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ABSTRACT

THE BIOBJECTIVE TRAVELING SALESMAN PROBLEM
WITH PROFIT

Omiir, Simsek
M.S., Department of Industrial Engineering
Supervisor : Asst. Prof. Dr. Esra Karasakal

Co-Supervisor : Assoc. Prof. Dr. Haldun Siiral

September 07, 138 pages

The traveling salesman problem (TSP) is defined as: given a finite number of
cities along with the cost of travel between each pair of them, find the cheapest
way of visiting all the cities only once and returning to your starting city. Some
variants of TSP are proposed to visit cities depending on the profit gained when
the visit occurs. In literature, these kind of problems are named TSP with profit.
In TSP with profit, there are two conflicting objectives, one to collect profit and
the other to decrease traveling cost. In literature, TSP with profit are addressed as
single objective, either two objectives are combined linearly or one objective is
constrained with a specified bound. In this study, a multiobjective approach is
developed by combining e-constrained method and heuristics from the literature
in order to find the efficient frontier for the TSP with profit. The performance of
approach is tested on the problems studied in the literature. Also an interactive

software is developed based on the multiobjective approach.

Keywords: TSP with Profit, e-constrained method, Multiobjective Approach
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IKi AMACLI KAR GETIiREN GEZGIN SATICI PROBLEMIi

Omiir, Simsek
Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Yoneticisi : Yrd. Dog. Dr. Prof. Esra Karasakal
Ortak Tez Yoneticisi : Do¢. Dr. Haldun Siiral

Eyliil 07, 138 sayfa

Gezgin Satic1 Problemi (GSP) belirli sayida sehri en kisa sekilde dolasacak turun
bulunmasidir. Her yere gitmek yerine gidilecek sehirlerin elde edilecek kazanclara
gore secildigi literatiirde problemlere Kar getiren GSP (KGSP) denir. KGSP
probleminde, kazancin artirllmasi ve dolasilan mesafesinin kisaltilmasi olarak
tanimlanan iki amag¢ vardir. Literatirde KGSP’ler, iki amacin agirliklarla
birlestirilmesi ya da amaclardan birinin belirli bir simirla kisit olarak ifade
edilmesi suretiyle tek amagli problemler olarak ¢oziilmiistiir. Bu calismada KGSP
problemi iki amacgli bir problem olarak ele alinmis ve literatiirdeki sezgisel
yontemler, ¢ok amach bir yaklasim olan e-kisit yontemiyle birlestirilerek etkin
sinirin (efficient frontier) bulunmasi amaglanmistir. Bu yaklagimin performansi
literatiirdeki cesitli problemlerle test edilmistir. Ayn1 zamanda cok amaclh

yaklagimi temel alan kullanic etkilesimli bir yazilim hazirlanmistir.

Anahtar Kelimeler: Kar Getiren GSP, e- Kisit Yontemi, Cok Amacli Yaklasim
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CHAPTER 1

INTRODUCTION

Traveling Salesman Problem (TSP) is one of the most widely studied
combinatorial optimization problems. This has led to numerous extensions and
modifications of the basic TSP. In many studies, the number of cities is given and
every city has to be visited. This is, however, not always realistic. Consider the
example demonstrated in Figure 1, which shows 14-city problem and its optimum

TSP tour.

25

20

15 A

10

Figure 1. Example of a TSP route

Assume that every city has associated with some profit and a visiting cost is

charged when travelling between cities. Figure 1 shows that city 6 is quite isolated
1



from the rest of the cities. A decision whether city 6 should be included in or
excluded from the route could depend on the trade-off relationship between the

profit and the visiting cost associated with city 6.

The problem in which cities are selected to be visited depending on the profit
associated with them is called Traveling Salesman Problem with Profit (TSP with
profit). TSP with profit is encountered in many different situations. For instance,
it may not be possible to visit every city in a TSP application. In this kind of
application some constraints can enforce selection of cities to be visited. Gensch
(1978) and Pekny et al. (1990) studied such problems in steel and chemical
industry, respectively. Balas and Martin (1985) introduce the scheduling of daily
operations of a steel rolling mill, which is an application of TSP with profit. This
problem gives rise to a Prize Collecting Traveling Salesman Problem (Prize

Collecting TSP) with penalty terms in the objective function.

Orienteering game is another application of TSP with profit. It is introduced by
Tsiligirides (1984). In orienteering, competitors start from a control point and
have to reach another control point within a prescribed time limit. The aim is
collecting as many points as possible within the time limit. Since it is not possible
to visit all the points, a selection of points to be visited has to be done. The
optimal route, which maximizes the points collected, is obtained by solving the

Orienteering Problem (OP).

Some other applications of TSP with profit can also be encountered in the
literature. Ramesh and Brown (1991) propose an application in control theory.
Fischetti and Toth (1988) notice that TSP with profit arises when a factory needs a
given amount of product, which can be provided by a set of suppliers with given

amounts and costs.

TSP with profit sometimes appears as subproblems in solution procedures devoted

to the different kinds of complex problems. Gothe-Lundgren et al. (1995, 1996)

2



address such subproblems in the context of vehicle routing cost allocation
problems. Noon et al. (1994) propose a heuristic procedure for the solution of

VRP, based on the iterative solution of TSP with profit.

There are varieties of TSP with profit. The two most studied problems among
them are: (i) Selective TSP (or Orienteering), (ii) Prize Collecting TSP. These
problems can be considered as the dual of each other. It can easily be recognized
that it is actually a biobjective problem where one objective is maximizing the
profit to be collected by visiting as many cities as possible, and the other objective
is keeping the visiting costs at minimum. If two objectives can be defined in
commensurable terms, then they can be combined in a single objective function
and can be solved as a single objective problem. Yet, in many cases (e.g. one
objective is maximizing the profit but the other objective is minimizing time) it is
not possible to combine two objectives. Then, a study of the trade-off relation

between two objectives may be of interest.

In literature, TSP with profit is studied as a single objective problem. The only
attempt to solve TSP with profit as a biobjective problem is done by Keller and
Goodchild (1988). The main difference of biobjective approach compared to a
single objective approach is finding not only one, but Pareto optimal solutions. By
finding more solutions, the trade-off among them can be analyzed to make better
decision. The purpose of this study is to develop a multiobjective approach for the

biobjective TSP with profit in order to obtain the Pareto optimal solutions.

The organization of the thesis is as follows: In Chapter 2, the formal definition of
the problem is presented and the mathematical representation of the problem is
given. A brief review of the related literature is presented in Chapter 3. The
related studies are classified according to solution approaches. The solution
approach is discussed in Chapter 4. e-constrained method is presented in detail
after discussing the properties of Pareto optimal solutions. In Chapter 5, the

analysis methods for the Pareto optimal solutions are discussed. In Chapter 6, the

3



performance of the e-constrained method and the results of extensive
computational experiment are presented. Chapter 7 describes the interactive
software developed for the biobjective TSP with profit. Finally, the thesis is

concluded with possible future research directions.



CHAPTER 2

PROBLEM DEFINITION AND MODEL

In this chapter, a formal presentation of TSP with profit is provided and the
mathematical model of the problem is presented. In section 2.1 the definition of
the problem is given and the mathematical model of the problem is given in

section 2.2.

2.1 TSP with Profit

TSP is finding the shortest route for a given number of cities. It is one of the most
widely studied combinatorial optimization problems (Guttin and Punnen 2002;
Toth and Vigo 2001). The main characteristics of TSP are that every city has to be
visited and no profit is associated to the cities. In Figure 2 a sample of TSP
solution is given. In this figure, the problem has 33 cities and the optimal solution

that visits each city once is shown.

A variant of TSP where a profit value is associated to each city and cities are
selected depending on their profit are proposed in the literature. Feillet et al.

(2005) define these kinds of problems as TSP with profit.

TSP with profit is actually a multiobjective problem with two conflicting
objectives, one is to collect the maximal profit and the other is to minimize the
travel cost. As a multiobjective problem, solving TSP with profit should result
non-dominated solution set, a set of feasible solutions such that neither objective

can be improved without deteriorating the other (Feillet et al. 2005).
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Figure 2. Illustration of TSP solution

2.2  Mathematical Formulation

In this section, integer model for TSP with profit and its variants are given. The

indices, parameters and decision variables for the problem are given below.

Indices

i, j : city indices, 1, ..., n

Parameters

cij - the cost of visiting city j after city i

p; : the profit that is associated to city i



Decision Variables
x;j = 1if city j is visited after city i, 0 otherwise
y; = 1if city i is visited, O otherwise

The mathematical model of TSP with profit is

Max Z piVi (2.1)
i

U |

subject to
inj = Vi Vi (2.3)
j#i
zxij = vj (2.4)
i#)
sub — route elimination constraints (2.5)
x; € {0,1} y; € {0,1} (2.6)

The first objective function of the model expressed in (2.1) is the sum of the
profits collected from the cities that belong to the solution route. The second
objective function of the model expressed in (2.2) is the total route cost.
Constraint set (2.3) ensures that if city i is visited then another city has to be

visited after city i. Constraint set (2.4) guarantees that if city j is visited then

7



another city has to be visited before city j. Both constraint sets (2.3) and (2.4)
ensure that if city i is arrived, then it must be leaved. Constraint set (2.5) is the set
of sub-route elimination constraints that guarantees single tour along the all cities

visited. Finally, constraint set (2.6) sets up the binary restrictions for x;; and y;

variables.

In most of the research on TSP with profit, the problem is studied as a single
objective problem, either it is maximizing the profit and the route cost is
constrained by an upper bound or it is minimizing the route cost and the route

profit is constrained by a lower bound.
The single objective variant of TSP with profit in which the objective is

maximizing the profit is called Selective Traveling Salesman Problem (Selective

TSP). The mathematical formulation of Selective TSP is given below
Max Z DiYi (27)
i

subject to

ZZ Cl'jxi]' <C (28)
i J

and (2.3) — (2.6)

On the other hand, the single objective variant of TSP with profit in which the
objective is minimizing the route cost is called Prize Collecting Traveling
Salesman Problem (Prize Collecting TSP). The mathematical formulation of Prize

Collecting TSP is given below



Min Z Z Cijxl']' (29)
i J

subject to
> b 2P (2.10)
i

and (2.3) — (2.6)

Intuitively, the biobjective TSP with profit is NP-hard, because TSP is NP-hard
and a TSP instance can be stated as a TSP with profit instance by defining very

large profits on vertices, therefore it is also NP-hard.

To compute all the solutions in the solution space one has to solve O many TSPs

where
n
0= Z Com(n,i) n = number of cities
i=0

To better understanding, letn = 10. In Table 1, for eachi, combination of
nand i, Com(n,i), is calculated. As seen for n = 10, one has to solve 1024 TSPs

to find all the solutions in the solution spaces. In Table 2, O is given for various n.

Suppose TSP can be solved in one operation and the computer can make
5,000,000 operations in a second. Forn =100, it will take
2,53530120045646E+23 seconds or 4,22550200076077E+21 minutes or
70,425,033,346,012,800,000 hours or 2,934,376,389,417,200,000 days or
8,039,387,368,266,300 years.



Table 1. Number of TSPs for n =10

i Com(n,i)
1

10
45
120
210
252
210
120
45
10

O [0 ||\ [N [ |WI|N (=[O

—_
=)
—_

0 1024

Table 2. Number of TSPs for various n

n 0
10 1024
20| 1048555
50| 1.13E+15
100 | 1.27E+30

Studies of TSP with profit and its single objective variants are discussed in

Chapter 3.
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CHAPTER 3

LITERATURE REVIEW

The traveling salesman problem is defined as: given a finite number of cities
along with the cost of travel between each pair of them, find the cheapest way of
visiting all the cities only once and returning to your starting city. The problem
can be defined on an undirected complete graph G = (V, E), where V represents
the nodes located at the city points and the starting city, and E represents the
edges between the nodes. For every edge {i, j} € E, there is a cost ¢;; associated
with it. We refer to the books of Gutin and Punnen (2002) and Lawyer et al.
(1985) for TSP literature.

This chapter, focusing on the well known variants of TSP, Prize Collecting TSP
and Orienteering Problem (Selective TSP), provides a literature survey of solution
approaches. These problems can be considered as the dual of each other. When we
consider them it can easily be recognized that the problem is actually biobjective
problem where the one objective is maximizing the profit to be collected by
visiting as many cities as possible, and the other objective is keeping cost to a

minimum.

In section 2.1, Selective TSP and Orienteering Problem literatures are presented
since Orienteering Problem is a special case of Selective TSP and it is more
widely studied. In section 2.2, Prize Collecting TSP literature is presented.
Finally, the only approach for the biobjective TSP with profit is presented in

section 2.3.
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3.1 Selective TSP

There has been work on exact methods. Laporte and Martello (1990) present a
branch-and-bound scheme with linear programming (LP) relaxation. They solve
the problem where 0-1 constraints are relaxed, through linear programming and
the violated conditions are gradually solved through a branch-and-bound process.
Leifer and Rosenwein (1993) relax the 0-1 constraints and drop the connectivity
constraints. Thereafter, certain valid inequalities are added to the model. After
solving the LP relaxation, a cutting plane algorithm is added and the LP is solved
again. Fischetti et al. (1998) and Gendreau et al. (1998a) quickly tighten the
bounds with valid inequalities all along the search tree (in branch and cut
procedures). Ramesh et al. (1992) use Lagrange relaxation along with
improvement procedures within a branch and bound method. Gendreau et al.
(1998b) extend it to the insertion of clusters. Although these approaches have
yielded solutions to smaller sized problems, as in other NP-hard problems, the
computational limitations of exact algorithms encourage the exploration of

heuristic procedures.

The first heuristics, the S-algorithm and the D-algorithm, were proposed by
Tsiligirides (1984). In the S-algorithm, Tsiligirides defines a new term,
desirability measure. Points are added to the path depending on this desirability
measure. In the D-algorithm, Tsiligirides divides the area into sectors and routes
are built up within the sector. In these papers, Tsiligirides also devises the most

well known test problems for the OP, which has 21, 32 and 33 cities.

Golden, Levy and Vohra (1987) propose a procedure with three steps: path
construction using a greedy method, path improvement and center of gravity
which guides the next search step. Golden, Wang, and Liu (1988) incorporate the
center of gravity idea and desirability concepts, along with the learning

capabilities. An artificial neural network approach is proposed by Wang et al.
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(1995). Ramesh and Brown (1991) propose a four-phase heuristic consists of node

insertion, cost improvement, node deletion and maximal insertions.

Chao, et al. (1996) introduce a two-step heuristic to solve the OP. In the first step,
initialization, by using the starting and ending nodes as the two foci of an ellipse
and the route cost constraint as the length of the major axis, several routes are
generated and the one with the highest score is the initial solution. The initial
route is then improved by a 2-node exchange in the cheapest-cost way, and then
improved by a 1-node improvement that tries to increase the total score. They
apply this algorithm to Tsiligirides (1984) problems and 40 new test problems.
The authors also point out a mistake in Tsiligirides data set and suggest the

correction.

Tasgetiren and Smith (2000) propose a genetic algorithm (GA) to solve the
orienteering problem. Four test sets, the three originally from Tsiligirides (1984)
and the one corrected by Chao, et al. (1996), are used. Tasgetiren results are
competitive to the best known heuristics, though the computational time is
relatively high. Liang and Smith (2001) recently proposed a standard ant colony
algorithm, hybridized with local search, for the OP. They apply this algorithm to
Tsiligirides (1984) problems and the one corrected by Chao, et al. (1996). Their

results are competitive to the best known heuristics, too.

3.2  Prize Collecting TSP

“PCTSP was introduced by Balas and Martin (1985) as a model for scheduling
the daily operations of a steel rolling mill and the same optimization problem was
successively addressed by Balas and Martin (1991). Also, structural properties of
the PCTSP related to the TSP polytope and to the knapsack polytope were
presented by Balas (1989) and Balas (1995).” (Dell’ Amico et al. 1998)
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Fischetti and Toth (1988) use a Lagrangian relaxation for the generalized covering
constraint and solve assignment problem which is resulted by a subtour relaxation.
The solution of this assignment problem provides a bound. Dell’Amico et al.
(1995) also uses bounding procedure based on different relaxation. Bienstock et
al. (1993) studied undirected Prize Collecting TSP. They use linear programming
relaxation. Goemans and Williamson (1995) improve the above algorithm. Géthe-
Lundgren et al. (1995) propose another approach based on Lagrangian
decomposition to obtain a bound. Balas (1999) introduces ordering constraints for
which the PCTSP becomes polynomially solvable. In the same way, Kabadi and
Punnen (1996) extend results on polynomially solvable cases of the TSP to the
PCTSP.

Dell’ Amico et al. (1998) present two heuristic procedures for the PCTSP. In the
first one, the Lagrangian relaxation is used for route construction. Insertion is then
used to attain feasibility of the route. Afterward, extension and collapse are
applied iteratively to improve the route. Extension applies insertion as long as
insertions are over a computed average ratio. Collapse carries out the replacement
of a chain by a single vertex. The second heuristic uses the same components, but

in a different order.

3.3 The Biobjective TSP with Profit

The only study for the biobjective TSP with profit is Keller and Goodchild (1988).
They uses Tsiligirides’ (1984) algorithm for the multi-objective vending problem
(MVP) to solve the OP. A path construction phase uses a measure identical to that
of the S-algorithm. This is followed by a three step improvement phase that uses
node insertion and identification of node clusters. They used 25 cities located in
West Germany. Bonn was used as the depot and terminal node. The populations

of cities were treated as profit associated with each city.
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CHAPTER 4

PROPOSED MULTIOBJECTIVE APPROACH

As mentioned earlier there are numerous studies that address TSP with profit as a
single objective problem, either the two objectives are weighted and combined
linearly, or one of the objectives is constrained with a specified bound value. The
only attempt to solve the true multiobjective problem is Keller and Goodchild
(1988). In this chapter, a new multiobjective approach is presented to solve the

biobjective TSP with profit.

TSP with profit is studied as Selective TSP or Prize Collecting TSP in the
literature. A multiobjective approach, which scalarized the TSP with profit, can be
easily used since Selective TSP and Prize Collecting TSP are scalarized TSP with
profit and there are numerous studies about them. g-constraint method, which is a
multiobjective solution approach based on scalarization, where one of the
objective functions is minimized while all other objective functions are bounded
by means of additional constraints, is selected in this research. In section 3.1 some
definitions and notations are given. e-constraint method and adaptation of -
constraint method to the biobjective TSP with profit that generates two new
subproblems are discussed in sections 3.2 and 3.3. Finally, the heuristic approach
used to solve generated subproblems and the entire proposed method are

presented in section 3.4.
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4.1 Definitions and Notations

Multi-objective Optimization, multi-criteria optimization, vector optimization, or
multi-criteria decision making is an optimization with regard to multiple objective

functions, aiming at a simultaneous improvement of the objectives.

Let R™ and R™ be vector spaces referred to as the decision space and the objective
space. Let X < R™ be a non-empty and compact feasible set and let f be a vector
valued objective function f : R™ — R™ composed of m real-valued continuous
objective functions, f = (fy, ..., ), Where fi, : R™ > R for k =1,..,m. A

multi-objective problem (MOP) can be modeled as

min(f; (x), ..., fn () (4.1)
subject to

x €EX (4.2)

For MOP only minimization term is used for the objectives, because max f(x)

can be easily converted to min —f(x).

It is usually assumed that X is given implicitly in the form of constraints, i.e.,
X: {x € R": gij(x) <0,j=1,...,; hj(x) =0,j = 1,...,m}. The set of all
attainable points or objective vectors for all feasible solutions x € X in the

objective space is defined as Y := f(X) < R™ (Ehrgott and Ruzika, 2005).
A continuous sample problem is illustrated. Let R? be euclidean vector space

referred to as the decision space and the objective space. Let X € R? and

bounded by
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3%, + x, = 12

X+ 3x, = 12

x1+ Xy =9

Let f = (fy, f2) where fi(x) = x; and f,(x) = x,.

This simple MOP ($3.7) can be modeled as

min x4

min X,

subject to

3x;+ x, = 12 (4.3)
X, + 3x, = 12 (4.4)
X1+ xo =9 (45)

This problem is referred as S3./. The decision space and the objective space are
illustrated in Figure 3 and Figure 4, respectively. The decision space is bounded
by equations 3.3, 3.4 and 3.5. The bound between (0, 12) and (1.5, 7.5) is
generated by equation 3. The bound between (1.5, 7.5) and (7.5, 1.5) is generated
by equation 5 and the bound between (7.5, 1.5) and (12, 0) is generated by

equation 4.
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Decision Space

K2

x1

Figure 3. Illustration of decision space for the sample MOP

Objective Space

14
12
10

[ R

o]

f1

Figure 4. Illustration of objective space for the sample MOP

For S3.1, it can easily seen that the decision space and the objective space have

same points and the bounds of decision space are also the bounds of objective
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space, since f;(x) = x; and f,(x) = x,. But this is not the case for most of the

MOPs and it is hard to find the bounds for the objective space.

The objective functions are usually conflicting in MOPs. As the objective function
contradicts, no point can be optimal for all m objective functions simultaneously.
Thus the optimality concept used in scalar optimization must be replaced by a

new one, called Pareto Optimality.

Pareto Optimality is an optimality criterion for MOPs. A solution x? is said to be
Pareto optimal, if there is no other solution x? dominating the solution x® with
respect to a set of objective functions. A solution x* dominates a solution x?, if x2

b

is better than x° in at least one objective function and not worse with respect to

all other objective functions.

x® € X is Pareto optimal if and only if there exists no x” € X such that f; (x?) <

fi (x®) forall k = 1, ...,m with f, (x?) < f,(x%) for at least one k.

x* € X dominates x? € X if and only if f,(x%) < fi(x?) forall k =1,..,m

with f,(x%) < fi(xP) for at least one k.

Table 3. Sample solution set for S3.1

X1 X2 fi(x) f2(x)
x?t 12 0 12 0
x? 11 6 11 6
x? 7.5 1.5 7.5 1.5
x* 6 6 6 6
x5 45 45 45 45
x° 2 8 2 8
x7 15 75 15 75
x® 0 12 0 12
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For the sample solution given in Table 3, dominations and Pareto optimality is

explained below.

x3 dominates x? since 7.5 < 11 and 1.5 < 6.

x* dominates x2 since 6 = 6 and 6 < 11.

x° dominates x* since 4.5 < 6 and 4.5 < 6.

x° also dominates x2.

x”7 dominates x° since 1.5 < 2 and 7.5 < 8.

x! is also Pareto optimal, since there is no solution that dominates xt.

4

For the sample solution set, solutions x%, x* and x® are dominated by

solutions x3, x> and x7, respectively. Solutions x*, x3, x>, x” and x® are Pareto
optimal, since there is no solution that dominates these solutions. Pareto optimal

solutions and dominated solutions are illustrated in Figure 5.

In the literature other terms have also been used instead of Pareto optimal,
including non-dominated, non-inferior, efficient, functional-efficient and EP-

optimal (Edgeworth-Pareto optimal) solutions.

The set of solutions satisfying the criterion of Pareto optimality is called Pareto
Set, or Pareto front or efficient frontier. In S3.1, the set of solutions x*, x3, x>, x”
and x® is called Pareto set, since they are Pareto optimal solutions. Since the
decision space for S3.1 is continuous the Pareto set is continuous for S3.1. In
Figure 6, the line that connects solutions x*, x3, x°, x” and x® contains all the

Pareto optimal solutions.
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14

12 ® 0;12

10 -

2;8/ Dominated solutions
8 - o

A ./ /
611 1575 ;6 11; 6
4 4 / 4’5;4’5

2 Pareto optimal solutions [»® 7.5:1.5
0 2 4 6 8 10 12 14

f1

Figure 5. The illustration of sample solutions for S3.1

The exact number of Pareto optimal solutions depends on the type of the decision
space. If the decision space is continuous, the number of Pareto optimal solutions
is mostly infinite. If it is discrete, the number of Pareto optimal solutions is mostly

finite.

14

12 40512

Pareto Set

Figure 6. Continuous Pareto set for S3.1

21



For a discrete decision space Pareto set may be illustrated as in Figure 7.

100
90
80
70
60

40
30
20
10

°
°e
...
% ¢n
® e

0 20 40 60 80

f1

100

Figure 7. Illustration of discrete Pareto set

4.2 g-constraint Method

The e-constraint method is a multi-objective optimization technique, proposed by
Haimes et al. (1983), for generating Pareto optimal solutions. It is based on a
scalarization where one of the objective functions is choosen as a scalar objective
to be minimized and other objective functions are transformed into constraints.

For transforming the multi-objective problem into several single-objective

problems with constraints, it uses the following procedure.

min fj, (x)

subject to
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filx) < & i #k (4.7)

x €EX

In equation (4.6), objective function f (x) is choosen to be minimized and other
objective functions f;(x) i # k are constrained by upper bounds e = (g, ...,
€k—1) Ek+1 - Em) 1IN equation (4.7). The vector of upper bounds, e =
(&1) s €k—1)Ek41 +» Em), defines the maximum value that each objective can
have. In order to obtain a subset of the Pareto optimal set (or even the entire set, in
case this set is finite), one must vary the vector of upper bounds along the efficient
frontier for each objective, and perform a new optimization process for each new

vector.

An implementation of e-constraint method for S3.1 can be modeled in two
different ways since it is a bicriteria problem. Either f;(x) = x; or f5(x) = x; is
choosen to be minimized and f,(x) = x, or f;(x) = x; is constrained,

respectively.

In the first model f;(x) = x; is choosen to be minimized and f,(x) = x, is

choosen to be minimized in the second model.

Let say $3.1.1 as it is the first single objective version of S3.1.

min x4

subject to
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X1+ 3x, = 12
X1+ x, =29
Let say $3.1.2 as it is the second single objective version of S3.1.
min x,
subject to
x; < Eli
3x;+ x, = 12
X, + 3x, = 12
X1+ xp =29
For a sample s% = {12,10,8,6,4,2,0} where eé = szi_l — 2 and &} =12
fori =1,...,7, the solution procedure for S3.1.1 starts by solving the model
by ] =12,
min x4
subject to
X, < 12
3x; + x, = 12

X+ 3x, = 12
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The solution of this problem is (0, 12). The next step is updating the model

with
is no feasible solution or all models of

founded by

and solving the new model. This continues in this manner until there

are solved. The Pareto optimal solutions

are illustrated in Figure 8.

14,0

12,0

10,0 —@

8,0

6,0

4,0

2,0

0,0 . T

0,0

Figure 8. Pareto optimal solutions

of S3.1.1 found by &-constraint method

Exact algorithms, heuristics, or meta-heuristics could be used to solve single

objective problems generated by e-constraint method (e-MOP). The solution

method used for e-MOP could generate dominated solutions, as it improves not all

objectives, only the scalar objective. To eliminate these dominated solutions, &-

constraint method has to be modified.

There are two possible modification ways

(it is assumed that all the objective functions are minimization):

L

For example, if m=2, one additional scalar problem must be solved to

weep out a possible weak solution that is not Pareto optimal. Here the
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earlier constrained objective is put into the objective function and the
former objective function is removed to form an equality constraint where
the allowable limit is the optimum solution of the first problem.

ii.  The constrained objectives are added to the scalar objective by a set of
appropriate weights. The objective function equals to the sum of k"

objective function and the negative weighted constrained objectives.

The first modification needs more computations as there are subproblems needed
to solve. The second modification is choosen in order to eliminate dominated
solution in our implementation. The e-constraint method algorithm is given in

Figure 9.

Step 1. Set Pareto Set =0, =0

Step 2. Choose the k" objective, f; (x), to be minimized,

Step 3. Initialize € = (&1, ., Ex—1, Ek41 -» Em)

Step 4. Constrain objectives f;(x) i # k by using upper bounds &

Step 5. Solve e-MOP

Step 6. Set S; = solution of e-MOP. If there is no feasible solution, then stop
Step 7. Set S; € Pareto Set

Step 8. Setl =1+1

Step 9. Update ¢, return Step 4

Figure 9. e-constraint method algorithm
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4.3 Adaptation of e-constraint Method

Implementation of the e-constrained method to the biobjective TSP with profit

arises two different problems depending on the main single objective:

e The objective is increasing the profit while the route cost is upper bounded

as an additional constraint

e The objective is decreasing the route cost while the profit is lower

bounded as an additional constraint

The first problem is known as STSP, or Orienteering Problem, as discussed

earlier. The e-constrained problem (it is referred as €-BTSP with profit My s

modeled as

e-BTSP with profit "

Max Zpi%’ - 9122%’%‘;’
i T

subject to
k
¥ Sem <
i j
inj = Vi Vi
j#i
zxij =Y vj
i#)

sub — route elimination constraints
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Objective function (4.8) maximizes the sum of total profit and negative weighted

route cost. Equation (4.9) ensures that the route cost is upper bounded by &¥.

The second problem is known as PCTSP as discussed earlier. The e-constrained

problem (it is referred as e-BTSP with profit )y is modeled as

e-BTSP with profit ®

Min Z Z Cijxl']' + 62 Z PiYi (414‘)
i i

subject to

zmyi > &5 (4.15)

i

(4.10) — (4.13)

Objective function (4.14) minimizes the sum of route cost and weighted total

profit. Equation (4.15) ensures that the total profit is lower bounded by &¥.

As mentioned earlier there are solution methods for both of the single objective
problems in the literature. This means that one can implement &-constrained
method for both of the problems. Considering that STSP is more widely studied
than PCTSP in the literature, we choose to solve e-BTSP with profit ' in this

study.

In e-BTSP with profit ", 6; has to guarantee that the optimal solution to the &-

BTSP with profit(l) is the solution with the highest profit and with the least route
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cost if there exist any other solutions with the highest profit. Let Cp,qy =
max{cij}, Cnin = min{cij} and TMAXy =n X Cpgy- It is natural that Cp,;;, is
the lower bound and TMAX|, is the upper bound for the route cost. Let P; be the

maximum profit gained for the e-BTSP with an upper bound TMAX,. Let
TMAX, = TMAX, > TMAX,.

P, — 0, x TMAX, > P, — 6, x TMAX, (4.16)
0, < TMAX,/TMAX,

Let f,(P;,TMAX,) be the solution with profit P, and cost TMAX, and
f1(P;,TMAX,) be the solution with profit P; and cost TMAX;. Expression (4.16)
implies that f,(P;, TMAX,) dominates f; (P;, TMAX,). Then the solution of the &-
BTSP has to be f,(P;,TMAX,) which means that the objective function value of
fo(P;,TMAX,) would be higher than the objective function value of
fi(P;,TMAX,) as written in equation (4.16). If0; < TMAX,;/TMAX,, it is
guaranteed that among the solutions with the same profit, the solution with the

least route cost is chosen.

On the other hand, 6; also has to satisfy that the solution with the highest profit is
choosen instead of the solution with the lower profit but also the lower route cost.
Let P, be the profit gained for Pareto optimal solution where the route cost is
TMAX, and P, — h, where h is a integer small number (Let h = 1), be the profit

for the solution with the lower route cost, Cy,,;,,- €1 also satisfies equation (4.17)
P,— 6, Xx TMAXy = P,— h— 6; X Cpin (4.17)

01 < h/(TMAXO - Cmin)
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Lower and upper bounds used in equation (4.17) to obtain 6, that guarantee for
any route cost, the solution with the highest profit is chosen. Since 1/TMAX, <
h/(TMAXy, — Cpnin), 61 = 1/TMAX, could be used.

In e-BTSP with profit M there is only one constrained objective, upper bounded
by ef = ef"1 — & For k = 0, &) = TMAX, since TMAX, is the upper bound for
route cost, there is no route whose cost higher than TMAX,. Since s{’ is obtained,
one can calculate other e¥ where k = 1, ..., K depending on ¢. There is no way to
obtain a value of € such that every Pareto optimal solutions are found. In this

study € = 0.0001 is choosen.

The e-constraint method algorithm for the biobjective TSP with Profit is given in

Figure 10.

The performance of the e-constraint method depends on the method used to solve
the e-MOP (e-BTSP in this study). The e-constraint method only guarantees to
obtain exact Pareto optimal solutions if the solution methodology of &-BTSP
(SMe-BTSP) can find the global optimum of the e-constraint problem. Otherwise,
Pareto optimal solutions found by e-constraint method are near Pareto optimal
solutions. Also, the number of Pareto optimal solutions depends on not only €, but
on SMe-BTSP. In literature, there are good SMe-BTSPs for e-BTSP. The best
SMe-BTSPs are of Ramesh and Brown (1991), Chao et al. (1996a), Golden et al.
(1988) and Wang et al. (1995) as discussed in Chapter 3.

CGW heuristic is developed by Chao et al. (1996a) and it is simple, fast, and
effective heuristic. The results of CGW heuristic are the best results obtained so
far in the literature (Tasgetiren and Smith, 2000). Therefore, CGW heuristic is
used as SMe-BTSP for e-BTSP in this study.
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Step 1. Set Pareto Set =0, =0

Step 2. Define C,q, and set TMAXy =n X Cpax

Step 3. Set 6, = 1/TMAX, ,e® = TMAX,, ¢ = 0.0001

Step 4. Set objective function as ¥; p;y; — 601 X; 2. CijXij

Step 5. Add X; X cijx;; < e! as a constraint to form e-BTSP with profit "
Step 6. Solve eéBTSP with profit "

Step 7. Set S; = solution of ¢BTSP with profit I there is no feasible

solution, then stop
Step 8. Set S; € Pareto Set
Step9.Setl =1+1

-1

Step 10.Calculate &} = &=t — ¢, return Step 5

Figure 10. &-constraint method algorithm for e-BTSP with profit "

4.4 CGW Heuristic Method

CGW heuristic basically consists of initialization and improvement steps. In the
initilization step, L solutions are generated by a greedy method. In the
improvement step, first, two-point exchange is applied to the initial solution on a

record-to-record improvement basis. Then one point movement is applied to the
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current solution generated by two-point exchange procedure. Finally, 2-opt
procedure is applied to the current solution to decrease the length of the current
solution (Taggetiren et al., 2002). This procedure is repeated until M loops. At the
end of M loops reinitialization step is applied. The loop that contains M loops and
reinitialization step is repeated until K loops. The best tour found so far is the

result of the heuristic.

In sections 4.4.1 and 4.4.2, set-up process and initilization of the heuristic in
which paths constructions are done in a greedy way are discussed. In sections,
443, 444 and 4.4.5, improvement steps, two-point exchange, one point
movement, and 2-opt are described, respectively. Finally, re-initialization step is

discussed in section 4.4.6.

4.4.1 Set - Up Process of CGW

Let n be the number of cities for a given problem instance and c, be starting city
and c,_; be ending city. Let T,,,, be the upper bound for the constrained
objective function, };; ,; ¢;;jx;; and d(i,j) be the distance between cities i and j,
¢; and ¢;. The procedure is initialized by calculating the sum of distances of the

city i to ¢y and ¢,,_q, d;, foralli # 0,n — 1, where

d; = d(i,0) + d(i,n—1)

Cities where d; < Tpqy for all i # 0,n—1 are used for the next steps of

heuristic and cities where d; > Ty, foralli # 0,n — 1 are eliminated.

In other words, if ¢, # c,_1, an ellipse is constructed over the entire set of cities
by using starting and ending cities as the foci of the ellipse and the upper bound
Tinax as the length of the major axis, as seen in Figure 11. If ¢; = ¢,_4, a circle
is constructed over the entire set of cities by using starting (ending) city as the

center of the circle and the upper bound T,,,, as the diameter of the circle, as seen
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in Figure 12. Only the cities that are within the ellipse (or circle) are considered

for generating the routes.

A cityt outside the ellipse

Starting city Ending city

L+ 1= Thax

Figure 11. Illustration of set-up process of CGW heuristic by ellipse

A city outside the ellipse

. Starting and Ending city

Figure 12. lustration of set-up process of CGW heuristic by circle
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4.4.2 Initialization

Let F, be the set of cities where d; < Ty, foralli # 0,n — 1 and Seq® be the
set of cities € F¢ where Seq®(k) = c; where d; =max{dj} for ¢; € F, \
{Seq°(m)} for m =0, ...,k —1 and Seq®(0) = @. Let U, = @ be the set of

cities used to construct routes in solution sets.

In initialization step, L solution sets, where L is min (10, s(F¢)) where s(F¢) is

the number of cities in F€, are constructed. To construct [t

solution, city marked
as Seq®(l) is added between ¢, and c¢,_, to generate the route ¢, — Seq®(l) —
Cn—1. Since Seq€(l) is used it is added to U, U. = {Seq®(l)}. Afterwards
cityj € F; \ U, which minimizes the increase in the route cost }; ¥.; ¢;;X;;, is
inserted in the route. The city insertion continues until F, \ U, = @ or inserting
a city violates the route cost constraint. If inserting a city violates the route cost
constraint when F, \ U, # @, the remaining cities are inserted by minimum
increase in the route cost rule to generate new route. This process continues until
Yth

all the cities € F. are on a route and the (I + 1)*" solution is generated in the

same way by setting U, = 0.

Let n =9 for a given problem instance and ¢, and cg be the starting and ending
cities. Let Seq°(3) = ¢, and generate the 3" solution. c, is inserted between c,
and cg and the remaining cities are added by minimum increase in the route cost

rule. The generated route and set U, is given in Table 4.

Table 4. First route generation by initialization

generated route Cog— C3— C4— C5— Cg
U, C3,Cy,Cs
e\ U €1,€2,Ce, C7
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As F. \ U. # @ and route cost constraint is violated, remaining cities are

inserted between ¢y and cg to generate new routes. 3 solutions (solution set 3) are

given in Table 5.
Table 5. Solution set 3
generated route 1 Co— C3— C4— C5— Cg
generated route 2 Co— C1— C— Cg
generated route 3 Co— Cg— Cy — Cg

Among L solution sets generated by initialization process, the solution set which
has the highest objective value, Y; p;y; — 01 X.; Xj ¢ijX;j , is choosen as the initial
set of routes and the objective value is set as Record. Within the initial solutions,
the route with the highest objective value is denoted as route,, and the other

routes are denoted as route,.

4.4.3 Two-point Exchange

Chao et al. (1996) apply two-city exchange procedure to improve route,,. A city i
is selected from route,, and inserted into one of the routes in route,,, and a city j
is selected from one of the routes in route,, and inserted into route,,. The
selection of cities is done arbitrary. The insertions are performed by considering
the minimum increase in route cost rule, and the feasibility of routes is
maintained. If any city insertion is not possible in route,,, then a new route that
includes city 7, has to be generated and added to route,,,. If the objective function
value associated with a route in route,,, has a higher value than the objective
function value of route,,, route,, is updated and the previous route,, is placed into

routepep,
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Let r! be the initial route and r? be the updated route obtained by removing city
m and inserting city n. Let }; Y.; ¢;;x;; ! be the route cost associated with 1. To

check the route feasibility of 72 the following expression is used.

1
D> exy = (dlem ) + dlem Cpn) = dlep i)
i J

+ minkzlln{d(cn,cpk) + d(cp, cx) — d(ck, Cpk)} (4.18)

where ¢, is the city precedes city m, ¢z, is the city follows city m and ¢y, is the

city precedes city k. If the distance calculated by Expression (12) is less

than T,,,,,, then the generated route is feasible; otherwise, it is infeasible. In
expression (4.18), (d(cm, Cfm) + d(cm,cpm) - d(cpm, Cfm)) is the savings by

removing city m and minkzlln{d(cn,cpk) + d(cp, cx) — d(ck,cpk)} is the cost

incurred by inserting city n onto path r1.

If the city exchange increases the objective function value, the exchange is
performed immediately. On the other hand, if there is no city exchange that
increases the objective function value, then the exchanges that decrease the
objective function value by acceptable amounts are considered and the city
exchange that results the minimum decrease in the objective function value is
performed. This approach is based on record-to-record improvement (Dueck,

1990). In Figure 13, Two- point exchange algorithm is given.
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Step 1. Set the route with the highest objective funtion value = route,,

Step 2. Set other routes = route,,,
Step 3. Set the CitYpest exchange = 0 and recordpest exchange = 0

Step 4. For m = the first to the last city in route,,
Step 5. For n = the first to the last city in the first to the last route in route,,

Step 6. If exchanging city m and city n is feasible and the objective function

value increases, then do the exchange and go step 6.1, else go step 7

Step 6.1 If the objective function value associated with a route in
route,,, has a higher value than the objective function value of
route,p, then update route,,, route,,, and record and go step 4,

else go step 7

Step 7. If the objective function value = recordpest exchange

Step 7.1 Set citypest exchange = T and

TeC0Tdpest exchange = the objective function value
Step 8. If n = number of cities in route,,,, then go step 9, else go step 5

Step 9. If recordyest exchange = 10% X record, then exchange city m

with  Citypest exchange and update route,, and route,,, and set

Citybest_exchange = Oand recordbest_exchange =0

Step 10. If m = number of cities in route,,, then exit, else go step 4

Figure 13. Two-point exchange algorithm
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4.4.4 One Point Movement

In one point movement, one city is moved from one route to other route at a time
and movement is performed by the first feasible insertion rule. City i within the
ellipse or circle is inserted between cities in the first edge of route r, then the
second edge of path p, and so on, where route r is a route that does not contain
city i. The movement is performed whenever it is feasible, it is referred as first
feasible insertion rule, and the objection function value increases. If there is no
movement that increases the objection function value, then the city movements
that decrease the route profit by acceptable amounts are considered and the city
movement that has the minimum decrease in the objection function value is

performed. The feasibility of insertion is checked by Equation (4.19).

D> exy = (Aemcr) + dlemicpn) = Acppcr)
iJ
+ (d(cn, Cpk) + d(cp,cx) — d(ck,cpk)) (4.19)
where ¢, is the city preceding city m, ¢y, is the city following city m and ¢, is

the city preceding city k. If the distance calculated by expression (4.19) is less

than T,,,,,, then the generated route is feasible; otherwise, it is infeasible. In
Expression (4.19), (d(cm, Cfm) + d(cm, cpm) - d(cpm,cfm)) is the savings by

removing city m and (d(cn, cpk) + d(cp, ) — d(ck,cpk)) is the cost incurred

by inserting city n onto path 71.

One point movement algorithm is given in Figure 14.
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Step 1. Set the Cit)’best_movement = 0 and recordbest_movement =0

Step 2. For m = the first to the last city in ellipse or circle (say city m is in route q)

Step 3. For n = the first to the last city in the first to the last route (route p) in both

route,, and route,,, (q # p)

Step 4. If inserting city m in front of city n is feasible and the objective function value

increases, then make the movement and go step 4.1, else go step 5

Step 4.1 If the objective function value associated with a route in route,,,
has a higher value than the objective function value of route,, then
update route,,, route,,, and record and go step 2, else go step 5

Step 5. If the objective function value = recordpest movement

Step 5.1 Set CitYpest movement = N and

7eCcoTdpest movement = the objective function value

Step 6. If n = number of cities in ellipse or circle - 1, then go step 7, else go step 3

Step 7. If recordpest movement = 10% X record, then insert city m in front

of  CitYpest movement and update route,, and route,,, and set

CltYpest movement = 0 and 7"eCordbest_movement =0

Step 8. If m = number of cities in ellipse or circle, then exit, else go step 2

Figure 14. One point movement algorithm
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4.4.5 2-Opt

For a given route with n cities, if d(c;, c;j41) + d(cj, C]-+1) > d(c;, cj) +
d(ci+1, cj+1), then the sequence of cities are changed to improve the route cost
as in Figure 16. In 2-opt algorithm, sequence of cities are changed based on
max{d(c;, c;41) + d(cj, cj+1) — d(c;, Cj) + d(ciyq, cj+1)} fori=1,..,n 2-

opt algorithm is given in Figure 15.

Step 1. Set the best,_q,; = 0, bestm = 0, bestn = 0

Step 2. For m = the first to the last city in route p

Step 3. For n = the first to the last city in route p, n # m

Step 4. Calculate d(Cy,, Cy1) + d(Cny Cpy1) — d(cm ) + d(Cma1, Cnet)
Step 5. If d(cm Cmer) + d(Cny cpi1) — dlom ) + d(Cmir, Cnr1) 2
best,_ope » then set best,_opr = d(Cpy Cme1) + d(Cny Cpy1) — d(cm, cp) +
d(Cm+1, Cny1) and bestm = m, bestn = n

Step 5. If n = number of cities in p, then go step 6, else go step 3

Step 6. If m = number of cities in p, then go step 7, else go step 2

Step 7. If best,_,,: > 0, then change the sequence of cities in route by bestm

and bestn, and return step 1, else exit

Figure 15.2-opt algorithm
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Figure 16. 2-opt illustration

4.4.6 Reinitialization
For finding a route that yields a larger objective function value, k cities are

removed from route,, and inserted into routes on route,,, by the first feasible

insertion rule. Cities are chosen based on the smallest ratio

pi/(Cii—1 + Ciir1)

where p; is the profit associated with city i and ¢;;_; and c; ;44 are insertion costs

of city i before city i — 1 and after city i + 1, respectively.
For better understanding of CGW heuristic, a problem instance with 32 cities is

used to demonstrate how CGW heuristic works. The coordinates of cities are

given in Table 6. Let city O be the starting point and city 31 be the ending city.
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Table 6. Co-ordinates of cities

i x(i) y(i) |Profit(i)
0 10.5 14.4 0
1 18 15.9 10
2 18.3 13.3 10
3 16.5 9.3 10
4 15.4 11 10
5 14.9 13.2 5
6 16.3 13.3 5
7 16.4 17.8 5
8 15 17.9 5
9 16.1 19.6 10
10 15.7 20.6 10
11 13.2 20.1 10
12 14.3 15.3 5
13 14 5.1 10
14 11.4 6.7 15
15 8.3 5 15
16 7.9 9.8 10
17 11.4 12 5
18 11.2 17.6 5
19 10.1 18.7 5
20 11.7 20.3 10
21 10.2 22.1 10
22 9.7 23.8 10
23 10.1 26.4 15
24 7.4 24 15
25 8.2 19.9 15
26 8.7 17.7 10
27 8.9 13.6 10
28 5.6 11.1 10
29 4.9 18.9 10
30 7.3 18.8 10
31 11.2 14.1 0

The illustration of cities is given in Figure 17.
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® A End City
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x co-ordinate

Figure 17. Illustration of cities for the sample problem

TMAX is set as 50 and all the cities are within the ellipse. The next step is
calculating the sum of the distance between each city and starting city and the
distance between each city and ending city and ordering the cities based on their

total distances. In Table 7, the sorted distances and the corresponding cities are

given.
Table 7. Sorted cities from maximum distance to minimum distance
City i d; City i d; City i d;
23 24.36 1 14.68 8 11.07
24 20.69 9 15.01 30 11.55
13 19.36 29 15.10 16 10.70
15 19.20 7 13.19 5 8.37
22 19.25 11 12.63 19 9.05
10 16.00 20 12.24 12 7.23
2 15.02 4 11.18 26 8.14
3 15.03 25 12.49 18 6.78
14 15.16 28 12.26 17 4.67
21 15.77 6 11.07 27 4.14
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As discussed in the initialization step, the solution sets are constructed and the

solution set that includes the solution with the highest profit is choosen as the

initial solution set. In Table 8, the solution sets are given and the initial solution

set is highlighted. In Figure 18, initial solution set is illustrated.

Table 8. Solution sets

Profit | Cost Path
g 160 47 27 26 19 30 25 21 22 23 24 20 11 10 9 7 8 12 18 31
.§ 115 49 28 16 15 14 13 17 4 3 2 1 6 5 31
5
2 10 15 29 31
[§]
g 160 49 27 26 30 25 24 22 21 20 11 19 18 8 10 9 7 12 6 5 17 31
.§ 110 49 29 28 16 15 14 13 3 4 2 1 31
5
2 15 24 23 31
[3a)
5’) 130 49 27 17 16 15 14 13 3 4 2 1 7 8 6 5 12 31
.§ 145 45 26 30 29 25 19 21 24 23 22 20 11 10 9 18 31
=
3 10 12 28 31
=
~§j 130 46 27 28 16 15 14 13 3 4 2 1 6 5 12 17 31
5 o
%m 155 46 26 30 29 25 19 21 24 23 22 20 11 10 9 7 8 18 31
v
5’) 165 49 17 27 26 19 30 25 24 23 22 21 20 11 10 9 7 8 12 18 31
.§ 110 43 28 16 15 14 13 4 3 2 1 6 5 31
=
3 10 15 29 31
©
5’) 155 47 27 18 26 30 25 19 21 22 20 11 10 9 7 8 12 6 5 4 17 31
.§ 100 48 29 28 16 15 14 13 3 2 1 31
=
&3 30 26 24 23 31
=
5’) 155 48 12 8 18 26 30 25 19 20 11 10 9 7 1 2 6 5 4 17 27 31
.§ 90 48 21 29 28 16 15 14 13 3 31
=
&3 40 26 24 23 22 31
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Table 8. Solution sets (Continued)

o0
3 130 48 27 17 3 4 2 1 7 9 10 11 20 19 18 8 6 5 12 31
.§ 130 48 14 16 28 29 30 25 24 23 22 21 26 31
=
3 25 25 15 13 31
=
%?j 130 46 27 28 16 15 14 13 3 4 2 1 6 5 12 17 31
2 0
(%m 155 46 26 30 29 25 19 21 24 23 22 20 11 10 9 7 8 18 31
30
25
20
—&o—PathOp
15 —8—PathNopl
—#—PathNop2
4 Starting City
A Ending Cit
10 g ity
5
O T T T 1
5 10 15 20

Figure 18. Illustration of initial solution set
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Two-point exchange is implemented to the initial solution set. It is implemented
so that some cities are moved from existing paths and inserted into other paths.
For instance, cities 18, 28, 27 and 9 are moved from pathop and inserted onto
paths in paths,,, and cities 3, 7, 5 and 6 are moved from paths in pathsy,, and
inserted onto path,,. Resulted routes are illustrated in Figure 19 and are shown in

Table 9.

30 1
25 A
20 -
—#—PathOp
15 - A\ —&—PathNopl1
PathNop2
4 Starting City
A Ending Cit
10 A g
5 -
0 T T T 1
0 5 10 15 20

Figure 19. Two-point exchange implementation

46



Table 9. Generated routes by two-point exchange

Profit Cost Path

170.0 49,6210 26 30 25 24 23 22 21 20 11 10 9 7 2 6 4 5 12 18 3l
80.0 32,0140 27 28 16 15 14 13 3

35.0 3301100 1 8 19 29 17 31

Resulted routes of One Point Movement are illustrated in Figure 20 and are shown

in Table 10.

30 -
25 A
20 A
—#—PathOp
15 - —&—PathNopl1
—A—PathNop2
¢ Starting City
A Ending City
10 A
5 -
O T T T 1
0 5 10 15 20

Figure 20. One point movement implementation
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Table 10. Generated routes by one point movement

Profit | Cost Path

180.00 49830 26 30 25 24 23 22 21 20 11 10 9 7 1 2 6 4 5 12 18 31
80.00 32010 27 28 16 15 14 13 3 31

25.00 274610 8 19 29 17 31

2-opt implementation is improved the route cost but not the profit. The cost of
best route decreases from 49.83 to 47.81. The illustration of 2-opt is given in

Figure 21 and the generated routes are shown in Table 11.

30 4
25 A
20 A
—&—PathOp
I5 —&—PathNop1
PathNop2
B Starting City
A Ending City
10 A
5 -
0 T T T 1
0 5 10 15 20

Figure 21. 2-opt implementation
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Table 11. 2-opt implementation

Profit | Cost Path

180.00 | 4781 |0 18 26 30 25 24 23 22 21 20 11 20 9 7 1 2 6 4 5 12 31

80.00 3201(0 27 28 16 15 14 13 3 31

25.00 27460 8 19 29 17 31

The overall proposed algorithm is given in Figure 22.
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Step 1. Set Pareto_Set = @, | = 0, Feasible_Cities = @, Feasible_Cities™
= @, Solution_Set™@ = @

Step 2. Define C,q, and set TMAXy =n X Cpax

Step 3. Set8; = 1/TMAX, , &) = TMAX,, € = 0.0001
Step 4. Set objective function as ¥; p;y; — 601 X; 2. CijXij
Step 5. Add Y; Y); c;jx;; < €] as a constraint

Step 6. Define the starting and the ending cities

Step 7. If the starting and the ending cities are the same city, then go step 7.1,
else go step 8

Step 7.1. Calculate d; = 2 X d(jstarting city) for i = 1,...,n and i #
starting city, if d; < e! add city i to Feasible_Cities. Go step 9.

Step 8. Calculate d; = d(; starting city) + Q(istarting city) for i = 1,...,n and
i # the starting city and the ending city, if d; < e add city i to
Feasible_Cities.

Step 9. Set n; = number of cities in the Feasible_Cities and
Feasible_Cities™ = Feasible_Cities, if n, = 0 stop, else continue

Step 10. Find min(10, n;), set apq, = min (10, n;), Seta = 1
Step 11. Find the city i with ath largest d; in Feasible_Cities, setb = 1

Step 12. Insert city i between the starting and the ending cities, p2, update
Feasible_Cities = Feasible_Cities \ city i

Step 13. If Feasible_Cities = @, then go step 17, else continue

Step 14. Insert the city i, in Feasible_Cities, that increases the route cost
minimum, to pZ

Step 15. If route cost of p2 <el, then update Feasible_Cities =
Feasible_Cities \ city i and return step 13, else continue

Step 16. Move city i from p2, setb = b + 1, return step 14.

Figure 22. The proposed algorithm
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Step 17. Add p§ where ¢ =1,...,b to Solution Set(a), set a=a+1,if a >
Amax- then go step 18, else set Feasible_Cities = Feasible_Cities™ and return
step 11,

Step 18. Calculates ¥;p;y; — 61 X; X ¢;jx;; for all routes in Solution_Set(®
a =1,.., 054 take Solution_SetU) that contains the solution with highest
objective function value, as initial solution

Step 19. Set record = highest objective function value

Step 20. Set deviation = 10% X record

Step 21. For g = 1,...,10

Step 22. For h =1,..., 10

Step 23. Perform Two-Point Exchange

Step 24. Perform One Point Movement

Step 25. Perform 2-Opt

Step 26. If a new better solution has been obtained, then go step 26.1 else set
h=1

Step 26.1 Update record and deviation, return step 23
Step 27. Perform Reinitialization, setg = g + 1
Step 28. If g < 10, then return step 22, else continue
Step 29. Set S; = solution of eBTSP with profit 0

Step 30. Set S; € Pareto Set

Figure 22. The proposed algorithm (Continued)
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CHAPTER 5

SOLUTION SET ANALYSIS

Multiobjective optimization can be regarded as a systematic sensitivity analysis of
the most important value judgments. An essential feature in the multiobjective
approach is the generation of several good alternatives (i.e. Pareto optimal
solutions) and the comparison of them with each other. If there is only one
alternative, like an optimal solution of a scalar problem, then the only decision is
if that solution is acceptable or not. A real decision making becomes possible only
if there are several alternatives which should be judged in order to pick up the best
one. One approach to find the best solution, is finding the set of good solutions by
calculating distances of Pareto optimal solutions to a given infeasible alternative.
The distance formulation includes the parameter § = 1, ..., co. Base on the chosen
value of parameter §, the distance value changes. The solutions which have the
minimum distance for at least one of § value for § = 1, ..., oo constructs the set of
effective solutions. Then trade-off concept can be applied in choosing the best
solution among good solutions. In section 5.1, some definitions used in this
chapter are described, and then experimental computations and the procedure to
find the good solutions are explained and some illustrations are shown in section

5.2. Finally, trade-off concept is described in section 5.3.

5.1 Some Definitions

An ideal point (ideal solution) is generally an infeasible alternative consisting of

the best value for each objective function. Each objective function is optimized

subject to the given constraints, separately in order to obtain ideal point.
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On the other hand, goal point is also an infeasible alternative, but not the best
solution for all the objective functions. The basic characteristic of the goal point is
that it is specified by decision maker (DM). For the above example, z =
{8,12,7 } could be a goal point, if z € Y. The ideal point and goal points of a

biobjective problem are illustrated in Figure 23.

100
90
80
70
60 o
50 *f(x)

(g
40 "® one O1deal Point

Objective 1

° A Goal Points
20 A « go

10 A

0 20 40 60 80 100
Objective 2

Figure 23. Illustration of ideal point and goal points

The distance of the solutions on the efficient frontier has to be measured in some
way. While measuring the distance, weights may be used. Like the goal point, the
basic characteristic of the weights is that it is specified by DM. Let d; be the
distance of f;(x) from the ideal point (or goal point) and w; stands for the weight

associated with d;. Then the total distance of f(x) could be measured as

z wyd; (5.1)

where Y;w; = 1.
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5.2 Distance Formulation

Let x and y € R™, x:x; €ER and y:y; ER for i =1,... ,m. The distance

between x and y could be described as

m 1/8
ds = {Zm - yk|6} (5:2)
k=1

Where 6 = 1 which means that § may take any value from 1 to +oo.

For § = 2, Equation (5.2) calculates Euclidean distance between two points. For a

given points x and y € R?, Equation (5.2) becomes

d, = i/(xl —y1)% + (x5 — y2)?

For § =1 and 400, Equation (5.2) calculates Manhattan and Tchebycheff
distances between two points, respectively. The distances d; and d, represent

bounds on the distance between any two points
dy = ds = doo (5:3)

For the weighted case, Equation (5.2) is modified as

1/6

ds = {Z wiel v, - yk|5} (5:4)
k=1

where Y, w; = 1.
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For a given Pareto optimal set, an ideal point (or a goal point) and weights, one
could find a subset of efficient solutions, effective solutions, solutions that has the

minimum distance for one of § value for § = 1, ..., 0o, by the below procedure.

For each solution in the efficient frontier, calculate d, ( f (x)) and determine f; (x)

where
di(fie @) = min (d; (F () )

For each solution in the efficient frontier, calculate d, ( f (x)) and determine f;(x)

where

doo(fl(x)) = min (doo(f(x))).

The solutions between and including fi,(x) and f;(x) are subset of efficient
solutions. In Table 12, a sample solution set and an ideal point is given. In Table
13 the calculated unweighted distances for § = (1,0) is given. The graphical

illustration of effective solutions is illustrated in Figure 24.

Table 12. A sample solution set

No f1(x) f2(x) No f1(x) f(x)
1 60 20 12 29 58
2 57 22 13 28 61
3 46 30 14 27 63
4 44 34 15 27 64
5 43 37 16 22 80
6 42 39 17 21 85
7 39 41 18 21 86
8 36 46 19 21 87
9 35 48 20 20 93
10 33 50 21 20 95
11 30 56 Ideal Point 0 0
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Table 13. Distance table

1 80 60 12 87 58
2 79 57 13 89 61
3 76 46 14 90 63
4 78 44 15 91 64
5 80 43 16 102 80
6 81 42 17 106 85
7 80 41 18 107 86
8 82 46 19 108 87
9 83 48 20 113 93
10 83 50 21 115 95
11 86 56
is equal to where and

equal to  where

solutions are the effective solutions.

. The solutions between and including

70
60 ®
50

30

Objective 1

% %e
20

10

L JP

0 20 40 60
Objective 2

80

100

® f(x)

< Ideal Point

A Best Solutions

Figure 24. Illustration of effective solutions of the efficient frontier
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More detailed numerical calculations and graphical illustrations are performed in

the next section.
For better understanding about distance calculations and effective solutions, an

example is illustrated for an ideal point and given goal points and weights. In

Table 14 sample solution space is given.

Table 14. Solution space

No AL0G) | f(x) No ALG) | f(x)
1 86 6 7 35 45
2 73 12 8 30 56
3 60 20 9 27 63
4 55 25 10 22 80
5 46 33 11 20 95
6 41 39

In the first part, distances are calculated based on the ideal point (0, 0). In Table
15 the distances are given and minimum values are colored and in Figure 25 the

effective solutions are illustrated.

Table 15. Distance based on ideal point

dy (fk(x)) do (fk (x))
1 92 86
2 85 73
3 80 60
4 80 55
5 79 46
6 80 41
7 80 45
8 86 56
9 90 63
10 102 80
11 115 95
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80
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Objective 1
»
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Figure 25. Illustration of effective solutions based on ideal point

In the second part, distances are calculated based on the goal points (60, 0) and (0,
60). In tables 4.7 and 4.8 the distances are given and minimum values are colored
and in Figure 26 and Figure 27 the effective solutions are illustrated for the goal

points (60, 0) and (0, 60), respectively.

Table 16. Distance based on goal point (60, 0)

dy (fk (x)) do (fk (x))
1 32 26
2 25 13
3 20 20
4 30 25
5 47 33
6 58 39
7 70 45
8 86 56
9 96 63
10 118 80
11 135 95
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100
90
80
70
60 [J /Y
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Figure 26. Illustration of effective solutions based on goal point (60, 0)

Table 17. Distance based on goal point (0, 60)

dq (fk (x)) do (fk (x))
1 140 86
2 121 73
3 100 60
4 90 55
5 73 46
6 62 41
7 50 35
8 34 30
9 30 27
10 42 22
11 55 35
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Figure 27. Illustration of effective solutions based on goal point (0, 60)

In the third part distances are calculated based on the ideal point (0, 0) and
weights. Let w; stands for the weight associated with f;(x).
w; = (0.25, 0.75,0.40) and w, = (0.75, 0.25,0.60) are used to calculate
distances for the tables 4.9, 4.10 and 4.11 and effective solutions for the Figure

28, Figure 29 and Figure 30, respectively.

Table 18. Weighted Distance based on ideal point (0, 0) with weights (0.25, 0.75)

dq (fk (x)) [ (fk (x))
1 26 21
2 27 18
3 30 15
4 33 19
5 36 25
6 39 29
7 43 34
8 50 42
9 54 47
10 66 60
11 76 71
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Figure 28. Illustration of effective solutions based on ideal point (0, 60) with

weights (0.25, 0.75)

Table 19. Weighted Distance based on ideal point (0, 0) with weights (0.75, 0.25)

dy (fk (x)) do (fk (x))
1 66 64
2 58 55
3 50 45
4 48 41
5 43 34
6 40 31
7 38 26
8 37 23
9 36 20
10 37 20
11 39 24
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Figure 29. Illustration of effective solutions based on ideal point (0, 60) with

weights (0.25, 0.75)

Table 20. Weighted Distance based on ideal point (0, 0) with weights (0.40, 0.60)

dy (fk (x)) do (fk (x))
1 38 34
2 36 29
3 36 24
4 37 22
5 38 20
6 40 23
7 41 27
8 46 34
9 49 38
10 57 48
11 65 57
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Figure 30. Ilustration of effective solutions based on ideal point (0, 60) with
weights (0.40, 0.60)

5.3 Trade-Off Concept

Trade-off is a frequently used concept in multiobjective optimization. It is defined

as the amount of one objective that must be sacrificed to gain an unit

improvement in another criterion. DM imposes its own trade-offs by stating the

deterioration of one criterion which it accepts in order to improve the other

criterion by one unit. So there are two trade-offs, the first associated with the

properties of the minimal surface at a Pareto optimum under consideration, and

the second associated with the preferences of the decision maker.

For Biobjective TSP with profit the trade-off formulation for solution routes 7;

and rj, can be given as

boff; = Z PrYk — Z PrYk /
kETj k T

kKET;
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where  is the profit associated with city k and  is the cost associated with the

route between city and city . Equation (1) means that one unit of cost objective

can be sacrificed to gain unit improvement in profit objective by choosing
instead of
Let , and )

for a given solution routes and . Then

One unit of cost objective can be sacrificed to gain unit improvement in profit
objective by choosing instead of . If the preference of DM is choosing

instead of  which means the trade off is acceptable for DM, is set as candidate
best solution. This process continues until there is no trade-off, which DM
accepted, for the candidate best solution or another termination condition is

guaranteed. Then candidate best solution is set as best solution.

1,2 2,5

! )
0,8 s
0.6 - B Objective 1
I m L Objective 2
0,4
l \ P 4 / —&—Trade off
0,2 - 0,5
1 0
0 T T T T 0

0 2 4 6 8 10 12

Figure 31. Trade off diagram for the sample solution set in Table 14
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In Figure 31, the trade off diagram for the sample solution set in Table 14 is
shown. The trade off values for solution x is the trade of value for solution x — 1
and solution x. Because of that the trade off value for solution 1 is represented as
0. Base on the information given by trade off diagram DM can easily see that the
trade off between solution 1 and solution 2 is high, one unit increase in objective 2
causes two unit decrease in objective 1. For the high level picture DM can prefer
solution 2 or he can check other solutions depending on the trade off level he can

accept.

The marked area is the effective solutions set for the ideal point (0,0). Moving
from solution 5 to solution 6 causes 0.83 unit decrease in objective 1 for 1 unit
increase in objective 2. If DM can not accept the trade offs smaller than 1 unit
decrease in objective 1 for 1 unit increase in objective 2 he would choose solution

5. If it is acceptable he will choose solution 6.
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CHAPTER 6

COMPUTATIONAL RESULTS

The performance of the e-constrained method is evaluated by applying the method
to 5 problem sets taken from the literature and comparing the solutions with the
results in the literature. Also, the method is applied to 9 problem sets taken from
the literature and the solutions are compared not fully by partially with the

published results, since these problem sets are solved partially.

In section 6.1, the problem sets are given. In section 6.2, the performance of the e-
constrained method is discussed. Finally, the solutions of the problem sets out of

problem sets used for performance evaluation are given in section 6.3.

6.1 Problem Sets

We considered 2 different classes of test problems. The first problem class
includes 5 instances from the OP literature and Biobjective TSP with Profit
literature. Problems OP21, OP32, and OP33 are OP instances introduced by
Tsiligirides (1984). Problem OP32-1- instance is introduced by Chao et al. (1998).
In the literature OP problem sets are solved with fixed parameters for the right
hand side of route cost constraint. Problem K25 instance is introduced by Keller
and Goodchild (1986). Keller and Goodchild (1986) use only K25 problem set for

their algorithm.

The second problem class includes 9 instances from Vehicle Routing Problem
(VRP) literature. Problems ATT48, EIL30, EIL33, EIL51, EIL76, and EIL101 are
VRP instances taken from the Traveling Salesman Problem Library TSPLIB of
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Reinelt (2007). Problems CMTI101 and CMTI121 are VRP instances from
Christofides, Mingozzi and Toth (1979). The problem sets and related papers are
given in Table21. Fischetti et al. (1998) solve these problem sets for three values
of right hand side of route cost constraint. In Table 21, problem sets and related

papers are given.

Table 21. Problem sets and related papers

Paper Name Authors Problem Sets Definition
The multiobjective vending Keller and Goodchild test the
A Keller, C. P., M. .
problem: A generalization of the - K25 performance of their proposed
. Goodchild. 1988 .
traveling salesman problem method by just one problem set
An ant colony approach to the Liang, Y.-C., A. E. OP21, OP31, Fumg let al.‘ test t%lehpgrf?;glza ch)ggl
orienteering problem Smith. 2001 OP32 ant colony approach by ?
: and OP32 for specific TMAX values
Tasgetiren et al. test the performance
A genetic algorithm for the Tasgetiren, F. M., A. OP21, OP31, of ant colony approach by OP21,
orienteering problem E. Smith. 2000 OP32 OP31 and OP32 for specific TMAX
values
OP21, OP31,
Fischetti. M.. 7. J OP32, EIL30, Fischetti et al. test the performance
Solving the orienteering problem Salazar éonéél;ez. P EIL33, EILS1, of branch and bound algorithm by
through branch-and-cut Toth. 1998 T EIL76, EIL101, problem sets in the left cell for 3
: CMT101, specific TMAX values
CMT121

6.2 Computational Results

An interactive program that solves the biobjective TSP with profit was written in
Java. As mentioned earlier only Keller and Goodchild (1988) study the
biobjective TSP with profit and they use one problem set in their study. We
evaluate our solutions with Keller and Goodchild (1988). We evaluate our Pareto
optimal solutions with their Pareto optimal solutions and number of Pareto
optimal solutions. For OP21, OP32, and OP33 we evaluate our Pareto optimal
solutions for the fixed parameters used by Tasgetiren et al. (2000), Liang et al.
(2001) and Fischetti et al. (1998) solutions. Also we look for the Pareto optimal

solutions out of fixed values because they do not generate all the Pareto optimal
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solutions. We also look for the Pareto optimal solutions we found where they have

same profits as the solutions Fischetti et al. found but the route costs are less than

their solutions. By this we can show that we can found better solutions for the

fixed values. The other computational analyze is trade off relations. By trade-off

relations we mean showing that for a small increase in the route cost if we can

generate solutions with higher profits then their solutions.

On the other hand, K25, OP21, OP32, OP33, and OP32-1- problem sets are also

used to demonstrate and evaluate the performance of the e-constraint method. The

results show that e-constraint method found all solutions for specific TMAX

values published in the literature.
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Figure 32. Pareto optimal solutions for K25 problem set

the only true attempt for solving the biobjective TSP with profit was

Keller and Goodchild (1988). Keller and Goodchild (1988) test the performance
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of their proposed method by just one problem set that includes 25 cities located in
West Germany. Bonn was used as the depot and terminal node. The populations

of cities were treated as profit associated with each city.

The number of solutions obtained by Keller was 27 which is less than 71 solutions
that we obtained. 18 solutions obtained by our method are also obtained by Keller.
Keller could not obtain 44 solutions that we obtain. 9 solutions dominated 9
Keller solutions. In Figure 31, the Pareto optimal solutions are given for K25. In
Figure 32, the trade-off is shown for K25. In this figure and in all trade-off
figures, route profits and costs are scalarized between 0 — 1 and shown by left
vertical axis. Also, trade-offs are calculated for each solution. From left to right,
trade-off values means decrease in profit for one unit decrease in cost. It is reverse

from right to left. The values for trade-offs are shown by right vertical axis.
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Figure 33. Scalarization of profit and cost, and trade-off for K25 problem set
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For the Pareto optimal solutions, the robustness is analyzed by an arc matrix. In
arc matrix the number of arcs between cities are shown. In Table 22, the arc
matrix of the solutions of K25 is given. As an illustration, the arc between city 5
and city 18 (traveling from city 5 to city 18), arc 5 — 18, is included in 55
solutions and the arc 18 — 5 (traveling from city 18 to city 5) is included in 17
solutions. The matrix shows that the main structure of the solutions does not

change so much.

Table 22. Number of arcs in the Pareto optimal solutions for K25

Cities

1| 2| 3| 4| 5] 6| 7| 8| 9|10 11|12[13|14[15(16| 1718|1920 21 [ 2223|2425
1 2 21 2
2 2 20
3 1 6| 5 31
4 12| 10 1 16 1
50 2 5 9 55
6 5 2 36| 3 1] 2
7 40 3 16 1 7
8| 4 5 51 1 7
9 2 50 | 16
10 1 3
1 1|42 2 6 1

,g 12 4
S|l13 1

14 29 9| 2 1 6 8
15 1] 3] 1]24] 1 2 10 4
16 7 11
17 9 1 2
18| 19 2017 1] 4]26] 1 1
19 2 26 3| 4
20 19 1 2
21 5 1 13 11 6
22 2
23 9 2
24 3 5
25 2 1] 4 24 2 1

The overall results for OP21, OP32, and OP33 are compared with Tasgetiren et al.
(2000) and Liang et al. (2001). In all problem sets, our method finds all the
published results for the specific upper bounds. For OP21, we found 47 more
solutions and for OP32, OP33, and OP33-1-, we found 37, 57 and 35 more

solutions respectively. In Figures 33-40, the Pareto optimal solutions and
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scalarized profits and costs and trade off values are given for OP21, OP32, OP33,
and OP33-1-, respectively. The results for all problem sets except Keller are
compared with the results published by Fischetti et al. (1998). The branch and
bound algorithm is used by Fischetti et al. (1998) and they found good solutions.
Comparison with Fischetti et al. (1998) is done base on the TMAX values. The

solutions we found near to this TMAX value is tabled and shown.
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Figure 34. The Pareto optimal solutions for OP21

For OP21, the proposed method generates 58 Pareto optimal solutions. The
number of solutions obtained by Tasgetiren and Liang was 11, because they use
fix parameters. Liang and Tasgetiren dominated our O solutions. 8 solutions
obtained by our method are also obtained by Liang and 10 solutions obtained by

our method are also obtained by Taggetiren. We dominated 3 Liang solutions and
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1 Taggetiren solutions. Tasgetiren and Liang could not obtain 47 solutions that we

obtain.

Fischetti et al. (1998) uses 11.50, 22.99, and 34.49 forTMAX. Based on these

TMAX values our solutions and neighborhood solutions are given in Table 23.

For route cost 34.49 the published result is better than the generated result but for
route cost 34.51 the generated solution has a profit value of 320 which is higher
than 315, which means for 0.51 unit increase in route cost we gain 5 unit of profit.
For route cost 22.99 the generated solution is better than the published result.
Also, for 23.06 the generated solution has a profit value of 220, which means for
0.06 unit increase in route cost we gain 15 unit of profit. For route cost 11.50 the
generated solution is same with the published result but our solution has a lower
route cost. Also for 11.81 the generated solution has a profit value of 100. In
Table 24, the arc matrix of the solutions of OP21 is given. As it can be seen that
some arcs are included in most of the solutions and most of the arcs are not
included in the solutions. For instance, arcs 9 — 10, 10 — 11, and 11 — 13 are
included in most of the solutions and arcs 1 — 4, 8 — 2, and 11 — 8 are not included

in any solutions. The main structure of the solutions does not change so much.

Table 23. Published solutions and neighborhood solutions for OP21 for the given

TMAX values

Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 315 34.49 205 22.99 90 11.50

340 3586227 | 230 24.128345 | 105 13.231623

330 35.446358 | 220 23.063688 | 100 11.818177
Generated Solutions | 35 34514474 | 210 22647777 |90 10.103147

310 32.690083 | 205 22513478 |80 90272882

300 31.625426 | 200 19.879525 |70 75491731
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Table 24. Number of arcs in the Pareto optimal solutions for OP21

Cities

2 3| 4[5/ 6| 7| 8/ 9(10]|11]12]|13]14|15|16|17|18|19[20

21

1[39 21131 2] 1

17 16

43 6

27 9

o (G0 | [ | [ W (N =

44

—
=

44

Cities
-
=

—
~

o
w

32

—
-

—
wn

o
a

22

ot
2

10| 8

[y
>}

—
-

[
=]

(53
f—

Profit

300

250

200

150

100

50

40 50 60 70 80

Cost

90

Figure 35. The Pareto optimal solutions for OP32
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For OP32, the proposed method generates 55 Pareto optimal solutions. The
number of solutions obtained by Tasgetiren and Liang was 18. Liang dominated
our 3 solutions and Taggetiren dominated our 2 solutions. 11 solutions obtained
by our method are also obtained by Liang and 7 solutions obtained by our method
are also obtained by Tasgetiren. We dominated 4 Liang solutions and 9 Tasgetiren

solutions. Taggetiren and Liang could not obtain 37 solutions that we obtain.

Fischetti et al. (1998) uses 20.64, 41.27, and 61.91 for TMAX. Based on these

TMAX values our solutions and neighborhood solutions are given in Table 25.

For all TMAX the published and generated results are same but the route costs of
our solutions are lower than the published results. Also there are no good trade
offs, which means for one unit increase in route cost there is no solution where
profit increases 5 units. In Table 26, the arc matrix of the solutions of OP21 is
given. As it can be seen that some arcs are included in most of the solutions and

most of the arcs are not included in the solutions.

Table 25. Published solutions and neighborhood solutions for OP32 for the given

TMAX values

Profit Cost Profit Cost Profit Cost

Fischetti et al. Solutions | 70 20.64 160 41.27 230 6191
80 2262657 | 170 4290821 | 240 63.82241
75 2173011 | 165 4229618 | 235 62.63256
Generated Solutions [ 7 2049183 | 160 40.57741 | 230 61.4916
65 19.59537 | 155 3897382 [ 225 59.88802
60 18.5229 150 38.01586 | 220 58.69817
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Table 26. Number of arcs in the Pareto optimal solutions for OP32

Cities
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Table 26. Number of arcs in the Pareto optimal solutions for OP32 (Continued)

Cities
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For OP33, the proposed method generates 77 Pareto optimal solutions. The
number of solutions obtained by Tasgetiren and Liang was 20. Liang dominated
our 1 solution and Taggetiren dominated our 1 solution. 10 solutions obtained by
our method are also obtained by Liang and 8 solutions obtained by our method are
also obtained by Tasgetiren. We dominated 9 Liang solutions and 11 Tasgetiren

solutions. Taggetiren and Liang could not obtain 57 solutions that we obtain.
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Figure 36. The Pareto optimal solutions for OP33

Fischetti et al. (1998) uses 24.39, 48.78, and 73.17 for TMAX. Based on these

TMAX values our solutions and neighborhood solutions are given in Table 27.

For route cost 24.39 the published result and generated result are same but
generated result has lower route cost. Also for route cost 24.45 the generated
solution has a profit value of 260, which means for 0.06 increase in route cost
there is 10 unit increase in profit. For route cost 48.78 the generated solution is
better than the published result. Also, for route cost 48.93 the generated solution
has a profit value of 520, which means for 0.15 increase in route cost there is 10
unit increase in profit. For route cost 73.17 the published result is better than the
generated result but for route cost 73.21 the generated solution has a profit value
of 660.
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There is no published result for OP32-1-. The Pareto optimal solutions are shown

in Figure 36. For the other problem sets tables are given for comparison. If the

published result is better than the generated result, trade-offs can be checked.

Table 27. Published solutions and neighborhood solutions for OP33 for the given

TMAX values
Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 250 24.39 500 48.78 660 73.17
280 25775957 | 530 50.367091 | 680 75.717808
270 25249041 | 520 48.935549 | 660 73212922
Generated Solutions | 56 24.458365 | 510 48.144873 | 650 70.738358
250 23.606682 | 500 47727167 | 640 69.125037
240 23.079766 | 490 47289638 | 630 67.525893
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Figure 37. The Pareto optimal solutions for OP32-1-
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On the other hand, the aim of this study is to show importance of the trade-offs
between solutions. In the literature, the single objective forms of the biobjective
TSP with profit is solved by bounds. To illustrate the trade off, the solutions for
OP21 are given in Table 28. In OP21, the published results for upper bounds 40
and 30 of the route cost objective, are 395 and 265, respectively. Our method find
solutions where profit is 400 and cost is 40.05 and profit is 275 and cost is 30.01.

Table 28. The solutions for OP21

Solution | Route Route Route
No Profit Cost
1 450 44.4377[112765234201918161517891011131421
2 440 43373[1176523420191816151789101113 1421
3 430 | 424576 [11276534201918 161517891011 13 1421
4 420 41.393[176534201918161517891011131421
5 410 40977 [176534201918161517891011 1421
6 400 | 40.0452[1765342019181615179101113 1421
7 395| 39.7781|176534201918161517891011 1321
8 390 | 39.6293|17653420191816151791011 1421
9 385 39.495|11276534201918161517910111321
10 380 39.1715|1765420191816151791011 131421
11 375] 38.4303|176534201918161517910111321
12 365| 383661 |16534201918161517910111321
13 360 | 37.8423|176523420191817891011131421
14 355| 37.5566|1765420191816151791011 1321
15 350 | 36.9269|112765342019181789101113 1421
16 340 | 358623 |17653420191817891011131421
17 330 | 354464 |17653420191817891011 1421
18 320 34.5145|1765342019181791011 13 1421
19 310 326901 |11276532817161591011131421
20 300 | 31.6254|17653281716159101113 1421
21 290 | 31.2095|176532817161591011 1421
22 285 | 31.0752|11276532817161591011 1321
23 280 | 304432 |17652817161591011131421
24 275| 30.0106|176532817161591011 1321
25 265| 29.8491|176281716159101113 1421
26 260 | 29.6983|1712281716159101113 1421
27 255| 28.8283|176528171615910111321
28 250 | 28.1525|176542032891011 131421
29 240 | 27.7366 | 176542032891011 1421
30 235| 27.6023|11276542032891011 1321
31 230 | 24.1283|112765432891011 131421
32 220 | 23.0637 1765432891011 131421
33 210 | 22.6478 | 1765432891011 1421
34 205 | 22.5135|112765432891011 1321
35 200 | 19.8795|11276532891011131421
36 190 | 18.8149|176532891011131421
37 180 18.399 176532891011 1421

79



Table 28. The solutions for OP21 (Continued)

38 170 | 17.6326 1765289101113 1421
39 165 1721765328910111321
40 155| 17.0385[1762891011 131421
41 150 | 16.8878 [17122891011131421
42 145| 16.0178 [176528910111321
43 140 | 159043 [1765321211131421
44 130 | 152238 [1712891011131421
45 120 | 14.2488 [112891011131421

46 110 | 132963 [17651211101421

47 105 | 13.2316 (1761211101413 21

48 100 | 11.8182|17651211131421

49 90| 10.1031[17121110141321

50 80| 9.02729 | 171211101421

51 70| 754917 (171211131421

52 60| 657422 11211131421

53 50| 6.14422 (111131421

54 45| 5.87326(112131421

55 40| 5728311111421
56 35| 4.29402 1131421
57 25| 4.18154 11421
58 10] 2.67915|11321

For another illustration, solution 22 in Table 28 has a route cost 31.07 with a
profit 285. If one set TMAX 31, solution 23 with profit 280 would be found.
Solutions 6, 24, 32, 40, 42, and 50 are same as solution 22.

As mentioned earlier, Selective TSP and Prize Collecting TSP are scalarized
versions of the biobjective TSP with profit. To solve these problems, they have to
be bounded by some value. The solution would depend on these bounds and a
solution with a good trade-off (means a small increase in cost but a high increase
in profit) could not be generated. By trade-off figures, one can analyze the trade
off relation between solutions. In Figure 37, the trade-offs between solutions of
OP21 is given. Also the scalarized cost and profits are shown in Figure 37. The
slope for scalarized profit is constant but the slope of scalarized cost is
changeable. For the selected area in Figure 37, one can choose the solution with

the highest profit since the slope of profit is more vertical than the slope of cost.
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Trade-off curve for OP32, OP33 and OP32-1- are given in Figures 38 - 40,
respectively. In Figure 38, it can be easily seen that for the solutions having higher
profits than the marked solutions, the decrease for route cost is higher than the
decrease for the route profit and for the solutions having lower profits than the
marked solutions, the decrease for route cost is less than the decrease for the route
profit. The DM has a high level view with the help of this information so that he

can give more precise decisions.
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Figure 38. Scalarization of profit and cost, and trade-off OP21 problem set
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Figure 40. Scalarization of profit and cost, and trade-off for OP33 problem set
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Figure 41. Scalarization of profit and cost, and trade-off for OP32-1- problem set

The Pareto optimal solutions, trade-off curves and scalarized costs and profits for
ATT48, EIL30, EIL31, EIL33, EIL51, EIL76, EIL101, CMT101, AND CMT121

are shown in Figure 41 — Figure 56.
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Figure 42. The Pareto optimal solutions for ATT48

For ATT48, the proposed method generates 47 Pareto optimal solutions. Since the
distances are calculated as euclidean space, there could be no comparison for the

solutions.
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Figure 43. The Pareto optimal solutions for EIL30

For EIL30, the proposed method generates 134 Pareto optimal solutions. Fischetti
et al. (1998) uses 96, 191, and 286 for TMAX. Based on these TMAX values our

solutions and neighborhood solutions are given in Table 29.

Table 29. Published solutions and neighborhood solutions for EIL30 for the given

TMAX values

Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 2650 96 7600 191 11550 286

2750 97.126218 | 7800 19274108 | 11575 290.98106

2700 97.044642 | 7700 19121443 | 11550 287.97805
Generated Solutions | 5450 88.483477 | 7600 189.90826 | 11450 284.30868

2500 87.940916 | 7300 189.43731 | 11350 281.75621

2350 82.624585 | 7275 188.89561 | 11300 281.67188
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For 96, the published result and generated result is same but for 97.04 the
generated solution has a profit value of 2700. For 191 the published result and
generated result is same but for 191.21 the generated solution has a profit value of
7700. For 286 the published result is better than the generated result but for
287.97 the generated solution has a profit value of 11550. In Figure 44, the trade-
off curve is given for EIL30.
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Figure 44. Scalarization of profit and cost, and trade-off for EIL30 problem set

Table 30. Published solutions and neighborhood solutions for EIL33 for the given

TMAX values

Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 800 111 16220 21 26380 331

2520 131.15174 | 16380 2222998 | 26420 33328922

2500 11594826 | 16340 221.89242 | 26380 331.08552
Generated Solutions | 150 11378666 | 16180 22034592 | 26280 330.92903

1200 96.664368 | 16070 22032606 | 26200 330.4569

400 68.876701 | 15990 21991842 | 26100 330.23758
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Figure 45. The Pareto optimal solutions for EIL33

For EIL33, the proposed method generates 259 Pareto optimal solutions. Fischetti
et al. (1998) uses 111, 221, and 331 for TMAX. Based on these TMAX values our

solutions and neighborhood solutions are given in Table 30.

For 111 the generated result is better than the published result. For 221 the
published result is better than the generated result but for 221.89 the generated
solution has a profit value of 16340. For 331 the published result is better than the
generated result but for 331.08 the generated solution has a profit value of 26380.
In Figure 46, the trade-off curve is shown for EIL33.
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Figure 47. The Pareto optimal solutions for EIL51
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The proposed method generates 134 Pareto optimal solutions. Fischetti et al.
(1998) uses 107, 213, and 320 for TMAX. Based on these TMAX values our

solutions and neighborhood solutions are given in Table 31.

Table 31. Published solutions and neighborhood Solutions For EIL51 for the

given TMAX values

Profit Cost Profit Cost Profit Cost

Fischetti et al. Solutions | 264 107 508 213 690 320
256 10837382 | 508 22079259 | 686 326.61919
254 108.31128 | 507 218.54225 | 683 323.35949
Generated Solutions | 55, 103.22058 | 493 209.92002 | 681 316.95439
246 99.85429 | 471 20541212 | 671 316.09264
241 98.398678 | 465 199.63184 | 667 314.93473

For all TMAX values the published result is better than generated result and there

are no good trade-offs. In Figure 48, the trade-off curve is shown for EIL51.
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Figure 48. Scalarization of profit and cost, and trade-off for EIL51 problem set
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Figure 49. The Pareto optimal solutions for EIL76
For EIL76, the proposed method generates 204 Pareto optimal solutions. Fischetti

et al. (1998) uses 135, 269, and 404 for TMAX. Based on these TMAX values our

solutions and neighborhood solutions are given in Table 32.

Table 32. Published solutions and neighborhood Solutions For EIL76 for the

given TMAX values

Profit Cost Profit Cost Profit Cost

Fischetti et al. Solutions | 490 135 907 269 1186 404
491 138.06092 | 881 274.45006 | 1161 408.02379
490 13690173 | 879 27403737 | 1160 406.97744
Generated Solutions | 4g¢ 134.84544 | 878 264.899 1154 403.95529
478 13472891 | 849 258.87176 | 1142 396.26543
477 13422723 | 843 25879781 | 1130 388.43885
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For all TMAX values the published results are better than generated results. For
135, the solution with cost 136.9 has a profit value of 490 same as the published
solution. For 269 and 404, there are no good trade-offs. In Figure 50, the trade-off

curve is shown for EIL76.
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Figure 50. Scalarization of profit and cost, and trade-off EIL76 problem set
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Figure 51. The Pareto optimal solutions for EIL101
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For EIL101, the proposed method generates 284 Pareto optimal solutions.
Fischetti et al. (1998) uses 158, 315, and 472 for TMAX. Based on these TMAX

values our solutions and neighborhood solutions are given in Table 33.

Table 33. Published solutions and neighborhood Solutions For EIL.101 for the

given TMAX values

Profit Cost Profit Cost Profit Cost

Fischetti et al. Solutions | 572 158 1049 315 1336 472
555 160.79282 | 1017 320.04665 | 1154 383.91961
549 159.96388 | 1007 316.17854 | 1147 380.23928
Generated Solutions | 545 157.68423 | 997 31026072 | 1139 376.46407
539 154.27274 | 993 308.02565 | 1136 369.04711
527 151.23029 | 990 301.26317 | 1124 367.35119

For all TMAX values the published results are better than generated results and

there are no good trade-offs. In Figure 52, the trade-off curve is shown for

EIL101.
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Figure 52. Scalarization of profit and cost, and trade-off for EIL101 problem set
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Figure 53. The Pareto optimal solutions for CMT101
For CMT101, the proposed method generates 165 Pareto optimal solutions.

Fischetti et al. (1998) uses 127, 253, and 379 for TMAX. Based on these TMAX

values our solutions and neighborhood solutions are given in Table 34.

Table 34. Published solutions and neighborhood Solutions For CMT101 for the

given TMAX values

Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 530 127 1030 253 1480 379

540 139.19579 | 1030 255.60207 | 1500 380.96178

530 12836219 | 1020 25347795 | 1490 379.23895

Generated Solutions | 5 123.69834 | 1010 250.87766 | 1480 377.4826
480 11695925 | 1000 247.37919 | 1470 374.03386
470 114.13082 | 980 24338521 | 1460 373.54206
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For 127, the published solution is better than the generated solution but for 128.36
the generated solution has a profit value of 530. For 253, the published solution is
better than the generated solution but for 253.47 the generated solution has a
profit value of 1020, still worse but a good trade-off. For 379 the solutions are
same but for 379.23 the generated solution has a profit value of 1490. In Figure
54, the trade-off curve is shown for CMT101.
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Figure 54. Scalarization of profit and cost, and trade-off for CMT101 problem set
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Figure 55. The Pareto optimal solutions for CMT121

For CMT121, the proposed method generates 240 Pareto optimal solutions.
Fischetti et al. (1998) uses 137, 273, and 409 for TMAX. Based on these TMAX

values our solutions and neighborhood solutions are given in Table 35.

Table 35. Published solutions and neighborhood Solutions For CMT121 for the

given TMAX values
Profit Cost Profit Cost Profit Cost
Fischetti et al. Solutions | 412 137 715 273 1134 409
418 147.59638 | 635 27486314 | 1092 420.98125
408 14696524 | 625 273.82584 | 1068 410.97865
Generated Solutions | 495 136.12438 | 623 269.99263 | 1053 396.8431
401 134.60443 | 620 236.35082 | 1030 389.37166
400 133.34101 | 613 23345321 | 1012 381.90041
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For all TMAX the published solutions are better than generated solutions and there
are no good trade-offs. In Figure 56, the trade-off curve is shown for CMT121.
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Figure 56. Scalarization of profit and cost, and trade-off for CMT121 problem set

The generated routes and route profits and costs for K25, OP21, OP32, OP32-1-,
OP33, EIL30, EIL33, EIL51 and EIL76 are in Appendix A.

6.3 Performance Measures

As discussed, there is no attempt to solve the biobjective TSP with profit, except
Keller and Goodchild (1988). So that, there are no performance measures for the
proposed method. However, we define some measurements for the performance

of our method.

i.  The first performance measure is number of Pareto optimal solutions,

number of dominated solutions and the percentage of these solutions in
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order to measure how effective the method find the Pareto optimal

solutions.

ii.  The second performance measure is the time to find a single solution for

the various of number of cities and TMAX for each problem set.

iii.  The third performance measure is the total runtime for the problem sets.

For the first performance measure, the number of Pareto optimal solutions and
dominated solutions generated during the solution process for the problem sets. In
Table 36, the first column is the name of the problem sets which already includes
the number of cities for the given problem set. In the second column and third
column, the number of Pareto optimal solutions and dominated solutions are
given, respectively. In the fourth and fifth column, the percentage of dominated
solutions to Pareto optimal solutions and the percentage of Pareto optimal

solutions and total solutions are presented, respectively.

The maximum percentage is for DS / POS 0.61,CMT101. The number of Pareto
optimal solutions and number of dominated solutions does not depend on the size
of the problem set. On the other side, 62% of the generated solutions is Pareto
optimal solutions. CMT101 seems to be bottleneck, so one can conclude that at
least 62% of the generated solutions are Pareto optimal solutions. This table could

be used to evaluate future works.
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Table 36. Pareto optimal and dominated solution analyze table

Pareto

Optimal Dominated POS /

Solutions Solutions DS /POS (DS+POS)
OP32 55 27 0.49 0.67 82
OP21 58 4 0.07 0.94 62
OP33 77 24 0.31 0.76 101
OP32-1- 55 23 0.42 0.71 78
K25 69 3 0.04 0.96 72
ATT48 47 6 0.13 0.89 53
EIL30 134 48 0.36 0.74 182
EIL33 259 48 0.19 0.84 307
EIL51 99 35 0.35 0.74 134
EIL76 152 52 0.34 0.75 204
EIL101 237 48 0.20 0.83 285
CMTI101 103 63 0.61 0.62 166
CMTI21 170 70 0.41 0.71 240

For the second performance measure, times are calculated with TMAX, and
TMAX,/2. The single runs are done for 10 times for each problem set and the
maximum value of the runtimes for each step is selected. Times are in

milliseconds.

For TMAX, it is interesting that the most time consuming processes are 2-opt and
initialization steps. 80% of the time the algorithm process 2-opt step and 15% of
the time the algorithm process initialization step. For TM AX, the problem behaves
as pure TSP so that the dominated step is 2-opt and the main steps like two point
exchange and one point movement becomes ineffective. It is expected to see that
as the number of given cities increases the runtime increases. In Table 37,

runtimes for each step is given. In Figure 57, the percentages are illustrated.
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Table 37. Runtimes for each step for each problem set for a single run with

TMAX,
Two Point | One  Point
Sequencing | Initialization | Exchange Movement | 2 -Opt Reinitialization | Total
OP32 0 94 30 0 284 0 408
OP21 0 31 46 16 94 16 203
OP33 0 94 15 0 313 0 422
OP32-1- 0 47 32 0 186 16 281
K25 0 32 14 0 95 0 141
ATT48 0 313 30 0 1017 0 1360
EIL30 0 62 32 0 593 0 687
EIL33 0 47 32 0 343 0 422
EIL51 0 250 62 0 1626 0 1938
EIL76 0 1219 156 0 8531 0 9906
EIL101 0 3578 250 0 23797 0 27625
CMT101 0 3484 218 0 17313 0 21015
CMTI121 0 7063 313 15 30531 16 37938
Total 0 16314 1230 31 84723 48 | 102346
Percentage 0] 0.15940047 | 0.0120181 | 0.0003029 | 0.8278096 0.000468997 1

For TMAX,/2 two point exchange becomes effective and the time percentage of
it increases while the time percentage of 2-opt decreases but still effective. The
other point is that initialization step becomes more dominated then TMAX,. Now,

50% of time the proposed method processes two point exchange step and 30% of
98



time it processes initialization step. In Table 38, runtimes for each step is given. In

Figure 58, the percentages are illustrated.
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Table 38. Runtimes for each step for each problem set for a single run with

TMAX,/2
Two Point | One  Point
Sequencing | Initialization | Exchange Movement | 2 -Opt Reinitialization | Total
OP32 0 16 172 15 47 0 250
OP21 0 15 79 31 15 0 140
OP33 0 31 109 0 48 0 188
OP32-1- 0 16 94 46 16 16 188
K25 0 16 16 16 16 0 64
ATT48 0 188 374 0 220 0 782
EIL30 0 16 110 15 0 0 141
EIL33 0 16 63 30 0 0 109
EIL51 0 110 359 48 45 16 578
EIL76 0 594 1061 0 220 31 1906
EIL101 0 1844 2171 48 890 63 5016
CMTI101 16 1468 2656 62 1376 16 5594
CMTI121 0 1781 2488 124 591 0 4984
Total 16 6111 9752 435 3484 142 19940
Percentage 0.0008024 |  0.30646941 | 0.4890672 | 0.0218154 | 0.1747242 0.007121364 1
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These measurements can be used to understand the behavior of the heuristic and

improve it. Also one can evaluate the single runtimes for performance.

Out of steps there are some extra process in the proposed algorithm needs time.
Also one single runtime cannot show the whole picture. The total runtimes for
each problem set are collected and presented in Table 39. Times are in

milliseconds.

Table 39. Total runtimes for each problem set

OP32 8547
OP21 1703
OP33 11750
OP32-1- 8496
K25 3438
ATT48 27109
EIL30 13829
EIL33 30718
EIL51 15694
EIL76 933203
EIL101 9632532
CMTI101 4708250
CMTI21 13534015

From Table 39, it seems that runtimes increase exponentially as the city numbers
increase. Even runtime depends on the problem structure, city number is a
dominated facto for runtime. In Figure 59, the relationship between runtime and

the city number can be seen explicitly.
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Figure 59. Runtimes for the problem sets

The proposed method solves small problem sets easily and efficiently. But as the
number of city increases the runtime increases rapidly. The maximum number of

cities that the proposed algorithm solved is 121.
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CHAPTER 7

INTERACTIVE SOFTWARE

An interactive software is developed to implement the proposed method. The
software uses data files that contain information about city locations or city
distances and city profits. User can choose starting and ending cities. The software
solves the problem with the choosen starting and ending cities and illustrate the
Pareto optimal solutions in a graphic with an ideal point and subset of efficient
solutions based on the distance formulation and default weights wy,;.,r;; = 0.5 and
Weost = 0.5. Also, only the subset of efficient solutions is illustrated in another
graphic in order to give detail view to the subset of efficient solutions. In another
graphic the trade offs are illustrated between Pareto optimal solutions. User can
define new goal point or weights. The nearest solutions are changed based on the
defined goal point or weights. Detailed information is given about the interactive

software in section 6.1.

7.1 Interactive Software

Software has only one frame, main frame. Main frame contains a map that cities
are illustrated, three graphics that illustrate Pareto optimal solutions, subset of

Pareto optimal solutions and scalarization graphic. In Figure 60, main frame is

shown.
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Biobjective TSP with Profit
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Figure 60. Main frame of interactive software

To open a problem data set, user has to click “Open File” button. When user
clicks “Open File” button, a file chooser window opens to choose a problem file
as shown in Figure 61. File to load has to have a specific structure. In the first line

1™ Jine

of the file number of cities in the problem set has to be written and in the i+
x-coordinate, y-coordinate and profit for city i has to be written for each city. The
sample structure of a file is given in Figure 62. When a file is choosen, the path of
the file is shown in text line and when “Load File” button is clicked, cities are
illustrated. If “Show City Profits” and “Show City Coordinates” are selected, city
profits and city coordinates are presented in the screen with white and yellow

background, respectively. The illustrated cities, city coordinates and city profits

are shown in Figure 63.
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4 Biobjective TSP with Profit
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Figure 63. Cities and their coordinates and profits

User is now ready to select “Starting City” and “Ending City”. After this selection
“Solve” button is clicked and the proposed method runs. The solutions are
generated in the run and when run ends, the solutions are illustrated in the graphs.
If user checks “Show Dominated Solutions”, dominated solutions are also shown.
The generate Pareto optimal solutions and dominated solutions are shown in
Figure 64. The black point in the solution space is either an ideal point or a goal

point and the circles not red are nearest solutions.

User can define a goal point either clicking a point in the solution space or
changing the value of “Profit” and “Cost” texts. User can define new weights by
changing either the value of “Profit Weight” or “Cost Weight”. Whenever one of

them is changed the other one is calculated by the formula
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Wprofit T Weost = 1

The new goal point and weights are illustrated in Figure 65. The nearest solutions

are changed based on the goal point and weights.

Open File ][ Load File

(0 Show Dominated Solutions

profit 285.0
ot

Profit Weight

0.5
Cost weight |9-%

() Show City Profits () Show City Coordinates

Starting City Ending ity

40 (40 41 41 41 A 41 42 42 42 4f

C\Dorments and Jentingst, o
C\Doruments and Jeneings, cne

imseAty Torumert.s sehix et file
imselAty Torumert.s sehix et file

Figure 64. Pareto optimal solutions, nearest solutions and ideal point

If user clicks a Pareto optimal solution in the graph, the route of the solution is

generated on the map as shown in Figure 66.
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Figure 65 Updated goal point, weights and nearest solutions

jective TSP with Profit
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Cost wieight [0-F

(& Show City Frofits () Show City Coordinates

Starting City Ending Gity 31 ~

552896 #133434A8965354 E

i \Dorwawents and Sxttingstemer_simssliMy Documertsisekic.tek fils is chossed. ..
C:\Dormments and Jwctingstomor_simse}iMy Documertsisehic tee fils is opened

Figure 66 Route generation on the map
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CHAPTER 8

CONCLUSION

TSP with profit is naturally biobjective problem where objectives are
contradictory. In the literature single objective TSP with profits are studied. The
only attempt to solve the biobjective TSP with profit is Keller and Goodchild
(1988). In this study we developed a multiobjective approach based on &-
constraint method to solve biobjective TSP with profit. e-constraint method is
chosen because it transforms the problem into single objective problem that is
studied widely in the literature. Since Selective TSP is more widely studied than
Prize Collecting TSP, Selective TSP version of the scalarization is choosen to
study. CGW heuristic, which is fast and effective heuristic, is one of the best
solution methods that solve Selective TSP. To solve the single objective problem,
CGW heuristic is choosen. The computational analysis show that proposed
method performs well. Our study shows that Keller’s algorithm, the only
multiobjective approach for biobjective TSP with Profit, is not good enough to

find Pareto optimal solutions.

An interactive software is developed based on the proposed method. The aim to
develop an interactive software is to give a better understanding about Pareto
optimal solutions to the user. User can change goal points or weights and see how
the subset of efficient solutions changes. Also user can analyze the slope of

decreases or increases of profit and cost by scalarization graphic.
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For the future work, the proposed method can store all the solutions that is
generated not only best solutions but the bad solutions generated for specific
upper bounds. The bad solutions for a specific upper bound can be Pareto optimal
solutions for other upper bounds. Also the solution set including best solution and
other solutions for a specific upper bound can be used an initial solution for the

updated upper bound.

The interactive software tries to generate all the Pareto optimal solutions. Instead
of this, to increase the performance of the proposed method, subsets of Pareto
optimal solutions can be generated. Considering these solutions and the goal point
and weights defined by user, Pareto optimal solutions between specific limits of
upper bound can be generated. So that the user only gets the information he needs.
Also, the proposed method does not try to generate all the Pareto optimal
solutions. The runtime of the propose method is expected to decrease, especially

for the large problems.
The algorithm mostly uses 2-opt when the problem is almost TSP. So the

performance of the algorithm decreases. One can use Concorde (or any other TSP

solver) instead of 2-opt procedure in the algorithm to improve the solution.
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APPENDIX

SOLUTIONS OF THE EXPERIMENTAL PROBLEMS

Table Al. The solutions for K25

Route Profit | Route Cost Route
13298 3496 |518189741615610171432123222013225122419115
13268 3345(|5181897416156171014321232220225122419115
13258 3350 |5181897416156141017321232013225122419115
13228 3199 |51818974161561410173212320225122419115
13178 3064 [518189741615614173212320225122419115
13054 29093 518189741615610171432123202252419115
13004 2887 |5181897416156141732123202251924115
12873 2826 [51818974161561417321202251924115
12800 2713 [51818974156141732123202251924115
12799 2644 | 51818974161561417321232022519115
12668 2583 |518189741615614173212022519115
12595 2470 |518189741561417321232022519115
12464 2409 |5181897415614173212022519115
12407 2370 |5181897416156143212022519115
12334 2257 (5181897415614321232022519115
12203 2196 [51818974156143212022519115
12092 2161 [518897415614321232022519115
11961 2100 [5188974156143212022519115
11713 2093 [518897415614321202519115
11646 2086 [511192522021314615798185
11411 2026 |51119252202131464798185
11390 2024 |518897415143212022519115
11163 2019 [5188974614321202519115
11142 2017 [51889741514321202519115
11096 2012 [5188976143212022519115
11075 2010 [ 51889715143212022519115
10827 2003 [5188971514321202519115
10643 1996 [51818974156143212519115
10401 1900 [5111925213146154798185
10089 1893 |51889741561432125115
10086 1886 |518897156143212519115
9851 1826 |51889746143212519115
9830 1824 |511192521314154798185
9736 1817 |5112131461547981185
9536 1812 [5188976143212519115
9515 1810 [ 518897 15143212519115
9514 1786 |51889746143151611195
9494 1721 |518897415614321115
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Table Al. The solutions for K25 (Continued)

9202 1642 |518897461431516115
8998 1623 |5188974156143115
8683 1613 |518897614315115
8652 1573 |5188974614316115
8609 1511 |518974614315185
8367 1422 158974614315185
8052 1408 |5897153146185

7547 1367 |5188974614151611195
7477 1319 |518189746141516115
7273 1304 |5111514647981185
7235 1223 |51116151464798185
7031 1208 |511151464798185
6642 1092 |51897461415185
6400 1003 15897461415185

6085 989 589715146185

5535 984 5186147985

5514 982 51815147985

5067 974 51874614155

4956 909 [51889741516115
4752 894 |518897415115

4692 841|58971564185

4444 795(51818974115

4406 753 (518897416115

4202 699 5114798185

4129 6805181897115

3887 584 (518798115

3813 564 (518479815

3571 47551847985

3498 34751879815

3256 258 | 5187985

2628 211518895

1969 204151895

1954 15251885

1295 565185

Table A2. The solutions for OP21

Route Profit Route Cost Route
450 4444 1112765234201918161517891011 13 1421
440 4337 1176523420191816151789101113 1421
430 4246 111276534201918161517891011 13 1421
420 41.39]1176534201918161517891011 13 1421
410 4098 |176534201918161517891011 1421
400 40.05[17653420191816151791011131421
395 3978 | 17653420191816151789 10111321
390 39.63|17653420191816151791011 1421
385 3949 |1127653420191816151791011 1321
380 3917 |1765420191816151791011 13 1421

115



Table A2. The solutions for OP21(Continued)

375 3843 1176534201918161517910111321
365 3837]1653420191816151791011 1321
360 37.8417652342019181789101113 1421
355 3756 [ 1765420191816151791011 13 21
350 3693 1127653420191817891011 131421
340 3586 [ 17653420191817891011131421
330 3545[17653420191817891011 1421
320 3451[1765342019181791011 131421
310 3269 (1127653281716159101113 1421
300 3163 176532817161591011 131421
290 3121 176532817161591011 1421

285 31.08[112765328171615910111321
280 3044 | 1765281716159101113 1421
275 3001 | 1765328171615910111321

265 29.85]1762817161591011 13 1421

260 29.70 | 17122817161591011 13 1421

255 2883 |176528171615910111321

250 28.15[176542032891011131421

240 27.7411765420328910111421

235 27.60 [ 112765420328910111321

230 2413 112765432891011131421

220 23.06[1765432891011131421

210 22.65[17654328910111421

205 2251[1127654328910111321

200 19.88 | 11276532891011131421

190 1881 |176532891011131421

180 1840 | 176532891011 1421

170 1763 | 1765289101113 1421

165 1720 1765328910111321

155 17.04 | 176289101113 1421

150 16.89 | 1712289101113 1421

145 16.02|176528910111321

140 1590 [ 1765321211131421

130 1522 171289101113 1421

120 1425[11289101113 1421

110 1330 17651211101421

105 1323 17612111014 1321

100 11.82[17651211131421

90 10.10 [ 1712111014 1321

80 9.03 171211101421

70 755[171211131421

60 6.57 11211131421

50 614111131421

45 587112131421

40 5731111421

35 42911131421

25 41811421

10 2.68 | 11321
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Table A3. The solutions for OP32

Route Profit Route Cost Route
285 81.83325(11920273130262524232221121110982371365414151617 2928 1832
280 78.22436 | 1192027313026252423222112111098237654141516172928 1832
275 75.15988 | 128291716151445673289101112212223242526303127201932
270 73.55630 | 12829171615144567328101112212223242526303127201932
265 70.73088 | 1282917161514456732891011122122232425263127201932
260 69.12729 | 1282917161514456732810111221222324252631272019 32
255 67.87824 | 12817161514456732891011122122232425263127201932
250 66.27465 | 128171615144567328 1011 122122232425263127201932
245 65.08480 | 128 171615144573281011122122232425263127201932
240 63.82241 | 12731262524232221121110823765414151617 2832
235 62.63256 | 127312625242322211211108237541415161728 32
230 61.49160 | 12731262523222112111098237654141516172832
225 59.88802 | 127312625232221121110823765414151617 28 32
220 58.69817 | 127312625232221121110823754141516172832
215 57.54153 | 128273126252423222112111082375414151832
210 56.39486 | 12818456732891011122122232425263127201932
205 5479128 | 128184567328 1011 122122232425263127201932
200 53.09447 | 1282731262524232221121110982374561332
195 51.47582 | 128273126252423222112111098234561332
190 49.19262 | 128273126252423222112111098237651832
185 47.58904 | 12827312625242322211211108237651832
180 46.23056 | 12827 3126252423222112111082375632
175 4451179 | 128273126252423222112111098237632
170 4290821 | 12827312625242322211211108237632
165 4229618 | 1282731262523222112111082375632
160 40.57741 | 1282731262523222112111098237632
155 38.97382 | 128273126252322211211108237632
150 38.01586 | 12827 31262524232221121110891332
145 36.81231 | 12827 3126252423222112111091332
140 35.88112 | 1273126252423222112111089 1332
135 34.67757 | 1273126252423222112111091332
130 33.25029 | 128273126252322211211108 1332
125 32.88271|12827312620211211108237632
120 30.74318 | 127 312625232221 12111091332
110 29.66690 | 12827 312625232221 12201932
105 27.59313 | 1282731262221 12111091332
100 27.01490 | 12827 312625232221201932
95 25.77662 | 127 3126252322211219 32
90 24.65207 [1273126202112111091332
85 23.66489 | 12731262112111091332
80 22.62657 | 1282731262221121932
75 21.73011 | 12827 312622212019 32
70 20.49183 | 12731262221 121932
65 19.59537 | 127 312622212019 32
60 18.52290 | 127 3126222119 32
55 16.39830 | 12827 31262019 32
50 16.07236 | 128 27 31 26 20 32
45 14.26356 | 127 3126201932
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Table A3. The solutions for OP32(Continued)

40 13,93762 | 127 31 26 20 32
35 13,31795 | 1272620 19 32
30 12,66983 | 12827201932
25 11,89573 (128271932
20 10,21758 | 1272832
15 6,86652 | 12818 32
10 4,14257 | 128 32
Table A4. The solutions for OP33
Route Profit | Route Cost Route
800 | 96.587694|124259101819113026291231826313151621172041428572227233233
790 | 92.648736 | 1242591018191130262912318261315162117203414285722272333
780 | 90.562161 | 12425910181911302912318263131516211720414285722272333
770 | 89.313188 | 12422752814420172116151336283112111918 1093029 263233
760 | 87.800956 | 1242275281442017211615133628311229301119181092533
750 87.09097 | 124227514420172116151336283112111918109 30292633
740 | 84.492442112425910181911302629123182631315161720414285722272333
730 | 82.471335]124259101819113029123182631315161720414285722272333
720 81.589049 | 12591018 1911302912318263 13151617204 14285722242333
710 79.71013 | 12422752814420171615133628311229301119181092533
700 78.62956 | 124227528144201716151336283112 111918 103029 26322333
690 | 76.988317 | 12425910181911123182631315161720414285722272333
680 | 75.717808 | 124227528144201721161513362831122930111092533
660 | 73.212922 | 124227528144201716151336283112 1118103029 26322333
650 | 70.738358 | 124227528144201716151336283112111093029 26322333
640 | 69.125037 | 12422752814420172116151336283112 113029 26322333
630 67.525893 | 124227528144201721161513362831 1211 3029263233
620 65.114579 | 1242327227528144201721161513362 831 1229 30263233
610 63.235954 |1 124227528144201721 1615133628 311229 3026322333
600 61.63681 | 124227528 144201721161513362 8311229 30263233
590 60.057061 | 124227528144201721 161513362831 122926322333
580 | 58.457917 | 1242275281442017211615133628311229263233
570 | 57.026375|12422752814420172116151336283112292633
560 | 55.145128 | 12422752814420171615133628311229 3026322333
550 53.545984 | 124227528 1442017 161513362831 1229 30263233
540 51.966235 | 1242275281442017161513362831122926322333
530 50.367091 | 124227528 14420171615133628 311229263233
520 48.935549 | 1242275281442017161513362 83112292633
510 48.144873 | 124227514420171615133628 3112292633
500 47727167 | 1242275144201716 1513628 31 122926 32 33
490 47.289638 | 1242275281442017161513362 829263223 33
480 45.690493 | 1242275281442017161513362 829263233
470 | 44.258952112422752814420171615133628292633
460 42.841787 | 12422752814420171615133628322333
450 41.242643 | 124227528144201716151336283233
440 40.479983 | 1242275281442017161513362 322333
430 38.880839 | 12422752814420171615133623233
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Table A4. The solutions for OP33(Continued)

420 | 38.090163 | 124227514420171615133623233
410 | 37.661943 | 1242275281442017161513632333
400 | 35.317936 | 12422752820171615133414272333
390 34.79102 | 124227528 144201716 1513 323 33
380 | 34.000344 | 12422751442017 16151332333
370 33.702295|12422751442017161513333
360 | 32.764666 | 1242275282017 161334 142723 33
350 | 32241088 | 12422271442017 16151332333
340 | 31.640763 | 1242275282017 1363414272333
330 31.256251 | 124227528201713634142333
320 28.769841 | 1242275282017 133414272333
310 28242925 |12422752814420171332333
300 | 27.452249 | 12422751442017 1332333
290 27.1542(12422751442017 13333
280 | 25.775957 | 12422752820133414272333
270 | 25249041 | 124227528 1442013 3 23 33
260 | 24.458365|1242275144201332333
250 | 23.606682 | 1242275282034 14272333
240 | 23.079766 | 1242275281442032333
230 21.691966 | 124227528204 14272333
220 | 21.307454 | 124227528204 142333
210 21.017543 | 12422528204 142723 33
200 19.792061 | 124227528 1443272333
190 18.566418 | 124227528 14432333
180 15.230463 | 1242275284 14272333
170 14.467041 [ 1242275144272333
160 13.782064 | 12422751442333
150 13.065388 | 1242275142723 33
140 12.680876 | 12422751423 33
130 12.022808 | 1242227 144 23 33
120 10.9462 | 1242275272333
110 10.766276 | 12422752733
100 |  9.9974719 | 1242272723 33

90| 9.8175483 1242272733

80| 7.1432002 | 12422272333

70| 6.5876393 | 124222333

60| 54237028 | 1222433

30| 4.7152542 | 124272333

20| 3.4965295 | 1242333

10| 2.0421677 12433
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Table AS. The solutions for OP32-1-

Route Profit | Route Cost Route
285 81.334087 | 1192027 31262524232221121110982371365414151617293028 1832
280 | 77.725194[1192027312625242322211211109823765414151617293028 1832
275| 74.660714[128302917161514456732891011122122232425263127201932
270 73.05713 [ 12830291716151445673281011122122232425263127201932
265| 70.730878 | 1282917161514456732891011122122232425263127201932
260 | 69.127294 [128291716151445673281011122122232425263127201932
255 67.878237 | 12817161514456732891011122122232425263127201932
250 | 66.274654 [ 12817161514456732810111221222324252631272019 32
245 65.084802 | 12817161514457328 1011 122122232425263127201932
240 | 64201533 [ 128171514456732891011122122232425263127201932
235 62.632557 | 1273126252423222112111082375414151617 2832
230 | 61.566164 [ 128171615144567328101112212223252631271932
225 59.88802 | 1273126252322211211108237654141516172832
220 | 58.698169 | 127312625232221121110823754141516172832
215| 57.541531[128273126252423222112111082375414151832
210 | 56.394861 | 128184567328910111221222324252631272019 32
205 | 54.791278 | 128184567328 1011 122122232425263127201932
200 | 52.864974 | 1282731262524232221121110982376541832
195 51.261391 | 128273126252423222112111082376541832
190 | 49.192619 [ 128273126252423222112111098237651832
185 | 47.589035|12827312625242322211211108237651832
180 | 46.230565 | 128273126252423222112111082375632
175 | 44.511795|128273126252423222112111098237632
170 | 42.908211 | 12827312625242322211211108237632
165 | 42.296177 | 1282731262523222112111082375632
160 | 40.577407 | 1282731262523222112111098237632
155 38.973823 | 128273126252322211211108237632
150 | 38.015862 | 12827312625242322211211108913 32
145 36.812312 | 128273126252423222112111091332
140 | 35.881122|12731262524232221121110891332
135 34.677572 | 12731262524232221 12111091332
130 | 32.877924 | 1282731262523222112111091332
125 31.946733 | 127312625232221 121110891332
120 | 30.743183 | 127312625232221 12111091332
110 | 28.796684 | 1282731262221 1211108913 32
105 27911361 | 12827312625232221121932
100 | 27.014901 | 12827 3126252322212019 32
95 25.458394 | 12731262221121110913 32
90 | 24.880161|127312625232221201932
85 23.80769 | 1273126252322211932
80| 22.626571|1282731262221121932
75 21.730111 | 12827 312622212019 32
70| 20.491831|127312622211219 32
65 19.595371 | 127 312622212019 32
60 18.5229 | 12731262221 1932
55 16.398301 | 128 27 31 26 20 19 32
50 16.07236 | 12827 312620 32
45 14.263561 | 1273126201932
40 13.93762 | 127 31 26 20 32
35 13.317947 | 127262019 32
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Table AS. The solutions for OP32-1- (Continued)

30 12.66983 | 12827201932
25 11.895729 | 12827 19 32
20 10.217585 | 1272832
15] 6.8665211 | 1281832
10| 4.1425748 | 128 32
Table A6. The solutions for EIL30
Route Profit | Route Cost Route
12750 385.86423 | 11924 1112131617148 1810915222027292830262572635423211
12650 37628171 | 11924 1112131617148 18109152223453627252630292721201
12550 370.45049 | 11924 1112131617148 1810915222343627252630292721201
12500 | 350.08104 | 11924 1112131617148 181091522202730262572635423211
12400 | 341.11548 | 11924 1112131617148 18109152221234362725263027201
12350 | 333.60228 | 11924 111213161714181091522234536272526302721201
12250 | 327.77106 | 11924 11121316171418109152223436272526302721201
12150 | 32241079 [11924111213161714181091522214362725263027201
12125 318.59429[119241112131617141810915222336272526302721201
12025 | 314.5134611192411121316171418109152236272526302721201
11925 311.65174111924111213161714109152236272526302721201
11875| 310.77783|119242215910131211141716273026252632321201
11825 | 309.54573111924221591018131211162730262572632321201
11775 | 305.66071 | 1192422159101312141716273026252632321201
11750 | 298.38275|1192411121316171410915223622526307421201
11650 | 294.79622 1192411161213 181091522362252630742321201
11575 290.98106|11924111612131091522212336225263027201
11550 | 287.97805|11924111612131091522362252630742321201
11450 | 284.30868 | 119241116121310915223622526307421201
11350 281.75621 | 11924 16121310915223622526307421201
11300 281.67188 | 11924 111612131091522362252630421201
11275 281.55864 | 11924 1116121310915222336225263021201
11250 280.22956 | 11924 16121310915223522526307421201
11175 27747781 |1192411161213109152236225263021201
11075 | 27492534 111924161213109152236225263021201
10975 | 273.39869|11924161213109152235225263021201
10950 | 272.52643 | 11924161213915223522526307421201
10875 269.77467 | 11924 111612139152236225263021201
10775 267.22221 [119241612139152236225263021201
10675 265.69556 | 119241612139152235225263021201
10625 264.71492 11202130262526322913121624191
10525 263.18828 | 1202130262525322913121624191
10475 262.70806 | 1203026252632215913121624 191
10450 262.30094 [ 1202143026252632215913121124191
10375 261.18141{1203026252532215913121624191
10350 260.77429 [ 1202143026252532215913121124191
10325 258.10687 | 120213026252632215913121124191
10175 255.59958 | 1202130262526322913121124191
10125 255.27405112021302625232215913121124191
10075 255.07084 [ 12021302625263229131224191
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Table A6. The solutions for EIL30 (Continued)

9975 | 25276676 | 120213026252322913121124191
9875 251.0854312030262526322913121124191
9825 250.7599 | 120302625232215913121124191
9775 249.55879 12030262525322913121124191
9675 | 24825262 |1203026252322913121124191
9225 | 236.76308 | 119242221234362725263027201
9200 | 23493793 |120273026252756323212224191
9100 | 227.58631|12027302625726323212224191
9025 | 22533986 | 12021234573026252632224191
9000 | 225.07311[12027302625275323212224191
8975 | 224.10715]120273026252634212224191
8950 | 218.59976|1202730262526323212224191
8925 | 215.59675]|1202123473026252632224191
8825 | 211.92738112021473026252632224191
8700 | 210.87012]1202173026252632224191

8675 | 209.29058 | 1202143026252632224191

8650 | 209.17734111924222336225263021201
8625 | 209.09456 | 1192422322526307421201

8575 | 207.7639411192422352252630421201

8550 | 205.09651|119242236225263021201

8450 | 203.56986 | 119242235225263021201

8350 | 202.26369 | 11924223225263021201

8250 | 200.58236|1203026252632224191

8150 199.05572 11203026252532224191

8100 197.25523 [12021302625263221

8000 19572858 | 12021302625253221

7900 194.42241 [ 1223225263021201

7800 19274108 | 1223 6225263020 1

7700 191.21443 | 12235225263020 1

7600 189.90826 | 1223225263020 1

7300 189.43731 (1223252630201

7275 188.89561 [ 120273026257263423211

7250 187.07046 | 12027302625275632321 1

7225 185.74028 [ 120273026252635423211

7175 18522623 [1214362725263027201

7150 179.71884 | 12027302625726323211

7100 179.07046 | 12027302625256323211

7025 176.23968 | 12027302625263421 1

7000 170.73229 [ 120273026252632321 1

6900 169.20564 | 1202730262525323211

6800 167.89947 | 120273026252323211

6750 167.7487 | 12073026252532321 1

6725 167.21311 [ 12043026252532321 1

6700 162.19607 [ 12123362252630201

6600 160.66943 [ 12030262525323211

6500 159.36326 | 120302625232321 1

6400 158.85519 [ 1203026252321 1

5850 156.12363 | 119242232321201

5750 155.61556 1 1192422321201

5700 155.58107 | 1242232321201

5600 155.073 12021322241

5450 153.45495 1212332224191
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Table A6. The solutions for EIL30 (Continued)

5400 148.28235 112232321201
4975 143.54802 | 1221591018 14171613 121124191
4875 141.28633 [1221591013121417161124191
4775 138.73386 | 12215910131214171624191
4725 137.08109 [ 12215910131217161124191
4675 1334304 | 1221591018 1312161124191
4575 126.61223 | 12215910131216112419 1
4475 124.05976 | 1221591013121624 191
4325 121.55248 |12291013121624191
4275 118.9091 | 1221591312161124191
4025 113.84935[122913121624191
3875 11243714 [ 12291013121124191
3775 111.9084 | 122910131224191
3725 107.24129 | 12215913121124191
3625 106.71255 | 122159131224 1911
3575 10473401 | 122913121124191
3475 10420526 | 1229131224191
3425 104.19145 [ 1229131211241
3350 103.72879 | 1229122419 1
3325 103.6627 | 1229131224 1
3275 103.58113 1229131211191
3200 103.18623 | 122912241
3150 103.10466 | 12291211191
3125 100.0993 [ 12213121124191
3025 99.57056 | 122131224191
3000 | 98.197521 (122121124191
2900 | 97.668779 [ 1192412221
2850 97.65496 | 1221211241
2750 | 97.126218 [ 12212241
2700 | 97.044642 [ 1191112221
2650 | 88.483477 (119242221201
2500 | 87.940916 | 1202122241
2350 | 82.624585 (1192422201
2200 | 80.642195 (12221201
1950 | 54230936 (11924221
1800 | 53.688375 (124221
1650 | 53.562273 (119221
1500 | 46.389654 [ 1221
700 | 40.616006 | 12021 1
450 | 22.903241(124191
300 22.36068 | 1241
150 | 18.973666 | 1191
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Table A7. The solutions for EIL33

Route Profit | Route Cost | Route
29370 | 448.10668 | 131322 1415161826272829301725242321222019111098763312133451
29330 | 444.25998 [ 131322141516182627282930172524232122201911109873312133451
29120 | 437.38696 [ 13132215161826272829301725242321222019111098763312133451
29080 | 433.54027 [1313221516182627282930172524232122201911109873312133451
28870 | 422.91531[13132214151618262728291725242321222019111098763312133451
28830 | 419.06862 | 1313221415161826272829172524232122201911109873312133451
28670 | 417.69627 [ 13132214151618262730292825242321222019111098763312133451
28630 | 413.84957|1313221415161826273029282524232122201911109873312133451
28620 412.1956 | 131322 151618262728291725242321222019111098763312133451
28420 | 406.97655|131322151618262730292825242321222019111098763312133451
28380 | 403.12986 | 131322 15161826273029282524232122201911109873312133451
28180 | 398.58868 | 131322 1516182627282917252423212220191110987331213351
28170 | 395.31592|131322141516182627292825242321222019111098763312133451
28130 | 39146922 | 13132214151618262729282524232122201911109873312133451
27920 384.5962 | 1313221516182627292825242321222019111098763312133451
27880 | 380.74951 | 131322151618262729282524232122201911109873312133451
27680 379.5218 [ 131322 1516182627292825242321221911109873312133451
27670 | 378.00535|1313221415161826272829172524232122201911109876331213341
27630 | 374.15866 | 131322 141516182627282917252423212220191110987331213341
27480 | 370.98928 | 131322 15161826272928252423212220191110987331213351
27430 | 370.58261 | 131322141516182730292826252423212220191110987331213341
27420 | 367.90571 | 13132215161826272829172524232122201911109338761213341
27220 | 363.70959 | 131322 15161827302928262524232122201911109876331213341
27180 359.8629 | 1313221516 182730292826252423212220191110987331213341
26980 | 358.63519 | 13132215161827302928262524232122191110987331213341
26970 | 352.04896 | 131322 14151618272928262524232122201911109876331213341
26930 | 346.55926 | 1313221415161826272928252423212220191110987331213341
26720 | 341.32924 | 131322151618272928262524232122201911109876331213341
26680 | 335.83955|13132215161826272928252423212220191110987331213341
26600 | 335.36741 | 1313221516182627292825242321222019111098331213341
26480 | 334.61184 | 131322151618262729282524232122191110987331213341
26420 | 333.28922 | 1313221516182627292825242123201911109876331213341
26380 | 331.08552 | 131322151618272928262524212320191110987331213341
26280 | 330.92903 | 131322 151618272928262524232220191110987331213341
26200 330.4569 | 131322 15161827292826252423222019111098331213341
26100 | 330.23758 | 131322 151618272928262524212319111098331213341
26080 | 329.70133 | 131322 1516182729282625242322191110987331213341
26020 | 328.08332[13132215161827292826252423201911109876331213341
26000 | 327.58619 | 131322151618262729282524232219111098331213341
25980 | 322.59363 [1431312337891011192023242528292726181615232311
25580 | 319.02646 | 1313221516182627292825232220191110987331213341
25380 | 317.79875|13132215161826272928252322191110987331213341
25320 | 316.18075|143131233678910111920232528292726181615232311
25280 | 312.33405|14313123378910111920232528292726181615232311
25230 | 310.28629 | 1431312337891011192022212326282927 181615232311
25150 | 309.81415[143131233891011192022212326282927181615232311
25030 | 309.05858 | 14313123378910111922212326282927181615232311
24950 | 308.58645|1431312338910111922212326282927181615232311
24870 | 307.57947[143131233678910111920222326282927181615232311
24830 | 303.73277[14313123378910111920222326282927181615232311
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Table A7. The solutions for EIL33 (Continued)

24750 | 303.26064 | 1431312338910111920222326282927181615232311

24630 | 302.50507 | 143131233789101119222326282927181615232311

24570 | 300.88706 | 1431312336789101119202326282927181615232311

24530 | 297.04037 | 143131233789101119202326282927181615232311

24450 | 296.56823 | 14313123389101119202326282927181615232311

24300 | 296.52725 |143123389101119202326282927181615232311

24250 | 296.19242 | 143131233891011192326282927181615232311

24050 | 295.83589 | 1313123389101119202326282927181615232311

23980 292.1097 |1431312337891011192023262829271615232311

23270 | 282.70354 | 13132215161827262322201911109876331213341

23070 | 281.47584 | 131322151618272623221911109876331213341

22980 | 278.92574 | 13132215162728262320191110987331213341

22970 | 276.01114 | 131322151618272623201911109876331213341

22930 | 272.16445|13132215161827262320191110987331213341

22420 | 271.08047 | 1313221516272623201911109876331213341

22300 | 266.76164 | 13132215162726232019111098331213341

21930 | 263.32708 | 1313221527262320191110987331213341

21670 | 262.10729 | 1313215272826181621412331110987613341

21630 | 258.96541 | 131322151618272620191110987331213341

21230 | 258.22835|131321527262320191110987331213341

21180 | 256.42202 | 1313221527261820191110987331213341

21070 | 250.41532 | 13132152726181621412331110987613341

21030 | 249.87276 | 1313215272618162141233111098713341

20950 | 249.77546 | 1313215272618162141233 11109813341

20880 | 249.50907 | 13132152726181621412331110987341

20840 | 249.44526 | 13132152726181621412331110986341

20800 | 249.35121 | 1313215272618162141233111098341

20780 | 248.95505 | 13132152726181621233111098713341

20700 | 248.85776 | 1313215272618162123311109813341

20590 | 248.52755|131321527261816212331110986341

20550 2484335 |13132152726181621233111098341

20520 | 246.39597 | 1313215272618162141233111098764 1

20480 | 246.39571 | 1313215272618162141233111098741

20440 | 24598833 | 1313215272618162141233111098641

20320 | 244.98439 | 131321527261816214123391087613341

20280 | 244.44183 | 13132152726181621412339108713341

20200 | 244.34454 | 1313215272618162141233910813341

20090 | 244.01433 | 131321527261816214123391086341

20030 | 243.52412 | 131321527261816212339108713341

19950 | 243.42683 | 13132152726181621233910813341

19840 | 243.09662 | 1313215272618162123391086341

19800 | 243.00257 | 131321527261816212339108341

19770 | 240.96504 [ 13132152726181621412339108764 1

19730 | 24096478 | 14781093312142161826271532311

19690 240.5574 |1468109331214216182627153231 1

19520 | 240.0473311467810933122161826271532311

19480 | 240.04707 [147810933122161826271532311

19440 |  239.63969 | 14681093312216182627153231 1

19130 239.5448 | 1431378109331214182627153231 1

19120 | 239.47521 |1431367891011331214215162732311

19080 | 238.93265 | 143137891011331214215162732311
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Table A7. The solutions for EIL33 (Continued)

19070 | 237.78709 | 14678109331214161826271532311
18670 | 235.56852 [14313678910113312142152732311
18570 | 235.13019 [1467891011331214216271532311
18370 | 23371862 [14313678109331214216271532311
18330 | 233.17606 [ 1431378109331214216271532311
18140 | 23274856 [14368109331214216271532311
18120 | 23154917 [14678910113312142152732311
18080 | 231.54891 |1478910113312142152732311
18040 | 231.14153 |1468910113312142152732311
17920 | 230.13759 [143136781093312142152732311
17880 | 229.59503 [14313781093312142152732311
17800 | 229.49774 |1431381093312142152732311
17690 | 229.16753 |143681093312142152732311
17630 | 228.67733|143137810933122152732311
17550 | 228.58003 [ 14313810933122152732311

17490 | 22837392 [ 14681093312216271532311

17480 | 22831364 | 1437810933122152732311

17440 | 22824983 |1436810933122152732311

17400 | 228.15577[143810933122152732311

17370 | 226.11824 |146781093312142152732311
17330 | 226.11798 [14781093312142152732311

17290 2257106 [ 14681093312142152732311

17120 | 22520053 | 1467810933122152732311

16770 | 224.76921 |1467893312142152732311

16730 | 224.768951147893312142152732311

16690 | 22436157 [146893312142152732311

16630 | 22425261 [14313781093312142151627311
16550 | 224.15532[1431381093312142151627311
16520 223.8515|14678933122152732311

16480 | 223.8512411478933122152732311

16440 | 223.44386|1468933122152732311

16420 | 22230006 | 131271521412331110987641
16380 2222998 [14789101133121421527311

16340 | 221.89242114689101133121421527311

16180 | 220.345921143137810933121421527311
16070 | 220.32606 [ 14367810933121421527311

15990 | 21991842 [1436810933121421527311

15930 | 21942822 11431378109331221527311

15670 | 216.86913 | 1467810933121421527311

15120 | 207.67262 [ 13132151621412331110987613341
15080 | 207.13006 [ 1313215162141233111098713341
14670 | 202.02069 [143136789101133121421532311
14630 | 20147813 [14313789101133121421532311
14550 | 201.38083 [1431389101133121421532311
14440 | 201.05063 [143689101133121421532311
14400 | 200.95657114389101133121421532311

14380 | 200.56042 | 143137891011331221532311
14300 | 200.46313 [ 14313891011331221532311

14190 | 200.13292 | 1436891011331221532311

14150 | 200.03887 [ 143891011331221532311

14120 198.00134 [146789101133121421532311
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Table A7. The solutions for EIL33 (Continued)

14080 198.00108 [ 14789101133121421532311
14040 197.5937|14689101133121421532311
13920 196.58976 | 1431367810933121421532311
13880 196.0472 |143137810933121421532311
13800 1959499 |14313810933121421532311
13690 195.6197 | 1436810933121421532311
13650 195.52564 | 143810933121421532311
13630 195.12949 | 1431378109331221532311
13550 195.0322 | 143138109331221532311
13440 194.70199 [ 14368109331221532311
13370 192.57041 |1467810933121421532311
13330 192.57015147810933121421532311
13290 192.16277 | 146810933121421532311
13120 191.6527 |14678109331221532311
13070 191.49892 | 1431367891011331214232311
13030 190.95636 | 143137891011331214232311
12950 190.85907 | 14313891011331214232311
12880 190.59267 | 1437891011331214232311
12840 190.52886 | 1436891011331214232311
12800 190.43481 | 143891011331214232311
12780 190.03866 | 1431378910113312232311
12700 189.94136 | 143138910113312232311
12630 189.67497 [14378910113312232311
12590 189.61116 [14368910113312232311
12550 189.5171[1438910113312232311
12520 187.4795711467891011331214232311
12320 186.06799 [ 13132214123391087613341
12280 185.52543 | 1313221412339108713341
12200 185.42814 [ 131322141233910813341
12090 185.09793 | 13132214123391086341
12050 185.00388 [ 1313221412339108341
11770 182.04864 | 13132214123391087641
11690 181.641 [1468109331214232311
11650 181.52146 [ 14810933121423231 1

11520 181.13094 |146781093312232311

11370 180.65242 [ 14313678109331232311
11330 180.10986 | 1431378109331232311
11250 180.01257 [143138109331232311

11180 179.74617 | 1437810933123231 1

11140 179.68236 | 14368109331232311

11100 179.58831 | 1438109331232311

10840 179.37426 | 146893312232311

10820 176.63307 [ 1467810933123231 1

10780 176.63281 [ 1478109331232311

10740 17622543 [1468109331232311

10220 17528404 |146789331232311

10140 174.8764 [ 1313212339864 1

9780 174.65569 | 14313781093312142321
9700 174.55839 | 1431381093312142321

9630 174292 [143781093312142321

9590 174.22819 | 143681093312142321
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Table A7. The solutions for EIL33 (Continued)

9550 17413413 11438109331214232 1
9530 17373798 | 143137810933122321
9450 173.64069 | 14313810933122321
9340 17331048 | 1436810933122321
9300 173216431 143810933122321
9270 171.17891146781093312142321
9230 171.17864 | 1322141233910874 1
9190 170.77126 | 1322141233910864 1
9150 170.65171 |1 132214123391084 1
9020 17026119 | 132212339108764 1
8940 169.85355|132212339108641
8870 169.78268 | 132123391087613341
8830 169.24012 |1 13212339108713341
8750 169.1428211321233910813341
8680 168.87643 |1 132123391087341
8640 168.81262 | 132123391086341
8600 168.71856 | 13212339108341
8430 168.50778 | 1321233910871331
8320 165.76333 |1 132123391087641
8280 165.76307 | 1321233910874 1
8240 165.35569 | 1321233910864 1
7920 150.17296 | 131312331110987641
7880 150.1727 1 1313123311109874 1
7840 149.76532 | 1313123311109864 1
7800 149.64578 | 1313123311109841
7650 149.6048 [ 13123311109841
7400 149.532 | 113123311109841
7320 149.04986 | 1313123311987641
7240 148.64222 | 13131233119864 1
7200 148.52267 | 13131233119841
7170 144.74203 | 131312339108764 1
7130 144.74177 | 13131233910874 1
7090 144.33439 | 13131233910864 1
7050 144.21485|13131233910841
6900 144.17387 131233910841

6650 144.10107 | 1131233910841

6570 143.393 | 13131233987641
6530 143.39274 | 1313123398741

6490 142.98536 | 1313123398641

6450 142.86582 | 131312339841

6300 142.82484 11312339841

6050 14275204 | 11312339841

5900 142.73969 | 112339841

5670 140.2699 [ 1313123387641

5630 140.21485 148733121331

5590 139.86226 | 146833121331

4570 137.7572 (13131278641

4530 137.63766 | 1313127841

4450 137.60376 | 131312841

4200 1329353131321

2900 131.46373 14311
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Table A7. The solutions for EIL33 (Continued)

2520 131.15174 | 14678 1
2500 115.94826 [ 1311
1600 113.78666 | 1451
1200 | 96.664368 | 151
400| 68.876701 | 141
Table A8. The solutions for EIL51
Route Profit | Route Cost Route
1476391233228749248442515261442 412043451646 3440 3135223021
777 442.7971 13637429322792331751105011381851948131
14712396504031352251101733021363742932279232332874924844
772 44243448 1251526191442412043454634163818548131
1476501140313522175110391233223330213642932927 84425244928
771 437.8986 | 7152619144241204345463416381854813 1
14765011403135221751103912330213637429322792323328749248
770 | 42476107 | 44251526 144220434546341638 185194813 1
147282331239103135511722303213642329322794972484425152619
764 415.93619 | 1442204345164634401150638 1854813 1
12823312396501140313522511017330213637429322794972484425
762 | 406.72664 | 1526 14422043 4546341638 1851948 1347 1
147287492484425152619514422043453816463440313522511732136
756 400.67107 [ 3742932279232331239105061348 1
1471365010391233223927322943621317512235314034461638 184543
753 397.59233 2042145481926 15254482449728 1
1282331239650114031355110173302136429329278442524497 1526
748 3947762 | 1914422043454634 1638 185481347 1
128233121732136429329278442524497 152619 1442204345 1646 34 40
745 390.48818 | 31352251105039638 185481347 1
12823312396501140313551101732136429322794972484425152619
742 | 385.66634 | 144220434546341638 1854813471
1287492484425152619514422043453816463440313551173302136429
741 380.36083 1 32923233123910506134847 1
1287492484425152619514422043453816463440313551173213642932
737 378.63702 [ 279232331239105061348 1
172823312396501140313551101732136429329492484425152619 14
730 377.9321 [42204345463416381854813 1
1287492484425152619514422043451646344011313551173302136429
729 | 371.638121329233123910506134847 1
12823312173213642932949724844251526195 144220434538 164634
727 366.78258 [ 40313551 1050396134847 1
1282331217321364293227949724844251526195 1442204345 164634
725 366.41557 | 40313551 1050396 134847 1
1283312173213642932949724844251526195 14422043 453816463440
720 | 360.88377 | 3135511050396 134847 1
147650103912332872544824499322943621303175135314034461645
717 356.42505 1432042 14261519548 131
1282331232136429329498247 1526195 144220434538 1646 3440 31 35
714 35471154 122 17511050396 134847 1
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Table A8. The solutions for EIL51 (Continued)

1474813650114034461645432042141926152524827932294362131751

710 | 350.36999 [353110391233228497 1
1283312396501140313551101732136429329498247 152619 14422043
707 | 349.20993 [ 4546341638 1854813471
128233123965010313551173213642932927824497 152619 14422043
702 | 337.18144 {454634 163818548 13471
128233123965010313551173213642932927824497 152619 14422043
697 | 335.93656 [45463416381854813 1
12833123965010313551173213642932927824497 152619 1442204345
695 | 331.28263 |463416381854813471
147283312173213642932927824497 152619 14422043451646 34403135
688 | 327.32798 [ 5110503961348 1
1471348 183816344645432042141926157492489322943621317513531
686 | 326.61919 | 105063912332281
128331239173213642932927824497 152619 14422043 45 16 46 34 40 31 35
683 | 323.35949 511050613481
1287248499322943621317105135314034461645432042142615194813
681 316.95439 | 650391233471
128331239650103135511732136429329498247 152619 14422043 4546
671 316.09264 | 3416381348 1
1283312321364293294982471526191442204345164634 115010313551
667 | 31493473 11739613481
1331239650103135511732136429329498247 152619 14422043 45 46 34
664 | 31398828 | 163818481347 1
1331239650103135511732136374293292782449287 1526 1442204345
663 | 313.16432 1638185194813 1
12823312396501031355117321364293294982471526144220434516
662 | 304.88319 |38185194813471
128331239650103135511732136429329498247152619 144220434516
655| 303.56619 381854813471
12833123965010313551173213642932927824497152619 1442204345
647 | 301.14923 | 3818548131
128331239650103135511732136429329498247152614422043453818
645 | 29297062 | 5194813471
12833123965010313551173213642932982449715261442204345185
636 | 289.62139 [ 194813471
12833123965031355117321364293294982471526144220434538185
629 | 286.88721 1948131
12833123965010313551173213642932927824497152614422043519
624 | 283.55297 [4813471
14733123965031355117321364293298244971526144220434538185
619 | 282.58251 1948131
128233123965010313551173213642932927824497 15261442205 1948
618 | 279.64138 | 13471
147134819520421426157248499322943621303175135311050639 12
610 | 27596457 | 33281
12833123965031355117321364293298244971526144220435194813
606 | 274.35867 [ 471
12833123965010313551173213642932927824497152614425194813
602 | 26743138 [471
595 | 262.58971[128331239650103135511732136429329498247152614425194813471
578 | 258.30206 | 1331239650313551173213642932982449715261442205194813471
575 | 255.09862 | 13312396501031355117321364293294982471526144251948131
569 251.7157 [ 14733123965031355117321364293294982471526144251948131
563 247.0328 [ 13312396501031355117321429329498247152614425194813471
560 245.1679 | 147283312396501031355117321364293294971526144251948131
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Table A8. The solutions for EIL51 (Continued)

550 243.7326 | 147331239650103135511732142932949715261442204351948131
549 240.7966 | 1473312396503135511732136429329492871526144251948131
543 | 238.79986 | 14733123965031355117321429329498247152614421948131
535 233.26861 | 1283312396503135511732136429329497152614421948131
534 | 23271929 | 147331239650103135511732142932949287152614421948131
528 227.611 [ 14733123965010313551173214293294971526144251948131
514 226.87765 | 1471239650313551173214293298247152614421948131
513 | 223.05339 | 14712396503135511732136429329497152614421948131
511 222.45613 | 14712396503135511732142932949287152614421948131
508 | 220.79259 [ 11348191426157499322943621317513531506391233281
507 | 218.54225[147123965010313551173214293298244928715261948131
493 | 209.92902 | 1473312396503135511732142932949824715261948131
471 205.41212 | 14765031355117321429329497152614425194813 1

465 199.63184 | 1471348 1926157499322942131751353150612332281

459 195.60747 | 11348192615749929436213175135315063912331

457 19525544 | 12833123 1751353110503963845432042142615194813471
441 189.17203 | 12833123 17513531503963845432042142615194813 1

430 183.79534 | 147123 1751353110503963845432042142615194813 1

425 182.46343 | 14733123175135311050396134819421426157281

423 181.23005 | 1287152614425194813639503135511731233471

419 177.93989 | 1471348 192615749929421317513531103912331

416 177.73007 | 133123 1751353150638454320421426151948 13471

411 176.48519 | 133123 1751353150638454320421426151948131

407 174.99032 | 17152614425194813639501031355117312471

401 170.39204 | 14765031355117321429949715261948131

389 167.19946 | 1284971526141948136503135511731233471

387 160.6282 | 133123 1751353110503961348192615749281

381 157.24528 [ 128497 15261948 13639503135511731233471

371 156.15685 | 113481926 1574928333 1751353110503912471

369 151.82065 | 12849715261948136395031355117312471

349 147.29808 | 1715261948 13650313551173391233471

345 14149834 [ 17152619481365010313551 1731233471

337 136.88881 [ 128715261948 1365031355117312471

322 134.08919 | 147123 175135315039613481926151

318 13222821 [ 1471231751105039613481926157281

314 129.88022 [ 1715261948 1365010355117312471

307 127.64856 | 115261948 13650313551 17312471

303 12578758 [ 128715261948 13650105117312471

298 125.65683 | 112391051353150613481926157 1

296 124.60636 | 14712317396134819261574928 1

293 122.47387 | 12871526194813650101731247 1

284 117.99831 | 1194813639501031355117312471

281 116.98231 [ 11948 13650103135511731233471

276 115.48307 [ 1473331239613481926157281

273 113.15978 | 1194813 63950313551 17312471

257 109.33321 [ 11948 13650103551173 1233 1

256 108.37382 | 17152619481363912333 1

254 108.31128 | 1194813 65010313551173912471

252 103.22058 | 128715261948 136503912471

246 99.85429 [ 147331239613481926157281

241 98.398678 | 128715261948136391233 1

237 97.566946 | 1715261948 136503912471
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Table A8. The solutions for EIL51 (Continued)

234 94.42966 | 128715261948136391247 1

219 | 88.776029 [ 1715261948 136391247 1

212 | 88.250697 | 1284924715261948 1347 1

205 84.15885 | 14713485192615749281

200 | 82493944 | 147613481926157281

191 | 75.550207 [ 1284971526194813 1

183 7442276 | 128715261954813 1

179 | 68303873 | 1287152619481347 1

174 | 67.058995 [ 128715261948 13 1

164 | 62.650242 [ 1715261948 13471

159 | 61.405364 [ 1134819261571

151 61.016039 | 1287151948 13471

149 | 59.063628 [ 1 1526194813471

144 57.81875 11526194813 1

136 | 55.362408 [ 1715194813471

131 54.11753 | 1715194813 1

125 53.74012 | 1287194813 1

121 51.775794 | 115194813471

115| 49331368 [ 17194813471

109 | 45497982 14713485191

104 | 44253104 113485191

100 | 38.134217 [ 1471348191

95| 36.889339 11348191

71 34.962644 | 1474819 1

66 | 32.261062 148191

59| 24741117 (14813471

54| 23.496239 148131

34 17.369394 [ 11347 1

29 16.124515 [ 1131

16 {1281

W

4472136 | 1471

Table A9. The solutions for EIL76

Route
Profit

Route Cost

Route

1364

558,69987

12768 354753285463049313752963743424464 17445 33512656192550245742
436523622248377072617121386 16581455209 3685415601267 663932115973
401041131852769761

1357

545,35283

12768 3547532846301658145520936854 1560 1267 6639 11322651 19255044533
10407359 13 41 18 52 17 64 34 74 2 44 24 57 42 43 65 23 63 75 29 622248 377072 61 71 21
386493137697651

1349

539,14696

12768354753281455209 3685415601267 6639 11322619513310407359 134118
5276931363742346417445255024574244436523622975224837726171213858
1664930465761

1348

536,41506

1276835475328 1658145520936854 15601267 663959 1132401026 19513345441
13185273464 17502524574265434427463236229753314922483772617121386
304656976 1

1345

534,20018

127683547532846301658145520936854 1560 1267 6639 11591341 18521744533
1040322651 1925574244 43 65232 64 34746329 62224837707261 7121386493175
37695761
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Table A9. The solutions for EIL76 (Continued)

1343

528,68262

127 68 3547 53 28 46 30 16 58 14 55209 36 8 54 15 60 12 67 66 39 32 11 59 73 40 10 26 51 19
25504453341 1318521764 3474244574243 65236329 622248377261 712138649
317537695761

1337

527,28155

127683547532846301658145520936854 1560 1267 6639 11322651 19254453310
4073591341 185217 643474 632245742444365232975224837707261712138649
3137695761

1336

526,7812

1276835475328 1658145520936854 15601267 6639 11322651 19255017 4453310
4073591341 1852769 31363742346424574244436523296222483761712138649
30465761

1334

523,03017

12768354753281658145520936854 15601267 663959 113226104073 134118527
3464174453351192550245742444365232746329753314922483772617121386
304656976 1

1326

520,89483

1276835475328581455209368541560671239591132401026511925445334113
185217 642457424443 6523234746329622248377261712138649304631753769
5761

1324

517,71374

1276835475328 1658145520936854 15601267 6639 1159 73401026 51 19 25504 45
3341131852734176424574244436523622963274331752249483772617121386
304656976 1

1323

513,97763

12768354753281658145520936854 15601267 6639 11322651192544533104073
5913411852176434742445742436523632975331492248377261712138630465
697761

1321

513,7805

12768354753281455209368541560 1267663959 1132265119254453310401341
185273417 6424 57426543442746323622975331492248377261712138630465
69761

1315

511,38269

1276835475328145520936854156067123911597340102619513345441131852
769 3346417502524574265434427463236229753149224837726171213858166
30465761

1314

507,45147

127683547 5328581455209368 5415601267 663959 113240102651 19254453341
1318521764 3474244574243 6523632975331492248377261712138630465697
76 1

1312

503,03648

12768354753281455209368541560 12676639 113226511925501744533104073
59134118527346424574244436523274632975331492248377261 71213863046
569761

1306

501,41998

127683547 53281658 145520936854 15601267 663959 113226511925445331040
134118527341764245742654344274632975331492248377261712138630465
76 1

1303

500,84081

127683547 5328145520936854 156012676639 1132265119254453310407359 13
411852734176424574265434427463297533149224837707261712138630465
69761

1300

494,53867

127683547 5328145520936854 156012676639 11322651 19255017 44533104073
5913411852769 3346424574265434427463297531492248377261 71213863046
5761

1295

491,64539

127683547 5328145520936854 156012676639 1132265119254453310407359 13
411852734 1764245742654344274632975331492248377261712138630465 69
76 1

1289

490,67337

127683547 5328145520936854 156012676639 115973401026513345441131852
769 3133464 17502524574265434427463236229752249 48377261 71213863046
5761

1282

481,75578

127683547 5328145520936854 156012676639 115973401026511925445334113
1852769 31334176424574265434427463232975224948377261712138630465
761

1278

479,00593

127683547 5328145520936854 156012676639 11597340 1026511925504 453341
131852734 176424 574265434422363297533149224837617121386304656976
1

1276

4717,59075

1276835475328145520936854156067123911597340102651192544533411318
527341764 245742654344274632962224837726171213864930463175369576
1

1270

467,65748

1276835475328145520936854156012676639115973401026511925445334113
185273417 6424 5742654344274632975331492248377261712138630465 6976
1

1255

463,94326

1276835475328145520936854156012676639115973401026195133454411318
527341764245742654344274632329753314922483772617121386304656976
1

1252

460,25649

1276835475328145520936854151267663911597340102651192544533411318
52176434742445742436523632975314922483772617121386304656937761
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Table A9. The solutions for EIL76 (Continued)

16827 181341104032 1159396667 1260 1554 836947 355328463049 63821716172

1236 | 458,38833 [ 374822622963743464244436542572519513345417527693315761
1276835475328145520936854156012676639115973401026513345441131852
1230 443,7298 | 73417 6424 5742654344274 63297533149224837726171213863046569 76 1
16827 8369473553281455201554126766391159734010265133454411318527
1212 ] 433,90337 | 3464 17502557426543442746329331492248377261712138630465761
1682783694735532814552015541267663911597340102651192544533411318
1208 | 430,32314 | 5273417 64 24 57424344274 632933149224837726171213863046569761
12768354792036854 156012676639 1159734010265133454411318527341764
1192 | 424,97807 | 245742 6543442746329753314922483772617121386304628535761
127683547983620155412676639115973401051334544113 185273417 642457
1186 | 424,62843 |426543442746329753314922483772617121385816630462853569761
1276847836920 15541267 6639 11597340 1051334544113 1852175025 24 57 42 65
1185 | 424,56567 | 434423474 632975224837726171213864930462853355313769761
12768354798362015541267663911597340 1026513345441 13185273417642
1184 | 420,90985 | 4424 574243 6523 632975331492248377261712138630462853569761
127683547 5328145520936854156067 1239 11597340105133454411318527 34
1178 | 419,45023 | 6424 5742654344274633317529224837726171213864930465761
1276835475328145520936854156067123911597340102619513345441131852
1175 416,88285 | 73417 64245742442746329331492248377261712138630465761
1276835479368 54156012676639115973401051334544113 185273417 642457
1173 | 414,30918 | 42654344274632975331492248377261712138630462853569761
1276847 352853983620 155412676639 11597340 102651334544113185273417
1168 | 408,84486 | 6424 5742654344274632975331492248377261712138630465761
12768 3547532814552093685415126766391159734010265133454411318527
1161 | 408,02379 | 34 6424 5742 654344 26329331492248377261712138630465761
12768354793685415126766391159734010261951334544113 1852734176424
1160 | 406,97744 | 574265434426329753314922483772617121386304628535761
127683547936854156067 1239 11597340105133454411318527341764245742
1154 | 403,95529 | 6543442746329753314922483772617121386304628535761
12768 4735285398362015541267663911597340103345441 13 1852734176424
1142 | 396,26543 | 5742 65434427463297533149224837726171213863046569761
1276835478920 1554 12676639 11597340 1026513345441 13 18527 3417642457
1130 | 388,43885|4243442746329753314922483772617121386304628535761
12768 4735285393685415126766391159734010265133454411318527341764
1119 | 382,46053 |24 574243442632975331492248377261712138630465761
12768354792015541267663911597340102651334544113185273417 64245742
1115 | 378,30552 | 43442746329753314922483772617121386304628535761
1276835479854 1512676639 1159734010513345441 13185273417 6424574243
1101 372,8532[442746329753314922483772617121386304628535761
127683547936854151267663911597340103345441 13185217 6424574243442
1099 | 372,47875|3474632975331492248377261712138630462853576697 1
168354792015541267 6639 11 5973401033454 17 642457424344234746329753
1089 | 362,17265 | 3149224837726171213863046285357669752184113271
1276847936854151267663911597340105133454411318527 3417 6424574244
1073 | 361,35463|274632975331492248372138630462853355761
127683547936854 1512676639 1159734010513345441 1318527 346424574244
1065 | 356,60698 | 263 293314922483772617121386304628535761
1276847 3528539365415601267663911597340102651334544113 18527341764
1048 | 353,03282 | 24574244274632975331492248630465761
168278473528539201554126766391159734010265133454411318527341764
1044 | 351,19867 | 24574244274632975331492248630465761
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Table A9. The solutions for EIL76 (Continued)

1276835479201554126766391159734010265133454411318527341764245742

1040 | 343,17741 |43442746329753314922486304628535761

1276835479201554126766391159734010334544113185273417642457426543
1032 | 341,35757 [442746329753314922486304628535761

12768473528539201554126766391159734010265133454113 1852734176424
1022 | 340,13719 | 574244263297533149224863046569761

1276835479365415126766391159734010334541 1318527 34176424574244263
1019 336,2957 | 29753314922483721386304628535761

1276847352853983620155412676639 11597340 105133454411318527 346424
1015 | 333,83919 [ 5742442632975331492248630465761

127683547539201554 12676639 11597340102651334544113 18527 3417642457
1012 ] 332,43696 | 4244274632975331492248630465761

127684735285393685415126766391159734010513345441131852734176424
1009 | 331,75846 | 57424426329331492248630465761

118411327 6854628 533547983620 155412676639 11597340103345417 642457
1003 | 320,98301 |4244234746329752248649313769761

16835479854151267663911597340103345441 13185273417 6424442436523
978 | 318,70724 [29633314922486304628535761

12768354793654151267 6639 11597340105133454113 1852769 334742444243
975 | 318,47432 6523 63292248649314628535761

127683547936854151267663911597340103345441131852734263297533149
974 | 313,60538 1224837617121386304628535761

127683547985415126766391159734010334544113185273427463297533149
973 | 313,32358 | 22483772617121386304628535761

12768354753936541512676639115973401051334541 1318527 3424442436523
965 | 312,08304 | 632975331492248630465761

127683547936854151267 6639 11597340103345441 18527 342444243652329
960 | 307,45065 | 633314922486304628535761

12768354793654151267663911597340103345441 185217 64342444243652329
956 | 306,55241 | 633314922486304628535761

127683547936854151267663911597340103345441131852176434274632975
948 | 301,4382213314922486304628535697761

12768354793620155412676639115973401051334544113185276931334274
930 | 294,69962 | 6329224849 6304628535761

16827 181341453310407359 11396667 12541520947 3553284630648224931375
927 | 287,66358 |2963742346417527695761

17669733427463292248496304631528533547920 155412676639 1159734010
908 | 287,33499 | 51334544113182768 1

127685462853354793654 1512676639 115973401051334541131852173426329
904 | 281,47461[2248649313769761

17669 7347463293 3149224863046 28533547936854151267 6639 1159 734010
900 | 278,23247|5133454411318276851

17675217643436329 2248649 31304628 53354793654 151267 6639 11597340 10
889 | 278,06079 [33454411318276851

127683547539201554126766391159734010513345441131852734746333175
885 | 275,47011[29224849630465761

1276835479365415126766391159734010513345441185217347463297533149
881 | 274,45006 | 2248 6304628535761

118411327683547539365415126766391159734010513345417643476936329
879 | 274,03737 [224864931465761

1682718 13414453310407359 11396667 121554 8369 47 35 53 28 46 30 6 49 48 22 29
878 264,899 | 6374347693315761
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Table A9. The solutions for EIL76 (Continued)

12768 35475393654 1512676639 1159 734010334541 131852734263293314922

849 | 258,87176 [48630465761
1276835475393654151267 66391159 7340105133454118527347463293314922
843 | 258,79781 48630465761
168354792015541267 6639 115973401033454113 185217643473 632975314922
839 | 258,52054 48630465761
127683547539365415126766391159734010334541185217643473632922486
832 | 255,67373 4931465761
12768354753936854 151267 66391159 734010334541 1318733474632922486
827 | 254,28605 | 4931465761
176569733474632922486493146285335479365415126739115973401033454
825 | 250,86948 | 41 182768 1
1683547539201554 12676639 11597340103345441 1318527 343317529224849
821 | 249,16524 [ 630465761
16827 181341453310407359 11396667 12155436947 3553 28 46 30 648 2229 75 49
811 | 243,65247 (3137695761
176569 7343317529 224849 6304628 53 3568 47920 1554 12 67 66 39 11 59 73 40 10
792 240,5138 | 3341181
1765313342746329224849 304628 53354793654 1512676639 1159 7340 10 33 41
787 | 233,20621 | 182768 1
1682718414453310407359 11396667 121554369473553284630649482229753
777 | 228,75638 | 315761
127683547 9365412676639 11597340104133454 176434746329 331492248630
761 | 22830114 465761
168354793654 1512676639 11597340103345441 18527 3474632975224849 630
757 | 225,36668 | 465761
16827 13413310407359 1139666712 155436947 3553284630649482229633315
753 | 218,134771761
176531329224849 4628 53354793654 1512676639 1159 734010334541 131827 68
738 217,755 | 1
1765313292248 49 6304628533547 93654151267 6639 1159 7340103341 132768
735 | 213,29624 | 1
714 | 212,12557 | 176693 63292248 649314653547936541512676639115973401033411327681
1766973474 632922484930465 683547 93654151267 6639 1159 7340103345 41 18
713 | 209,99273 | 1
17669 36329224849 63046528 53354793654 12676639 115973401033 41 1327 68
710 | 209,36998 | 1
703 209,2564 [ 17654630649 313347521841453310407359 11396667 121554369534735681
17656973474632975314628533547936541512676639 1159 7340103341 182768
702 | 207,34179 |1
699 | 204,99318 | 16827 134133104073 59 11396667 12541520947355328463049313347695761
697 | 202,22487 | 176531492248 630462853354793654151267663911597340103345411327681
679 | 201,00026 | 176693 632922484963046568354753936541267663911597340103341181
678 | 200,19591 | 176693 632922484963046568354793654126766391159734010334118271
677 | 199,53271|157673314930462853354793654151267663911597340103341131827681
674 | 198,69937|16835479365415126766391159734010334118734746329224849315761
671 | 197,24789 | 1683547920155412676639115973401033411852734746329331465761
655 | 194,92001 | 1766931375218413310407359 11396667 121554894735532846568271
653 | 193,64837 | 1683547936541512391159734010334118527347463293314930465761
652 191,6341 [ 176697331493046568354793654 1512676639 115973401033454118271
644 | 185,70113 | 17653149304628533547936541512676639115973401033454411827681
640 | 183,65598 | 17653149304628533547936541512676639115973401033454411327681
632 | 182,07172[176693315462853354793654151267663911597340103345411327681
628 | 181,67182[176569331304628533547936541512676639115973401033411327681
622 180,2042 | 176 5331462853354793654151267663911597340103345411327681
619 | 178,53599 | 168354793654 151267663911597340103341185273314930465761
605 | 171,27725|1765462853354793654151267663911597340103345441131827681
588 | 169,63981 | 17653146285335479854151267663911597340103341 1827681
583 | 169,25772 | 17669331465354793654151267663911597340103341 1827681
581 | 168,52783 | 1683547936541267663911597340103341131852769331465761
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Table A9. The solutions for EIL76 (Continued)

578 | 161,53024 | 17654628 5335479365415126766391159734010334541182768 1
577 161,4266 | 17654628 53354793654 151267 66391159 734010334113182768 1
563 | 157,57102 | 17654628 533547 9365412676639 115973401033454113182768 1
561 | 155,75568 | 17654628 53354793654151267663911597340103341 1827681
543 153,6788 | 1184133104073 59 1139 66 67 12155436947 68 35532846576 1
523 | 148,18322 | 12718413310407359 11396667 121554369534735685761
522 | 147,69106 | 11841453310407359 11396667 121554369534735685761
520 | 146,42824 | 1765354793654151267663911597340103341131827681
519 | 145,79012 | 16827 184133104073 59 1139 66 67 12548 4735532846576 1
515 | 144,25772 17654628 53354793654151239115973401033411827681
508 | 142,60562 | 17656835479201554126766391159734010334541181
506 | 142,57265|1765354793654126766391159734010334541131827681
505 141,9165 | 1184133104073 59 113966 67 121554369534735685761
504 | 141,11215[12718413310407359 11396667 1215543694735685761
500 | 138,71217 [17653547936541512676639115973401033411327681
491 | 138,06092 | 11841453310407359 11396667 1254369534735685761
490 | 136,90173 | 1765354793654 126766391159734010334541182768 1
486 | 134,84544 |176568354793654151267663911597340103341181

478 | 134,72891 | 1271341331040113966671215543694735685761

477 13422723 |1765683547936541512673911597340103341181

474 | 132,28636 | 176568354753936541267663911597340103341181

473 | 131,12717 | 1765354793654 12676639 115973401033 41182768 1

472 130,98985|176568354793654126766391159734010334541181

464 | 130,50734 | 17656835479365415126766391140103341181

460 | 128,88868 | 176568354798541267663911597340103341181

455 125,21529 |1765683547936541267663911597340103341181

440 | 123,34747 |17656835479365415123911597340103341181

434 | 122,02554 | 17656835479365412676639117340103341181

433 | 120,87719 | 176568 354793654126766391140103341181

427 119,30904 | 1184110407359 11396667 12543694735685761

416 117,8028 [ 176568 35475393654 1267663911591341181

409 | 113,71733 | 176568354793654123911597340103341181

397 | 110,73173 | 1765683547936541267663911591341181

382 | 108,86391 | 11841135911391215543694735685761

379 | 108,41309 | 168 354753284630649482229633315761

372 108,12621 [118411359113912541594735685761

363 | 10599047 | 127 6835475328463064948222975315761

361 | 103,57456 | 1765313292248496304628534735681

351 | 102,54346 | 11841 132768354753284630493135761

346 | 100,68505 | 1275911396667 12543694735685761

341 | 97,250008 | 1683547 5328463064822293315761

340 | 96,198416 | 1683547 53284630494822293315761

328 | 94,539091 | 168 354753284630494822293695761

320 | 93,285881 | 16835475328463049313347695761

318 | 92,706794 | 168 3547532846304948222935761

312 90,379369 | 118411327 68354753284649315761

306 | 86,728639 | 1683547532846306482249315761

301 | 85,903816 | 1765462853473568271341185271

292 | 82,151015| 118411327 683547532846315761

285 81,96819 | 1683547532846306493135761

282 | 80,946494 | 127 68354753284630493135761

278 | 77,784368 | 16835475328463064849315761
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Table A9. The solutions for EIL76 (Continued)

274 76,42434 | 1 68 3547 5328463049313695761
270 71,94028 | 17654628 53473568271341181
254 | 70,735711 | 176546 28 53 473568 2741 18 1
241 66,54027 | 1 68 3547532846313695761
238 | 64,083665 | 16835475328463049315761
232 | 63,829816 | 11841 1327683547535761
227 | 63,781461 | 127 68 35479 5328465 69 76 1
225 | 62,427949 | 168354753284649315761
223 | 60,554046 | 127 683547532846315761
218 | 59,609473 | 168354753284630315761
214 | 56,956328 | 127 683547532830465761
211 | 56,710393 | 127 683547532846569761
205 | 54,199594 | 1683547532846315761
201 | 50,343312 | 127 6835475328465761
184 | 48,761354 | 127 68 354753465761
183 43,98886 | 1 6835475328465761
166 | 42,406902 | 168354753465761
164 | 42,367627 | 168475328465761
163 | 42,232847|127683547535761
162 | 40,564544 | 168354753285761
147 | 39,077465 | 1684735465761
145 | 35,878395| 1683547535761
144 | 35431917 | 1276847355761
126 | 29,077465 | 16847355761
107 | 28,989874 | 17654768 1
106 | 27,763368 | 15354768 1

99 | 26,226562 | 17653568 1

80 20,77033 | 176 5 68 1

60 | 19,456233 116851

50| 1545623317651

30 10,77033 [ 1 68 1

20 6|11761
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