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ABSTRACT

A RISK-SENSITIVE APPROACH FOR AIRLINE NETWORK

REVENUE MANAGEMENT PROBLEMS

Çetiner, Demet

M.Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Zeynep Müge Avs.ar

September 2007, 121 pages

In this thesis, airline network revenue management problem is considered for

the case with no cancellations and overbooking. In literature, there exist several

approximate probabilistic and deterministic mathematical models developed in

order to maximize expected revenue at the end of the reservation period. The

aim of this study is to develop models considering also the risks involved in

the proposed booking control policies. Two linear programming models are

proposed which incorporate the variance of the revenue. The objective of the

models is to effectively balance the tradeoff between the expectation and vari-

ance of the revenue. The performances of the proposed models are compared to

the previous models through a numerical study. The seat allocations resulting

from the mathematical models are used in a simulation model working with sev-

eral booking control policies. The probability distributions of the revenues are

investigated and the revenues are compared in terms of expectation, standard

deviation, coefficient of variation and probability of poor performance.

It is observed that the use of the proposed models decreases the variability of the

revenue and thereby the risk of probability of poor performance. Also, the ex-

pected revenues obtained by implementing the solutions of the proposed models
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with nested booking control policies turn out to be higher than other proba-

bilistic models as long as the degree of variance incorporation is within some

interval. When compared with the deterministic models, the proposed models

provides for the decision makers with alternative, preferable policies in terms of

the expectation and the variability measures.

Keywords: Revenue management, Booking policy, Risk, Variance, Bayesian up-

date.
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ÖZ

HAVAYOLU AĞI GELİR YÖNETİMİ PROBLEMLERİ İÇİN

RİSK-DUYARLI BİR YAKLAS. IM

Çetiner, Demet

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Y. Doc.. Dr. Zeynep Müge Avs.ar

Eylül 2007, 121 sayfa

Bu tezde, kapasite üstü satıs.ın ve bilet iptalinin olmadığı havayolu ağı gelir

yönetimi problemi üzerine c.alıs.ılmaktadır. Yazında, rezervasyon dönemi so-

nunda elde edilecek gelirin beklenen değerini maksimize etmek üzere gelis.tirilmis.

olasılıksal ve deterministik matematiksel modeller bulunmaktadır. Bu calıs.manın

amacı, önerilen rezervasyon kontrol politikalarının ic.erdiği riski de dikkate alan

modeller gelis.tirmektir. Bu amac.la, elde edilecek gelirin varyansını da ic.eren iki

doğrusal programlama modeli önerilmektedir. Modellerin amacı, gelirin bek-

lenen değeri ile varyansı arasındaki ödünles.imi en etkili s.ekilde dengelemek-

tir. Önerilen modeller sayısal deneyler yapılarak yazındaki diğer modeller ile

kars.ılas.tırılmaktadır. Farklı modellerin yer dağıtım sonuc.ları c.es.itli rezervasyon

politikaları ile benzetim modeli kullanılarak kars.ılas.tırılmaktadır. Gelirlerin is-

tatistiksel dağılımı analiz edilmekte ve gelirler beklenen değer, standart sapma,

değis.kenlik katsayısı ve kötü performans olasılığı bakımından incelenmektedir.

Önerilen modellerin, gelirin değis.kenliğini azalttığı ve böylelikle hedeflenen gelir

değerinin altına düs.me olasılığını düs.ürdügü gözlenmektedir. Ayrıca, önerilen

modellerin c.özümlerinin ic.ic.e gec.mis. rezervasyon kontrol politikaları ile uygulan-

masıyla elde edilen gelirin beklenen değeri, gelir varyansı modellerde belli ölc.ülerde
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ic.erildiği sürece, diğer olasılıksal modellere kıyasla daha yüksek olmaktadır. De-

terministik modeller ile kars.ılas.tırıldığında ise, önerilen modeller karar vericilere

beklenen değer ve değis.kenlik ölc.üleri bakımından tercih edilebilir, alternatif

politikalar sunmaktadır.

Anahtar Kelimeler: Gelir yönetimi, Rezervasyon politikası, Risk, Varyans, Bayes

güncelleme.
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CHAPTER 1

INTRODUCTION

Revenue management (also called as yield management) is a tool for maximiz-

ing revenues by managing the demand. Talluri and Van Ryzin (2005) define the

aim of revenue management as to increase revenues by controlling the demand

through determining pricing and capacity allocation decisions.

Revenue management appears as a powerful strategy in markets, where the

companies must sell a fixed amount of product during the selling season and

there are customers willing to pay different amounts of money for the products

(Pak and Piersma, 2002). In such an environment, companies can make use

of customer segmentation and price discrimination to maximize revenues. They

differentiate products by offering different prices for different customer segments

and change the available mix of prices during the selling period. In the paper

due to Pak and Piersma (2002), revenue management is defined as follows:

”Revenue management is the art of maximizing profit generated from

a limited capacity of a product over a finite horizon by selling each

product to the right customer at the right time for the right price.”

This thesis focuses on revenue management applications in airline industry. The

typical characteristic of the sector is that the seats on a flight are perishable since

they have no value after the aircraft departs. Additionally, the main component

of the airline operating costs is the fixed cost of the flight, and marginal cost of

carrying an additional passenger is very low compared to the fixed cost. There-

fore, increasing the filled seat capacity of the flight makes significant contribu-

tions to the revenue. Another characteristic of the market is that passengers

have different intentions when using airlines and have different travel patterns.

While the price of the tickets may be more important for a leisure traveller, the
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traveling time would be more critical for a business traveller. For these reasons,

in order to increase the revenues, airline companies offer different prices for the

same seats in the aircraft which provide the same quality of accommodation.

They offer lower priced tickets (discounted fares) to attract the leisure travellers

and thereby to increase the number of seats that are sold. Load factor is used

to define the filled capacity of the aircraft, and it is the ratio of the number of

accepted bookings to the total capacity of the aircraft. By offering lower price

tickets, the load factor of the flight would increase and extra revenue would be

earned. On the other hand, by offering higher priced tickets (full fare tickets),

airline companies aim to earn more revenue per passenger.

In a typical aircraft, there exist different cabins which vary in terms of the qual-

ity of accommodation. The prices of these cabins are differentiated for several

travel classes (first class, business class, economy class, etc.). Moreover, there

are many different fare classes defined within a specific travel class (e.g., dis-

counted economy class, full fare economy class, etc.). These fare classes differ in

terms of travel restrictions they require or flexibilities they offer. The common

restrictions and flexibilities can be classified as advance purchase requirements,

length of stay, day-of-week travel, cancellation opportunities and refund options.

Usually, a discounted fare class ticket requires purchasing of days or weeks in ad-

vance or including a weekend trip. A higher fare class ticket, on the other hand,

allows the ticket to be cancelled at any time with full or partial refund. Hence,

passengers sitting next to each other in an aircraft receive the same quality of

accommodation, but the prices they have paid may be different depending on

the fare class of the tickets.

Generally, revenue management can be applied through dynamic pricing or ca-

pacity allocation. Although there is no clear difference between these two poli-

cies, we can give some explanations. In dynamic pricing, the price of the product

is used as a tool for controlling demand. A single product is offered and the price
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of the product is changed in time according to the realized demand. In capacity

allocation applications, multiple products are offered at different prices. These

multiple products have small differences like the airline tickets that vary in terms

of different restrictions. However, the availability of the products changes over

time. That is, some products with associated fares are closed for sale or some

others are opened for sale. The type of the application depends on the char-

acteristics of the sector. If the control of prices are flexible, dynamic pricing

is usually a preferred option, whereas if the control of the supply is flexible,

capacity allocation is more suitable. In the airline market, the ticket prices are

not under the control of the airline company itself, it is usually determined by

the market. Also, airline companies list the prices in advance of the booking

period. On the other hand, an airline company can manage the supply of the

seats, and it is also an easier implementation. Because the seats sold to differ-

ent fare classes have the same quality of accommodation, they can be flexibly

allocated to the fare classes. Therefore, airline companies offer several different

fare classes and change the set of fare classes that are open for booking rather

than the prices throughout the reservation period. These observations are due

to Talluri and van Ryzin (2005).

In airline seat capacity allocation applications, the main decision that should be

made is whether to accept an arriving request or reject it and keep the seat for

customers of higher fare classes to arrive later. As it is stated in the beginning,

passengers have different arrival patterns and usually discount fare passengers

arrive earlier in the booking period and full fare passengers arrive later. Accept-

ing the discount fare passengers would improve revenues due to increased load

factor of the flight. On the other hand, if too many seats are sold to discount

fare passengers, the potential higher fare class passengers may be lost due to the

lack of seats. This tradeoff is considered in the literature under the heading of

”Seat Allocation (Inventory Control) Problem”.
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Because of the uncertainty in the demand behaviour and the diversity of the

arrival patterns of various fare classes, it is not easy to estimate the revenue

and obtain a dynamic allocation policy. The fundamental approach to the seat

allocation problem is to find optimal booking limits for each fare class in order

to maximize the expected revenue that is earned during the reservation period.

The booking limit is defined as the maximum number of seats that can be sold

to a specific fare class on a flight. Static and dynamic models are developed

for determining optimal booking limits for single-leg flights, which consist of

only one takeoff and landing without any intermediate stop. These models give

optimal booking limits for each fare class at any point in time during the reser-

vation period depending on the updated demand distributions and the available

seat capacity. An allocation policy with separate booking limits for each fare

class is a partitioned allocation policy. If the realized demand for a fare class

is lower than its booking limit, the aircraft departs with empty seats under a

partitioned allocation policy. On the other hand, these empty seats can be sold

to even higher fare class passengers whenever there is sufficient demand. There-

fore, partitioned allocation policies are not effective and more revenue would

be earned if the booking limits are determined in a nested manner. A nested

booking limit control policy is such that seats available for a particular fare class

are also available for higher fare classes. Hence, booking limit for a fare class

is an upper bound for the number of seats that can be sold to that fare class

and any lower fare classes. The remaining number of seats above that booking

limit are protected for higher fare classes. A nested control policy gives higher

revenues compared to a partitioned policy for any given allocation, and it is a

common approach used by the airline companies.

The seat allocation problem is a complicated problem not only because of the

uncertainty in demand but also the structure of the real airline networks to

be considered. Airlines do not offer direct flights for every origin-destination

pair unlike the example in Figure 1.1. In a point-to-point network, each origin-
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destination pair is served by a single-leg flight.

Figure 1.1: A point-to-point network.

(Williamson, 1992)

Instead, they offer many itineraries that are connected through several flight

legs as in the example network illustrated in Figure 1.2. For some of the origin-

destination pairs, travel is through multiple flight legs. Therefore, an allocation

decision made for a flight affects the available seat capacity of the other flights

connected to that flight. Hence, optimizing each individual flight leg separately

cannot guarantee that the revenue earned from the whole flight network is op-

timized.

There are optimal booking control policies developed for single-leg problems,

but it is impossible to find an optimal policy for network problems as pointed

out by Talluri and Van Ryzin (2005). That is, the scale and complexity of the

network does not allow to solve an optimal dynamic control model.

For network revenue management problems, approximate mathematical models

are considered to maximize the expected revenue. The resulting approximate

allocations are used with different booking control policies. The major drawback
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Figure 1.2: An example airline network .

(Talluri and van Ryzin, 2005)

of the mathematical models is that they do not consider nesting of the origin-

destination and fare class combinations (ODFs). They divide the available seat

capacity into several portions each of which is allowed to be sold to only one

particular ODF. However, since the demand is random, such an allocation pol-

icy may cause some of the seats to be unsold. Therefore, the aircraft might

depart with empty seats. Despite this drawback, mathematical models are used

to determine the allocations for different ODFs on the network. The resulting

allocations are, then, used with nested policies.

Nested booking limit control policy and bid price control policy are two com-

mon control policies proposed for making seat allocation decisions for network

problems. Although partitioned booking control policy can also be used for seat

allocation decisions, it is not as common as the other two. In order to obtain

an effective dynamic control policy, the mathematical models are solved several

times during the reservation period according to the realized bookings; and, this

way, the control policies are updated. Different than the partitioned and nested

booking limit control policies, the main idea in a bid price control policy is to

approximate the opportunity cost of each itinerary and accept an arriving book-
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ing request as long as its fare exceeds this opportunity cost. For this purpose,

threshold values (bid prices) are determined for each flight leg and the oppor-

tunity cost of the itinerary is approximated by the sum of the bid prices of the

flight legs that form the itinerary. Bid price of a flight leg is the dual variable

of the corresponding capacity constraint in the mathematical model. The main

advantage of the bid price control policy is that the ODFs are automatically

nested since, once a seat is available for one fare class, it is also available for

classes with higher fares as well. For an effective control policy, bid prices are

computed at the beginning of the reservation period and updated several times

during the reservation period by taking the accepted bookings into account. Bid

prices are updated solving the mathematical models with the updated available

seat capacities.

The mathematical models that are developed for network revenue management

problems can be classified as deterministic and probabilistic models. The prob-

abilistic models consider the random behaviour of the demand and determine

seat allocations accordingly, whereas the deterministic models assume that the

demand is equal to its expected value. Williamson (1992) tests the mathematical

models in the literature using a simulation model with nested booking limit and

bid price control policies. The observation is that the deterministic models usu-

ally perform better than the probabilistic models in spite of the expectation that

the probabilistic models would give better results because random nature of the

demand is taken into account in these models. The explanation due to de Boer

et al. (2002) for better performance of the deterministic models as compared

to the probabilistic models is ignoring nesting in these mathematical models.

Since the models do not consider nesting, they allocate many seats to higher

fare classes and result in overprotection of seats for higher fare classes. The

situation gets worse in the probabilistic models, especially when the variance

of high fare class demand is high. In that case, there is an increased potential

for earning higher revenue from high fare class demand. Since the probabilistic
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model considers the demand distributions of each ODF, it considers this poten-

tial. As a result, the probabilistic models assign even more seats to higher fare

classes which worsens the resulting expected revenue when using the allocations

obtained by the model with nested booking control policies.

In this thesis, we consider the network seat allocation problem where the prices

of the fare classes are assumed to be fixed and constant throughout the reserva-

tion period. The demands of the origin-destination pairs do not change for the

set of available fares. In other words, the preferences of the passengers do not

shift from one fare class to another. Also, cancellations and no shows are not

allowed. Previous studies in the literature aim to maximize the expected total

revenue attained during the reservation period or the expected total marginal

revenue of the seats sold. Both concepts are equivalent as it is explained in

Section 3.3. Our objective, on the other hand, is not restricted to maximizing

the expected revenue. It is usually necessary to provide the decision makers

with more information about behaviour of the revenue as a function of the fea-

sible policies to be used as pointed out by Filar et al. (1989). Expectation

is not sufficient when the decision makers are concerned about the risks of the

proposed policies. It is likely that the decision makers have a revenue target

and do not want to have a high risk of attaining revenues below that target. A

policy might give a high expected revenue, but at the same time, the probability

that the revenue falls below the target level might be high because of the high

variance of the revenue under this policy. Another policy, on the other hand,

might give a lower expected revenue with lower variance and the revenue might

fall below the target value with a tolerable probability. In such a case, the de-

cision maker may choose the second alternative which is more likely to result

in revenues above a certain desired level. However, these comparisons can be

made if the probability distribution of the revenue is known under every feasible

policy. When the probability distribution is known, any information about the

risk probabilities and variability measures can be obtained.
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With this perspective, our main aim in this thesis is to analyze the problem in

terms of specified risk measures in addition to the expected revenue. For this

purpose, we use the following risk measures: standard deviation and coefficient

of variation of the revenue and probability of poor performance. The probability

of poor performance is defined as the probability that revenue is below some

predetermined target level. The main contribution of this thesis is the develop-

ment of two mathematical models to incorporate the expectation and variance

of the revenue. Also, probability distributions of the revenues are investigated

under alternative allocation policies in order to gain information about the any

relevant risk measure.

Two probabilistic mathematical models developed are called as EMVLP and

CVLP models. Both of the models are linear programming formulations. EMVLP

is to incorporate variance of the total marginal revenue into the objective func-

tion of the existing models in the literature and CVLP is to consider a con-

straint on a ratio similar to coefficient of variation. The first model we propose

(EMVLP) penalizes variance of the revenue by a given factor while, at the same

time, maximizing the expected revenue. The objective in EMVLP is to find the

control policy that gives the best balance between expectation and variance of

the total marginal revenue with respect to the penalty specified for the vari-

ance. When the variance penalty is equal to zero, the proposed model EMVLP

is equivalent to SLP model in the literature. Since the proposed objective func-

tion does not only maximize the expected revenue, the optimal expected value

of the revenue obtained by the proposed model turns out to be less than the

ones obtained by the other models existing in the literature. However, when

the optimal allocations resulting from the EMVLP model are used in a nested

booking limit control or in a bid price control policy, we expect that the ex-

pected revenue might be higher as compared to using the optimal allocations

of the other existing models. The probabilistic models existing in the literature
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show poor performance as compared to deterministic models especially when

the variance of demand for higher fare classes is high. By penalizing variance

to some degree, we aim to improve the probabilistic approach and obtain better

results in terms of expected revenue. When variance of the revenue is penalized,

we expect the number of seats allocated to fare classes with highly variable de-

mand to decrease. Then, the level of overprotection would not be as much as in

the other existing probabilistic models and the effect of ignoring nesting in the

mathematical models would diminish. In the second model we propose (CVLP),

the total expected marginal revenue is maximized under a constraint on the ra-

tio of the expectation and variance of the total marginal revenue. That ratio is

very similar to coefficient of variation. In order to eliminate nonlinearity in the

models, we consider this ratio. However, it is very effective in decreasing the

variance. Although each of the EMVLP and CVLP can be used, in this study

we propose using them together. The EMVLP model is solved first and, then,

the CVLP model is solved by taking the ratio of the expectation and variance

of the total marginal revenue corresponding to the optimal EMVLP solution as

a constraint in the CVLP model. The dual prices of the capacity constraints in

the CVLP model are used in bid price control policy.

By assuming the demands of different ODFs are independent, we derive the

probability distribution of the revenue under given seat allocations. Then, the

distributions are fitted using the method proposed by Hahn and Shapiro (1967)

in order to decide the type of the probability distribution. That revenue provides

a lower bound for the revenue that will be obtained by nested booking control

policies, because we do not integrate nesting of the ODFs. The probability dis-

tribution provides the decision makers with the behaviour of the revenue under

any feasible allocation policy. With this information, the decision makers would

have the flexibility of choosing any feasible allocation policy by comparing these

lower bound revenues. The detailed information about the derivation of the

revenue distributions are presented by a numerical study.
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Organization of this thesis is as follows. In Chapter 2, an overview of the airline

revenue management literature is presented relating our study to the previous

ones. In Chapter 3, the existing models that have been developed for network

seat allocation problems are reviewed and the models we propose are given.

Then, the booking control policies are explained. Finally, we analytically de-

rive and numerically evaluate the probability distributions of the revenue under

given allocation policies. Chapter 4 is dedicated to a numerical study for com-

parison of the models we propose and the other existing models in the literature.

The mathematical models are solved and the results (the seat allocations and

bid prices) obtained by the mathematical models are used in simulation models.

The probability distributions of the revenues under different policies derived an-

alytically are compared with the simulation results. For a part of the simulation

experiments, we allow nesting and use Bayesian updating method for demand

estimations. Finally, Chapter 5 concludes the thesis with comments on further

research directions.
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CHAPTER 2

LITERATURE REVIEW

The research on airline seat allocation control problem can be classified as single-

leg and multi-leg (network) problems. The earliest studies are especially on

single-leg problems. For the network problems with high number of itineraries

having connected flights, the development of approaches that take network ef-

fects into account become important. In this chapter, firstly the literature on

single-leg problems is summarized. Solutions for single-leg problems form the

basis for approaches to solve network problems. Then, the research on network

problems is presented briefly. The approaches for network seat inventory control

problem will be analyzed in detail in Chapter 3.

2.1 Single-Leg Problems

The methods proposed for solving single-leg problems result from static and

dynamic control approaches. Static control approaches assume that passenger

requests arrive sequentially in such a way that a passenger from a lower fare

class book before all of the passengers from higher fare classes. This assumption

makes modeling of the problem simpler because it is sufficient to know the total

demand for each fare class that will come throughout the reservation horizon.

However, in dynamic control approach, no assumption is made about the arrival

pattern of the reservation requests and the demand is modeled as a stochastic

time dependent process. The details of these models are presented in this section.

The first study in the area of airline seat inventory control problem is due to

Littlewood (1972), where the optimal control policy for a single-leg problem

with two fare classes is investigated with the assumption that lower fare class
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customers book before higher fare class customers. In that study it is suggested

that a request of a lower fare class customer should be rejected, when the ex-

pected revenue of selling the seat to a higher fare class customer exceeds the

lower fare.

Suppose that there are two fare classes with associated fares f1 and f2, such

that f1 > f2. Random variable Di denotes the demand of for class i. According

to Littlewood’s rule, customers of class 2 are accepted as long as f2 exceeds the

expected marginal revenue of a seat reserved for class 1. That is the rule to

accept the customer of class 2 if

f2 ≥ f1Pr(D1 ≥ x),

where x is the number of seats reserved for customers of class 1. The seats

allocated to class 1 will be sold if the demand for class 1 exceeds x. The revenue

that will be earned from allocating an additional seat to class 1 is equal to f1.

Hence, f1Pr(D1 ≥ x) is the expected marginal revenue of a seat reserved for class

1. Littlewood’s rule characterizes the optimal policy. It is easily observed that

the expected marginal revenue is monotonically decreasing in x. The optimal

policy is such that the reservation requests of customers of class 2 are accepted

as long as there are at least x∗ seats available. They are rejected, if the number

of available seats is less than x∗, where x∗ satisfies

f2 < f1Pr(D1 ≥ x∗) and f2 ≥ f1Pr(D1 ≥ x∗ + 1).

If D1 is a continuous random variable, x∗ is such that f2 = f1Pr(D1 ≥ x∗).

Belobaba (1987) extends Littlewood’s study for the single-leg problem with mul-

tiple fare classes. He develops the heuristic called as Expected Marginal Seat

Revenue (EMSR) for determining booking limits for each fare class. It is ob-

served that the heuristic gives booking limits that are much different than the op-

timal booking limits. However, the simulation studies of Curry (1990), Wollmer
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(1992), Brumelle and McGill (1993) and Robinson (1995) show that the revenue

that would be generated with those booking limits is very close to optimal rev-

enue.

After Belobaba (1987), the single-leg, multiple fare class problem is studied by

Curry (1990), Wollmer (1992), Brumelle and McGill (1993). They derive opti-

mal booking limits for the different fare classes while assuming a low before high

arrival pattern. The difference between these studies is the assumption about

the distribution of the demand for the fare classes.

Curry (1990) focuses on the problem by assuming a continuous demand distri-

bution and develops a recursive equation for determining optimal booking limits

for each fare class. Wollmer (1992) assumes a discrete probability distribution

for demand of each fare class and derives similar equations for determining the

optimal protection levels and booking limits. In the study of Brumelle and Mc

Gill (1993), a booking limit control policy is developed that can be used both

with discrete and continuous demand distributions.

Robinson (1995) develops optimal control policy for single-leg multiple fare class

problem by relaxing the assumption of low before high arrival pattern, but as-

sumes that all customers of a fare class book before any customers of another

fare class.

In dynamic models, no assumption is made about the arrival of the different fare

classes. The first dynamic programming formulation for single-leg problems is

due to Lee and Hersh (1993). They divide the reservation period into decision

periods in which at most one request can arrive and formulate the expected rev-

enue function recursively. In their study, it is proposed that a request in period

t with the available capacity x should be accepted as long as its fare exceeds the

expected marginal revenue of the seat. They show that for each fare class there
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exist an optimal booking limit or an optimal decision period, after which the

requests of these fare classes will not be accepted. In that study batch bookings

are also included, where the number of bookings that a customer requests is not

restricted to one. The optimal policy can be based on optimal decision periods

in the presence of batch bookings.

Lautenbacher and Stidham (1999) present a review of static and dynamic control

policies for single-leg problems. In that study, the static and dynamic models

developed for single-leg problems are presented highlighting the similarities and

differences between them. Moreover, it is shown that both approaches can be

included with a Markov Decision Process (MDP ) model formulation.

Subramanian et al. (1999) extend the study of Lee and Hersh (1993) by incorpo-

rating cancellations, overbooking and no-shows. They find out the equivalence

of the problem to the optimal control of arrivals to a queueing system and obtain

optimal booking limits for each fare class, when the cancellation probabilities

are independent of the fare class. It is shown that the optimal booking limits

are not monotonic in fare class, when the cancellation probabilities depend on

the fare class. In that case, nesting of fare classes would not be wise. However,

we do not consider these extensions in this study.

2.2 Network Problems

In Section 3.2, the deterministic and mathematical approximate models devel-

oped for network revenue management problems are presented in detail. The

deterministic model assumes that demand is equal to its expectation, whereas

the probabilistic models incorporates the uncertainty in the demand.

The first network formulation of the seat inventory control problem is due to

Glover et al. (1982). In that study, a network flow formulation is proposed for
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the problem by assuming deterministic demand.

Wollmer (1986) is the first to propose a linear probabilistic model which is used

when the demands for origin-destination pairs are discrete random variables.

The model is based on the expected marginal revenues of the seats and,it is

called expected marginal revenue (EMR) model. However, the large number of

decision variables makes the model impractical to solve.

Simpson (1989) and Williamson (1992) develop the concept of bid price control

for making seat allocation decisions. Bid prices are threshold values used for

approximating the opportunity cost of each flight leg. The opportunity cost of

an itinerary is found by the sum of bid prices of the flight legs it crosses. Bid

price control policy is a heuristic for network seat inventory control decisions.

The policy implies that an arrival request should be accepted if its fare exceeds

the sum of the bid prices of the flight legs that are on the route of it. Bid prices

are the dual prices of capacity constraints of the flight legs in the deterministic

and probabilistic approximate models.

Williamson (1992) further investigates the network seat inventory control ap-

proaches based on the probabilistic and deterministic approximate mathemat-

ical models. The extensive simulation studies in that research show that de-

terministic approximate models perform often better than probabilistic models.

Furthermore, nested booking control policy and bid price control policy perform

similarly. In that sense, the study of Williamson (1992) leads significant im-

provements in network seat inventory control problem.

16



Talluri and van Ryzin (1998) derive the structure of the dynamic optimal con-

trol policy for network problems. However, due to the large scale of the airline

networks it is not possible to derive and implement a dynamic optimal control

policy. The theoretical background of bid price controls is analyzed and it is

shown that bid prices are asymptotically optimal for large networks.

Talluri and van Ryzin (1999) suggest a different method for computing bid

prices which they call as Randomized Linear Programming Method (RLP). In

that method, a deterministic model is used with expected demand, but in a

different way. A set of demand realizations is simulated and the deterministic

model is solved for every realization of demand. The resulting bid prices are

averaged and used in booking control policies. They state that RLP makes a

small but significant improvement as compared to the deterministic model, but

needs to be further analyzed.

McGill and van Ryzin (1999) present an overview of airline revenue management

research. They classify airline revenue management in four ares: forecasting,

overbooking, seat inventory control and pricing. An extensive literature review

is presented emphasizing the interactions of these 4 areas.

An overview of solution methods developed for single-leg and network problems

is due to Pak and Piersma (2002). In that review, the bid price control policy

and nesting booking limit control policy are also included.

The closest research to our study is due to de Boer et al. (2002). In that study, it

is argued that deterministic models result in higher expected revenues, because

both probabilistic and deterministic models ignore nesting of different origin-

destination and fare class combinations. They test the mathematical models for

different problem scenarios and observe their performance with nested booking

limit control and bid price control policies. They develop a nesting heuristic
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used in simulation of the booking process. The simulation studies in de Boer

et al. (2002) indicate that generally deterministic models perform better, but

there are cases when probabilistic models are better. Our study is different from

de Boer in the sense that we develop new models for incorporating variance of

the revenue and simulate the booking process in order to compare the proposed

models with the other mathematical models existing in the literature.

Higle (2007) develops a two-stage stochastic programming model to compute

bid prices. That study is not included in this thesis, because it does not con-

sider each ODF separately. Seats on the flight legs are allocated to fare classes,

and according to realized demand they are assigned to the routes subject to the

leg based allocations. The model allows nesting of the fare classes of different

origin-destination pairs, but the origin-destination and fare class combinations

are nested according to the fare class not the net contribution to network revenue.
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CHAPTER 3

APPROACHES FOR NETWORK SEAT INVENTORY

CONTROL PROBLEM

In this chapter, the network seat inventory control problem is introduced and

the existing and proposed approaches to solve this problem are presented. The

structure of the optimal dynamic booking control policy for network problems

is given in Section 3.1. However, optimal control is impossible for network prob-

lems due to the large scale of the airline networks. Therefore, the fundamental

approach for network problems is to use approximation methods. In literature,

approximate mathematical models have been developed for maximizing the ex-

pected revenue for the whole network. These models are classified as probabilis-

tic and deterministic approximation models and they are given in Section 3.2.

All of the mathematical models developed so far find optimal seat allocations

with the objective of maximizing expected revenue. However, decision makers

may want to have information about the variability of the revenue obtained by

those policies. Variability is a risk measure which is important when the deci-

sion maker do not want the revenues to vary severely between realized problem

instances. Since demand is random, the realized revenue may differ from expec-

tation, but the probability distribution of revenue provides information about

the behaviour of the revenue. When the probability distribution is known, infor-

mation about the measures like, standard deviation and coefficient of variation

of the revenue, the probability that the revenue is below or above a certain level

can be obtained.

The proposed two models, which take the variance of the revenue into account

are presented in Section 3.3. In Section 3.4, the probability distribution of the
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revenue that would be obtained by given seat allocation policies are derived an-

alytically.

The solutions of these models are used with seat inventory control policies, in

order to make the allocation decisions during the reservation period. Partitioned

booking limit control policy, nested booking limit control policy and bid price

control policy are control policies used for network problems. However, parti-

tioned booking limit control policy is not an effective policy and for this reason

it is seldom used in practice. The other two policies, on the other hand, are com-

monly used for making allocation decisions. These three policies and the use of

the solutions of the mathematical models with these policies are presented in

Section 3.5. To cope with the dynamic nature of the problem, the models are

solved several times throughout the reservation period, using revised capacities

and updated demand estimations. Then, these solutions are used with updated

booking control policies.

The existing and proposed models are numerically compared in terms of ex-

pected revenue, standard deviation of revenue, coefficient of variation and prob-

ability of poor performance in Chapter 4.

3.1 Network Seat Inventory Control Problem

Airlines operate on networks with many itineraries that are connected through

several flight legs. Direct flights do not exist between every origin-destination

pair. That is, the itineraries are composed of one or several flight legs. If a flight

leg is crossed by several itineraries, the sale of all the itineraries crossing that

flight leg is dependent on the availability of a seat on this flight leg. Hence, it be-

comes necessary to make allocation decisions considering the interdependencies

between connected flight legs. Although the employment of leg-based control

policies is a possible option for network problems, simulation experiments show

that significant improvements in expected revenue can be obtained with a net-
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work approach. In leg-based control, each flight leg is considered individually

and the seats on the flight leg are allocated to the fare classes by using the

single-leg optimization methods. The drawback of the leg-based control policies

in optimizing the network revenue is obviously disregarding the interdependen-

cies of the itineraries. This is explained for the multi-leg flight shown in Figure

3.1. In this figure, there is a flight network consisting of 3 itineraries AB, BC

and AC with two flight legs. Suppose that a high fare class request for itinerary

AB arrives. When a leg-based control policy is applied, the request would be

accepted since it is the request for the highest fare class. However, if there is

available capacity on the flight from B to C, it may be more profitable to sell

the seat to a low fare customer willing to fly from A to C. If the price of low fare

class ticket for itinerary AC is higher than the price of a high fare class ticket

for itinerary AB, then accepting the low fare request for itinerary AC would be

more profitable.

Figure 3.1: An illustration of a multi-leg flight network.

Network seat inventory control problem is more than just differentiating only the

fare classes. As suggested by Williamson (1992) airline companies can develop

better booking control policies with an approach that differentiates both the

itineraries and the fare classes competing for the same seats on the flight legs.

In single-leg problems, it is obvious that a higher fare class would contribute

to the revenue more than a lower class. Thus, the main decision that should

be made is whether to sell the seat or keep it for higher fare class customers.

However, determining the contributions of the various origin-destination and

21



fare class combinations is not trivial in network problems. In other words, it

is difficult to calculate the opportunity cost of the seats that each ODF uses

resolving the tradeoff between selling a seat to a higher fare class customer of a

single-leg itinerary or to a lower fare class customer of a multi-leg itinerary.

The structure of the optimal control policy for the network problems is investi-

gated by Talluri and van Ryzin (1998). The dynamic programming formulation

the authors work with is given next. Consider an airline network having n

itineraries operating over m flight legs. The reservation period T is divided into

time periods and index t shows the current time period. Multiple bookings are

not allowed and it is assumed that at most one reservation request can arrive

in each time period. In other words, the time intervals are so small that the

probability of more than one request is negligible. Let aij denote whether flight

leg i is used by ODF j; that is,

aij =











1 if flight leg i is on the route of ODF j,

0 otherwise,

and the matrix A = [aij] represents the relation between the flight legs and the

ODFs. Accordingly, Aj is the (row) vector showing the flight legs used by ODF j

and it is the transpose of the jth column of matrix A. The vector x = (x1, ..., xm)

shows the available seat capacities on each flight leg i. If a request for ODF j is

accepted, then the updated available capacity will be x − Aj.

The fares of each ODF j is assumed to be random and the demand for period t

is modeled by the vector F(t) = (F1(t), ..., Fn(t)). That is, Fj(t) = fj ≥ 0 shows

that a request for itinerary j arrives in period t and its fare is fj and Fj(t) = 0

means that there is no arrival request for ODF j in period t. Since there is at

most one arrival in each period, at most one component of the vector Fj(t) is

greater than zero. Suppose that a reservation request arrives at time t, the main
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decision that should be made is whether to accept or reject this request. This

decision depends on the available seat capacity and the fare of the ODF. Define

U(x)denoting the accept/reject decisions for ODFs, and uj(t,x, fj) shows the

decision for ODF j at time t. That is,

uj(t,x, fj) =











1 if the request for ODF j with fare fj is accepted at time t,

0 otherwise.

Let Vt(x) denote the maximum expected revenue in period t, which must satisfy

the Bellmann equation

Vt(x) = max
u∈U(x) E[{F(t)Tu(t,x, f) + Vt+1(x − Au)}]

with the boundary condition VT+1(x) = 0, for all x. F (t)T is the transpose of

F (t). The optimal expected revenue function Vt(x) is finite for all x as shown

by Talluri and van Ryzin (1998). This observation leads to the existence of an

optimal control policy. The optimal u∗(.) satisfies the following equation

u∗
j(t,x, fj) =











1 if fj ≥ Vt+1(x) - Vt+1(x − Aj) and Aj ≤ x,

0 otherwise.

The optimality condition given above implies that a reservation request is ac-

cepted as long as its fare exceeds the opportunity cost of the seats it uses and

there is available capacity. That is,

fj ≥ Vt+1(x) − Vt+1(x − Aj) and Aj ≤ x.

Although the optimal policy is characterized theoretically, it is very difficult to

evaluate Vt(x) for all x and t. This is because of the large state space with

all possible x and t. Airlines usually have hundreds of origin-destination and

fare class combinations. Due to the large scale of the airline network, it is not

possible to derive and implement an optimal policy as noted by Talluri and

van Ryzin (2005). The major difficulty for the implementation is that informa-
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tion about the demand estimations for each ODF, available seat capacities and

the fare structures should be monitored and stored and processed dynamically

throughout the reservation period. Accordingly, the optimal policy should be

updated. Thus, the major criterion that needs to be considered in choosing a

booking control policy is the applicability of the policy in practice for a given

large-scale airline network. For this purpose, several heuristic solutions are pro-

posed for network problems. Leg-based control policy, which considers each

flight leg separately and allocates seats on the flight leg to different fare classes,

is a possible option for network problems. Although the implementation of a

leg-based control policy is easy, taking a network approach would be important

in maximizing network revenue. In the following parts of this chapter, the math-

ematical models that have been developed for making allocation decisions for

network problems are presented. Note that these models are approximate and

do not give optimal policies. Solutions of these are used with booking control

policies.

3.2 Mathematical Programming Formulations

Several mathematical models have been developed to determine the optimal

seat allocations for different combinations of itineraries and fare classes. These

models give probabilistic and deterministic approximations of the optimal ex-

pected revenue function. Exactness is claimed for the dynamic programming

formulation given in the previous section. The main advantage of the approxi-

mate mathematical models is that each itinerary from an origin to a destination

pair with an associated fare class is regarded as one product and denoted by an

ODF. The drawback, on the other hand, is that the models give static one-time

allocations and nesting of the ODFs is not considered.

The nested control policy allows a higher fare class customer to buy the seat as

long as there are available seats allocated to lower classes. This policy is used
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by many airlines and increases the revenues compared to partitioned policy for

a given allocation. Figure 3.2 shows a partitioned allocation policy, where 20

seats are allocated to fare class 3, 20 seats to fare class 2 and 10 seats for fare

class 1. After the 10 seats available for fare class 1 are sold, this policy will reject

the reservation requests for fare class 1. However, it is obvious that the highest

fare class is the most profitable class and rejecting customers of this class and

selling the remaining seats to lower fare classes would not make sense.

0


     Fare Class 1


10
 20
 30
 40
 50

Total capacity


     Fare Class 2


     Fare Class 3


Figure 3.2: An illustration of partitioned allocation policy.

(Williamson, 1992)

Therefore, instead of partitioned allocations, booking limits (BL) are defined for

the fare classes as it is illustrated in Figure 3.3. The figure represents the nesting

structure for the same single-leg flight. The booking limit for the highest fare

class is 50 implying that customers of this class will not be rejected until all of

the seats are occupied. Similarly, the booking limit for the next highest class,

class 2, is 40, which means that class 2 customers will be accepted as long as the

number of seats sold do not exceed 40. If there are already 40 seats sold, the

remaining number of seats are open only for customers of fare class 1. Lastly,

the booking limit for fare class 3 is 20 and class 3 customers will not be allowed
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for bookings after these 20 seats are sold. When, there are less than 30 number

of seats left, seats are closed for customers of fare class 3.
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Figure 3.3: An illustration of nested allocation policy .

(Williamson, 1992)

Hence, in nested booking limit control policy, the booking limit for a fare class

is an upper bound for the number of seats that can be sold to that fare class

and any lower fare classes. The remaining number of seats above that booking

limit are protected for higher fare classes. However, for the network problems,

determining the nesting order of the ODFs is not trivial. Since opportunity cost

of each ODF is difficult to estimate, the net contributions of the ODFs to the

revenue is not so obvious. In Section 3.5, we present a nesting heuristic proposed

by de Boer et al. (2002).

The mathematical models determine separate allocations for each ODF such that

a seat allocated to an ODF can be sold only to customers of that ODF. If there is

no demand for that particular ODF, the seats would be unsold. However, these

seats can be sold to other customers with higher fares and extra revenue is earned

from the seat which, otherwise, would remain empty. The resulting allocations
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are, then, used with nested allocation policies. The revenue of the nested alloca-

tion policy is always higher than the corresponding partitioned allocation policy.

As noted above, the mathematical models give one-time static allocations but

not dynamic allocations. This drawback is handled by solving the models more

than once during the reservation period according to the revised capacities and

updated demand estimations. As bookings are realized, the remaining capaci-

ties of the flight legs are updated and, as new information about the demand

becomes available, the demand estimations for the remaining part of the reser-

vation period are updated. Through observation of the booking process, the

models are solved again and the updated allocations are used for the remaining

part of the reservation period.

Next, the assumptions and the notation used for the mathematical models are

introduced. In the mathematical models, each itinerary from an origin to a

destination pair with an associated fare class is regarded as one product and de-

noted by an ODF. The demand distribution assumptions are made for each ODF

separately and they are updated throughout the reservation period. Demand

for each ODF is assumed to be independent and switching of passengers from

one fare class to another is not allowed. The fares of the ODFs are assumed to

be known and constant throughout the reservation period. The objective of the

models is to allocate optimal number of seats to these ODFs considering both

the available seat capacity and the random demand behaviour. The notation

used in the mathematical models is as follows:

j: index for the ODFs in the airline network, j = 1, ..., n,

l: index for flight legs in the network, l = 1, ...,m,

Sl: set of ODFs that use flight leg l,

Tj: set of flight legs that are on the route of ODF j,

Cl: available seat capacity for flight leg l,
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fj: fare of each ODF j,

Dj : random demand for ODF j during the whole reservation period.

3.2.1 Probabilistic Mathematical Programming Models

The most general problem developed for network seat inventory control problem

is called as Probabilistic Mathematical Programming (PMP ) Model and its

formulation is as follows.

PMP : Maximize E(
∑

j

fjmin(Dj, xj))

subject to
∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj ≥ 0 and integer for j = 1, ..., n.

In this model, xj is the decision variable defined for the number of seats allo-

cated to ODF j. This definition indicates that each seat is reserved for only one

particular ODF. If the demand for an ODF turns out to be at least as many as

the number of seats allocated to this ODF, all the xj number of seats will be

sold. However, if the demand turns out to be less than the allocation xj, the

number of seats sold will be equal to the demand of the ODF and the remaining

seats will be unsold. The objective function is to maximize the expected total

revenue. Here, the uncertainty in demand is included in the model. However,

working with the probability distribution of the demand explicitly in the objec-

tive function causes the objective function to be nonlinear. In order to simplify

the model, the LP relaxation of PMP is considered. The resulting model is

called as Probabilistic Nonlinear Programming (PNLP ) Model. PNLP is the

same as PMP except that xjs are not restricted to be integer. That is, by the

LP relaxation we mean relaxing the integrality constraints for only xjs, the ob-

jective function stays nonlinear. It is shown that PNLP is tight for multiple-leg
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flights and single-hub networks where the capacities of the legs are integer and,

it gives integer solutions. The related references for this observation are due to

de Boer et al. (2002).

Wollmer (1986) develops a linear model, which can be used when the demand

is a discrete random variable. The formulation is to maximize the expected

total marginal revenues of the seats and it is called as Expected Marginal Seat

Revenue (EMR) Model.

EMR : Maximize
n

∑

j=1

Cl
∑

i=1

fjPr(Dj ≥ i)xj(i)

subject to

∑

j∈Sl

Cl
∑

i=1

xj(i) ≤ Cl, for l = 1, ...,m,

xj(i) ∈ {0, 1} for j = 1, ..., n and i = 1, ..., Cl,

where the decision variable xj(i) is defined as follows:

xj(i) =











1 if i or more seats are allocated to ODF j,

0 otherwise.

The coefficient of xj(i) in the objective function shows the expected marginal

seat revenue obtained by allocating the ith seat to ODF j.

Remark 1. Note that Pr(Dj ≥ i)xj(i) is a monotonically decreasing function

of i; for this reason, expected marginal revenues are monotonically decreasing in

i. This ensures that if xj(i + 1) is equal to 1, then xj(i) will be definitely 1. In

other words, xj(i + 1) cannot be 1 unless xj(i) is 1. Hence, the model would

not assign fractional values to xj(i) and xj(i + 1). This property enables us to

relax the integrality assumption for xj(i)s and the xj(i)s take the values of 0 or

1 in the LP Relaxation of the model. These observations are due to Williamson

(1992). �
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The major disadvantage of this model is the large number of decision variables.

Although the integrality constraints can be relaxed, working with the EMR

model is not practical for large networks.

de Boer et al. (2002) propose another probabilistic linear model reducing the

number of decision variables as compared to EMR. Rather than considering each

possible value of demand in the model, they partition demand into intervals.

That is, the total demand is equal to the sum of the demands in each interval.

This model is called as Stochastic Linear Programming (SLP) Model.

SLP : Maximize
∑

j

fjxj −
∑

j

fj

kj
∑

i=1

Pr(Dj < dj(i))xj(i)

subject to
∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj =

kj
∑

i=1

xj(i) for j = 1, ..., n,

xj(1) ≤ dj(1),

xj(i) ≤ dj(i) − dj(i − 1) for j = 1, ..., n and i = 2, ..., kj ,

xj(i) ≥ 0 and integer for j = 1, ..., n and i = 2, ..., kj .

In this model, the demand of each ODF j is divided into kj parts and each

allocation xj(i) represents the amount of seats allocated to the ith partition of

the demand of ODF j and dj(i) is the maximum value of demand for ODF j

that corresponds to the partitions i, i − 1, ..., 1. The sum of xj(i)s over all

partitions show the total amount of seats allocated to ODF j.

The SLP Model is equivalent to the EMR Model when each demand interval

is of unit size. This equivalence can easily be seen between the solution spaces
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of the two models. The first term in the objective function in SLP shows the

revenue that would be generated if all the aircrafts depart fully loaded, and the

second term is a correction for the uncertainty in demand. Rewriting the ob-

jective function of SLP, one can see the equivalence also between the objective

functions of SLP and EMR (de Boer et al., 2002). Therefore, as in the EMR

model, the SLP model also would not assign fractional values to xjs and xj(i+1)

cannot be 1 unless xj(i) is 1.

When at least one of the demand intervals is not of unit size, SLP is an approx-

imation to reduce the number of decision variables as compared to EMR. The

model can be simplified by decreasing the number of demand portions, but the

resulting allocations may result in smaller expected revenues. Hence, (the LP

relaxation of) EMR is just a special case of SLP when the demand partition is

such that dj(i + 1) − dj(i) = 1 and dj(1) = 1. Analogous to the numerical ob-

servations for EMR, de Boer et al. (2002) show that, for multiple-leg flights and

single-hub networks, the LP relaxation of SLP is tight and the solutions consist

of integer allocations. LP Relaxation of SLP is such that integrality constraints

for xj(i)s in SLP are relaxed.

3.2.2 Deterministic Mathematical Programming (DMP) Model

The deterministic model is obtained by assuming that the demand for an ODF

is deterministic and equal to the expected demand. It is a special case of SLP,

where the only demand scenario to be considered is the expected demand.
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DMP : Maximize
∑

j

fjxj

subject to
∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj ≤ E(Dj) for j = 1, ..., n,

xj ≥ 0 and integer for j = 1, ..., n.

E(Dj) is the expected value of the demand for ODF j. This integer program-

ming model is not practical to work with large numbers of decision variables

and constraints. In this case, use of LP relaxation of this model, which is called

as Deterministic Linear Programming DLP, is preferred. It is shown that, for

multiple-leg flights or single-hub networks, when the demand expectations and

the flight leg capacities are integers DLP formulation result in integer allocations

(e.g., Bertsimas and Tsitsiklis, 1997).

The DLP is advantageous because it is easy to solve. The drawback of the model

is that all the uncertainty in demand is ignored. At first glance, it is usual to

expect that ignoring the random nature of demand would lead to poor results.

However, the simulation studies of Williamson (1992) and de Boer et al. (2002)

show that DLP gives better results compared to probabilistic models in terms

of expected revenue.

de Boer et al. (2002) argue that the main factor leading to better performance of

DLP as compared to the probabilistic models is that the models do not consider

nesting of ODFs. It is numerically observed that although this is a drawback

of both deterministic and probabilistic models, the probabilistic models are af-

fected more as compared to the deterministic model. The numerical experiments

show that both models allocate a large number of seats to higher fare classes
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because they are more profitable. Then, the arriving requests of lower fare class

customers are rejected and the load factor of the flights turns out to be low.

However, the seats allocated to lower fare classes can also be used by higher fare

classes when nesting is allowed. When the variance of high fare class demand

is high, the probabilistic models reserve large number of seats for higher fare

classes. Since the revenue loss resulting from the decreased load factor of the

flights would be larger than the increase in the revenue obtained from higher

fare class customers, the probabilistic model performs worse. Solutions of the

deterministic models, on the other hand, do not change with the demand distri-

butions, as long as the expected demand remains constant. Then, the impact of

ignoring nesting in the deterministic models is not as much as in the probabilistic

models. However, for partitioned allocations, the probabilistic model solutions

perform better. Note that partitioned allocation policy is not a common policy

in airline operations.

In the next section, the models we propose are presented. The variance of the

revenue is incorporated in the models. They result in seat allocations which give

the best balance between the expected revenue and variance of the revenue.

3.3 The Proposed Models

The main idea that motivates us to develop new models is to give the decision

makers more information about the revenue that is obtained by an allocation

policy. For the decision makers, knowing the behaviour of the revenue in terms

of risk measures may be critical. With this perspective, we build two new mod-

els that incorporate the variance of the revenue. Our first model penalizes the

variance of the revenue by a given factor and the penalty term is subtracted from

the expected revenue in the objective function. In the second model we propose,

the objective function maximizes expected revenue subject to an additional con-

straint that limits the ratio of the variance and expectation of marginal revenue.
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With the proposed models, the variance induced by the policies would be de-

creased and we also expect to increase the expected revenue for some values of

the penalty factor.

Recall that the PMP model gives optimal seat allocations xj that maximize the

expected revenue function E(
∑

j fjmin(Dj, xj)). Our aim is to build a model

which incorporates the variance of the revenue in the objective function. Note

that for a given allocation scheme (given xjs) and discrete random variables Djs,

min(Dj, xj) can be calculated, and the expectation and variance of the revenue

can be obtained. However, the values of xjs are not known beforehand, and

our aim is to determine the optimal xj for each ODF. Let Zj = min(Dj, xj).

First, the derivations for the expectation and variance of Zj are given. Then,

the expectation and variance of the revenue are formulated as functions of the

random variable Zj.

Derivation 1. Recall that demand for each ODF j, Dj, is assumed to be a

discrete random variable. Then, for a given integer allocation x,

Pr(Zj = zj) =











Pr(Dj = Zj) if Zj < xj,

P r(Dj ≥ xj) if Zj ≥ xj.

The expected value of Zj is formulated as

E(Zj) =
∑xj−1

zj=0 zjPr(Dj = zj) + xjPr(Dj ≥ xj).
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The variance of Zj is

V ar(Zj) = E((Zj)
2) − (E(Zj))

2

=

xj−1
∑

zj=0

(zj)
2Pr(Dj = zj) + (xj)

2Pr(Dj ≥ xj)

− [

xj−1
∑

zj=0

(zj)
2(Pr(Dj = zj))

2 + (xj)
2(Pr(Dj ≥ xj))

2

+ 2

xj−1
∑

zj=0

xj−2
∑

z
′

j=1

zjz
′

jPr(Dj = zj)Pr(Dj = z
′

j)

+ 2

xj−1
∑

zj=0

zjxjPr(Dj = zj)Pr(Dj ≥ xj) ].

Then by using the derivations above, the expectation and variance of the revenue

R =
∑

j fjZj for a given allocation x and given fj values are

E(R) =
n

∑

j=1

fjE(Zj)

=
n

∑

j=1

fj

xj−1
∑

zj=0

zjPr(Dj = zj) + xjPr(Dj ≥ xj), (3.1)

V ar(R) =
n

∑

j=1

f 2
j V ar(Zj)

=
n

∑

j=1

f 2
j

xj−1
∑

zj=0

(zj)
2Pr(Dj = zj) + (xj)

2Pr(Dj ≥ xj)

− [

xj−1
∑

zj=0

(zj)
2(Pr(Dj = zj))

2 + (xj)
2(Pr(Dj ≥ xj))

2

+ 2

xj−1
∑

zj=0

xj−2
∑

z
′

j=1

zjz
′

jPr(Dj = zj)Pr(Dj = z
′

j)

+ 2

xj−1
∑

zj=0

zjxjPr(Dj = zj)Pr(Dj ≥ xj) ].
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where Zj = min{Dj, xj} for j = 1, ..., n. �

In order to determine the optimal allocation policy, we define the decision vari-

able uj(xj) such that

uj(xj) =











1 if xj seats are allocated to ODF j,

0 otherwise.

By using the derivations above and setting a variance penalty factor θ, we can

consider the following formulation:

Maximize

n
∑

j=1

fj

hj
∑

xj=0

uj(xj)

xj−1
∑

zj=0

(zjPr(Dj = zj) + xjPr(Dj ≥ xj))

− θ
n

∑

j=1

f 2
j

hj
∑

xj=0

uj(xj)[

xj−1
∑

zj=0

((zj)
2Pr(Dj = zj) + (xj)

2Pr(Dj ≥ xj))

− (

xj−1
∑

zj=0

(zj)
2(Pr(Dj = zj))

2 + (xj)
2(Pr(Dj ≥ xj))

2

+ 2

xj−1
∑

zj=0

xj−2
∑

z
′

j=zj+1

zjz
′

jPr(Dj = zj)Pr(Dj = z
′

j)

+ 2

xj−1
∑

zj=0

zjxjPr(Dj = zj)Pr(Dj ≥ xj))]

subject to

hj
∑

xj=0

uj(xj) = 1 for j = 1, ..., n, (3.2)

∑

j∈Sl

hj
∑

xj=0

xjuj(xj) ≤ Cl for l = 1, ...,m, (3.3)

uj(xj) ∈ {0, 1} for j = 1, ..., n and xj = 1, ..., hj. (3.4)
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In this model, θ is used as a penalty for the revenue variance. The first term

of the objective function is the expected revenue and the second term repre-

sents the variance of the revenue penalized by the factor θ. Constraint (3.2) is

to assure that only one value of uj(xj) is equal to 1 for each ODF j. In this

constraint hj is the upper limit for xj and it represents the maximum number

of seats that can be allocated to ODF j which is equal to the number seats

that are available on all of the flight legs that the ODF crosses. The value of

hj is determined as follows: hj = minl∈Tj
{Cl}. Constraint (3.3) is the capacity

constraint of the flight legs. Constraint (3.4) sets the decision variables uj(xj) to

binary values. The major drawback of this model is the large number of binary

decision variables, which makes the model impractical.

We build a new model which is an extension of the SLP model developed by

de Boer et al. (2002). In this model, we take a slightly different approach and

set a penalty factor for the variance of the marginal revenue rather than the

variance of the total revenue. This approach works well as seen in Chapter 4 on

the numerical studies.

After the derivations used for the model are given, the formulation of the model

is presented.

Derivation 2. Let the random variable Fj(i) denote the marginal seat revenue

that is obtained when the additional ith seat is allocated to ODF j. That is,

Fj(i) =











fj if Dj ≥ i,

0 otherwise,

and the marginal revenue to be denoted by MR is given as follows: MR =
∑

j

∑

i Fj(i)xj(i), where xj(i) is as it is defined in Section 3.2.1. The expected

marginal revenue of the network is formulated as
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E(MR) =
∑

j

∑

i

E(Fj(i))xj(i)

=
∑

j

∑

i

fjPr(Dj ≥ i)xj(i), (3.5)

which is equal to the objective function in the EMR model. Note that fjPr(Dj ≥

i) is the expected marginal revenue of the ith seat allocated to ODF j. variance

of the marginal revenue of the network is formulated as follows:

V ar(MR) =
∑

j

∑

i

(xj(i)
2)V ar(Fj(i))

=
∑

j

∑

i

(xj(i)
2)[E(Fj(i)

2) − (E(Fj(i)))
2]

=
∑

j

∑

i

(xj(i)
2)f 2

j (Pr(Dj ≥ i) − (Pr(Dj ≥ i))2)

=
∑

j

∑

i

(xj(i)
2)f 2

j Pr(Dj ≥ i)Pr(Dj < i). �

(3.6)

Note that the expectation of marginal value and the expected revenue are equal,

but the variance of total marginal revenue is not equal to the variance of the

total network revenue as it is shown in the remark below.

Remark 2. For any given allocation x:

E(R) =
∑

j

fj

xj−1
∑

zj=0

zjPr(Dj = zj) + xjPr(Dj ≥ xj)

E(MR) =
∑

j

fj

xj
∑

i=0

Pr(Dj ≥ i). (3.7)
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Since we assume that demands are discrete random variables,

Pr(Dj ≥ i) = Pr(Dj ≥ xj) +

xj−1
∑

i

Pr(Dj = i). (3.8)

Substituting equation (3.8) into the equation (3.7), we obtain,

E(MR) =
∑

j

fj

xj−1
∑

i=0

iPr(Dj = i) + xjPr(Dj ≥ xj), (3.9)

which is equivalent to the expected revenue denoted by E(R). However, Var(MR)

and Var(R) are not equal to each other. The formulation of Var(MR) is given

in equation 3.6.

These observations are given numerically in Chapter 4. By using the derivations

above, our proposed model is given as follows:

Maximize
∑

j

hj
∑

i=1

xj(i)fjPr(Dj ≥ i)

− θ
∑

j

hj
∑

i=1

(xj(i)
2)f 2

j Pr(Dj ≥ i)Pr(Dj < i)

subject to

∑

j∈Sl

hj
∑

i=1

xj(i) ≤ Cl for l = 1, ...,m,

xj(i) ∈ {0, 1} for j = 1, ..., n and i = 1, ..., hj,

where hj = minl∈Tj
{Cl}. Since the xj(i) is a binary decision variable, (xj(i)

2)

is also equal to either 0 or 1. Hence, we can replace (xj(i))
2 in the objective

function with xj(i) and obtain a linear model. Then, the model reduces to
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EMV R : Maximize
∑

j

hj
∑

i=1

xj(i)fjPr(Dj ≥ i)

− θ
∑

j

hj
∑

i=1

xj(i)f
2
j Pr(Dj ≥ i)Pr(Dj < i)

subject to

∑

j∈Sl

hj
∑

i=1

xj(i) ≤ Cl for l = 1, ...,m,

xj(i) ∈ {0, 1} for j = 1, ..., n and i = 1, ..., hj.

As in the EMR and SLP models, the proposed model would not assign fractional

values to xj(i), and xj(i + 1) cannot be 1 unless xj(i) is 1. This is shown in

Lemma 1.

Lemma1. The objective function

∑

j

hj
∑

i=1

xj(i)fjPr(Dj ≥ i) − θ
∑

j

∑

i

xj(i)Pr(Dj ≥ i)f 2
j Pr(Dj < i)

is decreasing in i.

Proof. Rewriting the objective function in the EMVR model,

∑

j

∑

i

xj(i)fj[Pr(Dj ≥ i) − θf 2
j Pr(Dj ≥ i)(1 − Pr(Dj ≥ i)) ]

=
∑

j

∑

i

xj(i)fjPr(Dj ≥ i)(1 − θ(1 − fjPr(Dj ≥ i))).

Since Pr(Dj ≥ i) is decreasing in i, both the first term fjPr(Dj ≥ i) and the

second term (1 − θ(1 − fjPr(Dj ≥ i)) are decreasing in i.
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The proposed EMVR model is an extension of the EMR Model developed by

Wollmer (1986). As in the case of obtaining SLP, working on the EMR model

we come up with the following model which we call as the EMVLP Model:

EMV LP : Maximize
∑

j

∑

i

xj(i)fjPr(Dj ≥ i)

− θ
∑

j

∑

i

xj(i)f
2
j Pr(Dj ≥ i)Pr(Dj < i)

subject to
∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj =

kj
∑

i=1

xj(i) for j = 1, ..., n,

xj(1) ≤ dj(1),

xj(i) ≤ dj(i) − dj(i − 1) for j = 1, ..., n and i = 2, ..., kj ,

xj(i) ≥ 0 for j = 1, ..., n and i = 2, ..., kj .

In this model, the first term of the objective function is the expected marginal

revenue and the second term represents the variance of the marginal revenue pe-

nalized by θ. With this formulation, we expect to obtain allocations that would

result in more stable booking control policies. Decreasing the variance would

decrease also the expected revenue as it is stated in the following remark.

Remark 3. Recall that EMVLP is equivalent to SLP when θ = 0. Therefore,

the optimal solution of EMVLP is a feasible solution for SLP. Hence, the fol-

lowing relation holds for the optimal expected revenue of the SLP model and

EMVLP model denoted by ESLP (MR) and EEMV LP (MR) respectively such that

ESLP (MR) ≥ EEMV LP (MR).
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However, we aim to attain policies giving a reasonable balance between expec-

tation and variance of the revenue. Also, we aim to decrease the probability

of poor performance, which can be defined as the probability that the revenue

is less than some predetermined level. Even for some degree of θ, we expect

to attain not only less variance but also higher expected revenues compared to

EMR and DLP. Since the variance is penalized, the model would allocate less

number of seats to higher fare classes that usually have higher variances. As a

result, the nested control policies would perform better with the allocations of

the proposed models even in terms of expected revenue. The question on how

the solutions of the proposed models vary as θ changes is addressed in Chapter 4.

Note that, in bid price control policy, the opportunity costs of the flight legs

are the dual prices of the capacity constraints in the mathematical models.

However, in the proposed model, the objective function does not represent the

expected revenue. Therefore, the dual prices of the capacity constraints are not

comparable with the fares of the ODFs. In order to implement bid price control

policy, we develop a second model, in which an upper limit ξ is considered for

the coefficient of variation of the marginal revenue such that

V ar(MR)

(E(MR))2
≤ ξ2. (3.10)

Recall that E(MR) and V ar(MR) are considered in the objective function of

the EMVR model. With the formulation in 3.10, variance of the revenue is incor-

porated into the proposed model using the following constraint: V ar(MR) ≤

ξE(MR). In the proposed model, ξ is an upper bound on the coefficient of

variation of the marginal revenue, and the objective function aims to maximize

expected marginal revenue. Then, the model we propose is given as follows:
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Maximize
∑

j

kj
∑

i=1

xj(i)fjPr(Dj ≥ i)

subject to

∑

j

kj
∑

i=1

xj(i)f
2
j Pr(Dj ≥ i)Pr(Dj < i) ≤

ξ2
∑

j

f 2
j [

kj
∑

i=1

(xj(i))
2(Pr(Dj ≥ i))2

+ 2

kj
∑

i=1

kj−1
∑

i′=i+1

xj(i)xj(i
′)Pr(Dj ≥ i)Pr(Dj ≥ i′)] (3.11)

∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj =

kj
∑

i=1

xj(i) for j = 1, ..., n,

xj(1) ≤ dj(1),

xj(i) ≤ dj(i) − dj(i − 1) for j = 1, ..., n and i = 2, ..., kj ,

xj(i) ∈ {0, 1} for j = 1, ..., n and i = 2, ..., kj .

The first constraint represents V ar(MR) ≤ ξ(E(MR))2, where

E(MR) =
∑

j

kj
∑

i=1

fjPr(Dj ≥ i)xj(i)

V ar(MR) =
∑

j

∑

i

(xj(i)
2)V ar(Fj(i))

=
∑

j

∑

i

(xj(i)
2)[E(Fj(i)

2) − (E(Fj(i)))
2]

=
∑

j

∑

i

(xj(i)
2)f 2

j (Pr(Dj ≥ i) − (Pr(Dj ≥ i))2)

=
∑

j

∑

i

(xj(i)
2)f 2

j Pr(Dj ≥ i)Pr(Dj < i), �
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as they are given in Derivation 2. Since the dual prices of the capacity constraints

now show the contributions to the expected revenue, the bid prices that are ob-

tained from the model are comparable with the fares. However, this model is not

linear. With this formulation, we aim to obtain bid prices comparable with the

fares. The problem with this model is that (E(MR))2 = (
∑

j

∑

i xj(i)Pr(Dj ≥

i)fj)
2 creates nonlinearity and we cannot replace (xj(i))

2 with xj(i) because

product of the decision variables with different i values as xj(i) and xj(i)
′

are

included in the model. We handle this nonlinearity by defining a binary decision

variable wj(i) where

wj(i) =











1 if xj(i) = xj(i + 1) = 1 ,

0 otherwise.

Then, the model becomes
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Maximize
∑

j

kj
∑

i=1

xj(i)fjPr(Dj ≥ i)

subject to

∑

j

kj
∑

i=1

xj(i)f
2
j Pr(Dj ≥ i)Pr(Dj < i) ≤

ξ2
∑

j

kj
∑

i=1

f 2
j [(xj(i))

2(Pr(Dj ≥ i))2 + 2wj(i)Pr(Dj ≥ i)Pr(Dj ≥ (i + 1))],

wj(i) ≥ xj(i) + xj(i + 1) − 1, for j = 1, ..., n, and i = 1, ..., kj

wj(i) ≤ xj(i + 1), for j = 1, ..., n, for j = 1, ..., n, and i = 2, ..., kj

wj(i) ≤ xj(i), for j = 1, ..., n, for j = 1, ..., n, and i = 2, ..., kj

∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj =

kj
∑

i=1

xj(i) for j = 1, ..., n,

xj(1) ≤ dj(1),

xj(i) ≤ dj(i) − dj(i − 1) for j = 1, ..., n and i = 2, ..., kj ,

xj(i) ∈ {0, 1} for j = 1, ..., n and i = 2, ..., kj .
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Since xj(i)s are binary decision variables, we cannot obtain bid prices working

with this model. However, our major aim is to penalize the variance. Thus, we

choose to use a different measure which is not equal to the coefficient of variation,

but the ratio of the expectation and variance of the revenue. We define this new

measure to be bounded as V ar(MR)
E(MR)

≤ ρ and develop a linear model which we

call as the CV LP Model.

CV LP : Maximize
∑

j

kj
∑

i=1

xj(i)fjPr(Dj ≥ i)

subject to
∑

j∈Sl

xj ≤ Cl for l = 1, ...,m,

xj =

kj
∑

i=1

xj(i) for j = 1, ..., n,

xj(1) ≤ dj(1),

xj(i) ≤ dj(i) − dj(i − 1) for j = 1, ..., n and i = 2, ..., kj ,

∑

j

kj
∑

i=1

xj(i)f
2
j Pr(Dj ≥ i)Pr(Dj < i) ≤

ρ
∑

j

∑

i

xj(i)fjPr(Dj ≥ i),

xj(i) ≥ 0 for j = 1, ..., n and i = 2, ..., kj .

In bid price control policy we experiment with in this study, EMVLP and CVLP

models are used together. We first solve the EMVLP model, then the value of ρ

is determined as the ratio of variance of the marginal revenue and the expected

marginal revenue corresponding to the optimal solution of EMVLP. This ρ value

is put into the CVLP model and the model is solved. The resulting dual prices

of the CVLP model are comparable with the fares and they are used for deter-
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mining the bid prices. In other words, the optimal seat allocations are found

by the EMVLP model, but the contribution of the ODFs to the revenue are

found by the CVLP model. The CVLP model results in the same optimal seat

allocations, but it gives bid prices which can be used for making accept/reject

decisions by comparing them with the fares.

3.4 Analysis of the Revenue Distribution

Knowing the distribution of the revenue that will be earned by an allocation pol-

icy allows the decision makers to obtain any information about the behaviour

of the revenue. That is, they can decide which alternative to choose by mak-

ing comparisons with respect to several measures instead of only the expected

revenue or variance of the revenue. The probability distribution of the revenue

gives information about any risk measure that the decision makers would need

to know and is an effective tool for comparing alternative feasible policies that

are competent in terms of different measures.

Deriving the probability distribution of the network revenue analytically pro-

vides the decision makers with the flexibility of knowing the behaviour of the

revenue at any time during the reservation period and accordingly changing the

booking policy. For example, suppose the company uses a nested booking limit

control policy and update the seat allocations throughout the reservation period.

The decision maker, at some point in time, may wonder how much revenue will

be earned with any feasible allocation policy x during the remaining part of

the reservation period. When the probability distribution of the revenue for

any given allocation policy x is known, the decision maker gain any informa-

tion about the revenue to attain in the remaining part of the reservation period,

which is a lower bound for the revenue that will be obtained by a nested booking

control policy.
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In this section, we investigate the probability distribution of the revenue under

a given allocation x. Recall that for given seat allocations xj and known param-

eters of total demand distribution for each ODF j, we can derive the probability

distribution of the revenue analytically but without using simulation. For each

possible demand realization Dj = dj for j = 1, ..., n, we calculate the values of

zj = min(dj, xj) and its occurrence probability Pr(Dj = zj) . Let Rj denote the

revenue that will be earned from passengers of ODF j by allocating xj number

of seats to ODF j.

Rj = fjZj =











djfj if dj < xj with probability Pr(Dj = dj)

xjfj if dj ≥ xj with probability Pr(Dj ≥ xj).

(3.12)

Recall that our assumption is that demands for different ODFs are independent.

Then, the total network revenue
∑

j Rj to be denoted by R is found as follows:

Pr(R = r) =
∏

j

Pr(Rj = rj). (3.13)

By using equations (3.12) and (3.13), we write a macro in Excel and find the

possible values of the total network revenue R with the corresponding probabil-

ities. Then, we investigate this probability distribution. The numerical analysis

is performed for the base problem that is given in Chapter 4 and it is presented

in Section 4.1. The base problem is solved working with DLP and SLP models

and the optimal seat allocations are obtained. For these optimal seat allocations,

the probability distributions of the revenue are derived as explained above. The

type of the distribution is investigated by using the method proposed by Hahn

and Shapiro (1967). They develop a graph defining the regions for different

probability distributions in the plane, wher the x axis and y axis of the graph

are skewness and kurtosis of the probability distribution. Some distributions are

defined with one point or line instead of a region. The type of the probability

distribution is determined by calculating the skewness and kurtosis of the dis-

tribution and matching them with the corresponding point or region.
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For our numerical problem, we investigate the revenue distribution under op-

timal DLP and SLP models and it is presented in Section 4.1. The skewness

and kurtosis of the distributions show that they fit to the Normal Distribution.

Additionally, Normal probability plots of the revenues are drawn and it is ob-

served that revenues obtained by the two models fit well to Normal Distribution.

3.5 Booking Control Policies for Network Problems

There are three different control policies used for network problems. These are

partitioned (non-nested) booking limit control policy, nested booking limit con-

trol policy and bid price control policy. This section presents these booking

control policies. The common characteristic of the policies is that all of them

use the results of the mathematical models. However, they show differences in

using the results.

3.5.1 Partitioned (Non-nested) Booking Limit Control Policy

In partitioned booking limit control policy, seats are allocated to each ODF

separately. The policy uses directly the optimal allocations resulting from the

mathematical models. Because of the random nature of the demand, such an

allocation policy may cause the aircrafts to depart with empty seats, means that

this is not an effective policy. For this reason, partitioned booking limits are not

commonly used in practice. However, the revenue obtained using a partitioned

booking limit policy provides a lower bound for the network revenue. The reason

for this is that the allocations are only feasible solutions for nested policies, but

they are not optimal.
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3.5.2 Nested Booking Limit Control Policy

In nested booking limit control policies, the ODFs are ranked according to their

contributions to network revenue. The highest ranked ODF is allowed to book

all the available seats. Similarly, the seats allocated to a fare class are allowed

to be be booked by the customers of a higher ranked ODF. The main consid-

eration in nesting the ODFs is the criterion to be used in ranking the ODFs.

Although nesting fare classes is trivial for a single-leg problem, the net contribu-

tions of the ODFs to the revenue are not easy to determine in network problems.

Williamson (1992) considers three ways of ranking the ODFs. These are rank-

ing by fare class, ranking by fares and ranking by dual price. When ODFs are

ranked by fare class, a full fare class of an origin-destination pair is always rated

higher than a discount fare class without taking the fare amounts into account.

However, a discount fare passenger of a long journey may contribute more than

a full fare passenger for a short flight. Ranking by fares is not a preferable way of

ranking ODFs. In this case, long itineraries will be ranked higher than the short

itineraries because the fares of long itineraries are usually higher as compared

to the short itineraries. When ODFs are ranked according to their fares, many

seats would be protected for the long itineraries and the requests for the other

short itineraries would be rejected. Hence, the load factor of the aircraft may

decrease resulting in a revenue loss.

Williamson (1992) proposes ranking the ODFs based on the dual prices of the

ODFs. The dual price of an ODF is defined as the additional revenue that is

generated by allocating one more seat to that ODF when the other allocations

remain unchanged. For the DLP model, Williamson (1992) uses the dual prices

of the demand constraints or the reduced costs of the decision variables. In EMR

model, on the other hand, there is no demand constraint. Working with EMR

model, Williamson (1992) uses the dual price as the incremental revenue that

is generated when the mean demand of the ODF is increased by one. However,
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this is not easy for a network problem. When the mean demand is changed, the

distribution parameters and the objective function coefficients of the decision

variables, fjPr(Dj ≥ i), change. Therefore, the EMR model needs to be solved

for a second time. The studies performed by Williamson (1992) show that nest-

ing by dual prices gives better performance than nesting by total fare or fare

class.

Here, we use the dual prices of the capacity constraints of the flight legs, which

is a ranking method proposed by de Boer et al. (2002). We approximate the

opportunity costs of an ODF with the sum of the dual prices of the flight legs

that are connected for the ODF. Then, the net contribution of the ODF to the

network revenue is found by subtracting this opportunity cost from the total

fare of the ODF and the ODFs are ranked. Namely, the net contribution of

an ODF is fj −
∑

l∈Tj
wl, where wl is the dual price of the capacity constraint

of flight leg l. Incorporating nesting into the mathematical models is difficult.

Therefore, as for the partitioned booking limit policy, the optimal allocations

obtained by the mathematical models are used also for nested booking limit con-

trol policy. However, these allocations are used with nested heuristics to make

accept/reject decisions. Suppose the mathematical models are solved and the

ODFs are ranked using the dual prices of the capacity constraints of each flight

leg l, and j ≥ i means that ODF j is ranked higher than ODF i. In simulating

nested booking limit control policy, we use the heuristic algorithm developed by

de Boer et al.(2002). This algorithm is given below.

Nesting Heuristic

Step 0. Let η(j) be the number of requests of ODF j that have already been

accepted and Cl be the remaining capacity of flight leg l. Let Cl to be equal to

the initial capacity and let η(j) = 0 for every ODF j.

Step 1. A booking request for an ODF i arrives and should be considered for

acceptance.
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Step 2. Let b(j) = max{x(j) − η(j), 0} for all ODF j.

Step 3. Let bl =
∑

j∈Sl∋j≥i b(j) for each flight leg l ∈ Ti .

Step 4. Let cmin = minl∈Tj
{Cl − bl}.

Step 5. If cmin ≥ 0, accept the booking request, let Cl = Cl − 1 for all l ∈ Ti

and let η(j) = η(j) + 1. Otherwise, reject the request.

Step 6. Go to step 1 for the next reservation request.

Step 0 is the beginning of the booking process; the capacities of the flight legs

are initialized and there are not any accepted requests. In step 1, the arriving

booking request for a particular ODF is considered. The b(j) shows the number

of seats that we want to protect against lower ranked ODFs. When a request

for ODF is accepted, b(j) is decreased by one because the number of seats to

be protected decreases. The bl values are calculated for the arriving requests.

They represent the booking limit of the ODF on each flight leg. In other words,

the seats above bl are protected for fare classes that are ranked higher than the

ODF. In step 4, the number of available seats for the ODF i is calculated. In

step 5, if there is available seat for the ODF, the request is accepted. The num-

ber of accepted requests is increased by one and the capacity of the flight legs

that are used by the ODF is decreased by one. Otherwise, the request is rejected.

Throughout the reservation period, when the seat allocations are updated ac-

cording to the available capacity and estimated demand estimations, the allo-

cation amounts and the nesting order of the ODFs may change. Therefore, the

algorithm should be restarted, when the allocations are updated.

3.5.3 Bid Price Control Policy

Bid price control is introduced by Simpson (1989) as an alternative seat in-

ventory control approach for network problems. In bid price control policy,
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threshold values (bid prices) are determined for each flight leg, which are used

to approximate the opportunity cost of an itinerary. The idea behind the policy

is that a reservation request should be accepted if its fare exceeds the sum of

the bid prices of the flight legs on the path of the itinerary.

Recall the structure of the optimal control due to Talluri and van Ryzin (1998)

given in Section 3.1. According to the optimal control policy, a reservation

request at time t with corresponding fare fj will be accepted as long as the

fare exceeds the opportunity cost of the flight legs that the itinerary uses and

there are seats available on the corresponding flight legs. The optimal decision

is denoted by u∗
j(t,x, fj) and it satisfies the following equation:

u∗
j(t,x, fj) =











1 if fj ≥ Vt+1(x) - Vt+1(x − Aj) and Aj ≤ x,

0 otherwise.

Definition. A control ut(x, f) is said to be a bid price control if there exists real

valued functions µ(t,x) = (µ1(t,x), µ2(t,x), ..., µm(t,x)), t = 1, ..., T (called bid

prices) such that

u∗
j(t,x, fj) =











1 if fj ≥
∑

i∈Aj
µi(t,x) and Aj ≤ x,

0 otherwise.

In this definition, µi is the opportunity cost of a seat on a flight leg i, and the

opportunity cost of an itinerary is approximated by the sum of the costs of

each flight leg that is on the route of that itinerary. Throughout the reserva-

tion period, as the state of the network changes, the opportunity costs change.

Therefore, µi(t,x) is defined which shows the opportunity cost of the flight leg i

for each level of capacity x and for each time period t. These opportunity costs

are called bid prices. An arriving request for an ODF is accepted if and only

if there is available capacity and the corresponding fare exceeds the sum of the
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bid prices of the flight leg that the ODF uses. Namely, the opportunity cost of

an itinerary is approximated by the sum of the bid prices of the flight legs that

it crosses. Bid prices are optimal only when the opportunity cost of an itinerary

Vt+1(x) − Vt+1(x − Aj) is equal to the sum of the opportunity costs of selling

each flight leg separately. However, most of the time, a change in the capacity

of a flight leg does not affect the revenue linearly. Talluri and van Ryzin (1998)

provide examples, where they show that bid prices are suboptimal. However,

they show that bid prices are asymptotically optimal and under certain ”large

number” scalings of the network revenue management problems. Talluri and van

Ryzin (1998) state that the performance of the bid price control policy depends

on the mathematical models that are used for determining bid prices and if the

variance of demand is properly included in the models, more revenue can be

generated.

Bid price control policy is commonly used in real life. The major factor leading

to this popularity is that bid price control policy is easy to implement. It re-

quires much less data to be stored compared to nested booking limit policy. In

nested booking limit control policy, the booking limits are updated according

the realized demand and available capacity. Hence, the booking limits of each

ODF should be stored at each point in time. Also, at any point in time the

net contribution of the ODFs change as it is explained in the nesting heuristic

presented in Section 3.5.2. Therefore, additional data like the dual prices of the

capacities or the reduced costs of the variables is required to be stored in order

to rank the ODFs. Working with bid price control policy, on the other hand,

the only information that should be stored is the bid price of each flight leg.

Moreover, the accept/reject decision requires only the comparison of the fare of

the arriving request with the sum of the bid prices.

The LP models presented in this chapter, namely DLP, SLP, and use of EMVLP

and CVLP together, give approximate bid prices to be used throughout the
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booking process. Note that EMVLP model does not provide reasonable bid

prices, but it is used together with CVLP. The bid prices are determined us-

ing dual prices of the capacity constraints of each flight leg in the LP models.

The main difference between nested booking limit control and bid price con-

trol policies results from the use of the model results. Booking limit control

approach uses directly the optimal allocations obtained by the mathematical

model whereas the bid price control approach makes accept/reject decisions

working with the bid prices obtained using the dual prices of the capacity con-

straints of the flight legs.

A major drawback of the bid price control policy is that once the bookings

are opened to an ODF, there is no limit on the number of seats that will be

sold to that ODF. However, as the departure time approaches, it may be more

profitable to close bookings to that ODF and sell the seats to ODFs having

higher fares. Hence, if the bid prices are set at the beginning of the reservation

period and the same set of bid prices are used throughout the whole period,

the aircraft may be filled with customers of ODFs with lower fares compared

to optimal control policy. Therefore, the bid prices should be revised according

to the realized bookings throughout the reservation horizon. Otherwise, the bid

price control approach would not be effective for making accept/reject decisions.
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CHAPTER 4

NUMERICAL STUDY

This chapter is devoted to a numerical comparison of the performances of dif-

ferent mathematical models and booking policies. The network structure and

the parameters for the numerical experiments are the same as the ones used by

de Boer et al. (2002). The network representation of the problem de Boer et

al. (2002) work with is given in Figure 4.1. The flight network has 6 different

itineraries (AB, AC, AD, BC, BD, CD) operating on 3 flight legs, each having a

capacity of 200 seats. There are 3 different fare classes offered for each itinerary.

Hence, we consider 18 origin-destination and fare combinations in total. The

length of the reservation period is 150 days.

We analyze three different problem scenarios: base problem, the problem with

increased low fare demand variance and the problem with decreased fare vari-

ance. In the base problem, the variance of demand for fare classes 2 and 3 are

small as compared to fare class 1 and fare of class 1 is relatively expensive. In

the second scenario, the variance of fare class 2 and 3 are increased. In the third

scenario, demand variances are the same as the variances in the base case, but

the fare of fare class 1 is decreased. Changing demand distribution parameters

and fare structures allows us to compare the performance of the models for dif-

ferent cases. The information related to the fares and demand distributions of

the ODFs are given in Appendix A. Tables A.1 and A.3 represents the fare and

demand data used for the first scenario and Tables A.2 and A.4 show the data

used in the other scenarios.

We determine the optimal allocations by using the mathematical models pre-

sented in Chapter 3 including the proposed model EMVLP, then, simulate the
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Figure 4.1: The multi-leg flight network.

booking process according to these allocations. In simulation model, we use

the three control policies presented in Section 3.5, namely partitioned booking

limit control policy, nested booking limit control policy and bid price control

policy. When working with bid price control policy, we use EMVLP and CVLP

models together because as it is explained in Chapter 3, EMVLP model alone

does not give bid prices comparable with fares. For the three control policies, the

model performances are compared in terms of expected revenue, standard devia-

tion and coefficient of variation of the revenue, and the risk of poor performance.

Throughout the reservation period, we update the booking control policies at

certain points in time. The demand update mechanism is as follows: as new in-

formation about the demand becomes available, the demand estimations for the

remaining periods are revised by conditioning on the previous realizations. Then

the allocations for the ODFs are updated throughout the reservation period by

taking the available seat capacity into account. For updating the demand, we use

Bayesian demand updating mechanism presented in Section 4.3. For partitioned

booking limit control policy and nested booking control policy, we present the

performances when the allocations are determined only once at the beginning

of the reservation period. For bid price control policy, on the other hand, we

present the performances attained with the updated bid prices and the perfor-

mances when the bid prices are determined only once at the beginning of the

reservation period. We do not update partitioned booking limit control policy

since it is not an effective policy. Furthermore, it is shown by de Boer et al.
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(2002) that bid price control policy and nested booking limit control policy give

very similar results when they are used for the same models. Therefore, we

choose to update only bid price control policy which is easier to implement.

In Section 4.1, a preliminary analytical study is performed in order to observe

the distribution of revenue under a given allocation x. In Section 4.2, the model

used for the customer arrival process and the assumptions of demand distribu-

tions are presented. Section 4.3 is on the Bayesian demand updates. Lastly,

Section 4.4 is devoted to the evaluation of the numerical results.

4.1 Numerical Analysis of the Revenue Distribution

In this section, we analyze the revenue distribution in our base problem for seat

allocations obtained by solving DLP and SLP models. As it is explained in

Section 3.4, we solve the DLP and SLP models and obtain the optimal seat

allocations xj. Then, for each ODF j, we calculate the Zjvalues and their prob-

abilities. The possible revenue values for each ODF j are found by multiplying

these Zjs with the associated fares. The possible values of network revenue are

found by adding these revenues obtained from each ODF j and their probabil-

ities are calculated by multiplying the occurrence probabilities of each possible

value of the revenue for ODF j. As an example, the possible revenues of the

whole network and their probabilities are given in Appendix D for the DLP

model. Evaluating the probabilities and the revenue values allows us to fit the

probability distribution and determine its type. When the type of the probabil-

ity distribution of the revenue is known, it is possible to compute any measure

related to the network revenue without using simulation. Then, at any point in

time, the decision maker can know the probability distribution of the revenue

that would be earned for any feasible allocation.

As it is seen in Figures B.1 and B.2 in Appendix B, for our base problem,
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the probability distributions of the network revenue obtained by using the seat

allocations of DLP and SLP models fit well to the Normal Distribution. The

resulting revenue is the revenue that would be obtained by a partitioned booking

limit control policy, and it provides a lower bound for the revenue that would

be obtained by a nested control policy. In Section 4.4.1, it will be seen that

this revenue distribution is very similar to the one obtained by simulating parti-

tioned booking control policy. Note that the expected revenue of the SLP model

is higher as compared to DLP model. We expect to observe this when simulat-

ing partitioned allocation policy with the seat allocations obtained by DLP and

SLP models.

4.2 Simulation Model

The solutions obtained by the mathematical models are used in the simulation

of the partitioned booking limit policy, nested booking limit policy and bid price

policy. In the simulation of partitioned booking limit control policy, we directly

use the allocations obtained by the mathematical models. For simulating the

nested booking limit control policy, the nesting heuristic proposed by de Boer

et al. (2002) and presented in Section 3.5.2 is used. In the simulation of bid

price control policy, at the beginning of the reservation period the mathematical

model is solved using initial capacities. Then, the dual prices of the capacity

constraints (bid prices) that result from the mathematical models are given as

an input to the simulation model. The booking policy is such that a request

is accepted if and only if its fare exceeds the sum of bid prices that the ODF

traverses. The output of the simulation model gives the remaining available

seat capacity at any point in time. Throughout the reservation period, the bid

prices are updated using the available seat capacity and the updated demand

estimations for the remaining part of the reservation period.

The major issue while simulating the booking process is how to determine the
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total demand of each ODF to come over the whole reservation period and how

to model arrivals of the reservation requests for different ODFs in time. The

number of booking requests to arrive until the departure is not known and an

assumption should be made about the demand distribution. Knowing the total

demand distribution is not sufficient to simulate the booking process. The dis-

tribution of the arrivals in time is also important in determining the revenue.

The characteristic of the airline booking process is that the arrival rate of the

customers is not constant throughout the reservation period. Moreover, differ-

ent fare classes have different arrival patterns. Lower fare class customers arrive

usually at the early stages of the reservation period whereas higher fare classes

usually arrive close to the end of the reservation period. In order to model these

features, a Non-Homogeneous Poisson Process (NHPP) is used. With a NHPP,

both the non-stationary arrival rates and different arrival patterns over the reser-

vation period can be considered in the simulation model. The non-stationary

demand for each ODF j at time t is assumed to be Poisson distributed with rate

λj(t). McGill and van Ryzin (1999) note that Poisson distribution is appropri-

ate for modeling the arrival of airline reservation requests. However, it is stated

in their study that there is the following deficiency arising while working with

Poisson arrivals for airline demand: if the arrivals in each period are Poisson

distributed, then the aggregate demand distribution over the whole reservation

period will be Poisson with equal mean and variance. For perishable items and

also for airline demand, such an assumption is not reasonable, because variance

of the airline demand distribution is usually much higher compared to the mean.

The simulation model is given in Appendix E.
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This problem is handled by modeling the time dependent Poisson arrival rate of

an ODF j as follows:

λj(t) = Yjβj(t). (4.1)

Here Yj is the expected total number of demand for ODF j over the whole reser-

vation period and βj(t) represents the Beta distribution used for spreading the

total demand over the whole reservation period. In other words, Beta distribu-

tion models the arrival pattern of the requests of different fare classes such that
∫ T

0
βj(t)dt = 1 for each ODF j.

Yj is assumed to have a Gamma distribution with parameters pj and δj. That

is, Yj ∼ Gamma (pj, δj). Beckmann and Bobkowski (1958) show that Gamma

distribution is reasonable for modeling the aggregated airline demand. The

probability density function of Gamma distributed Yj with parameters pj and

δj is:

f(yj) =
δpjy

(pj−1)
j e(−δyj)

Γ(pj)
for pj ≥ 0, δj ≥ 0, (4.2)

where Γ is the following Gamma function:

Γ(pj) =

∫ ∞

0

y
pj−1
j e−yjdyj. (4.3)

If p is integer, Γ(pj) = (pj − 1)!. The related reference is due to Hines and

Montgomery (1980).

With the formulation given in (4.1), the resulting arrival process is a conditional

Poisson process rather than a pure Poisson process. Hence, the aggregate dis-

tribution of demand over the whole reservation period is not Poisson.
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Remark 4. Suppose the demand in a period is Poisson distributed with rate λ,

and λ is Gamma distributed with parameters p and δ. Then, the unconditional

distribution of demand Dt over [0, t] is Negative Binomial with parameters p and

δ/(δ + t).

The proof given by Popovic (1987) is presented below.

Proof. Suppose that the random rate of the demand in a time unit is λ. Then,

the conditional probability of observing k units of demand in a the time interval

[0,t] is

Pr(Dt = k|λ) =
(λt)k

k!
e(−λt), k = 0, 1, .... (4.4)

Since the distribution of the arrival rate λ is Gamma(p, δ), its probability density

function is

f(λ) =
δpλ(p−1)e(−δλ)

Γ(p)
. (4.5)

Then, by using the equations (4.4) and (4.5), the unconditional demand distri-

bution is the following Negative Binomial Distribution with parameters p and

δ/(δ + t).

Pr(Dt = k) =

∫ ∞

0

Pr(Dt = k|λ)f(λ)dλ

=

∫ ∞

0

(λt)k

k!
e(−λt)f(λ)dλ =





p + k − 1

k



 (
δ

δ + t
)p(

t

δ + t
)k (4.6)

for k = 0, 1, ....

In our problem, the arrival rate λj of each ODF j for the whole reservation

period is Gamma distributed with parameters pj and δj. Then, the equation
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(4.6) implies that the distribution of aggregate demand throughout the reser-

vation period is Negative Binomial with parameters pj and δj/(δj + 1) for each

ODF j, where t = 1 corresponds to the whole reservation period. Expectation

and variance of Negative Binomial distribution are
pj

δj
and

pj

δj
(1 + 1

δj
), respec-

tively. The parameters of the aggregate demand distributions, expectation and

standard deviation of demands used for the numerical experiments are given in

Appendix A for each ODF.

In order to model the passenger arrivals throughout the reservation period, Beta

distribution is used as it is given in equation (4.1). β(t) actually shows the

percentage of arrivals to come in period t. Figure 4.2 illustrates behaviour of

the Beta distribution with different parameters.

Figure 4.2: Beta density functions with different parameters.

(Kimms and Mller-Bungart, 2007)

In our problem, different parameters are used for modeling the Beta arrival pat-

terns of different fare classes denoted by αj and γj. For fare class 3, a Beta

distribution with parameters (5, 6) is used. For fare class 2, the distribution is

Beta (2, 5); and it is Beta (2, 13) for fare class 1. As it is seen in Figure 4.2, the
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different parameters of the beta distribution allow us to model different arrival

patterns of the fare classes such that lower fare classes arrive densely at the be-

ginning of the reservation period whereas most of the higher fare class customers

arrive close to the end of the reservation period.

The probability density function of Beta distribution with parameters α and γ

is:

Γ(α + γ)

Γ(α)Γ(γ)
xα−1(1 − x)γ−1 α ≥ 0, γ ≥ 0. (4.7)

Then,

β(t) = (
1

T
)α−1(1 −

t

T
)γ−1 Γ(α + γ)

Γ(α)Γ(γ)

as shown by de Boer (1999). Let t = T denote the beginning of the reservation

period and t = 0 be the time of the departure of the flight. In other words, the

periods are numbered such that period t shows the remaining number of periods

until departure. In our setting, periods correspond to days. The distribution of

the arrivals of each ODF j is given as, when there are t periods (days) remaining

until the departure,

∫ t

0

(
λj

t
)(

x

t
)αj−1(1 −

x

t
)γ−1 Γ(αj + γj)

Γ(αj)Γ(γj)
dx. (4.8)

Equation (4.8) is evaluated in Remark 5 below for integers αj and γj. These

observations are due to de Boer (1999).

Remark 5. If αj and γj are both integers, the arrival rate for remaining t

periods will be,
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∫ t

0
(

λj

t
)(x

t
)αj−1(1 − x

t
)γj−1 Γ(αj+γj)

Γ(αj)Γ(γj)
dx

(4.9)

= λj
Γ(αj+γj)

Γ(αj)Γ(γj)

∑γj−1
l=0





γj − 1

l



 (−1)l 1
l+αj

( t
T
)αj+l.

Different than the approach used by de Boer et al. (2002), we make an ap-

proximation and take the arrival rates constant in each period, but different

across time periods. Recall that, days are numbered such that the beginning

of the reservation period is T, and t shows the number of remaining days until

departure. Then for an ODFj, let βj(t; 0) shows the percentage of the arrivals

to come after day t, namely in the remaining t days of time and βj(T ; t) is the

percentage of the arrivals before day t. We divide the reservation period into

N time periods of equal length such that a period corresponds to T/N days.

The period compasses the time interval [t,t-T/N). Then the percentage of the

arrivals in that time interval is found by βj(t; 0) − βj(t − T/N ; 0), which are

found by the equation (4.9).

However, with this approach the variance of total demand will change. We make

an approximation and adjust the distribution parameters such that the expecta-

tion and variance of the demand throughout the whole reservation period satisfy

our initial demand assumptions. Suppose λj(i) denote the arrival rate in period

i and βj(i) is the constant beta rate for period i, where βj(i) actually gives the

ratio of the number of arrivals in period i to the total number of arrivals.

Let Dj(i) denote the demand for a ODF j in period i and assume that demand

in different periods are independent. Then, the expectation of the demand will

be,
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E(
N

∑

i=1

Di(j)) =

∑N
i=1 E(Di(j))

N
=

∑N
i=1

p
′

j

δ
′

j/βj(i)

N
=

p
′

j

δ
′

j

N
∑

i=1

βj(i)

By using the fact that
∑N

i=1 βj(i) = 1, we obtain the following equation for the

expectation.

E(
N

∑

i=1

Di(j)) =
p
′

j

δ
′

j

.

V ar(
N

∑

i=1

Di(j)) =
N

∑

i=1

V ar(Di(j)) =
N

∑

i=1

pj
′

δ
′

j/βj(i)
(1 +

1

δ
′

j/βj(i)
)

=
p
′

j

δ
′

j

N
∑

i=1

βj(i) +
p
′

j

δ
′2
j

N
∑

i=1

βj(i)
2

=
p
′

j

δ
′

j

+
p
′

j

δ
′2
j

N
∑

i=1

βj(i)
2

=
p
′

j

δ
′

j

(1 +

∑N
i=1 βj(i)

2

δ
′

j

) =
pj

δj

(1 +
1

δj

)

Hence, from the equations above, the parameters of Gamma distribution p
′

and

δ
′

should satisfy the following equations:

p
′

j

δ
′

j

=
pj

δj

(4.10)

p
′

j

δ
′

j

(1 +

∑N
i=1 βj(i)

2

δ
′

j

) =
pj

δj

(1 +
1

δj

) (4.11)
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Then, by the equations (4.10) and (4.11) we obtain,

1 +

∑N
i=1 βj(i)

2

δ
′

j

= 1 +
1

δj

δ
′

j = δj

N
∑

i=1

βj(i)
2

In each period, the arrival rate of ODF j is assumed to be Gamma distributed

with parameters p
′

j and delta
′

j. Note that the assumption of independent de-

mand throughout the horizon is not correct, but we only make an approximation.

Also, we do not obtain the same probability distribution, but make a two mo-

ment approximation by equating the expectation and variance.

4.3 Bayesian Demand Updating Model

In order to come up with a dynamic solution, at some predetermined points

in time, we update the demand for the remaining reservation period taking

the realized demands into account. Incorporating Beta distribution in the ar-

rival pattern induces correlation between the arrivals. Therefore, bookings on

hand provide information about bookings to arrive in the remaining part of the

reservation period. In finding the distribution of the demand for the remaining

periods, we use the derivations given by de Boer et al. (1999).

Suppose we are at period t. That is, there are t periods remaining until depar-

ture. Demand in the time interval [t, T ] is realized and we want to update the

demand distribution for the remaining number of periods. Let Nj(t; 0) denote

the number of arrivals for ODF j for the remaining t periods and Nj(T ; t) de-

note the realized demand before time t. According to realized demand Nj(T ; t),

we should find the distribution of the remaining demand Nj(t; 0). Using Bayes’
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rule, the distribution of Nj(t; 0) conditional on Nj(T ; t) is obtained as follows:

Pr(Nj(t; 0) = k|Nj(T ; t) = nj(T ; t)) =

=

∫ ∞

0

Pr(Nj(t; 0) = k|Nj(T ; t) = nj(T ; t); λj) f(λj|Nj(T ; t) = nj(T ; t))dλj

=

∫ ∞

0

Pr(Nj(t; 0) = k|Nj(T ; t) = nj(T ; t); λj)
Pr(Nj(T ; t) = nj(T ; t)|λj)f(λj)

Pr(Nj(T ; t) = nj(T ; t)
dλj.

In order to solve the above equation, we must first derive the distribution of the

number of arrivals Nj(T ; t). Using the equation (4.6) for the time interval [t, T ],

the distribution of the number of arrivals Nj(T ; t) will be,

Pr(Nj(T ; t) = k) = (
δj

δj + βj(T ; t)
)pj(

βj(T ; t)

δj + βj(T ; t)
)k Γ(k + pj)

Γ(pj)k!
.

where βj(t; 0) shows the percentage of the arrivals to come after period t, namely

in the remaining t periods of time. Similarly, βj(T ; t) is the percentage of the

arrivals to come before the period t. Recalling the equation (4.9)

βj(t; 0) = λj
Γ(αj + γj)

Γ(αj)Γ(γj)

βj−1
∑

l=0





γj − 1

l



 (−1)l 1

l + αj

(
t

T
)αj+l.

and βj(T ; t) = 1 − βj(t; 0).

Then, the conditional distribution of demand for the remaining reservation pe-

riod Nj(t; 0) on the realized demand Nj(T ; t) is given by de Boer (1999) as

follows:
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Pr(Nj(t; 0) = k|Nj(T ; t) = nj(T ; t)) =

=
(δj + βj(T ; t))pj+nj(T ;t)

Γ(pj + nj(T ; t))

βj(t; 0)k

k!

∫ ∞

0

λ
k+nj(T ;t)+pj−1
j e−(δj+1)λjdλj

= (
βj(t; 0)

δj + 1
)k(1 −

βj(t; 0)

δj + 1
)nj(T ;t)+p Γ(nj(T ; t) + pj + k)

Γ(nj(T ; t) + pj)k!
(4.12)

which is Negative Binomial Distribution with parameters nj(T ; t) + pj and

δj+βj(T ;t)

δj+1
. In the probabilistic models, we explicitly use the probability distribu-

tion of the Negative Binomial distribution given in equation (4.12). However,

for deterministic models, it is sufficient to know the expected demand for the

remaining horizon which is denoted by E(Nj(0; t)) and given by the following

equation.

E(Nj(0; t)) =
nj(T ; t) + p

δj + βj(T ; t)
βj(t; 0). (4.13)

4.4 Evaluation of the Numerical Results

For the three problem scenarios (base problem, problem with increased low fare

demand variance, problem with decreased fare variance), we solve the DLP, SLP

and the EMVLP model with different values of θ. The optimal number of seats

allocated to each itinerary and fare class combination are given in Table 4.1 for

the base problem. The results indicate that as θ increases, the number of seats

allocated to the highest fare class decreases. Recall that SLP is equivalent to

EMVLP with a variance penalty factor of zero. Among the probabilistic models,

SLP assigns the largest number of seats to fare class 1 as compared to the others.

The optimal seat allocations for the other two scenarios are presented in Tables

C.1 and C.2 in Appendix C. Similar solutions are obtained also for the other

two problem scenarios investigated. However, the penalty factor for variance of

the revenue is mostly effective in the problem where the difference between the
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fares is small. Since class 1 is not so much profitable as in the other problem

scenarios, the model assigns even less number of seats to that class. The main

reason for the decrease in the number of seats allocated to higher fare classes is

that the variance of demand for higher fare classes is high compared to lower fare

classes. Therefore, the EMVLP model has a tendency for reserving the seats for

less variable lower classes.

Table 4.1: Optimal allocations of the mathematical models for the base problem

ODF EMVLP
itinerary class DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

3 41 42 44 44 43 42 42 45
AB 2 40 40 41 40 39 38 36 35

1 30 40 39 35 31 25 18 13
3 0 0 1 6 11 18 28 31

AC 2 25 18 20 19 19 18 18 19
1 20 22 19 16 13 10 7 5
3 0 0 0 8 15 23 28 31

AD 2 24 21 21 20 19 18 18 17
1 20 17 15 12 10 8 5 4
3 30 23 25 25 25 24 24 25

BC 2 20 19 19 19 18 18 16 15
1 20 27 24 21 18 13 8 6
3 1 15 20 20 21 21 22 23

BD 2 20 16 16 16 15 15 15 15
1 20 22 20 18 16 14 11 9
3 45 38 39 39 39 40 43 47

CD 2 40 36 36 36 36 35 36 36
1 30 35 33 31 29 26 22 18

The graphs in Figures 4.3, 4.4 and 4.5 compare the optimal seat allocations of

the models for the itineraries AB, AC and AD with respect to fare classes, for

the base problem. As θ increases, the number of seats allocated to fare class 1

decrease whereas the number of seats allocated to fare class 3 shows increase.

The comparisons for other itineraries are given in Figures C.1, C.2 and C.3 in

Appendix C.
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Figure 4.3: Optimal seat allocations for itinerary AB.
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Figure 4.4: Optimal seat allocations for itinerary AC.

4.4.1 Results of Partitioned Booking Control Policy

After obtaining the optimal seat allocations by solving the mathematical models,

we simulate the allocations with the booking control policies given in Section 3.5.

Tables 4.2, 4.3 and 4.4 show the simulation results for the three problem scenarios

with partitioned booking control policy. In simulation of the partitioned booking

control policy we assume that low fare class customers usually arrive before high
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Figure 4.5: Optimal seat allocations for itinerary AD.

fare class customers which is called as low-before-high arrival pattern. However,

it is not necessary that all of the lower fare class customers book before all of

the higher fare class customers. The models are compared in terms of expected

revenue, standard deviation and coefficient of variation of revenue and load

factor of the network. Load factor of a flight is determined as the ratio of the

accepted number of requests to the capacity of the flight. For calculating the

load factor of the total network, we simply take the average of load factors of

the three flight legs. It is a reasonable approximation because the load factors

of the individual flights are very close to each other.

Table 4.2: Simulation results for partitioned booking limit control, base problem
(without update).

with low before high arrival pattern

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 70615 71735 71630 70899 69744 67776 63726 60055

Std. Dev 5390 6070 5440 4590 3770 2820 1800 1440

Coef. of V ar. 0.08 0.08 0.08 0.06 0.05 0.04 0.03 0.02

Load Factor 0.86 0.87 0.88 0.91 0.93 0.95 0.97 0.96
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It is observed that SLP gives the highest expected revenue with a partitioned

booking limit control policy. Moreover, expected revenue decreases as variance

penalty θ increases. Note that the load factor of the flights are higher for the

proposed model EMVLP as compared to DLP and SLP. EMVLP penalizes the

variance and assigns more seats to lower fare classes which causes the aircraft

to be filled with more passengers. The other models, on the other hand, fill the

aircraft with less number of passengers with higher fares. However, the impact

of increased load factor is smaller on the expected revenue than the impact of

the loss due to accepting less number of high fare class passengers. As a result,

the expected revenue decreases as variance penalty θ increases. With a parti-

tioned booking control policy, expected revenue strictly decreases in θ, but with

nested booking limit control and bid price control approaches we do not expect

the same behaviour. When the seat allocations are used with nested policies,

penalizing the variance would improve the expected revenue by reducing the

effect of overprotection.

Table 4.3: Simulation results for partitioned booking limit control, problem with
increased low fare demand variance (without update).

with low before high arrival pattern

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 69178 70614 70392 69670 68694 66900 63512 60034

Std. Dev 5500 6320 5440 4630 3930 3090 2270 1910

Coef. of V ar. 0.08 0.09 0.08 0.07 0.06 0.05 0.04 0.03

Load Factor 0.84 0.85 0.88 0.90 0.92 0.94 0.94 0.94

Another point to be emphasized is that as θ increases, standard deviation and

coefficient of variation of the revenue decrease. Since partitioned booking control

policy is seldom used in real life, we do not make any further analysis. However,
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Table 4.4: Simulation results for partitioned booking limit control, problem with
decreased fare variance (without update).

with low before high arrival pattern

EMVLP

Exp. Rev 59759 60692 60591 60277 59901 59131 57987 56485

Std. Dev 4070 3690 3160 2700 2400 1950 1540 1300

Coef. of V ar. 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02

Load Factor 0.86 0.89 0.92 0.93 0.94 0.96 0.97 0.97

for nested booking limit control and bid price control policies, we analyze the

impact of decreasing standard deviation on decreasing the probability of poor

performance in Section 4.4.2 under the subtitle of ”Probability of poor perfor-

mance”.

4.4.2 Results of Nested Booking Control Policy

The simulation results of the optimal allocations with nested booking control

policy for the base problem, for the problem with increased low fare demand vari-

ance and for the problem with decreased fare variance are presented in Tables

4.5, 4.6 and 4.7, respectively. Note that these results are obtained by solving the

mathematical models once at the beginning of the reservation period. In other

words, they are not updated. In the aforementioned tables, the results with

and without low-before-high arrival pattern assumptions are presented. Since

bid prices are effective only if they are updated, we do not present the results

obtained by bid price control policy here.

The first observation is that the revenues under nested booking control policy

significantly increase as compared to partitioned booking limit control policy.

Furthermore, the expected revenues are higher when there is no assumption

about the arrival order of different fare classes.
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Table 4.5: Simulation results for nested booking limit control, base problem (without
update).

low before high arrival pattern

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 75973 74880 75902 75818 75151 74663 71233 69443

Std. Dev 7540 7520 6950 5870 5350 5030 3440 3210

Coef. of V ar. 0.10 0.10 0.09 0.08 0.07 0.07 0.05 0.05

Load Factor 0.88 0.87 0.89 0.92 0.94 0.97 0.97 0.98

without any assumption about the arrival patterns

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 76772 75650 76692 77317 77306 76763 75935 75552

Std.Dev. 8290 8100 7650 6880 6130 5400 5080 4910

Coef. of V ar. 0.11 0.11 0.10 0.09 0.08 0.07 0.07 0.06

Load Factor 0.87 0.87 0.89 0.92 0.94 0.96 0.97 0.98

Expected Revenue

It is observed that for some values of θ, the variance of revenue decreases and,

at the same time, expectation of the revenue increases. Figures 4.6, 4.7 and

4.8 compare the expected revenues resulting from different models for the three

problem scenarios. In all of the problems, for θ being less than 0.003, the ex-

pected revenue obtained with our proposed models are greater than the ones

obtained by SLP. Furthermore, in the base problem, the expected revenue ob-

tained by the proposed model when θ = 0.001 is very close to the expected

revenue of DLP. For the decreased fare problem, penalizing the variance causes

the expected revenue to increase.

When Table 4.8 is analyzed, it is observed that the expected revenues are greater

than the DLP results for θ ≤ 0.005.
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Table 4.6: Simulation results for nested booking limit control, problem with increased
low fare demand variance (without update).

low before high arrival pattern

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 75367 74509 74946 74852 74358 73130 71696 70399

Std. Dev 7870 7980 6920 5890 5020 4210 3710 3550

Coef. of V ar. 0.09 0.08 0.07 0.06 0.06 0.06 99.89 99.99

Load Factor 0.86 0.85 0.89 0.92 0.94 0.96 0.97 0.98

without any assumption about the arrival patterns

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 76262 75380 76036 76452 76302 75809 75764 75606

Std.Dev. 8620 8880 7670 6870 6140 5530 5270 5160

Coef. of V ar. 0.11 0.12 0.10 0.09 0.08 0.07 0.07 0.07

Load Factor 0.87 0.85 0.89 0.91 0.93 0.95 0.97 0.97

Table 4.7: Simulation results for nested booking limit control, problem with decreased
fare variance(without update).

low before high arrival pattern

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 62705 63316 63597 63574 63792 62879 61856 61235

Std. Dev 5700 4780 4020 3440 3050 2550 2090 1900

Coef. of V ar. 0.09 0.08 0.06 0.05 0.05 0.04 0.03 0.03

Load Factor 0.88 0.90 0.93 0.94 0.95 0.97 0.98 0.98

without any assumption about the arrival patterns

EMVLP

Performance Measure DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 63058 64046 64092 64973 65063 64544 64188 64038

Std.Dev. 6080 5560 4720 4540 4250 3460 3180 2800

Coef. of V ar. 0.10 0.09 0.07 0.07 0.07 0.05 0.05 0.04

Load Factor 0.87 0.90 0.92 0.94 0.96 0.97 0.97 0.97
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Figure 4.6: Comparison of expected revenues for base problem.
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Figure 4.7: Comparison of expected revenues for problem with increased low fare
demand variance.
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Figure 4.8: Comparison of expected revenues for problem with decreased fare variance.

Standard Deviation and Coefficient of Variation

Variability of revenue is measured with standard deviation and coefficient of

variation. As it is illustrated in the Tables 4.5, 4.6 and 4.7, for the first two

problem scenarios, the highest variance in revenue is induced by the SLP model.

When the difference between the fares is small, DLP gives the highest variance.

As it is expected, standard deviation of revenue decreases as θ increases. The

coefficient of variation of revenue turns out to be similar for the three problem

except that it is slightly smaller in problem with decreased fare variance and a

bit higher in the problem with increased low fare demand variance. These so-

lutions indicate that with a reasonable penalty factor, more stable policies can

be attained without sacrificing from the expected revenue. To see the impact

of decreasing variance, we analyze the probability of poor performance resulting

from using the model solutions with nested booking control policy in the later

parts of this section.
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Probability of Poor Performance

Probability of poor performance is defined as the probability that revenue R is

less than a predetermined threshold level κ. We denote it by Pr(R ≤ κ). In

order to calculate this probability, we need to know the distribution of revenue.

The simulation results show that revenues obtained by nested booking limit

control policy without any update throughout the horizon fit well to Normal

Distribution. Then, assuming Normal Distribution, we calculate probability of

poor performance. As threshold levels, we take arbitrary revenue values that are

mostly within the interval of (µ, µ−2σ), where µ and σ are Normal Distribution

parameters. For Normal Distribution the interval [µ − 2σ), µ + 2σ] cover 95%

of all possible values. We believe that µ − 2σ is sufficient for representing poor

revenue values. Table 4.8 shows the probabilities that revenue is less than the

threshold levels for the base problem. It is observed that SLP model gives the

highest probabilities.

Table 4.8: Comparison of probability of poor performance for the base problem

DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 75973 74880 75902 75818 75151 74663 71233 69443

Thr. Val.(κ) Pr (R ≤ κ)

75000 0.45 0.51 0.45 0.44 0.49 0.53 0.84 0.96

72000 0.30 0.35 0.29 0.29 0.28 0.3 0.59 0.79

70000 0.21 0.26 0.20 0.15 0.17 0.18 0.36 0.57

67000 0.12 0.15 0.10 0.07 0.07 0.07 0.11 0.23

65000 0.07 0.10 0.06 0.03 0.03 0.03 0.04 0.08

The proposed EMVLP models with θ ≤ 0.003 are preferable to SLP because they

give higher revenues and lower variances. Although DLP model gives the best

expected revenue, it is comparable with the proposed model with θ = 0.002.
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DLP model gives an expected revenue of 75973 and the expected revenue of

EMVLP model with θ = 0.002 is 75818. However, probability that revenue be-

ing less than 70000 is 0.21 in the DLP whereas it is 0.15 in the proposed model.

The risk is decreased by 5% at the expense of a decrease of 0.2% in expected

revenue. For large flight networks, 5% decrease in risk would be critical and the

decision maker may choose to work with the proposed model instead of DLP.

Also, for threshold values of 67000 and 65000, the risk in EMVLP Model with

θ = 0.002 is %5 less than the risk contained in DLP model. For θ being 0.01 and

0.02, the expected revenues decrease so much that the probabilities that revenue

falls below the specified threshold values become higher than the probabilities

for DLP and SLP.

Table 4.9 shows the probability of poor performance for the problem with in-

creased low fare demand variance. Similar to the base problem, SLP is more

risky.

Table 4.9: Comparison of probability of poor performance for the problem with in-
creased low fare demand variance

DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 75367 74509 74946 74852 74358 73130 71696 70399

Thr. Val.(κ) Pr (R ≤ κ)

75000 0.48 0.52 0.50 0.51 0.55 0.67 0.81 0.99

72000 0.29 0.38 0.33 0.32 0.32 0.39 0.53 0.99

70000 0.21 0.28 0.24 0.21 0.20 0.23 0.32 0.54

67000 0.14 0.17 0.12 0.09 0.07 0.07 0.10 0.17

65000 0.07 0.14 0.08 0.05 0.06 0.03 0.03 0.03

The impact of decreasing variance is not as strong as it is in the base problem.

However, the probability of revenue being less than 67000 is 14% in DLP model.
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It is 9% and 7% in EMVLP model with θ being 0.001 and 0.002, respectively.

Expected revenue is the highest in DLP model. However, using EMVLP with

θ = 0.002 decreases the risk 5% at the expense of decreasing expected revenue by

0.06%. Also, with θ = 0.003, the risk probability decreases 7% and the expected

revenue decreases 0.13%. Analogous to the observations for the base problem,

for some values of θ, allocation policies obtained by EMVLP may be preferable

to SLP and DLP.

The most striking impact of variance penalization is seen in the third problem

scenario where the difference between fares is small. The results are given in

Table 4.10. For θ ≤ 0.005, the expected revenues are higher than DLP model

and probability of poor performance significantly decreases. In EMVLP model

with θ = 0.001, expected revenue is at the highest level and risk probability

falls to 0.19 (for threshold value 60000) from 0.32 in DLP model. The similar

behaviour is seen for other threshold values. When the difference between the

fares is small and the demand variance of high fare class is large compared to

other classes, penalizing variability is an effective method for both increasing

expected revenue and decreasing variance.

Table 4.10: Comparison of probability of poor performance for the problem with
decreased fare variance

DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

Exp. Rev 62705 63316 63597 63574 63792 62879 61856 61235

Thr. Val.(κ) Pr (R ≤ κ)

62000 0.45 0.39 0.34 0.32 0.33 0.37 0.53 0.66

60000 0.32 0.25 0.19 0.15 0.14 0.13 0.33 0.48

58000 0.21 0.16 0.09 0.06 0.04 0.03 0.04 0.05

57000 0.16 0.10 0.05 0.03 0.02 0.01 0.01 0.01

55000 0.09 0.04 0.02 0.01 0.01 0 0 0
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Bid Price Control Policy

To see performances of the models with an updated booking policy, we use bid

price control policy. We update bid prices 10 times during the reservation pe-

riod by taking the realized bookings into account. We update DLP, SLP and

EMVLP solutions with the value of θ that performs best in the solutions without

update. The simulation results for the problem with decreased fare variance is

given in Table 4.11.
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Table 4.11: Simulation results for updated bid price control, problem with decreased
fare variance.

The Model

Performance Measure DLP SLP θ = 0.001

Exp. Rev 66274 65139 65776

Std. Dev. 3910 3430 2900

Coef. of V ar. 0.06 0.05 0.04

Load Factor 0.95 0.96 0.97

As compared to booking control policy without update, variance of revenue

obtained with updating booking control policy turns out to be lower. Further-

more, using proposed EMVLP model with θ = 0.001 causes further decrease

in standard deviation as compared to DLP and SLP models. Although the ex-

pected revenue obtained by the EMVLP model is less than the one obtained

by DLP model, it may be a preferable option to DLP model because of the de-

creased variance. Note that the load factor and the expected revenue obtained

by EMVLP model is greater than the SLP model. This indicates that EMVLP

accepts more passengers with higher revenues as compared to SLP.
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CHAPTER 5

CONCLUSION

In this study, airline network seat inventory control problem without cancel-

lations and no-shows is analyzed. The study is carried out with the aim of

proposing seat allocation policies that considers other risk measures in addition

to expected revenue. This approach differentiates the study from the previous

studies existing in the literature.

We proposed two linear programming models that incorporate variability of the

revenue induced by seat allocation policies. In the first model, variance of the to-

tal marginal revenue is penalized by a factor θ in the objective function, and the

objective function maximizes expected revenue minus this penalized variance.

Although the variance of total marginal revenue is not equal to the variance of

the revenue, our simulation studies show that it affects the variability of revenue

significantly. In the second model, the objective function maximizes expected

revenue, but we add a constraint which sets an upper limit for the ratio of the

expected revenue to the variance of the total marginal revenue. This ratio is de-

termined from the solution of the first model. The motivation for developing a

second model is to use our model with bid price control policies. In applications,

where there is information about the coefficient of variation of the revenue, the

use of this model will be appropriate.

We simulate the arrival booking process with booking limit and bid price control

policies. For different problem scenarios, we compare the proposed models with

other models existing in the literature. It is observed that use of the proposed

model decreases the risk of poor performance by decreasing variability of the

revenue. Previous studies show that deterministic model (DLP) results in bet-
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ter expected revenues compared to probabilistic models. However, the proposed

model becomes a preferable option to DLP since it decreases the risk of poor

performance without causing an important decrease in expected revenue. Fur-

thermore, as long as variance penalty factor θ is within some interval, also the

expected revenue increases compared to other probabilistic models. Especially

when the difference between the fares of different fare classes is small or when

the variance of demand for high fare classes is high, the proposed model results

in expected revenues higher than DLP. Also for other cases, the expected rev-

enue obtained by the proposed model is higher than SLP and it is very close to

DLP.

As an extension of this study, including correlation between the demands of

different fare classes for an origin-destination pair can be considered. In this

study, we assume that demands for each ODF are independent. However, in-

cluding correlation between demands in the experiments may be a more realistic

representation of the problem.

We do not have the opportunity to collaborate and work with an airline com-

pany. The study can further be improved by working with real airline data and

testing the performance of proposed models for real operations.

Furthermore, the development of more sophisticated models still constitutes a

gap in the literature. It is certain that integrating nesting into the models will

significantly improve the network revenue. Also, development of easily to im-

plementable dynamic control policies is an important research direction.
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APPENDIX A

Table A.1: Fares of the itineraries with respect to fare class

Itinerary Fare Class 3 Fare Class 2 Fare Class 1

AB 75 125 250

AC 130 170 400

AD 200 320 460

BC 100 150 330

BD 160 200 420

CD 80 110 235

Table A.2: Adjusted fare settings of the itineraries with respect to fare class

Itinerary Fare Class 3 Fare Class 2 Fare Class 1

AB 75 125 150

AC 130 170 220

AD 200 320 440

BC 100 150 210

BD 160 200 250

CD 80 110 160

89



Table A.3: The demand distribution parameters of the itineraries with respect to fare
class

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary pj δj Ej SDj pj δj Ej SDj pj δj Ej SDj

AB 80 1.6 50 9.01 80 2 40 7.75 3 0.1 30 18.17

AC 80 2 40 7.75 50 2 25 6.12 2 0.1 20 14.83

AD 60 2 30 6.71 72 3 24 5.66 2 0.1 20 14.83

BC 60 2 30 6.71 40 2 20 5.48 2 0.1 20 14.83

BD 60 2 30 6.71 60 3 20 5.16 6 0.3 20 9.31

CD 80 1.6 50 9.01 80 2 40 7.75 6 0.2 30 13.42

Table A.4: Adjusted demand distribution parameters of the itineraries with respect
to fare class

Fare Class 3 Fare Class 2 Fare Class 1

Itinerary p δ E SD p δ E SD p δ E SD

AB 20 0.4 50 13.23 20 0.5 40 10.95 3 0.1 30 18.17

AC 20 0.5 40 10.95 5 0.2 25 12.25 2 0.1 20 14.83

AD 15 0.5 30 9.49 18 0.75 24 7.48 2 0.1 20 14.83

BC 15 0.5 30 9.49 10 0.5 20 7.75 2 0.1 20 14.83

BD 15 0.5 30 9.49 15 0.75 20 6.83 6 0.3 20 9.31

CD 20 0.4 50 13.23 20 0.5 40 10.95 6 0.2 30 13.42
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APPENDIX B
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Figure B.1: Normal probability plot of the revenue with the optimal DLP allocations
for the base problem.
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Figure B.2: Normal probability plot of the revenue with the optimal SLP allocations
for the base problem.
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APPENDIX C

Table C.1: Optimal allocations for the problem with increased low fare demand vari-
ance.

ODF EMVLP
itinerary class DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

3 41 41 41 40 40 41 45 50
AB 2 40 41 40 39 38 38 37 35

1 30 41 38 35 31 26 20 14
3 0 0 3 12 20 26 31 35

AC 2 25 15 15 14 14 14 16 17
1 20 23 19 16 13 10 7 5
3 0 0 9 13 15 18 21 23

AD 2 24 21 20 19 18 18 17 16
1 20 18 15 12 11 9 6 5
3 30 22 23 23 23 24 26 28

BC 2 20 19 18 18 18 17 17 16
1 20 28 25 21 18 14 9 6
3 1 17 18 19 19 21 23 24

BD 2 20 15 15 15 15 15 15 15
1 20 22 20 18 16 14 12 10
3 45 35 35 37 39 41 46 51

CD 2 40 36 35 35 36 36 37 37
1 30 36 33 32 31 28 23 19
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Figure C.1: Optimal seat allocations for itinerary BC.
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Figure C.2: Optimal seat allocations for itinerary BD.
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Figure C.3: Optimal seat allocations for itinerary CD.
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Table C.2: Optimal allocations for the problem with decreased fare variance.

ODF EMVLP
itinerary class DLP SLP θ = 0.001 θ = 0.002 θ = 0.003 θ = 0.005 θ = 0.01 θ = 0.02

3 41 45 44 43 42 42 44 46
AB 2 40 41 40 40 39 38 37 36

1 30 36 33 31 29 25 20 16
3 0 4 9 11 15 23 29 33

AC 2 25 20 20 19 19 19 18 19
1 20 14 12 11 10 8 7 6
3 0 0 6 13 16 18 21 23

AD 2 24 22 21 20 20 19 18 17
1 20 18 15 12 10 8 6 4
3 30 25 25 25 25 24 24 25

BC 2 20 20 19 19 18 18 17 16
1 20 22 20 18 16 13 10 7
3 1 21 21 21 21 22 23 24

BD 2 20 17 16 16 16 15 15 15
1 20 17 16 15 14 13 12 11
3 45 38 39 39 40 42 44 48

CD 2 40 37 37 36 36 37 37 37
1 30 30 29 28 27 26 24 21
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APPENDIX D 

R P (R = r) R P (R = r) R P (R = r) R P (R = r) R P (R = r) 

34660 1.65E-13 36540 5.99E-12 37360 6.06E-11 38180 2.06E-10 39000 8.24E-10 

34900 4.51E-13 36560 1.13E-10 37380 8.55E-11 38200 3.26E-10 39020 6.66E-09 

35140 8.20E-13 36580 1.82E-11 37400 1.02E-11 38220 2.27E-10 39040 3.98E-10 

35360 1.24E-12 36600 1.87E-11 37420 2.20E-11 38240 7.02E-11 39060 9.58E-10 

35600 1.69E-12 36620 6.41E-13 37440 1.09E-11 38260 1.35E-09 39080 4.31E-10 

35620 9.73E-12 36640 8.01E-12 37460 9.02E-11 38280 8.28E-11 39100 4.43E-10 

35840 2.16E-12 36660 1.44E-11 37480 7.37E-11 38300 2.40E-10 39120 5.49E-10 

35860 2.65E-11 36680 4.58E-11 37500 7.63E-11 38320 6.52E-11 39140 8.88E-10 

35880 5.73E-14 36700 1.43E-12 37520 5.23E-11 38340 9.00E-11 39160 4.47E-10 

35900 1.76E-14 36720 1.93E-12 37540 1.03E-09 38360 5.94E-10 39180 5.07E-10 

35920 1.76E-14 36740 1.02E-12 37560 3.58E-10 38380 1.21E-10 39200 8.29E-10 

35940 3.10E-14 36760 8.79E-12 37580 7.95E-11 38400 2.75E-10 39220 1.66E-09 

35960 6.98E-14 36780 1.56E-11 37600 8.70E-11 38420 1.76E-10 39240 1.01E-09 

35980 2.91E-12 36800 1.78E-10 37620 4.82E-11 38440 3.84E-10 39260 6.35E-10 

36000 2.25E-14 36820 2.09E-12 37640 2.85E-11 38460 2.41E-10 39280 1.51E-09 

36020 7.62E-15 36840 2.51E-12 37660 2.73E-11 38480 6.90E-10 39300 4.50E-10 

36040 8.36E-14 36860 8.82E-12 37680 6.15E-11 38500 1.83E-10 39320 7.93E-10 

36060 7.24E-14 36880 1.88E-11 37700 1.02E-10 38520 2.08E-10 39340 4.97E-10 

36080 4.83E-11 36900 5.71E-11 37720 1.07E-10 38540 3.16E-10 39360 9.06E-10 

36100 3.53E-12 36920 4.05E-11 37740 4.64E-11 38560 1.86E-10 39380 7.83E-10 

36120 2.55E-13 36940 5.43E-12 37760 7.10E-11 38580 8.53E-10 39400 7.57E-10 

36140 9.01E-14 36960 3.87E-12 37780 4.84E-10 38600 1.38E-10 39420 1.42E-09 

36160 2.64E-13 36980 1.03E-11 37800 7.91E-11 38620 5.79E-10 39440 1.10E-09 

36180 8.75E-14 37000 1.99E-11 37820 1.27E-10 38640 3.69E-10 39460 5.57E-10 

36200 4.25E-12 37020 6.33E-11 37840 3.99E-11 38660 3.05E-10 39480 1.15E-09 

36220 7.98E-12 37040 4.31E-11 37860 6.97E-11 38680 5.14E-10 39500 1.16E-09 

36240 1.83E-13 37060 5.24E-12 37880 4.74E-11 38700 7.72E-10 39520 1.98E-09 

36260 2.45E-14 37080 6.44E-11 37900 4.86E-11 38720 2.24E-10 39540 1.57E-09 

36280 4.91E-13 37100 2.24E-11 37920 3.98E-10 38740 3.91E-10 39560 9.83E-10 

36300 2.58E-13 37120 7.19E-11 37940 1.69E-10 38760 2.94E-10 39580 6.84E-10 

36320 7.78E-11 37140 4.68E-11 37960 6.53E-11 38780 4.93E-10 39600 1.53E-09 

36340 9.66E-12 37160 5.74E-11 37980 1.58E-10 38800 9.16E-10 39620 9.50E-10 

36360 7.77E-13 37180 1.27E-11 38000 4.26E-11 38820 5.07E-10 39640 2.96E-09 

36380 2.73E-13 37200 6.87E-12 38020 6.66E-10 38840 3.59E-10 39660 2.72E-09 

36400 8.83E-13 37220 2.54E-11 38040 4.89E-10 38860 2.93E-10 39680 1.28E-09 

36420 5.18E-12 37240 8.01E-11 38060 9.28E-11 38880 6.36E-10 39700 7.39E-10 

36440 1.16E-11 37260 5.40E-11 38080 6.97E-11 38900 7.90E-10 39720 1.17E-09 

36460 1.47E-11 37280 7.10E-11 38100 6.99E-11 38920 9.44E-10 39740 1.39E-09 
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R P (R = r) R P (R = r) R P (R = r) R P (R = r) R P (R = r) 

36480 7.22E-13 37300 9.73E-12 38120 5.76E-11 38940 2.28E-10 39760 3.70E-09 

36500 1.10E-13 37320 1.71E-10 38140 4.91E-10 38960 5.19E-10 39780 7.72E-10 

36520 1.38E-12 37340 8.55E-11 38160 1.56E-10 38980 6.58E-10 39800 1.33E-09 

39820 1.02E-09 40640 3.43E-09 41460 9.48E-09 42180 4.34E-08 43000 3.75E-08 

39840 2.65E-09 40660 4.59E-09 41480 6.65E-09 42200 4.12E-08 43020 4.21E-08 

39860 2.60E-09 40680 2.91E-09 41500 1.78E-08 42220 1.09E-08 43040 3.88E-08 

39880 1.26E-09 40700 2.69E-09 41520 1.39E-08 42240 1.49E-08 43060 6.18E-08 

39900 3.75E-09 40720 4.45E-09 41540 4.95E-08 42260 4.08E-08 43080 4.03E-08 

39920 1.33E-09 40740 4.26E-09 41560 1.10E-08 42280 2.53E-08 43100 4.44E-08 

39940 1.49E-09 40760 3.12E-09 41580 5.67E-09 42300 1.63E-08 43120 4.83E-08 

39960 2.15E-09 40780 1.06E-08 41600 1.64E-08 42320 1.77E-08 43140 6.18E-08 

39980 2.54E-09 40800 6.94E-09 41620 1.52E-08 42340 2.53E-08 43160 4.18E-08 

40000 2.41E-09 40820 3.77E-09 41640 1.41E-08 42360 1.48E-08 43180 8.08E-08 

40020 1.05E-09 40840 6.22E-09 41660 6.84E-09 42380 1.50E-08 43200 4.75E-08 

40040 1.60E-09 40860 5.22E-09 41680 7.06E-09 42400 4.52E-08 43220 3.90E-08 

40060 1.73E-09 40880 7.91E-09 41700 8.72E-09 42420 3.79E-08 43240 3.93E-08 

40080 4.77E-09 40900 3.76E-09 41720 1.15E-08 42440 1.58E-08 43260 5.85E-08 

40100 1.54E-09 40920 2.86E-09 41740 2.96E-08 42460 1.67E-08 43280 1.00E-07 

40120 1.91E-09 40940 4.42E-09 41760 8.27E-09 42480 1.93E-08 43300 4.28E-08 

40140 3.47E-09 40960 9.14E-09 41780 2.54E-08 42500 1.54E-07 43320 5.92E-08 

40160 2.34E-09 40980 4.27E-09 41800 1.55E-08 42520 3.78E-08 43340 5.78E-08 

40180 1.09E-09 41000 7.20E-09 41820 9.58E-09 42540 1.89E-08 43360 6.00E-08 

40200 4.52E-09 41020 4.02E-09 41840 1.97E-08 42560 2.03E-08 43380 8.16E-08 

40220 1.62E-09 41040 9.79E-09 41860 1.79E-08 42580 2.14E-08 43400 7.69E-08 

40240 5.83E-09 41060 5.44E-09 41880 1.36E-08 42600 2.08E-08 43420 7.59E-08 

40260 1.52E-09 41080 5.22E-09 41900 6.82E-09 42620 4.09E-08 43440 4.71E-08 

40280 3.29E-09 41100 7.58E-09 41920 7.00E-09 42640 2.27E-08 43460 4.91E-08 

40300 5.83E-09 41120 6.76E-09 41940 1.57E-08 42660 4.04E-08 43480 5.34E-08 

40320 4.12E-09 41140 4.56E-09 41960 2.89E-08 42680 2.14E-08 43500 3.34E-07 

40340 1.98E-09 41160 9.03E-09 41980 1.29E-08 42700 2.76E-08 43520 5.47E-08 

40360 2.57E-09 41180 4.48E-09 42000 8.84E-09 42720 2.77E-08 43540 6.81E-08 

40380 4.34E-09 41200 1.92E-08 42020 1.60E-08 42740 8.23E-08 43560 6.13E-08 

40400 2.68E-09 41220 9.60E-09 42040 2.54E-08 42760 2.61E-08 43580 5.47E-08 

40420 2.60E-09 41240 6.30E-09 42060 2.05E-08 42780 2.89E-08 43600 6.44E-08 

40440 5.65E-09 41260 1.19E-08 42080 1.60E-08 42800 2.56E-08 43620 9.49E-08 

40460 2.30E-09 41280 6.57E-09 42100 2.17E-08 42820 2.64E-08 43640 7.09E-08 

40480 2.13E-09 41300 7.72E-09 42120 1.18E-08 42840 5.75E-08 43660 6.65E-08 

40500 3.67E-09 41320 9.36E-09 42140 9.63E-09 42860 2.99E-08 43680 6.11E-08 

40520 1.49E-08 41340 5.88E-09 42160 1.32E-08 42880 2.69E-08 43700 7.03E-08 

40540 6.04E-09 41360 6.18E-09 42080 1.60E-08 42900 4.00E-08 43720 6.99E-08 

40560 5.95E-09 41380 9.13E-09 42100 2.17E-08 42920 2.83E-08 43740 7.35E-08 

40580 2.29E-09 41400 1.51E-08 42120 1.18E-08 42940 3.53E-08 43760 8.29E-08 
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40600 8.04E-09 41420 6.70E-09 42140 9.63E-09 42960 6.38E-08 43780 7.86E-08 

40620 3.16E-09 41440 1.29E-08 42160 1.32E-08 42980 3.35E-08 43800 6.40E-08 

43820 8.41E-08 44640 1.78E-07 45460 3.00E-07 41720 1.15E-08 43720 6.99E-08 

43840 7.79E-08 44660 1.60E-07 45480 3.28E-07 41740 2.96E-08 43740 7.35E-08 

43860 1.21E-07 44680 1.61E-07 45500 3.46E-07 41760 8.27E-09 43760 8.29E-08 

43880 7.83E-08 44700 1.68E-07 45520 3.08E-07 41780 2.54E-08 43780 7.86E-08 

43900 8.33E-08 44720 1.98E-07 45540 3.45E-07 41800 1.55E-08 43800 6.40E-08 

43920 8.70E-08 44740 1.60E-07 45560 3.28E-07 41820 9.58E-09 43820 8.41E-08 

43940 8.71E-08 44760 1.94E-07 45580 3.23E-07 41840 1.97E-08 43840 7.79E-08 

43960 1.13E-07 44780 1.79E-07 45600 3.81E-07 41860 1.79E-08 43860 1.21E-07 

43980 1.17E-07 44800 1.68E-07 45620 3.51E-07 41880 1.36E-08 43880 7.83E-08 

44000 1.10E-07 44820 1.94E-07 45640 4.17E-07 41900 6.82E-09 43900 8.33E-08 

44020 9.56E-08 44840 2.16E-07 45660 3.37E-07 41920 7.00E-09 43920 8.70E-08 

44040 1.02E-07 44860 2.81E-07 45680 3.82E-07 41940 1.57E-08 43940 8.71E-08 

44060 1.11E-07 44880 2.05E-07 45700 3.76E-07 41960 2.89E-08 43960 1.13E-07 

44080 1.44E-07 44900 1.88E-07 45460 3.00E-07 41980 1.29E-08 43980 1.17E-07 

44100 1.06E-07 44920 2.03E-07 45480 3.28E-07 42000 8.84E-09 44000 1.10E-07 

44120 9.19E-08 44940 2.31E-07 45500 3.46E-07 42020 1.60E-08 44020 9.56E-08 

44140 2.14E-07 44960 2.54E-07 45520 3.08E-07 42040 2.54E-08 44040 1.02E-07 

44160 1.20E-07 44980 2.17E-07 45540 3.45E-07 42060 2.05E-08 44060 1.11E-07 

44180 1.10E-07 45000 2.14E-07 45560 3.28E-07 42080 1.60E-08 44080 1.44E-07 

44200 1.23E-07 45020 2.12E-07 45580 3.23E-07 42100 2.17E-08 44100 1.06E-07 

44220 1.29E-07 45040 2.37E-07 45600 3.81E-07 42120 1.18E-08 44120 9.19E-08 

44240 1.08E-07 45060 2.28E-07 45620 3.51E-07 42140 9.63E-09 44140 2.14E-07 

44260 1.16E-07 45080 3.15E-07 45640 4.17E-07 42160 1.32E-08 44160 1.20E-07 

44280 1.32E-07 45100 2.39E-07 45660 3.37E-07 42180 4.34E-08 44180 1.10E-07 

44300 2.26E-07 45120 2.28E-07 45680 3.82E-07 42200 4.12E-08 44200 1.23E-07 

44320 1.59E-07 45140 2.36E-07 45700 3.76E-07 42220 1.09E-08 44220 1.29E-07 

44340 1.19E-07 45160 3.37E-07 45460 3.00E-07 42240 1.49E-08 44240 1.08E-07 

44360 1.32E-07 45180 2.47E-07 45480 3.28E-07 42260 4.08E-08 44260 1.16E-07 

44380 2.19E-07 45200 2.40E-07 45500 3.46E-07 42280 2.53E-08 44280 1.32E-07 

44400 1.37E-07 45220 2.47E-07 45520 3.08E-07 42300 1.63E-08 44300 2.26E-07 

44420 1.54E-07 45240 2.65E-07 45540 3.45E-07 42320 1.77E-08 44320 1.59E-07 

44440 1.36E-07 45260 5.13E-07 45560 3.28E-07 42340 2.53E-08 44340 1.19E-07 

44460 1.36E-07 45280 2.94E-07 45580 3.23E-07 42360 1.48E-08 44360 1.32E-07 

44480 1.31E-07 45300 2.73E-07 45600 3.81E-07 42380 1.50E-08 44380 2.19E-07 

44500 1.52E-07 45320 3.58E-07 45620 3.51E-07 42400 4.52E-08 44400 1.37E-07 

44520 1.44E-07 45340 2.57E-07 45640 4.17E-07 42420 3.79E-08 44420 1.54E-07 

44540 1.62E-07 45360 2.94E-07 45660 3.37E-07 42440 1.58E-08 44440 1.36E-07 

44560 1.41E-07 45380 3.31E-07 45680 3.82E-07 42460 1.67E-08 44460 1.36E-07 

44580 1.35E-07 45400 2.88E-07 45700 3.76E-07 42480 1.93E-08 44480 1.31E-07 
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44600 1.68E-07 45420 2.83E-07 45460 3.00E-07 42500 1.54E-07 44500 1.52E-07 

44620 2.45E-07 45440 2.85E-07 45480 3.28E-07 42520 3.78E-08 44520 1.44E-07 

34660 1.65E-13 37720 1.07E-10 45520 3.08E-07 45880 4.08E-07 46700 7.32E-07 

34900 4.51E-13 37740 4.64E-11 45540 3.45E-07 45900 4.30E-07 46720 8.15E-07 

35140 8.20E-13 37760 7.10E-11 45560 3.28E-07 45920 4.14E-07 46740 8.37E-07 

35360 1.24E-12 37780 4.84E-10 45580 3.23E-07 45940 5.62E-07 46760 8.22E-07 

35600 1.69E-12 37800 7.91E-11 45600 3.81E-07 45960 4.45E-07 46780 7.82E-07 

35620 9.73E-12 37820 1.27E-10 45620 3.51E-07 45980 4.37E-07 46800 7.98E-07 

35840 2.16E-12 37840 3.99E-11 45640 4.17E-07 46000 4.65E-07 46820 8.14E-07 

35860 2.65E-11 37860 6.97E-11 45660 3.37E-07 46020 4.73E-07 46840 9.24E-07 

35880 5.73E-14 37880 4.74E-11 45680 3.82E-07 46040 5.24E-07 46860 8.69E-07 

35900 1.76E-14 37900 4.86E-11 45700 3.76E-07 46060 4.55E-07 46880 8.29E-07 

35920 1.76E-14 37920 3.98E-10 45720 4.50E-07 46080 5.01E-07 46900 8.74E-07 

35940 3.10E-14 37940 1.69E-10 45740 3.72E-07 46100 5.14E-07 46920 8.67E-07 

35960 6.98E-14 37960 6.53E-11 45760 3.67E-07 46120 5.01E-07 46940 1.01E-06 

35980 2.91E-12 37980 1.58E-10 45780 4.19E-07 46140 5.10E-07 46960 9.22E-07 

36000 2.25E-14 38000 4.26E-11 45800 3.87E-07 46160 5.48E-07 46980 9.50E-07 

36020 7.62E-15 38020 6.66E-10 45820 4.39E-07 46180 5.78E-07 47000 9.05E-07 

36040 8.36E-14 38040 4.89E-10 45840 4.09E-07 46200 5.46E-07 47020 9.33E-07 

36060 7.24E-14 38060 9.28E-11 45860 4.27E-07 46220 5.36E-07 47040 9.32E-07 

36080 4.83E-11 38080 6.97E-11 45880 4.08E-07 46240 5.23E-07 47060 9.64E-07 

36100 3.53E-12 38100 6.99E-11 45900 4.30E-07 46260 1.17E-06 47080 1.05E-06 

36120 2.55E-13 38120 5.76E-11 45920 4.14E-07 46280 5.59E-07 47100 9.59E-07 

36140 9.01E-14 38140 4.91E-10 45940 5.62E-07 46300 5.49E-07 47120 9.72E-07 

36160 2.64E-13 38160 1.56E-10 45960 4.45E-07 46320 6.27E-07 47140 1.04E-06 

36180 8.75E-14 38180 2.06E-10 45980 4.37E-07 46340 6.08E-07 47160 1.03E-06 

36200 4.25E-12 38200 3.26E-10 46000 4.65E-07 46360 5.69E-07 47180 1.11E-06 

36220 7.98E-12 38220 2.27E-10 46020 4.73E-07 46380 5.85E-07 47200 1.12E-06 

36240 1.83E-13 38240 7.02E-11 46040 5.24E-07 46400 5.95E-07 47220 1.07E-06 

36260 2.45E-14 38260 1.35E-09 46060 4.55E-07 46420 6.30E-07 47240 1.05E-06 

36280 4.91E-13 38280 8.28E-11 46080 5.01E-07 46440 6.64E-07 47260 1.09E-06 

36300 2.58E-13 38300 2.40E-10 46100 5.14E-07 46460 6.07E-07 47280 1.08E-06 

36320 7.78E-11 38320 6.52E-11 46120 5.01E-07 46480 6.14E-07 47300 1.18E-06 

36340 9.66E-12 38340 9.00E-11 46140 5.10E-07 46500 6.48E-07 47320 1.28E-06 

36360 7.77E-13 38360 5.94E-10 46160 5.48E-07 46520 6.95E-07 47340 1.12E-06 

36380 2.73E-13 38380 1.21E-10 45720 4.50E-07 46540 6.70E-07 47360 1.15E-06 

36400 8.83E-13 38400 2.75E-10 45740 3.72E-07 46560 6.85E-07 47380 1.23E-06 

36420 5.18E-12 38420 1.76E-10 45760 3.67E-07 46580 6.85E-07 47400 1.24E-06 

36440 1.16E-11 38440 3.84E-10 45780 4.19E-07 46600 6.79E-07 47420 1.22E-06 

36460 1.47E-11 38460 2.41E-10 45800 3.87E-07 46620 7.22E-07 47440 1.28E-06 

36480 7.22E-13 38480 6.90E-10 45820 4.39E-07 46640 7.24E-07 47460 1.25E-06 

36500 1.10E-13 38500 1.83E-10 45840 4.09E-07 46660 9.59E-07 47480 1.25E-06 
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36520 1.38E-12 38520 2.08E-10 45860 4.27E-07 46680 7.45E-07 47500 1.27E-06 

47520 1.41E-06 48040 1.75E-06 48860 2.94E-06 49680 4.73E-06 50500 7.43E-06 

47540 1.30E-06 48060 1.88E-06 48880 2.96E-06 49700 5.11E-06 50520 7.49E-06 

47560 1.28E-06 48080 1.95E-06 48900 3.06E-06 49720 4.84E-06 50540 7.57E-06 

47580 1.37E-06 48100 1.82E-06 48920 3.00E-06 49740 5.00E-06 50560 7.65E-06 

47600 1.40E-06 48120 1.85E-06 48940 3.10E-06 49760 4.98E-06 50580 7.82E-06 

47620 1.99E-06 48140 2.00E-06 48960 3.10E-06 49780 5.02E-06 50600 7.79E-06 

47640 1.46E-06 48160 1.89E-06 48980 3.17E-06 49800 5.09E-06 50620 7.92E-06 

47660 1.41E-06 48180 2.07E-06 49000 3.18E-06 49820 5.10E-06 50640 8.01E-06 

47680 1.47E-06 48200 2.01E-06 49020 3.22E-06 49840 5.21E-06 50660 8.09E-06 

47700 1.43E-06 48220 2.07E-06 49040 3.27E-06 49860 5.22E-06 50680 8.12E-06 

47720 1.46E-06 48240 2.00E-06 49060 3.36E-06 49880 5.33E-06 50700 8.22E-06 

47740 1.60E-06 48260 2.00E-06 49080 3.39E-06 49900 5.34E-06 50720 8.35E-06 

47760 1.48E-06 48280 2.04E-06 49100 3.47E-06 49920 5.40E-06 50740 8.41E-06 

47780 1.48E-06 48300 2.37E-06 49120 3.53E-06 49940 5.45E-06 50760 8.55E-06 

47800 1.52E-06 48320 2.09E-06 49140 3.51E-06 49960 5.69E-06 50780 8.68E-06 

47820 1.65E-06 48340 2.11E-06 49160 3.58E-06 49980 5.68E-06 50800 8.79E-06 

47840 1.55E-06 48360 2.15E-06 49180 3.60E-06 50000 5.67E-06 50820 8.76E-06 

47860 1.73E-06 48380 2.32E-06 49200 3.61E-06 50020 5.70E-06 50840 8.88E-06 

47880 1.58E-06 48400 2.40E-06 49220 3.66E-06 50040 5.80E-06 50860 9.00E-06 

47900 1.72E-06 48420 2.29E-06 49240 3.69E-06 50060 5.86E-06 50880 9.05E-06 

47920 1.72E-06 48440 2.33E-06 49260 3.82E-06 50080 5.97E-06 50900 9.13E-06 

47940 1.64E-06 48460 2.37E-06 49280 3.81E-06 50100 6.00E-06 50920 9.20E-06 

47960 1.85E-06 48480 2.29E-06 49300 3.90E-06 50120 6.04E-06 50940 9.36E-06 

47980 1.73E-06 48500 2.37E-06 49320 3.87E-06 50140 6.09E-06 50960 9.49E-06 

48000 1.72E-06 48520 2.58E-06 49340 3.95E-06 50160 6.19E-06 50980 9.63E-06 

48020 1.81E-06 48540 2.50E-06 49360 3.95E-06 50180 6.31E-06 51000 9.57E-06 

48040 1.75E-06 48560 2.42E-06 49380 4.12E-06 50200 6.40E-06 51020 9.73E-06 

48060 1.88E-06 48580 2.45E-06 49400 4.06E-06 50220 6.36E-06 51040 9.77E-06 

48080 1.95E-06 48600 2.49E-06 49420 4.09E-06 50240 6.44E-06 51060 1.02E-05 

48100 1.82E-06 48620 4.38E-06 49440 4.17E-06 50260 6.50E-06 51080 1.00E-05 

48120 1.85E-06 48640 2.54E-06 49460 4.18E-06 50280 6.84E-06 51100 1.01E-05 

48140 2.00E-06 48660 2.63E-06 49480 4.29E-06 50300 6.64E-06 51120 1.02E-05 

48160 1.89E-06 48680 2.62E-06 49500 4.43E-06 50320 6.72E-06 51140 1.03E-05 

48180 2.07E-06 48700 2.72E-06 49520 4.35E-06 50340 6.79E-06 51160 1.05E-05 

48200 2.01E-06 48720 2.69E-06 49540 4.51E-06 50360 6.88E-06 51180 1.07E-05 

48220 2.07E-06 48740 2.72E-06 49560 4.46E-06 50380 7.13E-06 51200 1.06E-05 

48240 2.00E-06 48760 2.77E-06 49580 4.48E-06 50400 7.05E-06 51220 1.08E-05 

48260 2.00E-06 48780 2.78E-06 49600 4.75E-06 50420 7.11E-06 51240 1.09E-05 

47980 1.73E-06 48800 2.81E-06 49620 4.60E-06 50440 7.24E-06 51260 1.10E-05 

48000 1.72E-06 48820 2.87E-06 49640 4.66E-06 50460 7.23E-06 51280 1.11E-05 

48020 1.81E-06 48840 2.90E-06 49660 4.69E-06 50480 7.33E-06 51300 1.13E-05 
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51320 1.13E-05 54140 4.11E-05 54960 5.73E-05 55780 7.85E-05 56600 1.06E-04 

51340 1.14E-05 54160 4.14E-05 54980 5.78E-05 55800 7.91E-05 56620 1.06E-04 

51360 1.15E-05 54180 4.18E-05 55000 5.82E-05 55820 7.97E-05 56640 1.07E-04 

51380 1.23E-05 54200 4.21E-05 55020 5.87E-05 55840 8.02E-05 56660 1.08E-04 

51400 1.18E-05 54220 4.25E-05 55040 5.92E-05 55860 8.08E-05 56680 1.09E-04 

51420 1.19E-05 54240 4.28E-05 55060 5.96E-05 55880 8.14E-05 56700 1.09E-04 

51440 1.20E-05 54260 4.32E-05 55080 6.01E-05 55900 8.20E-05 56720 1.10E-04 

51460 1.22E-05 54280 4.36E-05 55100 6.06E-05 55920 8.26E-05 56740 1.11E-04 

51480 1.22E-05 54300 4.39E-05 55120 6.10E-05 55940 8.33E-05 56760 1.12E-04 

51500 1.23E-05 54320 4.43E-05 55140 6.15E-05 55960 8.39E-05 56780 1.12E-04 

51520 1.26E-05 54340 4.46E-05 55160 6.20E-05 55980 8.45E-05 56800 1.13E-04 

51540 1.26E-05 54360 4.50E-05 55180 6.25E-05 56000 8.51E-05 56820 1.14E-04 

51560 1.27E-05 54380 4.54E-05 55200 6.30E-05 56020 8.57E-05 56840 1.15E-04 

51580 1.29E-05 54400 4.58E-05 55220 6.35E-05 56040 8.64E-05 56860 1.15E-04 

51600 1.29E-05 54420 4.61E-05 55240 6.40E-05 56060 8.70E-05 56880 1.16E-04 

51620 1.31E-05 54440 4.65E-05 55260 6.44E-05 56080 8.76E-05 56900 1.17E-04 

51640 1.33E-05 54460 4.69E-05 55280 6.49E-05 56100 8.83E-05 56920 1.18E-04 

51660 1.35E-05 54480 4.73E-05 55300 6.54E-05 56120 8.89E-05 56940 1.19E-04 

51680 1.35E-05 54500 4.77E-05 55320 6.60E-05 56140 8.96E-05 56960 1.20E-04 

51700 1.36E-05 54520 4.81E-05 55340 6.65E-05 56160 9.02E-05 56980 1.20E-04 

53720 3.44E-05 54540 4.85E-05 55360 6.70E-05 56180 9.09E-05 57000 1.21E-04 

53740 3.64E-05 54560 4.89E-05 55380 6.75E-05 56200 9.15E-05 57020 1.22E-04 

53760 3.50E-05 54580 4.93E-05 55400 6.80E-05 56220 9.22E-05 57040 1.23E-04 

53780 3.53E-05 54600 4.97E-05 55420 6.85E-05 56240 9.29E-05 57060 1.24E-04 

53800 3.56E-05 54620 5.01E-05 55440 6.91E-05 56260 9.35E-05 57080 1.25E-04 

53820 3.59E-05 54640 5.05E-05 55460 6.96E-05 56280 9.42E-05 57100 1.25E-04 

53840 3.62E-05 54660 5.09E-05 55480 7.01E-05 56300 9.49E-05 57120 1.26E-04 

53860 3.65E-05 54680 5.13E-05 55500 7.06E-05 56320 9.56E-05 57140 1.27E-04 

53880 3.68E-05 54700 5.17E-05 55520 7.12E-05 56340 9.63E-05 57160 1.28E-04 

53900 3.71E-05 54720 5.21E-05 55540 7.17E-05 56360 9.69E-05 57180 1.29E-04 

53920 3.74E-05 54740 5.25E-05 55560 7.23E-05 56380 9.76E-05 57200 1.30E-04 

53940 3.78E-05 54760 5.30E-05 55580 7.28E-05 56400 9.83E-05 57220 1.31E-04 

53960 3.81E-05 54780 5.34E-05 55600 7.34E-05 56420 9.90E-05 57240 1.31E-04 

53980 3.84E-05 54800 5.38E-05 55620 7.39E-05 56440 9.97E-05 57260 1.32E-04 

54000 3.87E-05 54820 5.42E-05 55640 7.45E-05 56460 1.00E-04 57280 1.33E-04 

54020 3.91E-05 54840 5.47E-05 55660 7.50E-05 56480 1.01E-04 57300 1.34E-04 

54040 3.94E-05 54860 5.51E-05 55680 7.56E-05 56500 1.02E-04 57320 1.35E-04 

54060 3.97E-05 54880 5.56E-05 55700 7.62E-05 56520 1.03E-04 57340 1.36E-04 

54080 4.01E-05 54900 5.60E-05 55720 7.67E-05 56540 1.03E-04 57360 1.37E-04 

54100 4.04E-05 54920 5.64E-05 55740 7.73E-05 56560 1.04E-04 57380 1.38E-04 

54120 4.07E-05 54940 5.69E-05 55760 7.79E-05 56580 1.05E-04 57400 1.39E-04 
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57420 1.39E-04 57640 1.50E-04 62800 5.79E-04 63620 6.78E-04 66440 1.03E-03 

57440 1.40E-04 57660 1.51E-04 62820 5.82E-04 63640 6.80E-04 66460 1.04E-03 

57460 1.41E-04 57680 1.52E-04 62840 5.84E-04 63660 6.83E-04 66480 1.04E-03 

57480 1.42E-04 57700 1.53E-04 62860 5.86E-04 63680 6.85E-04 66500 1.04E-03 

57500 1.43E-04 62060 4.96E-04 62880 5.89E-04 63700 6.88E-04 66520 1.04E-03 

57520 1.44E-04 62080 4.98E-04 62900 5.91E-04 65720 9.44E-04 66540 1.05E-03 

57540 1.45E-04 62100 5.00E-04 62920 5.93E-04 65740 9.47E-04 66560 1.05E-03 

57560 1.46E-04 62120 5.02E-04 62940 5.96E-04 65760 9.50E-04 66580 1.05E-03 

57580 1.47E-04 62140 5.05E-04 62960 5.98E-04 65780 9.52E-04 66600 1.05E-03 

57600 1.48E-04 62160 5.07E-04 62980 6.00E-04 65800 9.55E-04 66620 1.05E-03 

57620 1.49E-04 62180 5.09E-04 63000 6.03E-04 65820 9.57E-04 66640 1.06E-03 

57640 1.50E-04 62200 5.11E-04 63020 6.05E-04 65840 9.60E-04 66660 1.06E-03 

57660 1.51E-04 62220 5.13E-04 63040 6.08E-04 65860 9.62E-04 66680 1.06E-03 

57680 1.52E-04 62240 5.16E-04 63060 6.10E-04 65880 9.65E-04 66700 1.06E-03 

57700 1.53E-04 62260 5.18E-04 63080 6.12E-04 65900 9.67E-04 66720 1.07E-03 

57420 1.39E-04 62280 5.20E-04 63100 6.15E-04 65920 9.70E-04 66740 1.07E-03 

57440 1.40E-04 62300 5.22E-04 63120 6.17E-04 65940 9.72E-04 66760 1.07E-03 

57460 1.41E-04 62320 5.24E-04 63140 6.19E-04 65960 9.75E-04 66780 1.07E-03 

57480 1.42E-04 62340 5.27E-04 63160 6.22E-04 65980 9.77E-04 66800 1.08E-03 

57500 1.43E-04 62360 5.29E-04 63180 6.24E-04 66000 9.80E-04 66820 1.08E-03 

57520 1.44E-04 62380 5.31E-04 63200 6.27E-04 66020 9.82E-04 66840 1.08E-03 

57540 1.45E-04 62400 5.33E-04 63220 6.29E-04 66040 9.84E-04 66860 1.08E-03 

57560 1.46E-04 62420 5.36E-04 63240 6.31E-04 66060 9.87E-04 66880 1.09E-03 

57580 1.47E-04 62440 5.38E-04 63260 6.34E-04 66080 9.89E-04 66900 1.09E-03 

57600 1.48E-04 62460 5.40E-04 63280 6.36E-04 66100 9.92E-04 66920 1.09E-03 

57620 1.49E-04 62480 5.42E-04 63300 6.39E-04 66120 9.94E-04 66940 1.09E-03 

57640 1.50E-04 62500 5.45E-04 63320 6.41E-04 66140 9.97E-04 66960 1.09E-03 

57660 1.51E-04 62520 5.47E-04 63340 6.44E-04 66160 9.99E-04 66980 1.10E-03 

57680 1.52E-04 62540 5.49E-04 63360 6.46E-04 66180 1.00E-03 67000 1.10E-03 

57700 1.53E-04 62560 5.52E-04 63380 6.48E-04 66200 1.00E-03 67020 1.10E-03 

57420 1.39E-04 62580 5.54E-04 63400 6.51E-04 66220 1.01E-03 67040 1.10E-03 

57440 1.40E-04 62600 5.56E-04 63420 6.53E-04 66240 1.01E-03 67060 1.11E-03 

57460 1.41E-04 62620 5.58E-04 63440 6.56E-04 66260 1.01E-03 67080 1.11E-03 

57480 1.42E-04 62640 5.61E-04 63460 6.58E-04 66280 1.01E-03 67100 1.11E-03 

57500 1.43E-04 62660 5.63E-04 63480 6.61E-04 66300 1.02E-03 67120 1.11E-03 

57520 1.44E-04 62680 5.65E-04 63500 6.63E-04 66320 1.02E-03 67140 1.11E-03 

57540 1.45E-04 62700 5.68E-04 63520 6.66E-04 66340 1.02E-03 67160 1.12E-03 

57560 1.46E-04 62720 5.70E-04 63540 6.68E-04 66360 1.02E-03 67180 1.12E-03 

57580 1.47E-04 62740 5.72E-04 63560 6.71E-04 66380 1.03E-03 67200 1.12E-03 

57600 1.48E-04 62760 5.75E-04 63580 6.73E-04 66400 1.03E-03 67220 1.12E-03 

57620 1.49E-04 62780 5.77E-04 63600 6.75E-04 66420 1.03E-03 67240 1.13E-03 



103

R P (R = r) R P (R = r) R P (R = r) R P (R = r) R P (R = r) 

67260 1.13E-03 68080 1.21E-03 68900 1.28E-03 69720 1.33E-03 70540 1.36E-03 

67280 1.13E-03 68100 1.21E-03 68920 1.28E-03 69740 1.33E-03 70560 1.36E-03 

67300 1.13E-03 68120 1.22E-03 68940 1.28E-03 69760 1.33E-03 70580 1.36E-03 

67320 1.13E-03 68140 1.22E-03 68960 1.28E-03 69780 1.33E-03 70600 1.36E-03 

67340 1.14E-03 68160 1.22E-03 68980 1.29E-03 69800 1.33E-03 70620 1.36E-03 

67360 1.14E-03 68180 1.22E-03 69000 1.29E-03 69820 1.33E-03 70640 1.36E-03 

67380 1.14E-03 68200 1.22E-03 69020 1.29E-03 69840 1.34E-03 70660 1.36E-03 

67400 1.14E-03 68220 1.22E-03 69040 1.29E-03 69860 1.34E-03 70680 1.36E-03 

67420 1.15E-03 68240 1.23E-03 69060 1.29E-03 69880 1.34E-03 70700 1.36E-03 

67440 1.15E-03 68260 1.23E-03 69080 1.29E-03 69900 1.34E-03 70720 1.36E-03 

67460 1.15E-03 68280 1.23E-03 69100 1.29E-03 69920 1.34E-03 70740 1.36E-03 

67480 1.15E-03 68300 1.23E-03 69120 1.30E-03 69940 1.34E-03 70760 1.36E-03 

67500 1.15E-03 68320 1.23E-03 69140 1.30E-03 69960 1.34E-03 70780 1.36E-03 

67520 1.16E-03 68340 1.24E-03 69160 1.30E-03 69980 1.34E-03 70800 1.36E-03 

67540 1.16E-03 68360 1.24E-03 69180 1.30E-03 70000 1.34E-03 70820 1.36E-03 

67560 1.16E-03 68380 1.24E-03 69200 1.30E-03 70020 1.34E-03 70840 1.36E-03 

67580 1.16E-03 68400 1.24E-03 69220 1.30E-03 70040 1.34E-03 70860 1.36E-03 

67600 1.16E-03 68420 1.24E-03 69240 1.30E-03 70060 1.34E-03 70880 1.36E-03 

67620 1.17E-03 68440 1.24E-03 69260 1.30E-03 70080 1.35E-03 70900 1.36E-03 

67640 1.17E-03 68460 1.25E-03 69280 1.31E-03 70100 1.35E-03 70920 1.36E-03 

67660 1.17E-03 68480 1.25E-03 69300 1.31E-03 70120 1.35E-03 70940 1.36E-03 

67680 1.17E-03 68500 1.25E-03 69320 1.31E-03 70140 1.35E-03 70960 1.36E-03 

67700 1.17E-03 68520 1.25E-03 69340 1.31E-03 70160 1.35E-03 70980 1.36E-03 

67720 1.18E-03 68540 1.25E-03 69360 1.31E-03 70180 1.35E-03 71000 1.36E-03 

67740 1.18E-03 68560 1.25E-03 69380 1.31E-03 70200 1.35E-03 71020 1.36E-03 

67760 1.18E-03 68580 1.26E-03 69400 1.31E-03 70220 1.35E-03 71040 1.36E-03 

67780 1.18E-03 68600 1.26E-03 69420 1.31E-03 70240 1.35E-03 71060 1.36E-03 

67800 1.18E-03 68620 1.26E-03 69440 1.32E-03 70260 1.35E-03 71080 1.36E-03 

67820 1.19E-03 68640 1.26E-03 69460 1.32E-03 70280 1.35E-03 71100 1.36E-03 

67840 1.19E-03 68660 1.26E-03 69480 1.32E-03 70300 1.35E-03 71120 1.36E-03 

67860 1.19E-03 68680 1.26E-03 69500 1.32E-03 70320 1.35E-03 71140 1.36E-03 

67880 1.19E-03 68700 1.26E-03 69520 1.32E-03 70340 1.35E-03 71160 1.36E-03 

67900 1.19E-03 68720 1.27E-03 69540 1.32E-03 70360 1.35E-03 71180 1.36E-03 

67920 1.20E-03 68740 1.27E-03 69560 1.32E-03 70380 1.35E-03 71200 1.36E-03 

67940 1.20E-03 68760 1.27E-03 69580 1.32E-03 70400 1.35E-03 71220 1.36E-03 

67960 1.20E-03 68780 1.27E-03 69600 1.32E-03 70420 1.36E-03 71240 1.36E-03 

67980 1.20E-03 68800 1.27E-03 69620 1.33E-03 70440 1.36E-03 71260 1.36E-03 

68000 1.20E-03 68820 1.27E-03 69640 1.33E-03 70460 1.36E-03 71280 1.36E-03 

68020 1.21E-03 68840 1.28E-03 69660 1.33E-03 70480 1.36E-03 71300 1.36E-03 

68040 1.21E-03 68860 1.28E-03 69680 1.33E-03 70500 1.36E-03 71320 1.36E-03 

68060 1.21E-03 68880 1.28E-03 69700 1.33E-03 70520 1.36E-03 71340 1.36E-03 
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71360 1.36E-03 72060 1.34E-03 72880 1.30E-03 73700 1.23E-03 74520 1.15E-03 

71380 1.36E-03 72080 1.34E-03 72900 1.30E-03 73720 1.23E-03 74540 1.14E-03 

71400 1.36E-03 72100 1.34E-03 72920 1.30E-03 73740 1.23E-03 74560 1.14E-03 

71420 1.36E-03 72120 1.34E-03 72940 1.30E-03 73760 1.23E-03 74580 1.14E-03 

71440 1.36E-03 72140 1.34E-03 72960 1.30E-03 73780 1.23E-03 74600 1.14E-03 

71460 1.36E-03 72160 1.34E-03 72980 1.29E-03 73800 1.23E-03 74620 1.14E-03 

71360 1.36E-03 72180 1.34E-03 73000 1.29E-03 73820 1.22E-03 74640 1.13E-03 

71380 1.36E-03 72200 1.34E-03 73020 1.29E-03 73840 1.22E-03 74660 1.13E-03 

71400 1.36E-03 72220 1.34E-03 73040 1.29E-03 73860 1.22E-03 74680 1.13E-03 

71420 1.36E-03 72240 1.34E-03 73060 1.29E-03 73880 1.22E-03 74700 1.12E-03 

71440 1.36E-03 72260 1.34E-03 73080 1.29E-03 73900 1.21E-03 74720 1.12E-03 

71460 1.36E-03 72280 1.34E-03 73100 1.29E-03 73920 1.21E-03 74740 1.12E-03 

71480 1.36E-03 72300 1.33E-03 73120 1.28E-03 73940 1.21E-03 74760 1.12E-03 

71500 1.36E-03 72320 1.33E-03 73140 1.28E-03 73960 1.21E-03 74780 1.12E-03 

71520 1.36E-03 72340 1.33E-03 73160 1.28E-03 73980 1.21E-03 74800 1.11E-03 

71540 1.36E-03 72360 1.33E-03 73180 1.28E-03 74000 1.20E-03 74820 1.11E-03 

71560 1.36E-03 72380 1.33E-03 73200 1.28E-03 74020 1.20E-03 74840 1.11E-03 

71580 1.36E-03 72400 1.33E-03 73220 1.28E-03 74040 1.20E-03 74860 1.10E-03 

71600 1.36E-03 72420 1.33E-03 73240 1.28E-03 74060 1.20E-03 74880 1.11E-03 

71620 1.36E-03 72440 1.33E-03 73260 1.27E-03 74080 1.20E-03 74900 1.10E-03 

71640 1.36E-03 72460 1.33E-03 73280 1.27E-03 74100 1.19E-03 74920 1.10E-03 

71660 1.36E-03 72480 1.33E-03 73300 1.27E-03 74120 1.19E-03 74940 1.09E-03 

71680 1.36E-03 72500 1.32E-03 73320 1.27E-03 74140 1.19E-03 74960 1.09E-03 

71700 1.36E-03 72520 1.32E-03 73340 1.27E-03 74160 1.19E-03 74980 1.09E-03 

71720 1.36E-03 72540 1.32E-03 73360 1.27E-03 74180 1.19E-03 75000 1.09E-03 

71740 1.35E-03 72560 1.32E-03 73380 1.26E-03 74200 1.19E-03 75020 1.08E-03 

71760 1.35E-03 72580 1.32E-03 73400 1.26E-03 74220 1.18E-03 75040 1.08E-03 

71780 1.35E-03 72600 1.32E-03 73420 1.26E-03 74240 1.18E-03 75060 1.08E-03 

71800 1.35E-03 72620 1.32E-03 73440 1.26E-03 74260 1.18E-03 75080 1.08E-03 

71820 1.35E-03 72640 1.32E-03 73460 1.26E-03 74280 1.18E-03 75100 1.07E-03 

71840 1.35E-03 72660 1.31E-03 73480 1.26E-03 74300 1.17E-03 75120 1.07E-03 

71860 1.35E-03 72680 1.32E-03 73500 1.25E-03 74320 1.17E-03 75140 1.07E-03 

71880 1.35E-03 72700 1.31E-03 73520 1.25E-03 74340 1.17E-03 75160 1.07E-03 

71900 1.35E-03 72720 1.31E-03 73540 1.25E-03 74360 1.17E-03 75180 1.06E-03 

71920 1.35E-03 72740 1.31E-03 73560 1.25E-03 74380 1.16E-03 75200 1.06E-03 

71940 1.35E-03 72760 1.31E-03 73580 1.25E-03 74400 1.16E-03 75220 1.06E-03 

71960 1.35E-03 72780 1.31E-03 73600 1.24E-03 74420 1.16E-03 75240 1.06E-03 

71980 1.35E-03 72800 1.31E-03 73620 1.24E-03 74440 1.16E-03 75260 1.05E-03 

72000 1.35E-03 72820 1.31E-03 73640 1.24E-03 74460 1.15E-03 75280 1.05E-03 

72020 1.35E-03 72840 1.30E-03 73660 1.24E-03 74480 1.15E-03 75300 1.05E-03 

72040 1.35E-03 72860 1.30E-03 73680 1.24E-03 74500 1.15E-03 75320 1.05E-03 
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75340 1.04E-03 76160 9.22E-04 76980 7.95E-04 77800 6.66E-04 78620 5.36E-04 

75360 1.04E-03 76180 9.21E-04 77000 7.93E-04 77820 6.61E-04 78640 5.35E-04 

75380 1.04E-03 76200 9.18E-04 77020 7.88E-04 77840 6.55E-04 78660 5.27E-04 

75400 1.03E-03 76220 9.12E-04 77040 7.86E-04 77860 6.50E-04 78680 5.33E-04 

75420 1.03E-03 76240 9.10E-04 77060 7.82E-04 77880 6.58E-04 78700 5.22E-04 

75440 1.03E-03 76260 9.06E-04 77080 7.82E-04 77900 6.44E-04 78720 5.23E-04 

75460 1.02E-03 76280 9.07E-04 77100 7.74E-04 77920 6.46E-04 78740 5.17E-04 

75480 1.02E-03 76300 9.00E-04 77120 7.76E-04 77940 6.42E-04 78760 5.15E-04 

75500 1.02E-03 76320 9.01E-04 77140 7.68E-04 77960 6.42E-04 78780 5.12E-04 

75520 1.02E-03 76340 8.94E-04 77160 7.66E-04 77980 6.36E-04 78800 5.10E-04 

75540 1.01E-03 76360 8.93E-04 77180 7.64E-04 78000 6.32E-04 78820 5.07E-04 

75560 1.01E-03 76380 8.90E-04 77200 7.59E-04 78020 6.30E-04 78840 5.03E-04 

75580 1.01E-03 76400 8.86E-04 77220 7.56E-04 78040 6.28E-04 78860 4.95E-04 

75600 1.01E-03 76420 8.83E-04 77240 7.55E-04 78060 6.21E-04 78880 5.01E-04 

75620 1.00E-03 76440 8.82E-04 77260 7.48E-04 78080 6.22E-04 78900 4.91E-04 

75640 1.00E-03 76460 8.75E-04 77280 7.51E-04 78100 6.13E-04 78920 4.96E-04 

75660 9.96E-04 76480 8.75E-04 77300 7.42E-04 78120 6.20E-04 78940 4.88E-04 

75680 9.95E-04 76500 8.70E-04 77320 7.47E-04 78140 6.09E-04 78960 4.87E-04 

75700 9.90E-04 76520 8.70E-04 77340 7.34E-04 78160 6.06E-04 78980 4.83E-04 

75720 9.90E-04 76540 8.62E-04 77360 7.34E-04 78180 6.05E-04 79000 4.83E-04 

75740 9.84E-04 76560 8.63E-04 77380 7.33E-04 78200 6.03E-04 79020 4.76E-04 

75760 9.81E-04 76580 8.59E-04 77400 7.29E-04 78220 5.95E-04 79040 4.74E-04 

75780 9.80E-04 76600 8.56E-04 77420 7.24E-04 78240 5.95E-04 79060 4.69E-04 

75800 9.78E-04 76620 8.52E-04 77440 7.20E-04 78260 5.88E-04 79080 4.73E-04 

75820 9.74E-04 76640 8.51E-04 77460 7.15E-04 78280 5.93E-04 79100 4.62E-04 

75840 9.70E-04 76660 8.43E-04 77480 7.20E-04 78300 5.84E-04 79120 4.64E-04 

75860 9.66E-04 76680 8.46E-04 77500 7.11E-04 78320 5.85E-04 79140 4.58E-04 

75880 9.69E-04 76700 8.37E-04 77520 7.11E-04 78340 5.76E-04 79160 4.56E-04 

75900 9.60E-04 76720 8.38E-04 77540 7.02E-04 78360 5.77E-04 79180 4.56E-04 

75920 9.59E-04 76740 8.32E-04 77560 7.06E-04 78380 5.75E-04 79200 4.50E-04 

75940 9.55E-04 76760 8.31E-04 77580 7.00E-04 78400 5.69E-04 79220 4.46E-04 

75960 9.54E-04 76780 8.27E-04 77600 6.93E-04 78420 5.67E-04 79240 4.49E-04 

75980 9.50E-04 76800 8.24E-04 77620 6.94E-04 78440 5.66E-04 79260 4.41E-04 

76000 9.46E-04 76820 8.22E-04 77640 6.93E-04 78460 5.57E-04 79280 4.42E-04 

76020 9.44E-04 76840 8.17E-04 77660 6.82E-04 78480 5.61E-04 79300 4.34E-04 

76040 9.43E-04 76860 8.12E-04 77680 6.86E-04 78500 5.53E-04 79320 4.44E-04 

76060 9.37E-04 76880 8.14E-04 77700 6.79E-04 78520 5.54E-04 79340 4.28E-04 

76080 9.36E-04 76900 8.05E-04 77720 6.82E-04 78540 5.44E-04 79360 4.28E-04 

76100 9.30E-04 76920 8.08E-04 77740 6.72E-04 78560 5.46E-04 79380 4.28E-04 

76120 9.33E-04 76940 7.99E-04 77760 6.69E-04 78580 5.42E-04 79400 4.26E-04 

76140 9.25E-04 76960 8.00E-04 77780 6.68E-04 78600 5.41E-04 79420 4.20E-04 
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R P (R = r) R P (R = r) R P (R = r) R P (R = r) R P (R = r) 

79440 4.16E-04 80260 3.11E-04 81080 2.27E-04 81900 1.47E-04 82720 8.61E-05 

79460 4.12E-04 80280 3.18E-04 81100 2.17E-04 81920 1.53E-04 82740 8.72E-05 

79480 4.18E-04 80300 3.07E-04 81120 2.20E-04 81940 1.45E-04 82760 8.77E-05 

79500 4.07E-04 80320 3.13E-04 81140 2.17E-04 81960 1.50E-04 82780 8.65E-05 

79520 4.06E-04 80340 3.00E-04 81160 2.18E-04 81980 1.44E-04 82800 8.31E-05 

79540 4.00E-04 80360 3.01E-04 81180 2.16E-04 82000 1.43E-04 82820 8.01E-05 

79560 4.06E-04 80380 3.00E-04 81200 2.09E-04 82020 1.40E-04 82840 8.29E-05 

79580 3.99E-04 80400 2.95E-04 81220 2.09E-04 82040 1.40E-04 82860 7.66E-05 

79600 3.93E-04 80420 2.96E-04 81240 2.12E-04 82060 1.36E-04 82880 8.11E-05 

79620 3.95E-04 80440 2.95E-04 81260 2.06E-04 82080 1.36E-04 82900 7.41E-05 

79640 3.96E-04 80460 2.86E-04 81280 2.05E-04 82100 1.30E-04 82920 8.62E-05 

79660 3.83E-04 80480 2.90E-04 81300 2.02E-04 82120 1.39E-04 82940 7.61E-05 

79680 3.91E-04 80500 2.83E-04 81320 2.10E-04 82140 1.27E-04 82960 7.04E-05 

79700 3.81E-04 80520 2.87E-04 81340 1.94E-04 82160 1.28E-04 82980 7.19E-05 

79720 3.84E-04 80540 2.77E-04 81360 1.97E-04 82180 1.30E-04 83000 8.33E-05 

79740 3.75E-04 80560 2.81E-04 81380 1.99E-04 82200 1.26E-04 83020 7.02E-05 

79760 3.74E-04 80580 2.77E-04 81400 1.93E-04 82220 1.21E-04 83040 6.82E-05 

79780 3.72E-04 80600 2.73E-04 81420 1.92E-04 82240 1.27E-04 83060 6.44E-05 

79800 3.75E-04 80620 2.71E-04 81440 1.88E-04 82260 1.20E-04 83080 7.55E-05 

79820 3.68E-04 80640 2.75E-04 81460 1.85E-04 82280 1.25E-04 83100 6.38E-05 

79840 3.61E-04 80660 2.64E-04 81480 1.88E-04 82300 1.14E-04 83120 6.57E-05 

79860 3.59E-04 80680 2.73E-04 81500 1.83E-04 82320 1.25E-04 83140 6.09E-05 

79880 3.66E-04 80700 2.61E-04 81520 1.83E-04 82340 1.14E-04 83160 6.10E-05 

79900 3.52E-04 80720 2.67E-04 81540 1.77E-04 82360 1.14E-04 83180 6.56E-05 

79920 3.58E-04 80740 2.56E-04 81560 1.83E-04 82380 1.12E-04 83200 5.67E-05 

79940 3.51E-04 80760 2.57E-04 81580 1.77E-04 82400 1.11E-04 83220 5.90E-05 

79960 3.49E-04 80780 2.56E-04 81600 1.75E-04 82420 1.11E-04 83240 7.29E-05 

79980 3.50E-04 80800 2.49E-04 81620 1.77E-04 82440 1.11E-04 83260 5.47E-05 

80000 3.45E-04 80820 2.52E-04 81640 1.74E-04 82460 1.02E-04 83280 6.02E-05 

80020 3.42E-04 80840 2.46E-04 81660 1.68E-04 82480 1.06E-04 83300 5.33E-05 

80040 3.41E-04 80860 2.43E-04 81680 1.73E-04 82500 1.03E-04 83320 6.19E-05 

80060 3.36E-04 80880 2.50E-04 81700 1.65E-04 82520 1.04E-04 83340 4.83E-05 

80080 3.38E-04 80900 2.37E-04 81720 1.71E-04 82540 9.77E-05 83360 5.11E-05 

80100 3.27E-04 80920 2.50E-04 81740 1.62E-04 82560 1.12E-04 83380 5.25E-05 

80120 3.35E-04 80940 2.37E-04 81760 1.61E-04 82580 9.86E-05 83400 4.93E-05 

80140 3.25E-04 80960 2.39E-04 81780 1.58E-04 82600 9.73E-05 83420 5.27E-05 

80160 3.22E-04 80980 2.32E-04 81800 1.58E-04 82620 9.84E-05 83440 4.54E-05 

80180 3.25E-04 81000 2.35E-04 81820 1.59E-04 82640 9.57E-05 83460 4.43E-05 

80200 3.20E-04 81020 2.30E-04 81840 1.51E-04 82660 8.66E-05 83480 4.98E-05 

80220 3.16E-04 81040 2.24E-04 81860 1.48E-04 82680 1.01E-04 83500 4.50E-05 

80240 3.15E-04 81060 2.26E-04 81880 1.56E-04 82700 8.85E-05 83520 4.66E-05 
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R P (R = r) R P (R = r) R P (R = r) R P (R = r) R P (R = r) 

83540 4.12E-05 83820 3.39E-05 84100 1.77E-05 84380 1.42E-05 84660 1.47E-06 

83560 4.38E-05 83840 2.74E-05 84120 2.75E-05 84400 6.39E-06 84680 2.67E-05 

83580 4.35E-05 83860 2.79E-05 84140 1.53E-05 84420 1.80E-05 84700 5.30E-06 

83600 4.00E-05 83880 3.39E-05 84160 1.84E-05 84440 1.22E-05 84720 5.99E-06 

83620 4.30E-05 83900 2.43E-05 84180 2.67E-05 84460 1.07E-05 84740 1.97E-07 

83640 3.98E-05 83920 3.59E-05 84200 1.68E-05 84480 1.56E-05 84760 6.63E-06 

83660 3.56E-05 83940 2.82E-05 84220 1.67E-05 84500 7.05E-06 84780 6.31E-06 

83680 4.40E-05 83960 2.90E-05 84240 1.80E-05 84520 1.46E-05 84800 3.73E-06 

83700 3.36E-05 83980 2.53E-05 84260 1.81E-05 84540 5.92E-06 84820 3.73E-06 

83720 4.22E-05 84000 2.51E-05 84280 2.16E-05 84560 8.46E-06 84840 1.94E-06 

83740 3.35E-05 84020 2.82E-05 84300 1.24E-05 84580 8.76E-06 84860 1.11E-06 

83760 3.34E-05 84040 2.30E-05 84320 2.22E-05 84600 1.50E-05 84920 3.66E-05 

83780 3.42E-05 84060 2.06E-05 84340 8.93E-06 84620 8.34E-06   

83800 3.24E-05 84080 2.61E-05 84360 1.63E-05 84640 1.22E-06   
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APPENDIX E 

51$           CREATE,        1,NSexpo(arrsch3):NSexpo(arrsch3):NEXT(35$); 

35$           ASSIGN:        fare3=250: 

                             x3=40: 

                             b3=MX(x3-accept3,0): 

                             limit3_1=b6+b9; 

92$           ASSIGN:        cmin3=rc1-limit3_1; 

74$           COUNT:         arr3,1; 

73$           BRANCH:        Else,dispose3,Yes: 

                             If,cmin3,capacity assign3,Yes; 

dispose3      DISPOSE:       No; 

capacity assign3 ASSIGN:     revenue=revenue+fare3: 

                             rc1=rc1-1: 

                             accept3=accept3+1; 

32$           COUNT:         sold3,1:NEXT(dispose3); 

52$           CREATE,        1,NSEXPO(arrsch4):NSEXPO(arrsch4):NEXT(36$); 

36$           ASSIGN:        fare4=130: 

                             x4=0: 

                             b4=MX(x4-accept4,0): 

                             limit4_1=b1+b2+b3+b5+b6+b8+b9: 

                             limit4_2=b5+b6+b8+b9+b10+b11+b12+b13+b14+b15; 

93$           ASSIGN:        cmin4=MN(rc1-limit4_1,rc2-limit4_2); 

75$           COUNT:         arr4,1; 

0$            BRANCH:        Else,dispose4,Yes: 

                             If,cmin4>0,capacity assign4,Yes; 

dispose4      DISPOSE:       No; 

capacity assign4 ASSIGN:     revenue=revenue+fare4: 

                             rc1=rc1-1: 

                             rc2=rc2-1: 

                             accept4=accept4+1; 

17$           COUNT:         sold4,1:NEXT(dispose4); 

53$           CREATE,        1,NSEXPO(arrsch5):NSEXPO(arrsch5):NEXT(37$); 

37$           ASSIGN:        fare5=170: 

                             x5=18: 

                             b5=MX(x5-accept5,0): 

                             limit5_1=b2+b3+b6+b8+b9: 

                             limit5_2=b6+b8+b9+b11+b12+b14+b15; 

94$           ASSIGN:        cmin5=MN(rc1-limit5_1,rc2-limit5_2); 

76$           COUNT:         arr5,1; 

1$            BRANCH:        Else,dispose5,Yes: 

                             If,cmin5>0,capacity assign5,Yes; 

dispose5      DISPOSE:       No; 

capacity assign5 ASSIGN:     revenue=revenue+fare5: 

                             rc2=rc2-1: 

                             accept5=accept5+1: 

                             rc1=rc1-1; 

18$           COUNT:         sold5,1:NEXT(dispose5); 
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54$           CREATE,        1,NSEXPO(arrsch6):NSEXPO(arrsch6):NEXT(38$); 

38$           ASSIGN:        fare6=400: 

                             x6=22: 

                             b6=MX(x6-accept6,0): 

                             limit6_1=0: 

                             limit6_2=b15; 

95$           ASSIGN:        cmin6=MN(rc1-limit6_1,rc2-limit6_2); 

77$           COUNT:         arr6,1; 

2$            BRANCH:        Else,dispose6,Yes: 

                             If,cmin6>0,capacity assign6,Yes; 

dispose6      DISPOSE:       No; 

capacity assign6 ASSIGN:     accept6=accept6+1: 

                             revenue=revenue+fare6: 

                             rc2=rc2-1: 

                             rc1=rc1-1; 

19$           COUNT:         sold6,1:NEXT(dispose6); 

55$           CREATE,        1,NSEXPO(arrsch7):NSEXPO(arrsch7):NEXT(39$); 

39$           ASSIGN:        fare7=200: 

                             x7=0: 

                             b7=MX(x7-accept7,0): 

                             limit7_1=b1+b2+b3+b4+b5+b6+b8+b9: 

                             limit7_2=b4+b5+b6+b8+b9+b10+b11+b12+b13+b14+b15: 

                             limit7_3=b8+b9+b13+b14+b15+b16+b17+b18; 

96$           ASSIGN:        cmin7=MN(rc1-limit7_1,rc2-limit7_2,rc3-limit7_3); 

78$           COUNT:         arr7,1; 

3$            BRANCH:        Else,dispose7,Yes: 

                             If,cmin7>0,capacity assign7,Yes; 

dispose7      DISPOSE:       No; 

capacity assign7 ASSIGN:     revenue=revenue+fare7: 

                             rc1=rc1-1: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept7=accept7+1; 

20$           COUNT:         sold7,1:NEXT(dispose7); 

56$           CREATE,        1,NSEXPO(arrsch8):NSEXPO(arrsch8):NEXT(40$); 

40$           ASSIGN:        fare8=320: 

                             x8=21: 

                             b8=MX(x8-accept8,0): 

                             limit8_1=b3+b6+b9: 

                             limit8_2=b6+b9+b12+b15: 

                             limit8_3=b9+b18+b15; 

97$           ASSIGN:        cmin8=MN(rc1-limit8_1,rc2-limit8_2,rc3-limit8_3); 

79$           COUNT:         arr8,1; 

4$            BRANCH:        Else,dispose8,Yes: 

                             If,cmin8>0,capacity assign8,Yes; 

dispose8      DISPOSE:       No; 

capacity assign8 ASSIGN:     revenue=revenue+fare8: 

                             rc1=rc1-1: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept8=accept8+1; 
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21$           COUNT:         sold8,1:NEXT(dispose8); 

57$           CREATE,        1,NSEXPO(arrsch9):NSEXPO(arrsch9):NEXT(41$); 

41$           ASSIGN:        fare9=460: 

                             x9=17: 

                             b9=MX(x9-accept9,0): 

                             limit9_1=b6: 

                             limit9_2=b6+b12+b15: 

                             limit9_3=15; 

98$           ASSIGN:        cmin9=MN(rc1-limit9_1,rc2-limit9_2,rc3-limit9_3); 

80$           COUNT:         arr9,1; 

5$            BRANCH:        Else,dispose9,Yes: 

                             If,cmin9>0,capacity assign9,Yes; 

dispose9      DISPOSE:       No; 

capacity assign9 ASSIGN:     revenue=revenue+fare9: 

                             rc1=rc1-1: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept9=accept9+1; 

22$           COUNT:         sold9,1:NEXT(dispose9); 

58$           CREATE,        1,NSEXPO(arrsch10):NSEXPO(arrsch10):NEXT(42$); 

42$           ASSIGN:        fare10=100: 

                             x10=23: 

                             b10=MX(x10-accept10,0): 

                             limit10_2=b5+b6+b8+b9+b11+b12+b14+b15; 

99$           ASSIGN:        cmin10=rc2-limit10_2; 

81$           COUNT:         arr10,1; 

6$            BRANCH:        Else,dispose10,Yes: 

                             If,cmin10>0,capacity assign10,Yes; 

dispose10     DISPOSE:       No; 

capacity assign10 ASSIGN:    revenue=revenue+fare10: 

                             rc2=rc2-1: 

                             accept10=accept10+1; 

23$           COUNT:         sold10,1:NEXT(dispose10); 

59$           CREATE,        1,NSEXPO(arrsch11):NSEXPO(arrsch11):NEXT(43$); 

43$           ASSIGN:        fare11=150: 

                             x11=19: 

                             b11=MX(x11-accept11,0): 

                             limit11_2=b6+b8+b9+b12+b15; 

100$          ASSIGN:        cmin11=rc2-limit11_2; 

82$           COUNT:         arr11,1; 

7$            BRANCH:        Else,dispose11,Yes: 

                             If,cmin11>0,capacity assign11,Yes; 

dispose11     DISPOSE:       No; 

capacity assign11 ASSIGN:    revenue=revenue+fare11: 

                             accept11=accept11+1: 

                             rc2=rc2-1; 

24$           COUNT:         sold11,1:NEXT(dispose11); 

60$           CREATE,        1,NSEXPO(arrsch12):NSEXPO(arrsch12):NEXT(44$); 
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44$           ASSIGN:        fare12=330: 

                             x12=27: 

                             b12=MX(x12-accept12,0): 

                             limit12_2=b6+b15; 

101$          ASSIGN:        cmin12=rc2-limit12_2; 

83$           COUNT:         arr12,1; 

8$            BRANCH:        Else,dispose12,Yes: 

                             If,cmin12>0,capacity assign12,Yes; 

dispose12     DISPOSE:       No; 

capacity assign12 ASSIGN:    revenue=revenue+fare12: 

                             rc2=rc2-1: 

                             accept12=accept12+1; 

31$           COUNT:         sold12,1:NEXT(dispose12); 

61$           CREATE,        1,NSEXPO(arrsch13):NSEXPO(arrsch13):NEXT(45$); 

45$           ASSIGN:        fare13=160: 

                             x13=15: 

                             b13=MX(x13-accept13,0): 

                             limit13_2=b5+b6+b8+b9+b10+b11+b12+b14+b15: 

                             limit13_3=b8+b9+b14+b15+b16+b17+b18; 

102$          ASSIGN:        cmin13=MN(rc2-limit13_2,rc3-limit13_3); 

84$           COUNT:         arr13,1; 

9$            BRANCH:        Else,dispose13,Yes: 

                             If,cmin13>0,capacity assign13,No; 

dispose13     DISPOSE:       No; 

capacity assign13 ASSIGN:    revenue=revenue+fare13: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept13=accept13+1; 

25$           COUNT:         sold13,1:NEXT(dispose13); 

62$           CREATE,        1,NSEXPO(arrsch14):NSEXPO(arrsch14):NEXT(46$); 

46$           ASSIGN:        fare14=200: 

                             x14=16: 

                             b14=MX(x14-accept14,0): 

                             limit14_2=b6+b8+b9+b11+b12+b15: 

                             limit14_3=b8+b9+b15+b18; 

103$          ASSIGN:        cmin14=MN(rc2-limit14_2,rc3-limit14_3); 

85$           COUNT:         arr14,1; 

10$           BRANCH:        Else,dispose14,Yes: 

                             If,cmin14>0,capacity assign14,Yes; 

dispose14     DISPOSE:       No; 

capacity assign14 ASSIGN:    revenue=revenue+fare14: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept14=accept14+1; 

26$           COUNT:         sold14,1:NEXT(dispose14); 

63$           CREATE,        1,NSEXPO(arrsch15):NSEXPO(arrsch15):NEXT(47$); 

47$           ASSIGN:        fare15=420: 

                             x15=22: 

                             b15=MX(x15-accept15,0): 
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                             limit15_2=0: 

                             limit15_3=0; 

104$          ASSIGN:        cmin15=MN(rc2-limit15_2,rc3-limit15_3); 

86$           COUNT:         arr15,1; 

11$           BRANCH:        Else,dispose15,Yes: 

                             If,cmin15>0,capacity assign15,Yes; 

dispose15     DISPOSE:       No; 

capacity assign15 ASSIGN:    revenue=revenue+fare15: 

                             rc2=rc2-1: 

                             rc3=rc3-1: 

                             accept15=accept15+1; 

27$           COUNT:         sold15,1:NEXT(dispose15); 

64$           CREATE,        1,NSEXPO(arrsch16):NSEXPO(arrsch16):NEXT(48$); 

48$           ASSIGN:        fare16=80: 

                             x16=38: 

                             b16=MX(x16-accept16,0): 

                             limit16_3=b8+b9+b14+b15+b17+b18; 

105$          ASSIGN:        cmin16=rc3-limit16_3; 

87$           COUNT:         arr16,1; 

12$           BRANCH:        Else,dispose16,Yes: 

                             If,cmin16>0,capacity assign16,Yes; 

dispose16     DISPOSE:       No; 

capacity assign16 ASSIGN:    revenue=revenue+fare16: 

                             accept16=accept16+1: 

                             rc3=rc3-1; 

28$           COUNT:         sold16,1:NEXT(dispose16); 

65$           CREATE,        1,NSEXPO(arrsch17):NSEXPO(arrsch17):NEXT(49$); 

49$           ASSIGN:        fare17=110: 

                             x17=36: 

                             b17=MX(x17-accept17,0): 

                             limit17_3=b8+b9+b14+b15+b18; 

106$          ASSIGN:        cmin17=rc3-limit17_3; 

88$           COUNT:         arr17,1; 

13$           BRANCH:        Else,dispose17,Yes: 

                             If,cmin17>0,capacity assign17,Yes; 

dispose17     DISPOSE:       No; 

capacity assign17 ASSIGN:    revenue=revenue+fare17: 

                             accept17=accept17+1: 

                             rc3=rc3-1; 

29$           COUNT:         sold17,1:NEXT(dispose17); 

66$           CREATE,        1,NSEXPO(arrsch18):NSEXPO(arrsch18):NEXT(50$); 

50$           ASSIGN:        fare18=235: 

                             x18=35: 

                             b18=MX(x18-accept18,0): 

                             limit18_3=b9+b15; 

107$          ASSIGN:        cmin18=rc3-limit18_3; 

89$           COUNT:         arr18,1; 

14$           BRANCH:        Else,dispose18,Yes: 

                             If,cmin18>0,capacity assign18,Yes; 

dispose18     DISPOSE:       No; 



113

capacity assign18 ASSIGN:    revenue=revenue+fare18: 

                             accept18=accept18+1: 

                             rc3=rc3-1; 

30$           COUNT:         sold18,1:NEXT(dispose18); 

67$           CREATE,        1,NSexpo(arrsch1):NSEXPO(arrsch1):NEXT(33$);

33$           ASSIGN:        fare1=75: 

                             x1=42: 

                             b1=MX(x1-accept1,0): 

                             limit1_1=b2+b3+b5+b6+b8+b9; 

90$           ASSIGN:        cmin1=rc1-limit1_1; 

70$           COUNT:         arr1,1; 

69$           BRANCH:        Else,dispose1,Yes: 

                             If,cmin1>0,capacity assign1,Yes; 

dispose1      DISPOSE:       No; 

capacity assign1 ASSIGN:     rc1=rc1-1: 

                             revenue=revenue+fare1: 

                             accept1=accept1+1; 

15$           COUNT:         sold1,1:NEXT(dispose1); 

68$           CREATE,        1,NSexpo(arrsch2):NSexpo(arrsch2):NEXT(34$); 

34$           ASSIGN:        fare2=125: 

                             x2=40: 

                             b2=MX(x2-accept2,0): 

                             limit2_1=b3+b6+b8+b9; 

91$           ASSIGN:        cmin2=rc1-limit2_1; 

72$           COUNT:         arr2,1; 

71$           BRANCH:        Else,dispose2,Yes: 

                             If,cmin2,capacity assign2,Yes; 

dispose2      DISPOSE:       No; 

capacity assign2 ASSIGN:     revenue=revenue+fare2: 

                             accept2=accept2+1: 

                             rc1=rc1-1; 

16$           COUNT:         sold2,1:NEXT(dispose2); 
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PROJECT,      "Unnamed Project","Department of Industrial Engineering",,,No,Yes,Yes,Yes,No,No,No,No,No;

ATTRIBUTES:   x10: 

              x11: 

              x12: 

              x13: 

              x14: 

              x15: 

              x16: 

              x17: 

              x18: 

              fare1,: 

              fare2,: 

              fare3,: 

              fare4,: 

              fare5,: 

              fare6,: 

              fare7,: 

              fare8,: 

              fare9,: 

              x1: 

              x2: 

              x3: 

              x4: 

              x5: 

              x6: 

              x7: 

              x8: 

              x9: 

              fare10,: 

              fare11: 

              fare12: 

              fare13: 

              fare14: 

              fare15: 

              fare16: 

              fare17: 

              fare18; 

SCHEDULES:    

arrsch10,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000536635,index10_y)*

0.002777778,15), 

              

DATA(GAMM(0.02253866,index10_y)*0.002777778,15),DATA(GAMM(0.133085422,index10_y)*0.002777778,15)

,DATA(GAMM(0.322517495,index10_y)*0.002777778,15), 

              

DATA(GAMM(0.567759584,index10_y)*0.002777778,15),DATA(GAMM(0.690648946,index10_y)*0.002777778,1

5),DATA(GAMM(0.572589297,index10_y)*0.002777778,15), 

              

DATA(GAMM(0.293539218,index10_y)*0.002777778,15),DATA(GAMM(0.077275407,index10_y)*0.002777778,1

5),DATA(GAMM(0.002683174,index10_y)*0.002777778,15): 

              

arrsch11,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001773,index11_y)*0.0

02777778,15),DATA(GAMM(0.011822,index11_y)*0.002777778,15), 

              

DATA(GAMM(0.044922,index11_y)*0.002777778,15),DATA(GAMM(0.122353,index11_y)*0.002777778,15),DAT

A(GAMM(0.213971,index11_y)*0.002777778,15), 

              

DATA(GAMM(0.384201,index11_y)*0.002777778,15),DATA(GAMM(0.564481,index11_y)*0.002777778,15),DAT

A(GAMM(0.641912,index11_y)*0.002777778,15), 

              

DATA(GAMM(0.666737,index11_y)*0.002777778,15),DATA(GAMM(0.303224,index11_y)*0.002777778,15): 
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arrsch12,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.009592,index12_y)*0.0

02777778,15),DATA(GAMM(0.124690,index12_y)*0.002777778,15), 

              

DATA(GAMM(0.287746,index12_y)*0.002777778,15),DATA(GAMM(0.728956,index12_y)*0.002777778,15),DAT

A(GAMM(1.659334,index12_y)*0.002777778,15), 

              

DATA(GAMM(3.702330,index12_y)*0.002777778,15),DATA(GAMM(6.627746,index12_y)*0.002777778,15),DAT

A(GAMM(11.020665,index12_y)*0.002777778,15), 

              

DATA(GAMM(14.540756,index12_y)*0.002777778,15),DATA(GAMM(9.255824,index12_y)*0.002777778,15): 

              

arrsch13,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000536635,index13_y)*

0.002777778,15), 

              

DATA(GAMM(0.02253866,index13_y)*0.002777778,15),DATA(GAMM(0.133085422,index13_y)*0.002777778,15)

,DATA(GAMM(0.322517495,index13_y)*0.002777778,15), 

              

DATA(GAMM(0.567759584,index13_y)*0.002777778,15),DATA(GAMM(0.690648946,index13_y)*0.002777778,1

5),DATA(GAMM(0.572589297,index13_y)*0.002777778,15), 

              

DATA(GAMM(0.293539218,index13_y)*0.002777778,15),DATA(GAMM(0.077275407,index13_y)*0.002777778,1

5),DATA(GAMM(0.002683174,index13_y)*0.002777778,15): 

              

arrsch14,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001182,index14_y)*0.0

02777778,15),DATA(GAMM(0.007881,index14_y)*0.002777778,15), 

              

DATA(GAMM(0.029948,index14_y)*0.002777778,15),DATA(GAMM(0.081569,index14_y)*0.002777778,15),DAT

A(GAMM(0.142647,index14_y)*0.002777778,15), 

              

DATA(GAMM(0.256134,index14_y)*0.002777778,15),DATA(GAMM(0.376320,index14_y)*0.002777778,15),DAT

A(GAMM(0.427941,index14_y)*0.002777778,15), 

              

DATA(GAMM(0.444492,index14_y)*0.002777778,15),DATA(GAMM(0.202149,index14_y)*0.002777778,15): 

              

arrsch15,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.003197,index15_y)*0.0

02777778,15),DATA(GAMM(0.041563,index15_y)*0.002777778,15), 

              

DATA(GAMM(0.095915,index15_y)*0.002777778,15),DATA(GAMM(0.242985,index15_y)*0.002777778,15),DAT

A(GAMM(0.553111,index15_y)*0.002777778,15), 

              

DATA(GAMM(1.234110,index15_y)*0.002777778,15),DATA(GAMM(2.209249,index15_y)*0.002777778,15),DAT

A(GAMM(3.673555,index15_y)*0.002777778,15), 

              

DATA(GAMM(4.846919,index15_y)*0.002777778,15),DATA(GAMM(3.085275,index15_y)*0.002777778,15): 

              

arrsch16,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000670793,index16_y)*

0.002777778,15), 

              

DATA(GAMM(0.028173325,index16_y)*0.002777778,15),DATA(GAMM(0.166356778,index16_y)*0.002777778,1

5),DATA(GAMM(0.403146869,index16_y)*0.002777778,15), 

              

DATA(GAMM(0.70969948,index16_y)*0.002777778,15),DATA(GAMM(0.863311182,index16_y)*0.002777778,15)

,DATA(GAMM(0.715736621,index16_y)*0.002777778,15), 

              

DATA(GAMM(0.366924022,index16_y)*0.002777778,15),DATA(GAMM(0.096594258,index16_y)*0.002777778,1

5),DATA(GAMM(0.003353967,index16_y)*0.002777778,15): 

              

arrsch17,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001773,index17_y)*0.0

02777778,15),DATA(GAMM(0.011822,index17_y)*0.002777778,15), 
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DATA(GAMM(0.044922,index17_y)*0.002777778,15),DATA(GAMM(0.122353,index17_y)*0.002777778,15),DAT

A(GAMM(0.213971,index17_y)*0.002777778,15), 

              

DATA(GAMM(0.384201,index17_y)*0.002777778,15),DATA(GAMM(0.564481,index17_y)*0.002777778,15),DAT

A(GAMM(0.641912,index17_y)*0.002777778,15), 

              

DATA(GAMM(0.666737,index17_y)*0.002777778,15),DATA(GAMM(0.303224,index17_y)*0.002777778,15): 

              

arrsch18,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.004796,index18_y)*0.0

02777778,15),DATA(GAMM(0.062345,index18_y)*0.002777778,15), 

              

DATA(GAMM(0.143873,index18_y)*0.002777778,15),DATA(GAMM(0.364478,index18_y)*0.002777778,15),DAT

A(GAMM(0.829667,index18_y)*0.002777778,15), 

              

DATA(GAMM(1.851165,index18_y)*0.002777778,15),DATA(GAMM(3.313873,index18_y)*0.002777778,15),DAT

A(GAMM(5.510333,index18_y)*0.002777778,15), 

              

DATA(GAMM(7.270378,index18_y)*0.002777778,15),DATA(GAMM(4.627912,index18_y)*0.002777778,15): 

              

arrsch1,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000670793,index1_y)*0.

002777778,15),

              

DATA(GAMM(0.028173325,index1_y)*0.002777778,15),DATA(GAMM(0.166356778,index1_y)*0.002777778,15),

DATA(GAMM(0.403146869,index1_y)*0.002777778,15), 

              

DATA(GAMM(0.70969948,index1_y)*0.002777778,15),DATA(GAMM(0.863311182,index1_y)*0.002777778,15),D

ATA(GAMM(0.715736621,index1_y)*0.002777778,15), 

              

DATA(GAMM(0.366924022,index1_y)*0.002777778,15),DATA(GAMM(0.096594258,index1_y)*0.002777778,15),

DATA(GAMM(0.003353967,index1_y)*0.002777778,15): 

              

arrsch2,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001773,index2_y)*0.002

777778,15),DATA(GAMM(0.011822,index2_y)*0.002777778,15), 

              

DATA(GAMM(0.044922,index2_y)*0.002777778,15),DATA(GAMM(0.122353,index2_y)*0.002777778,15),DATA(

GAMM(0.213971,index2_y)*0.002777778,15), 

              

DATA(GAMM(0.384201,index2_y)*0.002777778,15),DATA(GAMM(0.564481,index2_y)*0.002777778,15),DATA(

GAMM(0.641912,index2_y)*0.002777778,15), 

              

DATA(GAMM(0.666737,index2_y)*0.002777778,15),DATA(GAMM(0.303224,index2_y)*0.002777778,15): 

              

arrsch3,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.009592,index3_y)*0.002

777778,15),DATA(GAMM(0.124690,index3_y)*0.002777778,15), 

              

DATA(GAMM(0.287746,index3_y)*0.002777778,15),DATA(GAMM(0.728956,index3_y)*0.002777778,15),DATA(

GAMM(1.659334,index3_y)*0.002777778,15), 

              

DATA(GAMM(3.702330,index3_y)*0.002777778,15),DATA(GAMM(6.627746,index3_y)*0.002777778,15),DATA(

GAMM(11.020665,index3_y)*0.002777778,15), 

              

DATA(GAMM(14.540756,index3_y)*0.002777778,15),DATA(GAMM(9.255824,index3_y)*0.002777778,15): 

              

arrsch4,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000536635,index4_y)*0.

00277777777777778,15),

              

DATA(GAMM(0.02253866,index4_y)*0.00277777777777778,15),DATA(GAMM(0.133085422,index4_y)*0.002777

77777777778,15), 

              

DATA(GAMM(0.322517495,index4_y)*0.00277777777777778,15),DATA(GAMM(0.567759584,index4_y)*0.00277

777777777778,15), 
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DATA(GAMM(0.690648946,index4_y)*0.00277777777777778,15),DATA(GAMM(0.572589297,index4_y)*0.00277

777777777778,15), 

              

DATA(GAMM(0.293539218,index4_y)*0.00277777777777778,15),DATA(GAMM(0.077275407,index4_y)*0.00277

777777777778,15), 

              DATA(GAMM(0.002683174,index4_y)*0.00277777777777778,15): 

              

arrsch5,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001773,index5_y)*0.002

777778,15),DATA(GAMM(0.011822,index5_y)*0.002777778,15), 

              

DATA(GAMM(0.044922,index5_y)*0.002777778,15),DATA(GAMM(0.122353,index5_y)*0.002777778,15),DATA(

GAMM(0.213971,index5_y)*0.002777778,15), 

              

DATA(GAMM(0.384201,index5_y)*0.002777778,15),DATA(GAMM(0.564481,index5_y)*0.002777778,15),DATA(

GAMM(0.641912,index5_y)*0.002777778,15), 

              

DATA(GAMM(0.666737,index5_y)*0.002777778,15),DATA(GAMM(0.303224,index5_y)*0.002777778,15): 

              

arrsch6,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.009592,index6_y)*0.002

777778,15),DATA(GAMM(0.124690,index6_y)*0.002777778,15), 

              

DATA(GAMM(0.287746,index6_y)*0.002777778,15),DATA(GAMM(0.728956,index6_y)*0.002777778,15),DATA(

GAMM(1.659334,index6_y)*0.002777778,15), 

              

DATA(GAMM(3.702330,index6_y)*0.002777778,15),DATA(GAMM(6.627746,index6_y)*0.002777778,15),DATA(

GAMM(11.020665,index6_y)*0.002777778,15), 

              

DATA(GAMM(14.540756,index6_y)*0.002777778,15),DATA(GAMM(9.255824,index6_y)*0.002777778,15): 

              

arrsch7,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.000536635,index7_y)*0.

00277777777777778,15),

              

DATA(GAMM(0.02253866,index7_y)*0.00277777777777778,15),DATA(GAMM(0.133085422,index7_y)*0.002777

77777777778,15), 

              

DATA(GAMM(0.322517495,index7_y)*0.00277777777777778,15),DATA(GAMM(0.567759584,index7_y)*0.00277

777777777778,15), 

              

DATA(GAMM(0.690648946,index7_y)*0.00277777777777778,15),DATA(GAMM(0.572589297,index7_y)*0.00277

777777777778,15), 

              

DATA(GAMM(0.293539218,index7_y)*0.00277777777777778,15),DATA(GAMM(0.077275407,index7_y)*0.00277

777777777778,15), 

              DATA(GAMM(0.002683174,index7_y)*0.00277777777777778,15): 

              

arrsch8,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.001182,index8_y)*0.002

777778,15),DATA(GAMM(0.007881,index8_y)*0.002777778,15), 

              

DATA(GAMM(0.029948,index8_y)*0.002777778,15),DATA(GAMM(0.081569,index8_y)*0.002777778,15),DATA(

GAMM(0.142647,index8_y)*0.002777778,15), 

              

DATA(GAMM(0.256134,index8_y)*0.002777778,15),DATA(GAMM(0.376320,index8_y)*0.002777778,15),DATA(

GAMM(0.427941,index8_y)*0.002777778,15), 

              

DATA(GAMM(0.444492,index8_y)*0.002777778,15),DATA(GAMM(0.202149,index8_y)*0.002777778,15): 

              

arrsch9,TYPE(Arrival),FORMAT(Duration),FACTOR(1.0),UNITS(Days),DATA(GAMM(0.009592,index9_y)*0.002

777778,15),DATA(GAMM(0.124690,index9_y)*0.002777778,15), 

              

DATA(GAMM(0.287746,index9_y)*0.002777778,15),DATA(GAMM(0.728956,index9_y)*0.002777778,15),DATA(

GAMM(1.659334,index9_y)*0.002777778,15), 
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DATA(GAMM(3.702330,index9_y)*0.002777778,15),DATA(GAMM(6.627746,index9_y)*0.002777778,15),DATA(

GAMM(11.020665,index9_y)*0.002777778,15), 

              

DATA(GAMM(14.540756,index9_y)*0.002777778,15),DATA(GAMM(9.255824,index9_y)*0.002777778,15); 

VARIABLES:    limit6_1,CLEAR(System),CATEGORY("None-None"): 

              limit6_2,CLEAR(System),CATEGORY("None-None"): 

              index8_y,CLEAR(System),CATEGORY("None-None"),12.18: 

              limit14_2,CLEAR(System),CATEGORY("None-None"): 

              limit14_3,CLEAR(System),CATEGORY("None-None"): 

              limit1_1,CLEAR(System),CATEGORY("None-None"): 

              index15_y,CLEAR(System),CATEGORY("None-None"),1.25: 

              index3_y,CLEAR(System),CATEGORY("None-None"),0.63: 

              index10_y,CLEAR(System),CATEGORY("None-None"),11.18:

              limit7_1,CLEAR(System),CATEGORY("None-None"): 

              limit7_2,CLEAR(System),CATEGORY("None-None"): 

              limit7_3,CLEAR(System),CATEGORY("None-None"): 

              index9_y,CLEAR(System),CATEGORY("None-None"),0.42: 

              limit15_2,CLEAR(System),CATEGORY("None-None"): 

              limit15_3,CLEAR(System),CATEGORY("None-None"): 

              limit2_1,CLEAR(System),CATEGORY("None-None"): 

              index16_y,CLEAR(System),CATEGORY("None-None"),14.91:

              index4_y,CLEAR(System),CATEGORY("None-None"),14.91: 

              b10,CLEAR(System),CATEGORY("None-None"),23: 

              b11,CLEAR(System),CATEGORY("None-None"),19: 

              b12,CLEAR(System),CATEGORY("None-None"),27: 

              b13,CLEAR(System),CATEGORY("None-None"),15: 

              b14,CLEAR(System),CATEGORY("None-None"),16: 

              b15,CLEAR(System),CATEGORY("None-None"),22: 

              b16,CLEAR(System),CATEGORY("None-None"),38: 

              b17,CLEAR(System),CATEGORY("None-None"),36: 

              b18,CLEAR(System),CATEGORY("None-None"),35: 

              limit10_2,CLEAR(System),CATEGORY("None-None"): 

              sold10,CLEAR(System),CATEGORY("None-None"),0: 

              sold11,CLEAR(System),CATEGORY("None-None"),0: 

              sold12,CLEAR(System),CATEGORY("None-None"),0: 

              sold13,CLEAR(System),CATEGORY("None-None"),0: 

              sold14,CLEAR(System),CATEGORY("None-None"),0: 

              sold15,CLEAR(System),CATEGORY("None-None"),0: 

              sold16,CLEAR(System),CATEGORY("None-None"),0: 

              sold17,CLEAR(System),CATEGORY("None-None"),0: 

              sold18,CLEAR(System),CATEGORY("None-None"),0: 

              index11_y,CLEAR(System),CATEGORY("None-None"),6.77: 

              limit8_1,CLEAR(System),CATEGORY("None-None"): 

              limit8_2,CLEAR(System),CATEGORY("None-None"): 

              limit8_3,CLEAR(System),CATEGORY("None-None"): 

              b1,CLEAR(System),CATEGORY("None-None"),42: 

              b2,CLEAR(System),CATEGORY("None-None"),40: 

              b3,CLEAR(System),CATEGORY("None-None"),40: 

              b4,CLEAR(System),CATEGORY("None-None"),0: 

              b5,CLEAR(System),CATEGORY("None-None"),18: 

              b6,CLEAR(System),CATEGORY("None-None"),22: 

              b7,CLEAR(System),CATEGORY("None-None"),0: 

              b8,CLEAR(System),CATEGORY("None-None"),21: 

              b9,CLEAR(System),CATEGORY("None-None"),17: 

              rc1,CLEAR(System),CATEGORY("None-None"),200: 

              rc2,CLEAR(System),CATEGORY("None-None"),200: 

              rc3,CLEAR(System),CATEGORY("None-None"),200: 

              limit16_3,CLEAR(System),CATEGORY("None-None"): 

              limit3_1,CLEAR(System),CATEGORY("None-None"): 

              index17_y,CLEAR(System),CATEGORY("None-None"),13.53:



119

              index5_y,CLEAR(System),CATEGORY("None-None"),8.46: 

              limit11_2,CLEAR(System),CATEGORY("None-None"): 

              sold1,CLEAR(System),CATEGORY("None-None"),0: 

              sold2,CLEAR(System),CATEGORY("None-None"),0: 

              sold3,CLEAR(System),CATEGORY("None-None"),0: 

              sold4,CLEAR(System),CATEGORY("None-None"),0: 

              sold5,CLEAR(System),CATEGORY("None-None"),0: 

              index12_y,CLEAR(System),CATEGORY("None-None"),0.42: 

              sold6,CLEAR(System),CATEGORY("None-None"),0: 

              limit9_1,CLEAR(System),CATEGORY("None-None"): 

              sold7,CLEAR(System),CATEGORY("None-None"),0: 

              limit9_2,CLEAR(System),CATEGORY("None-None"): 

              sold8,CLEAR(System),CATEGORY("None-None"),0: 

              limit9_3,CLEAR(System),CATEGORY("None-None"): 

              sold9,CLEAR(System),CATEGORY("None-None"),0: 

              cmin10,CLEAR(System),CATEGORY("None-None"): 

              limit17_3,CLEAR(System),CATEGORY("None-None"): 

              cmin11,CLEAR(System),CATEGORY("None-None"): 

              cmin12,CLEAR(System),CATEGORY("None-None"): 

              cmin13,CLEAR(System),CATEGORY("None-None"): 

              cmin14,CLEAR(System),CATEGORY("None-None"): 

              cmin15,CLEAR(System),CATEGORY("None-None"): 

              cmin16,CLEAR(System),CATEGORY("None-None"): 

              cmin17,CLEAR(System),CATEGORY("None-None"): 

              cmin18,CLEAR(System),CATEGORY("None-None"): 

              limit4_1,CLEAR(System),CATEGORY("None-None"): 

              limit4_2,CLEAR(System),CATEGORY("None-None"): 

              index18_y,CLEAR(System),CATEGORY("None-None"),1.25: 

              index6_y,CLEAR(System),CATEGORY("None-None"),0.42: 

              revenue,CLEAR(System),CATEGORY("None-None"): 

              limit12_2,CLEAR(System),CATEGORY("None-None"): 

              index13_y,CLEAR(System),CATEGORY("None-None"),11.18:

              index1_y,CLEAR(System),CATEGORY("None-None"),14.91: 

              cmin1,CLEAR(System),CATEGORY("None-None"): 

              cmin2,CLEAR(System),CATEGORY("None-None"): 

              cmin3,CLEAR(System),CATEGORY("None-None"): 

              cmin4,CLEAR(System),CATEGORY("None-None"): 

              cmin5,CLEAR(System),CATEGORY("None-None"): 

              cmin6,CLEAR(System),CATEGORY("None-None"): 

              cmin7,CLEAR(System),CATEGORY("None-None"): 

              cmin8,CLEAR(System),CATEGORY("None-None"): 

              cmin9,CLEAR(System),CATEGORY("None-None"): 

              limit18_3,CLEAR(System),CATEGORY("None-None"): 

              limit5_1,CLEAR(System),CATEGORY("None-None"): 

              limit5_2,CLEAR(System),CATEGORY("None-None"): 

              index7_y,CLEAR(System),CATEGORY("None-None"),11.18: 

              limit13_2,CLEAR(System),CATEGORY("None-None"): 

              limit13_3,CLEAR(System),CATEGORY("None-None"): 

              index14_y,CLEAR(System),CATEGORY("None-None"),10.15:

              index2_y,CLEAR(System),CATEGORY("None-None"),13.53; 

COUNTERS:     sold1,,Replicate,,DATABASE(,,"User Specified","sold requests1"): 

              sold2,,Replicate,,DATABASE(,,"user Specified","sold requests2"): 

              sold3,,Replicate,,DATABASE(,,"User Specified","sold requests3"): 

              sold4,,Replicate,,DATABASE(,,"User Specified","sold requests4"): 

              sold5,,Replicate,,DATABASE(,,"User Specified","sold requests5"): 

              sold6,,Replicate,,DATABASE(,,"User Specified","sold requests6"): 

              sold7,,Replicate,,DATABASE(,,"User Specified","sold requests7"): 

              sold8,,Replicate,,DATABASE(,,"User Specified","sold requests8"): 

              sold9,,Replicate,,DATABASE(,,"User Specified","sold requests9"): 

              arr10,,Replicate,,DATABASE(,,"User Specified","arrivals10"): 

              arr11,,Replicate,,DATABASE(,,"User Specified","arrivals11"): 
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              arr12,,Replicate,,DATABASE(,,"User Specified","arrivals12"): 

              arr13,,Replicate,,DATABASE(,,"User Specified","arrivals13"): 

              arr14,,Replicate,,DATABASE(,,"User Specified","arrivals14"): 

              arr15,,Replicate,,DATABASE(,,"User Specified","arrivals15"): 

              arr16,,Replicate,,DATABASE(,,"User Specified","arrivals16"): 

              arr17,,Replicate,,DATABASE(,,"User Specified","arrivals17"): 

              arr18,,Replicate,,DATABASE(,,"User Specified","arrivals18"): 

              sold10,,Replicate,,DATABASE(,,"User Specified","sold requests10"): 

              sold11,,Replicate,,DATABASE(,,"User Specified","sold requests11"): 

              sold12,,Replicate,,DATABASE(,,"User Specified","sold requests12"): 

              sold13,,Replicate,,DATABASE(,,"User Specified","sold requests13"): 

              sold14,,Replicate,,DATABASE(,,"User Specified","sold requests14"): 

              sold15,,Replicate,,DATABASE(,,"User Specified","sold requests15"): 

              sold16,,Replicate,,DATABASE(,,"User Specified","sold requests16"): 

              sold17,,Replicate,,DATABASE(,,"User Specified","sold requests17"): 

              sold18,,Replicate,,DATABASE(,,"User Specified","sold requests18"): 

              arr1,,Replicate,,DATABASE(,,"User Specified","arrivals1"): 

              arr2,,Replicate,,DATABASE(,,"User Specified","arrivals2"): 

              arr3,,Replicate,,DATABASE(,,"User Specified","arrivals3"): 

              arr4,,Replicate,,DATABASE(,,"User Specified","arrivals4"): 

              arr5,,Replicate,,DATABASE(,,"User Specified","arrivals5"): 

              arr6,,Replicate,,DATABASE(,,"User Specified","arrivals6"): 

              arr7,,Replicate,,DATABASE(,,"User Specified","arrivals7"): 

              arr8,,Replicate,,DATABASE(,,"User Specified","arrivals8"): 

              arr9,,Replicate,,DATABASE(,,"User Specified","arrivals9"); 

OUTPUTS:      1,NC(arr1),"arr1.dat",,DATABASE(,,"User Specified","arr1"): 

              2,NC(arr2),"arr2.dat",,DATABASE(,,"User Specified","arr2"): 

              3,NC(arr3),"arr3.dat",,DATABASE(,,"User Specified","arr3"): 

              4,NC(arr4),"arr4.dat",,DATABASE(,,"User Specified","arr4"): 

              5,NC(arr5),"arr5.dat",,DATABASE(,,"User Specified","arr5"): 

              6,NC(arr6),"arr6.dat",,DATABASE(,,"User Specified","arr6"): 

              7,NC(arr7),"arr7.dat",,DATABASE(,,"User Specified","arr7"): 

              8,NC(arr8),"arr8.dat",,DATABASE(,,"User Specified","arr8"): 

              9,NC(arr9),"arr9.dat",,DATABASE(,,"User Specified","arr9"): 

              10,NC(arr10),"arr10.dat",,DATABASE(,,"User Specified","arr10"): 

              11,NC(arr11),"arr11.dat",,DATABASE(,,"User Specified","arr11"): 

              12,NC(arr12),"arr12.dat",,DATABASE(,,"User Specified","arr12"): 

              13,NC(arr13),"arr13.dat",,DATABASE(,,"User Specified","arr13"): 

              14,NC(arr14),"arr14.dat",,DATABASE(,,"User Specified","arr14"): 

              15,NC(arr15),"arr15.dat",,DATABASE(,,"User Specified","arr15"): 

              16,NC(arr16),"arr16.dat",,DATABASE(,,"User Specified","arr16"): 

              17,NC(arr17),"arr17.dat",,DATABASE(,,"User Specified","arr17"): 

              18,NC(arr18),"arr18.dat",,DATABASE(,,"User Specified","arr18"): 

              NC(sold15),,,DATABASE(,,,"sold15"): 

              NC(sold1),,,DATABASE(,,,"sold1"): 

              leg2 capacity,"leg2 capacity.dat",,DATABASE(,,"User Specified","leg2 capacity.dat"): 

              NC(sold16),,,DATABASE(,,,"sold16"): 

              NC(sold2),,,DATABASE(,,,"sold2"): 

              NC(sold17),,,DATABASE(,,,"sold17"): 

              NC(sold3),,,DATABASE(,,,"sold3"): 

              NC(sold18),,,DATABASE(,,,"sold18"): 

              NC(sold4),,,DATABASE(,,,"sold4"): 

              NC(sold5),,,DATABASE(,,,"sold5"): 

              NC(sold6),,,DATABASE(,,,"sold6"): 

              NC(sold7),,,DATABASE(,,,"sold7"): 

              NC(sold8),,,DATABASE(,,,"sold8"): 

              leg1 capacity,"leg1 capacity.dat",,DATABASE(,,"User Specified","leg1 capacity"): 

              leg3 capacity,"leg3 capacity.dat",,DATABASE(,,,"leg3 capacity"): 

              NC(sold9),,,DATABASE(,,,"sold9"): 

              NC(sold10),,,DATABASE(,,,"sold10"): 

              revenue,"revenue.dat",,DATABASE(,,"User Specified","revenue"): 
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              NC(sold11),,,DATABASE(,,,"sold11"): 

              NC(sold12),,,DATABASE(,,,"sold12"): 

              NC(sold13),,,DATABASE(,,,"sold13"): 

              NC(sold14),,,DATABASE(,,,"sold14"); 

REPLICATE,    2500,0.0,150,Yes,Yes,0.0,,,24.0,Days,No,No,,DATETIME("Feb 19, 2007 19:33:52"),Yes; 




