0.446 0.088 -1.014 1.115 -0.05 -0.878 0.091
-0.771 0.696 -0.461 0.52 -0.326 0.253 0.624 0.466
0.702 0.579 0.195 -0.079 0.924 0.331 0.36 0.628
0.372 -0.586 -2.854  -1.436 0.293 -1.174 0.434 0.602
-0.743 -0.242 -0.785 -2.586 -0.432 0.901 2.26 1.471
-0.634  -0.574 1.077 1.561 0.779 0.147 0.698 0.217
1.169 0.116 0.163 -0.683 5.607 -1.493 -2.054 -2.371

Table 5.1.5 The MML and LS estimates for the simulated data in Table 5.1.4.

n=20 ltlx ’Lly Il'lu Il'lv O-l 0-2 p

MML 0.168 |-0.137| 0.571 | 0.26 0.982 1.047 | 0.238
LS 0.121 |-0.155| 0.668 | 0.186 | 0.951 0.893 | 0.158

Using the above simulated data, we test the hypothesis:
- 0
| AT | { } .
ﬂy/x - ﬂvlu O

To do this, we calculate 7>

/’ly/x

= 20[— 0403 - 0.294]

N A A A A ] A ﬂx_ﬂu
T2 :nl;tlx_ﬂu ltly/x_ltlv/u_ Q 1|:" 7y :|
_/'lv/u
{—0.294

240 0 T

0.403
0 257
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2 2
_ 20(~0.403) N 20(-0.294)° _ 503,
2.4 2.57

Under H, T? is distributed (approximately) as chi-square with 2 degrees of

freedom. The simulated p-value is 0.326, whereas the p-value found using the

chi-square distribution is 0.362. Since the p-value is greater than 0.05; we do

not reject H .

Now using the LSE we calculate T *:

7o 20(—0.547)° . 20(-0.26)°
3.16 2.72

=2.39.

Under H,, , T? is distributed (approximately) as chi-square with 2 degrees of

freedom. The simulated p-value here is 0.317 and the p-value calculated by

using chi-square distribution with 2 df is 0.303. Again, H, is not rejected.

Table 5.1.6 The MML and LS estimators for simulated data (Student’s t),
assuming 4, =0,4,=0,u4,=0,4,=0,0, =1,0,=1and p =0.2.

n =100 M, M, M, M, O, o, P
MML -0.042|-0.026 | 0.129 |-0.122| 1.062 | 1.034 | 0.225
LS -0.079]-0.014 | 0.202 |-0.152| 1.014 | 0.945 | 0.224
Simulated Variance:

MML 0.015 | 0.014 | 0.014 | 0.015 | 0.005 | 0.004 | 0.006
LS 0.019 | 0.015 | 0.016 | 0.018 | 0.007 | 0.003 | 0.007
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5.2 Examples Using Real Data

Example 5.2.1

The data we use in this example is given in Appendix G (see Beall, 1945). It
contains four psychological test scores on 32 Males and 32 Females. The

variables in the data are as follows:

¥, = pictorial inconsistencies. ¥, = tool recognition.

¥, = paper from board. v, = vocabulary.

We choose two of these variables to run our analysis. For illustration, we

choose the 1% and 4" variables. Let

X = vocabulary score for males (y, ),
Y = pictorial inconsistency score for males (y,),
U = vocabulary score for females (y, ), and

V = pictorial inconsistency score for females (y,).

We first test the hypothesis of bivariate normality using the samples (x,,y;)
and (u;,v,). For the first sample the value of Siiriicii test statistic is C, =
0.1228 and the critical value is 0.1065 (see Siiriicii, 2006). For the second
sample the value of Siiriicii test statistic is C, = 0.2328 and the critical value

is 0.1065. In both cases we see that bivariate normality is not applicable.
Thus, using the traditional estimators based on normality assumption is not
appropriate. We now try to find the underlying distributions, marginal (X or

U) as well as the conditional (Y/X and V/U).
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We start with the Males and calculate the LSE 8 (= 0.287) and the deviants

g. =y —0287x, (1<i<32).

We construct a Q-Q plot of the ordered deviants ¢, ; =y, —0.287x, against

i

+1

the quantiles Q, = F ’1( j (1<i<32), F(z) being the CDF of the standard
n

normal distribution. The Q-Q plot is given below.

Q-Q plot of e1(i)

Males

104

el(i)

-104

Figure 5.2.1 Normal Q-Q plot of the ordered deviants ¢, in example 5.2.1.

We notice that the distribution of the errors has a slight negative skewness.

The distribution of e, is probably generalized logistic (see equation (2.4.2)).

To find the value of by, we choose the value of by which maximizes the
likelihood function of the e;;’s. In this case it is b, = 1.0. Although the

distribution looks a little skewed, the value of by which maximizes the
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likelihood function is 1.0, i.e., the most plausible underlying distribution is

logistic.

To find the distribution of the x’s, a Q-Q plot of the order statistics x;,’s

against Q,’s is given below.

Q-Q plot of x(i)

Males

35

Figure 5.2.2 Normal Q-Q plot of the order statistics x;,’s in example 5.2.1.

Again the distribution of the x’s is slightly negatively skewed. The

generalized logistic (see equation (2.4.1)) fits the data well. The value of b =

1.0 is the one which maximizes the likelihood function of the x,’s.

We do the same for the Females and calculate the LSE & (= 0.473) and the

deviants

g, =v,—0473u, (1<i<32).
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We construct a Q-Q plot of the ordered deviants e, =v, —0.473u, against

the O, (1<i<32). The Q-Q plot is given below.

Q-Q plot of e2(i)
Females

Figure 5.2.3 Normal Q-Q plot of the ordered deviants ¢, in example 5.2.1.

Clearly, the distribution of the errors is negatively skewed. Calculating the
skewness of the residuals in this case, we get -0.8996. The Generalized

logistic (see equation (2.4.4)) with shape parameter b, = 0.5 fits the data well.
We also graph a Q-Q plot of the order statistics u;,’s against Q,’s and again

notice that the Generalized logistic (see equation (2.4.3)) with shape

parameter b, = 0.5 fits the data well. The Q-Q plot is given in Figure 5.2.4.
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Q-Q plot of u(i)

Females

u(i)

Figure 5.2.4 Normal Q-Q plot of the order statistics u;,’s in example 5.2.1.

We calculate the MML and LS estimates from the data by using the results

given in section 2.4. We get the following results:

Table 5.2.1 The MML and LS estimates for the “psychology” data.

n=232 lle 'Lly lLlu ,le O-l 0-2 p
MML | 2334 | 1623 | 25.69 | 1453 | 229 | 1.24 0.32
LS 23.06 | 1597 | 25.15 | 1452 | 2.14 | 1.22 0.35

Notice that the covariance matrices of the two distributions are essentially

equal to one another.

Using the “psychology” data, we test the hypothesis:

b, [ M~ H,
ILly/x _lle/u

-l
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Here,

A A A A
Tz:n Ax_l[zu I[zfx_l[zvu Q_l Ay ' Au
I;Ll Y ! ] /'[y/x_ll’lv/u
4068 0 1'[-2.35
—32f235 2.1
0 1076 | 2.11

_ 32(-235)° . 32(2.11)°
40.68 10.76

=17.6.

Under H,, T? is referred to chi-square distribution with 2 degrees of

freedom. The simulated p-value is 0.00051 and the p-value calculated using

the chi-square distribution is 0.00015. Thus, we reject H,, categorically since

the p-value is very low.

Now, using the LSE we calculate 72 :

72 _ 32(-2.09)* N 32(1.86)" _ 116
45.06 1298

Under H, , T? is referred to chi-square distribution with 2 degrees of
freedom. The simulated p-value here is 0.005 and the p-value from the chi-
square distribution is 0.003; H, is again rejected. Notice that the test based
on 72 has a much smaller p-value which illustrates the fact that for non-
normal populations, the test based on T? has enormously higher power than

that based on 7 2.
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Example 5.2.2

The data we use in this example is the Peter Mullins “children” data given in
Appendix G. The data is given in Seber (1984), page 122-123. A sample of
27 children who had an inborn error of metabolism known as transient
neonatal tyrosinemia (TNT) were compared with 27 normal children (the
control group). The comparison was done by comparing the children’s scores
on the Illinois Test of Psycho lingual Ability (ITPA). The test has 10 scores.

We will choose as an example two of those scores:

x; = visual memory, and x,= auditory memory.

Let

X = auditory memory score for the control group (normal group),
Y = visual memory score for the control group,

U = auditory memory score for the TNT group, and

V = visual memory score for the TNT group.

Performing Siiriici test of multivariate normality using the samples (x;,y,)

and (u,,v;) we have (see Siiriicii, 2006)

Control group: C, =0.137, and
TNT group: C, =0.128.

Both tests are significant at 0.1 significance level. We thus reject bivariate
normality in both cases. We now try to find the underlying distributions,

marginal (X or U) and the conditional (Y/X and V/U).
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We start with the control group and calculate the LSE ] (= 0.207) and the
deviants

e, =y, —0207x, (1<i<27).
A Q-Q plot of the ordered deviants ¢, =y, —0.207x,, against the quantiles

i

0, :F_l(
n+l1

j (1<i<27)is given below.

QQ Plot of e1(i)

Control Group

el(i)

Figure 5.2.5 Normal Q-Q plot of the ordered deviants ¢, in example 5.2.2.

We notice that the distribution of the errors is close to that of Student’s t

distribution (see equation (2.5.2)). Choosing the degrees of freedom r, =7

provides the best fit for the data.

To find the distribution of the x’s, a Q-Q plot of the order statistics x;,’s
against Q,’s is given below. Here, the distribution of the x’s closely follows a

Student’s t distribution (see equation (2.5.1)) with r, = 10.
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QQ plot of x(i)

Control Group

x(i)

10

Figure 5.2.6 Normal Q-Q plot of the order statistics x;,’s in example 5.2.2.

We do the same for the TNT group and calculate the LSE ] (=0.009) and the

deviants

2, =v, —0.009 u, (1<i<27).

The Q-Q plot of the ordered deviants is given in Figure 5.2.7. Student’s t

distribution (see equation (2.5.4)) with r, = 10 fits the data beautifully well.
Also, a Q-Q plot of the ordered statistics u;, ’s against Q,’s is given in Figure

5.2.7. Notice that the distribution given in equation (2.5.3) with r, = 10 fits

the data fairly well.
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QQ Plot of e2(i)
TNT Group

e2(i)

-154

Figure 5.2.7 Normal Q-Q plot of the ordered deviants ¢, in example 5.2.2.

QQ Plot of u(i)
TNT Group

60

Figure 5.2.8 Normal Q-Q plot of the order statistics u;,’s in example 5.2.2.

We now calculate the MML and LS estimates from the data by using the

formulas given in section 2.5. They are given in Table 5.2.2.
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Table 5.2.2 The MML and LS estimates for the “Children” data

n=27 lle 'Ll)f lLlu ,le O-l 0-2 p

MML | 40.59 | 38.31 | 38.74 | 35.01 | 7.28 | 6.68 0.09
LS 40.37 | 3830 | 3830 | 34.96 | 6.94 | 6.26 0.12

Again the covariance matrices of the two distributions are essentially equal to

one another.

Using the data set, we test the hypothesis:

- 0
Ho[ ﬂx_ﬂu }:{ }
ILly/x lle/u O

Here,
A AL A i
T2 :n A _ A A _ ,\7 Q_l R X Au
I;le lLlu lLly/x lth/u:I |:ﬂy/x _ﬂv/u:|
12088 0 1'[1.85
= 27l8s  3.14]
0 103.56| |3.14
2 2
_ 27(1.85) +27(3.14) 333,

120.88 103.56

Under H,, T? is referred to chi-square distribution with 2 degrees of

freedom. The simulated p-value is 0.172 and the p-value calculated using the
chi-square distribution with 2 df is 0.189. Thus, we fail to reject H, at the

0.05 significance level.

Now using the LSE we calculate 7 *:
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2 2
72 _ 27(2.07) N 27(3.11)° _ 150
120.46 102.23

Under H, , T? is referred to chi-square distribution with 2 degrees of

freedom.
The simulated p-value is 0.182 and the p-value based on the chi-square

distribution is 0.172; H, is not rejected. The two tests are in agreement.

We notice that the correlation coefficient above is very close to zero. This
motivates us to test the hypothesis:

H,: p =0versus H: p # 0.

As given in section 4.5, the test statistic based on the MML estimators is
P =p*1V,

where V is the simulated variance of p when p =0.

Using the data above we get

t* =0.092°/0.0173 = 0.49.

The null distribution of #* is referred to chi-square distribution with one
degree of freedom. The simulated p-value is 0.49 and the p-value calculated

by using chi-square distribution with 1 df is 0.48. Thus, we fail to reject H,, at

the 0.05 significance level.

Based on the LS estimators, to test H ,, we use the test statistic
2 ~2 .
=PV

V, is the simulated variance of p when p =0.
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Using the data we get
17 =0.12770.02 =0.72.

The null distribution of #; is referred to the chi-square distribution with one
degree of freedom. The simulated p-value in this case is 0.39 and the p-value

calculated form the chi-square distribution is 0.40. We again fail to reject H , .

Example 5.2.3

We use the iris data in this example. The iris data was collected by Anderson
(1935) and used by Fisher (1936). It has measurements of sepal length, sepal
width, petal length and petal width of 50 iris setosa, 50 iris versicolor, and 50
iris virginica plants. Ironically, the underlying distribution has been assumed
to be multivariate normal by many authors including Fisher, but the data is
known to be nonnormal (Loonly, 1995; Siiriicii 2006). We consider the first
two groups, namely, the iris setosa and iris virginica. We consider only two

variables, the sepal width and the petal length of each plant. Let

X = Sepal width of the iris setosa plants,
Y = Petal length of the iris setosa plants,
U = Sepal width of the iris virginica plants, and

V = Petal length of the iris virginica plants.

Iris Setosa Plants:
Tiku and Akkaya (2004, Chapter 11) showed that the sepal width for the
setosa group can adequately be modeled by the LTS distribution with p = 6.

Thus, the distribution family given in equation (2.5.1) is a good fit with r =
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2p—1=11. The Q-Q plot of the order statistics x,,’s against Q,’s is given in

Figure 5.2.9.

Probability Plot of x(i)
Setosa--Sepal Width

> 5>
=} n
T

setosa_sw
W
wv

%
=}

e
wn
1

e
o
1

Figure 5.2.9 Normal Q-Q plot of the order statistics x;,’s in example 5.2.3.

To find the distribution of the errors we calculate the LSE 8 (= 0.08) and the

deviants

g, =v,-008x, (1<i<50).

We construct a Q-Q plot of the ordered deviants ¢, =y, —0.08x,, against

the quantiles Q, (1<i <50) of the standard normal distribution. The graph is

given in Figure 5.2.10. We notice that the distribution of the errors is close to

Student’s t distribution (see equation (2.5.2)) with r, =6.
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Q-Q Plot of e1(i)
Setosa

el(i)

-0.50

Figure 5.2.10 Normal Q-Q plot of the ordered deviants ¢, ;, in example 5.2.3.

Iris Virginica Plants:

The Q-Q plot of the ordered statistics u,, ’s against Q,’s is given below.

Q-Q Plot of u(i)
Virginica-Sepal Width

4.0

2.0+

Figure 5.2.11 Normal Q-Q plot of the order statistics u;,’s in example 5.2.3.
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We notice again that the distribution given in equation (2.5.3) with r, =11 fits

the data well.

Now, for the sepal width and petal length we calculate the LSE ] (= 0.67)

and the deviants

2, =v,—0.67 u, (1<i<50).

A Q-Q plot of the ordered deviants eé,, =v; —0.67 u, against O,

(1<i<50) is given in Figure 5.2.12. The distribution of the errors closely

follows equation (2.5.4) with r, =7.

Q-Q Plot of e2(i)
Virginica

2.0

e2(i)

Figure 5.2.12 Normal Q-Q plot of the ordered deviants ¢, in example 5.2.3.

We calculate the MML and LS estimators from the data using the results

given in section 4.6.2. We have the following estimates:
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Table 5.2.3 The MML and LS estimates for the iris data.

ﬂ X ﬂ y l[l u ﬂ % Gx Gy Gu Gv p yx p vu

MML 342 (146|297 |550| 034 |0.15| 0.29 0.50 | 0.18 0.47
LS 343 (146|297 |5.55| 034 |0.14 | 0.29 0.48 0.19 0.42

Using the iris data set, we test the hypothesis:
HO: pyx = pm VS. Hl: pyx # pvu'
As given in section 4.6.3, in order to test this hypothesis, the test statistic

based on the MMLE is

2
1+p. D
0.5In| - P —0.51{”‘3%}
5 1_pyx 1_pvu

Using the data we get

2
{0.51{%}—0.51{?8%}
W?= - - =2.5.

%50 ~3)

The null distribution of W? is referred to chi-square with one degree of
freedom. The simulated p-value is 0.22 and the p-value calculated using the

chi-square distribution with 1 df is 0.11. Thus, H, is not rejected at the 0.05

significance level.

Based on the LS estimators we have the following test statistic to test H
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2
1+ 0. ]
0.5In| £ —0.51{”,’2%}
W2 _ 1_pyx 1_pvu
1 2 .
%’l—3)

Using the data we get

2
{o.smﬁJrggﬂ - 0.51{?8'33}
: : : = 1.49.

W2 =
%50 ~3)

Again, the null distribution of W,* is referred to chi-square with one degree of

freedom. The simulated p-value is 0.18 and the p-value using the chi-square

distribution is 0.22. Again, H, is not rejected.
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CHAPTER 6

CONCLUSION

Bivariate data is often assumed to come from a bivariate normal
distribution. To estimate parameters in this situation, the least squares method
is the best choice. The estimators it yields are equivalent to the MLE and are
fully efficient. However, if the distribution is not normal, the LSE loose their
efficiency and tend to have a large bias in some situations. Although we can
easily adjust for the bias, we must use a method of estimation which gives
efficient and robust estimators. In Chapter 1, we summarized three methods
of estimation, namely, the maximum likelihood, the modified maximum
likelihood, and the least squares method. We discussed the advantages and
disadvantages of each method so far as their efficiencies and robustness

properties are concerned.

In Chapter 2, we considered two sets of bivariate data coming from a
distribution different than the bivariate normal. We considered two specific
distributions, the Generalized Logistic and the Student’s t. We used the
method of modified maximum likelihood to find estimators of all the
parameters. We also considered the corresponding LS estimators adjusted for
bias. We evaluated the Fisher information matrix and showed that the MMLE
are asymptotically fully efficient and considerably more efficient than the

LSE.

190



In Chapter 3, we carried out a simulation study and compared the
efficiency and robustness of the MML estimators with those the LS estimators
derived in Chapter 2. The MML estimators turned out to have less bias than
the LS estimators. They also turned out to be more efficient than the LSE and

more robust to the presence of outliers in the data and other data anomalies.

Testing the hypothesis that two population mean vectors are equal is of

enormous importance. In Chapter 4, using the MML estimators derived in

Chapter 2, we formulated a Hotelling type 7> statistic for testing the

hypothesis that the population mean vectors are equal, and denoted the test
statistic by T?. We derived the corresponding test statistic based on the LS
estimators and denoted it by T?. We derived their asymptotic noncentrality

parameters and proved that T? provides a more powerful test than T?
(asymptotically). We simulated the powers of each test and showed that the
test based on the MMLE has higher power than the test based on the LSE.
This is especially true if there are data anomalies since the LS estimators are
adversely affected to a greater extent by the presence of data anomalies. The
LS estimators are particularly affected by the presence of outliers in the data.
The MML estimators are calculated such that the extreme observations in the
sample get small weights. Thus, the influence of the extreme observations is
depleted. As a consequence, the MMLE inherit desirable robustness

properties. We compared the power of the test statistic T? to the test statistic

given by Tiku and Singh (1982), T, , based on censored normal samples. We
showed that 72 has overall higher power than 7. Interestingly, however,

T, has competing power properties for some distributions besides being

much easier to compute. We showed that the MML estimators can be used to
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find an estimator of Mahalanobis distance; in fact, they give a much better

estimator than if we were to use the LS estimators.

In Chapter 4 we also formulated hypothesis tests of the correlation

coefficient. We formulated test statistics to test hypotheses of the form H:

p =0 (if the var-cov matrices of both populations are equal) and p, = p

vu

(if the var-cov matrices of both populations are not equal). We showed that

the tests based on the MMLE are more powerful than those based on the LSE.

In Chapter 5, we provided examples of real life (and computer generated)

data. We used the MML and LS estimators to estimate population parameters.

From the data, we calculated 772 and T > statistics and showed how they can
be used to test the hypothesis that the population mean vectors are equal. We

also considered testingH,: p =0and p,, = p,, .

To sum up, we showed that using the method of modified maximum
likelihood to analyze bivariate data is advantageous. Not only does it give
unbiased (almost), efficient and robust estimators, but it also yields more
powerful tests for testing statistical hypothesis such as equality of two
population mean vectors, or the equality of two correlation coefficients.
Although we have only illustrated this for the Generalized Logistic and the
Student’s t distributions, the MML method can be applied to a wide range of
location-scale type distributions. Extension of the methodology developed in

this thesis to higher dimensions will indeed be a welcome contribution.
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APPENDIX A

BIAS CORRECTION IN THE LEAST SQUARE ESTIMATORS

A.1 Generalized Logistic

Note that from the properties of the Generalized logistic distribution, we have
EZ)=yb,)-y1), Var(Z)=y'(b)+y'(D),

E(Z)=y®b,)-y1), Var(Z,)=y'(b,)+y'(),

EW)=y(b,)-yQ1), VarW) =y'(b,) +y' (1) and

EW,)=y(®,)-y1), and Var(W,) =y'(b,) +y'(1).

Adjusting /i , [, , i, and [, for the bias
E(Z)=w(b,)—w(l)implies that

w<bx)—w<1>=E(X_”X)

0,

Thus, E(X) =, +0,(y(b,) -y (1)).

In the same manner we get that E(U) = u, +o,(w(b,)—w(Q1)).

Y-y, -0 (X—ﬂx)j

2.1

Also, E(Z,) =y (b,) -y ()= E(

Thus, E(Y)+6 1, -1, -8 E(X) = &, (b))~ (D).

This gives E(Y) = u, +60,(y(b,) —y (D) + 0,y (b,) —yD).
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In the same manner we get that

EV)=u,+600,(yb,)-y0)+0,,Wb,)-yd).

Using the above equations we can see that the estimators of u ., u,, U,

and i, are, respectively:

fo=x—b,)-y1)3,,

L =u—Wo,)-y)s,,

=
I
<

~

i, = y-88,(w(b,) - y)-&,,wb,)-y) and
y7,

i = V= 56‘1 w®b,)-yM)-6,,Wwb,)-yd).

Note that the above estimators are almost unbiased. For example, if o, is
known, the estimator [, =;c—(l//(bx)—w(1))0'1 would be unbiased.

However, since o, is unknown here, we are forced to replace it by &, .

Adjusting /i, and /i, for the bias

If welet p, =y, —0 x;, and p,, =v, —6 u,, then
E(P)=E(e)+u,, =0, Wyb,)-yD))+u,, and

E(P,) = E(ey)+p,,, =0,,(yb,)—yD)+u,,.

Therefore we can let

i, =p —@b)-yD)3,, ,and A, = p, - wb,)-yp1)5,,.

Replacing theta in p’s by its LS estimator we get
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JIN :; ~Gx- (w(®b,)-y1)o,, and

fy=v—6u—b,)-y1)5,,.

Adjusting G,, for the bias

Note that an(pli - p_l)2 =Zn: (yi —y- O(x, —;))2 and

i=1 i=1

n n

Z P =Z (v, v =601, —w) .

i=1 i=1

Var(P) =Var(e)) = o,,(W'(b,) +¥’ (1)), and

Var(P,) =Var(e,) = 0,,W'(b,) +¥'(1)).

E[Z()’i ~y-6(x, —}))2 +Z(vf V-0, _;))2:|

=(n-2)0;, (W' (b,)+¥' )+ (n—-2)o;, (W' (b,) +y'(1)

=(n-2)o;, (W' (b)) +y¥' (b)) + 2y (1)) .

Thus, the LS estimator of o, is

_ \/|Z(y 3-8 -0 + 3 v -6, —w) Jn-2) |

e W' b,)+ ' (b,) + 20 (1)
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Adjusting G, for the bias

X - U -
at and W, = A
61 Gl

Since Z, =

, we see that

Var(X) = o7 (/(b,) +¥'(1)) and Var(U)=07 ('(b,) + ¥ (1)) .
Now,

i=1

E(Zn:(xi —})zj: (n—1Var(X)

=(m-Do; W' b)+y' (D).
Thus,

E(i(x,» —0P Y —ﬁ)2j=<n DO W b)Y D)+ b,)+Y (1)

So the LS estimator of o, is

5 _ \/ 245
v e+ )+ ()
A.2 Student’s t Distribution

We will minimize:

1. E = Zeﬁ and E, = Zezzi
i=1 1

i=

2. (x,—u,) and Y (u, —p, )

Note that since
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X_
7, =2 "5 41 then E(Z,)=0 and Var(Z,) = . rif c..

1 X

Y—-u, 6 —06x
Z, = Je,(x) T t(r,) then

2.1

r,
E(Z,)=0 and Var(Z,)=—- 5 = c,.
- )

y

U -
W, = P t(r,) then

0,

EW,)=0 and Var(W,) =L2 =c,.
r —

u

V- —Bu
W, =4/c,(u) M TR 1(r,) then
(o)

2.1

EW,)=0 and Var(W,) =— S=c.
T

v

Finding the LS estimators of 4, and u

viu

Differentiating E, with respectto x4, we get
oE, 4
=2 c(y,—pu, —0x)=0,
aﬂy/x ; ll(yl Il'l)//x 1)

and we get i, = ;(') —6x.

The same can be done to find the LS estimator of u

viu-*

202



Adjusting &, for the bias

L 52 and E(s?)=—""
r.—2 r —2

u

Note that, E(s}) = o].

Thus, E(s2 +s)) =0, Ly L |
r.—=2 r,—2

Therefore, &, is taken as

Adjusting G, , for the bias

" 1 3 min{geﬁ. +IZ:“622’} =
Izcli (yi _;(_) _é(xi _;C(-)))Z + ZCZi (Vi _;0 _g(ui _;(-)))ZJ
(n—=2)

and

E[Zcu (y,. —;(_) - 0(x, —;c)))2 + ZCZ[ (Vi —vo — 6y, _;O))z}

T r
=(n-2 Y 4 |o?.
( )L_z n—Z}

y

So,
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L IZC” (yi —;O —6(x, —;o))z +Zc2i (vi ~viy -6, —;o))z]

62.1_ r
(n-2) —> 4+
r,—2 r-2

Finding an estimator of 8

We differentiate E = E|+ E, with respect to € and we get

3_5 = _chli(yi My, —6)x; _2ZCZi(vi My, —Ou)u; =0.
i=l i=1

Replacing 4, and u,,, by their LS estimators and simplifying we get

~

n _ n _
chi(xi —X0)Y; +zc2i(ui —uw)
6 == i=1

n n :
N2 N2

§ Cu(-x,' —)C(_)) + § Cz,'(u,' —I/t(,))

i=1 i=1
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APPENDIX B

WEIGHTED LEAST SQUARE ESTIMATORS

B.1 Generalized Logistic

n

1 2 1 1 ,
Var(el) ;(611‘ - E(el)) + Var(ez) ;(6% E(ez)) .

LetE =

If we differentiate E with respect to € we get:

E 1
39 . 2N =ty ~ 6 3, — (b, ~ (D), )5, — 1)

yll

n

2
+—Z(Vi — U, —Ou,—(wb,)-yl)o, Nu,—u,)

y =l

~

-0 and o, by ﬁy/xnav/u’e and G,,

respectively the above equation reduces to:

Replacing the parameters 4, , 41

n

}Z(yi — =8 (v~ 0, —x+ (b)) -y ()3,

+ LS, =98 (0, — ), —u+y(b,) - p1)E,) = 0.

v o=l

Multiplying out the parenthesis we get
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~

LI o RO YRS LIS ol P IVRILE oy S P S oy 7

y =l y =l v =l ¢, i=l

=0.

Therefore,

5{%2()@ —x)? +%Z(u,~ —;)2]
:%Z(yi—;)(xi—;)+c—1vZ(Vi—;)(ui—;)

This gives

‘*ZUﬁW@—ﬂ+*Z@—WW—M

0 = or

—Z(x —x) +—Z(u —u)

)11 yll

—Z(xl —x)yl +—Z(u —u)v

~ yll vll

ii(x, —x)? +—Z(u —u)?

)11 vll

Finding the WLS estimator of o,

~ 1 T I &
L EXEREeS A

i=1 CV i=1
~ 1 1 —\2 1 & —\ S2 Sz
means that 0'12W = Z(xi —x) +— (ui _u) =X 4
(n=D\c, T C, =l ¢, C,
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Now, E(s>)=(w'(b,)+yv'(1))o] =c o} and

E(s) =W ®b)+y' D))o} =c,07.

Which implies that the expected value of the above estimator is:

2 2
~ st s c, ¢
E@Gl)=E =+ |=0}| =+,
¢, ¢, ¢, ¢,

Thus, we choose the following WLS estimator of o, :

Finding the WLS estimator of o

Note that

E{LZ(M S Teopre) G of R 1% —;))2} =2 (n-2)02,.

Cy c,

y v

2(n-2)

l:(}Z(yl —;—g(x,‘ _;))2 +C12(Vi _;_g(ui _;))z:l

Thus, &,,, =

B. 2 Student’s t

The derivations are similar and will not be included here.
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APPENDIX C

INFORMATION MATRIX

C.1 Generalized Logistic

Let Z ~ GL(b) and let

-z —Z

e e
and =—F.
l+e”* ) (I+e7®)°

g(z)=

Note that g’(z) =—f(z).

Now using the Generalized Logistic p.d.f. we can show that
EZ)=yb)-yD),

Var(Z) =y’ (b)+y'(),

E(g(Z)=0b+D",

E(Zg(Z) =+ (w(b) -y (2),
E(f(Z2)=bb+D)"(b+2)",

E(Zf(Z) =bb+1)"' (b+2)" (Wb +1)-w(2)) and

EZ2f(2)=bb+1)" b+2) " W b+ +v' @+ b+ -w ).

We will only illustrate the procedure for a couple of the elements of the

information matrix. The rest are derived in the same way.
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The elements of the first fisher information matrix (x4, ,0,4,,,

M, .0, , @)arederived as follows:

azlnL (bt

1. a,uf 0'1 ; f(z,;). Therefore, we get
2
E(— d lnzLJ L A S I S L S
U, o, o, (b, +2)
Thus,
n b
I o= 2 |
Mkl q{b)ﬁz}
0’InL (b, +1) b +1)& L
' _n V=% TUNY L £y Th lies that
a,uxadl p : ;g(zu) p ;an(zl,) is implies tha
2
g _ 0°InL
aﬂxao-l
o nb D gy 2Dy i 12y i, + D) —w(2)).
O-l O-l 1
Thus,
0’InL n b,
I =E - b +1)—w(2)|.
( aﬂxaq] [(b )(z//< ) -y (2))

C.2 Student’s t Distribution

In Chapter 2, we derived the information matrices assuming that ¢, =c,, =1

for all i.

Now if Z ~ t(r) then
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r

E(Z)=0and Var(Z) =

r—

-5
and let f(z)= r

__* __r
2 N2
(1+Zj (1+ZJ
r r

Note that g'(z) = f(2).

Let g(z) =

Using the Student’s t p.d.f. we can show the following relations:

E(g(2)) =0,

E(Zg(Z)) =——,
r+1
E(f(2)=——,
r+3

E(Zf(Z))=0 and

r(r—3)
(r+D(r+3)°

E(Z*f(Z) =
Let us show the procedure of finding the elements of the information matrix

by illustrating with only a few elements of the first information matrix I.

°’InL  (r.+1) ¢

=__x ). Therefore, we get
o & :
E _O’InL)_n(r,+) . _ n (r.+D)

aﬂ? rxglz (r, +3) 0-12 (r, +3) '

n|r+1
So, [ =—|-2 .
Mol Gf{rx+3}

1.

’InL _ (r.+1)
. aﬂxadl rxo-lz

i=1

Zn:Z1;f(Z1i) +Zn:g(z1i)} .
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E(— J lnLJZO since E(Z,f(Z,))=0 and E(g(Z,))=0.
0,00,

Sowegetthat I, , =0

21 +1 1
aa;f (:G Y (ERULLL P

y“Z2u1 =l 1O, =l

3.

Writing x” in terms of z,,and u’ in terms of w,, we get

InL +1
aaanz (ro_ ){ zzuf(zzl)"'z:u G1zz1lf(zzl)+,u Zf(Zz, }

(£

rVO'21

{ Zwl fwy)+24, alZwl, fwy)+ 4, Zf(wz,]

Since E(Z})=Var(Z,))+(E(Z)))’ =

L 5 +0 and similarly

X

EW?)=Var(W,)+(E(W,))* =

*InL)_ n |(rn,+D) r r, ,
E - - G * +ﬂx
00? 02_1 r, (r,=2) (r, +3) (r, +3) |

NG +1){ , r I }
o, + U .
r, (r,=2)(r,+3) (r, +3)_

Simplifying we get that
L (oD et -2] 0 ol -2]|
o0 a2 | (r,+3) (r.—2) (r +3) (r,—2)
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APPENDIX D

ADDITIONAL SIMULATION RESULTS

Table D.1

£ =0.2, Outlier Model (a), b =1, by=1, b,=1, b =1.

n=20 H, My M, M, O, o, Y
E_MML 0.002 [0.011 |-0.011 |-0.011 {1.47 1.129 0.257
E_LS -0.001 {0.008 |-0.017 |-0.014 (1.517 1.043 0.285
V_MML 0.228 [0.158 |0.229 |0.156 |0.094 0.022 0.02
V_LS 0.402 [0.172 |0.413 |0.173 |0.162 0.021 0.026
RE (MMLLS) |57 |91 56 |90 |58 104 76
n=30

E_MML 0.003 |0 0.005 |-0.009 |1.43 1.087 0.261
E_LS 0.001 [-0.002 [0.008 |[-0.011 |1.546 1.039 0.294
V_MML 0.148 (0.106 [0.149 [0.098 |0.054 0.013 0.012
V_LS 0.277 (0.119 (0.279 [0.112 |0.117 0.014 0.017
RE (MML/LS) 54 89 53 87 46 97 73
n=100

E_MML -0.001 [-0.003 [0.005 |-0.006 |1.353 1.032 0.262
E_LS -0.003 [-0.003 [0.001 [-0.008 |1.565 1.08 0.304
V_MML 0.042 [0.033 |0.04 |0.031 |0.012 0.004 0.003
V_LS 0.083 [0.036 |0.074 |0.035 |0.039 0.004 0.005
RE (MML/LS) 51 90 54 88 30 87 67
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Table D.2

£ =0.9, Outlier Model (a), b =1, by=1, b,=1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.002 (0.006 |(-0.011 {-0.014 |1.47 1.411 0.933
E LS -0.001 [0.003 |[-0.017 |{-0.02 |1.517 1.438 0.943
V_MML 0.228 (0.212 [0.229 [0.215 |0.094 0.072 0.001
V_LS 0.402 |0.354 (0.413 |0.363 |0.162 0.125 0.001
RE (MML/LS) 57 60 56 59 58 58 100
n=30

E_MML 0.003 [0.002 |0.005 |0 1.43 1.37 0.937
E_LS 0.001 |0 0.008 |0.001 |1.546 1.461 0.948
V_MML 0.148 [0.142 |0.149 |0.138 |0.054 0.041 0.001
V_LS 0.277 (0.248 |0.279 |0.246 |(0.117 0.09 0.001
RE (MML/LS) |54 57 53 56 46 46 98
n=100

E_MML -0.001 {-0.002 |0.005 |0.001 [1.353 1.296 0.939
E_LS -0.003 [-0.004 [0.001 [-0.002 |1.565 1.475 0.953
V_MML 0.042 |0.039 (0.04 [0.039 |0.012 0.009 0
V_LS 0.083 |0.072 |0.074 [0.067 |0.039 0.03 0

RE (MML/LS) 51 55 54 58 30 31 86
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Table D.3

p =0.2, Outlier Model (b), b, =1, b, =1, b,=1, b, =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.002 [0.011 (-0.009 [-0.014 |[1.05 1.538 0.138
E_LS 0.002 {0.008 |-0.009 |-0.018 [0.987 1.539 0.131
V_MML 0.153 |0.226 |0.153 [0.228 |0.02 0.098 0.019
V_LS 0.166 [0.386 |0.165 |0.396 |(0.019 0.163 0.025
RE (MML/LS) 92 59 93 58 104 60 73
n=30

E_MML 0.002 |-0.002 |0.002 |-0.011 [1.032 1.468 0.141
E_LS 0.003 [-0.009 |0.002 |-0.016 [0.99 1.555 0.13
V_MML 0.102 [{0.148 |0.103 |0.136 |0.013 0.056 0.012
V_LS 0.11 (0.269 |0.11 0.26 |0.013 0.119 0.017
RE (MMLLS) |93 |55 |93 |52 |97 47 71
n=100

E_MML -0.001 {-0.003 |0.006 |-0.007 [1.009 1.351 0.15
E_LS -0.003 (0.001 [0.004 |-0.014 |0.997 1.546 0.131
V_MML 0.03 |0.044 (0.03 |[0.041 |0.004 0.012 0.003
V_LS 0.033 [0.083 |0.031 |0.082 |0.004 0.037 0.005
RE (MML/LS) 93 52 96 51 89 32 72
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Table D.4

p =0.9, Outlier Model (b), b, =1, b, =1, b,=1, b, =1.

n=20 M, My M, A, O, 0, Y
E_MML 0.002 [0.006 |-0.009 |-0.014 (1.05 1.167 0.808
E_LS 0.002 [0.005 |-0.009 |-0.016 [0.987 1.124 0.79
V_MML 0.153 [0.166 |0.153 |0.167 (0.02 0.023 0.006
V_LS 0.166 [0.207 |0.165 |0.207 |0.019 0.031 0.009
RE (MML/LS) 92 80 93 81 104 76 60
n=30

E_MML 0.002 {0.001 |0.002 |-0.003 [1.032 1.134 0.817
E_LS 0.003 [-0.001 |0.002 |-0.005 [0.99 1.13 0.79
V_MML 0.102 ({0.113 |0.103 |0.108 |0.013 0.015 0.003
V_LS 0.11 |0.142 |0.11 0.139 |0.013 0.022 0.006
RE (MML/LS) 93 80 93 78 97 67 52
n=100

E_MML -0.001 {-0.003 |0.006 |0.001 [1.009 1.086 0.836
E_LS -0.003 {-0.002 |0.004 |-0.003 [0.997 1.129 0.795
V_MML 0.03 |0.033 |0.03 |0.034 |0.004 0.004 0.001
V_LS 0.033 [0.042 |0.031 |0.044 |0.004 0.006 0.002
RE (MMLLS) |93 |77 |96 |77 |89 56 40
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Table D.5

£ =0.2, Outlier Model (c), b =1, by=1, b,=1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.002 (0.011 (-0.011 |{-0.015 |1.47 1.551 0.182
E LS -0.001 (0.007 |-0.017 {-0.019 |1.517 1.553 0.185
V_MML 0.228 |0.231 [0.229 [0.234 |0.094 0.101 0.052
V_LS 0.402 |0.394 (0.413 [0.403 |0.162 0.165 0.077
RE (MML/LS) 57 59 56 58 58 61 67
n=30

E_MML 0.003 [-0.003 |0.005 |-0.01 (1.43 1.482 0.188
E_LS 0.001 |-0.009 |0.008 |-0.015 [1.546 1.571 0.191
V_MML 0.148 [0.151 |0.149 |0.139 |0.054 0.058 0.034
V_LS 0.277 (0.276 |0.279 |0.268 |(0.117 0.122 0.055
RE (MML/LS) |54 55 53 52 46 48 62
n=100

E_MML -0.001 {-0.003 |0.005 |-0.007 [1.353 1.364 0.198
E_LS -0.003 (0.001 [0.001 [-0.014 |1.565 1.565 0.199
V_MML 0.042 |0.044 (0.04 |[0.042 |0.012 0.012 0.01
V_LS 0.083 [0.085 |0.074 |0.083 |[0.039 0.038 0.018
RE (MML/LS) 51 52 54 50 30 32 56
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Table D.6

£ =0.9, Outlier Model (c), b =1, by=1, b,=1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.002 (0.007 |(-0.011 |{-0.016 |1.47 1.486 0.881
E LS -0.001 [0.003 |[-0.017 {-0.022 |1.517 1.525 0.882
V_MML 0.228 (0.226 (0.229 [0.228 |0.094 0.086 0.004
V_LS 0.402 |0.394 (0.413 [0.403 |0.162 0.148 0.007
RE (MML/LS) 57 57 56 57 58 58 60
n=30

E_MML 0.003 [0.001 |0.005 |0 1.43 1.44 0.888
E_LS 0.001 {-0.003 |0.008 |0 1.546 1.553 0.888
V_MML 0.148 [0.15 |0.149 |0.146 |0.054 0.05 0.002
V_LS 0.277 (0.276 |0.279 |0.277 |0.117 0.106 0.004
RE (MML/LS) |54 54 53 53 46 47 53
n=100

E_MML -0.001 {-0.002 |0.005 |0.001 [1.353 1.356 0.897
E_LS -0.003 {-0.002 |0.001 |-0.005 [1.565 1.566 0.897
V_MML 0.042 |0.041 |0.04 |[0.042 |0.012 0.011 0
V_LS 0.083 [0.082 |0.074 |0.078 |0.039 0.035 0.001
RE (MML/LS) 51 50 54 53 30 33 43
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Table D.7

p =0.2, Mixture Model (a), b =1, by=1, b, =1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.004 (0.002 |(-0.012 |{-0.015 |1.474 1.129 0.257
E_LS 0.006 (0.002 |(-0.016 |-0.015 |1.513 1.042 0.283
V_MML 0.233 |0.159 (0.241 [0.151 |0.127 0.022 0.021
V_LS 0.4 0.176 |0.416 [0.168 |0.198 0.021 0.027
RE (MMLLS) |58 |91 |58 |90 |64 104 | 78
n=30

E_MML -0.008 [-0.006 |0.006 |-0.006 [1.43 1.084 0.263
E_LS -0.014 {-0.007 |0.009 |-0.009 [1.534 1.035 0.294
V_MML 0.151 [0.104 |0.149 |0.103 |0.074 0.014 0.013
V_LS 0.274 [|0.116 |0.277 |0.116 [0.14 0.014 0.018
RE (MML/LS) |55 90 54 89 53 98 75
n=100

E_MML -0.013 {-0.003 |0 0.013 |1.358 1.033 0.266
E_LS -0.019 |-0.003 |0.001 |0.011 |[1.565 1.031 0.307
V_MML 0.042 |0.031 [0.04 [0.028 |0.016 0.004 0.003
V_LS 0.081 [0.034 |0.083 |0.033 |0.045 0.004 0.005
RE (MML/LS) 52 89 49 87 35 85 65
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Table D.8

£ =0.9, Mixture Model (a), b =1, by=1, b, =1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.004 (0.004 (-0.012 |{-0.017 |1.474 1.415 0.931
E_LS 0.006 [0.006 |-0.016 |-0.02 ([1.513 1.435 0.941
V_MML 0.233 (0.218 |0.241 [0.224 |0.127 0.095 0.001
V_LS 0.4 0.354 |0.416 [0.366 |0.198 0.15 0.001
RE (MMLLS) |58 |62 |58 |61 64 64 98
n=30

E_MML -0.008 [-0.009 |0.006 |0.002 (1.43 1.371 0.935
E_LS -0.014 |{-0.015 |0.009 |0.004 (1.534 1.452 0.946
V_MML 0.151 |0.141 |0.149 |0.14 |0.074 0.056 0.001
V_LS 0.274 (0.242 |0.277 |0.245 [0.14 0.107 0.001
RE (MML/LS) |55 58 54 57 53 52 96
n=100

E_MML -0.013 |-0.012 |0 0.005 |1.358 1.302 0.939
E_LS -0.019 |-0.017 [0.001 [0.005 |1.565 1.477 0.953
V_MML 0.042 (0.04 |0.04 |[0.037 |0.016 0.012 0
V_LS 0.081 |0.071 |0.083 [0.071 |0.045 0.034 0

RE (MML/LS) 52 56 49 52 35 36 89
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Table D.9

p =0.2, Mixture Model (b), b, =1, b, =1, b,=1, b, =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.009 |-0.002 |-0.008 |-0.013 {1.051 1.543 0.143
E_LS 0.011 |-0.003 [-0.01 |-0.017 |0.987 1.536 0.137
V_MML 0.153 |0.226 |0.155 [0.236 |0.02 0.132 0.018
V_LS 0.165 |0.384 |(0.167 [0.412 |0.02 0.197 0.024
RE (MML/LS) 93 59 93 57 102 67 75
n=30

E_MML 0.003 |-0.005 |0.006 |-0.011 [1.036 1.462 0.145
E_LS 0.002 |-0.005 |0.005 |-0.019 [0.995 1.538 0.136
V_MML 0.1 0.148 |0.099 |0.143 |0.013 0.073 0.012
V_LS 0.108 [0.266 |0.109 |0.256 |0.013 0.137 0.017
RE (MML/LS) 92 56 91 56 97 54 73
n=100

E_MML -0.009 |-0.013 |-0.006 |0.005 |[1.008 1.356 0.147
E_LS -0.011 |-0.022 [-0.005 [0.005 |0.996 1.551 0.127
V_MML 0.033 [0.041 |0.029 |0.038 |[0.003 0.018 0.004
V_LS 0.036 [0.08 |0.031 |0.074 |0.004 0.05 0.005
RE (MMLLS) |91 |52 |94 |51 87 35 70
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Table D.10

p =0.9, Mixture Model (b), b, =1, b, =1, b,=1, b, =1.

n=20 M, My M, A, O, 0, Y
E_MML 0.009 [0.006 |-0.008 |-0.012 {1.051 1.173 0.808
E LS 0.011 |0.007 |-0.01 |-0.016 |0.987 1.128 0.791
V_MML 0.153 [0.167 |0.155 |0.169 |(0.02 0.026 0.007
V_LS 0.165 [0.208 |0.167 |0.214 |0.02 0.033 0.01
RE (MML/LS) 93 80 93 79 102 79 65
n=30

E_MML 0.003 |0 0.006 |0 1.036 1.138 0.82
E_LS 0.002 [-0.001 |0.005 |-0.004 [0.995 1.131 0.795
V_MML 0.1 0.108 |0.099 |0.109 |0.013 0.015 0.004
V_LS 0.108 [0.138 |0.109 |0.14 |0.013 0.022 0.007
RE (MMLLS) |92 78 91 78 97 69 55
n=100

E_MML -0.009 |-0.013 |-0.006 |-0.002 [1.008 1.086 0.834
E_LS -0.011 {-0.019 |-0.005 |-0.002 [0.996 1.129 0.793
V_MML 0.033 [0.035 |0.029 |0.031 |0.003 0.004 0.001
V_LS 0.036 [0.045 |0.031 |0.04 |0.004 0.007 0.002
RE (MML/LS) |91 77 |94 |78 |87 54 40
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Table D.11

p =0.2, Mixture Model (¢), b =1, by=1, b, =1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.004 |-0.017 |0 -0.005 |1.47 1.563 0.191
E_LS 0.008 |-0.021 [-0.002 {-0.007 |1.509 1.563 0.199
V_MML 0.227 |0.246 |0.237 [0.247 |0.125 0.132 0.019
V_LS 0.4 0.423 [0.412 [0.427 |0.198 0.193 0.028
RE (MML/LS) 57 58 57 58 63 68 68
n=30

E_MML 0.007 [0.004 |-0.011 |-0.017 {1.431 1.479 0.198
E_LS 0.013 |-0.003 |-0.013 |-0.022 [1.535 1.562 0.203
V_MML 0.145 [0.149 |0.146 |0.154 |0.073 0.075 0.012
V_LS 0.268 [0.267 |0.276 |0.279 |0.139 0.138 0.02
RE (MML/LS) |54 56 53 55 52 54 62
n=100

E_MML -0.002 [-0.01 |-0.007 {-0.003 |1.354 1.371 0.198
E_LS 0.004 |-0.019 [-0.015 |{0.003 |1.557 1.579 0.2
V_MML 0.039 [0.043 |0.04 |0.043 |0.018 0.016 0.003
V_LS 0.08 |0.081 |0.081 |0.087 |0.048 0.044 0.006
RE (MML/LS) 48 53 50 50 37 36 53
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Table D.12

£ =0.9, Mixture Model (¢), b =1, by=1, b, =1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML 0.004 |-0.004 (0 -0.002 |1.47 1.498 0.876
E_LS 0.008 |-0.003 |-0.002 |-0.005 [1.509 1.533 0.876
V_MML 0.227 |0.232 |0.237 [0.237 |0.125 0.095 0.005
V_LS 0.4 0.408 [0.412 |0.412 |0.198 0.152 0.007
RE (MML/LS) 57 57 57 57 63 63 69
n=30

E_MML 0.007 {0.007 |-0.011 |-0.017 {1.431 1.447 0.886
E_LS 0.013 [0.009 |-0.0183 |-0.02 |[1.535 1.55 0.884
V_MML 0.145 [0.142 |0.146 |0.147 |0.073 0.053 0.003
V_LS 0.268 [0.261 |0.276 |0.274 |0.139 0.103 0.005
RE (MML/LS) |54 55 53 54 52 52 60
n=100

E_MML -0.002 {-0.006 |-0.007 |-0.007 [1.354 1.359 0.895
E_LS 0.004 |-0.005 [-0.015 |{-0.011 |1.557 1.566 0.893
V_MML 0.039 (0.041 |0.04 |[0.042 |0.018 0.013 0.001
V_LS 0.08 (0.082 |0.081 |0.085 |0.048 0.035 0.001
RE (MML/LS) 48 50 50 50 37 37 49
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Table D.13

p =0.2, Contamination Model (a), b =1, by=1, b, =1, b =1.

n=20 M, My H, H, O, 0, Y
E_MML -0.004 {-0.001 |-0.005 |0.001 [0.988 1.108 0.18
E_LS -0.005 {-0.001 |-0.008 |0 0.941 1.012 0.187
V_MML 0.127 |0.15 |0.127 [0.149 |0.02 0.022 0.021
V_LS 0.147 |0.16 |0.148 [0.16 |0.02 0.02 0.024
RE (MML/LS) 87 93 86 93 100 110 88
n=30

E_MML 0 -0.004 |0.003 |-0.003 [0.967 1.065 0.181
E_LS -0.001 {-0.003 |0.003 |-0.004 [0.942 1.006 0.187
V_MML 0.101 [0.113 |0.097 |0.106 |0.014 0.013 0.016
V_LS 0.101 [0.113 |0.097 |0.106 |0.014 0.013 0.016
RE (MMLLS) |85 |92 |86 |92 |96 101 88
n=100

E_MML -0.002 {-0.007 |0.002 |-0.001 [0.938 1.02 0.187
E_LS -0.001 [-0.006 [0.002 [-0.001 |0.944 1.004 0.191
V_MML 0.024 |0.03 |[0.024 [0.03 |0.004 0.004 0.004
V_LS 0.03 |0.033 |0.028 |0.032 |0.004 0.004 0.004
RE (MML/LS) 82 91 84 96 91 91 92
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Table D.14

£ =0.9, Contamination Model (a), b =1, by=1, b, =1, b =1.

n=20 M, My M, A, O, 0, Y
E_MML -0.004 {-0.004 |-0.005 |-0.003 [0.988 1.016 0.874
E_LS -0.005 [-0.005 |-0.008 |-0.006 [0.941 0.958 0.882
V_MML 0.127 |0.128 (0.127 (0.132 |0.02 0.018 0.002
V_LS 0.147 |0.146 |0.148 [0.15 |0.02 0.018 0.002
RE (MMLLS) |87 |88 |86 |88  |100 101 101
n=30

E_MML 0 -0.002 |0.003 |0.001 |0.967 0.988 0.878
E_LS -0.001 {-0.002 |0.003 |0 0.942 0.956 0.884
V_MML 0.086 [0.09 |0.083 |0.086 |(0.013 0.011 0.001
V_LS 0.101 [0.104 |0.097 |0.098 |0.014 0.012 0.001
RE (MML/LS) |85 86 86 88 96 95 99
n=100

E_MML -0.002 {-0.005 |0.002 |0.001 |0.938 0.956 0.884
E_LS -0.001 {-0.004 |0.002 |0.001 |0.944 0.957 0.888
V_MML 0.024 [0.025 |0.024 |0.025 |0.004 0.003 0
V_LS 0.03 [0.029 |0.028 |0.028 |0.004 0.004 0

RE (MML/LS) 82 85 84 88 91 91 97
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Table D.15

p =0.2, Contamination Model (b), b =1, by=1, b, =1, b =1.

n=20 M, My M, A, O, 0, Y
E_MML 0.001 |-0.005 |-0.002 |-0.004 [1.051 1.046 0.201
E_LS 0.001 |-0.006 |-0.001 |-0.007 [0.988 0.967 0.204
V_MML 0.153 (0.127 |0.146 [0.129 [0.021 0.022 0.02
V_LS 0.163 |0.146 |0.158 [0.147 |0.02 0.021 0.023
RE (MML/LS) 93 87 93 88 103 107 86
n=30

E_MML -0.004 {0.001 |-0.01 |0.002 (1.032 1.004 0.206
E_LS -0.002 {0.002 |-0.011 |0 0.992 0.96 0.207
V_MML 0.104 [0.086 |0.097 |0.085 |0.013 0.013 0.014
V_LS 0.114 (0.1 0.106 |0.098 |0.013 0.013 0.016
RE (MMLLS) |91 86 92 87 96 99 86
n=100

E_MML 0.002 |0 -0.006 |-0.005 |1.008 0.954 0.214
E_LS 0.005 |0 -0.009 |-0.006 |0.995 0.954 0.212
V_MML 0.031 [0.027 |0.03 |0.024 |0.004 0.003 0.004
V_LS 0.033 [0.032 |0.032 |0.029 |0.004 0.004 0.005
RE (MML/LS) 91 84 93 83 92 91 86
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Table D.16

£ =0.9, Contamination Model (b), b _=1, by=1, b, =1, b =1.

n=20 M, My M, A, O, 0, Y
E_MML 0.001 |-0.002 |-0.002 |-0.003 [1.051 1.052 0.897
E_LS 0.001 |-0.002 |-0.001 |-0.004 [0.988 0.985 0.9
V_MML 0.153 |0.148 |0.146 (0.141 [0.021 0.018 0.001
V_LS 0.163 [0.16 |0.158 |0.154 |0.02 0.017 0.002
RE (MML/LS) 93 92 93 92 103 103 94
n=30

E_MML -0.004 |-0.003 |-0.01 |-0.007 [1.032 1.028 0.903
E_LS -0.002 {-0.001 |-0.011 |-0.009 [0.992 0.987 0.903
V_MML 0.104 [0.099 |0.097 |0.097 |0.013 0.011 0.001
V_LS 0.114 (0.109 |0.106 |0.105 |0.013 0.012 0.001
RE (MMLLS) |91 91 92 92 96 95 90
n=100

E_MML 0.002 [0.002 |-0.006 |-0.007 [1.008 0.998 0.909
E_LS 0.005 [0.004 |-0.009 |-0.01 [0.995 0.988 0.907
V_MML 0.031 [0.029 |0.03 |0.029 |0.004 0.003 0
V_LS 0.033 [0.033 |0.032 |0.031 |0.004 0.004 0

RE (MML/LS) 91 90 93 91 92 93 86
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Table D.17

p =0.2, Contamination Model (c), b =1, by=1, b, =1, b =1.

n=20 M, My M, A, O, 0, Y
E_MML 0 0.01 -0.008 |-0.006 |0.984 1.043 0.187
E_LS -0.001 (0.01 -0.01 |-0.004 |0.936 0.964 0.191
V_MML 0.126 |0.128 |(0.133 [0.127 |0.02 0.022 0.02
V_LS 0.146 |0.146 |0.152 [0.145 |0.02 0.02 0.023
RE (MML/LS) 86 88 87 87 103 107 86
n=30

E_MML -0.002 {-0.004 |-0.005 |0.002 |0.965 1.001 0.192
E_LS -0.005 [-0.004 |-0.004 |0.001 [0.94 0.957 0.195
V_MML 0.086 [0.089 |0.082 |0.083 |0.013 0.013 0.013
V_LS 0.102 [{0.103 |0.097 |0.096 |(0.013 0.013 0.015
RE (MML/LS) |85 86 85 87 96 99 85
n=100

E_MML -0.006 |{-0.01 |0.003 |-0.011 [0.938 0.954 0.197
E_LS -0.011 |{-0.01 |0.003 |-0.014 [0.944 0.955 0.199
V_MML 0.024 [0.025 |0.025 |0.026 |0.004 0.004 0.004
V_LS 0.028 [0.029 |0.03 |0.031 |0.004 0.004 0.005
RE (MML/LS) 84 86 83 83 91 93 82
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Table D.18

£ =0.9, Contamination Model (c), b =1, by=1, b, =1, b =1.

n=20 M, My M, A, O, 0, Y
E_MML 0 0.004 |-0.008 |-0.009 [0.984 0.997 0.884
E_LS -0.001 {0.004 |-0.01 |-0.01 |0.936 0.943 0.889
V_MML 0.126 |0.125 (0.133 [0.13 |0.02 0.017 0.002
V_LS 0.146 |0.144 |0.152 [0.149 |0.02 0.017 0.002
RE (MML/LS) 86 87 87 88 103 102 98
n=30

E_MML -0.002 {-0.004 |-0.005 |-0.003 [0.965 0.973 0.89
E_LS -0.005 [-0.006 |-0.004 |-0.002 [0.94 0.944 0.894
V_MML 0.086 [0.086 |0.082 |0.082 |0.013 0.011 0.001
V_LS 0.102 [{0.101 |0.097 |0.097 |0.013 0.011 0.001
RE (MML/LS) |85 85 85 85 96 95 94
n=100

E_MML -0.006 {-0.009 |0.003 |-0.003 [0.938 0.942 0.896
E_LS -0.011 |{-0.013 |0.003 |-0.004 [0.944 0.947 0.897
V_MML 0.024 [0.024 |0.025 |0.026 |0.004 0.003 0
V_LS 0.028 [0.028 |0.03 |0.032 |0.004 0.003 0

RE (MML/LS) 84 84 83 82 91 88 92
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APPENDIX E

FORTRAN PROGRAMS

We will only show part of the program for Student’s t distribution. The one

for the Generalized Logistic is similar and will not be displayed here.

Note: Sigma in the program is o, ,

E.1 Student’s t

ANANAAAANNAANNNAANANNAANANANNANNANNANNNNANANANNANNNNNANANANANNNNAAANANANNNNANAN

A PROCEDURE THAT CALCULATES THE LS ESTIMATORS
takes the sample and df as input, produces all LSE
AANAANANANAANNAANNANNANANNANNANANNANNANANNNANNANANNAANNANANNNANNANANNANNAANNNANNANANANNANNNANANN
subroutine LS(n,rx,ru,ry,rv,x,y,u,v,c1_w, c2_w, mu_xH_LS1,
& mu_yH_LS1,mu_uH_LS1,mu_vH_LS1,mu_ygxH_LS1, mu_vguH_LS1,
& sigma1H_LS1,sigma2H_LS1,sigmaH_LS1,rhoH_LS1,thetaH_LS1)

OO0 00

real x(300),y(300),u(300),v(300)

real wis1(300),wls2(300)

real c1_w(n),c2_w(n)

real mu_xH_LS1,mu_yH_LS1,mu_uH_LS1, mu_vH_LS1

real mu_ygxH_LS1, mu_vguH_LS1,sigmailH_LS1,sigma2H_LS1,sigmaH_LS1
real rhoH_LS1,thetaH_LS1

real xbar,ubar,vbar,ybar,xd_bar,ud_bar,vd_bar,yd_bar

real mean_wls1,mean_wls2

xbar =0.0
ubar = 0.0
ybar =0.0
vbar = 0.0

do 1068 i=1
cl_w()=1
c2_w(i) =1

xbar = xbar + x(i)

.0
.0
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ybar = ybar + y(i)
ubar = ubar + u(i)
vbar = vbar + v(i)
1068 continue
xbar = xbar/(1.0*
ybar = ybar/(
ubar = ubar/(
vbar = vbar/(

1.0™n)
1.0™n)
1.0™n)
1.0™n)
yd_bar =0.0
xd_bar =0.0
ud_bar =0.0
vd_bar =0.0
cl_w sum=0.0
c2_w_sum=0.0

do 2901 i=1,n

xd_bar = xd_bar + ¢1_w(i)*x(i)
yd_bar = yd_bar + c1_w(i)*y(i)
ud_bar = ud_bar + c2_w(i)*u(i)
vd_bar = vd_bar + c2_w(i)*v(i)
cl_w_sum =ci1_w_sum + c1_w(i)
C2_W_sum =c2_w_sum + c2_w(i)

2901 continue

yd_bar = yd_bar/c1_w_sum
xd_bar = xd_bar/c1_w_sum
vd_bar = vd_bar/c2_w_sum
ud_bar = ud_bar/c2_w_sum

c 7 SAMPLE VARIANCES AND COVARIANCES
sx2=0.0
sy2 =0.0
su2 = 0.0
sv2 =0.0
¢ sum of (xi-xbar)(yi-ybar)
sxy =0.0
suv =0.0
¢ “the two parts of the denominator of thetaH_LS1:
td1 =0.0
td2 = 0.0

do 1069 i=1,n
SX2 = sx2 + (
sy2 = sy2 + (
su2 = su2 + ((u(i) - ubar)**2)

sv2 = sv2 + ((v(i) - vbar)**2)

sxy = sxy + c1_w(i)*((x(i)-xd_bar)*(y(i)-yd_bar))
suv = suv + c2_w(i)*((u(i)-ud_bar)*(v(i)-vd_bar))
td1 =td1 + c1_w(i)* ((x(i) - xd_bar)**2)

—

X(i) - xbar)**2)
y(i) - ybar)**2)
u(i

/-\,_\/-\
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td2 = td2 + c2_w(i)* ((u(i) - ud_bar)**2)
1069 continue

sx2 = sx2/(1.0*n-1.0)
sy2 = sy2/(1.0"n-1.0)
su2 = su2/(1.0*"n-1.0)
sv2 = sv2/(1.0"n-1.0)
sxy = sxy/(1.0*n-1.0)
suv = suv/(1.0*n-1.0)

td1 = td1/(1.0*n-1.0
td2 = td2/(1.0*n-1.0

—_—

thetaH_LS1 = (sxy+suv)/(td1+td2)

sigmalH_LS1 = sqgrt((sx2+su2)/(rx/(rx-2.0)+ru/(ru-2.0)))

¢ ™ Finding sigmaH_LS1 -- only for the case where c1i=c2i=1

¢ ™ we do this by finding wis1i = yi - theta*xi,

c ™ and wlis2i= vi - theta*ui.

¢ ™ Now, note that wis1bar is ybar-theta*xbar

¢ ™ Thus in finding var(wls) we can find the numerator of sigmaH_LS1
mean_wls1 = 0.0
mean_wls2 = 0.0
do200i=1,n

wis1(i) = y(i) - thetaH_LS1*x(i)

wis2(i) = v(i) - thetaH_LS1*u(i)

mean_wls1 = mean_wls1 + wlis1(i)

mean_wls2 = mean_wls2 + wls2(i)
200 continue

¢ means of wis's
mean_wls1 = mean_wls1/(1.0*n)
mean_wls2 = mean_wls2/(1.0*n)

var_wlis1 =0.0
var_wls2 = 0.0

do 201 i=1,n

var_wls1 =var_wis1 + ((wls1(i)-mean_wls1)**2)

var_wls2 = var_wls2 + ((wls2(i)-mean_wls2)**2)
201 continue

¢ variances of wis's adjusted for bias
var_wls1 = var_wls1/(1.0*n-2.0)
var_wls2 = var_wls2/(1.0*n-2.0)

sigmaH_LS1 = sqrt((var_wls1+var_wls2)/
&((ry/(ry-2))+(rv/(rv-2))))
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sigma2H_LS1 = sqgrt((sigmaH_LS1**2)+
&(thetaH_LS1**2)*(sigma1H_LS1**2))

rhoH_LS1 = thetaH_LS1*sigmat1H_LS1/sigma2H_LS1

mu_xH_LS1 = xbar
mu_uH_LS1 = ubar

mu_yH_LS1 = yd_bar - thetaH_LS1*(xd_bar-mu_xH_LS1)
mu_vH_LS1 = vd_bar - thetaH_LS1*(ud_bar-mu_uH_LS1)

mu_ygxH_LS1 = yd_bar - thetaH_LS1*xd_bar
mu_vguH_LS1 = vd_bar - thetaH_LS1*ud_bar

return

end

c ANANANANNANANANANANANNANNANANANNANNANANAANANNANNANANANNNNANANANANANANNANANANNAAN
c CALCULATES THE MML ESTIMATORS

Cc takes the sample and df as input, produces all estimates

c ANANANANNANANANANANANNANNANANANNANNANANANANANNANNANANANNNNANANANANANANNANANANNAN

subroutine MML(n,rx,ru,ry,rv,thetaH_LS1,
&x,y,u,v,c1_w,c2_w,mu_xH_MML1,mu_yH MML1,mu_uH_MML1,
&mu_vH_MML1,mu_ygxH_MML1,mu_vguH_MML1,
&sigma1H_MML1,sigma2H_MML1,sigmaH_MML1,rhoH_MML1,thetaH_MML1,
&mi11, m12,m21,m22,alpha1,alpha2,betal,beta2,gammail,gamma2,
&deltal,delta2,alpha_w,beta_w,delta_w,gamma_w,t1,12,s1,s2)

real x(300),y(300),u(300),v(300),x0(300),uo(300)

real z1(300),z2(300),w1(300),w2(300)

real xc(300),yc(300),uc(300),vc(300)

real wis1(300),wls2(300)

real c1_w(300),c2_w(300)

real mu_xH_MML1,mu_yH MML1,mu_uH_MML1, mu_vH_MML1
real mu_ygxH_MML1, mu_vguH_MML1,sigmaiH_MML1,sigma2H_MML1
real sigmaH_MML1,rhoH_MML1 thetaH_MMLA1,qi

real t1(300),t2(300),s1(300),s2(300)

real beta1(300),beta2(300),alpha1(300),alpha2(300)

real gamma1(300),gamma2(300),deltal(300),delta2(300)

real beta_w(300),alpha_w(300),gamma_w/(300),delta_w(300)
real m11, m12,m21,m22,k11,k21

real K,K1,K2,D,D1,D2,5,551,5S2

**** Sorting the X's and U's *****

CALL SVRGN (n, x, x0)
CALL SVRGN (n, u, uo)

*kkk

*** Finding Beta's alpha's, gamma's, delta's and s's and t's
*Initializing:
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do 1006 i=1,n
gi = (1.0%)/(1.0*n+1.0)
t1(i) = tin(qi,rx)
betat(i) = (1.0-((t1(i)**2)/rx))/((1.0+((t1(i)**2)/r x))**2)
alphai (i) = (2.0%(t1(i)**3)/rx)/((1.0+((t1()**2)/rx))**2)

if (betai(i).lt.0) then

betat(i) = 1.0/((1.0+((t1(i)**2)/rx))**2)

alphat(i) = ((t1(i)"*3)/rx)/((1.0+((t1(i)**2)/rx))**2)
endif

t2(i) = tin(qi,ry)

beta2(i) = (1.0-((t2(i)**2)/ry))/((1.0+((t2(i)**2)/r y))**2)
alpha2(i) = (2.0*(t2(i)**3)/ry)/((1.0+((t2())**2)/ry))**2)
if (beta2(i).It.0) then

beta2(i) = 1.0/((1.0+((t2(i)**2)/ry))**2)

alpha2(i) = ((t2(i)**3)/ry)/((1.0+((t2(i)**2)/ry))**2)
endif

s1(i) = tin(qi,ru)

gammai (i) = (1.0-((s1(i)**2)/ru))/((1.0+((s1(i)**2)/ru))**2)
deltal(i) = (2.0*(s1(i)**3)/ru)/((1.0+((s1(i)**2)/ru))**2)

if (gammai (i).lt.0) then

gammail(i) = 1 O/((1 0+((s1(i)**2)/ru))**2)
deltal (i) = ((s1(i)**3)/ru)/((1.0+((s1(i)**2)/ru))**2)
endif

s2(i) = tin(qi,rv)
gammaz2(i) = (1.0-((s2(i)*"2)/rv))/((1.0+((s2(i)"
delta2(i) = (2.0*(s2(i)**3)/rv)/((1.0+((s2(i)**2)/rv))**2)

if (gamma2() .0) then

gammaz2(i) = 1.0/((1.0+((s2(i)**2)/rv))**2)
delta2(i) = ((s2(i)**3)/rv)/((1.0+((s2(i)**2)/rv))**2)
endif

beta_w(i) = c1_w(i)*beta2(i)

alpha_w(i) = sqgrt(c1_w(i))*alpha2(i)
gamma_w(i) = c2_w(i)*gamma2(i)
delta_w(i) = sqrt(c2_w(i))*delta2(i)

1006 continue

¢ sum of betali's
mi1=0.0

¢ sum of beta2i's
mi12 =0.0

¢ sum of gammali's

234

’_‘
==
N
-
=
=
<
~
-
*
*
N
~



m21 = 0.0

sum of gammaz2i's
m22 = 0.0

sum of betati*xoi
k11 =0.0

sum of gammaii*uoi
k21 =0.0

do 3011 i=1,n

m11 =m11 + betai(i)

m12 =m12 + beta2(i)

sum of betali*xo(i) will divide by m11 later

k11 = k11 + betal(i)*xo(i)

m21 = m21 + gamma (i)

m22 = m22 + gammaz2(i)

sum of gammaii*u(i)/m21 will divide by m21 later
k21 = k21 + gamma1 (i)*uo(i)

3011 continue

c

$$$35$$35$$$$S 1. mu_xH and mu_uH $$$$S$$IES$$IES$$$ES$$SS

mu_xH MML1 =k11/m11
mu_uH_MML1 = k21/m21

$$5$$$$ES$$$ 2. SIGMATH_MMLT $$$$3TESSSS$IIESSSS$ITSS$$S

to calculate sigma1H_MML1

b1a=0.0

bib =0.0

** the first and second parts of C1 in sigma1H_MML1
Cl1a=0.0

Cib=0.0

B1=0.0

C1=0.0

do1177i=1,n

b1a =b1a + alphai(i)*xo(i)

b1b = b1b + deltal(i)*uo(i)

C1la = Cla + betal(i)*((xo(i)-mu_xH_MML1)**2)
C1b = C1b + gammal(i)*((uo(i)-mu_uH_MML1)**2)

1177 continue

c

*the first and second parts of B1 in sigmaiH_MMLA1:
b1a = ((rx+1.0)/(1.0*rx))*b1a

b1b = ((ru+1.0)/(1.0*ru))*b1b

*the first and second parts of C1 in sigma1H_MML1:
Cla = ((rx+1.0)/(1.0"rx))*C1a

C1b = ((ru+1.0)/(1.0%*ru))*C1b

B1 =bla+blb

C1=C1a+Cib
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sigmalH_MML1=(B1+sqrt((B1**2)+(8.0*n*C1)))/
&(4.0*sqrt(1.0*n*(n-2.0)))

¢ The errors so we can order according to them (no need for mu's-constants)
test = thetaH_LS1
call concom(mu_x,mu_y,mu_u,mu_v,sigmal,sigma,
&theta,rho,mu_ygx,mu_vgu,rx,ry,ru,rv,x,y,u,v,xc,uc,yc,vc,
&z1,z2,w1,w2,n,test)

¢ *** Calculating x[.]Jbar, u[.]bar ...etc

xdot_bar = 0.0
ydot_bar = 0.0
udot_bar =0.0
vdot_bar = 0.0
do1184i=1,n

*

*

xdot_bar = xdot_bar + beta_w(i)*xc(i)
ydot_bar = ydot_bar + beta_w(i)*yc(i)
udot_bar = udot_bar + gamma_w(i)*uc(i)
vdot_bar = vdot_bar + gamma_w(i)*vc(i)

i)
)

1184 continue

xdot_bar = xdot_bar/m12
ydot_bar = ydot_bar/m12
udot_bar = udot_bar/m22
vdot_bar = vdot_bar/m22

c LAYAYAYAYAYAYAYAYAVAVAVAVAVAVAVA VAV VAV AVAVAVAVAVAV VA VAV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

¢ CALCULATING SIGMA_HAT and THETA_HAT
c ANAAANNANANNAANNANNNNNANNNNNANNAANNANANNANAANNANNNANAANNANANANNANNANNANN
K=0.0
c first part of K
K1 =0.0
¢ second part of K
K2 =0.0
D=0.0
¢ first and second parts of D
D1=0.0
D2=0.0
S=00
¢ first and second parts of S
SS1=0.0
SS2=0.0

do 1186i=1,n
SS1 =881 + ((ry+1.0)/(1.0*ry))*beta_w(i)*((xc(i) - xdot_bar)**2)
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*

882 = SS2 + ((rv+1.0)/rv)* gamma_w(i)*((uc(i) - udot_bar)**2)
D1 = D1 + ((ry+1.0)/(1.0*ry))*alpha_w(i)*(xc(i) - xdot_bar)
D2 = D2 + ((rv+1.0)/(1.0*rv))*delta_w(i)*(uc(i) - udot_bar)
K1 = K1 + ((ry+1.0)/(1.0%ry))*beta_w(i)*(x
(( (

— —

(i
*(uc(i) - udot_bar)*vc(i)

~— —

u
)) c(i) - xdot_bar)*yc(i)
K2 = K2 + ((rv+1.0)/(1.0%rv))*gamma_w(i)

1186 continue

c

The S, D, and K that are in the thetaH_MML1
S =S8S1 + SS2

D = (D1 + D2)/S

K= (K1 + K2)/S

The things needed for sigmaH: (both parts of B2 and C2
B2a=10.0
B2b = 0.0
C2a=0.0
C2b=0.0

do 1187i=1,n

B2a= BZa+((ry+1)/ry)*aIpha w(i)*(yc(i)- ydot_bar -
&(K*(xc(i)- xdot_bar)))
B2b=B2b-+((rv+1)/rv)*delta_w(i)*(vc(i)- vdot_bar -
&(K*(uc(i)- udot_bar)))
C2a=C2a+((ry+1)/ry)*beta_w(i)*((yc(i)-ydot_bar-
&(K*(xc(i)-xdot_bar)))**2)
C2b=C2b+((rv+1)/rv)*gamma_w(i)*((vc(i)-vdot_bar-
&(K*(uc(i)-udot_bar)))**2)

1187 continue

c

o

B and C that are in sigmaH_MML1
B2 = B2a + B2b
C2=C2a + C2b

sigmaH_MML1 = (B2 + sqrt((B2**2)+(8.0"n*C2)))/
&(4.0*sqrt(1.0*n*(n-4.0)))

thetaH_MML1 = K + D*sigmaH_MML1

ANANAAAANNAANNNNAANANNAANANANNANAANNAANNNNANANANNANNNNNANANANNANAANNANANN

CALCULATING mu_ygxH_MML1, mu_vguH_MML1

ANNAAAANNAANNNNAANANNAANANANNNAANANNAANNNNANANANNAANNNNNANANANANANANNANANN

alpha_sum = 0.0
delta_sum = 0.0

do 5000 i=1,n
alpha_sum = alpha_sum + alpha_w(i)
delta_sum = delta_sum + delta_wf(i)

5000 continue
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OO0 000

**if we assume c1li's are one, the sum of
alphas and deltas are both zero

mu_ygxH_MML1 = ydot_bar - (thetaH_MML1*xdot_bar)
mu_vguH_MML1 = vdot_bar - (thetaH_MML1*udot_bar)

ANANAAAANNAANNNNAANANNAANANANNANANNNANNNNANANANNAANNNNNANANANNANANANNANANNN

CALCULATING mu_yH_MML1, mu_vH_MML1, sigma2H and rhoH

ANANAAAANNAANNNNAANANNAANANANNNANANNANNNNANANANNAANNNNNANANANNANANNNANNNN

mu_yH_MML1 = ydot_bar - thetaH_MML1*(xdot_bar - mu_xH_MML1)
mu_vH_MML1 = vdot_bar - thetaH_MML1*(udot_bar - mu_uH_MML1)

sigma2H_MML1 = sqrt((sigmaH_MML1**2)+(thetaH_MML1**2)*
&(sigmalH_MML1**2))

rhoH_MML1 = thetaH_MML1*sigma1H_MML1/sigma2H_MMLA1

return
end

AV AYAYAYAYAYAYAVAVAVAVAVAVAVAVAVAV VAV AVAVAVAVA VAV AV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV AV, VAV, VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

PERFORMES A HYPOTHESIS TEST AND FINDS POWER

compares That to Ttelda

for testing equality of two mean vectors
AANANANANAANNANNANNAAANANNNNANNAANNANANANANANNANANNANANNNNNNANNANNAANNANAANNANNNANNNNN
subroutine hypoth_egmeans(n,iter,rx,ry,ru,rv,mu_x,mu_u,
&mu_y,mu_v,mu_ygx,mu_vgu,sigma1l,sigma2,sigma,rho,theta,
&c1_w,c2_w,l1inv,power_MML,power_LS)

real alpha1(300),beta1(300),alpha2(300),beta2(300)

real gammai(300),gamma2(300),delta1(300),delta2(300)

real alpha_w(300),beta_w(300),gamma_w(300),delta_w(300)

real t1(300),t2(300),s1(300),s2(300)

real 1inv(7,7)

real TS_MML(iter), TS_LS(iter)

real power_MML, power_LS

real c1_w(300),c2_w(300)

real sigma_xuH,sigma_yvH,sigma_xuT,sigma_yvT

real pval_MML, al, d1,d2

real CV_MML, CV_LS

real temp, temp1, temp2, chiin

real x(300),y(300),u(300),v(300),x0(300),uo(300)

real z1(300),z2(300),w1(300),w2(300)

real mu_xH_MML1,mu_yH_MML1,mu_uH_MML1,mu_vH_MML1

real mu_ygxH_MML1,mu_vguH_MML1,sigmaiH_MML1,sigma2H_MML1
real sigmaH_MML1,rhoH_MML1 thetaH_MMLA1

real mu_xH_LS1,mu_yH_LS1,mu_uH_LS1,mu_vH_LS1,mu_ygxH_LS1
real mu_vguH_LS1,sigma1H_LS1,sigma2H_LS1,sigmaH_LS1

real rhoH_LS1,thetaH_LS1,thetaH_LS
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real vi1, vi2,v21,v22, per
real m11,m12,m21,m22
real c1bar, c2bar

clbar=0.0

c2bar = 0.0

do 1666 i=1,n
cl_w(i)=1.0

c2 w(i)=1.0

cibar = ci1bar + c1_w(i)
c2bar = c2bar + c2_w(i)

1666 continue

(oM e]

OO0 0O00O0

cibar = c1bar/(1.0*n)
c2bar = c2bar/(1.0*n)

DF =2.0

If we just want to use the hypothetical chi-square distribution
CV_MML = chiin(0.95,DF)

CV_LS = chiin(0.95,DF)

If we want to use a simulated critical value to make sure the
type I error is 0.05 we use:

call findCV for usual sample with no deviations

call findCV3 for contamination3 model

findCV2 for the outlier3 model and,

findCV1 for the mixture3 model

call findCV(n,CV_MML,CV_LS)

write(8,%) ' d MML LS'
write(8,”) ' '

do 3456 m =1,20
d1 = m*0.1
d1 =d1 - 0.1

power_MML = 0.0
power LS =0.0

do 188 i=1,iter

**generate numbers assuming H1 is true. 1. usual sample
call sample(mu_x,mu_y,mu_u,mu_v,sigma1l,sigma,
&theta,rho,mu_ygx,mu_vgu,rx,ry,ru,rv,x,y,u,v,z1,z2, wi,w2,n)

** 2. Change the x's and Y/X to match the alternative hypothesis:
do 3649 j=1,n

X(j) = x(j) + d1

z2(j) = z2(j)+(d1/sigma)

y(j)=mu_ygx+ theta*x(j) + sigma*z2(j)
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3649 continue

CALL LS(n,rx,ru,ry,rv,x,y,u,v,c1_w,c2_w, mu_xH_LS1,
& mu_yH_LS1,mu_uH_LS1,mu_vH_LS1,mu_ygxH_LS1,mu_vguH_LS1,
&sigmalH_LS1,sigma2H_LS1,sigmaH_LS1,rhoH_LS1,thetaH_LS1)

¢ calculating the MMLE in two iterations:

c - first iteration using thetaH_LS1 to order
thetaH_LS = thetaH_LS1
CALL MML(n,rx,ru,ry,rv,thetaH_LS,
&x,y,u,v,c1_w,c2_w,mu_xH_MML1,mu_yH MML1,mu_uH_MMLA1,
&mu_vH_MML1,mu_ygxH_MML1,mu_vguH_MML1,
&sigmalH_MML1,sigma2H_MML1,sigmaH_MML1,rhoH_MML1,thetaH_MML1,
&m11, m12,m21,m22,alphat,alpha2,betal,beta2,gammai,gamma2,
&deltal,delta2,alpha_w,beta_w,delta_w,gamma_w,t1,t2,s1,s2)

c - second iteration using thetaH_MML1 to order
thetaH_LS = thetaH_MML1
CALL MML(n,rx,ru,ry,rv,thetaH_LS,
&x,y,u,v,c1_w,c2_w,mu_xH_MML1,mu_yH_MML1,mu_uH_MMLA1,
&mu_vH_MML1,mu_ygxH_MML1,mu_vguH_MMLA1,
&sigmalH_MML1,sigma2H_MML1,sigmaH_MML1,rhoH_MML1,thetaH_MML1,
&m11, m12,m21,m22,alphat,alpha2,betal,beta2,gammai,gammaz2,
&deltal,delta2,alpha_w,beta_w,delta_w,gamma_w,t1,t2,s1,s2)

c ™ calc the test statistics
sigma_xuH = (sigma1H_MML1**2)*( (rx/((rx+1.0)*m11)) +
&(ru/((ru+1.0)*m21)))

sigma_yvH = (sigmaH_MML1**2)*( (ry/((ry+1.0)*m12)) +
&(rv/((rv+1.0)*m22)))

c ***T _hat2:
TS_MML(i) =(((mu_xH_MML1-mu_uH_MML1)**2)/sigma_xuH)+
&(((mu_ygxH_MML1 - mu_vguH_MML1)**2)/sigma_yvH)

sigma_xuT = (sigmalH_LS1**2)*rx/(n*(rx-2.0)) +
&(sigmailH_LS1**2)*ru/(n*(ru-2.0))

sigma_yvT = (sigmaH_LS1**2)*ry/(c1bar*n*(ry-2.0)) +
&(sigmaH_LS1**2)*rv/(c2bar*n*(rv-2.0))

c ***T_telda2:
TS_LS(i) = (((mu_xH_LS1 - mu_uH_LS1)**2)/sigma_xuT) +
&(((mu_ygxH_LS1 - mu_vguH_LS1)**2)/sigma_yvT)

¢ " if we do reject HO:
if (TS_MML(i).gt.CV_MML) then
power_MML = power_MML + 1.0
endif
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if (TS_LS(i).gt.CV_LS) then
power_ LS = power_LS + 1.0
endif

188 continue

power_MML = power_MML/(1.0%iter)
power_LS = power_LS/(1.0%iter)

write(8,432) d1, power_MML, power_LS

432format(f8.3,f8.3,f8.3)

3456 continue

o

return
end

ANANAANANNAANNNNAANANANANANNNAANNNAANNNNANANANNAANNNNNANANANANNNNANN

CREATS THE SAMPLES

ANANAAAANNAANNNAANANANANANNNAANANNANNNNANANANNAANNNNNANANANANNNNANN

Kkkkkkkkkkkkkhkkk

***** 1. sample from t-distribution:

subroutine sample(mu_x,mu_y,mu_u,mu_v,sigma1l,sigma,

&theta,rho,mu_ygx,mu_vgu,rx,ry,ru,rv,x,y,u,v,z1,z2,wi,w2,n)

real z1(300),z2(300),w1(300),w2(300)

real x(300),y(300),u(300),v(300)

real mu_x,mu_y,mu_u,mu_v,sigma1l,sigma
real theta,rho,mu_ygx,mu_vgu

generates random numbers from T-dist:

CALL RNSTT (n, ru, wi)
CALL RNSTT (n, rv, w2)
CALL RNSTT (n, rx, z1)
CALL RNSTT (n, ry, z2)

do 1000 i=1,n

x(i)=mu_x+sigmail*z1(i)
u(i)=mu_u+sigmai*w1 (i)
y(i)=mu_ygx+theta*x(i)+sigma*z2(i)
v(i)=mu_vgu+theta*u(i)+sigma*w2(i)

1000 continue

o

return
end

LAY AYAYAYAYAYAYAVAVAVAVAVAVAVA VA VAV VAV AVAVAVAVAVAV VA VAV AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)Y

** 3c. outlier model (changing y's and v's)
(n-nt(rx) sigma1t and (r)t(rx) 4sigma1
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(n-n)t(ru) sigmai and (r)t(ru) 4sigmat
(n-n)t(ry) sigma and (r)t(ry)4sigma
(n-n)t(rv) sigma and (r)t(rv)4sigma
ANANANANNANANANANANANANNANNANANANNNNANANANAANANNNANANANAANANANNANANANAANN
subroutine outlier3(mu_x,mu_y,mu_u,mu_v,sigmai,sigma,
&theta,rho,mu_ygx,mu_vgu,rx,ry,ru,rv,x,y,u,v,z1,z2,w1,w2,n)

real z1(300),z2(300),w1(300),w2(300)

real x(300),y(300),u(300),v(300)

real mu_x,mu_y,mu_u,mu_v,sigmal,sigma
real theta,rho,mu_ygx,mu_vgu

generates random numbers from T-dist:
CALL RNSTT (n, ru, wi)
CALL RNSTT (n, rv, w2)
CALL RNSTT (n, rx, z1)
CALL RNSTT (n, ry, z2)

r =int(0.1*n+0.5)

find x's and u's:

do 101 i=1,n
x(i)=mu_x+sigma1*z1(i)
u(i)=mu_u+sigmat*w1 (i)

101 continue

c

** Change some of the x, and u values to be outliers
do113i=1,r

x(i)=mu_x + 4.0*sigmat*z1(i)

u(i)=mu_u + 4.0*sigmat*w1(i)

113 continue

c

find y's and v's

do 103 i=1,n

y(i)=mu_ygx + theta*x(i) + sigma*z2(i)
v(i)=mu_vgu + theta*u(i) + sigma*w2(i)

103 continue

c

change some of the y's,v's to be outliers
do102i=1,r
y(i)=mu_ygx+theta*x(i)+4.0*sigma*z2(i)
v(i)=mu_vgu+theta*u(i)+4.0*sigma*w2(i)

102 continue

return
end
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APPENDIX F

INFORMATION MATRIX (UNEQUAL VAR-COV MATRICES)

Here we give the information matrix in the case where the covariance matrices

for both populations are not the same.

F.1 Generalized Logistic

The elements of the information matrix I,(4,,0,, U, . ,0,,, 6, ) are as

follows (see Sazak et al. (2006)):

n [ b
1.1, =—]|—x_1,
ot o7 _bx+2}
Lo = P 4 -p)
Lot (b, +2) T ’
Moy x = Iﬂxo'z.n = Iﬂ,r‘gyx =0.
n bx ( ’ ’ 2)
2.1, , =—|1+ v, +D)+y' Q)+, +D-w () )|,
o b +2
O My :IUXO'Z.H = 0,0, = 0
n b

I = r
HyrxMyx 622'11 (by +2)

n b,
Iﬂ‘/rgzn )
T O)n (by +2)

(b, +D-w(2),

no, b,
=102 b)) - 1)),
My Oy 622_11 (b‘ + 2) (l//( x) l/j( ))
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a1, = D e, 0+ e, + -y @),
02110211 0-22-11 by +2 Y Y

p— na)(

b,
10'2.119,\“ 2 {by +2 [(y/(by + 1) - l//(z))(l//(bx) - l//(l))]} .

0-2411

2
no.
5. I, , =—*
W o

2.1

= (Wb -y ) ]}

The elements of the Fisher information matrix I, (4 , o, u,, o, pyx) for

estimating 4., o, [, O, p, are given by:

- Py b,
o ol b+2 1- p}xb+2)

2 b
I, = "{ o, +D-y @)+ Pr (w(b,) - W(l))}

b, +2 > (b, +2)

I 3 —np,, by
“ih oo (1-p2) (b, +2)

—-np b Py
1 2l b +1 2 b 1
uo, T \/1 ,0 (b +2)[( ( ) l//( )) \/_710”( ( ) l//( ))}

-np b, P
1 ad 1 —2 _\wb. +1 2
e = o A Gt 2){@/( ) -y()- m(w( )~ y( ))]
2.1, , = %{H b Wb, +D+y' @) + (o, +1)-p@)F)

o, b +2

o

+ l—pfx o, %2) (W (bx)+w(l)+(w(bx)_1/,(1)) )}

I, = oo -0, +2)(wb) w(),
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3. 1

I

0.0,

O'APU

MOy

L, =

0\Py

My,

—np,, b,
{ 5 (@) -y m)wo, +1-w2)

_O'O'\/i

+ 1p p - (W’(bx)+v/(1)+(W(bx)—vf(l))z)}’

—np,,

[
e p@{(b +2)(911(19)+</f<1>+(w(b> v())’)

P o) -y )y (by+1>—w<2>)ﬂ-

R

n b,
o (1= p;) (b, +2)

n

0\/1 o C +2)

o, +D-y@)+ 1,) p (wbx)—w(l))],

(b, + - (@)~ (k) -pn)|.

—n b, ol
0,1=p) (b, +2)| 1-p2,

2
o,

b 2
= i{l ; ﬁ[(y/(b, D+ @+ o, +D-pF)

n 1” 2 (y(b,) -y )y (b, +D)-p(2)
_pyx

p,.
1-p’

+

o)+ + v, —wo) )}}

X

o, b +w 0+t -w))

_ —n {p Ty
o,d-pi) " b+2
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2

—2pP,,
NI

o, Wb, D+ +lue, +)-y ) )]

+ W) -y O)w®, +1)-p(2)

n

5.1 =
A=l

N P
{1_ bt W Y0+ ey 0)

y

2p,,

- " (p(b) -y O)p b, + D -y (2))

2

Py
1-p?

yx

+

o, +0+y@+o, +D-v@)f )}} -

The elements of the information matrix /,(4,,0,,4,,,.0,,,, 6,,) and the

matrix I,(u,, o,,1,, ©,, p,, ) are similar to those given above and will not

be listed here.

F.2 Student’s t

The elements of the information matrix /,(4,,0,,4,,.,0,,, 6, ) are as

follows (see Tiku et al. (2007)):

[
~
S
X
[
A=
1
SOy
+ [+
W | =
| I

=
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3. 1

HyrxHyx 0_22'11 (l"y + 3) 5

Hy1x0a11

n (I’y +1)

9

o, (4D

ﬂy/xeyx

4.1

05110211

sy, =

yxyx

0, (r,+3) ’

ol

n

=
O)n

n- 3
r,+ 3

n

(r,+D) [r (02 +42) -

03110y«

o: ., (r,+3) (r.=2)

|

2#5]} .

The Information Matrix I, (4., ,,4,, ©,, p,.)

T

uup,

ety —
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_i rx+1 p)zx (r\+1)
ol r+3 (A-pl)(r,+3) |
—np,, (r, +1)
0,0,(-p;) (r,+3)°
L, =1, =0.
) n3 o r, (r,+1)
o’ r+3 (A=-p)(rn,—2) (r,+3)
0,

)



/ _ — npf,x r. (;fy +1)
> 0,0,0=-pi)\ (r=2) (r,+3) )

/ . —np, r. (ry +1)
oo (=PI, =2) (r, +3) )

o An
3. Iﬂyﬂy T 21— p? > fuoy, T Iﬂ)vpu =0
o,(1-p;) (r,+3)

_3 2 +1
4. Io- o :iz 1+ ry + pyxZ . (ry ) ’
yoy Gy ry +3 (l_pyx) (rx _2) (I"y +3)

_ _npyx ry_3_ r. (ry+1)
o,0-p;)|r,+3 (n-2)(r,+3)|

n pzx r—3 r, (r +1)
5. Ip”pm = 5 | 1+ + 2 .
: (1—pyx) (1—pyx) r +3 (r.—2) (ry +3)

The elements of the information matrix /,(4,,0,,4,,,.0,,,, 6,,) and the

Oy Pyx

matrix 1, (u,, o,,M,, 0,, p,, ) are similar to those given above and will not

be listed here.
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APPENDIX G

DATA
G.1 The data for example 5.2.1
Males Females
i ) Vi Y4 i Y, Vi Y4
15 17 24 14 13 14 12 21
17 15 32 26 14 12 14 26
15 14 29 23 12 19 21 21
13 12 10 16 12 13 10 16
20 17 26 28 11 20 16 16
15 21 26 21 12 9 14 18
15 13 26 22 10 13 18 24
13 5 22 22 10 8 13 23
14 7 30 27 12 20 19 23
17 15 30 27 11 10 11 27
17 17 26 20 12 18 25 25
17 20 28 24 14 18 13 26
15 15 29 24 14 10 25 28
18 19 32 28 13 16 8 14
18 18 31 27 14 8 13 25
15 14 26 21 13 16 23 28
18 17 33 26 16 21 26 26
10 14 19 17 14 17 14 14
18 21 30 29 16 16 15 23
18 21 34 26 13 16 23 24
13 17 30 24 2 6 16 21
16 16 16 16 14 16 22 26
11 15 25 23 17 17 22 28
16 13 26 16 16 13 16 14
16 13 23 21 15 14 20 26
18 18 34 24 12 10 12 9
16 15 28 27 14 17 24 23
15 16 29 24 13 15 18 28
18 19 32 23 11 16 18 28
18 16 33 23 7 7 19 18
17 20 21 21 12 15 7 28
19 19 30 28 6 5 6 13
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G.2 The children data for example 5.2.2

The variables in the data set are as follows:

x, = auditory reception score,
x, = visual reception score,

visual memory,

=
Il

x, = auditory association,

= auditory memory,

el
I

X, = visual association,

x, = visual closure,

xg = verbal expression,

X, = grammatic closure,

X, = manual expression.

Control Group
X X2 X3 Xy Xs X6 X7 Xg X Xio
40 32 16 20 38 37 28 43 32 30
35 30 41 44 39 38 32 36 41 27
30 42 48 26 42 34 30 36 43 36
22 27 34 19 40 24 29 14 30 31
21 38 46 28 48 33 28 22 34 26
39 40 47 37 43 40 34 31 49 42
39 39 27 42 36 36 34 47 43 38
22 23 34 16 33 30 33 20 21 30
44 33 43 31 40 40 32 41 40 27
34 34 41 41 51 32 41 46 38 38
30 43 34 46 50 34 32 45 38 33
26 34 32 20 38 20 26 28 28 33
44 42 54 48 54 44 34 52 43 44
36 39 49 24 49 36 35 50 36 36
30 35 32 28 43 32 34 37 39 24
18 25 38 24 32 22 30 8 36 23
27 28 35 25 42 25 36 16 30 24
30 36 42 28 15 26 32 39 28 24
33 16 38 35 51 40 33 40 35 40
26 37 54 32 36 41 38 27 37 32
31 33 33 32 47 37 32 22 36 28
29 31 29 26 38 28 21 27 27 22
34 29 40 26 33 31 30 39 34 26
36 27 34 21 31 27 23 35 36 37
42 40 36 31 41 38 35 41 36 31
32 38 37 42 44 49 32 43 32 40
38 40 40 32 36 41 36 43 41 28
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TNT Group

X Xa X3 X4 Xs X6 Xq Xg Xo K10
26 38 44 26 37 38 22 28 30 33
31 30 26 23 43 35 28 24 27 33
28 36 36 16 46 28 33 28 28 39
19 43 39 16 46 43 33 28 40 28
31 33 26 29 41 33 23 30 23 24
35 36 43 32 46 22 37 48 34 43
37 35 38 31 44 29 37 41 46 31
41 37 36 29 32 30 32 39 48 27
35 40 34 49 37 34 34 36 34 40
29 19 34 42 32 32 30 40 22 37
18 26 27 26 21 22 26 12 27 26
38 40 27 30 44 40 29 36 42 38
31 23 40 28 37 37 30 45 39 24
26 21 31 29 41 23 24 22 28 26
33 20 44 34 23 37 28 17 39 35
27 36 39 19 28 28 23 38 29 36
22 32 35 26 41 38 25 24 38 26
37 38 36 47 46 38 36 34 32 40
24 40 28 16 36 34 27 24 34 38
11 27 36 19 38 22 23 31 41 35
24 30 30 26 30 36 30 38 35 32
28 14 31 36 48 36 27 38 31 41
17 25 31 35 46 25 30 42 36 27
31 29 34 28 32 31 24 26 29 31
34 38 42 31 43 26 27 27 30 30
41 46 40 39 44 46 36 42 41 40
23 26 37 21 32 34 22 20 31 18
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APPENDIX H

THE CASE OF UNEQUAL SAMPLE SIZES

If the sample sizes are different, i.e. n, # n,, the MML and LS estimators are

slightly different. They are given below.

H.1 Generalized Logistic

MML Estimators

1. 4, =K, —-D,6,, where

01
E :an(i) "
_ =l _
K, = » Dy,
m

1 =
=t _—Z(a“—(bxﬂ)-l),and mH:ZﬁU.
1 m, &= P
2. 4, =K, —D, 6, where,

ny
E 7/11'”(1')
— _i=1
KZI_ l
m

21

1 n, i n,
» Dy :_2(5“ -, +1) 1)’ and m,, :Z%; .
M 43 i=1

_ =B +yB +4(n, +n,)C,
2(n, +n,)

3. 6, , where
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B =(b, + DZ!(“M -, + ™ Xx(i) -K, )+ (b, + DZ [(511 -, + n™ )(u(i) -K,, )]
i=1 i=1

C=0,+ I)Zﬁu ('x(i) - K11)2 +(, + l)z 711'(”([) - K21)2 )
i=1 i=1

— B, ++B} +4(n, +1,)C,

adjusting for the bias we get: &, =
JUSHRE 8 4 2/(n, +ny)(n, +n, —4)

4. @, =y, —0xu—6,,A /m,, where

A= A A= (@ -7,
i=1
T < — 1N ‘ X
Yu=— IBZiy[i] > X =—— ﬁZix[i] > My, = B -
My 43 " 45 i=1

5.4, =vu—06uy—6,,A,/m,,, where

1y
-1
A, = E Ay Ay =(8, -, D7),
i=1
n, n, 1y
- 1 - 1 ) _
v =— VoV » U1 =—— Voilhiiy s My, = Vi -
My, o= My, &= P

6.0=K-D &,, , where

1 nl B n2 B
K = E (by + 1)2 ,BZi(x[i] — x[.])y(i) +(b, + 1)2 7/21‘(”[1‘] - u[.])v(i) ,
i=1 i=1

1 n _ 1, _
D= El(b‘ + I)ZAM(XM —x1)+(b, + I)ZAZ[(um - uu)] )
i=1 i=1
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S=b, + 1)2 By —xi) + (b, + 1)2 Vontiy —1017)° -
i=1 i=1

—B +B* +4(n, +n,)C

Ak

1. 6,,= , where

2(n, +n,)

B = (by +1)ZA”(y[i] _;[,] _K(x[,'] _;[-J ))
i=1

+ (bv + I)ZAZi(VU] _;[-] - K(um _l/_t[-])) >
i=1

C=0,+ I)Zﬂzi(ym _;[.1 —K(x, -
i=1

b+ 1)2 Vo (= via — K
i=1

Adjusting for the bias we get: &,, =

A

8. 4, =y, —0(xy—,)=6,,A, Im,,.

9. f1, =viy =0 — 1,)— 6,,A, I m,,.

10. 6, =+/6;,+6°67 .
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—up))? .

—B +[B> +4(n, +n,)C

2\/(n, +n,)(n, +n, —8)



Least Square Estimators

L fI, =x=(p(b,)-y1)3,.
2. fi, =u—(b,)-y)s,.
3. By = y=0x =W b)) -y()G,,.

4. [, =v-0u—wb,)-y1)5,,.

5. 6=+

n

D =y Y w-a,
i=1

6. i, = y—06,(p(b,)—y (1) - &,,(w(b,) -y ().

7. fi, =v-68,(wb,) -y 1)=&, wb,)-yd)).

(n, =1)s> +(n, —1)s]

8. 6, =
\/knl D' b))+ M)+ (1, - D' b)) +y' (1)

, where
]

= =0 =1 and 5} = Y =0 =1
i=1 i=1
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= i=1

(n,=2)ly' (b)) +y' D)+, 2y (b)) +¥' (1)

S S5t
9. 5, = '

o-2Al -

10. &, =82, +6°62 .

H.2 Student’s t

MML Estimators

o1
E ;Blix(i)
. -
Il'lx_ : s
m

11

n
where m,, = E B -
i=1
L)
E Vil
fo— _i=l
ﬂu ==—- )
m

21

1.

2.

o)
where m,, = E Y, -
i=1

= B, + \/312 +4(n, +n,)C

3. 6,
! 2(n, +n,)

, where
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1y 1)
r +1 r+1
Blz(x ) E a”x(i)+u E O, ;, and
T - r -
i= i=

r +1 o N r +1 C N
Cl :()C’”—)Zﬁli(x(i) _;ux)z +(ur—)Z7/1i(u(,‘) _;uu)z .
* i=1 u i=1

B, ++ B +4(n +n,)C,
2/ +n)(n +n,—4)

Adjusting for the bias we get: 6, =

m
4. ﬂy,x =y —0x1,+(6,,/m,) E o, , where
i=1

1 Z 1 Z
Yu= :Biym > X1 = IBixu]
o 43 M 63

1y
my, = E p..and S, = Cl[i]IBZi’ O; = [Ciij Xy
i=1

ny
5. [, =vi—=0uy +(6,,/my,) E J,, where
i=1
n n,
— 1 _ 1
Vil =—— YV U =— Vil s
m22 i= m22 P

i=1

)
m,, = E Vi»and ¥, = Cyy Vai» O; =4/ Copy O -
i=1

Note that under the assumption that ¢, (x) = ¢, (1) =1, Zai = Zé‘l =0.
i=1

i=1
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A

6. 6=K+D 6,, ,where

1| +D X - AN "
K = y—Zﬁi(x[i] _x[-J)y[iJ + ( : Z%‘(u[il N M[.J)VU] ’
Y P v i=1

E T, r,

1| (r, +1) = - r 1) =
D=—|— Z“i(x[i]_x[.])‘i'(v )Z@(”[i]_”“) ’
S fy i=1 " =1

CRAN - L DN -
S =2 Z;B,‘(XU]—X[.])Z‘F( i )Z%(um—u[,])z.
Y i=1 v i=1

T r

*

B +.B*+4(n +n,)C
7.6, = J (m +1y)

2(n, +n,)

(r, + D) _ _
B = r Zai(y[i] Y _K(x[i] —X11))
M i=1

r +1 = - _
+( vr )Zé‘i("m —vi — Ky, —un)),
v i=1

(r, +1) - -
C=— Zﬂ;(ym —Yu — K(x;; —x0))
' i=1

Ty

r+1) N > u
" : vr : Z ¥ (Vg = v = K gy =)’
v i=1

B +\/B2 +4(n, +n,)C
2/(n, +n)(m +n,—8)

Adjusting for the bias we get: 6, =

A

_ & - — - A -
8. i, =y, _pA 2 (xp = f,) =y, —0(x —f)=p,, +6 1,

1
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A A

A - 0 - Fyy = A1, y /7
9. [, =vi - £ (up—p,)=vy -0y —4,)=4,,+

A

1

10. 8, =465, +6°6] .

11. p=6

3.1, =Y, 0x,, , where

ny m

E G Y E ki

— _ l:l vy p—
Yo ="a and X, =

1

~

4. 4,,=v,—0u,, where

ny n

E GV z ,Czl‘ui

pa— _ i=1 7 j—
Vo =5 and i, =
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n ny

chi(xi =X,y + ZCZi(ui —ug,)v;

5. @ =_i=t i=1

n ny

— \2 — \2
E Cli('xi_x(.)) + E cZi(ui_u(.))

i=1 i=1

~ = 00, — _ — - ~ _ ~_
o A= _p62 (xo-fd)=y,-0@o-L4)=H,, +0x.
1
I, 7, AU _ ~_
A v p& 2o =) =vo—0wo )=, +6u.
1
— 2 _ 2
8. 6 = (n,—=Ds. +(n, —1s; where
r r
n—-1)—*—+(n,—-1)—*—
((‘ P )ru—zj

st = Z(x[ -%)*/(n,—1), and
i=1

52 = Z(ui —i) fn, —1).
i=1

i=1 i=1

[Z Cui ()’f =Y —é(x,. _7%))2 +Zc2i (Vi —Vy —é(ul. _’4(‘)))2}
9. - _ .

2 r.V 2 rv
(= )r _2+(n2— )r_—2

y v

10. &, =62, +8°6 .
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