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“I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.”

Name, Lastname : HAVVA ÖZLEM DURSUN
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ABSTRACT

JUMP DETECTION WITH POWER AND BIPOWER VARIATION

PROCESSES

DURSUN, HAVVA ÖZLEM

M.Sc., Department of Financial Mathematics

Supervisor: Assoc. Prof. Dr. Azize Hayfavi

September 2007, 78 pages.

In this study, we show that realized bipower variation which is an extension of

realized power variation is an alternative method that estimates integrated vari-

ance like realized variance. It is seen that realized bipower variation is robust to

rare jumps. Robustness means that if we add rare jumps to a stochastic volatility

process, realized bipower variation process continues to estimate integrated vari-

ance although realized variance estimates integrated variance plus the quadratic

variation of the jump component. This robustness is crucial since it separates the

discontinuous component of quadratic variation which comes from the jump part

of the logarithmic price process. Thus, we demonstrate that if the logarithmic

price process is in the class of stochastic volatility plus rare jumps processes then

the difference between realized variance and realized bipower variation process

estimates the discontinuous component of the quadratic variation. So, quadratic

variation of the jump component can be estimated and jump detection can be

achieved.

keywords : Stochastic volatility, Quadratic variation, Power variation, Bipower
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variation, Jump process, Realized variance, Realized volatility, Semimartingale,

Integrated variance.
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ÖZ

KUVVET VE İKİLİ KUVVET VARYASYON SÜREÇLERİ KULLANILARAK

SIÇRAMALARIN YAKALANMASI

DURSUN, HAVVA ÖZLEM

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Azize Hayfavi

Eylül 2007, 78 sayfa.

Bu çalışmada, gerçekleşen kuvvet varyasyonunun genelleştirilmiş hali olan ger-

çekleşen ikili kuvvet varyasyonunun, gerçekleşen varyans gibi, bütünleşik varyansı

tahmin eden alternatif bir metod olduğunu gösterdik. Gerçekleşen ikili kuvvet

varyasyonunun seyrek sıçramalara karşı dayanıklı olduğu görüldü. Dayanıklılık,

bir stokastik oynaklık sürecine seyrek sıçramalar ilave ettiğimiz zaman, gerçekleşen

varyans, bütünleşik varyans artı sıçramaya ait ikinci dereceden varyasyonunu

tahmin ettiği halde, gerçekleşen ikili kuvvet varyasyonunun sadece bütünleşik

varyansı tahmin etmeye devam etmesidir. Bu dayanıklılık önemlidir, çünkü log-

aritmik fiyat sürecine ait sıçrama bileşkeninden gelen ikinci dereceden varyasy-

onun süreksiz olan bileşenini ayırmaktadır. Böylece, eğer logaritmik fiyat süreci

stokastik volatilite artı seyrek sıçramalar süreci sınıfına aitse, gerçekleşen varyans

ve gerçekleşen ikili kuvvet varyasyonu arasındaki fark ikinci dereceden varyasy-

onun sürekli olmayan parçasını tahmin eder. Sonuç olarak, gerçekleşen sıçramalar

yakalanmış olur.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Volatility measurement, modelling and forecasting has always been to have im-

portant impacts on the risk management and asset allocation in finance literature

(Figlewski(1997) [1], Ederington and Guan(2005) [2], Gospodinov, Gavolo and

Jiang(2006) [3] ,Poon and Granger(2003) [4]). The recent widespread availability

of high frequency data for many financial assets (stocks, currencies, bonds,...)

has led to new interesting developments in applied econometrics and statistical

research on the estimation of daily and intra-daily volatility of financial returns,

particularly on the persistence of the volatility [5], [6], [7]. The search for an

efficient framework for the estimation and prediction of the volatility of financial

assets returns has offered the analysis of high frequency data [8]. The raw data

are often obtained tick by tick with unequal time spacing [9], [10]. Organizing

the data on the basis of equal fixed time intervals by interpolation [11], for ex-

ample every five minutes, enables to perform the most well-known econometric

models which are based on the assumption of equally spaced intervals of time.

1



Merton (1980) [12] has illustrated that the variance of an asset over a fixed time

interval can be efficiently estimated as the squares of the intra-daily returns if

the frequency of the returns is sufficiently high. Moreover, Andersen and Boller-

slev (1998) [13] have demonstrated that the highest optimal frequency to provide

accurate volatility forecasts is five minutes frequency.

In the recent finance literature, the most well-known method on modelling

the daily volatility using intra-day data is realized variance (realized quadratic

variation). Realized variance is based on quadratic variation and computed as

the sum of squared intra-day returns (five min., ten min.,...) which is used to

estimate daily volatility. The empirical and theoretical properties of this model

has been popularized recently in a collection of papers such as Barndorff-Nielsen

and Shephard (2002) [14], Barndorff-Nielsen and Shephard (2002) [15], Andersen,

Bollerslev, Diebold, and Labys (2003) [16], Andersen, Bollerslev, and Meddahi

(2005) [17], Bandi and Russell (2003) [18], Maheu (2004) [19], Andersen and

Bollerslev (2006) [20].

The fundamental theory of asset pricing offers that the logarithmic price pro-

cess of an asset is in the class of semimartingale processes [21] and obeys the

properties of a semimartingale process. For economics aspects of semimartingale

processes, see Back (1991) [22] and for mathematics aspects of semimartingale

processes, see Protter (2004) [23]. The realized variance is based on the quadratic

variation of logarithmic price processes so it is based on the quadratic variation

of semimartingale processes (2004, p. 66-76) [23]. We can simply state that

2



quadratic variation of a logarithmic price process is the probability limit of the

realized variance. If the logarithmic price process is continuous, the realized vari-

ance estimates the integrated variance and if there exists jump part in the loga-

rithmic price process then the realized variance estimates the integrated variance

plus the quadratic variation of the jump component (2005) [24].

The generalized version of realized variance called r-th order realized power

variation is introduced by Barndorff-Nielsen, Shephard and Graversen (2003) [25].

Realized variance is a special case of r-th order realized power variation when

r=2. It is suitable to say that r-th order power variation is the probability limit

of the r-th order realized power variation. Moreover,the r-th order realized power

variation process is a consistent estimator of the r-th power of the integrated

variance.

Furthermore, the generalization of r-th order realized power variation is the

(r,s)-order realized bipower variation process which is defined by Barndorff-Nielsen

and Shephard (2004) [26]. Also, (r,s)-order bipower variation is the probability

limit of the (r,s)-order realized bipower variation process [21]. In the realized

bipower variation process, the main difference is the summation of the iterated

products of different powers of the returns unlike the realized power variation

process. The r-th order realized power variation process and the realized vari-

ance are the special cases of the (r,s)-order realized bipower variation process.

Namely, the r-th order realized power variation is the (r,0)-order realized bipower

variation and the realized variance is the (2,0)-order realized bipower variation
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process.

The most important case of the bipower variation process is the (1,1)-order

realized bipower variation process since this process is a consistent estimator of

the integrated variance like the realized variance. Yet, the crucial role of the (1,1)-

order realized bipower variation process in finance literature is that this estimator

is robust to rare jumps in the logarithmic price process(2003) [25]. Simply, we

can express this as; in both conditions whether the price process is continuous

or discontinuous, (1,1)-order realized bipower variation estimates the integrated

variance. In other words, rare jumps does not affect this estimator.

If the logarithmic price process is in the class of the stochastic volatility semi-

martingale plus rare jump processes (2003) [27], then the quadratic variation

can be decomposed as continuous component (integrated variance) and discon-

tinuous component (quadratic variation of the jumps). Realized variance esti-

mates the quadratic variation and continuous component of the quadratic vari-

ation (2003) [27] can be estimated by the (1,1)-order realized bipower variation

process. Therefore, the difference of realized variance and (1,1)-order realized

bipower variation process estimates the quadratic variation of the jump part of

the logarithmic price process (2003) [27]. Thus, jump detection can be achieved.

So, by the introduction of the (1,1)-order bipower variation, we can split up

the quadratic variation of the logarithmic price process as the continuous part

and the jump part. Quadratic variation has an important role in risk measure-

ment (2003) [16]. By splitting up the quadratic variation into its continuous and

4



discontinuous components, we separate the risk that comes from the diffusion

part and the jump part.

In this study, we demonstrate the theoretical aspects of the realized variance,

power variation, bipower variation and especially (1,1)-order bipower variation

processes and the relations between these processes. We mainly focus on the

difference of the realized variance and the (1,1)-order realized bipower variation

process to achieve the estimation of the quadratic variation of the jump part, i.e.

jump detection.
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CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

Let Ft be an increasing family of σ-fields that reflects the corresponding in-

formation at time t where Fs ⊆ Ft for 0 ≤ s ≤ t ≤ T and P be the probability

measure on the probability space (Ω,F ,P).

Definition 2.1.1 A random variable τ : Ω → [0,∞] is a stopping time if for

any t, the event {τ ≤ t} ∈ Ft.

Definition 2.1.2 A stochastic process X on the probability space (Ω,F ,P) is a

collection of random variables Xt, where 0 ≤ t <∞.

Definition 2.1.3 Let X be a stochastic process and let τ be a random time. The

process X is stopped at time τ means that X τ
t = Xt∧τ .

1

Definition 2.1.4 A stochastic process X is adapted to the filtration F if Xt is

Ft measurable, i.e. Xt ∈ Ft, for all t.

Definition 2.1.5 A stochastic process X is càdlàg2 if each sample path3 is right

continuous with left limit.

1 Xt∧τ = Xt1{t<τ} +Xτ1{t≥τ} where t ∧ τ = min(t, τ).
2 càdlàg is an acronym from the French that is for continu à droite, limites à gauche.
3 The mappings t→ Xt are called the sample paths of the stochastic process X.
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Corollary 2.1.1 Let the stochastic process X be càdlàg and adapted and τ be a

stopping time, then Xτ
t = Xt∧τ is also adapted [23](p.10).

Definition 2.1.6 A stochastic process X is a finite variation process if it has

sample paths of finite variation.

Definition 2.1.7 A stochastic process X is predictable means Xt ∈ Ft−1where

0 ≤ t <∞.

Proposition 2.1.2 (The Markov Inequality) [28] Let Xn ∈ Lp, p ∈ [1,∞).

Then for all x ∈ < and ε > 0, we have

P{|Xn −X| ≥ ε} ≤ 1

εp
E(|Xn −X|p). (2.1)

Proposition 2.1.3 p− lim
n→∞Xn = X if and only if [28] for all ε > 0, P ({|Xn−

X| > ε, i.o.}) = 0.

2.2 Martingales

In this section, we give some basic definitions and theorems about martingales,

mostly without the proofs, which will be essential to understand the theoretical

aspects of semimartingales in the following chapters.

Definition 2.2.1 A sequenceM which is adapted to the filtration F , with E|Mt| <

∞, is called martingale if

E(Mt|Fs) = Ms (2.2)

for all t ≥ s, where 0 ≤ t ≤ T.
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Definition 2.2.2 A family of random variables (Uα)α≥0 is uniformly integrable

[29] if

lim
n→∞ sup

α

∫

{|Uα|≥n}
|Uα|dP = 0. (2.3)

Theorem 2.2.1 (optional sampling theorem)If (Mt)t≥0 is a continuous mar-

tingale with respect to the filtration (Ft)t≥0 and if τ1 and τ2 are two stopping times

such that τ1 ≤ τ2 ≤ K, where K is a finite real number [30](p.34), then Mτ2 is

integrable4 and

E(Mτ2|Fτ1) = Mτ1 . (2.4)

Theorem 2.2.2 (Doob inequality)If (Mt)0≤t≤T is a continuous martingale [30],

we have

E( sup
0≤t≤T

|Mt|2) ≤ 4E(|MT |2). (2.5)

Definition 2.2.3 We denote by Lp(Ω,F ,P), p ∈ [1,∞), [28]the space of equiv-

alence classes of all real random variables X such that

∫

Ω
|X|pdP <∞. (2.6)

As a consequence of the definition, we denote L0(Ω,F ,P) the space of equiv-

alence classes of all real random variables on (Ω,F ,P).

And we denote L2(Ω,F ,P) the space of equivalence classes which are consist

of all real random variables that have the property

∫

Ω
|X|2dP <∞. (2.7)

4 The random variable X is integrable [29](p.18) if and only if E|X| <∞.
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Theorem 2.2.3 (Doob’s maximal quadratic inequality)Let X be a positive

submartingale. For all p > 1, with q conjugate to p5, we have [23](p.11)

‖ sup
t
|Xt|‖Lp ≤ q sup

t
‖Xt‖Lp . (2.8)

We let X∗ denote sup
s
|Xs|.

Note that if M is a martingale with6 M∞ ∈ L2, then |M | is a positive sub-

martingale, taking p = 2 we have

E{(M ?)2} ≤ 4E{M 2
∞}. (2.9)

The last inequality is called Doob’s maximal quadratic inequality.

Definition 2.2.4 Xt is said to be a local martingale
7 [31] (with respect to {Ft, t ≥

0}) if there are stopping times Tn ↑ ∞ so that XTn
t is a martingale (with respect

to {Ft∧Tn : t ≥ 0}). The stopping times Tn are said to reduce X.

The definition of local martingale is so important because it has a crucial role

in the definition of semimartingale. We will see in the following chapters that

semimartingales are in the center of this thesis.

Next, we are giving some theorems that will be used later.

Theorem 2.2.4 Let X be a local martingale such that E{X∗
t } < ∞ 8 for every

t ≥ 0. Then X is a martingale. If E{X?} <∞9 ,then X is a uniformly integrable

martingale [23](p.38).

5 q conjugate to p means 1

p
+ 1

q
= 1.

6 Let (Xt)0≤t≤∞ be a martingale, if Y = limt→∞Xt exists a.s., E{|Y |} <∞, then X∞ = Y .
7 In general, we say that a process Y is locally A if there is a sequence of stopping time

Tn ↑ ∞ so that the stopped process Y T
t has property A [31].

8 Recall that X∗t = sups≤t |Xs|.
9 Recall that X? = sups |Xs|.
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Theorem 2.2.5 Let X be a locally square integrable local martingale, and let H

be an adapted process with càdlàg paths. Then the stochastic integral
∫

HdX is

also a locally square integrable local martingale [23](p.63).

Theorem 2.2.6 Let M be a local martingale. Then M is a martingale with

E{M 2
t } <∞, all t ≥ 0, if and only if E{[M ]t} <∞10, all t ≥ 0. If E{[M ]t} <∞,

then [23](p.73)

E{M 2
t } = E{[M ]t}. (2.10)

2.3 Brownian motions

Definition 2.3.1 A Brownian motion is a real-valued, continuous stochastic

process (Xt)t≥0, with independent and stationary increments [23](p.31). In other

words:

• continuity: P a.s.11 the map s→ Xs(w) is continuous.

• independent increments: If s ≤ t, Xt−Xs is independent of Fs = σ(Xu, u ≤

s).

• stationary increments: If s ≤ t, Xt − Xs and Xt−s − X0 have the same

probability law12.

Theorem 2.3.1 If (Xt)t≥0 is a Brownian motion13, then Xt − X0 is a normal

random variable with mean rt and variance σ2t, where r and σ are constant real

10 We denote the quadratic variation of the process X as [X]t.
11 If a set A ∈ F satisfies P(A) = 1, we say that A occurs almost surely denoted as

a.s. [29](p.7)
12 This statement is denoted as Xt −Xs =

d Xt−s −X0.
13 Recall that brownian motion is a martingale [29].
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numbers [30](p.31).

Definition 2.3.2 A Brownian motion is standard [30](p.31) if X0 = 0 P a.s.

E(Xt) = 0, E(X2
t ) = t = var(Xt). In that case, the distribution of Xt is the

following:

1√
2Πt

exp(−x
2

2t
)dx, (2.11)

where dx is the Lebesgue measure on R.

2.4 Introduction to semimartingales

Semimartingales are important processes in the stochastic integration. Firstly,

we will construct the stochastic integral for the simple processes. Let us define

the simple processes.

Suppose that (Wt)t≥0 is a standard Ft-Brownian motion defined on a filtered

probability space (Ω,(Ft)t≥0,F ,P).

Definition 2.4.1 (Ht)0≤t≤T is called a simple process [30](p.36) if it can be writ-

ten as

Ht(w) =
p

∑

i=1

φi(w)1(ti−1,ti](t) (2.12)

where 0 = t0 < t1 < ... < tp = T and φi is Fti−1
-measurable and bounded.

Definition 2.4.2 The stochastic integral of a simple process H [30](p.36) is the

11



continuous process (I(H)t)0≤t≤T defined for any t ∈ (tk, tk+1] as

I(H)t =
∑

1≤i≤k

φi(Wti −Wti−1
) + φk+1(Wt −Wtk)

=
∑

1≤i≤p

φi(Wti∧t −Wti−1∧t)

=
∫ t

0
HsdWs.

(2.13)

Proposition 2.4.1 If (Ht)0≤t≤T is a simple process [30](p.36) then:

• (
∫ t

0
HsdWs)0≤t≤T is a continuous Ft-martingale,

• E((
∫ t

0
HsdWs)

2) = E(
∫ t

0
H2

sds),

• E(sup
t≤T

|
∫ t

0
HsdWs|2) ≤ 4E(

∫ T

0
H2

sds).

Now, we come to the definition of semimartingale processes.

Definition 2.4.3 A process X is said to be a total semimartingale if X is càdlàg,

adapted, and I(X) (given by eqn.(2.13)) is continuous [23](p.52).

Definition 2.4.4 A process X is called semimartingale if, for each t ∈ [0,∞),

X t is14 a total semimartingale [23](p.52).

Theorem 2.4.2 Some examples of semimartingales are as the following [23]:

• Each adapted process with càdlàg paths of finite variation on compacts is a

semimartingale.

• Each L2 martingale with càdlàg paths is a semimartingale.

• Each càdlàg, locally square integrable local martingale is a semimartingale.

• The Wiener process, i.e. Brownian motion, is a semimartingale.

14 Recall that for a process X and a stopping time T, the notation XT denotes the process
(Xt∧T )t≥0.
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Definition 2.4.5 We will say an adapted process X with càdlàg paths is decompo-

sable15 if it can be decomposed

Xt = Mt + At, (2.14)

where M0 = A0 = 0, M is a locally square integrable martingale, and A is càdlàg,

adapted, with paths of finite variation.

Definition 2.4.6 A process Yt is said to be a classical semimartingale if it can

be decomposed into two adapted, càdlàg processes

Yt = Mt + At, (eqn. 2.14)

where At is a locally finite variation process and Mt is a local martingale where

A(0) = M(0) = 0.

Theorem 2.4.3 Let X be an adapted, càdlàg process. The following are equiv-

alent [23](p.102):

(i) X is a semimartingale;

(ii) X is decomposable;

(iii) given β > 0, there exist M, A with M0 = A0 = 0, M is a local martingale

with jumps bounded by β, A a finite variation process, such that Xt = Mt + At;

(iv) X is a classical semimartingale.

2.5 The quadratic variation of a semimartingale

We are giving some properties of the quadratic variation of a semimartingale.

15 A decomposable process is a semimartingale [23](p.55).
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Definition 2.5.1 Let X,Y be semimartingales. The quadratic variation process

of X, denoted [X,X] = ([X,X])t≥0, is defined by [23](p.66)

[X,X] = X2 − 2
∫

X−dX (2.15)

(recall that X0− = 0).

The quadratic covariation of X and Y, also called the bracket process of X and

Y, is defined by

[X,Y ] = XY −
∫

X−dY −
∫

Y−dX. (2.16)

Corollary 2.5.1 The bracket process [X,Y ] of two semimartingales has paths

of finite variation, and it is also a semimartingale [23].

Definition 2.5.2 For a semimartingale X, the process [X,X]c denotes the path-

by-path continuous part of [X,X].

We can then write [23],

[X,X]t = [X,X]ct +X2
0 +

∑

0<s≤t

(∆Xs)
2

= [X,X]ct +
∑

0≤s≤t

(∆Xs)
2.

(2.17)

Observe that [X,X]c0 = 0. Analogously, [X,Y ]c denotes the path-by-path

continuous part of [X,Y ].

2.6 Counting Processes

A random point process is a mathematical model for a physical phenomenon

characterized by highly localized events distributed randomly in a continuum.
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Each localized event is represented in the model by an idealized point to be

conceived of as identifying the position of the event in the continuum. If ℵ

denotes the continuum space, then a realization of a random point process on ℵ

is a set of points having coordinates in ℵ [32].

It is often of interest in practice to count numbers of points in subsets of the

space ℵ on which a point process is defined. A counting process is introduced

for this purpose and can be associated with every point process. The idea is as

follows. We assume that a realization, call it ω, of a stochastic point process on

ℵ is a denumerable point set of ℵ. This means that ω can be enumerated as

ω = {X1, X2, ...}, where each Xi denotes the coordinate of a point in ℵ. Now, let

A be a subset of ℵ, and denote by N(A;ω) the number of points in ω that lie in

A. Formally,

N(A;ω) =
∑

i

1A(Xi) (2.18)

where each Xi is the coordinate of a point in ω. When viewed as a function of

A and ω, N(A;ω) defines a nonnegative, integer-valued random process on ℵ. A

process constructed this way is called a counting process [32].

Definition 2.6.1 Let N(t) be a counting process that counts the jumps for the

interval from 0 up to t. N(t) is said to be finite activity simple counting process

if there exist finite jumps in finite interval of time16.

16 i.e. N(t) <∞ for all 0 < t <∞.
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CHAPTER 3

REALIZED VARIANCE AND QUADRATIC VARIATION

3.1 Arbitrage-free, frictionless price processes

Consider an arbitrage-free price process Pt where T is a positive integer and

t ∈ [0, T ]. Let Ft be an increasing family of σ-fields that reflects the correspond-

ing information at time t where Fs ⊆ Ft for 0 ≤ s ≤ t ≤ T and P be the

probability measure on the probability space (Ω,F ,P). Assume that Ft satisfies

P-completeness1 and right-continuity2 and Pt is Ft-measurable (Pt is adapted)

which means that asset prices through time t are included in the information

filtration Ft.

In the fundamental theory of asset pricing, each logarithmic price process Yt

at time t is a semimartingale [22]. From the definition of a semimartingale, Yt

can be decomposed into two adapted, càdlàg processes

Yt = At +Mt, (eqn.(2.14))

where At is a locally finite variation process and Mt is a local martingale where

A(0) = M(0) = 0.

1 Let (Ω,F ,P) be a probability space. A subset N of Ω is said to be negligible if there is a
set F in F such that N ⊂ F and P(F ) = 0. If F contains all the negligible sets then (Ω,F ,P)
is said to be complete [28].

2 Ft = ∩u>tFu, all t, 0 ≤ t <∞; that is, the filtration F is right continuous [23].
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Now, let us introduce some notation. Suppose that s > 0 is some fixed time

period (e.g. a month or a day) and as mentioned above the logarithmic price

of an asset is written as Yt for t ∈ [0, T ]. Then the i-th s (e.g. i-th day or i-th

month) low frequency return is

y(i) = Y (is)− Y ((i− 1)s), i = 1, 2, .... (3.1)

Suppose that we have the intra-period prices at n equally spaced time points

during the i-th s (e.g. i-th day or i-th month). Then, we can define high frequency

return as

y(i, j) = Y ((i− 1)s+ sjn−1)− Y ((i− 1)s+ s(j − 1)n−1), j = 1, 2, ..., n. (3.2)

Here, y(i, j) is the j-th intra-s return for the i-th s. Let us illustrate the

notation, suppose that s is a trading day and you have 5-min intra-day returns

for the i-th trading day. So, n = 60 since we consider only the five hours of

the trading day and y(i) =
60
∑

j=1

y(i, j) (i-th day return is the sum of the 5-min

intra-day returns).

In figure 3.1, we can see the price data for euro/FX cross rate data in different

frequencies. For 5 minutes data, we get n = 60. In the same way, for 30 minutes

data, we have n = 10. For hourly data, n = 5 and for the daily data, n = 1.

The i-th realized variance is based on squares of these high frequency returns

in the interval from s(i− 1) to si. To understand realized variance explicitly, we

will define quadratic variation (QV) process of Yt. From now on, we will write

the definitions for the interval from time 0 to t, t ∈ [0, T ].
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Figure 3.1: Euro/FX cross rate dataset. Top left: raw 5 minute price data. Top
right: raw 30 minutes price data. Bottom left: raw hourly price data. Bottom
right: daily raw price data.

3.2 The Relation between Realized Variance and Quadratic Variation

Definition 3.2.1 The quadratic variation (QV) process of the logarithmic price

process Yt is defined as

[Y ]t = p− lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2

= p− lim
n→∞

n
∑

j=1

(y(tj))
2

(3.3)

for any sequence of partitions t0 = 0 < t1 < ... < tn = t with sup
j

{tj−tj−1} → 0

for n→∞.

Suppose that we record the prices for the time intervals of the same length

h > 0 between 0 and t. In other words, we divide the interval [0, t] into equidistant

18



intervals of length h, 0 = t0 < t1 < ... < tb t
h
c = t, recalling that b t

h
c is the integer

part of t
h
. Then, the j-th h-return is shown as

y(j) = Y (jh)− Y ((j − 1)h), j = 1, 2, ..., b t
h
c, (3.4)

these returns are used to construct realized quadratic variation process (realized

variance) which is defined by

[Yh]t =

b t
h
c

∑

j=1

(y(j))2, (3.5)

the sum of the squares of the intra-day returns for the period from 0 to t.

As mentioned above, in the definition of quadratic variation, subintervals be-

tween 0 and t are of different lengths and the limit is taken as the supremum of

the intervals goes to 0. But in the definition of the realized quadratic variation

process, subintervals between 0 and t are of the same length. Now, as seen from

the definitions of quadratic variation and realized quadratic variation, quadratic

variation is the limit of the realized quadratic variation as h→ 0. That is,

[Y ]t = p− lim
h→0

[Yh]t. (3.6)

To simplify the calculations, we assume t
h
is an integer and equal to n. So,

the realized quadratic variation is

[Yh]t =
n

∑

j=1

(y(j))2

=
n

∑

j=1

(y(tj))
2

=
n

∑

j=1

(Y (tj)− Y (tj−1))
2,

(3.7)

and the quadratic variation is
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[Y ]t = p− lim
n→∞[Yh]t (eqn. 3.6)

since h→ 0 is equivalent to n→∞.

In general, the logarithmic price process Yt can exhibit jumps and since Yt is

a semimartingale process, we can decompose Yt as

Yt = Y ct
t + Y d

t , (3.8)

where Y ct
t and Y d

t are respectively purely continuous and discontinuous compo-

nents of Yt. As mentioned before, Yt is decomposable as two adapted and càdlàg

processes At and Mt which are respectively locally finite variation process and a

local martingale. Then we can decompose the continuous and the discontinuous

parts of Yt as

Y ct
t = Act

t +M ct
t (3.9)

Y d
t = Ad

t +Md
t , (3.10)

where the finite variation components Act
t and Ad

t are respectively continuous

and jump processes, while the local martingales M ct
t and Md

t are respectively

continuous and jump processes.

It is convenient to consider the economics aspects of semimartingales and

quadratic variation. Let us introduce some theorems to understand the theory of

the semimartingales and quadratic variation of semimartingales.

Theorem 3.2.1 The logarithmic price process Yt is a semimartingale and the

quadratic variation of Yt denoted as [Y ]t can be decomposed into the quadratic
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variation of the continuous part and the discontinuous part

[Y ]t = [Y ct]t + [Y d]t

= [Y ct]t +
∑

0≤u≤t

(∆Yu)
2

(3.11)

where ∆Yu = Yu − Yu− is the jump at time u.

Proof : Yt can be decomposed as Yt = Y ct
t + Y d

t (from the equation(3.8)) and

Y d
t =

∑

0≤u≤t

∆Yu where ∆Yu = Yu − Yu− is the jump at time u.

The definition of the quadratic variation for the equally spaced intervals is

given as follows

[Y ]t = p− lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2 (eqn.(3.3))

= p− lim
n→∞

n
∑

j=1

(Y ct(tj) + Y d(tj))− (Y ct(tj−1) + Y d(tj−1))
2 (eqn.(3.8))

= p− lim
n→∞

n
∑

j=1

((Y ct(tj)− Y ct(tj−1)) + (Y d(tj)− Y d(tj−1)))
2

= p− lim
n→∞

n
∑

j=1

(Y ct(tj)− Y ct(tj−1))
2

+ p− lim
n→∞ 2

n
∑

j=1

(Y ct(tj)− Y ct(tj−1))(Y
d(tj)− Y d(tj−1))

+ p− lim
n→∞

n
∑

j=1

(Y d(tj)− Y d(tj−1))
2.

For the sum of the squares of the continuous part, we have the limit as

p− lim
n→∞

n
∑

j=1

(Y ct(tj)− Y ct(tj−1))
2 = [Y ct]t. (3.12)

For the sum of the squares of the discontinuous part, we have the limit as

p− lim
n→∞

n
∑

j=1

(Y d(tj)− Y d(tj−1))
2 = p− lim

n→∞

n
∑

j=1

(∆Yu)
2 = [Y d]t. (3.13)
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For the sum of the cross products,

(Y ct(tj)− Y ct(tj−1)) ≤ max
1≤j≤n

|Y ct(tj)− Y ct(tj−1)| (3.14)

for all j=1,...,n then we get

n
∑

j=1

(Y ct(tj)− Y ct(tj−1))(Y
d(tj)− Y d(tj−1))

≤ max
1≤j≤n

|Y ct(tj)− Y ct(tj−1)|
n

∑

j=1

(Y d(tj)− Y d(tj−1)) (eqn.(3.14))

= max
1≤j≤n

|Y ct(tj)− Y ct(tj−1)|
n

∑

j=1

(∆Yu).

And also since Y ct
t is continuous, we will use the property

p− lim
n→∞

max
1≤j≤n

|Y ct(tj)− Y ct(tj−1)| = 0 (3.15)

and
n

∑

j=1

(∆Yu) is finite. Thus, the result comes

p− lim
n→∞ 2

n
∑

j=1

(Y ct(tj)− Y ct(tj−1))(Y
d(tj)− Y d(tj−1)) = 0. (eqn.(3.15))

Hence,by the equations (3.12), (3.13) and (3.15), we have

[Y ]t = [Y ct]t + [Y d]t. (eqn.(3.11))

Q.E.D.

Theorem 3.2.2 The logarithmic price process Yt at time t is a semimartingale

and can be decomposed into two adapted, càdlàg processes

Yt = At +Mt (eqn.(2.14))
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where At is a locally finite variation process and Mt is a local martingale process

where A(0) = M(0) = 0. In addition to these settings, if At is continuous, i.e.,

Ad
t = 0 and if Mt is a martingale then

E(dYt|Ft) = dAt (3.16)

and the drift part can be considered as

At =
∫ t

0
E(dYu|Fu)du (3.17)

so we can say that At is the integral of the expectation of the instantaneous returns

from 0 to t.

Proof : Let us start with the decomposition of semimartingale Yt

Yt = At +Mt (eqn.(2.14))

and this implies the instantaneous logarithmic price process dYt can also be de-

composed as

dYt = dAt + dMt (3.18)

Now, let us take the expectation of both sides

E(dYt|Ft) = E[(dAt|Ft) + (dMt|Ft)]

and since conditional expectation is a linear operator, we have

E(dYt|Ft) = E(dAt|Ft) + E(dMt|Ft) (3.19)

and since Mt is a martingale we have

E(dMt|Ft) = 0. (3.20)
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Then, we can write the above equation as

E(dYt|Ft) = E(dAt|Ft) (3.21)

by the equations (3.19), (3.20) and since At is adapted,

E(dAt|Ft) = dAt. (3.22)

Thus, by the equations (3.21) and (3.22), we have the result

E(dYt|Ft) = dAt (eqn.(3.16))

which proves the theorem. Q.E.D.

Theorem 3.2.3 The logarithmic price process Yt at time t is a semimartingale

that can be decomposed into two adapted and càdlàg processes

Yt = At +Mt (eqn.(2.14))

where At is a locally finite variation process and Mt is a local martingale, A(0) =

M(0) = 0. In addition to these settings, if At is continuous, i.e., A
d
t = 0 and ifMt

is a continuous martingale which is locally square integrable, i.e., E{M 2
t } < ∞

for all t ≥ 0 and At is independent of the martingale process Mt then

[Y ]t = [M ]t (3.23)

and

[Y ]t =
∫ t

0
var(dYu|Fu)du

=
∫ t

0
var(dMu|Fu)du

(3.24)

that is the quadratic variation of the logarithmic price process equals to the inte-

grated variance of the instantaneous returns.
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Proof : Let us start with the decomposition of Yt

Yt = At +Mt (eqn.(2.14))

and this implies the instantaneous logarithmic price process dYt can also be de-

composed as

dYt = dAt + dMt (eqn.(3.18))

Now, from the definition of variance,

var(dYt|Ft) = E((dYt)
2|Ft)− (E(dYt|Ft))

2. (3.25)

By the equation(3.16), we have

var(dYt|Ft) = E((dYt)
2|Ft)− (dAt)

2

= E((dAt + dMt)
2|Ft)− (dAt)

2 (eqn.(3.18))

= E(((dAt)
2 + (dMt)

2 + 2dAtdMt)|Ft)− (dAt)
2

= E((dAt)
2|Ft) + E((dMt)

2|Ft) + 2E((dAtdMt)|Ft)− (dAt)
2

At is adapted so that (dAt)
2 is also adapted, i.e.,

E((dAt)
2|Ft) = (dAt)

2. (3.26)

Now, by the equation (3.26),

var(dYt|Ft) = (dAt)
2 + E((dMt)

2|Ft) + 2E((dAtdMt)|Ft)− (dAt)
2

= E((dMt)
2|Ft) + 2E((dAtdMt)|Ft).
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In the assumptions of the theorem, we have that dAt is independent of dMt then

E((dAtdMt)|Ft) = E((dAt)|Ft)E((dMt)|Ft). (3.27)

By the equation (3.20), the equation (3.27) becomes

E((dAtdMt)|Ft) = 0.

Then the conditional variance of the instantaneous price process can be written

as

var(dYt|Ft) = E((dMt)
2|Ft). (3.28)

Now, to see the equation (3.24), let us write the conditional variance for the

martingale part of the instantaneous price process

var(dMt|Ft) = E((dMt)
2|Ft)− (E((dMt)|Ft)

2

= E((dMt)
2|Ft)

(3.29)

from the equation (3.20). Thus, we have

var(dYt|Ft) = var(dMt|Ft). (3.30)

Now, our assumptions on Mt are that Mt is a local martingale and locally square

integrable so we can apply theorem (2.2.6) for the martingale part of the instan-

taneous price process. Then we have the equation

E{(dM 2
t )|Ft} = E{d[M ]t|Ft}. (3.31)
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When we combine the equations (3.28), (3.29), (3.30) and (3.31), we get

var(dYt|Ft) = var(dMt|Ft)

= E((dMt)
2|Ft)

= E{d[M ]t|Ft}.

(3.32)

Since var(dYt|Ft) is Ft measurable, we have

var(dYt|Ft) = E(var(dYt|Ft)|Ft). (3.33)

The equations (3.33) and (3.32), we get

E(var(dYt|Ft)|Ft) = E{d[M ]t|Ft}. (3.34)

Thus, we have

var(dYt|Ft) = d[M ]t. (3.35)

Now, take the integral of both sides from 0 to t

[M ]t =
∫ t

0
var(dYu|Fu)du. (3.36)

Finally, to finish the proof of the theorem, we will show the equation (3.23), i.e.,

[Y ]t = [M ]t.

The quadratic variation of Yt is defined as

[Y ]t = p− lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2 (eqn.(3.3))
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for any sequence of partitions t0 = 0 < t1 < ... < tn = t with equidistant intervals

of length h > 0 and with the assumption that b t
h
c = n where h → 0 as n → ∞.

Consider the sum (the realized variance),

n
∑

j=1

(Y (tj)− Y (tj−1))
2 =

n
∑

j=1

((A(tj) +M(tj))− (A(tj−1) +M(tj−1)))
2

=
n

∑

j=1

((A(tj)− A(tj−1)) + (M(tj)−M(tj−1)))
2

=
n

∑

j=1

(A(tj)− A(tj−1))
2

+ 2
n

∑

j=1

(A(tj)− A(tj−1))(M(tj)−M(tj−1))

+
n

∑

j=1

(M(tj)−M(tj−1))
2.

Now, the first sum

n
∑

j=1

(A(tj)− A(tj−1))
2 ≤ max

1≤j≤n
|A(tj)− A(tj−1)|

n
∑

j=1

(A(tj)− A(tj−1))

and since At is of finite variation process with continuous paths, we have

p− lim
n→∞ max

1≤j≤n
|A(tj)− A(tj−1)| = 0. (3.37)

Thus, the limit of the first sum

p− lim
n→∞

n
∑

j=1

(A(tj)− A(tj−1))
2 = 0. (3.38)

Now, the second sum

n
∑

j=1

(A(tj)− A(tj−1))(M(tj)−M(tj−1)) ≤

max
1≤j≤n

|M(tj)−M(tj−1)|
n

∑

j=1

(A(tj)− A(tj−1)).
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We can apply the equation (3.37) to the martingale part since Mt is also contin-

uous and since
n

∑

j=1

(A(tj)− A(tj−1)) is finite, the limit of the second sum

p− lim
n→∞

n
∑

j=1

(A(tj)− A(tj−1))(M(tj)−M(tj−1)) = 0. (3.39)

Finally, by the equations (3.38) and (3.39), the quadratic variation of Yt becomes

[Y ]t = p− lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2

= p− lim
n→∞

n
∑

j=1

(M(tj)−M(tj−1))
2

= [M ]t.

So, we come to the equation (3.23), i.e.

[Y ]t = [M ]t

and by the equations (3.36) and (3.30), we have the result

[Y ]t =
∫ t

0
var(dYu|Fu)du

=
∫ t

0
var(dMu|Fu)du

which proves the theorem. Q.E.D.

In addition to Theorem (3.2.3), if we allow discontinuities in the martingale

component of prices and continue to assume that the path of finite variation

process At is continuous, we have the quadratic variation of price process as

[Y ]t = [M ct]t + [Md]t

=
∫ t

0
var(dM ct

u |Fu)du+
N(t)
∑

u=1

∆Mu
2

(3.40)
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where N(t) is a simple counting process which is assumed to be finite for all t

and ∆Mu are non-zero random variables which are the size of the jumps.

We can summarize what we have stated as

[Yh]t =
n

∑

j=1

(yj)
2, (eqn.(3.7))

where 0 = t0 < t1 < ... < tn = t and

lim
n→∞[Yh]t = [Y ]t, (eqn.(3.6))

i.e. realized variance estimates the quadratic variation of the price process. If we

assume that Yt is continuous then we have

[Y ]t = [M ]t (eqn.(3.23)).

In this case,

lim
n→∞[Yh]t = [M ]t, (3.41)

i.e. realized variance estimates the quadratic variation of the martingale compo-

nent of the price process. If we decompose [M ]t in its continuous and discontin-

uous parts, we have

lim
n→∞[Yh]t = [M ct]t + [Md]t

=
∫ t

0
var(dM ct

u |Fu)du+
N(t)
∑

u=1

∆Mu
2,

(3.42)

i.e. realized variance estimates the integrated variance of the instantaneous re-

turns of the continuous part of Mt plus the quadratic variation of the jump part

of Mt.
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3.3 Stochastic Volatility Semimartingales

Recall that the logarithmic price process is a semimartingale and can be de-

composed into two adapted and càdlàg processes

Yt = At +Mt (eqn. 2.14)

where At is a locally finite variation process and Mt is a local martingale, A(0) =

M(0) = 0.

In this section, we have some additional assumptions on At and Mt. Firstly,

we assume Mt is continuous and it is an Ito integral of spot volatility process,

σt > 0, with respect to a standard Brownian motion relative to the filtration Ft

then

Mt =
∫ t

0
σudW (u) (3.43)

where the spot volatility process, σt > 0, is an adapted, càdlàg and locally

bounded away from zero and also Wt is the standard Brownian motion. In this

setting, we can define the integrated variance as

ϑ2t =
∫ t

0
σ2udu, (3.44)

where ϑ2t < ∞ and this equality is defined for all t < ∞. Secondly, we assume

At is continuous and it is the Riemann integral of at where at is an adapted and

càdlàg process with paths of finite variation then

At =
∫ t

0
audu. (3.45)

The semimartingales with these assumptions are in the class called continuous

stochastic volatility semimartingales or continuous Brownian semimartingales.

31



Now, with the assumptions above if the logarithmic price process Yt is in the

class of continuous stochastic volatility semimartingales then Yt can be decom-

posed as

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) (3.46)

where At =
∫ t

0
audu is the drift term and Mt =

∫ t

0
σudW (u) is the stochastic

term.

Theorem 3.3.1 Let Yt be the logarithmic price process which is in the class of

continuous stochastic volatility semimartingales and can be decomposed into

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) (eqn. (3.46))

where At =
∫ t

0
audu (eqn. (3.45)) is the drift term and Mt =

∫ t

0
σudW (u) (eqn.

(3.43)) is the stochastic volatility part. Then we have the quadratic variation of

Yt as

[Y ]t =
∫ t

0
σ2udu = ϑ2. (3.47)

Proof :First of all, At =
∫ t

0
audu (eqn. (3.45)) is the finite variation process

with continuous paths and Mt =
∫ t

0
σudW (u) (eqn. (3.43)) is a continuous mar-

tingale with E(Mt)
2 < ∞ so by Theorem (2.2.6), Mt is a local martingale with

E[M ]t < ∞. By Theorem (3.2.3), since the assumptions on At and Mt in the

theorem are the same for the class of continuous stochastic volatility semimartin-

gales, we know that [Y ]t = [M ]t (eqn. (3.23)).

Now, we will concentrate on [M ]t. We know that simple processes are dense

in the class of adapted and square integrable martingales, i.e. Mt ∈ Ft and
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E(Mt)
2 <∞, so it is enough to show for simple processes.

Let us construct the stochastic integral for simple processes,

∫ t

0
σudW (u) =

k
∑

i=1

φi(W (ti)−W (ti−1)) (eqn. (2.13))

is the stochastic integral of the simple process σt where

σt =
k

∑

i=1

φi1(ti−1,ti] (eqn. (2.12))

where 0 = t0 < t1 < ... < tk = t and φi is F(ti−1)-measurable3 and bounded.

Recall that, in the decomposition of Yt we have

Mt =
∫ t

0
σudW (u) (eqn.(3.43))

=
k

∑

i=1

φi(W (ti)−W (ti−1)). (eqn.(2.13))

Then,

E{M 2
t } = E{(φi(W (ti)−W (ti−1))

2)} (3.48)

and the square of this sum consists of the squares and a constant times cross

products, i.e.

(φi(W (ti)−W (ti−1))
2) = C

k
∑

i=1

k
∑

j=1

φiφj(W (ti)−W (ti−1))(W (tj)−W (tj−1))

+
k

∑

i=1

(φi)
2(W (ti)−W (ti−1))

2

where C is some constant and i 6= j.

Let us look at the sum of the cross products,

E(
k

∑

i=1

k
∑

j=1

φiφj(W (ti)−W (ti−1))(W (tj)−W (tj−1)))

3 φi is predictable.
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= 4E(E(
k

∑

i=1

k
∑

j=1

φiφj(W (ti)−W (ti−1))(W (tj)−W (tj−1))|F(tj−1)))

= E(
k

∑

i=1

k
∑

j=1

φiφjE((W (ti)−W (ti−1))(W (tj)−W (tj−1))|F(tj−1)))

=5E(
k

∑

i=1

k
∑

j=1

φiφjE((W (tj)−W (tj−1))|F(tj−1))E((W (ti)−W (ti−1))|F(tj−1))).

And we have

E(W (ti)−W (ti−1)|F(tj−1)) =
6E(W (ti)−W (ti−1)) = 0

since Wt is a standard Brownian motion. Thus, we have that

E(
k

∑

i=1

k
∑

j=1

φiφj(W (ti)−W (ti−1))(W (tj)−W (tj−1))) = 0.

Then, remains only the sum of the squares

E{M 2
t } = E(

k
∑

i=1

(φi)
2(W (ti)−W (ti−1))

2) (eqn.(3.48))

=
k

∑

i=1

E((φi)
2(W (ti)−W (ti−1))

2))

=
k

∑

i=1

E((φi)
2E((W (ti)−W (ti−1))

2))

since φi is F(ti−1)-measurable and (W (ti)−W (ti−1)) is independent of F(ti−1).

Then we have the equality

k
∑

i=1

E((φi)
2E((W (ti)−W (ti−1))

2)) =7
k

∑

i=1

E((φi)
2(ti − ti−1))

4 Let X ∈ (Ω,F , P ), if E(X|C) is defined then E(E(X|C)) = E(X) where C is a sub
σ-algebra of F .

5 (W (tj)−W (tj−1)) is independent of (W (ti)−W (ti−1)).
6 W (ti)−W (ti−1) is independent of F(tj−1).
7 var((W (ti)−W (ti−1))) = E((W (ti)−W (ti−1))

2) = (ti − ti−1).
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and we know that

E(
k

∑

i=1

(φi)
2(ti − ti−1)) = E(

∫ t

0
σ2udu). (3.49)

Thus, we get the equality,

E{M 2
t } = E(

∫ t

0
σ2udu) (3.50)

And from the theorem (2.2.6), E{M 2
t } = E{[M ]t}, if we combine these equalities,

we get the result

E{[M ]t} = E{M 2
t } = E(

∫ t

0
σ2udu)

Finally,

[M ]t =
∫ t

0
σ2udu (3.51)

and by the equations (3.51) and (3.23),

[Y ]t =
∫ t

0
σ2udu (eqn.(3.47))

which proves the theorem. Q.E.D.

Finally, the results of this chapter can be summarized as follows. The realized

variance estimates the quadratic variation as h → 0 or n → ∞, i.e. the realized

variance estimates the integrated variance. That is,

[Y ]t = lim
n→∞[Yh]t (eqn.(3.6))

= lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2 (eqn.(3.7))

=
∫ t

0
σ2udu. (eqn.(3.47))
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CHAPTER 4

POWER VARIATION AND BIPOWER VARIATION

PROCESSES

4.1 Power Variation Processes

The generalization of the quadratic variation process is the power variation

process which was first stated by Barndorff-Nielsen and Shephard (2004) [26].

In this chapter, again we work for the interval from 0 to t and we assume that

we record the prices for equally spaced intervals of length h, 0 = t0 < t1 < ... <

tb t
h
c = t, i.e. we have b t

h
c observations for the interval from 0 to t. Before the

definition of power variation process, recall that j-th h-return is

y(j) = Y (jh)− Y ((j − 1)h), j = 1, 2, ..., b t
h
c (eqn.(3.4))

where Yt is the logarithmic price process at time t. And also, again assume that

t
h
is an integer and b t

h
c = n to simplify the calculations.

In the last chapter, quadratic variation is defined for unequally spaced intervals

but in this chapter power variation is defined for equally spaced intervals.

The r-th order power variation process is the probability limit of the realized

power variation process as h→ 0. Let us first define the r-th order realized power

variation.

36



Definition 4.1.1 The r-th order realized power variation of Yt is defined as

{Yh}[r]t = h(1−
r
2
)

n
∑

j=1

|y(tj)|r

= h(1−
r
2
)

n
∑

j=1

|Y (tj)− Y (tj−1)|r
(4.1)

where h(1−
r
2
) is the normalization in power variation and 0 = t0 < t1 < ... < tn =

t.

Definition 4.1.2 The r-th order power variation process is defined as the prob-

ability limit of the r-th order realized power variation process

{Y }[r]t = p− lim
n→∞{Yh}[r]t

= p− lim
n→∞h(1−

r
2
)

n
∑

j=1

|y(tj)|r

= p− lim
n→∞

h(1−
r
2
)

n
∑

j=1

|Y (tj)− Y (tj−1)|r

(4.2)

where h(1−
r
2
) is the normalization in power variation and 0 = t0 < t1 < ... < tn =

t.

Theorem 4.1.1 Let the logarithmic price process Yt be in the class of continuous

stochastic volatility semimartingales which is defined in the last chapter. Then

Yt =
∫ t

0
audu+

∫ t

0
σudW (u). (eqn. (3.46))

Now, additionally assume that at = 0 and σt is independent of Wt, then

{Y }[r]t = µr

∫ t

0
σr
udu (4.3)

where µr = E|u|r, (r > 0) and u ∼ N(0, 1).
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Proof : In the proof, we consider only the martingale part,Mt =
∫ t

0
σudW (u),

since we assume that at = 0. Now, it is enough to prove that

{M}[r]t = µr

∫ t

0
σr
udu (4.4)

where µr = E|u|r (r > 0) and u ∼ N(0, 1).

In the proposition (2.1.2), choose p = 1 since Mt ∈ L1. If we show that

E(|Xn −X|) goes to 0 as n→∞ then from the proposition (2.1.2), since

P{|Xn −X| ≥ ε} ≤ 1
εp
E(|Xn −X|p) (eqn. (2.1)),

we get that P{|Xn −X| ≥ ε} goes to 0. Then P{|Xn −X| > ε} goes to 0 so, by

proposition (2.1.3), we conclude that p− lim
n→∞Xn = X.

So,it is enough to show that

lim
n→∞E|{Mh}[r]t − µr

∫ t

0
σr
udu| = 0. (4.5)

In addition, it is enough to show this limit for simple processes since simple

processes are dense in the class of adapted and square integrable semimartingales,

i.e. Mt ∈ Ft, E{M 2
t } <∞ and Mt =

∫ t

0
σudW (u) satisfies these conditions.

Then, let us start with defining simple processes σt =
k

∑

i=1

φi1(ti−1,ti] where the

interval [0, t] is divided equally as 0 = t0 < t1 < ... < tk = t and φi is F(ti−1)

measurable and bounded. The next step is to construct the stochastic integral

of the simple process with respect to the standard Brownian motion Wt which is
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defined as ,

Mt =
∫ t

0
σudW (u)

=
k

∑

i=1

φi(W (ti)−W (ti−1)). (eqn.(2.13))

Now, we will write {Mh}[r]t1 for the interval (t0, t1] then we integrate the result

for the interval [0,t] to get {Mh}[r]t . {Mh}[r]t1 can be defined as

{Mh}[r]t1 = h(1−
r
2
)

b t1
h
c

∑

j=1

|φ1(W (tj)−W (tj−1))|r. (4.6)

It is time to write the expectation for the interval [0, t]

E({Mh}[r]t − µr

∫ t

0
σr
udu) = E({Mh}[r]t )− E(µr

∫ t

0
σr
udu)

= E({Mh}[r]t )− µr

∫ t

0
σr
udu

(4.7)

To find the expectation E({Mh}[r]t ), firstly we will find E({Mh}[r]t1 ) then take the

sum from 0 to t. Now,

E({Mh}[r]t1 ) = E(h(1−
r
2
)

b t1
h
c

∑

j=1

|φ1(W (tj)−W (tj−1))|r)

= h(1−
r
2
)E(

b t1
h
c

∑

j=1

|φ1(W (tj)−W (tj−1))|r)

= h(1−
r
2
)

b t1
h
c

∑

j=1

E|φ1(W (tj)−W (tj−1))|r

= h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1E|(W (tj)−W (tj−1))|r

Since Wt is a standard Brownian motion, (W (tj)−W (tj−1)) has standard devi-

ation
√
tj − tj−1 then we can write the r-th power expectation as

E|(W (tj)−W (tj−1))|r d
= E|u

√

tj − tj−1|r (4.8)
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where u ∼ N(0, 1). Then, we have the equality

h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1E|(W (tj)−W (tj−1))|r = h(1−

r
2
)

b t1
h
c

∑

j=1

φr
1E|u

√

tj − tj−1|r

= h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1(

√

tj − tj−1)
rE|u|r

= h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1|tj − tj−1|

r
2E|u|r

since
√
tj − tj−1 is positive, we can get out of the absolute value function and

since it is deterministic, its expectation is equal to itself ,i.e. we can get out of

the expectation function.

We have the assumption that we record the prices for equally spaced intervals

of length h for the interval [0, t] so |tj − tj−1| = h. Then the equation becomes

h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1|tj − tj−1|

r
2E|u|r = h(1−

r
2
)

b t1
h
c

∑

j=1

φr
1h

r
2E|u|r

and we can take h(1−
r
2
) in the sum since it does not depend on j. And we get the

result,

h(1−
r
2
)

b t1
h
c

∑

j=1

φr
1|tj − tj−1|

r
2E|u|r =

b t1
h
c

∑

j=1

φr
1h
(1− r

2
)h

r
2E|u|r

= E|u|r
b t1
h
c

∑

j=1

φr
1h

and we denote E|u|r = µr so the r-th order realized variance for the interval

(t0, t1] becomes

E{Mh}[r]t1 = µr

b t1
h
c

∑

j=1

φr
1h (4.9)

This expectation is for the first subinterval of the interval [0, t]. If we find all

of the expectations for the subintervals and take the sum of them then we get
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the r-th order realized variance for the interval [0, t]. Thus,

E{Mh}[r]t = µr

k
∑

i=1

φr
ih (4.10)

where E|u|r = µr and u ∼ N(0, 1).

Now, if we take the limit of the r-th order realized variance, we get

lim
n→∞

E({Mh}[r]t ) = lim
n→∞

E(µr

k
∑

i=1

φr
ih)

= µr

∫ t

0
σr
udu

(4.11)

where n→∞ is equivalent to h→ 0. Thus,

lim
n→∞E({Mh}[r]t − µr

∫ t

0
σr
udu) = 0. (4.12)

Recall that for any process Xn if Xn → 0 then |Xn| → 0. So, we see that

expectation of the absolute value of the difference is also zero, that is

lim
n→∞E|{Mh}[r]t − µr

∫ t

0
σr
udu| = 0. (eqn. (4.5))

So,

p− lim
n→∞{Mh}[r]t = µr

∫ t

0
σr
udu.

From the definition of the r-th order power variation, we get

{M}[r]t = p− lim
n→∞{Mh}[r]t

= µr

∫ t

0
σr
udu

(4.13)

In the theorem, we have the assumption that at = 0 so

{Y }[r]t = {M}[r]t . (4.14)

Finally, when we combine the equations (4.13) and (4.14), we get the result
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{Y }[r]t = µr

∫ t

0
σr
udu. (eqn. (4.3))

This proves the theorem. Q.E.D.

4.2 Bipower Variation Processes

In this section, we will work on the sum of the cross products of the different

powers of returns instead of the powers of the returns. The general variation

process is the bipower variation process since it contains the power variation

process as well as the quadratic variation process. To understand this explicitly,

let us give some definitions.

Definition 4.2.1 The (r,s)-order bipower variation process is defined as

{Y }[r,s]t = p− lim
h→0

h(1−
r+s
2
)

n
∑

j=2

|y(tj)|r|y(tj−1)|s

= p− lim
h→0

h(1−
r+s
2
)

n
∑

j=2

|Y (tj)− Y (tj−1)|r|Y (tj−1)− Y (tj−2)|s
(4.15)

where r, s ≥ 0 and j = 1, 2, ..., n.

After the definition of bipower variation, it is convenient to remark that the

special cases of the bipower variation process include the power variation process

and also the quadratic variation process since quadratic variation is a special case

of the power variation in which r = 2. Importantly,

{Y }[r,0]t = {Y }[0,r]t = {Y }[r]t .

In this section, it is again necessary to define the (r,s)-order realized bipower

variation process to understand the (r,s)-order power variation process.
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Definition 4.2.2 The (r,s)-order realized bipower variation process is defined as

{Yh}[r,s]t = h(1−
r+s
2
)

n
∑

j=2

|y(tj)|r|y(tj−1)|s

= h(1−
r+s
2
)

n
∑

j=2

|Y (tj)− Y (tj−1)|r|Y (tj−1)− Y (tj−2)|s
(4.16)

where r, s ≥ 0 and j = 1, 2, ..., n.

Theorem 4.2.1 Let the logarithmic price process Yt be in the class of continuous

stochastic volatility semimartingales that is defined as

Yt =
∫ t

0
audu+

∫ t

0
σudW (u). (eqn. (3.46))

Additionally, assume that at = 0 and σt is independent of Wt, then

{Y }[r,s]t = µrµs

∫ t

0
σr+s
u du (4.17)

where r, s ≥ 0 and µr = E|u|r where u ∼ N(0, 1).

Proof :We consider only the martingale part Mt since we assume the expec-

tation of the instantaneous returns is zero, i.e. at = 0.

Now, we will show the statement of the theorem for only the simple processes

since simple processes are dense in the class of adapted and square integrable

martingales, i.e. Mt ∈ Ft, E{M 2
t } <∞ and Mt satisfies these conditions.

Then, σt can be defined as the simple process σt =
k

∑

i=1

φi1(ti−1,ti] where 0 =

t0 < t1 < ... < tk = t and φi is F(ti−1) measurable and bounded. Now let

us construct the stochastic integral of this simple process with respect to the
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standard Brownian motion Wt which is defined as,

Mt =
∫ t

0
σudW (u)

=
k

∑

i=1

φi(W (ti)−W (ti−1)). (eqn.(2.13))

Recall that the limit in probability of the (r,s)-order realized bipower variation

process is the (r,s)-order bipower variation process. So, let us start with defining

the (r,s)-order realized bipower variation process

{Mh}[r,s]t = h(1−
r+s
2
)

n
∑

j=2

|M(tj)−M(tj−1)|r|M(tj−1)−M(tj−2)|s (eqn. (4.16))

where r, s ≥ 0 and j = 1, 2, ..., n.

We will show

{M}[r,s]t = p− lim
h→0
{Mh}[r,s]t

= µrµs

∫ t

0
σr+s
u du (eqn.(4.17))

where r, s ≥ 0 and µr = E|u|r where u ∼ N(0, 1).

As mentioned, in the proof of the Theorem (4.1.1), it is enough to show

lim
h→0

E|{Mh}[r,s]t − µrµs

∫ t

0
σr+s
u du| = 0. (4.18)

Now, let us determine the following expectation

E({Mh}[r,s]t − µrµs

∫ t

0
σr+s
u du) = E({Mh}[r,s]t )− E(µrµs

∫ t

0
σr+s
u du)

= E({Mh}[r,s]t )− µrµs

∫ t

0
σr+s
u du

since the last term µrµs

∫ t

0
σr+s
u du is deterministic, we get it out of the expectation

function.
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Now, we will construct E({Mh}[r,s]t1 ) which is the (r,s)-order realized bipower

variation for the interval (t0, t1] and then take the integral for the interval [0, t]

to take the total sum and find E{Mh}[r,s]t .

E{Mh}[r,s]t1 = E(h(1−
r+s
2
)

b t1
h
c

∑

j=2

|φ1(W (tj)−W (tj−1))|r|φ1(W (tj−1)−W (tj−2))|s)

= h(1−
r+s
2
)

b t1
h
c

∑

j=2

E(|φ1(W (tj)−W (tj−1))|r|φ1(W (tj−1)−W (tj−2))|s)

= h(1−
r+s
2
)

b t1
h
c

∑

j=2

E|φ1(W (tj)−W (tj−1))|rE|φ1(W (tj−1)−W (tj−2))|s

since |φ1(W (tj)−W (tj−1))|r and |φ1(W (tj−1)−W (tj−2))|s are independent. And

also since W is standard Brownian motion, we have the equality

E|(W (tj)−W (tj−1))|r d
= E|u√tj − tj−1|r (eqn. (4.8))

where u ∼ N(0, 1). Thus,

E{Mh}[r,s]t1 = h(1−
r+s
2
)

b t1
h
c

∑

j=2

φr
1E|u

√

tj − tj−1|rφs
1E|u

√

tj−1 − tj−2|s

= h(1−
r+s
2
)

b t1
h
c

∑

j=2

φr+s
1 (

√

tj − tj−1)
rE|u|r(

√

tj−1 − tj−2)
sE|u|s

since
√
tj − tj−1 is positive and also deterministic, we can take out of both the

expectation and the absolute value function.

Recall that we have the assumption that we record the prices for equally

spaced intervals of length h as 0 = t1 < t1 < ... < tn = t. Then the length of the

45



interval tj − tj−1 = h for all j = 1, 2, ..., n. Thus, the equation becomes

E{Mh}[r,s]t1 = h(1−
r+s
2
)

b t1
h
c

∑

j=2

φr+s
1 (

√
h)rE|u|r(

√
h)sE|u|s

= h(1−
r+s
2
)

b t1
h
c

∑

j=2

φr+s
1 h

r+s
2 E|u|rE|u|s

=

b t1
h
c

∑

j=2

h(1−
r+s
2
)h

r+s
2 φr+s

1 E|u|rE|u|s

= E|u|rE|u|s
b t1
h
c

∑

j=2

φr+s
1 h.

So we have the (r,s)-order realized bipower variation as

E{Mh}[r,s]t1 = µrµs

b t1
h
c

∑

j=2

φr+s
1 h

where µr = E|u|r.

Up to now, we have find the (r,s)-order realized bipower variation for the first

subinterval and if we take the sum of these realized power variations for all the

subintervals then we get the realized power variation for the interval [0, t]. Thus,

E{Mh}[r,s]t = µrµs

k
∑

i=1

φr+s
i h. (4.19)

Now let us take the limit as h→ 0,

lim
h→0

E{Mh}[r,s]t = µrµs

∫ t

o
σr+s
u du (4.20)

So,

lim
h→0

(E{Mh}[r,s]t − µrµs

∫ t

o
σr+s
u du) = 0. (4.21)

Recall that for any process Xn if Xn → 0 then |Xn| → 0. Then the limit of

the absolute value of the difference is also zero, i.e.
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lim
h→0

|E{Mh}[r,s]t − µrµs

∫ t

o
σr+s
u du| = 0. (eqn. (4.18))

And this limit implies the limit in probability so we get the result.

{M}[r,s]t = p− lim
h→0
{Mh}[r,s]t

= µrµs

∫ t

o
σr+s
u du.

(4.22)

where u ∼ N(0, 1). And since in the theorem we assume that at = 0,

{Y }[r,s]t = {M}[r,s]t . (4.23)

And the result comes

{Y }[r,s]t = µrµs

∫ t

o
σr+s
u du. (eqn. (4.17))

This proves the theorem. Q.E.D.

Now, we will consider the special cases of bipower variation processes. The

following case is the condition of the equality of r and s.

Corollary 4.2.2 The (r,r)-order bipower variation process is defined as

{Y }[r,r]t = p− lim
h→0

h(1−r)
n

∑

j=2

|y(tj)|r|y(tj−1)|r

= p− lim
h→0

h(1−r)
n

∑

j=2

|Y (tj)− Y (tj−1)|r|Y (tj−1)− Y (tj−2)|r
(4.24)

where r ≥ 0 and j = 1, 2, ..., n. Assume that Yt is in the class of continuous

stochastic volatility semiartingales. Additionally, if at = 0 and σt is independent

from Wt then

{Y }[r,r]t = µ2r

∫ t

o
σ2ru du. (4.25)

where µr = E|u|r where u ∼ N(0, 1).
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After this corollary, the next condition that we will discuss what happens if

r + s = 2, i.e. we choose s = 2− r.

Corollary 4.2.3 The (r,2-r)-order bipower variation process is defined as

{Y }[r,s]t = p− lim
h→0

n
∑

j=2

|y(tj)|r|y(tj−1)|2−r

= p− lim
h→0

n
∑

j=2

|Y (tj)− Y (tj−1)|r|Y (tj−1)− Y (tj−2)|2−r

(4.26)

where µr = E|u|r where u ∼ N(0, 1).Assume that Yt is in the class of continuous

stochastic volatility semiartingales. Additionally, if at = 0 and σt is independent

from Wt then

{Y }[r,2−r]
t = µrµ2−r

∫ t

o
σ2udu. (4.27)

where µr = E|u|r where u ∼ N(0, 1).

After this corollary, it is convenient to say that the value of r + s is crucial

in the bipower variation process since it determines the normalization identity as

well as the power of the integrated variance. As shown in the corollary, in the

case of r + s = 2, the normalization is equal to 1. So, in the calculation, the

normalization identity disappears. And r + s also determines the power of the

integrated variance. In the last corollary, it is seen that the (r,2-r)-order realized

bipower variation process estimates the integrated variance and so gives the same

result as the realized variance.

It is time to give a special bipower variation process in which we choose

r = s = 1.
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Definition 4.2.3 The (1,1)-order bipower variation process is defined as

{Y }[1,1]t = p− lim
h→0

n
∑

j=2

|y(tj)||y(tj−1)|

= p− lim
h→0

n
∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)|
(4.28)

In this chapter, the most consequential difference is the assumption on the

drift part. In the next theorem, we will show that this restriction is not needed

in the (1,1)-order bipower variation process.

Theorem 4.2.4 The logarithmic price process Yt at time t is a semimartingale

and can be decomposed into two adapted, càdlàg processes

Yt = At +Mt (eqn.(2.14))

where At is a locally finite variation process and Mt is a local martingale where

A(0) = M(0) = 0. In addition to these settings, if Yt is continuous, then

{Y }[1,1]t = {M}[1,1]t . (4.29)

Proof :The logarithmic price process Yt is decomposable as

Yt = At +Mt. (eqn.(2.14))

Let us write the definition of the (1,1)-order bipower variation process for Yt

{Y }[1,1]t = p− lim
h→0

n
∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)|. (eqn. (4.28))
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Consider the (1,1)-order realized bipower variation process

{Yh}[1,1]t =
n

∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)|

=
n

∑

j=2

|(A(tj) +M(tj))− (A(tj−1) +M(tj−1))|

|(A(tj−1) +M(tj−1))− (A(tj−2) +M(tj−2))|

=
n

∑

j=2

|(A(tj)− A(tj−1)) + (M(tj)−M(tj−1))|

|(A(tj−1)− A(tj−2)) + (M(tj−1)−M(tj−2))|.

(4.30)

To simplify the calculations, let us introduce some notations

aj = (A(tj)− A(tj−1)) (4.31)

and

bj = (M(tj)−M(tj−1)). (4.32)

Now, the equation (4.30) becomes

{Yh}[1,1]t =
n

∑

j=2

|(aj) + (bj)||(aj−1) + (bj−1)|

=
n

∑

j=2

|(aj + bj)(aj−1 + bj−1)|

=
n

∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|.

(4.33)

Recall the triangular inequality

|a| − |b| ≤ ||a| − |b|| ≤ |a+ b| ≤ |a|+ |b|. (4.34)

Let us apply triangular inequality to the equation (4.33)),
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n
∑

j=2

|ajaj−1| − |bjaj−1| − |ajbj−1| − |bjbj−1|

≤
n

∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤
n

∑

j=2

|ajaj−1|+ |bjaj−1|+ |ajbj−1|+ |bjbj−1| (4.35)

Now,

p− lim
n→∞

n
∑

j=2

|bjaj−1| = p− lim
n→∞

n
∑

j=2

|(M(tj)−M(tj−1))(A(tj−1)− A(tj−2))|

≤ p− lim
n→∞max |M(tj)−M(tj−1)|

n
∑

j=2

|A(tj−1)− A(tj−2)|.

(4.36)

We have

p− lim
n→∞max |M(tj)−M(tj−1)| = 0 (4.37)

since Mt is continuous. And also, since At is finite variation process, |A(tj−1) −

A(tj−2)| is finite. So, we conclude that

p− lim
n→∞

max |M(tj)−M(tj−1)|
n

∑

j=2

|A(tj−1)− A(tj−2)| = 0. (4.38)

By the equations (4.38) and (4.36), we get

p− lim
n→∞

n
∑

j=2

|bjaj−1| = 0. (4.39)

By the same way,

p− lim
n→∞

n
∑

j=2

|ajbj−1| = 0 (4.40)

and

p− lim
n→∞

n
∑

j=2

|ajaj−1| = 0. (4.41)

Let us take the limits of the sums in the equation (4.35),
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p− lim
n→∞

n
∑

j=2

|ajaj−1| − |bjaj−1| − |ajbj−1| − |bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|ajaj−1|+ |bjaj−1|+ |ajbj−1|+ |bjbj−1|.

By the equations (4.39), (4.40) and (4.41),

p− lim
n→∞

n
∑

j=2

|bjbj−1| ≤ p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|bjbj−1|.
(4.42)

Since {Mh}[1,1]t =
n

∑

j=2

|bj||bj−1| and by the equations (4.33) and (4.42), we have

p− lim
n→∞{Mh}[1,1]t ≤ p− lim

n→∞{Yh}[1,1]t ≤ p− lim
n→∞{Mh}[1,1]t . (4.43)

Equation (4.43) implies

{Y }[1,1]t = p− lim
n→∞{Yh}[1,1]t = p− lim

n→∞{Mh}[1,1]t = {M}[1,1]t . (4.44)

So, we get the result

{Y }[1,1]t = {M}[1,1]t . (eqn.(4.29))

This proves the theorem.Q.E.D.

Corollary 4.2.5 Assume that Yt is in the class of continuous stochastic volatility

semimartingales. Additionally,σt is independent from Wt then

{Y }[1,1]t = µ21

∫ t

o
σ2udu. (4.45)

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).
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So, clearly the integrated variance
∫ t

o
σ2udu can be estimated by the (1,1)-order

realized bipower variation process. That is

∫ t

o
σ2udu = µ−21 p− lim

h→0
{Yh}[1,1]t (4.46)

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).

In the next chapter, we will discuss about the quadratic variation process and

(1,1)-order bipower variation processes on discontinuous logarithmic price pro-

cesses. Accordingly, it is very important to understand the relationship between

the quadratic variation and (1,1)-order bipower variation processes for Yt which

is in the class of continuous stochastic volatility semimartingale processes.

In consequence, let us summarize the last two chapters. Recall that the log-

arithmic price process Yt is semimartingale and can be decomposed into two

adapted, càdlàg processes

Yt = At +Mt (eqn.(2.14))

where At is a locally finite variation process and Mt is a local martingale where

A(0) = M(0) = 0. Moreover, we have worked on special class called continu-

ous stochastic volatility semimartingales. In this class, we have some additional

assumptions on Yt. Firstly, we assume Mt is continuous and it is an Ito integral

of spot volatility process, σt > 0, with respect to a standard Brownian motion

relative to the filtration Ft then

Mt =
∫ t

0
σudW (u) (eqn.(3.43))
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where the spot volatility process, σt > 0, is an adapted, càdlàg and locally

bounded away from zero and also Wt is the standard Brownian motion. In this

setting, we can define the integrated variance as

ϑ2t =
∫ t

0
σ2udu,

where ϑ2t < ∞ and this equality is defined for all t < ∞. Secondly, we assume

At is continuous and it is the Riemann integral of at where at is an adapted and

càdlàg process with paths of finite variation then

At =
∫ t

0
audu. (eqn.(3.45))

The semimartingales with these assumptions are in the class called continuous

stochastic volatility semimartingales or continuous Brownian semimartingales.

Furthermore, let us remember that we perform on the interval from 0 to t

and assume that the prices are recorded for equally spaced intervals of length h

and t
h
is an integer with t

h
= n. Thus, we work on equidistant intervals such as

0 = t0 < t1 < ... < tn = t.

As mentioned in the third chapter, if Yt is in the continuous stochastic volatil-

ity semimartingales then the integrated variance is equal to the quadratic vari-

ation and quadratic variation can be estimated by the realized variance. That

is

[Y ]t = p− lim
n→∞[Yh]t (eqn.(3.6))

= p− lim
n→∞

n
∑

j=1

(Y (tj)− Y (tj−1))
2 (eqn.(3.3))

=
∫ t

0
σ2udu. (eqn.(3.47))
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Besides, in this chapter, if Yt is in the continuous stochastic volatility semimartin-

gales then the integrated variance can be estimated by the (1,1)-order realized

bipower variation process. That is

{Y }[1,1]t = p− lim
n→∞

{Yh}[1,1]t (eqn.(4.46))

= p− lim
n→∞

n
∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)| (eqn.(4.28))

= µ21

∫ t

0
σ2udu. (eqn.(4.45))

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1). Thus, the integrated variance can be

estimated as
∫ t

0
σ2udu = µ−21 p− lim

n→∞{Yh}[1,1]t . (4.47)

In conclusion, if we combine the results of the last two chapters, then we get

access to the result that for the continuous stochastic volatility semimartingale

logarithmic price processes, both the realized quadratic variation and the (1,1)-

order realized bipower variation process are consistent estimators of the integrated

variance
∫ t

0
σ2udu = µ−21 p− lim

n→∞
{Yh}t

= p− lim
n→∞[Yh]t

(4.48)

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).

In the next chapter, we will see what happens to these estimators when we

add jump part to the logarithmic price process Yt.
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CHAPTER 5

STOCHASTIC VOLATILITY SEMIMARTINGALE PLUS RARE

JUMP PROCESSES

In the last chapter, we have worked on continuous logarithmic price processes and

have ensured that both the realized variance and the (1,1)-order realized bipower

variation are consistent estimators of the integrated variance.

In this chapter, we will see how this result changes when we work on stochastic

volatility semimartingale plus rare jump logarithmic price processes.

Definition 5.0.4 Let Yt be the logarithmic price process which have both the

continuous part and the discontinuous part

Yt = Y ct
t + Y d

t (eqn. (3.8))

where Y ct
t is in the class of stochastic volatility semimartingale processes as

Y ct
t =

∫ t

0
audu+

∫ t

0
σudW (u) (eqn. (3.46))

and Y d
t is the jump part which can be written as

Y d
t =

N(t)
∑

i=1

ci (5.1)

where N is the number of jumps and is finite activity simple counting process1 and

1 i.e.Recall that finite activity simple counting process means there exist finite jumps in
finite interval of time, such that N(t) <∞ for all 0 < t <∞.
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ci are non-zero random variables. Then, we say that Yt is in the class of stochastic

volatility semimartingale plus rare jump processes if it can be decomposed as

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci. (5.2)

5.1 Rare Jumps and Quadratic Variation

We will deal with the continuous price processes with rare jumps, i.e. finite

jumps in finite interval of time. As mentioned in the third chapter, if Yt has

jumps then

[Y ]t = [Y ct]t + [Y d]t (eqn. (3.8)).

Theorem 5.1.1 Let Yt be in the class of stochastic volatility semimartingale plus

rare jump processes, i.e.

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci (eqn. (5.2))

where at is adapted, càdlàg process with paths of finite variation, σt is adapted,

càdlàg and locally bounded away from zero, N is a finite activity simple counting

processes for all t and ci are non-zero random variables, then

[Y ]t =
∫ t

0
σ2udu+

N(t)
∑

i=1

c2i . (5.3)

Proof : Let us start by writing the logarithmic price process which is in the

class of the stochastic volatility semimartingale plus rare jump processes

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci (eqn. (5.2))

57



where

Y ct
t =

∫ t

0
audu+

∫ t

0
σudW (u) (eqn. (3.46))

and

Y d
t =

N(t)
∑

i=1

ci (eqn. (5.2)).

Let us recall the below equation,

[Y ]t = [Y ct
t ] + [Y d

t ] (eqn. (3.11))

from the Theorem (3.2.1) and also the quadratic variation of the continuous

semimartingale process

[Y ct]t =
∫ t

0
σ2udu (eqn. (3.47))

from the Theorem (3.3.1).

Therefore, we will maintain only the discontinuous part, i.e. jump part of Yt

Y d
t =

N(t)
∑

i=1

ci (eqn. (5.1)).

The quadratic variation of the discontinuous part is

[Y d]t = p− lim
n→∞

n
∑

j=1

(
N(tj)
∑

i=1

−
N(tj−1)

∑

i=1

)2

where N(tj) denotes the number of jumps for the interval from 0 up to tj. And

if we get the difference of these sums, we will have

p− lim
n→∞

n
∑

j=1

(
N(tj)
∑

i=1

−
N(tj−1)

∑

i=1

)2 = p− lim
n→∞

n
∑

j=1

(
N(tj)
∑

N(tj−1)

)2.
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This term is the sum of the squares of the jumps for the subintervals (tj−1, tj] so

the sum of these squares from 0 to n will give us the sum of the all jumps in the

interval [0, t]. Thus, this sum will come to be

p− lim
n→∞

n
∑

j=1

(
N(tj)
∑

N(tj−1)

)2 = p− lim
n→∞

N(t)
∑

j=1

c2i

=
N(t)
∑

j=1

c2i .

Consequently,

[Y d]t =
N(t)
∑

j=1

c2i . (5.4)

Now, let us put together the results and write the quadratic variation of Yt if

there exist jumps in Yt,

[Y ]t = [Y ct]t + [Y d]t (eqn.(3.8))

=
∫ t

0
σ2udu+

N(t)
∑

j=1

c2i . (eqns.(3.47), (5.4))

This proves the theorem. Q.E.D.

This theorem says that if the logarithmic price process Yt has jump part then

the quadratic variation of Yt has also an additional sum that comes from the

jump part.

In the next section, we will see whether the (1,1)-order bipower variation will

change or not when we add a jump part to Yt.

5.2 Rare Jumps and (1,1)-order Bipower Variation Process

As we come to the bipower variation process, we again look the case what

happens if Yt is in the class of stochastic volatility semimartingale plus jump
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processes, i.e.

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci. (eqn. (5.2))

All the assumptions on at, σt, N(t) and ci are the same as in the last section.

Theorem 5.2.1 Let the logarithmic price process Yt be in the class of stochastic

volatility semimartingale plus rare jump processes, i.e.

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci (eqn. (5.2))

where

Y ct
t =

∫ t

0
audu+

∫ t

0
σudW (u) (eqn. (3.46))

and

Y d
t =

N(t)
∑

i=1

ci (eqn. (5.2)).

Then,

{Y d}[1,1]t = 0. (5.5)

Proof : Now, let us write (1,1)-order bipower variation for the discontinuous

part (jump part) of Yt

{Y d}[1,1]t = p− lim
h→0

n
∑

j=2

|
N(tj)
∑

i=1

ci −
N(tj−1)

∑

i=1

ci||
N((tj−1)

∑

i=1

ci −
N(tj−2)

∑

i=1

ci|

where N(tj) is the number of the jumps for the interval from 0 up to tj.

The difference of the jumps is equal to the jump in the subinterval. What we

want to say is that
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N(tj)
∑

i=1

ci −
N(tj−1)

∑

i=1

ci =
N(tj)
∑

i=N(tj−1)

ci.

Then the 1,1-order bipower variation comes to be

{Y d}[1,1]t = p− lim
h→0

n
∑

j=2

|
N(tj)
∑

i=N(tj−1)

ci||
N(tj−1)

∑

i=N(tj−2)

ci|.

As we know, we have the assumption that we record the prices for equally

spaced intervals of length h where 0 = t0 < t1 < ... < tn = t and tj − tj−1 = h for

all j = 1, 2, ..., n. Then as h → 0, we have (tj − tj−1) → 0 for all j = 1, 2, ..., n.

Thus, as h → 0, both (tj − tj−1) → 0 and (tj−1 − tj−2) → 0. In addition, we

have the assumption that we have rare jumps, i.e. we have finite jumps in finite

interval of time. Therefore, if Yt has jump in the subinterval (tj−1, tj] then Yt can

not have jump in the interval (tj−2, tj−1] since as h → 0, both the subintervals

goes to zero. Otherwise, if we have jump in the interval (tj−1, tj] as well as in the

interval (tj−2, tj−1] as h → 0 then we have infinite jumps for the finite interval

[0, t] and this contradicts our assumption that we have rare jumps. Consequently,

we have

{Y d}[1,1]t = p− lim
h→0

n
∑

j=2

|
N(tj)
∑

i=N(tj−1)

ci||
N(tj−1)

∑

i=N(tj−2)

ci| = 0

since either

p− lim
h→0

|
N(tj)
∑

i=N(tj−1)

ci| = 0

or

p− lim
h→0

|
N(tj−1)

∑

i=N(tj−2)

ci| = 0
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for all j = 2, 3, ...n. Consequently, the product goes to zero as h→ 0,

{Y d}[1,1]t = 0. (eqn. (5.5))

This proves the theorem. Q.E.D.

Theorem 5.2.2 Let the logarithmic price process Yt be in the class of stochastic

volatility semimartingale plus rare jump processes, i.e.

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci (eqn. (5.2))

then,

{Y }[1,1]t = µ21

∫ t

o
σ2udu. (eqn.(4.45)) (5.6)

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).

Proof : Let us first write the definition of the (1,1)-order bipower variation

process

{Y }[1,1]t = p− lim
h→0

n
∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)|. (eqn. (4.28))

Recall that

Yt = Y ct
t + Y d

t . (eqn. (3.8))

Now, the equation (4.28) becomes

{Y }[1,1]t = p− lim
h→0

n
∑

j=2

|(Y (tj)
ct + Y (tj)

d)− (Y (tj−1)
ct + Y (tj−1)

d)|

|(Y (tj−1)
ct + Y (tj−1)

d)− (Y (tj−2)
ct + Y (tj−2)

d)|

= p− lim
h→0

n
∑

j=2

|(Y (tj)
ct − Y (tj−1)

ct) + (Y (tj)
d − Y (tj−1)

d)|

|(Y (tj−1)
ct − Y (tj−2)

ct) + (Y (tj−1)
d − Y (tj−2)

d)|

(5.7)
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To simplify the calculations, let us introduce some notations

aj = Y (tj)
ct − Y (tj−1)

ct (5.8)

and

bj = Y (tj)
d − Y (tj−1)

d. (5.9)

By these new notations, the sum in the equation (5.7) becomes

{Y }[1,1]t = p− lim
h→0

n
∑

j=2

|(aj) + (bj)||(aj−1) + (bj−1)|

= p− lim
h→0

n
∑

j=2

|(aj + bj)(aj−1 + bj−1)|

= p− lim
h→0

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|.

(5.10)

We will use the triangular inequality

|a| − |b| ≤ ||a|+ |b|| ≤ |a|+ |b|. (eqn. (4.34))

Consider the (1,1)-order realized bipower variation process from the equation

(5.10)

{Yh}[1,1]t =
n

∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|. (5.11)

Let us apply the triangular equality in the equation (4.34) to the equation (5.11)

n
∑

j=2

|ajaj−1| − |bjaj−1| − |ajbj−1| − |bjbj−1|

≤
n

∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤
n

∑

j=2

|ajaj−1|+ |bjaj−1|+ |ajbj−1|+ |bjbj−1|.
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We know that

{Y d}[1,1]t = 0 (eqn. (5.5))

and

{Y d}[1,1]t = p− lim
h→0

n
∑

j=2

|Y (tj)
d − Y (tj−1)

d||Y (tj−1)
d − Y (tj−2)

d|

= p− lim
h→0

n
∑

j=2

|bjbj−1|.
(5.12)

So,

p− lim
n→∞

n
∑

j=2

|bjbj−1| = 0. (5.13)

Consider the cross products

n
∑

j=2

|bjaj−1| =
n

∑

j=2

|Y (tj)
d − Y (tj−1)

d||Y (tj−1)
ct − Y (tj−2)

ct|

≤ max |Y (tj−1)
ct − Y (tj−2)

ct|
n

∑

j=2

|Y (tj)
d − Y (tj−1)

d|.
(5.14)

Since Y (t)ct is continuous, we have

p− lim
n→∞max |Y (tj−1)

ct − Y (tj−2)
ct| = 0 (5.15)

and |Y (tj)
d − Y (tj−1)

d| is finite, we have the limit as

p− lim
n→∞

n
∑

j=2

|bjaj−1| = 0. (5.16)

And the same reasons imply that

p− lim
n→∞

n
∑

j=2

|ajbj−1| = 0. (5.17)

Therefore, by the equations (5.13), (5.16) and (5.17),
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p− lim
n→∞

n
∑

j=2

|ajaj−1| − |bjaj−1| − |ajbj−1| − |bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|ajaj−1|+ |bjaj−1|+ |ajbj−1|+ |bjbj−1|

becomes

p− lim
n→∞

n
∑

j=2

|ajaj−1| ≤ p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

≤ p− lim
n→∞

n
∑

j=2

|ajaj−1|.
(5.18)

So, we have

p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1| = p− lim
n→∞

n
∑

j=2

|ajaj−1|. (5.19)

From the equation (5.11) and (5.19), we know

{Y }[1,1]t = p− lim
n→∞

n
∑

j=2

|ajaj−1 + bjaj−1 + ajbj−1 + bjbj−1|

= p− lim
n→∞

n
∑

j=2

|ajaj−1|

= p− lim
n→∞

n
∑

j=2

|Y (tj)
ct − Y (tj−1)

ct||Y (tj−1)
ct − Y (tj−2)

ct|

= {Y ct}[1,1]t .

(5.20)

And we know from the equation (4.45) that

{Y ct}[1,1]t = µ21

∫ t

o
σ2udu

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1). Finally,
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{Y }[1,1]t = µ21

∫ t

o
σ2udu

and this proves the theorem. Q.E.D.

In conclusion, if Yt is in the class of the stochastic volatility semimartingale

plus rare jump processes then the quadratic variation of Yt includes both the

integrated variance and the sum of the jump squares but the (1,1)-order bipower

variation includes only the integrated variance. So, the difference of these pro-

cesses gives us the quadratic variation of the jump part. Let us write what we

have said in the following corollary.

Corollary 5.2.3 Let Yt be in the class of the stochastic volatility semimartingale

plus rare jump processes then Yt can be decomposed as

Yt =
∫ t

0
audu+

∫ t

0
σudW (u) +

N(t)
∑

i=1

ci (eqn. (5.2))

where the spot volatility process, σt > 0, is an adapted, càdlàg and locally bounded

from zero and also Wt is the standard Brownian motion, at is an adapted and

càdlàg process with paths of finite variation, at and σt is independent of Wt, N

is a finite activity simple counting processes for all t and ci are non-zero random

variables. Then the quadratic variation process of Yt comes to be

[Y ]t =
∫ t

0
σ2udu+

N(t)
∑

i=1

c2i (eqn. (5.3))

and the (1,1)-order bipower variation of Yt comes to be

{Y }[1,1]t = µ21

∫ t

0
σ2udu (eqn. (4.45))

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).
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When we come to the problem how we will estimate the integrated variance

and the sum that comes from the jump part of Yt, it is suitable to recall the

realized variance and the (1,1)-order realized bipower variation processes. Recall

that

[Y ]t = p− lim
n→∞[Yh]t (eqn. (3.6))

and

{Y }[1,1]t = p− lim
n→∞{Yh}[1,1]t . (eqn. (4.46))

Then the estimation is done by the realized processes as

∫ t

0
σ2udu+

N(t)
∑

i=1

c2i = p− lim
n→∞[Yh]t (5.21)

and
∫ t

0
σ2udu = µ−21 p− lim

h→0
{Yh}[1,1]t (5.22)

where µ1 = E|u| =
√
2√
Π
where u ∼ N(0, 1).

Thus, the estimation of the jump part can be performed by looking the differ-

ence of the realized variance and the 1,1-order realized bipower variation processes

that can be showed as

N(t)
∑

i=1

c2i = p− lim
n→∞[Yh]t − µ−21 p− lim

h→0
{Yh}[1,1]t

= p− lim
n→∞([Yh]t − µ−21 {Yh}[1,1]t ).

(5.23)
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CHAPTER 6

APPLICATION

Up to now, we give the theoretical aspects of jump detection by using quadratic

variation and bipower variation processes. In this chapter, we will discuss some

applications on euro/FX price data set.

6.1 Simple Application of Jump Detection

In this section, we illustrate an application of what we have theoretically

showed in the last chapters. In other words, we demonstrate how we can achieve

the quadratic variation of the jump part by the estimation of the difference be-

tween realized variance and (1,1)-order bipower variation.

In this application, we have euro/FX cross rate price data for 143 days. The

frequency of the data is 5 minutes. The graphs for the raw price data and the

return data is in Figure 6.1.

Moreover, the data set contains 8581 observations. In daily trading period,

to eliminate the zero returns we get only five hours of the day. So, for a trading

day, we have 60 five minutes observations.
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Figure 6.1: Euro/FX cross rate dataset. Price data and the return data for the
dataset.

We compute the realized variance by the equation,

[Yh]t =
n

∑

j=1

(y(j))2, (eqn.(3.5))

where the j-th h-return is shown as

y(j) = Y (jh)− Y ((j − 1)h), j = 1, 2, ..., n. (eqn. (3.4))

In this equation, according to our data, we have n = 60 and h = 5minutes. So,

for our application, equation becomes

[Yh]t =
60
∑

j=1

(y(j))2

=
60
∑

j=1

(Y (tj)− Y (tj−1))
2. (eqn.(3.7))

Recall from Chapter 5 that the realized variance estimates the integrated

variance plus the quadratic variation of the jump part. It has been shown as

[Y ]t = p− lim
n→∞[Yh]t

=
∫ t

0
σ2udu+

N(t)
∑

i=1

c2i . (eqn.(5.2))
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Figure 6.2: The Realized Variance for the data.

The graph for the realized variance is as in the Figure 6.2.

As illustrated in Chapter 4, (1,1)-order bipower variation is estimated by the

realized (1,1)-order bipower variation. This can be shown as

{Yh}[1,1]t =
n

∑

j=2

|y(j)||y(j − 1)|

=
n

∑

j=2

|Y (tj)− Y (tj−1)||Y (tj−1)− Y (tj−2)|. (eqn.(4.28))

The key point of this process is that (1,1)-order bipower variation is robust to

rare jumps. This means that this process is not affected from the jumps. Thus,

even in the presence of jumps, (1,1)-order bipower variation is always equal to

{Y }[1,1]t = p− lim
h→0
{Yh}[1,1]t

= µ21

∫ t

o
σ2udu (eqn.(4.45))

where µ1 = E|u| =
√
2√
Π
' 0.79788 where u ∼ N(0, 1). Moreover, the estimation of

the integrated variance can be done by the realized (1,1)-order bipower variation
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by

µ−21 {Y }[1,1]t = p− lim
h→0

µ−21 {Yh}[1,1]t

=
∫ t

o
σ2udu (eqn.(5.22))

where µ1 = E|u| =' 0.79788 where u ∼ N(0, 1).

The graph for µ−21 {Yh}[1,1]t is as in the Figure 6.3.

Figure 6.3: µ−21 times Realized (1,1)-order Bipower Variation for the data.

Thus, the difference between the realized variance and µ−21 times realized (1,1)-

order bipower variation consistently estimates the quadratic variation of the jump

process. This can be shown as

[Y ]t − µ−21 {Y }[1,1]t = p− lim
h→0

([Yh]t − µ−21 {Yh}[1,1]t )

= (
∫ t

0
σ2udu+

N(t)
∑

i=1

c2i )− (
∫ t

0
σ2udu)

=
N(t)
∑

i=1

c2i (eqn.(5.23))
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where µ1 = E|u| =' 0.79788 where u ∼ N(0, 1).

Thus, it is clear that we can estimate the quadratic variation of the jump part

by the difference of these two processes.

At this point, we should notice that this difference might be negative so estima-

tion of the squared jump process for a finite sample might be negative. Therefore,

it is suitable to truncate this difference at zero(2006) [33], i.e.

N(t)
∑

i=1

c2i = p− lim
h→0

max[[Yh]t − µ−21 {Yh}[1,1]t , 0].

Figure 6.4: The Quadratic Variation of the jump process for the data.

The Figure 6.4 shows the quadratic variation of the jump part for the loga-

rithmic price process for each day.

To see the jumps explicitly, we can plot the graph by dots. The figure 6.5

shows the quadratic variation of the jump part as dots.

Finally, for a finite sample data we have detected the jumps for each day using

5 minutes frequency data.
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Figure 6.5: The Quadratic Variation of the jump process for the data.

From the economics aspects, by detecting jump part, we detect the risk that

comes from the jump part. By this method, we can predict the links between the

political or economical news and the jumps in the prices and this introduces new

frameworks for the risk management.
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CHAPTER 7

CONCLUSION

Jump detection by the realized variance and the (1,1)-order realized bipower

variation process for the logarithmic price processes which are in the class of

stochastic volatility semimartingale plus rare jump processes is the main objec-

tive of this study. The generalization of realized variance which is r-th order power

variation is explained and we work on the bipower variation processes which are

also the general version of power variations. The key property of the bipower

variation process is the robustness to the jump part of the price process. More-

over, (1,1)-order bipower variation process estimates the integrated variance like

realized variance. Robustness is the crucial point since when we add rare jumps to

the price process which is in the class of stochastic volatility semimartingale, the

probability limit of the bipower variation does not change. Thus, the difference

of the realized variance and (1,1)order bipower variation estimates the quadratic

variation of the jump part, i.e. jump detection is achieved.

By this method, the risk that comes from the discontinuous part of the log-

arithmic price processes is estimated. Jump detection have also some economic

results. The link between some economical or political news and the size of the

jumps can be predicted. In addition, the ability of separating the continuous and
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discontinuous components of the quadratic variation can be used to develop new

volatility forecasting methods.
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