AN INTELLIGENT FUZZY OBJECT-ORIENTED DATABASE FRAMEWORK
FOR VIDEO DATABASE APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NEZIHE BURCU OZGUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2007

Approval of the thesis:

AN INTELLIGENT FUZZY OBJECT-ORIENTED DATABASE FRAMEWORK
FOR VIDEO DATABASE APPLICATIONS

submitted by NEZIHE BURCU OZGUR in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazici
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ismail Hakki Toroslu
Computer Engineering Dept., METU

Prof. Dr. Adnan Yazici
Computer Engineering Dept., METU

Assoc. Prof. Dr. Gozde Bozdag1 Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Cosar
Computer Engineering Dept., METU

Asst. Prof. Dr. Murat Koyuncu
Computer Engineering Dept., Atilim University

Date:

21.09.2007

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Nezihe Burcu OZGUR

Signature

11

ABSTRACT

AN INTELLIGENT FUZZY OBJECT-ORIENTED DATABASE FRAMEWORK FOR
VIDEO DATABASE APPLICATIONS

Ozgiir, Nezihe Burcu
M.S., Department of Computer Engineering
Supervisor: Prof. Dr. Adnan YAZICI

September 2007, 143 pages

Video database applications call for flexible and powerful modeling and querying
facilities, which require an integration or interaction between database and knowledge base
technologies. It is also necessary for many real life video database applications to
incorporate uncertainty, which naturally occurs due to the complex and subjective
semantic content of video data. In this thesis study, firstly, a fuzzy conceptual data model
is introduced to represent the semantic content of video data. UML (Unified Modeling
Language) is utilized and extended to represent uncertain information along with video
specific properties at the conceptual level. Secondly, an intelligent fuzzy object-oriented
database framework is presented for video database applications. The introduced fuzzy
conceptual model is mapped to the presented framework, which is an adaptation of the
previously proposed IFOOD architecture. The framework provides modeling and querying
of complex and rich semantic content and knowledge of video data including uncertainty.
Moreover, it allows (fuzzy) semantic, temporal, (fuzzy) spatial, hierarchical, regional and
trajectory queries, based on the video data model. We think that the presented conceptual
data model and framework can be adapted to any application domain related to video

databases.
Keywords: Conceptual data model, video data, uncertainty, fuzziness, UML, object-

oriented modeling, video database applications, object-oriented databases, knowledge base

systems, intelligent systems.

iv

0z

VIDEO VERITABANI UYGULAMALARI ICIN AKILLI, BULANIK VE NESNEYE
DAYALI BIR VERITABANI SISTEMI

Ozgiir, Nezihe Burcu
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Adnan YAZICI

Eyliil 2007, 143 sayfa

Video veritabani uygulamalari, veritaban ve bilgi tabani teknolojilerinin etkilesimini veya
entegrasyonunu gerektiren esnek ve giiclii modelleme ve sorgulama 6zelliklerine ihtiyag
duymaktadir. Video verisinin karmasik ve subjektif anlamsal icerigi sebebiyle dogal olarak
olusan belirsizligi de ele almak, gercek yasamdaki pek ¢ok video veritaban1 uygulamasi
icin gereklidir. Bu tez calismasinda, Oncelikle video verisinin anlamsal igeriginin
gosterilmesi i¢in bulanik, kavramsal bir veri modeli gelistirilmistir. Video verisine ait
ozellikleri bulanik bilgi ile birlikte kavramsal diizeyde gosterebilmek icin UML modeli
genisletilmistir. Ikinci olarak, video veritabani uygulamalari i¢in akilli, bulanik ve nesneye
dayali bir veritabami sistemi gelistirilmistir. Daha 6nceden gelistirilmis olan IFOOD
mimarisinin bir uyarlamasi olan bu sistem iizerinde bulanik kavramsal video modelimiz
kullanilmustir. Sistem, belirsizlik iceren, karmasik ve zengin video anlamsal igeriginin ve
bilgisinin modellenmesini ve sorgulanmasini saglamaktadir. Ayrica video veri modelimiz
kullamilarak, (bulanik) anlamsal, zamansal, (bulanik) uzaysal, hiyerarsik, bolgesel, ve
yoriinge sorgularma olanak saglanmaktadir. Gelistirilmis olan kavramsal modelin ve
sistemin video veritabanlar1 ile ilgili herhangi bir uygulama alanina uyarlanabilecegini

diisiinmekteyiz.

Anahtar Kelimeler: Kavramsal veri modeli, video verisi, belirsizlik, bulaniklik, UML,
nesneye dayali modelleme, video veritabani uygulamalari, nesneye dayali veritabanlari,

bilgi taban1 sistemleri, akilli sistemler.

To My Family

vi

ACKNOWLEDGMENTS

I would like to present my deepest thanks to my thesis supervisor Prof. Dr. Adnan Yazici

for his valuable guidance, motivation and support throughout this thesis study.
I want to thank Ceng Multimedia Research Group for their helpful advice and guidance.

I am very grateful to my family for all their patience and tolerance and to my friends who

gave me support whenever I needed.

Finally, I would like to thank Levent Tamin for his never ending support and

encouragement.

vii

TABLE OF CONTENTS

ABSTRACT v
0z \4
ACKNOWLEDGMENTS VII
TABLE OF CONTENTS VIII
LIST OF TABLES X1
LIST OF FIGURES XII
LIST OF ABBREVIATIONS XVI
CHAPTER
1 INTRODUCTION 1
2 RELATED STUDIES 6
2.1 Video Modeling & QUETYING.......ccccueriiriirriieniieniieneenteete ettt eieeseesee e ene e eneeens 6
2.2 Rule-Based Approach in Video Databases..........cccocveevviiiinieiiniieniieniieeieeeee e, 11
2.3 Uncertainty in Object-Oriented Databases & Knowledge Basesc..ccoceeeennnene 13
2.3.1 Fuzzy Object-Oriented Database (FOOD) Model..........ccccceeveeniiiniinicnncnncnne 13
2.3.2 Rule-Based Programming & Knowledge Basescccccceceevveinicinicnecnicnncnnn 18
2.3.3 Handling Uncertainty in Knowledge Basesccc.ccoceviinienniiniincncnicnnenn 19
2.4 Intelligent Fuzzy Object-Oriented Database (IFOOD) Architecture...........c...c........ 20
2.4.1 Architecture of IFOODccccociiiiiiiiiniiiece e 20
2.4.2 Fuzzy Knowledge Base (FKB) and Fuzzy Rules........cc.ccccooeiiiniiiniiiiniiinens 22
2.4.3 Integration of FOOD and FKB.......c..cccceiiiiiiiiiiiiiecceee e 23
2.4.4 Implementation of IFOODcccccoiiiiiiiiiiiieeeee e 24
3FUZZY CONCEPTUAL VIDEO DATA MODEL 25
3.1 UML (Unified Modeling Language)c.cccceereereirnieenieenieneeneeniceieereereesee e 26
32 EXtending UML......oocuiiiiiiiiiiiiee ettt sttt 27
3.3 Conceptual Video Data Modelcccocieiiiiiiniiniiiiieiiencenececeeceeeeeecee e 32
3.4 Mapping to FOODcccciiiiiiiiiiieeteeeeet ettt 44

viil

3.5 An Application: Football Game Videosc.ccevuiriiiriiiiniinieniiiieeieeieesee e 46

3.6 Querying the MOdel.........coouiiiiiiiiiiiieeete et st 50
3.6.1 (Fuzzy) Semantic QUETIEScevueereerierierieeieeteeieente sttt s s 51
3.6.2 Hierarchical QUETIES.........ccccuuiiieriiiieeeiiieeeeiteeeeiteeeeiveeeeevteeeesnraeeeensaeeeennnees 55
3.6.3 Temporal QUETIES........ccoueiriiriiriieieeiteiteeteeee ettt ettt 55
3.6.4 (Fuzzy) Spatial QUETIESeeeruvieriiiiiriieeiieerie ettt et et e st e st esbee e 56
3.6.5 RegIoNal QUETIEScocueiriiiriiiriiiriieieeieeiteete ettt ettt 57
3.6.6 Trajectory QUETIES.......covutiriiriirieeieeieeiteete et ettt e sttt st e e b eneennees 58

4 INTELLIGENT FUZZY OBJECT-ORIENTED DATABASE FRAMEWORK 60

4.1 Intelligent Fuzzy Object-Oriented Database Frameworkccccoocenienienicnnnnnn 61
4.2 Temporal, Spatial and (Fuzzy) Semantic Rulesccocevviiiiiniiniiniininniinene 62
4.2.1 Temporal RUIEScociiiiiiiiiiiee ettt s 62
4.2.2 Spatial RUIES.coeiiiiiiieiieieetee et st 64
4.2.3 Semantic FUzZzy RUIESccccooiiiiiiiiiiiiieeee e 67
4.3 Integration of FOOD and FKB.........ccocoiiiiiiiiiiiiieeeeeee e 69
4.3.1 Temporal Query Evaluationccocceviriiiiiiiiiniirieniieeciececnec e 70
4.3.2 Spatial Query Evaluationcc.ccceceriiriiniiinieiciceeecccccecee e 71
4.3.3 Semantic Query Evaluation........c..ccoceeviriiniiiniiniiienieeceeeeecnec e 72
SIMPLEMENTATION 85
5.1 Implementation TOOIS.......cc.ciiiiiiiiiiiieeeerte ettt s 86
S.L T ADA0u et s 86
SiLL2 JESS ettt ettt et et sttt nnes 88
5.1.3 Java Media Framework API (JME)........cooooiiiiiiiiieeeeeeeeee e 90
5.1.4 IBM MPEG-7 Annotation Tool (VideoANNEX)........ccoovvveeiiieiiiiiiieeeeeeeeeeennn, 90
5.1.5 Xerces2 Java Parser........c.oocvecenirieniiieieececieee e 91
5.2 ATCRITECIUTE ...c..eouveniiieeiesieetete ettt sttt sttt e sa st sre e ne 92
5.3 ANNOLALION «..evveeireiiiieie ettt ettt st e e bt ettt b e e et saeesnesreemnenne e 93
5.3.1 Vide0 ANNOTATIONveiiiiieriiieeiieenite ettt e eite et e st e e stteesbeesbteesibeesbaeesabeeens 94
5.3.2 ObjJect ANNOTALIONeouveeniiiniiieiiieieeteenee ettt ettt et sate et et ebeesaeesaeesaneeane 94
5.3.3 SCENE ANNOLALION ..ceuviiiiiieriiieeiiieeniiteeite et e ettt e st e e st e sstteesbeesbaeesabeesbaeesaseenns 97
5.3.4 Sequence ANNOLALION.cocueruirrieereenierie et et ettt sttt ereesaeesaeesane e 98
5.3.5 EVENt ANNOLAtION ..ccuviiiiiiiiiieiiieeniiteeite et e eite et e st e esite e st e sbteesabeesbaeesaneeens 99
54 QUETYING cnveeniieiieniieeie ettt sttt ettt e st e sttt st e bt et e bt e s e e smeeeaneeareeneens 105
5.4.1 (Fuzzy) Semantic QUETIESc.cuteruierriieenieeeiieeniteeeieeeiteesireeebeeesaeeesbeeenaneas 105

ix

5.4.2 Temporal QUETIES..........covuterierieiiieieeteerit ettt ettt ettt ettt be e e 111

5.4.3 (Fuzzy) Spatial QUETIES.........cccereeruiriirieiirieieneeeete ettt 112
5.4.4 Spatio-temporal QUETIES.couiriiiiiiirieeritenie ettt ettt 114
5.4.5 Hierarchical QUETIES.........eevueeriiieiiiieeiie ettt ettt et et e s e as 118
5.4.6 Class HIerarchycocccooieiiiiiiniiiiieiecitcnecnteee et 121
6 CONCLUSIONS 123
REFERENCES 125
APPENDICES
A.EXAMPLE JAVA CLASS DEFINITIONS 131
B. EXAMPLE RULES IN JESS LANGUAGE 136
C.EXAMPLE OUTPUT OF IBM MPEG-7 ANNOTATION TOOL......c.cccceeuveruenee 141

LIST OF TABLES

TABLES

Table 2.1: Similarity Matrix for the Fuzzy Attribute agecccoccevveevieneenicnicnicnnnenn 14
Table 4.1: Temporal Relations (by using end-points)..........cccceeeeereerrieeneeneenieeneesieseeenne 63
Table 4.2: Temporal TelationScoceivieriiriiriiiieeeeeeteeeete et 63
Table 4.3: Temporal TUIEScocuerviiiiiiieieceee ettt s 63
Table 4.4: Definition of Spatial Relations in Terms of Temporal Relations 64
Table 4.5: Spatial Rules Which are Defined in Terms of Temporal Rules......................... 66
Table 4.6: Inferred Spatial RUIEScooiiiiiiiiiiiiiiiee e 66
Table 4.7: Formulas to Calculate Membership Degrees for Fuzzy Spatial Relations 67
Table 4.8: Similarity Matrix for shotAccuracy, ballControl, speed and talent................... 76
Table 4.9: Similarity Matrix for the Fuzzy Attribute agecccocevveeveineeneenienieeen, 76
Table 4.10: The TalentedPlayer Objects in the Fuzzy Object-Oriented Database.............. 76
Table 4.11: The Match Objects in the Fuzzy Object-Oriented Database.............ccceeueen.e. 82
Table 4.12: Similarity Matrix for the Fuzzy Attribute airConditionccccoueeueen.. 82

X1

FIGURES
Figure 2.1:

Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:

Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:

Figure 3.18:

LIST OF FIGURES

The Hierarchical Structure of Video Data.........c.cccoceevieiiiiiiniinniniiiicceeieens 8
Representation of a Rule-Based System..........cccooeeviiiiiniinniinieenieiiceiceee 19
TFOOD AIChITECTUIE......cueieueieiieiienieeniiere ettt s 21
Inference Mechanism of IFOOD...........coccooviiiiiiiiniiiiieeeeecececee e 22
Basic UML NOTAtIONS......c..cecueriirieiiniierentineere et eeeste e sreeseennenn 27
The Representation of Classes for Uncertain Data Types......c.cccoceeveerecnnnne 28
Representation of Uncertain Classes Video and Event..........ccccooceevieniennne 29
The Representation of the Fuzzy Inheritance Relationship........cc..ccocccoeeeneeee 30
Object/Class and Class/Subclass Level Uncertainties...........cocceeeveeeveeneeneennee. 30
The Representation of Fuzzy Aggregation/Composition Relationships 31
The Fuzzy Aggregation between Pollutant and Chemical Classes 32
The Representation of “Sequence” Relationship........c.ccceceeveineineenicnicnnnenne 32
Sequence Relationship between Classes Video and Structurecc..c...... 33
The Representation of the Hierarchical Structure of Video Data................... 33
The Aggregation Relationship between Event and Shot...........cc.cccooeeneecen. 34
The Representation of Event Inheritance Hierarchycccccoceviiiiinnnncn. 35
The Representation of EventToEventRelation Association Class.................. 35
TemporalRelation and SpatialRelation Interfaces.........ccccccecvevverviivcnncencn. 36
The Representation of the Relationship between Video and Event 36
The Representation of the Relationship between Video and Object.............. 37
The Representation of Object Inheritance Hierarchyc.cccocceeviiiviiniencn. 37
The Representation of Object Classc.ceveeriiiiiiiiiiiiieiienieieeeeeeeeene 38

xii

Figure 3.19: The Representation of the Class FuzzyBoolean...........c.cccoccceveeneenicnicnnene. 39

Figure 3.20: The Relationships among Event, Actor and Objectcccccceceeveeriericnncne 40
Figure 3.21: The Representation of ActorToActorRelation Association Class.................. 41
Figure 3.22: The Representation of the Actor Trajectory Information.........cc.ccceceervennnenne. 42
Figure 3.23: The Relationships between Shot, Frame, Image and Signal 42

Figure 3.24: The Generic Conceptual Video Data Model Represented with the Extended

UML Class DIQ@Iamccc.eevueiriiniiniieiieeenee ettt sttt s 43
Figure 3.25: The Representation of the Class FUzzyccoccoiviiiiniiiniininniinccee 44
Figure 3.26: The Classes Extending the Class FUzzyccccccocceeviniiiniinincnicncnenn 44
Figure 3.27: The Representation of the Classes Defined for FuzzyDomains..................... 45
Figure 3.28: The Classes Which Inherit from Event in a Football Game........................... 46
Figure 3.29: The Instances of Foul Class with Different Membership Degrees................. 47
Figure 3.30: The Classes Which Inherit from Object in a Football Game 47
Figure 3.31: The Representation of the Class TalentedPlayer-............ccccocceveeneencncnnncnne. 48
Figure 3.32: Representation of Sequences and Scenes of a Football Game Video 49
Figure 3.33: Representation of the Scene “1st goal of the game”cccceevieviiniinnene 50
Figure 3.34: Representation of the Scene “2nd goal of the game”ccccceveininninnenn 51
Figure 4.1: Directional Relations.........c.ccooieiiiiiiiiiiiiiiiieiteiete et 65
Figure 4.2: Topological Relations........c..ccoveriiriiiiiriirieiceerieeeeeeeeeie e 65
Figure 4.3: Representation of the Inference Mechanismccocceeveiiiininniiniinicnnenne 68
Figure 4.4: Query Evaluation of the Frameworkcccccoiviiiiiiiiinicce 69
Figure 4.5: Evaluation of a Temporal QUETYc.cocceeriiiriinieniiniinieeeeieeneenee e 70
Figure 4.6: Evaluation of a Spatial QUETY........cccccoviiiiiiiiiiiiiieeeeeeee e 72
Figure 4.7: Evaluation of a Semantic QUETYc.cccoeiriiieriinieniinieeieeieeieeneenee e 73
Figure 5.1: An Example Screenshot of the Object Manager GUTccccceeviiniinicnne 87
Figure 5.2: An Example Screenshot of the IBM MPEG-7 Annotation Tool...................... 91

xiil

Figure 5.3: Representation of the Architecture of the Prototype System...........c..cccceeeueeee. 92
Figure 5.4: Video Player of the Prototype SysStem...........cccccevviriiriiiniiineeneeneeneceiceeeene 94
Figure 5.5: User Interface for Video AnNOtation.........cocceveerieniiiieniennieeneenee e 95
Figure 5.6: Definition of the Null Attribute description...............ccccoeceeveeveenicnicnncnncnn. 95
Figure 5.7: User Interface for Object ANNOLAtioNccceevueereeriirriernieenieeneeneeneeeee e 96
Figure 5.8: Definition of the Fuzzy Attribute agecocoeeviiiiiiiiiiiiiieeneeeeeee 97
Figure 5.9: Definition of the Incomplete Attribute audience..............ccccoceeveencnucnucnnncne. 97
Figure 5.10: User Interface for Scene ANNOtationcocceeveeriinieniieeneeneenee e 98
Figure 5.11: User Interface for Sequence Annotationc..cceceeveervueenieeneenieenecneenneennn 99
Figure 5.12: User Interface for Event ANNOtationcoceeveeneenienieniieiieenceseeseeeeen 100
Figure 5.13: Object List of the Videocooueeiiiiiiiiiiiiiiiieeeec e 101
Figure 5.14: ACtOr ANNOLAIONccc.eiriiriiriiriieiieieeteete ettt ettt et esmeesaees 102
Figure 5.15: Actors of the EVENt......c..ccociiiiiiiiiiiiiiieeeeeceee e 102
Figure 5.16: Actor Position Annotation for the First Objectccccccoceerciiricrneineenecnee. 103
Figure 5.17: Actor Position Annotation for the Second Object.........c.cccocuerveriiineenennen. 104
Figure 5.18: Semantic Query INterface.........cccooeeiiiiiiiiiiiiiiiec e 105
Figure 5.19: Semantic Query Interface (Video is selected)cceecueerviieinieeniieeinieenieenne 106
Figure 5.20: Semantic Query Interface (Object - Match is selected).........cccceeveeneenueenee. 107
Figure 5.21: Semantic Query Interface (Object — TalentedPlayer is selected).................. 108
Figure 5.22: Semantic Query Interface (Object — TalentedPlayer is selected).................. 109
Figure 5.23: Semantic Query Interface (Object — TalentedPlayer is selected).................. 110
Figure 5.24: Semantic Query Interface (Event — Foul is selected)cccoceevieernieennens 110
Figure 5.25: Temporal Query INterfacecocceeveeiiiiiiiiiiiiiriieic e 111
Figure 5.26: Spatial Query Interface...........coceevuieiieniiininiiiiicecncceceeceeeee 113
Figure 5.27: Spatio-temporal Query Interface (Regional QUery).........ccoceeveeveeneenennnee. 114
Figure 5.28: Spatio-temporal Query Interface (Trajectory QUery)....c...cccceveeveeveenuecnnee. 116

Xiv

Figure 5.29: Spatio-temporal Query Interface (Trajectory Query Results)c...cc..c...... 117

Figure 5.30: Hierarchical Query Interface (Shot is selected).........ccceervieiniiiniiiinieenieenne 119
Figure 5.31: Hierarchical Query Interface (Event is selected).......c..ccoceevueriennceneeneennee. 120
Figure 5.32: Class Hierarchy Interfacecocceeeeiiiniiniinniiniinccccecceceeeen 122

XV

AVI
AVIS
EER
ER
FKB
FOOD
IFOOD
JMF API
LHS
MBR
MPEG
OMG
OVID
RHS
UML
XML

LIST OF ABBREVIATIONS

Audio Video Interleave

Advanced Video Information System
Extended Entity-Relationship
Entity-Relationship

Fuzzy Knowledge Base

Fuzzy Object-Oriented Database

Intelligent Fuzzy Object-Oriented Database
Java Media Framework Application Programming Interface
Left Hand Side

Minimum Bounding Rectangle

Moving Pictures Experts Group

Object Management Group

Object-Oriented Video Information Database
Right Hand Side

Unified Modeling Language

Extensible Markup Language

XVi

CHAPTER 1

INTRODUCTION

Research on video databases has gained more importance lately as a result of improvement
in video technologies and increasing popularity of video applications. As conventional
databases, video databases are also expected to provide basic facilities such as video
modeling, querying and retrieval. The users of a video database are usually interested in
the meaning of the videos. Therefore, information inherent to video data should be

appropriately modeled and stored in a video database.

Semantic video modeling deals with high-level information in a video, which is perceived
by a human. Due to the complexity inherent to video data, semantic video data modeling
requires new techniques. There exist studies in the literature on semantic video modeling.
Earlier models usually adopt the concept of segmentation or annotation [7, 8, 50] whereas
recent studies [2, 3, 4, 6, 10, 11, 17, 18, 21, 47, 48] introduce more complex modeling

approaches.

As in traditional databases, conceptual data modeling is an important step for semantic
data modeling in video databases. The designed conceptual data model is then mapped to a
logical data model. The conceptual model is an abstract representation of the semantic
content of video data and it identifies the complex semantic entities (objects and events)

and the relationships among the entities at the highest level.

In conceptual video modeling, it is not always possible to express the semantic video
content in a precise way. Uncertainty may occur while describing the semantic entities or
the relationships among the entities. The users of a video database application tend to

construct queries, which contain uncertainty. Consider the following queries:
- Find the videos of female patients who are quite old

- Find the videos of fouls done during the game, which can be considered extremely

harsh.

- Find the goal events, which happen at the end of the game.

The uncertain information should be taken into account in order to build a more expressive

conceptual model and be able to handle queries, involving in some form of uncertainty.

The widely used ER/EER and UML [26] conceptual models do not allow to represent
uncertain information despite their power and flexibility. There already exist some studies
[1, 9, 16, 28] on building fuzzy object-oriented conceptual models enhancing EER and
UML models with uncertain information. Among those, [28] defines new fuzzy constructs
for the extended entity-relationship (EER) model. The studies included in [1, 9, 16] extend
UML with some fuzzy constructs for some ordinary applications. Beside EER and UML,
there are also other conceptual models used in the literature. For instance, [5, 15] introduce
the conceptual ExXIFO, model, which is a fuzzy object-oriented model supporting
uncertainty representation. Another study in [27] extends a graph-based object model to
represent imprecision and uncertainty, then utilizes the model to define a fuzzy object-
oriented model. Although there are a number of studies on fuzzy conceptual modeling,
only few studies incorporating fuzziness with conceptual modeling of video data exist.
Among these, [11] proposes a fuzzy conceptual model for multimedia database
applications. The model supports the representation of uncertainty at the attribute level,

object/class level and class/subclass level.

Like any other complex applications, video database applications also require development
of intelligent and powerful systems. The research efforts on the interaction or integration
of database and knowledge base systems reflect the fact that such integration is becoming
an important requirement for complex applications. Video databases are among those
applications, which require powerful and flexible modeling and querying facilities. There
are research efforts on utilizing knowledge-base systems or rule-based approach for video
databases [32, 33, 34, 35, 48, 49]. Among these, [33] defines spatial inference rules which
allow to deduce heterogeneous spatial relations by using existing ones. In [34, 49], an
architecture for a video database application supporting spatio-temporal and semantic
querying is proposed. The spatial relations are stored as Prolog facts in a knowledge base.
They also define inference rules in order to reduce the number of facts for better
performance. In [32], an SQL-like video query language, which has the capability to
handle spatio-temporal queries, is proposed. The language is rule-based since it allows
users to express spatial conditions in terms of Prolog-type predicates. The study included

in [35], presents a framework for video modeling. For the object extractions and event type

descriptions, rules are defined. In [48], a declarative, rule-based constraint query language
is introduced to infer new relationships from the existing semantic information. None of
the studies on video databases mentioned above provides a tightly coupled integration
between database and knowledge base technologies and none of them considers

uncertainty.

The research studies on the integration of database and knowledge base technologies
mostly ignore uncertainty. Among the previous approaches handling uncertain information
in databases and knowledge bases, we base our study on the IFOOD architecture proposed
in [30]. IFOOD is an intelligent fuzzy object-oriented database architecture, which
integrates a fuzzy object-oriented database and a fuzzy knowledge base. Environmental

information system is chosen as the application domain in [30].

In this thesis study, we mainly focus on semantic modeling of video database applications
by taking into account uncertainty inherent in video data. Firstly, we propose a new fuzzy
conceptual video data model. The proposed model is generic and provides the base classes
that can be adapted to any database application domain. It supports the hierarchical
structure, and the spatial and temporal relations of video data. Object-oriented modeling
[25] is suitable for conceptual modeling of video data, since it provides many abstraction
facilities, such as inheritance, aggregation, encapsulation, etc.; thus, it can be used to
represent complex video semantic entities, and the relationships among them. In this study,
UML is utilized to represent video database applications conceptually. Since UML does
not provide the necessary notations to represent uncertain information, we extend UML by
introducing some special constructs. Beside the basic constructs introduced previously in
studies [9, 10, 11], we additionally use fuzzy inheritance relationship constructor which
represents class/subclass level uncertainty and add range and relevance definitions for
fuzzy attributes. The extended UML is able to represent uncertainty at the attribute,
object/class and class/subclass levels. We also introduce sequence constructor to represent
the sequential nature of video data. We think that our fuzzy UML conceptual model can be

used for any application domain with uncertain properties.

Secondly, we present an intelligent fuzzy object-oriented database framework based on
integration of a fuzzy object-oriented database (FOOD) and a fuzzy knowledge base
(FKB) for the video database applications. The presented framework is the adaptation of
the IFOOD architecture [30] for video database applications. In this integrated

environment, our fuzzy conceptual model is mapped to the logical FOOD model [14] to be

used in the fuzzy object-oriented database. Semantic entities of video data are stored in the
fuzzy object-oriented database along with uncertain information. A fuzzy knowledge-base
system with fuzzy inference capability is used for handling knowledge about video data.
We define rules to represent knowledge about temporal and spatial relations between the
semantic video entities. Moreover, we define semantic fuzzy rules specific to a video
database application domain, football game videos. Semantic fuzzy rules provide the
inference of new information from the existing information stored in the database. The
presented framework provides (fuzzy) semantic, temporal, (fuzzy) spatial, hierarchical,
regional and trajectory queries, based on our video data model. We have also developed a
prototype system for the presented framework. The prototype system provides the

annotation and querying of video data for its users.

The main contributions of this thesis study are as follows:

1- A fuzzy conceptual video data model is proposed. The model handles the
representation of uncertain information, which might naturally occur in video
database applications. UML is extended with some special constructs to represent
the conceptual model along with uncertainty. The model is a generic, object-
oriented and semantic video data model. It represents the semantic entities and the
relationships between the entities. Moreover, it considers the hierarchical structure
of video data, and semantic, temporal, and spatial relations, which might occur

between the semantic entities.

2- A new approach for handling uncertainty and fuzziness in video database
applications is introduced. We model uncertainty in complex semantic entities of
video data by introducing uncertain attributes, objects, classes, and rules. The
presented framework, which is based on [IFOOD, provides modeling and querying
of rich semantic content and knowledge of video data including uncertainty in a

flexible and powerful way.

3- By storing temporal, spatial and semantic rules in a knowledge base, we reduce the
amount of information, which should be stored in a video database. The spatial and
temporal relations between the video entities are inferred by the knowledge base.
Fuzzy semantic rules can be used to infer semantic information instead of

explicitly storing it in the database.

4- The presented framework supports a diversity of queries such as (fuzzy) semantic,
temporal, (fuzzy) spatial, hierarchical, regional and trajectory queries. The
framework provides an integrated environment in query evaluation. The integral
parts of the framework, which are FOOD and FKB, are tightly coupled to allow

flexible and intelligent querying facilities.

5- The conceptual video data model and the presented framework are all designed to
be generic. Therefore, we think that our generic model and framework can be

adapted to any application domain related to video databases.

The rest of the thesis is organized as follows: Chapter 2 explains the related previous
studies. Our fuzzy conceptual video data model is introduced in Chapter 3. The model is
explained by using UML diagrams. Chapter 4 presents the intelligent fuzzy object-oriented
database framework and explains how the framework supports queries by giving examples.
Chapter 5 presents the implementation of our prototype system. The prototype is explained
by giving screenshots and the implementation tools that we used are discussed briefly.

Finally, Chapter 6 provides conclusions and gives future directions.

CHAPTER 2

RELATED STUDIES

The research, which is done during the development phase of this thesis study, is
summarized in this chapter. The organization of the chapter is as follows: The first section
gives a literature survey about the studies on video modeling and querying. The second
section explains the studies, which take a rule-based approach in video databases. In the
third section, uncertainty in object-oriented databases and knowledge bases are discussed
including the FOOD [14] model. The last section gives a brief description about the
IFOOD [30] architecture.

2.1 Video Modeling & Querying

The users of a video database are usually interested in the semantic content of video data.
Therefore, the rich semantic information in video data should be properly modeled in order
to provide retrieval of video according to its semantic content. Due to the complexity of

video data content, video modeling needs additional research efforts.

As discussed in [51], which provides a detailed survey on existing semantic video models,

information inherent to video data can be classified into three main categories:
1- Low-level features, which include texture, color, shape etc.

2- Syntactic information, which includes the visual objects and temporal, spatial and
spatio-temporal relations between these objects. Automatic or semi-automatic
extraction algorithms exist which can extract the low-level features and syntactic
information from video. Many spatio-temporal models [13, 52] exist in the

literature to help modeling of syntactic information.

3- Semantic information which is the answer of “what is happening in the video?”.
The semantic information in video data is what is perceived by humans and it is

very difficult to extract it automatically.

There exist many studies on semantic video modeling. Earlier models usually utilize the
concept of annotation, which consists of keywords and free text. Whereas, recent studies
deal with the complex structure of semantic information and propose more complicated
data models. Recent semantic video models represent the complex semantic entities such

as objects and events; and the relationships among them at the highest level.

It is obvious that conventional relational database models are not adequate for the complex
video semantic content. Additional research effort should be made to construct a more
powerful video data model. Some of the studies on semantic video modeling are explained

below briefly.

OVID (Object-oriented Video Information Database) proposed in [50], introduces a video-
object model and a prototype video-object database system. A video frame sequence is
considered as a video object, which has its own attributes. The model is schemaless so an
object-oriented class hierarchy is not used as a database schema. Data is shared among
video objects by using interval inclusion inheritance. A set of composition operations is
used for video objects such as interval projection, merge, and overlap. A query language

VideoSQL is also introduced to query video objects.

VideoStar proposed in [7], introduces a generic video model not only supporting semantics
but also the structure of video documents. They use sequence-scene-shot hierarchy, which
is a well-known method for representation of hierarchical structure of video data, and
define shot as a contiguous sequence of frames representing a continuous action in time
and space. Scenes are constructed by shots, which are related in time and space. The
semantically closer scenes are combined to construct a sequence, which describes a
continuing story. The model in [7] is represented by enhanced ER model. Annotations
(Person, Location, and Event) are associated with video segments to support indexing. The

annotation related classes may be extended for any application domain.

In [8], the authors propose an integrated data model and a query language. They also use
sequence-scene-shot hierarchy and define an abstract class “Structure” for generalization

of the classes “Sequence”, “Scene” and “Shot”. Figure 2.1 represents the hierarchical

structure of video data, which is used in [7, 8]. The relations among the semantic entities

are not considered in [7, 8].

AVIS (Advanced Video Information System) proposed in [47], introduces a formal video
model. The model includes objects, events and activities. An activity is an event type and
is used to group similar events. Special data structures such as association maps, frame
segment trees, object arrays, activity arrays and event arrays are used to model video data
semantically. Various semantic queries, such as elementary object, elementary activity,
object occurrence and activity type occurrence, are supported by the model of AVIS.
Beside these queries, the model also allows to construct compound queries including the
relationships between objects and events, and to construct conjunctive queries, which

group same type of queries.

VIDEO
L
Sequence Sequence
q q Sequences
L 4
Scene Scene Scene Scene .

Scenes

L 4

5 S s s s s 5 s 5 5 s

Shots

L 4
Frames

Figure 2.1: The Hierarchical Structure of Video Data

In [13], the data model of AVIS is enhanced to support spatio-temporal features of
semantic video entities. The association map in AVIS model is enhanced to represent
spatial properties of objects. Spatial data is stored together with the objects in a frame
segment tree. An array structure of objects is presented to store spatial data. The spatio-

temporal model introduced in [13] provides fuzzy spatial, fuzzy spatio-temporal, fuzzy

object trajectory and regional queries of video data. Calculation formulas for membership

values are introduced for fuzzy spatial queries.

In [3], a multimodal video data model is proposed. The model has a hierarchical structure
for visual, auditory and speech contents, which provides querying video content not only at
abstract groups but also at single events. In the hierarchy of the model, the shot structure is
not used. A sequence is partitioned into scenes and scenes are associated with events. The
model supports all the semantic queries in AVIS and fuzzy spatial, spatio-temporal queries
in [13]. In addition to these queries, video data can be queried on visual and auditory

content.

In [48], a video data model named as CoPaV? is proposed. Temporal cohesion is used for
video segmentation, and objects and relationships among the objects are associated with a
temporal cohesion. In addition to the semantic model, the authors also introduce a
declarative, rule-based constraint query language to infer new relationships from the
existing semantic information. Two layers; Semantic Layer and Feature & Content Layer
are introduced to distinguish between the visual and semantic features of video data. The
queries are divided into two forms: structural part and visual part. The queries related to
the structural part are addressed to the Semantic Layer and are handled by FLORID (a
deductive object-oriented database management system). The queries related to the visual
part are addressed to the Feature & Content Layer and are handled by IBM’s QBIC system

(image content-based retrieval system).

In [2], a semantic video data model, which handles semantic information in hierarchy, is
proposed. In this model, video data has events, events have subevents and objects are
modeled in every level of the hierarchy. Events correspond to sequences and subevents
correspond to scenes. The model uses temporal cohesion to provide temporal management.
The semantic model is used in BilVideo [49], which is a prototype video database
management system consisting of four main parts: Fact-Extractor, Video Annotator, a
web-based visual query interface and an SQL-like textual query language. BilVideo
supports spatio-temporal queries by the help of a knowledge base and semantic, color,

shape, texture queries by the help of an object-relational database.

In [4, 46], the SEBM model, which is a structural and event-based multimodal data model,
is introduced. The model includes several sub models to model the structure of video data.

Scene structure is not used, and sequence and scene have the same meaning. Video is

segmented into shots automatically, according to the background changes, by using a
Video Annotator tool. Then semantically closer shots are combined into sequences with
manual assistance. Shots are partitioned into events and these events are associated with
objects. The model supports content-based, (fuzzy) spatial and temporal queries. An XML

database is used to store and query video data.

In [6], an integrated semantic and syntactic video model is proposed. The model is
domain-independent and it handles both the high and low level features of video data. ER
diagrams extended with object-oriented concepts are used to represent the model. The
main entities in the model are object, event and actor. Objects may be involved in several
events and have different roles in each event. Such event-specific information is stored in
actor entity, which provides grouping of context-dependent properties of objects leading to
efficient retrieval. Low-level object-object relations and trajectory information are also
stored in actor entity. The instantiation of the model is represented by using graphs.
Therefore, the queries of users are translated to those graphs. In query processing, the

query graphs are matched with the instantiated ones in the database.

In [17], a generic video indexing model VIDEX, which integrates high-level and low-level
content information, is proposed. It also supports sequence-scene-shot structuring. As low-
level indexing, spatial and temporal features are supported. As high-level indexing,
content-related event, object and location classes are provided. The content-related part of
the model can be extended for any application domain. An example to the extension of
VIDEX is given in [18, 19] which introduces SMOOTH, a distributed multimedia system.
The basic classes used for high-level indexing which VIDEX provides are extended for a

soccer-based implementation.

In [21, 22], SIRSALE system is presented. It is a video management system allowing
video streams to be stored in distributed repositories. SIRSALE uses a modular model
allowing structural (sequence-scene-shot) browsing and content annotation. The video
indexing model consists of three parts. The first part deals with distribution of video
documents, the second part handles the structural representation of video data, and the
third part handles the content-based annotation. The third part can be changed for the needs

of any specific application domain.

None of the video models mentioned so far deal with uncertain information inherent to

semantic video content. There are very few studies, which enhance a video data model

10

with uncertainty representation. Among these, in [10, 11], a conceptual data model based
on ExIFO, model [5, 15] is introduced. EXIFO, is a fuzzy object-oriented data model
including uncertain and fuzzy information representation. In [10, 11] uncertainty is
modeled at the attribute level, object/class level and class/subclass level. The model
includes the modeling of events, objects and the relationships among objects. Video is
composed of a visual clip and an audio clip. A visual clip is constructed from sequential
video frames. To represent this relationship, ExXIFO, is extended with a sequence
constructor. A visual clip has events describing the content of the clip and each event may
have its own objects. Objects in an event have relationships (semantic or spatial) among
each other. The studies [10, 11] also describe how the conceptual model is mapped to the
logical FOOD [14] model which is a similarity-based fuzzy object-oriented database model

where uncertainty is considered in attribute values, objects and class hierarchy.

2.2 Rule-Based Approach in Video Databases

Video data includes very rich and complex semantic information. Considering the
semantic entities, there can be too many events, objects, and relationships among them in a
single video. Storing such a huge amount of information could be very space consuming.
In addition to that, it is not possible for an automatic extracting algorithm to capture all the
spatial information in a video or it is very impractical for a human to provide all the
semantic information manually. Therefore, mechanisms, which infer information from

existing information, are needed for video databases.

There are research efforts on utilizing knowledge-base systems or rule-based approach for
video databases [32, 33, 34, 35, 48, 49]. Among these, in [48] the authors introduce a
declarative, rule-based constraint query language to infer new relationships from the
existing semantic information. Semantic queries are handled by FLORID (a deductive
object-oriented database management system). Therefore, a rule-based approach is used

for handling semantic queries.

The study in [33] defines the spatial relations by using Allen’s temporal relations [23].
Allen’s temporal interval algebra represents relations in one dimension and it is extended
to two-dimensional space. After defining the spatial relations in terms of Allen’s temporal
relations, the authors define a set of spatial inference rules, which allow inferring

heterogeneous spatial relations by using existing spatial knowledge. However, as discussed

11

in [49], the proposed system in [33] does not promise that a complete set of relations can
be inferred from existing ones for all the object pairs. Therefore there are relations which

can not be inferred and should be calculated when a query is handled.

In [34], architecture for a video database application supporting spatio-temporal and
semantic querying is proposed. A rule-based system built on a knowledge base is used to
store spatial relations. The spatial relations are stored as Prolog facts in the knowledge
base. All of the spatial relations in two dimensions are supported and in addition to that, a
set of three-dimensional spatial relations is used. The authors also define spatial inference
rules in order to reduce the number of facts leading to considerable space savings and
better performance. The facts stored in the knowledge base include single key frames
instead of time intervals. There are two types of rules: query rules and extraction rules.
Extraction rules deal with time intervals in order to extract the spatio-temporal relations
from a video. The extraction is done in a semi-automatic way and MBRs (Minimum
Bounding Rectangle) of video objects are annotated manually. The spatio-temporal
relations are found automatically by using MBRs. Extracted relations are stored as facts in
the knowledge base such as west(A, B, k) where A and B are video objects and k is the key
frame. The facts stored in the knowledge base are later used in query processing by the
query rules. The facts, which can be derived by rules, are not stored in the knowledge base.
Instead they are inferred when a query is processed. If west(A, B, k) and west(B, C, k) are
the two facts in the knowledge base, there is no need to store the fact west(A, C, k) since it

can be derived by the inference rule: west(A, B) and west(B, C) => west(A, C)

The proposed rule-based architecture is embedded in the BilVideo [49], a prototype video
database management system. The authors also introduce an SQL-like video query
language in [32]. The language has the capability to handle spatio-temporal queries. The
language is rule-based since it allows users to express spatial conditions in terms of

Prolog-type predicates.

The rule-based architecture utilized in [34, 49] only define spatial inference rules and

semantic inference rules are not considered.

The study included in [35], presents a framework for video modeling. Automatic definition
of high-level concepts (video objects and events) by using the extracted features is

supported by the proposed model. For the object extractions and event type descriptions,

12

rules are defined. They give examples for soccer game video modeling and define rules for

describing the soccer events.

2.3 Uncertainty in Object-Oriented Databases & Knowledge Bases

In this section, firstly the FOOD model is explained briefly. Secondly uncertainty issues in

knowledge bases are discussed.

2.3.1 Fuzzy Object-Oriented Database (FOOD) Model

Complex objects might have uncertain information, which an object-oriented data model
should consider. FOOD model, which is firstly proposed in [39] is a similarity-based data
model. The study in [14] extends this model for a better representation of uncertainty.
FOOD model is used as logical data model in this study. In this section, the FOOD model

is briefly explained.

In FOOD model, regarding the representation of imprecise information, uncertainty is

handled at three levels: attribute level, object/class level and class/superclass level.
2.3.1.1 Attribute Level Uncertainty

FOOD deals with three types of uncertainty at the attribute level. The first type being
incomplete type occurs when the value of the attribute is specified as a range value. For
example, the audience in a football game may take values as 10000 — 20000. This type of
uncertainty is called “incompleteness.” The second type of uncertainty occurs when the
value of the attribute is not known (unk), does not exist (dne) or there is no information on
whether a value exists or not (ni). For example, the description of a video might not be
known (unk), the description for a video might not exist (dne) or we might not know
whether a description for a video exists or not (ni). This type of uncertainty is called
“null”. The third type of uncertainty occurs when the value of the attribute is vaguely
specified. This type of uncertainty is called “fuzzy”. For example, the weather condition in

a football game can be specified with a fuzzy term “very hot”.

Each fuzzy attribute has a domain (the set of values the attribute may take) independent of
its class. A domain consists of linguistic values which are called fuzzy terms. Range is a

subset of the fuzzy attribute’s domain, representing the ideal values but the attribute can

13

take any values from its domain. FOOD allows definition of relevance for fuzzy attributes,
which is a real number between 0 and 1 reflecting the importance of the range definition of
that fuzzy attribute in defining the boundaries of its class. Range and relevance are used to
find the membership degree of an object to its class, and the membership degree of a class

to its superclass(es). They are the same for each instance of a class.

A similarity relation, which is represented by a similarity matrix, is the basis for the
similarity-based FOOD model. A similarity matrix defines similarities between every pair
of the elements in a fuzzy domain. An example similarity matrix of a fuzzy attribute age is
given in Table 2.1. The domain of the age attribute is {very old, old, young, very young,

infant}

Table 2.1: Similarity Matrix for the Fuzzy Attribute age

age very old |old young very young [infant
very old 1.0 0.7 0.0 0.0 0.0
old 0.7 1.0 0.0 0.0 0.0
young 0.0 0.0 1.0 0.8 0.1
very young 0.0 0.0 0.8 1.0 0.3
infant 0.0 0.0 0.1 0.3 1.0

Fuzzy attributes are multivalued; thus, they may take a set of values and these values are
connected by one of the AND, OR, XOR semantics. The following representation is used

for the multivalued attributes:

Logical Operator Representation
AND <..>

OR {.-}

XOR [...]

Assume the attribute weather, which has the domain {cloudy, sunny, mild, cold, hot,

windy}. The following representations are valid:

AND: Attribute weather’s value is <cloudy, cold>, which means the weather is cloudy

and cold.

14

OR: Attribute weather’s value is {mild, hot}, which means the weather is mild or hot,

or maybe both.

XOR: Attribute weather’s value is [hot, cold], which means the weather is hot or cold

but not both.

Here, the meaning of XOR semantics is different from the logical operator XOR that

returns true for an odd number of trues.

In FOOD model, the semantics are determined during the range definition of a fuzzy
attribute. For example, consider a class C which has attributes a, b and c. The range

definitions may be as follows:

rng.(a) = {a;, a5, a3} where dom.(a) = {ay, a, a3, as, as, ..., 8} for OR semantics
rng.(b) =<b;, b,> where dom.(b) = {by, by, bs, by, bs, ..., by} for AND semantics
rng.(c) = [cy, €, 3] where dom.(c) = {cy, C,, C3, C4, Cs, ..., ¢} for XOR semantics
2.3.1.2 Object/Class Level Uncertainty

Uncertainty at the object/class level refers to the existence of a partial membership of an
object to its class. In FOOD model, the boundaries of a class might be uncertain since it
has fuzzy attributes. Range of a fuzzy attribute indicates ideal values for that attribute.
Since a fuzzy attribute may take any value from its domain regardless of its range
definition, some objects are full members of their classes with a membership degree of 1
whereas some objects are member of their classes with a membership degree changing
between 0 and 1. The values of fuzzy attributes of an object determine the membership
degree of that object to its class. The closer the value of fuzzy attributes of an object to
range definitions, the higher the object membership degree. Relevance of the fuzzy
attributes and the similarity between the fuzzy attributes’ values and their range definitions
determine the membership degree of an object to its class. To find the object membership

degree, the following formula is used:

2INC(rng.(a;)/o0,(a;))*RLV (a,;,C)
SRLV(a,,C)

He(0;)=

15

In the formula, INC(rngc(a;)/oi(a;)) is the inclusion degree of the attribute a;’s value to its
range. The calculation of the inclusion degree depends on the semantics of the attribute
which might be one of AND, OR, XOR semantics. RLV(a;C) is the relevance of the

attribute a;. The weighted-average is used to calculate the object membership degree.
Inclusion Formulas for Fuzzy Attributes

The calculation of the inclusion degrees for different semantics is explained below:
1- AND semantics:

AND semantics is strong since it requires that all of the values appear at the same time.

The formula for AND semantics is as follows:
INC(rngc(a;)/of(a;))= Min[Min]Max(ps(x,y))], Min[Max(ts(z,w)]],
Vk € rge(a;), Vy € ofa;), Vz € ofa;), Vw € rngc(a;)
2- OR semantics:

When the values of an attribute get more dissimilar to each other, the degree of uncertainty

increases. The formula for OR semantics is as follows:
INC(rngc(a;)/of(a;)) = Min[Max(us(x,z)), Threshold(oj(a;))],
Vk € of(a;), Vz € rgc(a;)

Here, the threshold value indicates the minimum level of similarity between the values of

an attribute and it can be formulated as follows:
Threshold(oj(a;)) = Min[uis(x,z)], V&, Vz € o(a;)
3- XOR semantics:

With XOR semantics, only one of the attribute’s values exist at a time. Assuming equal

probabilities for the values of an attribute, the formula for XOR semantics is as follows:

INC(rngc(a;)/of(a;)) = Avg[Max(us(x,y))], Vx € of(a;), Vy € rngc(a;)

16

Inclusion Formulas for Incomplete Attributes

The domain and range of an incomplete attribute are defined by using ranges represented
by two values such as {100 - 10000}. Considering the value of an incomplete attribute,
there are five cases to calculate the inclusion degree of the value to the range of the

attribute [5]. These cases are listed below:

R[R;..R;] is the range of the attribute

V[V,..V,] is the value of the attribute

DI[D,..D,] is the domain of the attribute

1- Value of the attribute is within the boundaries of the attribute’s range.

In this case, inclusion degree is 1.

INC(rngc(ai)/oj(a;)) = 1, where R, > V,> V,;> R,

2- Value of the attribute is out of the boundaries of the attribute’s range

In this case, inclusion degree is 0.

INC(rngc(a;)ofa;)) = 0, where Ry > V>,> V=2 D; orD, >V, >V,;> R,

3- Attribute’s range is the subset of the attribute’s value.

In this case, inclusion degree is calculated by using the following formula:
INC(rngc(a;)of(a;) = (Ry-R;+ 1)/ (Vo- Vi + 1), where V, 2R,> R, >V,

4- Attribute’s range and attribute’s value intersect at the lower side of the range.
In this case, inclusion degree is calculated by using the following formula:
INC(rngd(a;)of(a;)) = (V2-R;+ 1)/ (Vo- Vi + 1), where R, 2V>,>R; >V,

5- Attribute’s range and attribute’s value intersect at the upper side of the range.
In this case, inclusion degree is calculated by using the following formula:

INC(rngc(a;)/oj(a;)) = (Ry-V,+ 1)/ (V,-V,;+ 1), where V; 2R, >V, > R,

17

2.3.1.3 Class/Subclass Level Uncertainty

Uncertainty at the class/subclass level refers to the existence of a partial membership of a
class to its superclass(es). This type of uncertainty indicates that the fuzziness occurs at the
class inheritance hierarchy since a class hierarchy might not be constructed precisely in
some cases. The membership degree of a class to its subclass is calculated by the following

formula:
INC = Min(Max[us(x,y)]), Vx € rng.(a;), Vv € rnga(a;),
where c2 is the subclass of the class cl

For further information about calculation of inclusion degrees and membership degrees,

the readers may refer to [14].

2.3.2 Rule-Based Programming & Knowledge Bases

Rules are widely used to represent knowledge in various areas of computer science studies.
Rule-based programming differs from procedural programming in a number of ways [40].
In procedural programming, a program consists of a set of instructions telling the computer
what to do in what order, whereas in rule-based programming, a program is made up of a

set of rules on a problem domain.

A rule engine is a program, which repeatedly checks whether to apply any rule for a set of
facts. By using rule-based programming, much simpler and shorter programs can be
written since you focus on the rules and do not deal with a long list of nested if statements

(which you have to use in case of procedural programming).

Knowledge in a domain is represented by rules. A rule is simply an If-Then statement such

as:
IF it snows THEN the weather is cold.

The “if” part, which is called predicate, is the left-hand side (LHS) of the rule. The “then”
part is the right-hand side (RHS) of the rule, which is called actions.

A rule engine consists of three main parts: an inference engine, a rule base and a working

memory. Figure 2.2 represents the architecture of a typical rule engine. The facts are stored

18

in working memory and the rules are stored in the rule base. The inference engine checks
repeatedly whether any rule can apply to any fact in the working memory by using pattern-
matching process. If a fact matches with the “if” part of a rule (selection is done), the

actions in the “then” part of the rule are executed.

There are various knowledge base systems developed. Among the most popular ones are
CLIPS (C Language Integrated Production System) [42] and Jess (Java Expert System
Shell) [37]. CLIPS is a knowledge base written in C language whereas Jess is a Java based

rule engine. Both of them use the well-known Rete algorithm for pattern matching phase.

INFERENCE ENGINE
WORKING MEMORY
Fact1 (x) PATTERN MATCHING
Fact2 (y)
Fact3 (z) \1/ JL
SELECTION
RULE BASE / JL
Rule1 (If x Then y) EXECUTION
Rule2 (If y Then z)

Figure 2.2: Representation of a Rule-Based System

2.3.3 Handling Uncertainty in Knowledge Bases

There have been previous studies [31, 43, 44] on building knowledge bases extended with
uncertainty. FuzzyCLIPS [43] extends the CLIPS knowledge base to allow fuzzy rule
processing. Both crisp and fuzzy terms are allowed. The extended version of Rete

algorithm is used for the pattern-matching phase.

NRC FuzzyJ Toolkit & FuzzyJess [44] bring an extension to Jess rule engine in order to

provide the capability of handling fuzzy concepts and reasoning. The study is mainly based

19

on FuzzyCLIPS, but is developed in Java language. NRC Fuzzy] Toolkit can be used

standalone or it can be integrated with Jess (leading to FuzzyJess).

Both of the studies, FuzzyCLIPS and FuzzyJess use the concept of certainty factor to
handle fuzziness. Facts and rules can be defined with certainty factors. Membership
functions, which map the crisp domains to fuzzy domains, are utilized for fuzzy

processing. Either of the studies does not support the concept of similarity matching.

On the other hand, the fuzzy knowledge base, which is introduced in [31], extends the
CLIPS knowledge base to allow uncertainty by using a similarity-based approach. The
fuzzy knowledge base (FKB) is used in an integrated environment called IFOOD
architecture [30]. IFOOD architecture uses the FOOD model, which is similarity-based. In
order to integrate the FOOD with FKB, the fuzzy knowledge base should provide
similarity matching. FKB allows using both crisp and fuzzy terms in a rule. The Rete
algorithm is extended to allow similarity-based approach and is used in the inference

mechanism of FKB.

2.4 Intelligent Fuzzy Object-Oriented Database (IFOOD) Architecture

Uncertainty is not usually considered in many research efforts on the integration of the
database and knowledge base technologies. Among the previous approaches handling
uncertain information in databases and knowledge bases, this study is based on the IFOOD

architecture proposed in [30].

2.4.1 Architecture of IFOOD

IFOOD is an intelligent fuzzy object-oriented database architecture, which integrates a
fuzzy object-oriented database (FOOD) and a fuzzy knowledge base (FKB). The

representation of the IFOOD architecture is given in Figure 2.3.

FOOD is responsible for object management whereas FKB handles knowledge
management. FOOD (fuzzy object-oriented database) model [14] is used as the logical
model for the fuzzy object-oriented database. FKB has the fuzzy inference capability so it

processes fuzzy rules.

20

FOOD and FKB are connected by a bridge, which provides all the interaction between
these two parts. Bridge provides a unified view for the users of the architecture. There is a
user interface, which is connected to bridge. The users of this architecture do not need to
know any detail of the physical structure of the underlying system and they only
communicate with the bridge. Users can create classes, objects, fuzzy rules and define
fuzzy types, domains, similarity matrices and membership functions by using the user

interface. The interface also allows querying of the system.

User Interface

BRIDGE

Fuzzy Processor Fuzzy Processor

— 3 —
v

FOOD FKB

Figure 2.3: IFOOD Architecture

Since FOOD is used as the logical model, similarity matching is used to evaluate queries.
At the database and knowledge base parts of the architecture, there is a fuzzy processor,
which handles all of the operations related to uncertainty (such as object/class membership

degree and inclusion degree calculations, similarity matching, etc.).

Fuzzy rules are used for derived attributes and virtual classes. A fuzzy rule might include

both crisp and fuzzy conditions. Similarity matching is used to process fuzzy rules.

IFOOD allows representation of both fuzzy and crisp values for a fuzzy attribute. Some of
the objects stored in database may take fuzzy value and some of the objects may take crisp
value for the same fuzzy attribute. Therefore, the user can construct a query for the fuzzy
attribute by specifying fuzzy or crisp query conditions. For this reason, membership
functions are utilized to map crisp values to a fuzzy term. Membership functions help to

find the inclusion of a crisp value to a fuzzy set. Membership functions, which are used in

21

IFOOD implementation, are right-decreasing, triangle, trapezoidal, elliptical, and right-
increasing. They are also utilized in fuzzy rule processing. An example to a membership

function definition in IFOOD is given below:
membershipof fuzzyTemp hot triangle 75, 100, 140;

Here, membership function “triangle” is associated with the fuzzy term “hot” which is

defined for the fuzzy type “fuzzyTemp”.

The study in [30] also proposes an object-oriented database language extended with
declarative rules. The language provides definition of uncertain classes, objects and rules.

As the application domain, environmental information system is choosen.

2.4.2 Fuzzy Knowledge Base (FKB) and Fuzzy Rules

The study in [30] utilizes the fuzzy knowledge base, which is proposed in [31]. FKB is
capable of fuzzy inference. Knowledge is represented by IF-THEN rules where both of the
consequent and antecedent parts consist of linguistic variables. As an example, “IF x is A
THEN y is B” is a fuzzy rule where x and y are linguistic variables, A and B are fuzzy sets.
“x is A” is the antecedent of the rule and it may have one or more clauses connected with

fuzzy logical operators (AND, OR). “y is B” is the consequent of the rule.

Fuzzy rules are used to infer values of derived attributes. The inference mechanism of the
fuzzy knowledge base, which is represented in Figure 2.4, uses similarity matching [14]

during the pattern-matching phase.

INFERENCE ENGINE

I SIMILARITY (FUZZY) MATCHING I

dL

I SELECTION

4

I EXECUTION

i)

I COMBINATION

Figure 2.4: Inference Mechanism of IFOOD

22

The fuzzy and crisp attributes might be used together in a rule. If an antecedent predicate is
defined with a crisp attribute, traditional pattern matching is used and if the matching is
successful, the matching degree will be 1. If the predicate is defined with a fuzzy attribute
and the value of an object’s attribute is crisp, membership functions are utilized to find the

membership degree of the crisp value to the fuzzy set defined in the rule.

2.4.3 Integration of FOOD and FKB

As mentioned before, [IFOOD provides an integrated environment since it tightly couples a
fuzzy object-oriented database and a fuzzy knowledge base. Queries are evaluated by the

interaction of these two integral parts.

Users of the IFOOD architecture might construct queries including fuzzy, crisp conditions
or a combination of both. When a query request is made, the bridge firstly sends the query
to FOOD. The objects in FOOD, which satisfy the conditions, are sent back to bridge. If
the query needs a rule firing, the bridge transfers those objects to the working memory of
FKB. The rules are fired on the objects in FKB. Then, the bridge takes the result objects

and sends them to the user interface.
The algorithm for the query evaluation, which is done by the bridge, is as follows:

1. If query needs virtual classes, then evaluate virtual class condition and get the

satisfied objects.

2. 1If query does not need virtual classes, construct the crisp query and send it to

FOOD, get the satisfied objects.

3. If query includes fuzzy predicates, then evaluate fuzzy predicates and get the

satisfied objects.

4. 1If query needs rule processing, then transfer the satisfied objects to FKB and start

its inference engine. Get the satisfied objects from the working memory of FKB.
5. Submit the satisfied objects to user interface.

More information about the query processing of the IFOOD architecture can be found in

[30, 55].

23

2.4.4 Implementation of IFOOD

The authors in [30] also developed a prototype system. As the object-oriented database,
they use Itasca, which is an object database management system. The knowledge base,
which is used in the prototype, is CLIPS [42]. C++ programming language is used during
the development phase. CLIPS is extended to support fuzzy inference. The objects are
stored in Itasca and the rules are stored in CLIPS. The user interface and bridge are

implemented in C++ environment.

24

CHAPTER 3

FUZZY CONCEPTUAL VIDEO DATA MODEL

People are usually interested in the semantic meaning of the videos they watch. They
identify the videos by the objects appearing or the events happening in the video. Events
and objects are the semantic entities of video data. The relationships between the semantic
entities are also important to express the content of a video. Semantic video modeling deals
with modeling the semantic entities (such as events and objects) and the relationships

between those entities.

Video data has a more complex structure than other types of multimedia data, which are
image, audio, and text, since video might consist of audio, image and text at the same time.
Video has a temporal nature, since it is composed of sequential video frames streaming in
a time interval. Events occur in a video within a time interval. Objects appear in a video in
different time intervals several times. Objects may be involved in different events, with a

different semantic role in each event.

Events have temporal relations between each other. Objects might have both temporal
(according to the time intervals they appear in) and spatial (according to their position
within a frame with respect to each other) relations between each other. Since objects
might change their position within a time interval, we should also consider the spatio-

temporality of video objects.

Video data is a sequence of chronologically ordered video frames. A set of video frames
which share the same low-level features (such as background color) can be grouped
together to form a video shot. Video shots, which represent a semantic content occurring at
the same time and same place, construct a video scene. Semantically closer scenes, which
represent a continuing story, are combined to form a video sequence. This hierarchical
structure of video data helps us to model the semantic content more efficiently and to relate

the semantic content with physical units of video data.

25

It is sometimes not possible to identify the semantic information in a video precisely or
completely. There might be uncertain information, which also leads to uncertainty in query
results for video databases. Therefore, uncertainty should be considered by a semantic

video model.

In this study, we mainly focus on semantic modeling of video database applications by
taking into consideration uncertainty inherent in video data, and propose a fuzzy
conceptual video data model. The proposed model is generic and provides the base classes
that can be adapted to any video database application domain. It supports the hierarchical
structure of video data. Additionally, the model considers the semantic, temporal and
spatial relations between the semantic entities (objects, events and actors). The model is
object-oriented and UML is used to represent the conceptual model. UML is extended with
some special constructs to represent uncertain information. The proposed model supports
(fuzzy) semantic, temporal, (fuzzy) spatial, hierarchical, regional and trajectory queries. In

this chapter, the proposed conceptual video model is explained in detail.

The rest of the chapter is organized as follows: The first section gives a brief description
about UML. The second section describes the extensions done to the UML model and the
third section introduces the proposed fuzzy conceptual data model. The fourth section
discusses how the conceptual model is mapped to the FOOD model [14]. The application
of the conceptual model for football game videos is presented in the fifth section. Finally,
the last section gives exemplary queries to show how the model supports various types of

queries.

3.1 UML (Unified Modeling Language)

UML [26] is a widely used standard of Object Management Group (OMG) for modeling
systems by using object-oriented concepts. In UML, different types of diagrams may be
used, such as class, sequence, collaboration, component, object, and state diagrams. In this
study, UML class diagrams are utilized to represent the conceptual video data model. The

class diagrams are extended to represent uncertain information.

Figure 3.1 gives a brief explanation for the basic UML notations, which are used in a class

diagram.

26

3.2 Extending UML

In this study, UML class diagrams are extended to represent our fuzzy conceptual data

model. UML model needs to be extended for two main reasons:
1- To represent uncertain information

2- To represent sequential nature of video data

Notation Description
T Class is a description of a set of objects,
At ot which share attributes and methods. The
ElliZHdouble notation includes three parts: the name of the
FOetAtir(- nt class, attributes and methods.
X Association is the semantic relationship
reme between objects of two classes. It is usually
. bi-directional. The name of the association
and the end multiplicities are also displayed.
AssociationClass1 Association class represents additional
information about an association between two
. ‘ . classes. It cannot exist by itself.
|
1
Aggregation is a special kind of association,
1 which represents a whole/part relationship.
- An object of the "whole" class has objects of
the "part" class.
Composition is a special case of aggregation
1 ? where an object of the "part" class may belong
- to only one object of the "whole" class at a
time.
Generalisation is the relationship between a
more general class and a more specific class.
Object1 : Class1 Object is the instance of a class. The name of
attr] - int=5 the object is written before the name of the
attr2 : double = 6.2 class. The attribute values are also displayed.

Figure 3.1: Basic UML Notations

In this study, uncertainty is handled in three levels: attribute level, object/class level and

class/superclass level, as defined in [14].

27

Attribute Level

There are three types of uncertainty at the attribute level [14]. The first type of uncertainty
occurs when the value of the attribute is specified as a range value. For example, the
audience in a football game may take values in the range 10000 — 20000. This type of
uncertainty is called “incompleteness”. The second type of uncertainty occurs when the
value of the attribute is not known (unk), does not exist (dne) or there is no information on
whether a value exists or not (ni). This type of uncertainty is called “null”. For example,
the description of a video might not be known, the description might not exist or we might
not know whether the description exists or not. The third type of uncertainty occurs when
the value of the attribute is vaguely specified. This type of uncertainty is called “fuzzy”.
For example, the weather condition in a football game can be specified with a fuzzy term

“very hot”.

To represent these three types of uncertainty at the attribute level, the uncertain data types
defined in [9] are also used in this study. "UT_fy" represents fuzzy data type, "UT_nu"
represents null data type and "UT_in" represents incomplete data type. We define three
classes as in Figure 3.2, to represent these three uncertain data types. These data types are

used in the class definitions in our fuzzy conceptual data model.

UT_nu UT_in UT_fy
-nullValue : String -value1 : float -fuzzyValue : HashMap
-crispValue : Object -value2 : float -crispValue : Object

Figure 3.2: The Representation of Classes for Uncertain Data Types

To represent a class, which has uncertain information, the notation introduced in [9], is
also used in this study. A tag “U” is placed in the left-hand side of the name compartment
of a class if the attributes of that class have uncertain values. Figure 3.3 shows the

representation of classes Video and Event, which have attributes having uncertain values.

The definition of a fuzzy attribute is as follows: <attribute name> : <type> <range>
<relevance>. Each fuzzy attribute has a domain (the set of values the attribute may take)

independent of its class. <range> is a subset of the fuzzy attribute’s domain, representing

28

the ideal values but the attribute can take any values from its domain. <relevance> is a real
number between 0 and 1 reflecting the importance of the fuzzy attribute in defining the
boundaries of its class. <range> and <relevance> are used to find the membership degree
of an object to its class, and the membership degree of a class to its superclass(es). The
membership degrees are calculated by using inclusion formulas. Each class, which has a
fuzzy attribute, has method definitions of “setRanges()” to set the ranges of fuzzy
attributes, “setRelevances()” to set the relevances of fuzzy attributes, “calcMShip” to
calculate the object-class membership degrees, and “calcCSCMShip” to calculate the
class-subclass membership degrees. For further information about inclusion formulas to

find membership degrees, readers may refer to [14].

U | Event
-name : String
U | Video -when : UT_fy [range] [relevance]

-startTime : double
-rawData : String -endTime : double

-title : String :gg\ljia:jreeg(t)Sh\czg e:OShot
v +getTimelnterval() : double

-name : String

-description : UT_nu +setRanges() : void

+getStructureList() : ArrayList +setRelevances() : void
+getObjectList() : ArrayList +calcMShip() : float
+getEventList() : ArrayList +calcCSCMShip() : float

Figure 3.3: Representation of Uncertain Classes Video and Event

Object/Class Level

Uncertainty at the object/class level refers to the existence of a partial membership of an
object to its class. If the boundaries of a class are uncertain, then the objects of this class
may be a member of the class with a membership degree between 0 and 1. To represent
object/class level uncertainty in our model, we extended UML class diagrams by adding a
new notation “|UI” to the left-hand side of the name compartment of a class. This notation
is similar to the “double-square” notation defined in [9]. Putting “lUI” to the class
definition indicates the uncertainty which occurs when an instance of a class is a partially

member of its class.
Class/Subclass Level

Uncertainty at the class/subclass level refers to the existence of a partial membership of a

class to its superclass(es). This type of uncertainty indicates that uncertainty occurs at the

29

class inheritance hierarchy since sometimes we might not be able to construct a class
hierarchy precisely. To represent class/subclass level uncertainty, a fuzzy inheritance
relationship constructor is introduced to the UML data model. The capital letter “F” is used

to indicate that the inheritance relationship is fuzzy as represented in Figure 3.4.

Figure 3.4: The Representation of the Fuzzy Inheritance Relationship

The example given in Figure 3.5 shows the new constructors added to the UML model to
represent uncertainty at object/class and class/subclass levels. The class
EndangeredSpecies is the superclass, the classes Butterfly, EndangeredBear, and Wolf are
the subclasses. The inheritance relationship in this example is fuzzy; therefore, the classes
Butterfly, EndangeredBear and Wolf are the subclasses of EndangeredSpecies with a

membership degree, which may change between 0 and 1.

EndangeredSpecies

KoalaBear : EndangeredBear
objectMShip : float = 0.5

I AN AN AN

PolarBear : EndangeredBear
objectMShip : float = 0.8

Butterfly Ul | EndangeredBear Wolf PandaBear : EndangeredBear
objectMShip : float = 1

+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

Figure 3.5: Object/Class and Class/Subclass Level Uncertainties

The class EndangeredBear has “lUI” notation indicating that it is also uncertain at the
object/class level. The instances of EndangeredBear class are the members of the class
with a membership degree, which may change between zero and one. As it is represented

in Figure 3.5, there are three instances of the class EndangeredBear: KoalaBear, PolarBear

30

and PandaBear. KoalaBear is an instance of the EndangeredBear class with a membership
degree of 0.5, PolarBear is an instance with a membership degree of 0.8 and PandaBear is
an instance with a membership degree of 1, which means it has a full membership to the

EndangeredBear class.

Fuzzy aggregation/composition

The fuzzy conceptual data model has the constructors to represent fuzziness in aggregation
and composition relationships. In a fuzzy aggregation or composition relationship, the
constituent whose role is “part” is the part of the constituent whose role is “whole” with a
membership degree between 0 and 1. The fuzzy aggregation or composition relationship is
represented by using the notation “F” as shown in Figure 3.6 in the same manner with [9].
The difference between aggregation and composition relationships is explained in UML

model [26].

Figure 3.6: The Representation of Fuzzy Aggregation/Composition Relationships

Figure 3.7 represents an example for a fuzzy aggregation relationship, which may be
necessary in various applications such as environmental information systems [9]. For
instance, an instance of the class Chemical is a chemical substance such as carbon
monoxide or carbon dioxide. The Chemical instances are aggregated to form a Pollutant
instance. The membership degree of a Chemical instance in this whole-part relationship is
fuzzy leading to a fuzzy aggregation. The values of fuzzy attributes harmfulness and dose
determine the membership degree of Chemical instances to this aggregation relationship.
The range of these attributes is specified as [low, medium, high] and the relevance of

harmfulness is 0.8, whereas the relevance of dose is 0.7.

Video data can be thought of as a sequence of chronologically ordered video segments. In

[10, 11], a new constructor “sequence” is introduced to the ExIFO, [5, 15] model with

31

respect to the sequential nature of video data. The sequence constructor is a special case of
aggregation where the constituents have a chronological order. In this study, a new
relationship “sequence”, similar to the sequence constructor defined in [10, 11] is added to

the UML model. Representation of the “sequence” relationship is shown in Figure 3.8.

U | Chemical
U | Pollutant -harmfulness : FuzzyDegree [low,medium,high] [0.8]

-name : String -dose : FuzzyDegree [low,medium,high] [0.7]
-composition : FuzzyDegree [low,medium,high] [0.8] F -odor : UT_nu
+setRanges() : void [<>—————color : UT_nu
+setRelevances() : void 1 * |+setRanges() : void
+calcMShip() : float +setRelevances() : void
+calcCSCMShip() : float +calcMShip() : float

+calcCSCMShip() : float

Figure 3.7: The Fuzzy Aggregation between Pollutant and Chemical Classes

Figure 3.8: The Representation of “Sequence” Relationship

3.3 Conceptual Video Data Model

In this study, the fuzzy conceptual data model is represented by utilizing extended UML
class diagrams. With respect to the hierarchical structure of video data, video is segmented
into sequences, a sequence is segmented into scenes and a scene is segmented into shots.
For example, in a football game video, a sequence may correspond to a continuing story
such as the first half of the football game, a scene may correspond to a goal scene, and a

shot corresponds to a free kick in that goal scene.

In the video model, the classes Sequence, Scene and Shot inherit from the class Structure.
The Structure class corresponds to a video stream. The attributes startTime and endTime
represent the time interval information of the corresponding video stream. A video is
composed of sequential video streams; this relationship is represented in Figure 3.9.
Sequences are sequential in a video whereas scenes and shots do not need to be sequential

and they may overlap in the model. To represent the hierarchical structure of video data, an

32

aggregation relationship between Sequence and Scene, and an aggregation relationship

between Scene and Shot are defined as represented in Figure 3.10.

U | Video
-name : String‘ Structure
ET2EE S Sl has -startTime : double
-title : String e
; -endTime : double
-date : Date | e « &6
-description : UT_nu 1 * : L

+getTimelnterval() : double

+getStructureList() : ArrayList +getVideo() : Video

+getObjectList() : ArrayList
+getEventList() : ArrayList

Figure 3.9: Sequence Relationship between Classes Video and Structure

Sequence

+getScenelList() : ArrayList

1

Structure
startTime : double < Scene
-endTime : double <|
-name : String +getShotList() : ArrayList
+getTimelnterval() : double 47 +getParentSequence() : Sequence
+getVideo() : Video

1

Shot

+getParentScene() : Scene
+getFramelList() : ArrayList
+getEventList() : ArrayList

Figure 3.10: The Representation of the Hierarchical Structure of Video Data

In our model, video data has three main semantic entities: event, object, and actor. In the

following sections, the classes related to these entities will be explained in detail.

Event

The class Event represents the information about what is happening in a video stream. It

has three crisp attributes name, startTime, endTime, and an uncertain attribute when. The

33

attribute when corresponds to the semantic time of the event. Sometimes we can not tell
the exact time of an event in a video. We tend to use words like “at the beginning of the
video” or “at the middle of the video”. Attribute when is used when we can not exactly
define the time of the event. The attributes startTime and endTime represent the time
interval in which the event occurs. In our model, events are defined within a shot. A shot

may contain many events; this relationship is represented in Figure 3.11.

U | Event

-name : String

-when : UT_fy [range] [relevance]
-startTime : double Shot
-endTime : double * has 1

+getParentShot() : Shot
+getVideo() : Video
+getTimelnterval() : double
+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

+getParentScene() : Scene
+getFramelList() : ArrayList
+getEventList() : ArrayList

Figure 3.11: The Aggregation Relationship between Event and Shot

For a specific application domain, the class Event may be extended and many domain
specific subclasses may be defined. The inheritance hierarchy of the class Event is
represented in Figure 3.12. This hierarchy can be extended and there may be multiple

levels in the class hierarchy.

Relations may exist among instances of Event class. There can be two types of relations

among Event instances in our model.

1- Causal relations

We use a causal relation in case an event may be the cause of another event. Causal

relations may be “causes” and “resultingFrom”.

2- Temporal relations

A video event occurs in a specific time interval, thus, there can be temporal relations

among events. Temporal relations are defined according to Allen’s temporal algebra

34

[23]. Temporal relations utilized in this study are before, meets, during, overlaps,

starts, finishes, equal and their inverses, except equal.

U | Event

-name : String

-when : UT_fy [range] [relevance]
-startTime : double

-endTime : double

+getParentShot() : Shot
+getVideo() : Video
+getTimelnterval() : double
+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

EventType1 EventType2 EventType3
EventType4 EventType5

Figure 3.12: The Representation of Event Inheritance Hierarchy

Relations among events are represented in Figure 3.13. There is a many-to-many
relationship from Event class to itself. EventToEventRelation is an association class
(represented with a dashed line) and it implements the interface TemporalRelaton, which
includes the methods corresponding to the temporal relations, used in this study. The
representation of the TemporalRelation interface is shown in Figure 3.14. The interfaces
SpatialRelation and TemporalRelation are similar to “SpatialObject” and

“TemporalObject” of the VIDEX model [17].

[o 7} EventToEventRelation
U | Event -~ —|-relationName : String
-name : String -

-when : UT_fy [range] [relevance]

-startTime : double
-endTime : double
+getParentShot() : Shot
+getVideo() : Video
+getTimelnterval() : double
+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

Figure 3.13: The Representation of EventToEventRelation Association Class

35

ActorToActorRelation

ObjectToObjectRelation

-relationName : String

-membershipDegree : float

-relationName : String
-membershipDegree : float
-startTime : double
-endTime : double

EventToEventRelation
-relationName : String

=

«interface»
SpatialRelation

«interface»
TemporalRelation

+overlaps() : boolean
+disjoint() : boolean

+equal() : boolean

+inside() : boolean

+contain() : boolean

+touch() : boolean

+top() : FuzzyBoolean

+left() : FuzzyBoolean

+right() : FuzzyBoolean
+bottom() : FuzzyBoolean
+top-right() : FuzzyBoolean
+top-left() : FuzzyBoolean
+bottom-right() : FuzzyBoolean
+bottom-left() : FuzzyBoolean

+before() : boolean
+meets() : boolean
+during() : boolean
+overlaps() : boolean
+starts() : boolean
+finishes() : boolean
+equal() : boolean
+beforel() : boolean
+meetsl() : boolean
+duringl() : boolean
+overlapsl() : boolean
+startsl() : boolean
+finishesl() : boolean

Figure 3.14: TemporalRelation and SpatialRelation Interfaces

u 1 Video

-name : String
-rawData : String
-title : String

-date : Date
-description : UT_nu

In our model, there is also an aggregation between the classes Video and Event to provide

accessing the events of a video more easily as represented in Figure 3.15.

u] Event

+getStructureList() : ArrayList
+getObjectList() : ArrayList
+getEventList() : ArrayList

Figure 3.15: The Representation of the Relationship between Video and Event

Object

36

-name : String

-when : UT_fy [range] [relevance]
-startTime : double

-endTime : double

+getParentShot() : Shot
+getVideo() : Video
+getTimelnterval() : double
+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

A video stream has objects, which correspond to meaningful semantic entities. An object
may be a ball, a player, a tree, a person, etc. The class Object represents the video objects.
It may have crisp or uncertain attributes reflecting event-independent properties of a video

object. Event-specific attributes are stored in Actor entity initially defined in [6] and it will

be explained in the next section in detail. The relationship between classes Video and

Object is represented in Figure 3.16.

U | Video

-name : String U | Object
-rawData : Strin - -
title - String 9 has -objectName : String
_date : Date -description : UT_nu
-description : UT_nu 1 » |*getVideo() : Video

— = +getFrame() : Frame
+getStructureList() : ArrayList . X .
+getObjectList() : ArrayList EgstiRegion GHRsgion
+getEventList() : ArrayList

Figure 3.16: The Representation of the Relationship between Video and Object

For a specific application domain, the class Object may be extended and many domain
specific subclasses may be defined. The inheritance hierarchy of the class Object is
represented in Figure 3.17. The hierarchy can be extended and there may be multiple levels

in the class hierarchy.

U | Object
-objectName : String
-description : UT_nu
+getVideo() : Video
+getFrame() : Frame
+getRegion() : Region

ObjectType1 ObjectType2 ObjectType3

i

ObjectTyped

Figure 3.17: The Representation of Object Inheritance Hierarchy

Relations may exist among instances of Object. There are two types of relations among

instances of Object in our model.

37

1- Semantic relations

These are the relations among instances of Object class, which are not event-specific,

such as mother-of, friend-of, husband-of, etc...

2- Spatial relations

Spatial relations between instances of Object are only handled for image data. The
spatial relations between Object instances in a video event (in other words between
actors) are stored in ActorToActorRelation. An Object instance has location
information within a video frame. Spatial relations occur according to the locations of
two video objects with respect to each other. The notation of spatial relations, which
was used in [13], is also used in our study. Spatial relations may be directional and

topological.

Directional relations are strict directional relations (top, left, right, bottom) and mixed-

directional relations (top-right, top-left, bottom-right, bottom-left).
Topological relations are equal, inside, disjoint, touch, overlaps, and contain.

Relations among Object instances are represented in Figure 3.18. There is a many-to-many
relationship from Object class to itself. ObjectToObjectRelation is an association class and
it implements the interface SpatialRelaton, which includes the methods corresponding to
the spatial relations, used in this study. The type “FuzzyBoolean”, which is used in
SpatialRelation interface, is taken from the work [12]. The methods defined in
SpatialRelation interface returns values in the range 0.0 and 1.0, representing fuzziness,

which might occur in spatial relations.

_| ObjectToObjectRelation

I |-relationName : String
———-! [-membershipDegree : float

U | Object
-objectName : String
-description : UT_nu
+getVideo() : Video
+getFrame() : Frame
+getRegion() : Region

Figure 3.18: The Representation of Object class

38

The representation of the SpatialRelation interface is given in Figure 3.14 and the
representation of the class, which we define for the type FuzzyBoolean, is given in Figure
3.19. Since a spatial relation may be fuzzy, there is a membership degree associated with
the relation. The attribute membershipDegree in the class ObjectToObjectRelation is used

to represent this membership degree.

FuzzyBoolean

-membershipDegree : float

+setMembershipDegree() : void
+getMembershipDegree() : float

Figure 3.19: The Representation of the Class FuzzyBoolean

Actor

Video objects may be involved in different events. In each event an object is involved, it
becomes an actor and takes semantic and linguistic roles. The concept of actor entity was
introduced in [6]. The concept is integrated to our model. Video objects may have event-
specific roles. For example, a video object may be a “news speaker” in one event and an
“interviewer” in another event. Therefore, an object has a role, which is event-specific.
Event-specific properties are stored in Actor entities in our model. There is an association
between Event and Actor classes and there is an association between Actor and Object
classes. An event may have more than one actor. An object may be involved in more than

one event. These relationships are shown in Figure 3.20.

There are two attributes in Actor entity: lingRole and semRole as it is defined in [6].
semRole means the semantic role of an object in an event such as: scorer, kicker, etc.
lingRole means the linguistic role of the object in an event. There are three linguistic roles:
agent, object and recipient. Agent is doing the event, the object is the affected one from the
event, and recipient is the indirect one. These linguistic roles are taken from Semantic DS

of MPEG-7 [24].

Relations may exist among actors. There might be three types of relations among actors in

our model:

39

1- Semantic Relations

Semantic relations describe the event-specific semantic interactions between two

actors in an event.

2- Spatial Relations

Spatial relations describe the relationship between two actors according to their
locations in the time interval of the event they occur. Spatial relations between
actors are event-specific whereas spatial relations among objects are handled

within a single video frame.

3- Temporal Relations

Temporal relations describe the relationship between two actors according to their

occurrence during the time line.

U | Event

-name : String
-when : UT_fy [range] [relevance]

-startTime : double Actor
-endTime : double acts_in -lingRole : String
+getParentShot() : Shot -semRole : String

+getVideo() : Video
+getTimelnterval() : double

+getPositions() : ArrayList
+getEvent() : Event

+setRanges() : void +getObject() : Object
+setRelevances() : void
+calcMShip() : float *
+calcCSCMShip() : float
acts_as
1
U | Object

-objectName : String
-description : UT_nu
+getVideo() : Video
+getFrame() : Frame
+getRegion() : Region

Figure 3.20: The Relationships among Event, Actor and Object

Relations among actors are represented in Figure 3.21. There is a many-to-many
relationship from Actor class to itself. ActorToActorRelation is an association class and it
implements both of the interfaces SpatialRelaton and TemporalRelation. The
representation of this relationship is given in Figure 3.14. Since a spatial relation may be

fuzzy, there is a membership degree associated with the relation. The attribute

40

membershipDegree 1in the class ActorToActorRelation is used to represent this
membership degree. The attributes startTime and endTime represent the time interval,

which the relation represented with ActorToActorRelation class, holds within.

ActorToActorRelation

-relationName : String
_|-membershipDegree : float
-startTime : double
-endTime : double

Actor
-lingRole : String
-semRole : String
+getPositions() : ArrayList
+getEvent() : Event
+getObject() : Object

Figure 3.21: The Representation of ActorToActorRelation Association Class

An actor has a spatio-temporal property since it may change its position within the time
interval of an event. Therefore, an actor has trajectory information in an event. To
represent trajectory information, we define an aggregation between Actor and Position
classes. The class Position indicates the position of an actor in a specific time interval
within an event. Position class is associated with Region class. The Region class indicates
the MBR (minimum bounding rectangle) of the actor in a specific time interval. The
collection of Position instances gives the trajectory of the actor in a specific event. These
relationships are represented in Figure 3.22. We store the trajectory information in Actor
entity not in Object entity because the trajectory information is event-specific. The
approach we use to store the trajectory information is similar to the one in [3] where the
authors define a class named “MovingRegion” to store the trajectory information of a
video object. “MovingRegion” aggregates “Location” which is the minimum bounding

rectangle of an object.

A video shot consists of sequential video/audio frames. Therefore, there is a sequence
relationship between Shot and Frame classes. Each frame has image and audio signal
properties. Image specific properties are defined in the class Image and audio signal
specific properties are defined in the class AudioSignal. These relationships are
represented in Figure 3.23. The attributes of the classes Image and AudioSignal are taken

from the study [11].

41

Actor

Position . - =
-startTime : double has 1 FIREfNELS & Eilg

-endTime : double —O'SeT:di: St'(")ngA =
" " +getPositions : rra’ IS

+getRegion() : Region +getEvent() . Event Y

+getActor() : Actor +getObject() : Object

1
has

1

Region
—topLeftX : int
-topLeftY : int
-width : int
-height : int

Figure 3.22: The Representation of the Actor Trajectory Information

Shot

+getParentScene() : Scene
+getFramelist() : ArrayList
+getEventList() : ArrayList

1
has
*

u] Object Frame
-gbjecgNrame :Lﬁ_tring * has 1 -frameNumber : int
-description : nu
+ge(Vi§e°() ~Video +getObjectList() : ArrayList
+getFrame() : Frame Igztﬁ:‘l:l%%gr::g 1eA‘—'d'DSl9l’la|
+getRegion() : Region 9 g : g

1 1
has has
1 1
AudioSignal u] Image
-frequency : float -title : String
-amplitude : int -format : String
-title : String -width : int
-keyword : String -height : int
+getFrame() : Frame -color : UT__fy [range] [relevance]

-shape : String

-texture : String
-histogram : String
-rawData : String
+getFrame() : Frame
+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

Figure 3.23: The Relationships between Shot, Frame, Image and Signal

A video frame has video objects associated with it. Therefore, an aggregation relationship
is defined between Frame and Object as represented in Figure 3.23. The location
information of an Object instance within a Frame is stored in a Region instance; thus, there
is also an association between Object and Region. Spatial relations among the Object

instances within a frame can be found by comparing their associated Region instances.

Finally, Figure 3.24 represents the complete generic model we propose for video database

applications.

42

U | Video
-name : String
-rawData : String
title : String has *
-date : Date +getSceneList() : ArrayList
-description : UT_nu 1
+getStructureList() : ArrayList 1
+getObjectList() : AmrayList *
+getEventList() : ArrayList

Sequence

Structure

1
-startTime : double <|7 Scene
1 -endTime : double <17

-name : String +getShotList() : ArrayList

+getTimelnterval() : double <|7 +getParentSequence() : Sequence
+getVideo() : Video

1

has * R
i *
-—-{EventToEventRelation
U | Event -relationName : String Shot
-name : String *
-when : UT_fy [range] [relevance] 1

+getParentScene() : Scene
+getFrameList() : ArrayList
+getEventList() : ArrayList

-startTime : double
-endTime : double
+getParentShot() : Shot
+getVideo() : Video
+getTimelnterval() : double * has 1
+setRanges() : void
+setRelevances() : void
+calcMShip() : float

+calcCSCMShip(: float ActorToActorRelation has
-relationName : String
1 . -membershipDegree : float
Position acts_in -startTime : double

—J-endTime : double

-startTime : double
-endTime : double * N B

+getRegion() : Region has
+getActor() : Actor 1 etor * 1 e
1 nas -lingRole : String -frameNumber : int
-semRole : String +getObjectList() : ArrayList
+getPositions() : ArrayList +getAudioSignal() : AudioSignal
1 +getEvent() : Event +getimage() : Image
+getObject() : Object has
Region 1 1
-topLeftX : int * has has
-topLeftY : int
-width : int acty_as
-height : int 1 1
1 1 AudioSignal U | Image
-frequency : float title : String
has U | Object * -qmplitudg:int -folrmatEString
- . title : String -width : int
-objectName : String -keyword : String -height : int
1 [description : UT_nu . +getFrame() : Frame | |-color: UT_fy [range] [relevance]
+getVideo() : Video -shape : String
+getFrame() : Frame -texture : String
* +getRegion() : Region -histogram : String
-rawData : String
* ! +getFrame() : Frame
! +setRanges() : void
! +setRelevances() : void
r - +calcMShipy() : float
+calcCSCMShip () : float

ObjectToObjectRelation

-relationName : String
-membershipDegree : float

Figure 3.24: The Generic Conceptual Video Data Model Represented with the
Extended UML Class Diagram

43

3.4 Mapping to FOOD

In this section, we give examples to mapping our conceptual model to a logical model.
FOOD (fuzzy object-oriented data model) [14] is used as the logical model. The uncertain
classes extend the class Fuzzy that provides basic methods “calcMShip” and
“calcCSCMship” to calculate object membership degrees and class/subclass membership
degrees respectively. The definition of the class Fuzzy is represented in Figure 3.25. Figure

3.26 represents the classes extending the class Fuzzy.

Fuzzy
-objectMShip : float
-classSClassMShip : float

+calcMShip() : float
+calcCSCMship() : float

Figure 3.25: The Representation of the Class Fuzzy

U | Event
-name : String U | Video
-when : UT_fy [range] [relevance] C =
-startTime : double Fuzzy _?:vf,nga't: frgt?ing
-endTime : double objectMShip : float title - String
+getParentShot() : Shot >l classSClassMShip : float K~ -date : Date
ORI SWEED +calcMShip() : float -description : UT_nu
:gz:;‘;’r‘ft‘:;"f"g 5 double +calcCSCMship() : float TgetStructureList() ; ArrayList
+setReIeg/ancés() : void +getObjectI7ist() : Arrayl..ist
+calcMShip(- float +getEventList() : ArrayList
+calcCSCMShip() : float

U | Object
-objectName : String
-description : UT_nu
+getVideo() : Video
+getFrame() : Frame
+getRegion() : Region

Figure 3.26: The Classes Extending the Class Fuzzy

New classes extending UT_fy are defined to store information specific to a fuzzy domain
such as FuzzyTemperature, FuzzyAge, FuzzyHeight, FuzzyDirection, FuzzyWhen and

FuzzyDegree. The representation of these classes is given in Figure 3.27. These classes

44

store domain, similarity matrix, semantics, crisp type and membership function
information related to a fuzzy domain. UT_fy is used for an abstraction between these

classes.

The linguistic values in a fuzzy domain are called fuzzy terms. Similarity matrix is used to
define similarities between every pair of the elements in a fuzzy domain. To find the
inclusion of an attribute’s value to a fuzzy set, inclusion formulas in [14] are used.
Different inclusion formulas are employed depending on the semantics of a fuzzy attribute
which might be one of AND, OR, XOR semantics. The attributes domain, simMatrix,
semantics, crispType and membershipFunction are defined static, since they are class
attributes and their values are the same for each instance of a class. It is meaningful that
similarity matrix, semantics, domain and memberhsipFunction information is defined by
domain experts. Example class definitions written in Java language are provided in

Appendix A.

FuzzyDirection FuzzyWhen
-domain : HashMap = [left, left-middle, middle, middle-right, right -domain : HashMap = [beginning of the game, end of the game...]
-simMatrix : HashMap -simMatrix : HashMap
-semantics : String = OR -semantics : String = OR
-crispType : String = integer -crispType : String = integer
-membershipFunction : HashMap -membershipFunction : HashMap

FuzzyHeight FuzzyTemperature
-domain : HashMap = [very tall tall, medium short.very shor UT fy -domain : HashMap = [hot,mild,normal,low.very low.frigid

-simMatrix : HashMap
—}:semantics : String = OR
-crispType : String = integer

-simMatrix : HashMap
-semantics : String = AND —
-crispType : String = integer

-fuzzyValue : HashMap
-crispValue : Object

-membershipFunction : HashMap -membershipFunction : HashMap
FuzzyAge FuzzyDegree
-domain : HashMap = [very old,old young.very young.infan] -domain : HashMap = [very high,high,medium.low very low]
-simMatrix : HashMap -simMatrix : HashMap
-semantics : String = OR -semantics : String = OR
-crispType : String = integer -crispType : String
-membershipFunction : HashMap -membershipFunction : HashMap

Figure 3.27: The Representation of the Classes Defined for FuzzyDomains

45

3.5 An Application: Football Game Videos

We extend our generic model for a specific application domain: football game videos.
Some of the classes are somewhat similar to the ones used in [20], which is designed for
SMOOTH soccer application [18, 19]. In our generic model, we provide the base classes

Event and Object, and then we extend them for the application domain, football games by

adding new football game content specific classes.

Figure 3.28 represents the Event hierarchy for the application domain, football games.
There are six classes extending Event: ShotEvent, Goal, Corner, Foul, Whistle and Penalty.
The class FreeKick extends the class ShotEvent. The inheritance relationship between

FreeKick and ShotEvent is fuzzy reflecting the fact that not every free kick is a shot in a

football game. Some free kicks may be a pass.

Corner
-direction : String

Penalty U | Event
-name : String
u>-when : FuzzyWhen [beginning of the game, end of the game..] [0.7]

-startTime : double
-endTime : double Ul | Foul
+getParentShot() : Shot -harshness : FuzzyDegree [very high,high,medium] [0.8]
+getVideo() : Video -redCard : boolean
+getTimelnterval() : double -yellowCard : boolean

Whistle ﬁ>+se$argeso V(‘)Jid ” -fieldPosition : String

— +setRelevances() : voi] +setRanges() : void

-decision : String +calcMShip() : float +setReIe?/ance50 void

[+calcCSCMShip() : float +calcMShip() : float

+calcCSCMShip() : float

U | Goal U | ShotEvent

~style : String -distance : UT_in "
-direction : FuzzyDirection [left, middle-left, middle, middle-right,right] [0.7] F FreeKick
distance : UT_in direction : Stiing

Figure 3.28: The Classes Which Inherit from Event in a Football Game

The range of the fuzzy attribute when in Event class is [beginning of the game, mid of the
first half, end of the first half, beginning of the second half, mid of the second half, end of
the game]. The direction attribute in the class Goal represents the information about the
direction from which the goal is scored, which might take values from the range [left, left-

middle, middle, middle-right, right]. The range values of the attribute when are taken from

the model introduced in [11].

46

The class Foul has “lUI” notation indicating that it is uncertain at the object level. As it is
represented in Figure 3.29, there are three instances of the class Foul: Kicking, Pushing
and Hitting. Kicking is the instance of the Foul class with a membership degree of 0.9,
Pushing is the instance of the Foul class with a membership degree of 0.2 and Hitting is the
instance of the Foul class with a membership degree of 0.2. The value of the fuzzy

attribute harshness decides the membership degree of these instances to the class Foul.

Kicking : Foul Pushing : Foul Hitting : Foul
harshness : FuzzyDegree = [very high,high] harshness : FuzzyDegree = low harshness : FuzzyDegree = [medium,low]
redCard : boolean = false redCard : boolean = true redCard : boolean = false
yellowCard : boolean = true yellowCard : boolean = false yellowCard : boolean = true
fieldPosition : String = defense fieldPosition : String = midfield fieldPosition : String = midfield
objectMShip : float = 0.9 |objectMShip : float = 0.2 objectMShip : float = 0.2

Figure 3.29: The Instances of Foul Class with Different Membership Degrees

Ball

U | Object
-objectName : String <I

-description : UT_nu
+getVideo() : Video
+getFrame() : Frame
+getRegion() : Region

AVA
AN

U | Person U | Match

-name : String -matchDate : Date

-age : FuzzyAge [very old,old,young,very young] [0.5] -audience : UT_in
-height : FuzzyHeight [very tall tall, medium,short,very short] [0.5] | |-airCondition : FuzzyTemperature [hot,mild,normal,low,very lowfrigid] [0.5]

+setRanges() : void +setRanges() : void
+setRelevances() : void +setRelevances() : void

+calcMShip() : float +calcMShip() : float
+calcCSCMShip() : float

+calcCSCMShip() : float
0! 0.* 0.
Player Referee
-dressNumber : int -style : String leads
-fieldPosition : String U | Stadium
! -name : String
-capacity : UT_in
1. fakes glace in -address : String
1 plays in 4‘
Team 1
-name : String 2

Figure 3.30: The Classes Which Inherit from Object in a Football Game

47

Figure 3.30 represents the Object hierarchy for the application domain, football games.
There are five classes extending the class Object: Person, Match, Ball, Team and Stadium.
Person, Match and Stadium are uncertain classes, whereas Ball and Team are crisp classes.
The class Person has two uncertain attributes age and height of type fuzzy. The class
Match has two uncertain attributes: audience of type incomplete and airCondition of type
fuzzy. There are two classes extending the class Person: Player and Referee. There is an
association between Referee and Match named “leads”. There is an aggregation
relationship between Team and Player meaning that a team consists of 11 and more
players. There is an association between Team and Match named “plays in”. There is an

association between Match and Stadium named “takes place in”.

Figure 3.31 represents an example to the object/class level uncertainty for the football
games domain. The class TalentedPlayer, which extends the class Player, is uncertain at
the object/class level. The values of the uncertain attributes shotAccuracy, speed and
ballControl decide the membership degree of an object to TalentedPlayer class. The
objects “John” and “Brad” are the instances of the class TalentedPlayer with the
membership degrees 0.63 and 0.89 respectively. The attribute talent is a derived fuzzy
attribute and its value is not stored explicitly but derived according to the values of the
attributes shotAccuracy, speed and ballControl by processing a fuzzy rule. Fuzzy rules will

be explained in Chapter 3.

Player John : TalentedPlayer
shotAccuracy : FuzzyDegree = low
speed : FuzzyDegree = medium
ballControl : FuzzyDegree = high
objectMShip : float = 0.63

-dressNumber : int
-fieldPosition : String

[Ul | TalentedPlayer Brad : TalentedPlayer
-shotAccuracy : FuzzyDegree [very high,high] [0.8] shotAccuracy : FuzzyDegree = medium
-speed : FuzzyDegree [very high,high] [0.7] speed : FuzzyDegree = high
-ballControl : FuzzyDegree [very high,high] [0.8] ballControl : FuzzyDegree = high
-talent : FuzzyDegree [high, very high] objectMShip : float = 0.89

+setRanges() : void
+setRelevances() : void
+calcMShip() : float
+calcCSCMShip() : float

Figure 3.31: The Representation of the Class TalentedPlayer

48

We apply our model for an imaginary football game video, which is played between
Fenerbahge and Besiktas. Figure 3.32 represents the sequences and the scenes occurring in
a specific football game video by utilizing UML object diagrams. The first sequence is “1st
half of the game” and the second sequence is the “2nd half of the game”. The first half of

the game has two scenes: “Ist goal of the game” and “2nd goal of the game”.

footballVideo : Video

name : String = footballGame
rawData : String

title : String = Fenerbahge-Besiktas has
date : Date = 17.05.2006

description : UT_nu = cup final match

has

half1 : Sequence half2 : Sequence
startTime = 1 has startTime = 8100
endTime = 5400 endTime = 13500
name : String = 1st Half of the Game name : String = 2nd Half of the Game
has
goall : Scene goal2 : Scene
startTime = 1000 startTime = 2500
endTime = 1600 endTime = 3200
name : String = 1st Goal of the Game name : String = 2nd Goal of the Game

Figure 3.32: Representation of Sequences and Scenes of a Football Game Video

The details of the scene “1st goal of the game” are represented in Figure 3.33 by utilizing
UML object diagrams. There are two shots in the scene: corner and goall. The shot corner
has only one event: cornerEvent and the shot goall has only one event: goalEvent. There
are two actors in cornerEvent: kicker and kickedl. Kicker is associated with a Player object
and kicked] is associated with a Ball object. There are three actors in goalEvent: kicked?2,
scorerl and goalkeeperl. Kicked?2 is associated with a Ball object, scorerl is associated

with a Player object and goalkeeperl is associated with a Player object.

The details of the scene “2nd goal of the game” are represented in Figure 3.34 by utilizing
UML object diagrams. There are two shots in the scene: foul and penalty. The shot foul has
only one event: foulEvent and the shot penalty has only one event: penaltyEvent. There are
two actors in foulEvent: committer and victim. Committer is associated with a Player object
and victim is associated with a Player. There are three actors in penaltyEvent: kicked3,
scorer2 and goalkeeper2. Kicked3 is associated with a Ball object, scorer2 is associated

with a Player object and goalkeeper2 is associated with a Player object.

49

goall : Scene

startTime = 1000

has.__lendTime = 1600 has
name : String = 1st Goal of the Game
corner : Shot goal1 : Shot

star{Time = 1200
endTime = 1300
name : String = comer

has

cornerEvent : Corner

startTime = 1450
endTime = 1550
name : String = goal1

as

name : String = cornerEvent
hen : FuzzyWhen = mid of the first half
startTime : double = 1200
endTime : double = 1300
direction : String = right

goalEvent : Goal

acts_in

name : String = goalEvent

startTime : double = 1450

endTime : double = 1550

style : String = foot

direction : FuzzyDirection = middle-right
distance : UT_in = {10 - 20}

acts_in

hen : FuzzyWhen = mid of the first half

acts_in

acts_in

| Kicker: Actor

| kickedt: Adtor |

acts_in

kicked? : Actor |

lingRole : String = agent
semRole : String = kicker

lingRole : String = object
semRole : String = kicked

lingRole : String = object
semRole : String = kicked

scorert : Actor

| goalkeepert: Actor

acts_as

tuncay : Player

objectName : String = tuncay
description : UT_nu = dne

name : String = Tuncay Sanli
age : FuzzyAge = young

height : FuzzyHeight = tall
dressNumber : int = 17
fieldPosition : String = middlefield

acts_as

lingRole : String = agent
semRole : String = scorer

lingRole : String = recipient
semRole : String = goalkeeper

L Ball . Ball

adts_as
acts as acts_as
alex: Player hakan : Player

objectName : String = ball
description : UT_nu = dne

dressNumber : int = 20

objectName : String = alex
description : UT_nu = unk

name : String = Alex de Souza

age : FuzzyAge = [young,very young]
height : FuzzyHeight = [tall,very tall]

fieldPosition : String = forward

objectName : String = hakan
description : UT_nu = dne
name : String = Hakan Arikan
age : FuzzyAge = young
height : FuzzyHeight = very tall
dressNumber : int = 84
fieldPosition : String = defense

Figure 3.33: Representation of the Scene “1st goal of the game”

3.6 Querying the Model

The users of video databases might construct various queries such as (fuzzy) semantic,

hierarchical, temporal, (fuzzy) spatial, regional, and trajectory queries. In this section, we

give examples to these queries and explain how our conceptual model supports these

queries.

50

has

goal2 : Scene

has

foul : Shot

startTime = 2400
endTime = 2460
name : String = foul

has

foulEvent : Foul

name : String = foulEvent

when : FuzzyWhen = end of the first half
startTime : double = 2400

endTime : double = 2460

harshness : FuzzyDegree = very high

—{redCard : Boolean = true

acts, |

nlyellowCard : Boolean = false
fieldPosition : String = defense

acts_in

startTime = 2300
lendTime = 2700
name : String = 2nd Goal of the Game

penalty : Shot

startTime = 2600
endTime = 2700
name : String = penalty

has

penaltyEvent : Penalty

name : String = penaltyEvent
Iwhen : FuzzyWhen = end of the first half
tartTime : double = 2600

actg_in

endTime : double = 2700

acts_in

acts_in

committer : Actor

victim : Actor

scorer2 : Actor

kicked3 : Actor

lingRole : String = agent
semRole : String = committer

lingRole : String = recipient
isemRole : String = victim

lingRole : String = agent
semRole : String = scorer

lingRole : String = object
isemRole : String = kicked

acts_:

ibrahim : Player

lobjectName : String = ibrahim
description : UT_nu = ni

name : String = ibrahim Uziilmez
lage : FuzzyAge =
height : FuzzyHeight = tall
dressNumber : int = 19
fieldPosition : String = middlefield

young

acty as

alex : Player

objectName : String = alex
description : UT_nu = unk

name : String = Alex de Souza

age : FuzzyAge = [young,very young]
height : FuzzyHeight = [tall,very tall]
dressNumber : int = 20

fieldPosition : String = forward

acts_as

ball : Ball

lobjectName : String = ball
description : UT_nu = dne

goalkeeper2 : Actor

lingRole : String = recipient

semRole : String = goalkeeper

acts_as

hakan : Player

objectName : String = hakan
description : UT_nu = dne
name : String = Hakan Arikan
age : FuzzyAge = young
height : FuzzyHeight = very tall
dressNumber : int = 84
fieldPosition : String = defense

Figure 3.34: Representation of the Scene ‘“2nd goal of the game”

3.6.1 (Fuzzy) Semantic Queries

Semantic queries might be about the properties of events, objects and about the semantic

relations between them. We can divide semantic queries to four categories as follows:

1- Querying about video properties such as:

- What is the date of the video played between “Galatasaray” and “Fenerbahce”:

To answer this query, simply the matches related to each video are searched. If the

teams playing in a match are “Galatasaray” and “Fenerbahge”, then the value of

the date attribute of that video is the result.

- Find the videos having the title “2007 Champions League Final Match”:

51

To answer this query, title attribute of each video is compared to the title specified

in the query. The list of the videos satisfying the condition is the result.
2- Querying about event properties such as:
- Find the goal events happening between 10" and 100" seconds

To answer this query, startTime and endTime attributes of each goal event are
compared with the conditions specified in the query. The list of the goal events

satisfying the condition is the result.
- Find the foul events with red cards

To answer this query, redCard attribute of each foul event is compared to “true”.

The list of the foul events satisfying the condition is the result.

- Find all fouls occurring between 10th and 200th seconds which can be considered

as very harsh (very high degree of harshness) with a threshold of 0.7

To answer this query, Foul events having the time interval within the given one are
searched. For each foul event, inclusion degree of the value of harshness attribute
to the fuzzy set [very high] is calculated. If it is greater than the threshold, that foul

event is included in the result.
- Find the goal events which are scored by foot

To answer this query, style attribute of each goal event is compared to “foot”. The

list of the goal events satisfying the condition is the result.

- Find the goal events which are scored from the right side of the goalpost with a

threshold of 0.6

Here, direction is a fuzzy attribute in Goal class. To answer this query, inclusion
degree of the value of direction attribute to the fuzzy set [right] is calculated. If the
inclusion degree is greater than the threshold value, then that goal event is

included in the result.

3- Querying about object properties such as:

52

Find the players who are young and, very tall or tall with a threshold of 0.7

Here, age and height are fuzzy attributes in Player class (inherited from Person
class). To answer this query, inclusion degree of the value of age attribute to the
fuzzy set [young] and inclusion degree of the value of height attribute to the fuzzy
set [very tall OR tall] are calculated. If the inclusion degrees are greater than the

threshold value, then that player object is included in the result.

Find the matches played in a very cold weather with a threshold of 0.5

Here, airCondition is a fuzzy attribute in Match class. To answer this query,
inclusion degree of the value of airCondition attribute to the fuzzy set [very cold]
is calculated. If the inclusion degree is greater than the threshold value, then that

match object is included in the result.

Find the matches played in a stadium having a capacity of {10000 - 20000} with a
threshold of 0.5

Here, capacity is an incomplete attribute in Stadium class. To answer this query,
inclusion degree of the value of capacity attribute of Stadium objects associated
with each Match object to the range {10000 - 20000} is calculated. If the inclusion
degree is greater than the threshold value, then that Match object is included in the

result list.

4- Querying about events and actors such as:

Find the time interval in which a goal is scored with a distance {10m — 20m} from

the goalpost at the end of the game with a threshold of 0.7

Here, distance is an incomplete attribute and when is a fuzzy attribute (inherited
from Event class) in Goal class. To answer this query, for each goal event,
inclusion degree of the value of distance attribute to the range {10m — 20m} and
inclusion degree of the value of when attribute to the fuzzy set [at the end of the
game] are calculated. If the degrees are greater than the threshold, time interval of

that goal event is included in the result.

Find all talented players (with a threshold of 0.8) which are seen between 10" and

200™ seconds

53

Events, which have the time interval within 10th and 200th seconds, are searched.
For each found event, the TalentedPlayer objects, which are involved in that event,
are found by using the actor list of the event. TalentedPlayer objects having object

membership degrees greater than the threshold are included in the result.
Find all corner events in which both of playerX and playerY are seen

To answer this query, actors of the corner events are searched. If the actors of a
corner event include the objects playerX and playerY, then that corner event is

included in the result.
Find all the other players in goal event in which playerX is the scorer

To answer this query, actors of each goal event are searched. If the actors of a goal
event include the object playerX with the semantic role “scorer”, then the player

objects associated with all of the actors of that goal event are included in the result.
Find the events in which playerX commits a foul against playerY

Actors involved in foul events are searched. If the actors of a foul event include
the objects playerX with semantic role “committer” and playerY with semantic

role “victim”, that foul event is included in the result.

Find the goals made against teamA in a match played in a very cold weather with

audience from 10000 to 30000 people with a threshold of 0.6

Matches are searched and the inclusion degree of the value of airCondition
attribute to the fuzzy set [very cold] and the inclusion degree of the value of
audience attribute to the range {10000 - 30000} are calculated. If the degrees are
greater than the threshold, videos, which include those matches, are searched. For
each goal event in the found videos, if the goal event involves a player with
semantic role “goalkeeper” who is a member of teamA, that goal event is included

in the result.

Find all objects in the goal event which occurs between 10" and 200" seconds in

the video

54

To answer this query, the goal events of the given video having a time interval
within the specified time interval are selected. The actor list of the goal event is

traversed. The related player objects are included in the result.

3.6.2 Hierarchical Queries

As mentioned before, our model supports the representation of the hierarchical structure of
video data. Therefore, hierarchical structure of video content can be queried in the form of

hierarchical queries such as:
- Find the goal scenes appearing in the “first half sequence” of the game

To answer this query, Structure list of each video is searched. If the name of the
sequence is “first half sequence”, then the scene list of that sequence is searched.

The scenes with the name “goal” are included in the result.
- Find the corner shots appearing in the “1st goal scene”

To answer this query, the Structure (sequence) list of each video is searched. Then
the scene list of each sequence is searched. If the name of the scene is “1st goal
scene”, then the shot list of that scene is searched. The shots having the name

“corner” are included in the result.
- Find the events in the corner shot of the video “Fenerbahce-Galatasaray”

To answer this query, Scene list of each sequence, which is in the Structure list of
the given video, is searched. For each found scene, if the shot list of the scene

includes a shot with name “corner”, the event list of that shot is the result.

3.6.3 Temporal Queries

Video events might have temporal relations between each other. The temporal relations are
represented by the instances of EventToEventRelation class. Therefore, we can construct

temporal queries to find the temporal relations between events as follows:

- Find the foul events occurring before goal events

55

To answer this query, the foul events and the goal events are found. Then the
temporal relation between each foul event — goal event pair is calculated. If the

relation name is “before”, then the related foul event is included in the result.

- Find the temporal relation between the corner event and the goal event occurring

between 10" and 200" seconds in the video “Fenerbahge-Galatasaray”

To answer this query, firstly the goal and foul events of the given video are
searched. If the time intervals of the events are within the given time interval, the
temporal relation is found between the goal and foul events. The result is returned

in the form of an EventToEventRelation instance.
- Find the goals which are scored after a corner shoot which is made by playerX

To answer this query, firstly the actors of corner events are searched. If the actor
list of a corner event includes playerX with the linguistic role “agent”, then that
corner event is selected. The goal events in the video of the selected corner events
are found. Then the temporal relation between each corner event — goal event pair
is calculated. If the relation name is “before”, then the related goal event is

included in the result.

- Find the penalties which happen after a foul committed by a player with name

“Okan”, and of young age with a threshold of 0.7

To answer this query, firstly the foul events are searched. The events having a
player with name “Okan” as an actor with the linguistic role “agent” are selected.
The inclusion degree of the value of the age attribute of the player to the fuzzy set
[young] is calculated. If the degree is smaller than the threshold, that foul event is
ignored. Then the penalty events in the same video of the found foul events are
searched. If the temporal relation between the foul event and penalty event is

“before”, that penalty event is included in the result.

3.6.4 (Fuzzy) Spatial Queries

When objects are involved in events, they become actors. Actors might have spatial

relations between each other in an event. The spatial relations are represented by the

56

instances of ActorToActorRelation class. Therefore, we can construct spatial queries to

find the spatial relations between actors as follows:

- Find the spatial relation between playerX and playerY at the goal event of the

video “Fenerbahce-Galatasaray”

To answer this query, position lists of the actors (playerX and playerY)
participating in the goal event of the given video are searched. If the time intervals
of two positions of two different actors are intersected, then the regions are
compared to find the spatial relation. The result is returned in the form of an

ActorToActorRelation instance.

- Find the player appearing on the left side of playerX in the foul event of the video
“Fenerbah¢e-Galatasaray” with a threshold of 0.8

To answer this query, position lists of the actors in the foul event of the given
video are searched. If the time intervals of two positions of two different actors are
intersected and one of these two actors is playerX, regions are compared to
determine whether the spatial relation in the intersected time interval is “left”. If
the membership degree of the relation is greater than the threshold, the player

other than playerX is included in the result.

- Find the time interval (or event) in which playerX and playerY has the spatial

relation “overlaps” in the video “Fenerbahce-Galatasaray”

To answer this query, firstly the actors related to playerX and playerY, which
participate in the same event in the given video, are found. Then the position lists
of the actors are searched. If the time intervals of two positions are intersected,
then the regions are compared to find the spatial relation. If the relation is
“overlaps” and the membership degree of the relation is greater than the threshold,

the time interval (or the event) is included in the result.

3.6.5 Regional Queries

We store the region of an actor in a specific time interval in Position class. Position class is

associated with Region class, which stores the information for the minimum bounding

57

rectangle of an actor. Our model supports the regional queries defined in [3, 13]. We can

construct regional queries as follows:

- Find the time interval in which playerX has the given region with a threshold of

0.9 in the foul event of the video “Fenerbahce-Galatasaray”

To answer this query, actors participating in the foul event in the given video are
searched. If playerX is found as the actor, position list of the actor is traversed and
regions are compared with the given region. For the region matching, the

following formula, which is taken from the study in [3], is used:
1 = intersected_area (Regionl, Region2)
/ minimum_area (Regionl, Region2) (F-1)

If the membership degree (W) is greater than the threshold for a region, the related

time interval is included in the result.

- Find the regions of the ball in the goal event which is scored from the right side of

the field in the video “Fenerbahce-Galatasaray”

To answer this query, Goal events in the given video are found. The inclusion
degree of the value of the attribute direction to the fuzzy set [right] is calculated. If
the degree is smaller than the threshold, that goal event is ignored. Actors
participating in the found goal event are searched. If ball is found as the actor,

position list of the actor is traversed and the regions are included in the result.

3.6.6 Trajectory Queries

Actors follow a path in an event since their position change with respect to time. The path
of an actor is stored in a list of Position instances. Our model supports the trajectory

queries defined in [3, 13]. We can construct trajectory queries as follows:
- Find the trajectory of playerX in goal event in the video “Fenerbah¢e-Galatasaray”

To answer this query, actors participating in the goal event in the given video are

searched. If playerX is found as the actor, then position list of the actor is traversed

58

and regions are included in the result. The result can be shown to the user by

drawing all the regions and the path between them to the screen.

Find the players having the given trajectory (specified with a starting region and an
ending region given by query-by-sketch method) in the foul event in the video

“Fenerbah¢e-Galatasaray” with a threshold of 0.6

To answer this query, actors participating in the foul event in the given video are
searched. For each actor, position list of the actor is traversed. Regions are
compared to the given starting and ending region. If matching of the starting
region is successful, and the following regions reach to the ending region, the

player (related to the actor) is included in the result.

59

CHAPTER 4

INTELLIGENT FUZZY OBJECT-ORIENTED DATABASE
FRAMEWORK

Video data includes very rich and complex semantic information. To store such a huge
amount of information could be very space consuming. Moreover, it is not possible to
extract complete semantic information automatically or manually from a video. Therefore,
mechanisms, which infer information from existing information, are needed for video

databases.

Integration or interaction of database and knowledge base systems lead to more powerful
and intelligent systems. The studies in the literature, which deal with such an integration,
mostly ignore uncertainty. However, uncertainty might occur in many complex
applications such as video databases. The previously proposed IFOOD [30] architecture
provides a tightly coupled environment between database and knowledge base systems for
complex applications by taking into consideration the uncertainty and fuzziness issues. The
architecture models data and knowledge including uncertainty, which might occur in many

cases.

In this study, an intelligent fuzzy object-oriented database framework for the video
database applications is presented. The framework is based on the previously proposed
IFOOD [30] architecture. The IFOOD architecture is adapted and implemented for video
database applications. The conceptual model, which is introduced in Chapter 3, is mapped

to the logical FOOD model [14] and used in the presented framework.

The rest of the chapter is organized as follows: The first section gives a description about
the presented framework. The second section focuses on temporal, spatial and fuzzy
semantic rules. Finally, the last section discusses the issues related to the integration of

FOOD and FKB by giving query evaluation examples.

60

4.1 Intelligent Fuzzy Object-Oriented Database Framework

IFOOD architecture [30] mainly consists of two parts: a fuzzy object-oriented database

(FOOD) and a fuzzy knowledge base (FKB).

In the object-oriented database part, the FOOD model [14] is utilized as the logical data
model. In the previous chapter, how our conceptual video model is mapped to the FOOD
model was explained. The object-oriented database provides storing the semantic video

entities in the form of objects along with their uncertain features.

The fuzzy knowledge base is capable of not only crisp but also fuzzy inference. Fuzzy
inference is done by using similarity-matching operations defined in FOOD model.
Semantic fuzzy rules representing knowledge about a video database application domain
are processed by FKB. Video databases also need handling temporal and spatial

knowledge, which are stored in FKB in the form of temporal and spatial rules.

Existing database and knowledge base systems do not have the needed constructs to handle
uncertainty. Therefore, new methods should be implemented and integrated to these
systems. Fuzzy processors are developed at both of the object-oriented database and
knowledge base parts, which handle all of the operations related to uncertainty. The fuzzy
processor at the object-oriented database part provides methods for similarity matching,
calculation of inclusion degrees, object membership degrees and class/subclass
membership degrees. Whereas the fuzzy processor at the knowledge base part provides
calculations of similarity matching, rule antecedent, consequent matching needed for the

fuzzy inference mechanism.

In the framework, FOOD and FKB are connected through a bridge, which provides
interoperability, and data flow between the database and the knowledge base. As it is
mentioned before, uncertain classes, fuzzy data types and fuzzy domains, objects with both
crisp and fuzzy attributes, similarity matrices and membership functions defined for the
fuzzy data types, range and relevance information defined for the fuzzy attributes are
stored in the fuzzy object-oriented database. The temporal, spatial and semantic fuzzy rules
are stored in the fuzzy knowledge base. The objects, which FKB work on, are stored in
FOOD. Therefore, the objects should be transferred to FKB in order to make FKB to

process rules on those objects. This transfer is performed by bridge. FKB should also

61

access the information needed for fuzzy inference. Bridge provides the needed information

between FOOD and FKB.

There is a user interface above these systems, which is used for annotation and querying of
video data. The user interface is connected to the bridge, which gives the system a unified
view. The user of this framework does not need to know any detail of the underlying
systems. Therefore, they may construct queries including both crisp and fuzzy conditions.
Some queries might be so simple that only object-oriented database access would be
sufficient whereas some queries might need rule firing. Bridge provides the integration

between FOOD and FKB during the query evaluation.

4.2 Temporal, Spatial and (Fuzzy) Semantic Rules

Video data has semantic entities such as events and objects. Video events occur within a
time interval; therefore, there exist temporal relations between events. Video objects have
different positions in different time intervals; therefore, they have spatial relations between
each other. Storing every temporal and spatial relation between the entities is very space
consuming. The temporal relations may be inferred from the starting and ending frames of
each event and the spatial relations may be inferred from the position information of each
object. In this study, temporal and spatial inference rules are defined which are stored in

the fuzzy knowledge base.

4.2.1 Temporal Rules

In this study, Allen’s temporal interval algebra [23] is used to represent temporal
knowledge. Allen defines an interval x as a pair [x-, x+] of time points. x- is the lesser end-
point and x+ is the greater end-point assuming that x- < x+. By using this definition, 13
temporal relations, which may hold between two intervals, can be defined: before,
overlaps, during, meets, starts, finishes, equal and their inverses except equal. These

thirteen relations are enough to represent the temporal relationship between two intervals.

Table 4.1 represents the temporal relations between two intervals x and y which are
defined by using end-points. Table 4.2 represents the temporal relations by showing their

meanings.

62

Table 4.1: Temporal Relations (by using end-points)

Temporal Relation Definition
before X+ < y-
overlaps (x-<y-) and (x+>y-) and (X+ <y+)
during (x->y-) and (x+ < y+)
meets X+ =y-
starts (x- =y-) and (x+ < y+)
finishes (y- <x-) and (x+ = y+)
equal (x-=y-) and (x+ = y+)
Table 4.2: Temporal relations
Relation Symbol Symbol for Inverse Meaning
X before Y b bi XXX YYY
X meets Y m mi XXXYYY
X overlaps Y o oi XXX
YYY
X during Y d di XXX
YYYYYYY
X starts Y S si XXX
YYYYYY
X finishes Y f fi XXX
YYYYYY
X equal Y e e XXX
YYY

Temporal rules are defined by using Allen’s temporal relations and represented in Table
4.3. There is no need to define temporal rules for the inverse temporal relations since these

relations may be inferred by the main temporal rules. By using temporal rules, temporal

relations between video events can be inferred by the fuzzy knowledge base.

Table 4.3: Temporal rules

Inverse property

Temporal rules

X+ <y- =>b(x.y)

(x-<y-) and (x+ > y-) and (X+ < y+) => o(X,y)
(x->y-) and (x+ < y+) =>d(x,y)
X+ =y- =>m(X,y)
(x- =y-) and (x+ < y+) =>s(X,y)

(y- <x-) and (x+ = y+) => f(x,y)

(x- =y-) and (x+ = y+) => e(X,y)

b(x, y) => bi(y, x)
m(X, y) => mi(y, X)
o(x, y) =>oi(y, x)

d(x,y) =>di(y, x)
s(x,y) =>si(y, X)
f(x,y) =>fi(y, x)

63

4.2.2 Spatial Rules

The semantic video objects can have spatial relations among each other, which represent
the relationship between the positions of objects in a specific time interval. The study in
[33] defines the spatial relations by using Allen’s temporal relations. Allen’s temporal
interval algebra represents relations in one dimension and it is extended to two-
dimensional space. A two-dimensional space is represented by two orthogonal axes x and
y. Spatial relations can be defined in terms of temporal relations in both of the x-axis and
y-axis. A minimum bounding rectangle (MBR) can be used to represent the position of an
object in a video frame. A minimum bounding rectangle is an imaginary rectangle
covering all parts of an object and is represented by using two points: upper left corner and
lower right corner in this study. These points are projected onto x-axis and y-axis and each
projection is actually an interval. Spatial relations are defined by using temporal relations

in both of the x-axis and y-axis.

The study in [13] uses the notations left, right, top and bottom instead of west, east, north
and south respectively. In this study, the same notations are used. There are two main types

of spatial relations in this study: directional and topological.

Table 4.4: Definition of Spatial Relations in Terms of Temporal Relations

Spatial Relation Definition

A bottom B A{b, bi, m, mi, o, oi, d, di, s, si, f, fi, e} B; and A,{b, m}B,
A top B A{b, bi, m, mi, o, 0i, d, di, s, si, f, fi, e} B, and A,{bi, mi}B,
A left B A.{b, m}B, and A,{b, bi, m, mi, o, oi, d, di, s, si, f, fi, e} B,
A right B A{bi, mi}B, and A,{b, bi, m, mi, o, 0i, d, di, s, si, f, fi, e} B,
A top-left B (A<{b, m}B, and A,{bi, mi, 0i}B,)

or (As{o}By and A,{bi, mi}B,)
A top-right B (A{bi, mi}By and A,{bi, mi, 0i}B,)

or (A,{oi}B, and A,{bi, mi}B,)
A bottom-left B (A {b, m}B, and A,{b, m, 0}B,) or (A {0}Bsand A,{b, m}B,)
A bottom-right B | (A {b, m}B, and A,{b, m, 0}B,) or (A{0i}B, and A,{b, m}B,)

A overlaps B A{d, di, s, si, £, fi, o, o1, e} B,
and A,{d, di, s, si, {, fi, o, oi, e} B,

A equal B A{e}By and A {e}B,
A inside B A,{d}Bs and A,{d}B,
A contain B A,{di}B, and A,{di}B,
A touch B (Ay{m, mi}By and A,{d, di, s, si, f, fi, o, oi, m, mi, e}B,)

or (A {d, di, s, si, f, fi, 0, 0i, m, mi, e} By and A,{m, mi}B,)
A disjoint B A{b, bi}B, or A,{b, bi}B,

64

Directional relations are top, left, right, bottom, top-right, top-left, bottom-right, bottom-
left. Topological relations are equal, inside, disjoint, touch, overlaps, contain. Directional
and topological relations are represented in Figure 4.1 and Figure 4.2 respectively. Table

4.4 represents the spatial relations, which are defined in terms of temporal relations, as

defined in [13].

Top

AN

Top-Left
Top-Right
Left <){2(:> Right
Bottom-Right
Bottom-Left

N

Bottom

Figure 4.1: Directional Relations

A B A 4
Disjoint Touch
A
A
A

B B

B
A contain B

B inside A Overlaps Equal

Figure 4.2: Topological Relations

65

Spatial rules are defined by using spatial relations as represented in Table 4.5. There is no
need to define spatial rules for the relations right, bottom, bottom-right, bottom-left,
contain and disjoint since these relations may be inferred by the rules defined for left, top,
top-left, top-right, inside and disjoint respectively. The inferred spatial rules are shown in

Table 4.6.

Table 4.5: Spatial Rules Which are Defined in Terms of Temporal Rules

Spatial Rules
{b, bi, m, mi, o, oi, d, di, s, si, f, fi, e}(A,, By)
and {bi, mi}(A,, B,) => top(A, B)
{b, m}(A,, By)
and {b, bi, m, mi, o, 0i, d, di, s, si, f, fi, e}(A,, B,) => left(A, B)
({b, m}(A,, By) and {bi, mi, 0i}(A,, By))
or ({0}(A,, By) and {bi, mi}(A,, B,)) => top-left(A,B)
({bi, mi}(A,, By) and {bi, mi, 0i}(A,,B,))
or ({oi} (A, By) and {bi, mi}(A,, B,)) => top-right(A, B)
{d, di, s, si, f, fi, 0, 01, e} (A,, B,)
and {d, di, s, si, f, fi, o, oi, e}(A,, B,) => overlaps(A, B)
{e}(Ay, By) and {e}(A,, B,)) => equal(A, B)
{d}(A,, By and {d}(A,, B,) => inside(A, B)
({m, mi}(A,, By) and {d, di, s, si, f, fi, 0, oi, m, mi, e}(A,, By))
or ({d, di, s, si, f, fi, o, oi, m, mi, e}(A,, By)
and {m, mi}(A,, B,)) => touch(A, B)
{b, bi}(A,, By) or {b, bi}(A,, B,) => disjoint(A, B)

Table 4.6: Inferred Spatial Rules

left(A, B) => right(B, A)

top(A, B) => bottom(B, A)
top-left(A, B) => bottom-right(B, A)
top-right(A, B) => bottom-left(B, A)
inside(A, B) => contain(B, A)
disjoint(A, B) => disjoint(B, A)

Directional spatial relations between two objects may be fuzzy according to the angle
between the centers of the minimum bounding rectangles of the video objects. To find the
membership degrees of directional spatial relations, the formulas in Table 4.7, which are
taken from the study [13], are used. Here, x is the horizontal distance and y is the vertical
distance between centers of two rectangles. The membership degree of directional spatial

relations is calculated when the spatial rules are fired by the fuzzy processor of FKB.

66

Table 4.7: Formulas to Calculate Membership Degrees for Fuzzy Spatial Relations

Spatial Relation Angle Membership Degree
top arctan(x/y) 1 — (angle/90)
left arctan(y/x) 1 — (angle/90)
top-left arctan(x/y) 1 - (abs(angle-45)/45)
top-right arctan(y/x) 1 - (abs(angle-45)/45)

4.2.3 Semantic Fuzzy Rules

In this study, football game videos are used as the application domain and semantic fuzzy
rules for football game videos are defined. An example to a fuzzy semantic rule is given

below:
IF shotAccuracy is [very high](0.8) AND
speed is [high, very high](0.7) AND
ballControl is [high, very high](0.8)
THEN talent is very high (R-1)

Here, shotAccuracy, ballControl, speed and talent are fuzzy attributes of the class
TalentedPlayer. Talent is a derived attribute, and its value is not stored in the database but
inferred by this fuzzy rule. The values in parentheses are the threshold values for the
matching degrees of each condition. The “if” part is called the antecedent of the rule. The

“then” part is called the consequent of the rule.

The fuzzy inference mechanism utilized in this study is the same as the mechanism used in
[30], which uses similarity matching [14]. The inference mechanism is represented in

Figure 4.3.

In the pattern-matching phase, the matching degree of each condition in a rule antecedent
is calculated by using similarity matrix and inclusion formulas. If the matching degree of
each condition is greater than the specified threshold value, then the rule is activated. The

overall matching degree of the rule antecedent is found by the following formula [30]:
For AND operator: Waecedens = Min (Wi, W, ... , Ly)

For OR operator: Wanecedens = Max (Wi, Lo, --- » Kp)

67

Fuzzy inference mechanism quantifies the rule conclusion with a membership degree using
an implication function. Among the various proposed implication functions, the Godelian’s

fuzzy implication function is used as follows:

/
L, Haco < Hegy)

txisA>yisB) = <

UBy), Mac > Uy

Here, Ua 1s the matching degree of the antecedent of the rule and gy, is the matching

degree of the consequent of the rule.

The fuzzy and crisp attributes might be used together in a rule. If an antecedent predicate is
defined with a crisp attribute, traditional pattern matching is used and if the matching is

successful, the matching degree will be 1.

FUZZY PROCESSOR

(Handling similarity matching,
rule antecedent and
consequent matching degree
calculations)

WORKING MEMORY
Fact1 (x)
Data Objects —V_‘ Fact2 (y)
Fact3 (2) \/
INFERENCE ENGINE
RULE BASE
Temporal Rules » /\/
Spatial Rules

—V
Rule1 (If x Then y)
Rule2 (If y Then z)

Fuzzy Semantic Rules

Figure 4.3: Representation of the Inference Mechanism

The fuzzy processor at the knowledge base part provides methods for similarity matching,

rule antecedent and consequent matching degree calculations, which are needed for the

68

fuzzy inference mechanism. The similarity matching method of the fuzzy processor uses

inclusion degree calculations.

The value of a fuzzy attribute might be fuzzy or crisp. If a fuzzy rule is applied to an object
having a fuzzy attribute with crisp value, then our similarity matching method employs
membership functions which determine the fuzzy set to which a crisp value belongs.
Membership functions are defined for each fuzzy term of a fuzzy domain. The membership
functions utilized in this study are right decreasing, triangle, trapezoidal, elliptical, and

right increasing.

4.3 Integration of FOOD and FKB

In this section, how the developed framework handles temporal, spatial and fuzzy semantic

querying of video data in an integrated environment is explained.

When a query request is made, the bridge firstly sends the query to FOOD. The objects in
FOOD, which satisfy the conditions, are sent back to bridge. If the query needs a rule
firing, the bridge transfers those objects to the working memory of FKB. The rules are
fired on the objects in FKB. Then, the bridge takes the result objects and sends them to the

user interface. Representation of the query evaluation is given in Figure 4.4.

Fuzzy Processor

—

BRIDGE)

0O0DB
Send the query to FOOD 4|>
~
Get the result objects from FOOD <|7
FOOD
Query Request
Usenipiezes If the query needs a rule execution, send
the result objects to FKB by adding them to
its working memory 4| > Fuzzy Processor
Atter the rule firing, get result objects from
FKB <
Send the results to user interface
Query Result KB

FKB

Figure 4.4: Query Evaluation of the Framework

69

4.3.1 Temporal Query Evaluation

Assume that the user constructs a query to find the temporal relation between the goal
event in which playerX scores a goal and the foul event occurring in a specified football
game video. To answer such a query, our framework uses the temporal rules, which are
stored in our FKB. Figure 4.5 represents the evaluation of a temporal query. The numbers

in the figure show the execution order of the operations.

2 EventToEventRelation instances
BRIDGE Kt
Event instances
2 4
Query Request Event instances
1 3
Fuzzy Processor Fuzzy Processor
~ INFERENCE ENGINE
0OO0DB
~
FOOD
WORKING MEMORY RULE BASE
event1(startTime1, endTime1) |IF (endTime1 < startTime2) THEN
event2 (startTime2, endTime2) add new
EvenToEventRelation(
event1, event2, “before”)
FKB

Figure 4.5: Evaluation of a Temporal Query

The algorithm for a temporal query evaluation is as follows:
1. Bridge sends the query to FOOD.

2. FOOD sends the Event instances satisfying the conditions given in the query to the

bridge.

3. Bridge transfers the Event instances to the working memory of FKB.

70

4. The engine of FKB is run and the temporal rules are fired on the instances in the

working memory of FKB.

5. If pattern matching is successful in a temporal rule, the rule adds a new

EventToEventRelation instance to the working memory of FKB.

6. Bridge gets the EventToEventRelation instances from the working memory of

FKB.

7. Bridge sends the EventToEventRelation instances to the user interface.

4.3.2 Spatial Query Evaluation

Assume that the user constructs a query to find the spatial relation between playerX and
playerY in the goal event of a specified video. To answer such a query, our framework
uses the spatial rules, which are stored in our FKB. The algorithm for a spatial query

evaluation is as follows:
1. Bridge sends the query to FOOD.

2. FOOD sends the Position list of Actor instances satisfying the conditions given in

the query to the bridge.

3. Bridge transfers the position list (a list of Position instances) of the Actor instances

to the working memory of FKB.

4. The engine of FKB is run and the spatial rules are fired on the instances in the

working memory of FKB.

5. If pattern matching is successful in a spatial rule, the rule adds a new
ActorToActorRelation instance to the working memory of FKB. If the spatial
relation is directional, membership degree of the relation is calculated by the fuzzy

processor of FKB.

6. Bridge gets the ActorToActorRelation instances from the working memory of

FKB.

7. Bridge sends the ActorToActorRelation instances to the user interface.

71

Figure 4.6 represents the evaluation of a spatial query. The numbers in the figure show the

execution order of the operations.

L1 ActorToActorRelation instances
—> BRIDGE <
Position instances
2 4
Query Request Position instances
1 3
Fuzzy Processor Fuzzy Processor
~ INFERENCE ENGINE
O0DB
FOOD
WORKING MEMORY RULE BASE
position1(st1, et1, IF ([st1,et1] and [st2,et2] intersects)
regioni(sx1,ex1,syl,eyl), and (> ?sx1 ?sx2)
actor1) and (< ?ex1 ?ex2)
position2(st2, et2, and (> ?sy1 ?sy2)
region1(sx2,ex2,sy2,ey2), and (< ?ey1 ?ey2)
actor2) THEN
add new ActorToActorRelation(
actor1, actor2, “inside”,
stgrtTime, endTime)
FKB

Figure 4.6: Evaluation of a Spatial Query

4.3.3 Semantic Query Evaluation

Besides processing the temporal and spatial rules, our FKB also has the capability to
process semantic rules, which may include both crisp and fuzzy conditions. Semantic
queries can consist of both fuzzy and crisp predicates. Sometimes a semantic query can be
so simple that only object-oriented database would be enough whereas in some cases fuzzy

inference would be needed.

Figure 4.7 represents the evaluation of a semantic query. The numbers in the figure show

the execution order of the operations.

72

TalentedPlayer instances

—

1
BRIDGE «

TalentedPlayer instances

Query Request| TalentedPlayer instances

Fuzzy Processor

/J\

N

o0DB
v

FOOD

Fuzzy Processor

INFERENCE ENGINE

The algorithm for a semantic query evaluation is as follows:

WORKING MEMORY

tp1(shotAccuracy,
speed,
ballControl)

RULE BASE

IF
(shotAccuracy is [very high] with 0.8)
and
(speed is [high, very high] with 0.7)
and

(ballControl is [high, very high]
with 0.8)
THEN
calculate rule conclusion
modify talent as very high with rule
conclusion

FKB

Figure 4.7: Evaluation of a Semantic Query

1. Bridge sends the query to FOOD.

2. FOOD sends the objects satisfying the conditions given in the query to the bridge.

3. If the query needs rule firing (a derived attribute exists), bridge transfers the

objects to the working memory of FKB.

4. The engine of FKB is run and the semantic fuzzy rules are fired on the objects in

the working memory of FKB.

5. [If pattern matching is successful in a semantic fuzzy rule, the rule modifies the

object and sets the value of the derived attribute.

73

6. Bridge gets the objects from the working memory of FKB.

7. Bridge sends the objects to the user interface.

When the query is sent to FOOD (in the first step of the semantic query evaluation

algorithm), it evaluates the following algorithm:

1. The query is executed for the crisp attributes at FOOD.

2. The objects satisfying the conditions for crisp attributes are returned by FOOD.

3. For each object in the list

3.1. If the membership degree of the object is smaller than the specified threshold,

exclude that object from the list, go to step 3.

3.2. For each uncertain attribute value specified in the query

3.2.1. If the uncertain attribute is a derived attribute, go to step 3.2.

3.2.2. If the uncertain attribute’s type is fuzzy

3.2.2.1. If the semantics of the uncertain attribute is AND, calculate the
AND inclusion degree of the attribute’s value to the value

specified in the query.

3.2.2.2. If the semantics of the uncertain attribute is OR, calculate the OR
inclusion degree of the attribute’s value to the value specified in

the query.

3.2.2.3. If the semantics of the uncertain attribute is XOR, calculate the
XOR inclusion degree of the attribute’s value to the value

specified in the query.

3.2.2.4.1If the calculated inclusion degree is smaller than the threshold
specified in the query for that uncertain attribute, exclude the

object from the result list.

3.2.3. If the uncertain attribute’s type is incomplete

74

3.2.3.1. Calculate the incomplete inclusion degree of the range of the

attribute’s value to the range specified in the query.

3.2.3.2. If the calculated inclusion degree is smaller than the threshold
specified in the query for that uncertain attribute, exclude the

object from the result list.
3.2.4. If the uncertain attribute’s type is null

3.2.4.1. If the attribute’s crisp value and null value is not equal to the value

specified in the query, exclude the object from the result list.
4. Return the result list to the user interface.

Query evaluation will be explained for four cases. In the first case, only fuzzy attributes are
queried and there is no need for rule firing. In the second case, a derived attribute is
queried, so a rule firing is necessary. In the third case, fuzzy attributes and derived
attributes are queried at the same time. In the fourth case, an example to incomplete

inclusion degree calculation and usage of a membership function is given.

The similarity matrices used in the examples are represented in Table 4.8 and Table 4.9.

Suppose that the objects shown in Table 4.10 exist in the fuzzy object-oriented database.

FuzzyDegree and FuzzyAge types have OR semantics; therefore, the inclusion formula for

the OR semantics is used. The formula for OR semantics is as follows:

INC(rngc(a;)of(a;)) = Min[Max(us(x,z)), Threshold(oj(a;))],

Vx € oj(a;), Vz€ rngc(a;)

Here, the threshold value indicates the minimum level of similarity between the values of

an attribute and it can be formulated as follows:
Threshold(oj(a;)) = Min[us(x,z)], Vx, Vze ofa;)
1- Consider the semantic query below:

“Find the very young (with a threshold of 0.7) players with the medium degree of
shotAccuracy (with a threshold of 0.7) having an object membership degree above 0.4.

75

Here, shotAccuracy and age are fuzzy attribute in class TalentedPlayer. Assume that we
have the TalentedPlayer objects shown in Table 4.10 in the fuzzy object-oriented database.
Consider the similarity matrix for shotAccuracy attribute, which is represented in Table

4.8, and the similarity matrix for age attribute, which is represented in Table 4.9.

Table 4.8: Similarity Matrix for shotAccuracy, ballControl, speed and talent

[FuzzyDegree [very high |high |medium [low |very low
very high 1.0 0.9 0.6 0.2 0.2
high 0.9 1.0 0.7 0.2 0.2
imedium 0.6 0.7 1.0 0.2 0.2
low 0.2 0.2 0.2 1.0 0.5
very low 0.2 0.2 0.2 0.5 1.0

Table 4.9: Similarity Matrix for the Fuzzy Attribute age

[FuzzyAge very old |old young very young |infant
very old 1.0 0.7 0.0 0.0 0.0
old 0.7 1.0 0.0 0.0 0.0
young 0.0 0.0 1.0 0.8 0.1
very young 0.0 0.0 0.8 1.0 0.3
infant 0.0 0.0 0.1 0.3 1.0

Table 4.10: The TalentedPlayer Objects in the Fuzzy Object-Oriented Database

object | age shotAccuracy | speed ballControl | object
id membership
degree
ol young high very high | high 1
02 very young | high, very high | high high, very | 0.93
high
03 old high medium medium 0.8
04 young low low medium 0.37

The algorithm of the evaluation of this semantic fuzzy query is as follows:
1. Bridge sends the query to FOOD to find the TalentedPlayer objects.

2. FOOD sends the found TalentedPlayer objects, which have object membership
degrees greater than the specified threshold (0.4) to bridge. Since the object

membership degree of 04 (0.3) is smaller than the threshold value, 04 is ignored.

76

3. Bridge uses the inclusion formulas implemented in the fuzzy processor of FOOD
to find the inclusion degree of the values of age attribute of TalentedPlayer objects
(o1, 02, and 03) to the fuzzy set “very young”. Considering the three objects in the

fuzzy object-oriented database:

For ol: u,(young, very young) = 0.8

For 02: u,(very young, very young) = 1

For 03: p,(old, very young) =0

Only ol and 02 satisfy the threshold value given for age attribute.

4. Bridge uses the inclusion formulas implemented in the fuzzy processor of FOOD
to find the inclusion degree of the values of shotAccuracy attribute of
TalentedPlayer objects (0ol and 02) to the fuzzy set “medium”. Considering the

objects o1 and o2 in the fuzzy object-oriented database:

For ol: g, (high, medium) = 0.7

For 02: Min [Max (W,(high, medium), U, (very high, medium)),

Wsa(high, very high)] = Min[Max (0.7, 0.6), 0.9] =Min[0.7, 0.9] =0.7

Both of the ol and 02 satisfy the threshold value given for shotAccuracy attribute.

5. Bridge sends the result objects (01 and 02) to the user interface.

2- Consider the semantic query below:

“Find the players with very high degree of talent (with a threshold of 0.6) which score a

goal in a goal event”.

Here, talent is a derived attribute in class TalentedPlayer. The query needs a fuzzy rule
firing to find the value of ralent attribute. Assume that we have the rule (R-1) in the fuzzy
knowledge base for the derived attribute falent. Assume that we have the TalentedPlayer
objects shown in Table 4.10 in the fuzzy object-oriented database and all these objects

have the role “scorer” in a goal event.

77

IF

shotAccuracy is [very high](0.8) AND

speed is [high, very high](0.7) AND

ballControl is [high, very high](0.8)

THEN talent is very high (R-1)

The algorithm of the evaluation of this semantic fuzzy query is as follows:

1.

The bridge sends the query to FOOD to find the TalentedPlayer objects, which
appear in a goal event. The bridge transfers the found TalentedPlayer objects (o1,

02, 03, and 04) to the working memory of FKB.

When the engine of FKB is run, the semantic fuzzy rules will fire for the objects in
working memory. For the first condition of the rule (R-1), the values of

shotAccuracy attribute are compared.

For ol: ug,(high, very high) = 0.9

For 02: Min[Max(u,(high, very high), W (very high, very high)),

WsaChigh, very high)] = Min[Max(0.9, 1), 0.9] = Min[1, 0.9] =0.9

For 03: ,(high, very high) = 0.9

For o4: u,,(low, very high) =0.2

The objects o1, 02 and 03 satisfy the first condition of the rule.

For the second condition of the rule, the values of speed attribute are compared.

For ol: Max(us,(very high, high), ug,(very high, very high)) = Max(0.9, 1) =1

For 02: Max (U, (high, high), u,,(high, very high)) = Max(1, 0.9) =1

For 03: Max(ls,(medium, high), i,,(medium, very high)) = Max(0.7, 0.6) = 0.7

The objects o1, 02 and 03 satisfy the second condition of the rule.

78

4. For the third condition of the rule, the values of ballControl attribute are

compared.

For ol: Max (. (high, high), p,.(high, very high))=Max(1, 0.9) = 1

For 02: Min[Max (. (high, high), w,.(high, very high),

WUoe(very high, high), up.(very high, very high)), w..(high, very high)]

= Min[Max(1, 0.9, 0.9, 1), 0.9] = Min[1, 0.9] =0.9

For 03: Max(W,.(medium, high), uy.(medium, very high))=Max(0.7, 0.6) = 0.7

The objects o1 and o2 satisfy the third condition of the rule.

5. 03 does not satisfy the second condition since the matching degree 0.7 is smaller
than the threshold value 0.8 specified in the rule definition. Therefore, only ol and
02 satisfy the rule conditions. The overall matching degree of the rule antecedent
for ol and 02 is found according to the formula explained in Section 4.2.3 as

follows:

For ol: Wanecedent = Min(0.9, 1, 1) = 0.9

For 02: Mantecedem = Mln(l, 1’ 1) =1

6. The matching degree of the consequent is

Weatene (very high, very high) = 1.

Since the matching degree of the consequent is greater than the matching degree of
the antecedent for object o1, the membership degree of the rule conclusion is 1.0
for ol according to the implication formula explained in Section 4.2.3. The
matching degree of the consequent is equal to the matching degree of the
antecedent for object 02, so the membership degree of the rule conclusion is 1.0

for 02 according to the implication formula.

Since the rule conclusion is greater than the threshold value 0.6 specified for the

talent attribute in the query, ol and o2 will be included in the result list.

79

7. The bridge takes the Player objects from FKB. Only ol and o2 are in the result list.

Then the bridge sends the result objects to the user interface.

3- Consider the semantic query below:

“Find the young or very young (with a threshold of 0.7) players with medium degree of

talent (with a threshold of 0.6) which score a goal in a goal event”.

Here, talent is a derived attribute and age is a fuzzy attribute in class TalentedPlayer. The

query needs a fuzzy rule firing to find the value of talent attribute. Assume that we have

the rule (R-1) in the fuzzy knowledge base for the derived attribute talent. Assume that we

have the TalentedPlayer objects shown in Table 4.10 in the fuzzy object-oriented database

and all these objects have the role “scorer” in a goal event.

The algorithm of the evaluation of this semantic fuzzy query is as follows:

1.

The bridge sends the query to FOOD to find the TalentedPlayer objects with
young age and appear in a goal event. FOOD uses the inclusion formulas to find
the inclusion of the values of age attributes of players to the fuzzy set [young, very

young]. Considering the four objects in our fuzzy object-oriented database:

For ol: Max (u,(young, young), l,(young, very young)) = Max (1, 0.8) = 1

For 02: Max (u,(very young, young), l,(very young, very young))

=Max (0.8, 1) = 1

For 03: Max (u,(old, young), u,(old, very young)) = Max (0,0) =0

For 04: Max (u,(young, young), \L,(young, very young)) = Max (1, 0.8) = 1

The objects ol, 02, and o4 satisfy the threshold value given for age attribute.
Therefore, the bridge transfers these three objects to the working memory of FKB.

For the first condition of the rule (R-1), the values of shotAccuracy attribute are

compared.

For ol: Max(us,(high, very high)) = Max(0.9) = 0.9

80

For 02: Min[Max(u,(high, very high), . (very high, very high)),
Wsa(high, very high)] = Min[Max(0.9, 1), 0.9] = Min[1, 0.9] =0.9
For 04: Max(u,(low, very high)) = Max (0.2) = 0.2

04 does not satisfy the first condition since the matching degree 0.2 is smaller than
the threshold value 0.8 specified in the rule definition. Therefore, only ol and 02

satisfy the first rule condition.

For the second condition of the rule, the values of speed attribute are compared.
For ol: Max(us,(very high, high), u,,(very high, very high)) = Max(0.9, 1) =1
For 02: Max (U, (high, high), u,,(high, very high)) = Max(1, 0.9) =1

The objects o1 and o2 satisfy the second condition of the rule.

For the third condition of the rule, the values of ballControl attribute are

compared.

For ol: Max(uy(high, high), w,.(high, very high))=Max(1, 0.9) = 1

For 02: Min[Max(uy(high, high), w.(high, very high),
Woe(very high, high), p.(very high, very high)), wy(high, very high)]
= Min[Max(1, 0.9, 0.9, 1), 0.9] = Min[1, 0.9] = 0.9

The objects ol and o2 satisfy the third condition of the rule.

The overall matching degree of the rule antecedent for ol and o2 is found

according to the formula explained in Section 4.2.3 as follows:
For ol: Wanecedent = Min(0.9, 1, 1) = 0.9

For 02: Wantecedens = Min(1, 1, 1) = 1

The matching degree of the consequent is

Watene (medium, very high) = 0.6.

81

Since the matching degree of the consequent is smaller than the matching degree
of the antecedent, the membership degree of the rule conclusion is 0.6 for the
objects ol and 02 according to the implication formula explained in Section 4.2.3.
Since the rule conclusion is equal to the threshold value 0.6 specified for the talent

attribute in the query, ol and o2 will be included in the result list.

7. The bridge takes the Player objects from FKB. Only ol and o2 are in the result list.

Then the bridge sends the result objects to the user interface.
4- Consider the semantic query below:

“Find the videos of football matches played with an audience of {70000 - 40000} (with a
threshold of 0.6) and played in a mild weather (with a threshold of 0.7)

Here, audience is an incomplete attribute and airCondition is a fuzzy attribute in class
Match. The query needs calculation of inclusion degree for incomplete attributes and fuzzy
attributes. The formulas to find inclusion degrees for incomplete attributes are previously
explained in Chapter 2. Assume that we have the Match objects shown in Table 4.11 in the
fuzzy object-oriented database. The similarity matrix for airCondition attribute is given in
Table 4.12. The attribute airCondition has OR semantics so inclusion degree formula for

OR semantics is used.

Table 4.11: The Match Objects in the Fuzzy Object-Oriented Database

objectid | audience airCondition
ol {20000 - 30000} 45

02 {7000 - 8000} low

03 {7000 - 50000} 30

o4 {7000 - 20000} mild, hot

05 {30000 — 50000} very low, frigid

Table 4.12: Similarity Matrix for the Fuzzy Attribute airCondition

[FuzzyTemperature |hot |mild |normal [low very low [frigid
hot 1.0 0.7 0.2 0.2 0.2 0.2
mild 0.7 1.0 0.2 0.2 0.2 0.2
normal 0.2 (0.2 1.0 0.7 0.7 0.7
low 0.2 0.2 0.7 1.0 0.7 0.7
very low 0.2 0.2 0.7 0.7 1.0 0.7
frigid 0.2 0.2 0.7 0.7 0.7 1.0

82

Consider the followings:

R[R,..R;] is the range of the incomplete attribute

V[V,..V,] is the value of the incomplete attribute

The algorithm of the evaluation of this semantic fuzzy query is as follows:

1. The bridge sends the query to FOOD to find the Match objects with audience of
{10000 - 40000}. FOOD uses the inclusion formulas to find the inclusion of the
values of audience attribute of Match objects to the range {10000 - 40000}

Considering the four objects in our fuzzy object-oriented database:

For ol: INC=1,since R, >V,>V,>R;

For 02: INC =0, since R; > V,> V;

For 03: INC = (40000 — 10000 + 1) / (50000 — 7000 + 1) = 0.69

by the formula:

INC(rngd(a;)of(a;)) = (Ry- R+ 1)/ (V>-V,+ 1), where V; 2R,> R, >V,
For 04: INC = (20000 — 10000 + 1) / (20000 — 7000 + 1) = 0.76

by the formula:

INC(rngd(a;)of(a;) = (V2-R;+ 1)/ (Vo- Vi + 1), where R, 2V>,>R; >V,
For 05: INC = (40000 — 30000 + 1) / (50000 — 30000 + 1) = 0.5

by the formula:

INC(rngd(a;)of(a;)) = (Ry- Vi + 1)/ (Vo-V,+ 1), where V; 2R, >V, > R,
The objects o1, 03, and 04 satisfy the threshold value for audience attribute.

2. For the second condition of the query, the values of airCondition attribute of the
objects ol, 03 and o4 are compared with the fuzzy value mild. Consider the

following membership function is defined for the fuzzy term mild:

83

triangle 25, 30, 35

The algorithm to find the membership degree of a crisp value to a fuzzy set for the
membership function friangle, which is taken from the IFOOD [30]

implementation, is given below:

Let number be the crisp value and let argl, arg2, arg3 be the parameters of the

membership function triangle (argl = 25, arg2 = 30 and arg3 = 35 in our example):

if number < argl, membership degree is 0
- if number > arg3, membership degree is 0
- if number > argl and number < arg?2,
membership degree = (number — argl) / (arg2 — argl)
- if number > arg2 and number < arg3,
membership degree = (arg3 — number) / (arg3 — arg2)
For ol: number = 45, membership degree is 0 since number > arg3
For 03: number = 30, membership degree = (35-30) / (35 -30) =1,
since number > arg2 and number < arg3,
For 04: Min[Max(l,.(mild, mild), w,.(hot, mild)), w,.(hot, mild)]
= Min[Max(1, 0.7), 0.7] = Min[1, 0.7] = 0.7
The objects 03 and o4 satisfy the threshold value for the attribute airCondition.

Only 03 and o4 are in the result list. Then the bridge sends the result objects to the

user interface.

84

CHAPTER 5

IMPLEMENTATION

We developed a prototype system of our framework by using Java programming language

and used it for a football game video database application.

A fuzzy object-oriented database (FOOD) and a fuzzy knowledge base (FKB) are
integrated in our framework. As the object-oriented database, db4o [36], which is an open
source object database developed in Java, is used. Since a fuzzy object-oriented data model
is used for the object-oriented database, we developed methods for calculating inclusion
degrees and similarity matching which are included in the fuzzy processor of FOOD. As
the knowledge base, Jess [37], which is a rule engine for the Java platform, is used. Since
Jess does not provide any construct for fuzzy inference, we developed methods, which are

included in the fuzzy processor of FKB, to handle similarity matching.

FOOD and FKB are connected by a bridge. There is a user interface above this integrated
environment, which provides the users annotation and querying facilities. The users do not
need to know any detail of the underlying system. The user interface, bridge and fuzzy

processors are developed in Java programming language.

To play videos in our user interface, JMF API (Java Media Framework Application
Programming Interface) [45] is used. The JMF API provides various video control

facilities (such as playing, pausing).

The users of the framework can annotate football game videos by using the user interface.
The IBM MPEG-7 Annotation Tool [38] is used to segment a video into video shots
automatically. The output of the IBM MPEG-7 Annotation Tool is then parsed by our user

interface and the shots detected are stored in our object-oriented database.

The framework also provides the user querying facilities. The supported queries are

(fuzzy) semantic, temporal, (fuzzy) spatial, regional, trajectory and hierarchical queries.

85

Queries are performed in an integrated environment and the rules in FKB are fired

whenever needed.

The rest of the chapter is organized as follows: The implementation tools, which are
utilized in the prototype, are explained briefly in the first section. In the second section, the
information about the architecture of our framework is given. The third section describes
the annotation module of the prototype and the last section describes the querying facilities

of the prototype system.

5.1 Implementation Tools

5.1.1 db4o

db4o [36] is an open source object database developed for both Java and .Net developers.
It allows the users to store complex objects by providing a strong integration with object-
oriented programming languages. It eliminates the use of object-relational mapping which
most of the developers should deal with in object-oriented programming. By using db4o,
there is no need to design an additional database schema since the class model becomes the
database schema of your application. db4o also allows updating and refactoring the class

schema.

It also supports Native Queries (NQ), which allows the developers to construct queries by
using the programming languages eliminating the use of a data access APL. A sample

native query is given below:

List<Video> videos
= db.query<Video>(new Predicate() {
public boolean match(Video video)

{

return video.getTitle = = “Fenerbahce-Galatasaray Turkey Cup Match”;

H)

Beside NQ, db4o also provides the object-oriented query APIs: Query by Example (QBE)
and S.O.D.A. S.O.D.A. is a low-level querying API and allows creating dynamic queries at
runtime by providing direct access to the nodes of query graphs. An example to a S.0.D.A

query is given below:

86

Query query = db.query();

query.constrain(Video.class);

query.descend("title").constrain(“Fenerbahce-Galatasaray Turkey Cup Match”);
ObjectSet result = query.execute();

File Manage Help

|PJ‘ Query history. .. -
FROM ‘footballdomain, Goal'

Query: Submit

) Home \
@ rootballdomain, Goal
@ rootballdomain, Person

rConnected to db4o Database

@ foothaldomain Player File: Cii\Documents and SettingsiBurcuiDeskiopitez_workspacelWIDECDBbridge!videoDat abase

@ footballdomain, Team

. fuzzy.Fuzzyhge ~Database Statistics

@ fuzzy.FuzzyColor

@ fuzzy U7 Fy Size: 10412 bytes

@ fuzzy.UT_in

S = 1.

@ Fuzzy. T o Stored Classes

@ videomodel. Actor Class Objects

@ videomodel AudioSignal Footbal\doma?n.Goal z|al

@ videomodel Event Faotbaldomain, Person 1

@ videomodel. Frame :oot:a::joma!n.mayer !

@ videomodel. Fuzzy Foot aF Umiln.Team ? 3

@ videomodel. Image FEZYIFE::YCE;EW 5

@ videomodel, Object FuzzYIUT fy ; 1

@ videomodel, Position Fuzz:UT_i: s

@ videomodel. Region FuzzyIUT_nu 0

k4 v?deomodeI.Scene wideomodel . Actor 2[|

@ vvideomodel. Sequence wideomadsl. AudioSignal 0

@ videomodel. Shot wvideomodel Event z

@ videomodel. Structure wideomodel Frame]

@ videomodel Video wideomodsl Fuzzy 4
il 2l _Trnane. n -

Figure 5.1: An Example Screenshot of the Object Manager GUI

QBE allows constructing queries by simply using the setter methods of the Java classes as

follows:

Video video = new Video();
video.setTitle("Fenerbahgce-Galatasaray Turkey Cup Match");
List videos = db.get(video),

db4o developer community also provides Object Manager GUI which is a visual tool

providing browsing, querying and editing of the objects and classes stored in a db40 object

database. An example screenshot of Object Manager GUI is given in Figure 5.1.

87

5.1.2 Jess

Jess [37] is a Java based rule engine and scripting language, which is used for building
expert systems. It is developed at Sandia National Laboratories. The syntax of the Jess
language is very similar to the syntax of Lisp language. Since Jess is written in Java, it can

be easily integrated with the applications developed with Java technology.

As it is explained in [40], the inspiration for the development of Jess is the CLIPS expert
system shell [42], which is an open source rule engine developed by C language. Although
the rule languages of these two rule engines are very similar, their implementations differ
in so many ways. Different from CLIPS, Jess is dynamic and all the Java APIs can be

accessed from Jess.

Jess uses the well-known Rete algorithm for pattern matching. The Rete algorithm is

implemented by building a network of interconnected nodes, which is called Rete network.

Like a typical rule engine, Jess consists of a rule base, an inference engine and a working
memory. The rule base stores a set of rules and the working memory consists of a set of
facts. A rule is similar to an “if —then” statement in a procedural programming language
but differently, the Jess rules are executed whenever the left-hand side of the rule is
satisfied. The inference engine continuously checks whether any rule in the rule base can
be applied to a fact in the working memory. This process is called pattern matching. If the
pattern in the left-hand side of the rule is matched with a fact in the working memory, then

the actions in the right-hand side of the rule are performed.

The main features of the Jess language, which are used in this study, are explained briefly

in this section.

Variables: Like an ordinary programming language, Jess language also provides variable
definitions. A variable is defined with a question mark (?) character in Jess. A value can be

assigned to a variable by using bind function as follows:
(bind ?x “value of x”)

Jess also provides creating global variables, which are not destroyed by a reset command

as follows:

(defglobal ?*gv* = 3)

88

Facts: The working memory of Jess contains a set of facts which rules can be applied.
Each fact has a template, which consists of a name and a set of slots. The template of a fact
is similar to the class of a Java object and the slots are similar to the attributes of a Java

class. An example template and fact can be created as follows:

(deftemplate person (slot name) (slot surname) (slot age))

(person (name “John”) (surname “Doe”) (age 25))

Functions: Jess provides the definition of your own functions like any other programming
language. The created function can be called in the right-hand side of a Jess rule. An

example function definition in Jess is as follows:

(deffunction smaller (?vI ?v2)
(if (< ?2vI 2v2) then (return ?vi)
else (return ?v2)

)

Java reflection: Jess can directly access and manipulate the Java objects of an application.

To use an object of a Java class, you import the package of the class as follows:
(import videomodel. *)

Once you import the package, you should define templates corresponding to the Java class

you want to use as follows:

(deftemplate Event (declare (from-class Event)))

Now, you can create new Event objects as follows:

(bind ?e = (new Event))

To call a method of Event class, the construct call is used:

(call ?e setName “eventname”)

Rules: Jess provides rule definitions by using defrule construct as follows:

(defrule before

?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT ?event2))
(test (and (neq ?pl ?p2) (< ?el ?7s2)

89

(eq (get ?eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "before")))

If the left-hand side (LHS) of the rule matches with an Event object in the working
memory, the right-hand side (RHS) of the rule is executed and a new

EventToEventRelation object is added to the working memory.

5.1.3 Java Media Framework API (JMF)

JMF API [45] provides adding time-based multimedia such as audio and video to the
applications developed in Java. It supplies all the methods to control video streaming such
as playing, pausing, restarting and stopping the video stream, positioning the stream at a
specified time, disabling and enabling the sound of the video. Despite JMF supports
different video formats, it brings difficulties when it is used with video formats other than

AVI. Therefore, our prototype works best with the AVI videos.

5.1.4 IBM MPEG-7 Annotation Tool (VideoAnnEXx)

IBM MPEG-7 Annotation Tool [38] provides annotation of video sequences with MPEG-7
metadata. The tool segments a video sequence into its shots by detecting scene cuts,
dissolutions and fading. The detected video shots can be annotated with static scene, key
object, event descriptions and other lexicon sets. The annotated video shots are stored as
MPEG-7 descriptions in an XML file. Therefore, the input of the tool is a MPEG video
sequence and the output of the tool is a MPEG-7 XML file.

The tool also allows opening a previously constructed MPEG-7 XML file to display the
annotations and video shots related to a video sequence. Customized lexicons can also be

created by using the tool.

An example screenshot of the IBM MPEG-7 Annotation Tool is shown in Figure 5.2. As
represented in the figure, there are three sections. The first one is on the upper right corner
of the window and is used to play the video shots. The second one is on the upper left
corner of the window and consists of the sections, which are used for shot annotation. The

third one is at the bottom of the window and is used to display the detected shots or to

90

display the frames within a single shot. There is also an additional pop-up window for

region annotation, which is not shown in Figure 5.2.

IBM MPEG-7 Annotation Tool accepts MPEG formatted videos whereas JMF API works
best with AVI formatted videos. A video format converter is used to convert videos from
one format to the other. MPEG formatted versions are only used for automatic shot

annotation purposes. AVI formatted versions are annotated by using the user interface.

M videod

Eile Tools Lexicon View Help

Shot Annotation

KeyFiane: Static Scene: Key Objects:
= O Factary ~ O Smoke ~
=[O Outdoars = [Graphics_Test
= [Mature_[Low-les [Giaphics
O 5ky O Text
[Cloud OLloao
[water [Chart
O Snow = [Transpartation
O Greenery [Rocket
Events O Rock [5pace Shuttle
- OLand Oca
E\é’;‘jflggiﬁ:ng =1- [0 Mature[High-lew O Truck
o Parsan S :akim [Mountain [Rover
o Landin; B g [Eeach [Tractor
Field Boat
[Take-0ff/Launch E et E A?;ane
Exph
E Mol Shots O] Caryen L] Chopper i sy
O Elanllz = O Deser O Ealaon
o MD \A:’Ial:rlall -0 'E'gmmy Shaot Information
= an-Made - un w
< ¥ ¢ - S < S Shaot Mumber: 7
Start Frame: 1297 B - - -
Kepwords: Clear oK EndFrame: 1384 = 1BM MPE.GJ - o
5 Annotation Tool +

Frames in the Shat Shats in the Video]

Figure 5.2: An Example Screenshot of the IBM MPEG-7 Annotation Tool

5.1.5 Xerces2 Java Parser

Xerces2 Java Parser [41] is an XML parser of the Apache Xerces family. Xerces2 parses
XML documents according to the XML 1.1 Recommendation. In this study, Xerces2
parser is used to parse the Mpeg-7 XML files which the IBM MPEG-7 Annotation Tool

produces as its output.

91

5.2 Architecture

The architecture of the prototype system is shown in Figure 5.3. The architecture consists

of four main parts:

1- FOOD
2- FKB
3- Bridge

4- User Interface

I1BM MPEG-7 |1
Annotation Tool N User Q—

Automatic Shot Manual Query Interface
Annotation Annotation I\Xo dule
Interface Module Interface Module Z§

USER INTERFACE

BRIDGE

OODB Module Query Module

L e — =

Fuzzy Processor Fuzzy Processor

/J\

N

DB40O

~

FOOD FKB

Figure 5.3: Representation of the Architecture of the Prototype System

92

The bridge consists of two modules: OODB Module and Query Module. OODB Module is
responsible for storing the complex objects of video data. Query Module is responsible for
processing queries, connecting FOOD and FKB, combining the query results and sending

the results to user interface.

The user interface consists of three modules: Automatic Annotation Interface Module,

Manual Annotation Interface Module and Query Interface Module.

Automatic Annotation Interface Module gets the output of IBM MPEG-7 Annotation Tool
as its input. It parses the MPEG XML file, and stores the shot information in the database.

This module includes scene annotation interface.

Manual Annotation Interface Module consists of annotation interfaces, which are used to
annotate a football game video. This module includes video annotation, object annotation,

sequence annotation and event annotation interfaces.

Query Interface Module consists of querying interfaces, which are used to query the data
stored in the database. This module includes semantic, temporal, spatial, spatio-temporal,

hierarchical query and class hierarchy interfaces.

5.3 Annotation

A football game video can be annotated and stored in our database by using the annotation
interfaces. In annotation process, the objects of the classes in our model explained in

Chapter 3 are created and stored in the object-oriented database.

In all of the annotation interfaces, a video player component appears in the window as
shown in Figure 5.4. The user can select a video from the file system by using the Browse
button in the video player. The player provides various opportunities such as pausing,
restarting and stopping the video, positioning the video stream at a specified time,

disabling and enabling the sound of the video.

When a video is selected, it becomes the active video and all the annotation, which is done
after the selection, will be for the selected video. The user can display different annotation

interfaces by selecting it from the menu on the left-hand side of the window.

93

5.3.1 Video Annotation

Video Annotation Interface is used for providing video information such as name, title,
date and description of video. When information is entered and the Save button is pressed,

a new instance of Video class is created and stored in the object-oriented database. Video

Annotation Interface is shown in Figure 5.5.

2 Video Database System

=X
Video Database System
Menu
) VIDEQ
=-[_) Annotation
@ Video
Object
® Scene
- Sequence
@ Event
=[] Query
Semantic
Temporal
-4 Spatial
- Spatio-temporal
- Hierarchical
Class Hierarchy
Help
- Exit

EE T

File Path | Ciivideoslavilvideol avi | [_Browse]

Figure 5.4: Video Player of the Prototype System

Figure 5.6 shows the panel which is used for null attributes, eg. description. Since the

value of a null attribute can be null (dne, ni, unk) or crisp, there are two sections in the

panel to choose one of them.

5.3.2 Object Annotation

Object Annotation Interface is used for defining the video objects appearing in a video.

Object Annotation Interface is shown in Figure 5.7.

94

There are four different object types: Player, Ball, Match and TalentedPlayer. When the
object type is selected, the details panel below is refreshed for the selected object type and
the needed fields for the selected type are displayed. As shown in Figure 5.7, the details of
TalentedPlayer class (Name, Age, Dress Number, Field Position, Shot Accuracy, Speed,
and Ball Control) are displayed in the Player Details panel. The fields Object Name and

Description correspond to the attributes of the base class Object and exist for all object

types.

<. Video Database System |L”E”£‘
Video Database System
Menu Video Player Video
) VIDEO =
-] Annotation
=0

Name | wideo1 ‘

L. Sequence
Lo-# Evert
) Query

Title | fenerbahce-besiktas super cup 2007 ‘

o Help Date | 05.08.2007 |
o Bt
Descripkion @ Null dre 3
ome [|

File Path |C:\wdaos\aw\wdeol‘avl ‘ [Browss |

Figure 5.5: User Interface for Video Annotation

Description) Ml b
) Crisp | |

Figure 5.6: Definition of the Null Attribute description

95

When information is entered and the Save button is pressed, a new instance of
TalentedPlayer class is created and stored in the object-oriented database. If another object
type were selected, an instance of the corresponding class would be created. Since the class
TalentedPlayer is uncertain at object/class level, the object membership degree is
automatically calculated and stored when a TalentedPlayer instance is created and saved to

database.

<. Video Database System

Video Database System
Menu

) VIDEO
-] Annotation

Video Player

Object

Object Name | Roberto Carlos |

Object Type ‘Ta\ented Plaryer v ‘

Description @Ml |dne B

L —
Player Details

Mame | Roberto Carlos ‘

e (%) Fuzzy

very old
old

= (i

oms [

Shat Accur. (&) Fuzzy

File Path |C:\wdaos\aw\wdeol‘avl ‘ [Browss |

ows [

Speed
& (2 Fuzzy wery high A

i

medium v

L —
(%) Fuzzy

Ball Control

frery high IR

high =
mediurn

S —

[i

Figure 5.7: User Interface for Object Annotation

Figure 5.8 shows the panel which is used for fuzzy attributes, eq. age. Since the value of a
fuzzy attribute can be fuzzy or crisp, there are two sections in the panel to choose one of

them. Multiple fuzzy values can be selected since a fuzzy attribute is a multivalued

attribute.

Figure 5.9 shows the panel which is used for incomplete attributes, eg. audience. Since the
value of an incomplete attribute is a range with a starting and ending value, there are two

sections in the panel for both of them.

96

Age
() Fuzzy wery old s

ald

yaung LT

() Crisp

Figure 5.8: Definition of the Fuzzy Attribute age

Audience 10000 - | zo000

Figure 5.9: Definition of the Incomplete Attribute audience

5.3.3 Scene Annotation

Scene Annotation Interface is used for defining the video scenes and is shown in Figure
5.10. Before using this interface, the user should create the MPEG XML file of the
corresponding video by using the IBM MPEG-7 Annotation Tool. An example MPEG
XML output of the tool is provided for the reader in Appendix C.

The user can select the previously created XML file from the file system by using the Load
IBM Annotation Tool Output XML button. After selecting the XML file, the content of the
file is displayed in the Mpeg XML panel and the shots, which are created by IBM MPEG-7
Annotation Tool, are listed in the Shots panel with shot name, start time and end time
information. If the user selects any shot from the list and presses the Play button, then the
selected shot is played in the Video Player. Therefore, the user can play any shot and
combine the semantically closer shots, which make up a video scene. IBM MPEG-7

Annotation Tool is utilized in this study in a similar way with the study included in [46].

If the user selects a number of shots from the shot list, enters the scene name and presses
the Create Scene button, a new instance of the Scene class is created in the object-oriented
database. The combined shots are also stored in the object-oriented database in the form of
instances of the Shot class. The value of the parentScene attribute of the combined Shot

instances is set to be the newly created Scene instance.

97

£ Video Database System
Video Database System

Menu Video Player Scene
) VIDEO
-] Annotation ot
L@ Video Shot: Name Start Time End Time
#® Object Shot_584_606 23.36 24 56 ~
ne Shot_614_621 24.56 25,16 D |
Sequence shat_629_792 25.18 320
L@ Event Shot_600_549
) Query
e HE'D =
o Bt

12

Shot_1259_1482

Shot_1490_1497 59.6 60,2

Shot_1505_1509 0.2 60,65

Shot_1517_1524 60,65 61,28

Shot_1532_1533 ©1.28 61,64

Shot_1541_1749 61,64 70.28

Shot_1757_1779 70,258 7148

Shot_1787_1794 71.48 72.08]

File Path | Ciivideos\avi|videol, avi ‘ [Browss | Mpey XML

<Videolzgnent =

123

<MediaTine >

<Medi sTimePoirt > TN0:03:17:0FL5
</t 3 aTimePoime>
<Medialnc rhuration medisTimelnit=FTIHISE » §5%
/M di aInc churati and

B 41 aTine >

<TemporalDecomposition >

<Widecleguere >

<MediaTime » (4

& &3

[Load1gMAnnotation Tool Qutput il | [Play]

SteneName | goalscens1 | Create Scene |

Figure 5.10: User Interface for Scene Annotation

5.3.4 Sequence Annotation

Sequence Annotation Interface is used for defining the video sequences and is shown in
Figure 5.11. When the user presses the Load Scenes of the Video button, the previously
created scenes are listed in the Scenes panel with scene name, start time and end time
information. If the user selects any scene from the list and presses the Play button, then the
selected scene is played in the Video Player. Therefore, the user can play any scene and

combine the semantically closer scenes, which make up a video sequence.

If the user selects a number of scenes from the scene list, enters the sequence name and
presses the Create Sequence button, a new instance of the Sequence class is created in the
object-oriented database. The value of the parentSequence attribute of the combined Scene

instances is set to be the newly created Sequence instance.

98

5.3.5 Event Annotation

Event Annotation Interface is used for defining video events happening within a video

shot. Event Annotation Interface is shown in Figure 5.12.

There are two different event types: Goal and Foul. When the event type is selected, the
details panel below is refreshed for the selected event type and the needed fields for the
selected type are displayed. As shown in Figure 5.12, the details of Foul class (Harshness,
Yellow Card, Red Card, and Field Position) are displayed in the window.

Z Video Database System
Video Database System
Menu
) VIDEQ

=] Annotation
oo Video

Sequence

Scenes
MName i End Time
119.24

-] Query
- # Help
Low Exit

File Path | Ciivideoslavilvideol avi [Brawse | [Load Scones of the video | [

Sequence Mame | matchsummarysequence L Create Sequence J

Figure 5.11: User Interface for Sequence Annotation

The fields Start Time, End Time and Event Name correspond to the attributes of the base
class Event and exist for all event types. When the user stops the Video Player at a specific
time and presses the Get Start Time button, the time of the Video Player is displayed in the
Start Time field. When the user stops the Video Player at a specific time and presses the

Get End Time button, the time of the Video Player is displayed in the End Time field.

99

When Event Annotation window is loaded, the Sequence list is filled with the sequences of
the selected video. When the user selects a sequence from the Sequence list, the scenes in
the selected sequence are listed in the Scene list. When the user selects a scene from the
Scene list, the shots in the selected scene are listed in the Shor list. When the user presses
the Play button, the selected shot is played in the Video Player. This opportunity provides

an easy way for the user to find an event in the selected video.

At the bottom of the window, there is Actor panel to enter information about the actors of
an event. At the right-hand side of the Acfor panel, there is Actor Information panel for
selecting the objects, which have a role in the event. As represented in Figure 5.13, when
the Event Annotation window is loaded, the Objects list is filled with the list of objects of
the selected video. In the Linguistic Role list, the linguistic roles agent, object and recipient

are listed.

£ Yideo Database System |L”i”3‘
Video Database System
Menu Video Player Event
) VIDEQ = - Event Details
=] Annotation Start Time [1547 |[_eetstartTime__|
e Yideo End Ti =
i nd Time: [18.07 [GetEndTime |
-t Seguence
Lo [N Sequence matchsummarysequence s
-] Query
Lo Exit

Shot ‘Shot_386_453 “ ‘ [Play]

Foul Details

[
@Ry | e igh A

high

g
T ——
() Yellow Card () Red Card
File Path | Ciivideoslavilvideol avi | [Browse]
Actor
Actor Position Actor Information
Top Left & [| width [| Add Actor
Top Left ¥ | | Height | |
Add Ackor Position

Figure 5.12: User Interface for Event Annotation

When the user selects an object from the Objects list, selects a linguistic role from the

Linguistic Role list, enters the semantic role of the object and presses the Add Actor button,

100

a new instance of the Actor class is created and the corresponding actor is added to the
Actors of the Event list of the Actor Position panel. The annotation of two actors:
committer and victim are represented in Figure 5.14 (a) and Figure 5.14 (b). Figure 5.15

shows the Actors of the Event list.

Actor Information

Ohjecks L
Roberto Carlos -~
Linguistic Role ball
Edu D.

Tbrahir Uziilmez
Serdar Kulbilge
Hakan Arikan
[Makteja Kezman
Bobo

Semantic Role

Figure 5.13: Object List of the Video

The Actor Position panel is used to enter the position information of the actors of the
event. To enter position information for an actor in the event, the user stops the Video
Player, selects the actor from the Actors of the Event list, and presses the Get Time button.
The time of the Video Player is displayed in the Time field of the Actor Position panel.
Then the user draws a rectangle on the Video Player, which bounds the corresponding
object. After drawing the rectangle, the user presses the Get Region button and the
coordinates of the rectangle are displayed in the Top Left X, Top Left Y, Width and Height
fields of the Actor Position panel. If the user presses the Add Actor Position button, the
user interface creates a new instance of Region and Position classes and adds the Position
instance to the positionList attribute of the selected Actor instance. Figure 5.16 and Figure

5.17 show how the actor position information is entered for two different actors.

Finally, the user presses the Save Event button; a new instance of Foul class is created. If
another event type were selected, an instance of the corresponding class would be created.
The event attribute of the Actor instances is set to be the newly created Foul instance and
the parentShot attribute of the Foul (inherited from the base class Event) instance is set to
be the selected Shot instance from the Shot list of the Event Details panel. Then all the
Actor, Position, Region and Foul instances are stored persistently in the object-oriented

database.

101

Actor Information

Objects Edu D b
Linguistic Role agent w
Semantic Role ‘ commitker
[Add Actor]
(a)

Actor Information

Obijects Bobo v
Linguistic Fole recipient w

Semantic Role | wickim

[Add Actor]

(b)

Figure 5.14: Actor Annotation

Actor Position

fckors of the Event Edu D.: commitker

Edu [commitker
Biobia: wickim

Tirne:

Get Reqgion]

Top Left ¥ |:| Height: | |

[Add Ackar Pasition]

Figure 5.15: Actors of the Event

102

Video Player

File Path | Ciivideos\avivideol, avi | [Browse]
Actor

Actor Position

Ackars of the Event Eaha: wickim "

Tirme | 15.95 D[etTme |

L et Region J

Top Left % 181 Width | 150 |

Top Left ¥ Height | 161 |

[Add Ackar Pasition J

Figure 5.16: Actor Position Annotation for the First Object

103

Video Player

File Path | Cvideos\aviivideol, avi | [Browse]
Actor
Actor Position
Ackors of the Event Edu D.: commither "
Time [15.95 L[GetTme |

L et Region J

Top Left ¥ Width |121 |
Top Left ¥ Height | 222 |

[add Actor Position J

Figure 5.17: Actor Position Annotation for the Second Object

104

5.4 Querying

The framework provides the user querying facilities. The supported queries are (fuzzy)
semantic, temporal, (fuzzy) spatial, trajectory, regional and hierarchical queries. In this
section, the query interfaces of our prototype system are explained and query examples are
given. The temporal, spatial and (fuzzy) semantic rules are written in Jess language and are

provided for the reader in Appendix B.

5.4.1 (Fuzzy) Semantic Queries

Semantic Query Interface provides the user to query the properties of Video, Object and
Event instances stored in the database. Since some of the classes are uncertain and include
uncertain attributes, the queries can be fuzzy. A generic query evaluation method is
developed. The method is generic, since it does not access any football domain specific
classes and data types. The method can be employed for any domain providing the base

classes be used.

2 Video Database System Elﬁ‘rg‘
Video Database System
Menu Semantic Queny
_IYIDEQ Search Criteria Details
-] Annatation Entity —_— Video Details
=[] Query hame |
[Jcnantic Ohject Type
- ® Temporal Title |
¢ % Spatial Event Type
~-® Spatio-temporal Date |
i eaiioahical Object Membership Threshold | |
- —-# Class Hierarchy s Description 1
L Help) Nl |
L Exit —
oAl

Figure 5.18: Semantic Query Interface

105

Semantic Query Interface is shown in Figure 5.18. There are three options in the Entity list:
Video, Object and Event. If Video is selected from the list, Video Details panel is loaded as
in Figure 5.18. The user might enter values to the fields Name, Title, Date and Description.
When the Query button is pressed, the query request is sent to the bridge. The query is
performed by using the query evaluation algorithm. The result list is displayed in the
Semantic Query Results window as shown in Figure 5.19. In the Semantic Query Results
window, the user can play a video from the result list by selecting the video and pressing

the Play button.

EEX

= Video Database System
Video Database System

Menu £ Semantic Query Results

) VIDEO

1 Annotation Query Results

=) Query
_I o Marme Description
Temparal & ek L s
L@ Spatial iy Lavi per l ni
i % Spatio-temporal videod Cilvideos\avilvideod.avi |galatasaray-begiktag super lig 05.05.2006 dne
Hierarchical videoS Ciivideos) avilvideos, avi Fenerbahce-trabzonspor super lig 02,05,2006 dne
L@ Class Hisrarchy viden3 Cilvidens\avi|videoZ.avi |begktag-trabzonspor super lig ID5.03. 2006 dne

@ Help

oo i Exit

Video Player

Figure 5.19: Semantic Query Interface (Video is selected)

If Object is selected from the Entity list, the Object Type list becomes active, and the user
can select the object type (Player, Match, Talented Player) from the list. When the user
selects an object type, the details panel for the selected type is loaded as represented in
Figure 5.20. The user might enter values to the fields in the Details panel. When the Query
button is pressed, the query request is sent to the bridge. The query is performed by using

the query evaluation algorithm. The result list is displayed in the Semantic Query Results

106

panel. Figure 5.20 (a) shows the querying of Match objects and Figure 5.20 (b) shows the
query results. As it can be seen in Figure 5.20 (b), the inclusion degrees for the attributes

audience and airCondition are calculated and shown in the results.

Figure 5.21 (a) shows the querying of TalentedPlayer objects and Figure 5.21 (b) shows
the query results. As it can be seen in Figure 5.21 (b), the inclusion degrees of the fuzzy
attributes age, shotAccuracy, speed, and ballControl are calculated and shown in the
results. Since the class TalentedPlayer is also uncertain at the object/class level, a threshold
for the object membership degrees can be specified. The membership degrees of the

objects in the result list are also displayed in the Semantic Query Results window.

Semantic Query
Search Criteria Details
; Match Details
Enticy Chject w
[rate
Object Type Match 3
Audience 5000 - | 40000 Threshold | 0.6
Event Type
Air Condition
Object Membership Threshold @ Fuzzy hat: -~ foe=tcly 0.7
mild
normal -
O crisp
(a) Query Specification
Query Results
Date Audience Audience Inclusion Air Condition Air Condition Inclusion Obiject Membership ...
05.08.2007 |{10000.0-30000.0} [1.o |rat [1.o [t.o |

(b) Query Results

Figure 5.20: Semantic Query Interface (Object - Match is selected)

Figure 5.22 (a) shows the querying of TalentedPlayer objects by querying the value of a
derived attribute talent. The value is specified as “very high” and the threshold is given as

0.7. The query results including the rule conclusion are represented in Figure 5.22 (b).

Figure 5.23 (a) shows the querying of TalentedPlayer objects by querying the value of a
derived attribute talent. This time, the value is specified as “medium” and the threshold is

0.6. The query results including the rule conclusion are represented in Figure 5.23 (b).

107

If Event is selected from the Entity list, the Event Type list becomes active, and the user
can select the event type (Foul, Goal) from the list. When the user selects an event type,
the details panel for the selected type is loaded as represented in Figure 5.24 (a). The user
might enter values to the fields in the Details panel. When the Query button is pressed, the
query request is sent to the bridge. The query is performed by using the query evaluation
algorithm. The result list is displayed in the Query Results panel. Figure 5.24 (b) shows the
query results for the class Foul. In the Semantic Query Results window, the user can play

an event from the result list by selecting the event and pressing the Play button.

£ Yideo Database System

Video Database System
Menu Semantic Query
] VIDEQ Search Criteria Details
[#-_] Annotation . T — | Player Details
i | Entity Obgect ,,l s ‘ |
Object Type TE]EEF:J‘ Age @iy L Theshod 06 |
Event Type [il y
Spatio-temporal | infant @
@ Hierarchical & -
@ ClassHerarchy Object Membership Threshold |07 | Cusm []
L@ Help =
ey Exit Dress Mo 7]
Field Position i _v_=
Shat Accur. (&) Fuzey verghich @ Threshold ;-0_7_i
medum [
O Crisp | 7‘
Speed e
OFE | oy tigh A Threshold (0.6 |
:
mediurn o
Ocrisp | |
Ball Cantrol @iy = Thrashold ! 06 I
medium v
Ocrisp | |
Talerk —
(® Fuzzy veryhich & Threshald]
high
medum 4
() Crisp |
(a) Query Specification
Query Results
Marne Age Inc. | Shot Accuracy | Inc, | Speed Inc. Ball Control | Imc. | Talent Rule Co... Object Member...
ihrahim Uzillmez |yaung 1.0 |high 1.0 |medium 0.7 |high, medium [0.7 0.5043475
Mateja Kezman |voung 1.0 very high, high (0.9 |high 1.0 |very high 1.0 0.9652174
EduD. young, very young (0.5 high 1.0 |high, medium|0.7 |high 1.0 0, 30569564
Roberto Carlos |voung 1.0 very high, high 0.9 |high 1.0 |very high 1.0 0.9652174
Bobo woung, very young (0.5 high 1.0 |medium 0.7 |high 1.0 0, 90359564

(b) Query Results

Figure 5.21: Semantic Query Interface (Object — TalentedPlayer is selected)

108

For the three types of entity, the user might enter a threshold value for the object
membership degrees of the requested objects. This field is meaningful if the selected class

is uncertain at the object/class level such as Foul or TalentedPlayer classes. If the field is

left empty, its default value will be considered to be 0.

£ Yideo Database System

Video Datahase System
Menu Semantic Query
] VIDEQ Search Criteria Details
-] Annotat - . m Player Details
&~ | Annatation Erity bt v| Namzye ‘ |
Object Type Talerted Flayer v| s ®Fuzy | oy a Threshold [0.7 |
Event Type [
i@ Spatio-temporal | WErY YOUNG o
i@ Hierarchical : I =
@ ClassHerarchy Object Membership Threshold |07 | O cisp ‘ 1
~® Help
e Exit ressto [|
Field Position | vi
Shat Accur. (&) Fuzey verghich @ Threshold i |
high =
medium
O Crisp ‘
d]
Spee @R | yyrigh & Threshold ‘_|
high =
mediurn o
O Crisp |
Ball Contral]
@Fuzr | eupign w| TTresol [
high
mediurm v
Ocrisp |
Talent @ Fuzzy L Threshold |_D_7- J
high
medum
O Crisp
(a) Query Specification
Query Results
Mame Age Inc. Shot Accuracy Inc. Speed Inc. | Ball Control | Imc. Talent Rule Conclusion... Object Membership D...
Mateja kezman |young |10 |very high, high [1.0 |high [1.0 |veryhigh [1.0 |veryhigh [1.0 0.9652174 |
Roberto Carlos |young [0 [very high, high [1.0 Jhigh 1.0 veryhigh [1.0 [veryhigh [1.0 |0.5652174 |
(b) Query Results

Figure 5.22: Semantic Query Interface (Object — TalentedPlayer is selected)

109

Talent

(2 Fuz=y wery high -~ el
)
ST —

(a) Query Specification

Query Results

Mame Age Inc, | Shot Accuracy Inc. Speed Inc. Ball Control Inc. Talent Rule Conclusion ... Object Membership ...
Mateja Kezman |yuung |1.D |\-'ery high, high |1.U |high |1 .0 |very high |1.D |medium |D.6 |D.96521?4 I
Roberta Carlos |young [1.0 |wery high, high [1.0 |high 1.0 |very high 1.0 |medium 0.8 |0.9852174 |

(b) Query Results

Figure 5.23: Semantic Query Interface (Object — TalentedPlayer is selected)

Semantic Query
Search Criteria

Details
) Foul Details
Entity |Event e |
Object Type | | i — -
um
Ewent Type V| =

object Membership Threshold

Video Database System

Wideo Database System

Caw [|
(O vellow Card () Red Card

(a) Query Specification

Menu £ Semantic Query Results X |
] VIDEQ]
[] Annatation Query Results

= Name videa Stark Time End Time Red Card

Temparal
Spatial

velow Card | Field Posit... Harshness Harshness. .

Object Me..

Video Player

Spatio-temparal Foulz ideosiaw. .. [57. 9z.01 False true defense medium 1.0 1.0
Hierarchical
Class Hierarchy

(b) Query Results

Figure 5.24: Semantic Query Interface (Event — Foul is selected)

110

5.4.2 Temporal Queries

Temporal Query Interface allows the users to construct temporal queries. The interface is
shown in Figure 5.25. All of the search criterias are optional to perform a temporal query.
If Video field is not left empty, the query is executed for the videos with the specified
name. If that field is left empty, the query is executed for all of the videos.

£ Yijdeo Database System

Video Datahase System
Menu

< Temporal Query
] vIDEQ
-] Annatation LI, IR, T
- Query

Search

Video Player

oo Semartic

L Wremparal Video ‘ ‘
#® Spatial
i@ Spatio-temparal Eventl ‘Fnull ‘
-4 Hierarchical
" @ Class Hierarchy Object [EduD. |
L@ Help
Loy Exit
Lingustic Role ‘agant o ‘
Temporal Relation |beFore v ‘
Event2 [|
Results

Ewentl Temporal Relation | EventZz | Start Time of Eventl End Time of Eventl | Start Time of Event2 = End Time of Eventz | Video

foull before igoald 15,47 15,07 145,82 q C:videos)avil
foul1 before lgoalz 15,47 15,07 51,54 59,6 Cvidenstaviy
Faull befare Foul3 15,47 15,07 128,42 131,46 Civideosiavity, .
Faull befare Foulz 15.47 15.07 87.73 9z.01 Civideosiavity. ..

[Play Eventl] Play Ewent2]

Figure 5.25: Temporal Query Interface

When the user enters the needed information and presses the Query button, the constructed
temporal query is executed. The results are displayed in the Results panel. When a record
is selected from the Results panel and Play Eventl button is pressed, the time interval of
the Eventl is played in the Video Player on the right-hand side of the window. When the
Play Event2 button is pressed, the time interval of the Event2 is played in the Video
Player.

Consider the temporal query represented in Figure 5.25:

111

Find all the events happening after the foul event (named as foull) in which player Edu D.

commits (has the linguistic role “agent”) the foul.
The steps of the evaluation of this query are as follows:
1- The query is firstly sent to bridge and bridge sends the query to FOOD.

2- FOOD finds the Foul events in which the Player object with name “Edu D.” is an

actor having the linguistic role “agent”.

3- FOOD also finds the Event instances, which occur in the same video of the found

event in step 2.
4- The bridge transfers found Event instances to the working memory of FKB.

5- When the engine of FKB is run, the temporal rules will fire for the Event instances
in working memory. If a rule is activated for two Event instances, it inserts a new
EventToEventRelation instance to the working memory of FKB indicating the

temporal relation between those two Event instances.

6- The bridge takes those newly added EventToEventRelation instances and sends

the ones satisfying the temporal relation “before” to the user interface.

5.4.3 (Fuzzy) Spatial Queries

Spatial Query Interface allows the users to construct (fuzzy) spatial queries. The interface
1s shown in Figure 5.26. All the search criteria are optional to perform a spatial query. The
threshold is for directional spatial queries, which can be fuzzy. If Video and Event fields
are not left empty, the query is executed for the videos and video events with the specified
names. If those fields are left empty, the query is executed for all of the videos and all of

the events in those videos.

When the user enters the needed information and presses the Query button, the constructed
spatial query is executed and the results are displayed in the Results panel. In the result list,
the time intervals in which the selected spatial relation holds between the selected objects

are displayed with their membership degrees. When a record is selected from the result list

112

and Play button is pressed, the selected time interval is played in the Video Player on the

right-hand side of the window.

= Video Database System

Video Database System
Menu < Spatial Query
) VIDED
-] Annatation
Equery Search Video Player
i@ Semantic —
emm | T AR T L
i@ Hierarchical
i@ ClassHierarchy .
e e elfed
Threshald
Results
Objectl Spatial Relation | Object2 Start Time End Time Membership Degree | Wideo Event
EduD. left Eobo 16,18 16,26 0,5930473 Ci\videosiavilvideol,avi [foull
EduD. left Eiobo 15,66 15,95 0.59145134 C:\videosiavilvideol.avi [foull
EduD. left Bobo 16.1 16,18 0.7048328 Cijvideoshavilvideol.avi [Foull
left EBobo 16,26 16,34 0.6 S FoulL
Bobo o)

Figure 5.26: Spatial Query Interface

Consider the spatial query represented in Figure 5.26:

Find the time intervals in which player Edu D. appears on the left of player Bobo with a
threshold of 0.5.

The steps of the evaluation of this query are as follows:
1- The query is firstly sent to bridge and bridge sends the query to FOOD.

2- FOOD finds the events in which the Player objects with names “Edu D.” and

“Bobo” are actors.

3- The bridge transfers the position list of the found Actor instances to the working

memory of FKB.

113

4- When the engine of FKB is run, the spatial rules will fire for the Position instances
in working memory. If a rule is activated for two Position instances, it inserts a
new ActorToActorRelation instance to the working memory of FKB indicating the
spatial relation between those two Position instances. If the relation is directional,

membership degree is also calculated when the rule is executed.

5- The bridge takes those newly added ActorToActorRelation instances and sends the

ones satisfying the specified spatial relation “left” and the specified threshold

“0.5” to the user interface.

5.4.4 Spatio-temporal Queries

Spatio-temporal Query Interface allows the users to construct regional and trajectory
queries. When Region is selected from the Query Type, the interface takes the Regional

Query mode. The interface for regional query is shown in Figure 5.27. All the search

criteria are optional to perform a regional query.

£ Video Database System =X
Video Database System
Menu £ Spatio-temporal Query 3]
] VIDEQ —]
-] Annotation Search Results
=5 7 et
JQ‘ Simanti(o l:l Start Time End Time | Membership Degres | Event Video
Lo Temporal
Cernd 15,66 15.74 0.62464803 Faull Civideosiavil...
Sre—— Object 15.74 1552 |n.50321275 foull |Ciivideostavil...
‘- Hierarchical
i@ Class Hierarchy Threshold
~— @ Help

[e | [Ea

Figure 5.27: Spatio-temporal Query Interface (Regional Query)

114

If Video and Object fields are not left empty, the query is executed for the videos and video
objects with the specified names. If those fields are left empty, the query is executed for all

of the videos and all of the objects in those videos.

The region is drawn in the drawing panel, which is on the left-bottom of the window. Since
an exact region can not be specified, a threshold can be given which is used to eliminate
the found regions which match with the specified region with a membership degree smaller

than the threshold.

The region matching formula used to calculate the membership degree, which is taken

from the study in [3], is as follows:

1 = intersected_area (Regionl, Region2)

/ minimum_area (Regionl, Region2) (F-1)

When the user enters the needed information and presses the Query button, the constructed

regional query is executed and the results are displayed in the Results panel.

The following algorithm, similar to the one utilized in [3], is evaluated for regional

queries:
1- The query is firstly sent to bridge and bridge sends the query to FOOD.
2- FOOD finds the actors according to the specified Video name and Object names.
3- For each found actor
3.1- For each position of that actor
3.1.1- Get the region of the position

3.1.2- Find the membership degree of the region to the specified region by

using the region matching formula (F-1).

3.1.3- If the membership degree is greater than the specified threshold, add

that position with the found membership degree to result list.

4- Send the result list to the user interface.

115

In the result list, the time intervals in which the regional query holds are displayed with
their membership degrees. When a record is selected from the result list and Play button is

pressed, the selected time interval is played in the Video Player.

When Trajectory is selected from the Query Type, the interface takes the Trajectory Query
mode. The interface for trajectory query is shown in Figure 5.28 and the result of the query
is represented in Figure 5.29. All the search criteria are optional to perform a trajectory

query.

£ Yijdeo Database System

Video Database System
Menu

£ Spatio-temporal Query
) VIDEO

[Annotation Search Results
=) Query
_:I ® 5 Start Time End Time Event Video
i Emnantic video ‘ 1 - -
[T — | 15.58 16.34 Foull |c:tvideasiavityi...
Object [Edup.
“o# Class Hisrarchy Threshold ‘Eé 7|
@ Help)
=i Bt Query Type ‘Traiectorv v |

Video Player

Clear] [Exit

Figure 5.28: Spatio-temporal Query Interface (Trajectory Query)

If Video and Object fields are not left empty, the query is executed for the videos and video
objects with the specified names. If those fields are left empty, the query is executed for all

of the videos and all of the objects in those videos.

This interface can be used to find the time intervals in which a specified trajectory holds
for the specified objects in the given video. A trajectory is specified by drawing starting

and ending regions, which can be drawn in the panel on the left-bottom of the window.

116

£ Yijdeo Database System

Video Database System
Menu

£ Spatio-temporal Query. &|

) vIDED —
1 Annotation Search Results
=) Quer

_I Q. 5\!' I Start Time End Time Event Video

bl Temparal

‘@ Class Hierarchy Threshold
o Help
R Query Type Trajectary v

mn— | |~y

[Clear] [Exit

Figure 5.29: Spatio-temporal Query Interface (Trajectory Query Results)

Since exact regions can not be specified, a threshold can be given which is used to
eliminate the found regions which match with the specified regions with a membership

degree smaller than the threshold. The region matching formula (F-1) is used to calculate

the membership degree.

When the user enters the needed information and presses the Query button, the constructed

trajectory query is executed and the results are displayed in the Results panel.

The following algorithm, similar to the one utilized in [3], is evaluated for trajectory

queries:

1. The query is firstly sent to bridge and bridge sends the query to FOOD.

2. FOOD finds the actors according to the specified Video name and Object names.

3. For each found actor

3.1. Create a new trajectory list.

117

3.2. For each position of that actor
3.2.1. Get the region of the position
3.2.2. If the trajectory list is empty

3.2.2.1. Find the membership degree of the region to the specified

starting region by using the region matching formula (F-1).

3.2.2.2. If the membership degree is greater than the specified

threshold, add that position to the trajectory list.
3.2.3. Else (trajectory list is not empty)

3.2.3.1. Find the membership degree of the region to the specified

ending region by using the region matching formula (F-1).

3.2.3.2. If the membership degree is greater than the specified
threshold, add that position to the trajectory list. Add the

trajectory list to the result list. Create a new trajectory list.

3.2.3.3. Else (If the membership degree is smaller than the specified
threshold), add that position to the trajectory list.

Send the result list to the user interface.

In the result list, the time intervals in which the trajectory query holds are displayed with

the event names. When a record is selected from the result list and Play button is pressed,

the selected time interval is played in the Video Player. In addition, the exact starting and

ending regions of the selected trajectory and the path between these two regions are drawn

on the drawing panel as shown in Figure 5.29.

5.4.5 Hierarchical Queries

Hierarchical Query Interface allows the users to construct hierarchical queries. The

Hierarchical Query Interface is shown in Figure 5.30 and Figure 5.31. Hierarchical Query

Interface provides querying of the hierarchical structure of videos, such as finding

sequences of a video, scenes of a specific sequence or video, shots of a specific scene,

118

sequence or video or events of a specific shot, scene, sequence or video. At the same time;
name, start time and end time properties of a shot, scene, sequence or event might be

specified to narrow the search.

£ Yijdeo Database System
Video Database System

Menu £ Hierarchical Query l?l

) VIDED
] Annotation

Search Video Player

@ Help
Sequence makchsummarysequence
__Querv
Shot List
Shat Mame Stark Time End Time Parent Scene Parent Sequence Video Video Name
i i e oz uuasLe s HIGLL U101 Y360+ [| IIGUS @V G0 L 3 [3I0s0 s
-~
Shot_983_090 39.32 39.92 goalscenel matchsummaryseq... |(Civideos)avilvideol avi |videol =
Shat_993_1011 39,02 40,76 goalscenel matchsummaryseq. .. |Civideos!avi|videol . avi [videol
Shat_1019_1020 40,76 41,12 goalscens matchsummaryseq. .. |Civideos\avi|videol , avi [videol
matchsumm. widenl

1%

matchsumm leol

Figure 5.30: Hierarchical Query Interface (Shot is selected)

All the search criteria are optional to perform a hierarchical query. If Video field is not left
empty, the query is executed for all the videos with the specified name. If that field is left
empty, the query is executed for all of the videos. Name field is for the name of the
sequence, scene, shot or event. The fields Start Time and End Time are for specifying the
time interval of the queried sequence, scene, shot or event. The Query Type field includes
the options: Sequence, Scene, Shot and Event. The query is performed only for the selected
query type. If Sequence is selected, sequences with the specified properties are searched, if
scene is selected, scenes with the specified properties are searched. The fields below the
Query Type field (which are for entering parent Sequence, Scene and Shot names) are
visible or invisible according to the selected query type. If Sequence is selected, none of

them are visible. If Scene is selected, only Sequence field is visible. If Shot is selected,

119

both of the Sequence and Scene fields are visible. If Event is selected, all of the fields are

visible.

2 Video Database System
Video Database System
Menu
) VIDEQ
-] Annotation
=) Query

Semantic

< Hierarchical Query

Search

Video Player

~— @ Help

Sequence matchsummarysequence

Scene

I

Event List

Event Mame Start Time End Time Parent Shot Parent Scene Parent Sequence Video Yidea Mame
fouls [128.42 [131.48 |shot_3194 3279 [Foulscenes |matchsummaryseq. .. |t -
Foull 18.07 Foulscenel matchsummaryse: M

q 150.0 _3635_
goall 41,47 |47.38 [Shot_1028_1191 |goalscenel |matchsummarysen. .. |C:\videosiavilvideoL.avi jvideol =
Feui> a7 72 @ A ke 7127 2985 [Frrleranas abrhermmaruean (= rvidench suitident sui luidant 158

Figure 5.31: Hierarchical Query Interface (Event is selected)

The following algorithm is evaluated for hierarchical queries:
1. The query is firstly sent to bridge and bridge sends the query to FOOD.
2. If the selected query type is Sequence

2.1. Find the sequences with the specified properties (video, name, start time and

end time).

2.2. Result list is the list of found sequences.

3. If the selected query type is Scene

3.1. The field for entering the parent sequence name becomes visible.

120

3.2. Find the scenes with the specified properties (video, name, start time, end time

and parent sequence name).
3.3. Result list is the list of found scenes.
4. If the selected query type is Shot

4.1. The fields for entering the parent sequence name and parent scene name

become visible.

4.2. Find the shots with the specified properties (video, name, start time, end time,

parent sequence name and parent scene name).
4.3. Result list is the list of found shots.
5. If the selected query type is Event

5.1. The fields for entering the parent sequence name, parent scene name and

parent shot name become visible.

5.2. Find the events with the specified properties (video, name, start time, end

time, parent sequence name, parent scene name and parent shot name).
5.3. Result list is the list of found events.
6. Send the result list to the user interface.

In the result list, the found instances (sequence list, scene list, shot list or event list
depending on the selected query type) are displayed with the start time and end time
properties. When a record is selected from the result list and Play button is pressed, the

selected time interval is played in Video Player as shown in Figure 5.30 and Figure 5.31.

5.4.6 Class Hierarchy

This interface can be used to display the content of the object-oriented database. In the tree
menu on the left-hand side of the window, the class hierarchy is represented. When an

object is stored in db4o, its class definition is automatically stored in the database. The

121

db40 reflection API is used to get the class and class hierarchy information from the

database. The Class Hierarchy Interface is shown in Figure 5.32.

ideo Database System

Video Database System
Menu
) VIDEQ
-] Annotation
&) Query
@ Semantic
L@ Temporal

Class Hierarchy

| I HIERARCHY
(= videomodel Fuzzy
- w videomodel.Video
=-[] videomadel. Object
-] footballdamain.Persan
") footballdomain Player
“..# Footballdomain, TalentedPlayer
‘- # footballdomain. Referee
@ footballdomain. Team
- footballdomain, Ball
- footballdomain.Match
-4 footballdomain, Stadium
(=[] wideomadel.Event
@ footbaldomain.Goal
-4 footballdomain,Foul

- fuzzy,UT_nu
-4 videomodel.Region

videomodel.Frame
- wideomadel. AudioSignal
- wideomaodel.Image
=+) Fuzzy. UT_fy
L Fuzay.Fuzzyfge

fuzzy.FuzzyDegree
e fuzzy.FuzzyTemperature
=] wideonm

e
videomadsl. Sequence
@ videomodel. Shob

g Fuzzy UT_in
@ videomodel. Actor
- @ videomodel,Position

Class Details
Class attributes

Attribute Name Attribute Type

parentSequence |videamodel.5equence |
shotList [iava. Ll ArrayList |
Objects

name: foulscened, startTime: 15,44, endTime: 24.56 , parentSequence: matc
name: goalscenez, skartTime: 50.36, endTime: 61.64 , parentSequence: mate
name: foulscene3, startTime: 127.76, endTime: 137.0, parentSequence: mat
name: goalscenel, startTime: 34.28, endTime: 50.36 , parentSequence: matc
name;: foulsceneZ, startTime: 86,72, endTime: 114,56 , parentSequence: mat
name: goalscens3, startTime: 1454, endTime: 154,64 , parentSequence: mal

Figure 5.32: Class Hierarchy Interface

When a class is selected in the tree, the attribute information of the selected class is

displayed in the Class Attributes panel on the right-hand side of the window. The instances

of the selected class are also displayed in the Objects panel on the right-hand side of the

window. The instances are displayed with their attribute values.

122

CHAPTER 6

CONCLUSIONS

In this study, we firstly introduce a fuzzy conceptual data model for video databases. The
model supports uncertainty, which might naturally occur in various applications of video
data. The UML model is utilized to represent our conceptual model. We extend UML
model to represent uncertain information and video specific properties. Our semantic
model does not only support hierarchical structure of video data but also handles spatial

and temporal relations between semantic entities.

Secondly, we present an intelligent fuzzy object-oriented database framework for video
database applications. The presented framework is the adaptation of IFOOD architecture
and provides an integration of a fuzzy object-oriented database and a fuzzy knowledge
base. The framework allows modeling complex and rich semantic content of video data by
incorporating uncertain information in the fuzzy object-oriented database. Our conceptual
model is mapped to logical FOOD model and used in the fuzzy object-oriented database.
To represent knowledge about video data, spatial, temporal and fuzzy semantic rules are
defined, and these rules are processed by the fuzzy knowledge base. Fuzzy object-oriented
database and fuzzy knowledge base are integrated by a bridge providing powerful and

intelligent video retrieval.

We have also developed a prototype system of the presented framework, which provides
the user annotation and querying of video data. The framework supports a diversity of
queries related to video data such as (fuzzy) semantic, temporal, spatial, hierarchical,
regional and trajectory queries. Our framework may easily be applied for any knowledge

intensive video database application involving uncertain information.

The presented framework is developed for video databases. A future work is to extend the
framework in order to handle other multimedia data such as image, audio and text. Our

generic conceptual model can be extended for this purpose.

123

Another future direction is to incorporate an automatic extraction algorithm to the
presented framework. It is obvious that manually annotating a video is very difficult, time
consuming and impractical. Although, we utilize IBM MPEG-7 Annotation Tool, which
provides automatic shot annotation, all the other semantic information is obtained
manually. It would be very helpful to use an algorithm that automatically detects objects,
positions of the objects and even events happening in a time interval. Automatic extraction
is a very open research area since extracting high-level semantic information (such as to
extract the events happening, the meaning of the sequences and scenes) demands

challenging work.

Considering the automatic extraction algorithms, in the future, the knowledge base part of
our framework may be used to process rules for automatic extraction of event and object
entities in video data, which can lead to development of more intelligent video database

applications.

The number of the rules stored in the knowledge base takes an important role for the
performance of the framework. Since there might be a huge number of videos in a video
database, scalability becomes an important problem. Research efforts on improving the
performance of the framework would be needed in the future, such as developing special

index structures, trying to use a minimum number of rules, etc.

We use JMF API to provide playing and controlling videos in our user interface. Since
JMF API does not support every video format or every video codec properly, it brings

some problems. A future work would be needed to overcome these video format issues.

To represent how our model and framework can be applied to a video database application,
we prefer to use football game videos. Although it is a very popular domain among the
studies on video databases, it does not involve sufficient uncertain information. Choosing a
different knowledge intensive domain such as news or medical videos, which might
naturally bring much more uncertainty, would be more illustrative to show the usability
and applicability of our video data model and framework. As a future direction, our
conceptual model and framework can be extended for another domain. Since we designed
them to be generic, we think that it is easy to apply the model and the framework for any

application domain.

124

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

Ma, Z. M., “Fuzzy Information Modeling with the UML”, In: Advances in Fuzzy
Object-Oriented Databases: Modeling and Applications, IDEA Group Publishing,
2004.

Arslan U., “A Semantic Data Model and Query Language for Video Databases”, M.
Sc. Thesis, Department of Computer Engineering, Bilkent University, Ankara, Turkey,
January 2002.

Durak N., “Semantic Video Modeling and Retrieval with Visual, Auditory, Textual
Sources”, M. Sc.Thesis, Department of Computer Engineering, METU, Ankara,
Turkey, September 2004.

Oztarak H., A. Yazici, "Structural and Event Based Multimodal Video Data
Modeling", ADVIS 2006, LNCS 4243, pp. 264-273, 2006.

Yazici A., and A. Cinar, “Conceptual Modeling for the Design of Fuzzy OO
Databases”, Knowledge Management in Fuzzy Databases, Edited by O. Pons, A. Vila
and J. Kacprzyk, Physica-Verlag, Heidelberg and New York, Vol. 39, pp. 12-35, 2000.

Ekin A., A. M. Tekalp, and R. Mehrotra, “Integrated Semantic—Syntactic Video
Modeling for Search and Browsing”, IEEE Transactions on Multimedia, Vol. 6, No. 6,
December 2004.

Hjelsvold R. and R. Midtstraum, “Modelling and Querying Video Data”, Proceedings
of the 20th International Conference on Very Large Databases, pp. 686-694, 1994.

Choi Y.I., Y.M. Park, H.S. Lee, and S.I. Jin, “An Integrated Data Model and a Query
Language for Content-Based Retrieval of Video”, Proceedings of the 4th International
Workshop on Advances in Multimedia Information Systems, pp. 192-198, September
1998.

Yazici A., Q. Zhu, and N. Sun, “Semantic Data Modeling of Spatiotemporal Database
Applications”, International Journal of Intelligent Systems, Vol. 16, No. 7, pp. 881-
904, 2001.

125

[10] Aygun R.S., A. Yazici, and N. Arica, “Conceptual Data Modeling of Multimedia
Database Applications”, “Proceedings of the 4th International Workshop on
Multimedia Database Management Systems, pp. 182-189, 1998.

[11] Aygun R. S., and A. Yazici, “Modeling and Management of Fuzzy Information in
Multimedia Database Applications”, Multimedia Tools and Applications, Vol. 24, No.
1, pp. 29-56, 2004.

[12] Nepal S., M.V. Ramakrishna, and J.A. Thom, “A Fuzzy Object Query Language
(FOQL) for Image Database”, Proceedings of Sixth International Conference on
Database Systems for Advanced Applications, pp. 117-124, 1999.

[13] Kopriilii M., N.K. Cicekli, A. Yazici, “Spatio-temporal Querying in Video Databases”,
Information Sciences 160(1-4), pp. 131-152, 2004.

[14] Yazici A., R. George, and D. Aksoy, “Design and Implementation Issues in the Fuzzy
Object-Oriented Data Model”, Information Sciences (Int. Journal), Vol. 108, No. 1-4,
pp. 241-260, July 1998.

[15] Yazici A, and A. Cinar, “Conceptual Design of Fuzzy Object-Oriented Databases”,
Proceedings of the 1998 Second International Conference on Knowledge-Based
Intelligent Electronic Systems, Vol. 2, pp. 299-305, 1998.

[16] Sicilia, M.A., E. Garcia, and J.A. Gutierrez, “Introducing Fuzziness in Existing
Orthogonal Persistence Interfaces and Systems”, In: Advances in Fuzzy Object-
Oriented Databases: Modeling and Applications, IDEA Group Publishing, 2004.

[17] Tusch R., H. Kosch, and L. Boszorményi, “VIDEX: An Integrated Generic Video
Indexing Approach”, Proceedings of the 8th ACM Multimedia Conference, Los
Angeles (USA), ACM Press, pp. 448-451, October-November 2000.

[18] Kosch H., L. B6szérményi, A. Bachlechner, B. Dorflinger, C. Hanin, C. Hofbauer, M.
Lang, C. Riedler, and R. Tusch, “SMOOTH - A Distributed Multimedia Database
System”, VLDB"2001 in Rome (Italy), pp. 713-714, 2001.

[19] Kosch H., L. Boszorményi, R. Tusch, A. Bachlechner, B. Dorflinger, C. Hofbauer,
and C. Riedler, “The SMOOTH Video DB - Demonstration of an Integrated Generic
Indexing Approach”, Proceedings of the 8th ACM Multimedia Conference, Los
Angeles (USA), ACM Press, pp. 495-496, October-November 2000.

[20] Boszorményi L., H. Hellwagner, and H. Kosch. “Multimedia Technologies for E-
Business Systems and Processes”, Proceedings of Elektronische Geschaftsprozesse (E-

126

Business Processes), pp. 471-481, Klagenfurt, Austria, IT Verlag fiir
Informationtechnik, September 2001.

[21] Mostefaoui A, L. Favory, and L. Brunie, “SIRSALE: A Large Scale Video Indexing
and Content-Based Retrieving System”, ACM Multimedia Conference, Juan les pins,
France, pp. 251-254, December 2002.

[22] Mostefaoui, A, “A Modular and Adaptive Framework for Large Scale Video Indexing
and Content-Based Retrieval: the SIRSALE System”, Software — Practice &
Experience, Vol. 36, No. 8, pp. 871-890, July 2006.

[23] Allen, J. F., “Maintaining Knowledge About Temporal Intervals”, Communications of
the ACM 26 (11), pp. 832-843, 1983.

[24] ISO/IEC Committee Draft 15 938-5 Information Technology-Multimedia Content
Description Interface: Multimedia Description Schemes,
ISO/IEC/TC1/SC29/WG11/N3966, March 2001.

[25] Rumbaugh J., M. Blaha, et al., Object-Oriented Modeling and Design, Prentice-hall,
NJ, 1991.

[26] Booch, G., J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, Reading MA, 1999.

[27]1 Bordogna G., G. Pasi, and D. Lucarella, “A Fuzzy Object-Oriented Data Model for
Managing Vague and Uncertain Information”, International Journal of Intelligent
Systems, Vol. 14, pp. 623-651, 1999.

[28] Ma Z. M., W.J. Zhang, W.Y. Ma, and Q. Chen, “Conceptual Design of Fuzzy Object-
Oriented Databases Using Extended Entity-Relationship Model”, International Journal
of Intelligent Systems, Vol. 16, pp. 697-711, 2001.

[29] Yazici, A., and R. George, Fuzzy Database Modeling, Physica-Verlag, NY, 1999.

[30] Koyuncu, M. and A. Yazici, “IFOOD:An Intelligent Fuzzy Object-Oriented Database
Architecture”, IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No.
5, pp. 1137-1154, 2003.

[31] Koyuncu, M., and A. Yazici, “A Fuzzy Knowledge-Based System for Intelligent
Retrieval”, IEEE Transactions on Fuzzy Systems, Vol. 13, pp. 317-330, 2005.

127

[32] Donderler, M.E., O. Ulusoy, and U. Gudukbay, ‘“Rule-Based Spatiotemporal Query
Processing for Video Databases”, The VLDB Journal, Vol. 13, No. 1, pp. 86-103,
2004.

331 Li, J.Z., MLT. Ozsu, and D. Szafron, “Spatial Reasoning Rules in Multimedia
Management Systems”, Proceedings of International Conference on Multimedia
Modeling, pp. 119-133, Toulouse, France, 1996.

[34] Donderler, M.E., O. Ulusoy, and U. Gudukbay, “A Rule-Based Video Database
System Architecture”, Information Sciences, Vol. 143, No. 1-4, pp. 13-45, 2002.

[35] Petkovic, M. and W. Jonker, “A Framework for Video Modelling”, Eighteenth
TIASTED International Conference Applied Informatics, Innsbruck, Austria, 2000.

[36] dbdo, Open Source Object Database, http://www.db4o.com, Last date accessed:
September, 2007.

[37] Jess, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/jess, Last
date accessed: September, 2007.

381 IBM MPEG-7 Annotation Tool, http://www.alphaworks.ibm.com/tech/videoannex,
Last date accessed: September, 2007.

[39] George R., F.E. Petry, and B.P. Buckles, “Modeling Class Hierarchies in the Fuzzy
Object Oriented Data Model”, Fuzzy Sets and Systems Vol. 60, No.3, pp. 259-272,
1993.

[40] Friedmann-Hill, Ernest, Jess In Action: Java Rule-Based Systems, Manning
Publications, 2003.

[41] Xerces2 Java Parser, http://xerces.apache.org/xerces2-j/, Last date accessed:
September, 2007.

[42] CLIPS (C Language Integrated Production System) Expert System Shell,
http://www.ghg.net/clips/CLIPS.html, Last date accessed: September, 2007.

[43] FuzzyCLIPS,
http://www.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/fuzzyCLIPSIndex2.html, Last date
accessed: September, 2007.

128

[44] NRC Fuzzyl] Toolkit & FuzzyJess,
http://www.iit.nrc.ca/IR _public/fuzzy/fuzzyJToolkit2.html,
Last date accessed: September, 2007.

[45] Java Media Framework API (JMF), http://java.sun.com/products/java-media/jmf/, Last
date accessed: September, 2007.

[46] Oztarak H., “Structural and Event Based Multimodal Video Data Modeling”, M.
Sc.Thesis, Department of Computer Engineering, METU, Ankara, Turkey, December
2005.

[471 Adali S., K.S. Candan, S.S. Chen, K. Erol, and V.S. Subrahmanian, "The Advanced
Video Information System: Data Structures and Query Processing”, Multimedia
Systems, Vol. 4, pp. 172-186, 1996.

[48] Hacid M.S., C. Decleir and J. Kouloumdjian, “A Database Approach for Modeling and
Querying Video Data”, IEEE Transactions on Knowledge and Data Engineering, Vol.
12, No. 5, pp. 729-750, 2000.

[49] Donderler ML.E., E. Saykol, U. Arslan, and O. Ulusoy, "BilVideo: Design and
Implementation of a Video Database Management System", Multimedia Tools and
Applications, Vol. 27, No. 1, pp. 79-104, September 2005.

[50] Oomoto E. and K. Tanaka, “OVID: Design and Implementation of a Video-Object
Database System”, IEEE Transactions on Knowledge and Data Engineering, Vol. 5,
No. 4, pp. 629-643, August 1993.

[51] Wang Y., C. Xing, and L. Zhou, “Video Semantic Models : Survey and Evaluation”,
International Journal of Computer Science and Network Security, Vol. 6, No. 2, pp.
10-20, 2006.

(521 Li J.Z., M.T. Ozsu, and D. Szafron, “Modeling of Moving Objects in a Video
Database”, Proceedings of IEEE International Conference on Multimedia Computing
and Systems, Ottawa, Canada, pp. 336-343, 1997.

[53]1 Van Gyseghem, N., R. De Caluwe, and R. Vandenberghe, “UFO:Uncertainty and
Fuzziness in an Object-Oriented Model”, Second IEEE International Conference on
Fuzzy Systems, Vol. 2, pp. 773-778, 1993.

[54] Yazici A. and M. Koyuncu, “Fuzzy Object-Oriented Database Modeling Coupled with
Fuzzy Logic”, Fuzzy Sets and Systems, Vol. 89, No. 1, pp. 1-26, July 1997.

129

[55] Koyuncu M., A. Yazici, and R. George, “Flexible Querying in an Intelligent Object-
Oriented Database Environment”, Proceedings of the Fourth International Conference
on Flexible Query Answering Systems, Warsaw, Poland, pp. 75-84, October 2000.

130

APPENDIX A

EXAMPLE JAVA CLASS DEFINITIONS

public class UT_fy

{
private HashMap fuzzyValue;

private Object crispValue;

}

public class UT_in

{
private Float valuel;
private Float value2;

}

public class UT_nu

{
private String nullValue;
private Object crispValue;

}

public class FuzzyDegree extends UT_fy
{
private static HashMap domain;
private static HashMap simMatrix;
private static String semantics;
private static String crispType;
private static HashMap membershipFunction;

public static class FuzzyTerms
{
public static String very high = "very high";
public static String high = "high";
public static String medium = "medium";
public static String Iow = "low";
public static String very low = "very low";
}
public static String getSemantics() {
return semantics;
}
public static HashMap getSimMatrix() {
return simMatrix;
}
}

public abstract class Fuzzy
{

131

private float objectMShip;
private float classSClassMShip;

public void setObjectMShip(float objectMShip) {
this.objectMShip = objectMShip;
}
public void calcMShip(HashMap fuzzyAttributes) {
this.setObjectMShip (FuzzyProcessor
. findObjectClassMembership(fuzzyAttributes));

public class Video extends Fuzzy
{
private String name;
private String rawData;
private String title;
private String date;
private UT_nu description;
private Arraylist structurelist;
private ArrayList objectList;
}

public class Object extends Fuzzy
{
private String objectName;
private UT_nu description;
private Region region;
private Video video;
private Frame frame;

public class Event extends Fuzzy

{
private String name;
private UT_fy when;
private double startTime;
private double endTime;
private Shot parentShot;
private Video video;

public class Actor

{
private String lingRole;
private String semRole;
private Event event;
private Object videoObject;
private Arraylist positionList;

}

public class Position

{
private double startTime;
private double endTime;
private Region region;
private Actor actor;

132

public class Foul extends Event
{
private FuzzyDegree harshness;
private boolean redCard;
private boolean yellowCard;
private String fieldPosition;
private static HashMap rangeHarshness;
private static float relevanceHarshness;

public static HashMap getRangeHarshness() {
return rangeHarshness;

}

public static float getRelevanceHarshness () {
return relevanceHarshness;

}

public static void setRanges()
{
rangeHarshness = new HashMap () ;
rangeHarshness.put (new Integer (0),
FuzzyDegree.FuzzyTerms.very high);
rangeHarshness.put (new Integer(1l),
FuzzyDegree.FuzzyTerms.high);
rangeHarshness.put (new Integer(2),
FuzzyDegree.FuzzyTerms.medium) ;

public static void setRelevances () {
relevanceHarshness = new Float (0.8).floatValue();

}

public void calcMShip()

{
UncertainAttribute atr = new UncertainAttribute();
atr.setAttributeRange (getRangeHarshness ()) ;
atr.setUtFyValue (harshness);
atr.setRelevance (getRelevanceHarshness()) ;
atr.setSemantics (FuzzyDegree.getSemantics());
atr.setSimMatrix (FuzzyDegree.getSimMatrix());

HashMap hashMap = new HashMap () ;

hashMap.put (new Integer (0), atr);

super.calcMShip (hashMap) ;

}

public class TalentedPlayer extends Player

{
private FuzzyDegree shotAccuracy;
private FuzzyDegree speed;
private FuzzyDegree ballControl;
private FuzzyDegree talent;
private static HashMap rangeShotAccuracy;
private static float relevanceShotAccuracy;
private static HashMap rangeSpeed;
private static float relevanceSpeed;
private static HashMap rangeBallControl;

133

private static float relevanceBallControl;

public static HashMap getRangeShotAccuracy () {
return rangeShotAccuracy;

}

public static float getRelevanceShotAccuracy () {
return relevanceShotAccuracy;

}

public static HashMap getRangeSpeed() {
return rangeSpeed;

}

public static float getRelevanceSpeed() {
return relevanceSpeed;

}

public static HashMap getRangeBallControl () {
return rangeBallControl;

}

public static float getRelevanceBallControl () {
return relevanceBallControl;

}

public static void setRanges()
{
rangeShotAccuracy = new HashMap () ;
rangeShotAccuracy.put (new Integer (0),
FuzzyDegree.FuzzyTerms.high);
rangeShotAccuracy.put (new Integer(1l),
FuzzyDegree.FuzzyTerms.very high);

rangeSpeed = new HashMap () ;

rangeSpeed.put (new Integer (0),
FuzzyDegree.FuzzyTerms.high);

rangeSpeed.put (new Integer(l),
FuzzyDegree.FuzzyTerms.very high);

rangeBallControl = new HashMap () ;

rangeBallControl.put (new Integer (0),
FuzzyDegree.FuzzyTerms.high);

rangeBallControl.put (new Integer(1l),
FuzzyDegree.FuzzyTerms.very high);

}

public static void setRelevances()

{
relevanceShotAccuracy = new Float (0.8).floatValue();
relevanceSpeed = new Float (0.7).floatValue();
relevanceBallControl = new Float (0.8).floatValue();

}

public void calcMShip()

{
HashMap hashMap = new HashMap() ;
UncertainAttribute atr = new UncertainAttribute();

134

atr.
atr.
atr.
atr.
atr.

setAttributeRange (getRangeShotAccuracy());
setUtFyValue (shotAccuracy) ;

setRelevance (getRelevanceShotAccuracy());
setSemantics (FuzzyDegree.getSemantics());
setSimMatrix (FuzzyDegree.getSimMatrix());

hashMap.put (new Integer (0), atr);

atr

atr.
atr.

atr

= new UncertainAttribute();
setAttributeRange (getRangeSpeed()) ;
setUtFyValue (speed) ;

.setRelevance (getRelevanceSpeed()) ;
atr.
atr.

setSemantics (FuzzyDegree.getSemantics());
setSimMatrix (FuzzyDegree.getSimMatrix());

hashMap.put (new Integer(l), atr);

atr

atr.
atr.
atr.
atr.
atr.

= new UncertainAttribute();
setAttributeRange (getRangeBallControl());
setUtFyValue (ballControl);

setRelevance (getRelevanceBallControl());
setSemantics (FuzzyDegree.getSemantics());
setSimMatrix (FuzzyDegree.getSimMatrix())

4

hashMap.put (new Integer (2), atr);
super.calcMShip (hashMap) ;

135

APPENDIX B

EXAMPLE RULES IN JESS LANGUAGE

Temporal Rules

(import videomodel.*)

(deftemplate Event (declare (from-class Event)))
(deftemplate EventToEventRelation (declare (from-class
EventToEventRelation)))

(defrule before
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT ?event2))
(test (and (neg ?pl ?p2) (< ?el 72s2)
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "before")))

(defrule meets
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT Zeventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT Zevent2))
(test (and (neqg ?pl ?p2) (= 2el ?s2)
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "meets")))

(defrule equal
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT ?event2))
(test (and (neqg ?pl ?p2) (and (= ?sl 7?s2) (= ?el 2e2))
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "equal")))

(defrule during
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT Zevent2))
(test (and (neg ?pl ?p2) (and (> ?sl ?2s2) (< 2el 2e2))
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "during")))

(defrule starts
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT Zeventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT ?event2))
(test (and (neqg ?pl ?p2) (and (= ?sl 7?s2) (< ?el 2e2))
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2 "starts")))

(defrule finishes
?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))

136

(OBJECT ?event2))
re2))

?p2 <- (Event (startTime ?s2) (endTime 7?e2)
(test (and (neqg ?pl ?p2) (and (> ?sl 7?s2) (= 7el
(eq (get 7eventl video) (get ?event2 video))))
=> (add (new EventToEventRelation ?eventl ?event2

(defrule overlaps

?pl <- (Event (startTime ?sl) (endTime ?el) (OBJECT ?eventl))
?p2 <- (Event (startTime ?s2) (endTime ?e2) (OBJECT ?event2))
(test (and (neqg ?pl ?p2) (and (< ?sl 7?s2) (> 2el 7?s2) (< zel
?e2))
(eq (get 7eventl video) (get ?event2 video))))

=> (add (new EventToEventRelation ?eventl ?event2 "overlaps")))
(defrule beforelInverse
?pl <- (EventToEventRelation (eventl ?el) (event2 ?e2)
(relationName "before"))

=> (add (new EventToEventRelation ?e2 ?el "beforelInverse")))
(defrule meetsInverse
?pl <- (EventToEventRelation (eventl ?el) (event2 ?e2)
(relationName "meets"))

=> (add (new EventToEventRelation ?e2 ?el "meetsInverse")))

(defrule equallnverse

?pl <- (EventToEventRelation (eventl Z2el)
(relationName "equal"))
=> (add (new EventToEventRelation ?e2

(defrule duringInverse

?pl <- (EventToEventRelation (eventl Z2el)
(relationName "during"))
=> (add (new EventToEventRelation ?e2

(defrule startsInverse

?pl <- (EventToEventRelation (eventl Z2el)
(relationName "starts"))
=> (add (new EventToEventRelation ?e2

(defrule finishesInverse

?pl <- (EventToEventRelation (eventl Z2el)
(relationName "finishes"))
=> (add (new EventToEventRelation ?e2

(defrule overlapsInverse

?pl <- (EventToEventRelation (eventl Z2el)
(relationName "overlaps"))

=> (add (new EventToEventRelation ?e2
Spatial Rules

(import bridge.*)
(import videomodel.*)

(deftemplate PositionFact (declare
(deftemplate PositionToPositionRelation

"finishes")))

(event2 ?e2)

?el "equallnverse")))

(event2 ?e2)

?el "duringInverse")))

(event2 ?e2)

?el "startsInverse")))

(event2 ?e2)

?el "finishesInverse")))

(event2 ?e2)

?el "overlapsInverse")))

(from-class PositionFact)))
(declare

(from—-class

PositionToPositionRelation)))

(deftemplate ActorToActorRelation

137

(declare

(from—-class

ActorToActorRelation)))

(defglobal ?*fp* = (new FuzzyProcessor))

(defrule during

?pl <- (PositionFact (startTime 7?startl) (endTime ?endl)
(startX ?sxl) (endX ?exl)
(startY 7?syl) (endY 7?eyl) (actor 7?al))
?p2 <- (PositionFact (startTime ?start2) (endTime ?end2)
(startX ?sx2) (endX ?ex2)
(

startY ?sy2) (endY Z?ey2) (actor ?a2))
(test (and (and (neqg ?pl ?p2)
(eq (get 7al event) (get ?7a2 event)) (neq ?al 7a2))
(and (> ?startl ?start?) (< ?endl ?end2))))

(bind ?startTimeResult

(intersectionStart ?startl ?start2 "during"))
(bind ?endTimeResult

(intersectionEnd ?endl ?end2 "during"))
(add (new PositionToPositionRelation

?startTimeResult ?endTimeResult

?sxl ?exl ?syl ?eyl ?7al 7?sx2 ?ex2 ?sy2 ey2 ?aZ2)

))

(defrule left

?pl <- (PositionToPositionRelation
(startTimeResult ?startTimeResult)
(endTimeResult ?endTimeResult)
(startXl ?sx1) (endXl ?exl)
(start¥l ?syl) (end¥Yl 2eyl)
(startX2 ?sx2) (endX2 ?ex2)
() (endY2 2ey2)

(actorl 2al)

start¥2 ?sy2 (actor2 2a2))

(test (or (< ?exl ?sx2) (= ?ex1l ?sx2)))

=>
(bind ?mShipDegree (call ?*fp* findSpatialMShipDegree
?sxl 7exl ?syl 2eyl
?sx2 ?7ex2 ?sy2 2ey2 "left"))

(add (new ActorToActorRelation
?startTimeResult ?endTimeResult
"left" 72al ?a2 ?mShipDegree)))

(defrule right

?pl <- (ActorToActorRelation
(startTimeResult ?startTimeResult)
(endTimeResult ?endTimeResult)
(relationName "left")
(actorl 2al) (actor2 ?a2)
(membershipDegree ?mShipDegree))

=> (add (new ActorToActorRelation

?startTimeResult ?endTimeResult
"right" 7a2 ?al ?mShipDegree)))

138

(defrule inside
?pl <- (PositionToPositionRelation
(startTimeResult ?startTimeResult)
(endTimeResult ?endTimeResult)
(startXl ?sx1) (endXl 7?exl)
(startYl ?syl) (end¥Yl ?eyl) (actorl 2al)
(startX2 ?sx2) (endX2 ?ex2)
(startY¥2 7?sy2) (end¥2 ?ey2) (actor2 ?az2))
(test (and (> ?sx1l ?sx2) (< ?exl ?2ex2)
(> ?syl ?sy2) (< 2eyl 2ey2)))

=> (add (new ActorToActorRelation
?startTimeResult ?endTimeResult
"inside" ?al ?a2)))

(defrule contain

?pl <- (ActorToActorRelation
(startTimeResult ?startTimeResult)
(endTimeResult ?endTimeResult)
(relationName "inside")
(actorl 2al) (actor2 2a2))

=> (add (new ActorToActorRelation
?startTimeResult ?endTimeResult
"contain" a2 ?al)))

Fuzzy Semantic Rules

(import footballdomain.?*)
(import bridge.*)

(deftemplate TalentedPlayer (declare (from-class TalentedPlayer)))
(deftemplate Result (declare (from-class Result)))

(defglobal ?*fp* = (new FuzzyProcessor))

(defrule findTalent
?0bj <- (TalentedPlayer
(shotAccuracy ?saé&:(and (neq ?sa nil)
(>= (call ?*fp* similarityMatch (create$
"very high") ?sa) 0.8)))
(speed ?spé&:(and (neqg ?sp nil)
(>= (call ?*fp* similarityMatch (create$
"very high" "high") ?sp) 0.7)))
(ballControl ?bcé&:(and (neq ?bc nil)
(>= (call ?*fp* similarityMatch (create$
"very high" "high") ?bc) 0.8)))
(talent ?talent)
(OBJECT ?tp)

(bind ?result (call ?*fp* ruleResult
(create$ "very high")
(create$

139

?*fp* similarityMatch (create$

(call
"very high") ?sa)

(call ?*fp* similarityMatch (create$
"very high" "high") ?sp)

(call ?*fp* similarityMatch (create$
"very high" "high") ?bc)

)

?talent

))
(if (= ?result "true") then (add (new Result ?tp)))

140

APPENDIX C

EXAMPLE OUTPUT OF IBM MPEG-7 ANNOTATION TOOL

<?xml version="1.0" encoding="iso-8859-1"7?>
<Mpeg7 xmlns="urn:mpeg:mpeg’:schema:2001"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"
xsi:schemalocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">
<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="VideoType">
<Video>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:00:0F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PTIN25F">88</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:01:18F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:03:17F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PTIN25F">287</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:09:10F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:15:11F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PTIN25F">68</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>

141

<MediaTime>
<MediaTimePoint>T00:00:16:19F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:18:11F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PT1IN25F">41</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:19:6F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:20:9F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PT1IN25F">53</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:21:10F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:22:19F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PT1N25F">8</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:22:22F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:23:9F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PT1N25F">23</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:23:20F25</MediaTimePoint>

142

</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:24:14F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PTIN25F">8</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:24:17F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:25:4F25</MediaTimePoint>
<MediaIncrDuration
mediaTimeUnit="PTIN25F">164</MedialncrDuration>
</MediaTime>
<TemporalDecomposition>
<VideoSegment>
<MediaTime>
<MediaTimePoint>T00:00:28:10F25</MediaTimePoint>
</MediaTime>
</VideoSegment>
</TemporalDecomposition>
</VideoSegment>
</TemporalDecomposition>
</Video>
</MultimediaContent>
</Description>
</Mpeg7>

143

